COMMITTENTE:

ALTA SORVEGLIANZA:

CUP: F81H92000000008

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO ESECUTIVO

NUOVA VIABILITA' TRATTA VIA CHIARAVAGNA-VIA BORZOLI

Opere di sostegno Relazione di calcolo

GENERAL CONTRACTOR

	onsorzio C OCIV								
	. Guagnozzi								
I	COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. I G 5 1 0 1 E C V C L N V 0 2 0 5 0 0 1 D								
Prog	ettazione :								
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGETTIS	TA
D00	Revisione a seguito nota 001-U-25/10/12-DL-	Vega Eng.	26/10/2012	Ing. F. Colla	29/10/2012	E. Pagani	30/10/2012	Ing. E. Ghisl	andi
D00	IG51/01-dl del 25 Ottobre 2012	A	20/10/2012	\$	29/10/2012	El	30/10/2012	MGEGNERY	DEIL
Doo	Devisions	Vega Eng.	05/00/0040	Ing. F. Colla	07/00/0040	E. Pagani	00/00/0040	GHIS ANDI ON Sez. A CAL	ico PHO
B00	Revisione	A	25/06/2012	\$	27/06/2012	El	29/06/2012	Sez. A Setto a) civile e ambier b) industriale c) dell'informazion	ntale \le
C00	Revisione a seguito istruttoria	Vega Eng.	03/10/2012	Ing. F. Colla	05/10/2012	E. Pagani	00/10/2012	nº A 16993	
C00	IG5101E11ISNV0200001 A del 02/08/2012	35101E11ISNV0200001		£	05/10/2012	Eh	09/10/2012	MILANO	
		n Flah				File: IG51-0:	1-F-CV-CI	-NV02-05-001-C00	doc

DIRETTORE DEI LAVORI

Foglio 3 di 260

INDICE

1.	INT	ROD	UZIONE	7
	1.1	OG	GETTO	7
	1.2	DES	SCRIZIONE DELLA STRUTTURA	9
	1.2	.1	Muro ad U, imbocco alla nuova galleria di collegamento Chiaravagna-Borzoli	. 12
	1.2	.2	Muri di sostegno e controripa	. 12
2.	NO	RMA	ΓΙVE DI RIFERIMENTO E LINEE GUIDA	. 13
2	2.1	LEG	GGI E DECRETI	. 13
	2.1	.1	La disciplina delle opere in cemento armato e a struttura metallica	. 13
	2.1	.2	Costruzioni in zone sismiche	. 13
	2.1. fond		Le norme tecniche per la esecuzione delle opere di sostegno delle terre e delle opere	
	2.1	.4	Norme tecniche, Circolari e Istruzioni F.S.	. 14
3.	MA	TERI	ALI	. 15
;	3.1	CAL	CESRUZZO	. 15
	3.1	.1	Calcestruzzo per magrone	. 15
	3.1	.2	Calcestruzzo per opere di fondazione e di elevazione	. 15
;	3.2	ACC	CIAIO	. 16
	3.2	.1	Acciaio per calcestruzzo armato	. 16
	3.2	.2	Acciaio per pali di fondazione	. 16
4.	CA	RATT	ERIZZAZIONE DEL TERRENO	. 17
5.	CA	RATT	ERIZZAZIONE SISMICA DEL SITO	. 18
6.	AN	ALISI	DEI CARICHI	. 19
6	3 1	CAF	RICHI PERMANENTI	19

Foglio 4 di 260

	6.2	CAF	RICHI VARIABILI	19
	6.2	1	Carico accidentale	19
	6.2	2	Azione sismica	19
	6.2	3	Fessurazione	20
	6.2	4	Combinazioni di carico considerate nel calcolo	21
7.	МС	DELL	AZIONE STRUTTURALE	22
8.	VE	RIFIC	HE OPERE DI SOSTEGNO	23
	8.1	PRE	EMESSA	23
	8.2	VEF	RIFICA DEL MURO M05	23
	8.2	1	Muro con altezza H=5,5 m	23
	8.2	2	Muro con altezza H=4,7 m	25
	8.2	3	Muro con altezza H=3,4 m	27
	8.3	VEF	RIFICA MURI DI VALLE	29
	8.4	Mur	o d'ala al ponte sul Rio Battestu M03	29
	8.5	MU	RO DI SOSTEGNO M02	31
	8.6	Veri	ifica di stabilità globale muro M02	39
	8.6	5.1	Prova di carico su piastra	54
	8.7	MU	RO DI SOTTOSCARPA M01 - Fondazione diretta	55
	8.8	Veri	ifica di stabilità globale muro M01	63
	8.8	.1	Prova di carico su piastra	73
	8.9	MU	RO DI SOTTOSCARPA M01 – Tratto con fondazine profonda	74
	8.9	.1	Muro M01 h=4.2 m - fondazione su pali	80
	8.9	.2	Muro M01 H=3.00 m - fondazione su pali	99
	8.10	MU	RI LATERALI IMBOCCO GALLERIA M06	116

Foglio 5 di 260

	8.1	0.1	Muro con altezza H=8,50 m.	. 116
	8.1	0.2	Muro con altezza H=6,65 m.	. 118
	8.1	0.3	Muro con altezza H=4,80 m.	. 120
	8.11	VEF	RIFICHE DELLA STRUTTURA MURO IMBOCCO M07	. 122
	8.12	MUI	RO AD U	. 122
	8.1	2.1	Altezza paramento verticale pari a 10.00 m	. 122
	8.13	MUI	RI DI SOSTEGNO	. 191
	8.1	3.1	Muro di sostegno con altezza del paramento verticale pari a 7.00 m	. 191
	8.1	3.2	Muro di sostegno con altezza del paramento verticale pari a 5.00 m	. 198
	8.1	3.3	Muro di sostegno con altezza del paramento verticale pari a 4.25 m	. 205
	8.1	3.4	Muro di sostegno con altezza del paramento verticale pari a 3.05 m	. 212
9.	ALI	LEGA	TO: RISULTATI DEL CALCOLO PER LE DIVERSE COMBINAZIONI DI CALCOLO	. 220
	9.1	MUI	RO H=7 m	. 220
	9.1	.1	Verifiche geotecniche	. 220
	9.1	.2	Verifiche strutturali	. 227
	9.2	MUI	RO H=5 m	. 230
	9.2	.1	Verifiche geotecniche	. 231
	9.2	.2	Verifiche strutturali	. 238
	9.3	MUI	RO H=4.25 m	. 242
	9.3	.1	Verifiche geotecniche	. 242
	9.3	.2	Verifiche strutturali	. 248
	9.4	MUI	RO H=3.05 m	. 251
	9.4	.1	Verifiche geotecniche	. 252
	9.4	.2	Verifiche strutturali	. 257

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 6 di 260

Foglio 7 di 260

1. INTRODUZIONE

1.1 OGGETTO

La presente relazione riguarda il dimensionamento e la verifica delle opere strutturali di sostegno inerenti gli interventi della nuova viabilità tratta Via Borzoli – Via Chiaravagna nell'ambito dei lavori per realizzazione della tratta A.V./A.C. Terzo Valico dei Giovi compresi nelle Infrastrutture Strategiche definite dalla legge obiettivo n.ro 443/01.

In particolare si distinguono le seguenti tipologie di opere:

- Muro ad U in c.a. di imbocco alla galleria di progetto di collegamento Chiaravagna-Borzoli di altezza variabile tra 10.00 m e 7.95 m;
- Muri di sostegno e controripa aventi altezza del paramento verticale variabile tra 8.50 m e 1.50 m.

Si riporta di seguito un'immagine satellitare che mostra l'ubicazione esatta del sito d'intervento all'interno del comune di Genova. Si riporta inoltre un'immagine satellitare ravvicinata che mostra l'area oggetto dell'intervento e in particolare l'ubicazione dell'opera oggetto della seguente relazione di calcolo, con le relative coordinate topografiche necessarie al fine della determinazione dei parametri sismici di progetto.

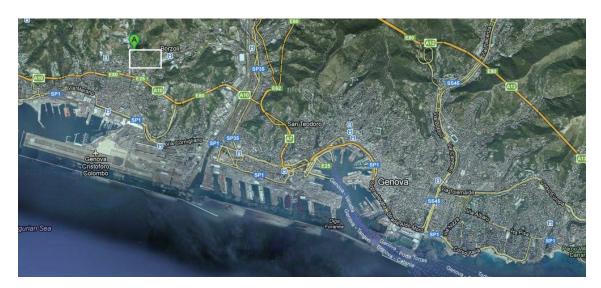


Figura 1.1 Vista satellitare del comune di Genova e ubicazione dell'area di progetto

Foglio 8 di 260

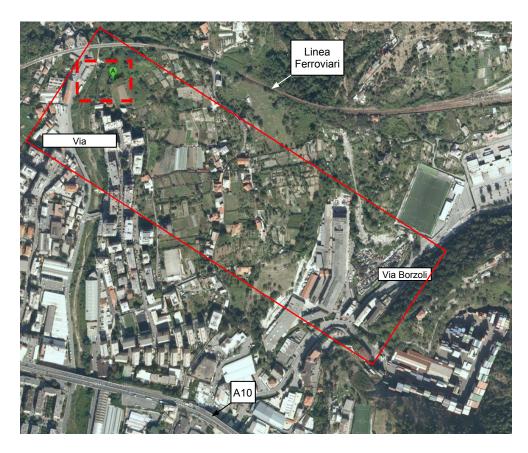


Figura 1.2 Immagine satellitare sito oggetto di studio

Latitudine: 44.43485°

Longitudine: 8.855356°

Si riportano di seguito una planimetria schematica che mostra la collocazione dell'opera oggetto di studio all'interno dell'intero intervento, evidenziando in particolare le aree d'esproprio in marrone.

9 di 260

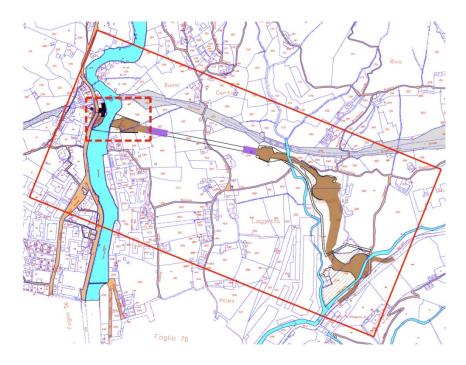
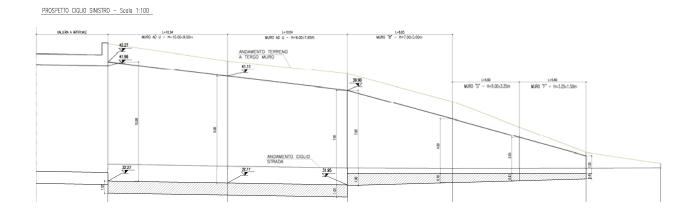
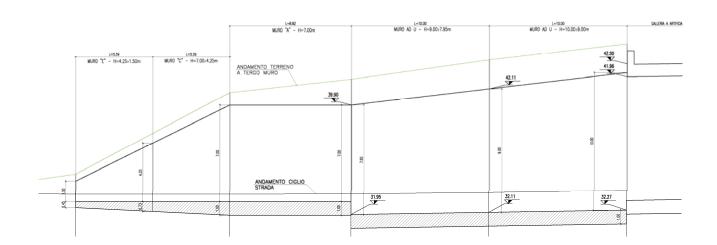



Figura 1.3 Planimetria aree d'esproprio

1.2 DESCRIZIONE DELLA STRUTTURA

Come precedentemente introdotto si distinguono due diverse tipologie di opere. Nel seguito si riportano alcuni estratti degli elaborati grafici e una descrizione di dettaglio delle opere oggetto della presente relazione.

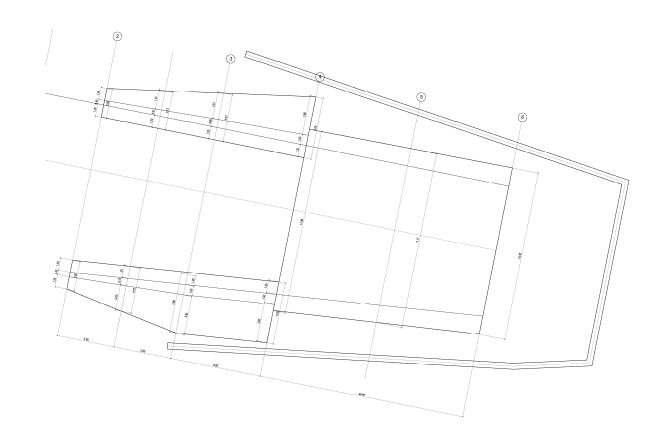


ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 10 di 260

GENERAL CONTRACTOR


ALTA SORVEGLIANZA

Consorzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 11 di 260

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 12 di 260

1.2.1 Muro ad U, imbocco alla nuova galleria di collegamento Chiaravagna-Borzoli

Dalle immagini riportate si evincono le dimensioni del muro ad U: lunghezza complessiva pari a 20 m e altezza variabile da un massimo di 10.00 m a un minimo di 7.95 m. La fondazione del muro ad U ha una larghezza massima di 17.88 m che si riduce andando verso l'imbocco della galleria fino a un minimo pari a 16.45 m e una larghezza interna che varia da un massimo di 14.69 m a un minimo pari a 12.85m. La soletta ha uno spessore costante pari a 1.20 m. I paramenti verticali del muro hanno una larghezza in sommità di 30 cm e sono inclinati lato valle con pendenza del 10%.

1.2.2 Muri di sostegno e controripa

I muri di sostegno ciglio sinistro e ciglio destro hanno una lunghezza totale di 20.00 m ciascuno.

Come si può osservare dalle immagini riportate i muri hanno l'altezza del paramento verticale variabile così come la larghezza totale della fondazione e lo spessore di questa.

Foglio 13 di 260

2. NORMATIVE DI RIFERIMENTO E LINEE GUIDA

I calcoli e le disposizioni esecutive sono conformi alle norme in vigore al momento della stesura del progetto definitivo.

2.1 LEGGI E DECRETI

2.1.1 La disciplina delle opere in cemento armato e a struttura metallica.

Legge 5 Novembre 1971 N° 1086 – "Norme per la disciplina delle opere in calcestruzzo cementizio, normale e precompresso ed a struttura metallica";

D.M. LL.PP. 9 Gennaio 1996 - "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche";

Circolare LL.PP. 15 Ottobre 1996 n° 252 AA.GG./S.T.C. – "Istruzioni per l'applicazione delle «Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche» di cui al D.M. 9.01.1996";

CNR-UNI 10011 – "Costruzioni di acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione";

D.M. 16 Gennaio 1996 - "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi";

Circolare LL.PP. 4 Luglio 1996 n° 156 AA.GG./S.T.C. – "Istruzioni per l'applicazione delle «Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi» di cui al D.M. 16.01.1996";

D.M. 14 Febbraio 1992 – "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";

Circolare Ministero Lavori Pubblici 14/02/1974 n° 11951 - "Legge 05/11/1971 n° 1086. Istruzioni relative alle norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso ed a struttura metallica";

Circolare Ministero Lavori Pubblici 24/06/1993 n° 37406/STC - "Legge 05/11/1971 n° 1086. Istruzioni relative alle norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche, di cui al Decreto Ministeriale 14/02/1992".

2.1.2 Costruzioni in zone sismiche

D.M. LL.PP. 16 Gennaio 1996 – "Norme tecniche per le costruzioni in zona sismica";

Legge 02/02/1974 n° 64 – "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".

Circolare Ministero Lavori Pubblici 10/04/1997 n° 65/STC – "Istruzioni relative alle norme tecniche relative alle costruzioni in zone sismiche di cui al Decreto Ministeriale 16/01/1996".

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 14 di 260

Legge 2 Febbraio 1974 n.64 – "Provvedimenti per le costruzioni, con particolari prescrizioni per le zone sismiche";

Circolare LL.PP. 10 Aprile, n° 65/AA.GG. – "Istruzioni per l'applicazione delle «Norme tecniche per le costruzioni in zona sismica» di cui al D.M. 16.01.1996".

2.1.3 Le norme tecniche per la esecuzione delle opere di sostegno delle terre e delle opere di fondazione

Decreto Ministero Lavori Pubblici 11/03/1988 – "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

Circolare Ministero Lavori Pubblici 24/09/1988 n° 30483 – "Istruzioni riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

2.1.4 Norme tecniche, Circolari e Istruzioni F.S.

Istruzione tecnica Azienda Autonoma Ferrovie dello Stato n° 44a del 01/09/1971 – "Criteri generali e prescrizioni tecniche per la progettazione, l'esecuzione, il collaudo di cavalcavia e passerelle pedonali sottopassanti la linea ferroviaria";

Istruzione tecnica Azienda Autonoma Ferrovie dello Stato n° 44b del 05/10/1982 – "Istruzioni tecniche per manufatti sotto binario da costruire in zona sismica";

Istruzione tecnica Azienda Autonoma Ferrovie dello Stato n° 44d – "Istruzione tecnica per la progettazione e l'esecuzione di impalcati a travi in ferro a doppio T incorporate nel calcestruzzo da costruire sotto il binario";

Istruzione tecnica Azienda Autonoma Ferrovie dello Stato del 2 giugno 1995 – "Sovraccarichi per il calcolo dei ponti ferroviari. Istruzioni per la progettazione, l'esecuzione ed il collaudo. Testo aggiornato al 13/01/1997".

Si è inoltre fatto riferimento al "Manuale di progettazione corpo stradale" con codice documento RFI-DINIC-MA-CS-00-001-C.

Foglio 15 di 260

3. MATERIALI

Si riportano di seguito le caratteristiche meccaniche dei diversi materiali utilizzati così come indicate nel DM 15 Gennaio 1996.

3.1 CALCESRUZZO

Per gli elementi strutturali in cemento armato è previsto l'impiego dei materiali riportati nei paragrafi seguenti.

3.1.1 Calcestruzzo per magrone

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo classe C12/15.

3.1.2 Calcestruzzo per opere di fondazione e di elevazione

Per la realizzazione delle opere di fondazione ed elevazione, si prevede l'utilizzo di calcestruzzo classe C25/30 che presenta le seguenti caratteristiche:

Resistenza a compressione (cubica)	R _{ck}	30 N/mm ²
Resistenza a compressione (cilindrica)	f_{ck}	25 N/mm ²
Resistenza media a trazione	$f_{\text{etm}} = 0.27 \cdot \sqrt[2]{R_{\text{ek}}^2}$	2.61 N/mm ²
Resistenza a compressione (Rara)	$\sigma_{\rm e} = 0.60 \cdot f_{\rm ek}$	15 N/mm ²
Resistenza a compressione (Quasi permanente)	$\sigma_{\rm e} = 0.45 \cdot f_{\rm ek}$	11,2 N/mm ²
Modulo elastico	$E_e = 5700 \cdot \sqrt{R_{ek}}$	31220 N/mm ²
Tensione normale di compressione ammissibile nel conglomerato	$\overline{\sigma}_{e} = 6 \frac{R_{ek} - 15}{4}$	22.5 N/mm²
Tensione tangenziale ammissibile nel conglomerato	$\bar{\tau}_{e0} = 0.4 + \frac{R_{ek} - 15}{75}$	0.6 N/mm ²
	$\bar{\tau}_{ei} = 1.4 + \frac{R_{ek} - 15}{35}$	1.83 N/mm ²

Calcestruzzo (malta) per micropali e tiranti Rck = 25 N/mm²

Il calcestruzzo per le opere di fondazione avrà consistenza S3 e classe di esposizione XC2, il calcestruzzo per le opere di elevazione avrà consistenza S4 e classe di esposizione XC2.

Il coefficiente di omogeneizzazione è assunto pari a 15.

È previsto un copriferro di 4 cm sia per le opere di fondazione che per le opere di elevazione.

Foglio 16 di 260

3.2 ACCIAIO

3.2.1 Acciaio per calcestruzzo armato

Sarà utilizzato un acciaio tipo FeB44k nel caso di diametro minore uguale a 26 mm, avente le seguenti caratteristiche:

Tensione di snervamento caratteristica f_{yk} 430 N/mm² Tensione di rottura caratteristica f_{tk} 540 N/mm² Tensione ammissibile acciaio $\overline{\sigma}_s$ 255 N/mm²

Sarà utilizzato un acciaio tipo FeB38k nel caso di diametro maggiore di 26 mm, avente le seguenti caratteristiche:

Tensione di snervamento caratteristica \mathbf{f}_{yk} 375 N/mm²

Tensione di rottura caratteristica \mathbf{f}_{tk} 450 N/mm²

Tensione ammissibile acciaio $\overline{\sigma}_{g}$ 215 N/mm²

3.2.2 Acciaio per pali di fondazione

Acciaio per elementi in carpenteria metallica, laminati, tubolari e piastrame

Fe430

Foglio 17 di 260

4. CARATTERIZZAZIONE DEL TERRENO

La stratigrafia dei terreni interessati dai muri di sostegno è ricavata dalla relazione geotecnica del Progetto definitivo:

strato superficiale: spessore di 1,5/2,00 m costituito da argilla limosa satura;

secondo strato: spessore di 2/3,00 m. formato da alterazioni marnose con coesione drenata c'= 15÷25 KPa;

terzo strato: formato da argille marnose plioceniche (poco o nulla alterate) e con coesione drenata

c'= 20÷40 KPa

Di seguito sono riportati i parametri geotecnici estratti dall'elaborato specifico

IG51-01-E-CV-A9-NV02-00-001-A00-2

Tipo terreno	γ	φ	С	E
inpo tomonio	(kN/mc)	1	(kPa)	(GPa)
Strato 1	18-19	20°-22°	0-10	0.01-0.02
Strato 2	19-20	21°-23°	15-25	0.025-0.04
Strato 3	20-21	23°-25°	20-40	0.05-0.07

Per terreno tipo Rilevato Stradale si intende il terreno di riporto a tergo dei muri di sostegno e controripa. Il terreno verrà disposto con una pendenza del 2 su 3 fino a raggiungimento della quota del terreno naturale presente in sito. In particolare si raggiunge un'altezza massima dalla testa dei muri di 2.00m.

Foglio 18 di 260

5. CARATTERIZZAZIONE SISMICA DEL SITO

Con la D.G.R. 19/11/10, n. 1362, pubblicata sul Bollettino Ufficiale della Regione Liguria (B.U.R.L.) n. 50 del 15/12/10, parte II, è stata approvata la nuova classificazione sismica (che ha sostituito la precedente di cui alla D.G.R. 24/10/08, n. 1308), entrata in vigore il 1° gennaio 2011.

Secondo la nuova classificazione, il territorio della Provincia di Genova risulta ripartito tra le zone 3 (n. 63 Comuni) e 4 (n. 3 Comuni). Per il solo Comune di Genova, è prevista un'ulteriore partizione territoriale, a livello di Unità Urbanistica, con zone 3 (n. 11 Unità Urbanistiche) e zone 4 (n. 61 Unità Urbanistiche). L'immagine seguente mostra la partizione territoriale del solo comune di Genova. Si può osservare come il sito, ove sono previste le opere in progetto, si trova all'interno dell'Unità Urbanistica 10 classificata in Zona 4, cioè di sismicità molto bassa.



Figura 5.1Classificazione sismica del Comune di Genova, suddiviso in Unità Urbanistiche (D.G.R. n. 1362/10).

Le verifiche sono state eseguite secondo le norme tecniche di cui al DM 15 Gennaio 1996 e relative circolari applicative. Per la zona sismica 4 non è fornito un valore del grado di sismicità. Considerando che l'azione sismica secondo il DM '08 risulta più gravosa rispetto a quella valutata facendo riferimento al DM '96, si assume cautelativamente un valore del grado di sismicità S pari a 6 che corrisponde alla Zona 3. Il coefficiente di intensità sismica C risulta pertanto pari a

$$C = \frac{S-2}{100} = 0.04$$

Inoltre, data l'importanza dell'opera pubblica in progetto, a favore di sicurezza, si consiedara un coefficiente di struttura β pari a 1.2. Di conseguenza l'accelerazione al suolo sarà pari a 0.048g.

Foglio 19 di 260

6. ANALISI DEI CARICHI

Di seguito sono riportati i carichi agenti sulle strutture.

6.1 CARICHI PERMANENTI

I carichi permanenti, secondo il DM96, comprendono sia i carichi permanenti della struttura sia quelli portati.

I carichi permanenti strutturali sono determinati, secondo la normativa, a partire dalle dimensioni geometriche e dai pesi dell'unità di volume dei materiali di cui è composta la struttura.

Si riportano di seguito i pesi per unità di volume dei materiali impiegati, come da regolamento.

MATERIALI	PESO UNITA' DI VOLUME [kN/m³]
Calcestruzzo	25

Per carichi permanenti non strutturali si intende il peso proprio del terreno e del rilevato stradale. Per quanto riguarda il peso del terreno viene valutato caso per caso a seconda del tipo di terreno presente in sito.

Per la tipologia dei muri in oggetto le verifiche sono condotte in condizioni di spinta attiva del terreno.

6.2 CARICHI VARIABILI

6.2.1 Carico accidentale

In accordo al "Manuale di progettazione del corpo stradale RFI-DINIC-MA-00-001-C" paragrafo 5.2.2.2, il carico accidentale a tergo del muro di sostegno è stato considerato distribuito su una striscia di carico di larghezza pari a 4 m e di valore pari a 20 kN/m².

6.2.2 Azione sismica

Come precedentemente detto, sono state assunte come forze sismiche per il dimensionamento quelle determinate ponendo il coefficiente di intensità sismica C pari a 0.048 (S = 6, zona di terza categoria, β =1.2). Le spinte delle terre in condizioni pseudo statiche e le forze di inerzia delle masse sono quindi calcolate secondo il DM 96.

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (come indicato dalla Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma come di seguito descritto.

Foglio 20 di 260

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parete pari a

$$\sigma' = \sigma + \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = arctg(C)$ essendo C il coefficiente di intensità sismica.

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = As^t - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\theta + \theta)}{\cos^2\theta \cdot \cos\theta}$$

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta deve essere applicato ad una distanza dalla base pari a 2/3 dell'altezza del muro stesso.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali che si destano per effetto del sisma. Tale forza viene valutata come

$$F_l = CW$$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi permanenti e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

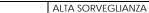
6.2.3 Fessurazione

La verifica della fessurazione non è prevista ai sensi del D.M. 9/1/'96.

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 21 di 260


6.2.4 Combinazioni di carico considerate nel calcolo

Si riportano quindi le combinazioni di carico considerate nel calcolo

COMBINAZIONE 1	
Peso proprio	
Spinta terreno	1
Peso del terreno di reinterro	1
Carico accidentale a tergo muro	0
Sisma	0
COMBINAZIONE 2	
Peso proprio	
Spinta terreno	1
Peso del terreno di reinterro	1
Carico accidentale a tergo muro	1
Sisma	0
COMBINAZIONE 3	
Peso proprio	
Spinta terreno	1
Peso del terreno di reinterro	1
Carico accidentale a tergo muro	0
Sisma	1
COMBINAZIONE 4	1
Peso proprio	
Spinta terreno	1
Peso del terreno di reinterro	1
Carico accidentale a tergo muro	1
Sisma	1

Nel calcolo il terrapieno inclinato a 2 su 3 è stato considerato come un carico permanente distribuito a tergo del muro.

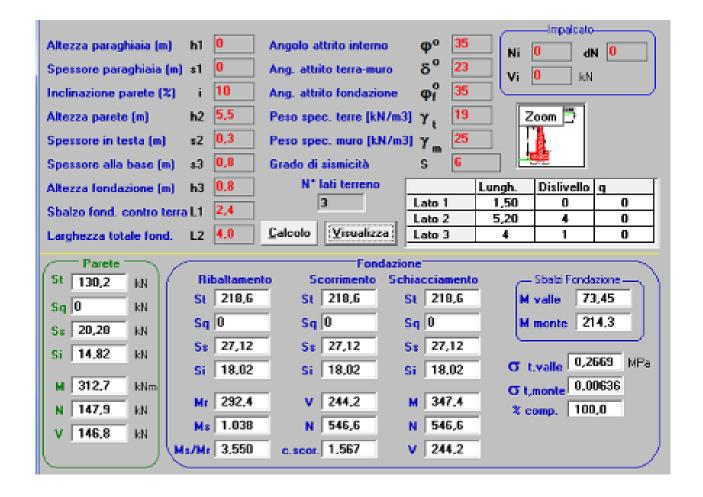
In base alle verifiche condotte, la combinazione di carico più gravosa e rispetto alla quale sono state riportate le verifiche è quella sismica n.4

Foglio 22 di 260

7. MODELLAZIONE STRUTTURALE

La modellazione dei muri di sostegno e dei muri di controripa di cui al paragrafo 9 "Verifichedi sostegno" è stata effettuate con un programma "free" edito dal prof. Gelfi dell'Università di Brescia per le altezze considerate significative.

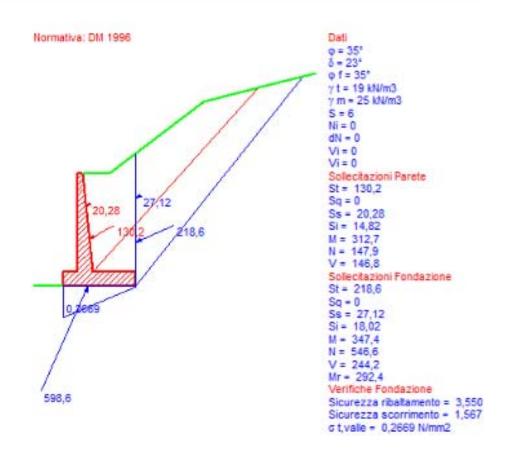
La modellazione e il calcolo di tutte le restanti opere di sostegno tra cui muri ad U, muri di sostegno e muri di controripa, sono eseguiti mediante i "Software per l'Ingegneria Geotecnica e Strutturale di **Aztec Informatica**", in particolare con "**SCAT 10.0**, Analisi strutture scatolari" per l'analisi e la verifica dei muri ad U, e con "**MAX 10.10**, Analisi e calcolo Muri di Sostegno" per i muri di sostegno e controripa.


Il Software Aztec è un software a elementi finiti che discretezza gli scatolari/muri di sostegno in elementi tipo trave dotati ciascuno della relativa area ed inerzia, appoggiate a un terreno modellizzato mediante molle alla Winkler non reagenti a trazione.

8. VERIFICHE OPERE DI SOSTEGNO

8.1 PREMESSA

8.2 VERIFICA DEL MURO M05


8.2.1 Muro con altezza H=5,5 m.

Foglio 24 di 260

Verifica sezione base parete

La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

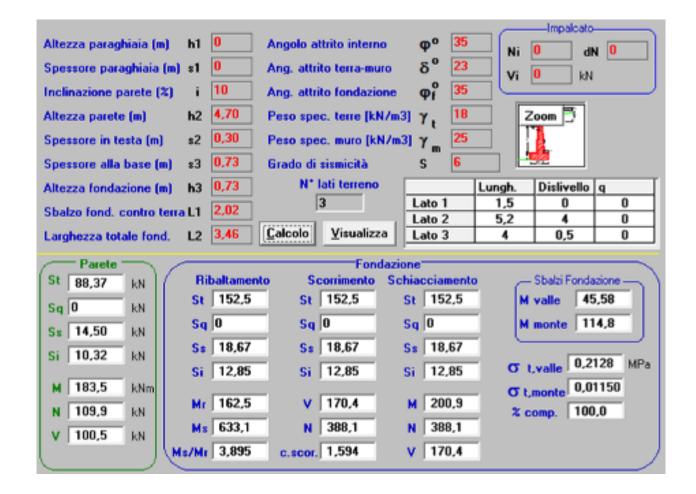
H=80 cm. B=100 cm. Af=10Φ16/ 100 cm. Af'=5Φ16/100 cm

M=31,27 KNm/m N=147,9 KN/m

Risulta σ_c = 4,96 Mpa σ_c = 197,6 MPa

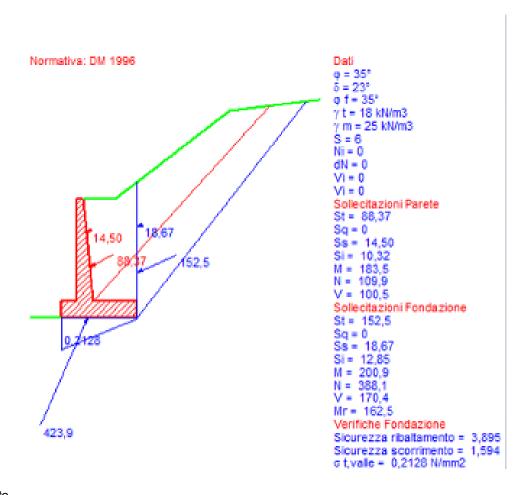
Verifica sezione di incastro della fondazione

La sezione di incastro della fondazione presenta le seguenti caratteristiche:


H=80 cm. B=100 cm. Af= 5Φ 16 /100 cm. Af= 5Φ 16 /100 cm.

M=214 KN.m/m.

Risulta σ_c = 3,31Mpa σ_c = 158,6 MPa


8.2.2 Muro con altezza H=4,7 m.

Foglio 26 di 260

Verifica sezione base parete

La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

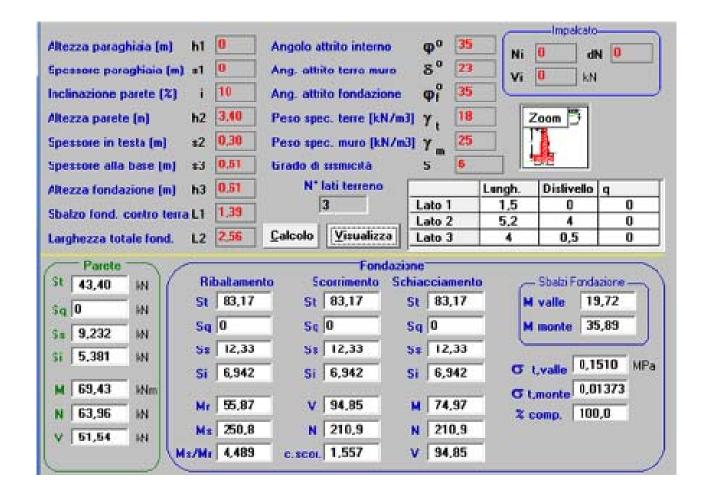
H=73 cm. B=100 cm. Af= 5Φ 14+ 5Φ 12/ 100 cm. Af= 5Φ 12 /100 cm

M=183,5 KNm/m N=109,9 KN/m

Risulta σ_c = 4,54 Mpa σ_c = 170,32 MPa

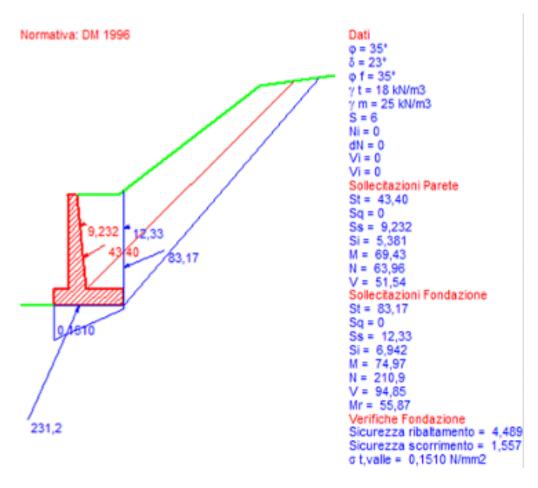
Verifica sezione di incastro della fondazione

La sezione di incastro della fondazione presenta le seguenti caratteristiche:


H=73 cm. B=100 cm. Af= 5Φ 16 /100 cm. Af= 5Φ 14 /100 cm.

M=114,8 KNm/m

Risulta σ_c = 2,73 Mpa σ_c = 182,3 MPa


8.2.3 Muro con altezza H=3,4 m.

Foglio 28 di 260

Verifica sezione base parete

La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

H=61 cm. B=100 cm. Af= 5Φ 12/ 100 cm. Af= 5Φ 10 /100 cm

M=69,43 KNm/m N=63,96 KN/m

Risulta σ_c = 2,81 Mpa σ_c = 89,11 MPa

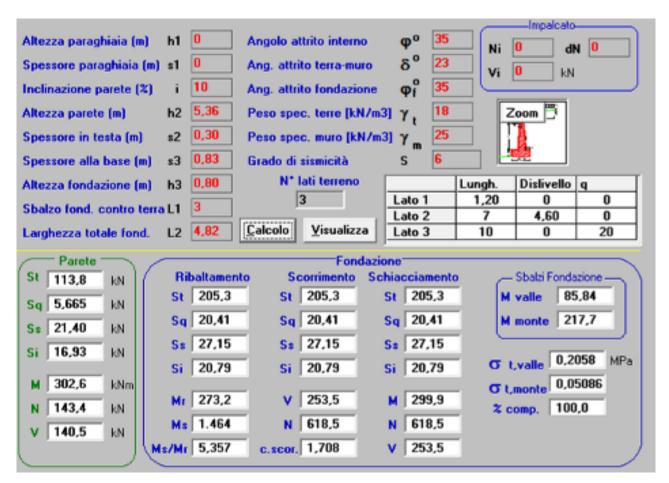
-Verifica sezione di incastro della fondazione

La sezione di incastro della fondazione presenta le seguenti caratteristiche:

H=61 cm. B=100 cm. Af= 5Φ 14 /100 cm. Af= 5Φ 12 /100 cm.

M=74,97 KN.m./m.

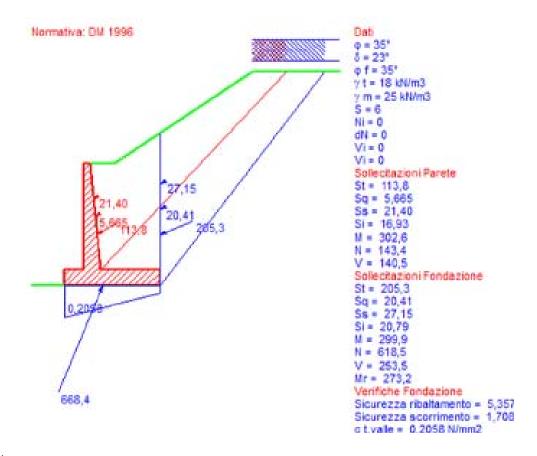
Risulta σ_c = 3,18 Mpa σ_c = 115,3 MPa


8.3 VERIFICA MURI DI VALLE

Si verificano tre muri e precisamente:

- il muro d'ala allo scatolare di sovrappasso al rio Batestu;
- il muro di sostegno della strada;
- il muro di sostegno posto alla base del rilevato stradale.

8.4 Muro d'ala al ponte sul Rio Battestu M03


A favore di sicurezza il calcolo è eseguito per la sezione che presenta la massima altezza della parete.

Foglio 30 di 260

Verifica sezione base parete

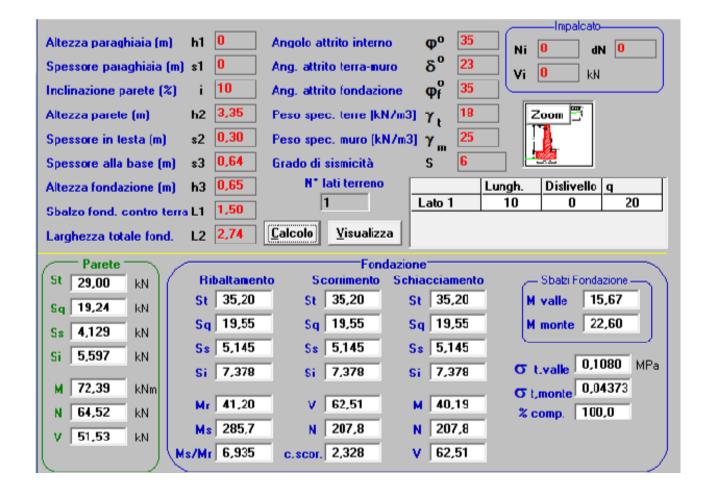
La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

H=83 cm. B=100 cm. Af=5Φ16+5Φ16/ 100 cm. Af=5Φ12 /100 cm

M=302,6 KNm/m N=143,4KN/m

Risulta σ_c = 5,37 Mpa σ_c = 183,1 MPa

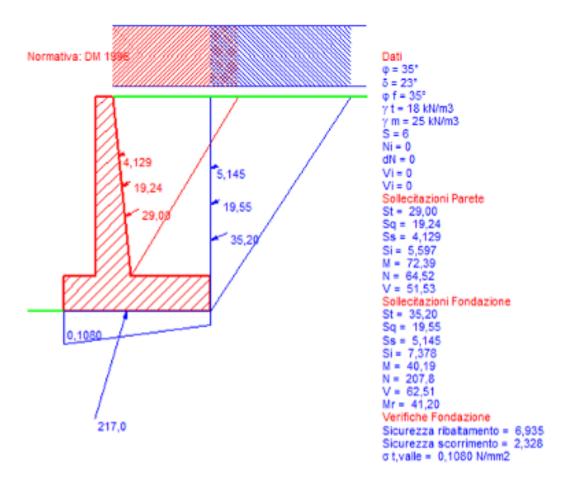
Verifica sezione di incastro della fondazione


La sezione di incastro della fondazione presenta le seguenti caratteristiche:

H=90 cm. B=100 cm. Af= 5Φ 20 /100 cm. Af= 5Φ 16 /100 cm.

M=217,7 KNm/m

Risulta σ_c = 3,21 Mpa σ_c = 179,9 MPa


8.5 MURO DI SOSTEGNO M02

Foglio 32 di 260

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_q$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5 B \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

Caso di terreno puramente coesivo φ=0

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

Foglio 33 di 260

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = 1.5(N_q - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

per
$$\varphi{=}0$$

$$s_c = 1 + 0.2 \frac{B}{L}$$

per
$$\phi > 0$$

$$s_c = 1 + 0.2 \frac{B \quad (1 + sen \ \phi)}{L \quad (1 + sen \ \phi)}$$

$$s_q = 1 + 0.1 - - - L \quad (1+sen \ \phi)$$
 L $(1+sen \ \phi)$

$$s_{\gamma} = 1 + 0.1 - - - - L \quad (1+sen \ \phi)$$
 L $(1+sen \ \phi)$

Fattori di profondità

Si definisce il parametro k come

$$k = \frac{D}{B}$$
 se $\frac{D}{B}$

Foglio 34 di 260

$$k = arctg \xrightarrow{\qquad \qquad D \qquad \qquad D \\ \qquad B \qquad \qquad B \qquad \qquad B$$

vari coefficienti si esprimono come

per
$$\phi=0$$

$$d_c = 1 + 0.4k$$

per
$$\phi > 0$$

$$\begin{aligned} d_c &= d_q - \frac{1 - d_q}{N_c \ tg \ \varphi} \end{aligned}$$

$$d_q = 1 + 2 tg \phi (1-\sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni $B' = B-2e_B$ $L' = L-2e_L$) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$per \ \phi = 0 \qquad \qquad i_c = 1 \ \text{----} \frac{m \ H}{A_f \ c_a \ N_c} \label{eq:ic}$$

$$per \; \phi > 0 \qquad \qquad i_c = i_q - \frac{1 - i_q}{N_q - 1} \label{eq:ic}$$

$$i_q = (1 - \frac{H}{V + A_f \, c_a \, ctg \phi})^m \label{eq:iq}$$

$$per \; \eta = 0 \qquad \qquad i_{\gamma} = (1 \; - \; \frac{H}{V \; + \; A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:equation:equation}$$

Foglio 35 di 260

$$dove \qquad \qquad m = \frac{2 + B / L}{1 + B / L}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0
$$b_c = 1 - \frac{2 \eta}{\pi + 2}$$

per
$$\phi > 0$$

$$b_c = b_q - \frac{1 - b_q}{N_c \ tg \ \phi}$$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

$$per \; \phi {=}0 \qquad \qquad g_c = \frac{1 - 2\beta}{\pi + 2}$$

per
$$\phi > 0$$

$$g_c = g_q - \frac{1 - g_q}{N_c t g \phi}$$

$$g_{q} = g_{\gamma} = (1 - tg\beta)^{2}$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a \label{eq:hamiltonian}$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

Foglio 36 di 260

$$\beta + \eta \le 90^{\circ}$$

Caratteristiche fisico-meccaniche del terreno equivalente

La determinazione delle caratteristiche fisiche e meccaniche dello strato equivalente, nel caso di terreno stratificato è la seguente:

Media ponderata

$$\begin{split} \gamma_{eq} &= \frac{\gamma_{1} H_{1} + \gamma_{2} H_{2} + \dots + \gamma_{n} H_{n}}{\sum_{i} H_{i}} \\ c_{eq} &= \frac{c_{1} H_{1} + c_{2} H_{2} + \dots + c_{n} H_{n}}{\sum_{i} H_{i}} \\ \phi_{eq} &= \frac{\phi_{1} H_{1} + \phi_{2} H_{2} + \dots + \phi_{n} H_{n}}{\sum_{i} H_{i}} \end{split}$$

Criterio di Meyerhof

In questo caso le espressioni utilizzate sono le stesse viste per la media ponderata per quello che riguarda i valori della coesione e del peso specifico equivalenti, mentre per l'angolo di attrito equivalente la relazione è la seguente:

$$\phi_{\rm eq} = \tan^{-1} \frac{H_1 \tan \phi_1 + H_2 \tan \phi_2 + \dots + H_n \tan \phi_n}{\sum_i H_i}$$

In tutte le espressioni si è utilizzata la seguente notazione:

ci è la coesione dello strato di altezza Hi (eventualmente nulla);

φi l'angolo di attrito dello strato di altezza Hi (eventualmente nullo);

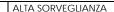
yi è il peso di volume dello strato di altezza Hi (eventualmente nullo).

Nel caso in esame è stato adottato il criterio di Meyerhoff

Descrizione terreni

Caratteristiche fisico-meccaniche

Simbologia adottata


Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kg/mc]

 γ_{sat} Peso di volume saturo del terreno espresso in [kg/mc]

 ϕ Angolo di attrito interno del terreno espresso in gradi

 δ Angolo di attrito palo-terreno espresso in gradi

Foglio 37 di 260

c Coesione del terreno espressa in [kg/cmq]

Descrizione	γ	$\gamma_{\rm sat}$	ф	δ	c
Rilevato	1900,0	2000,0	35,00	23,00	0,000
Strato 1	1800,0	1900,0	22,00	22,00	0,000
Strato 2	1900,0	2000,0	22,00	22,00	0,150
Strato 3	2000,0	2100,0	24,00	24,00	0,200

Descrizione stratigrafia

Simbologia adottata

 n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno Terreno dello strato

Punto di sondaggio n° 1:	X = 0.0 [m]	Y = 0.0 [m]
Punto di sondaggio n° 2:	X = 3.0 [m]	Y = 0.0 [m]
Punto di sondaggio n° 3:	X = 0.0 [m]	Y = 3.0 [m]

N	Z 1	$\mathbb{Z}2$	Z 3	Terreno
1	-2,0	-2,0	-2,0	Rilevato
2	-4,6	-4,6	-4,6	Strato 1
3	-6,8	-6,8	-6,8	Strato 2
4	-12,0	-12,0	-12,0	Strato 3

Coefficienti di sicurezza per le verifiche geotecniche

Capacità portante 2,00

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

$$q_u = c \; N_c \; s_c \; i_c \; d_c \; b_c \; g_c + q \; N_q \; s_q \; i_q \; d_q \; b_q \; g_q + 0.5 \; B\gamma \; N_\gamma \; s_\gamma \; i_g \; d_g \; b_\gamma \; g_\gamma \; d_g \; d_g \; b_\gamma \; g_\gamma \; d_g \; d_g$$

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato il CRITERIO DI MEYERHOF

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione per carico eccentrico: MEYERHOF Meccanismo di punzonamento in presenza di falda.

Analisi in condizioni drenate

Fondazione

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 38 di 260

Caratteristiche fisico-meccaniche del terreno equivalente

Coesione del terreno equivalente c = 0.00 [kg/cmq]*

*In via cautelativa si assume quale valore della coesione il valore pari al minimo dell'intervallo corrisponte al terreno di imposta della fondazione dell'opera.

Combinazione n° 1 (Fondazione)

Base ridotta B' = B - 2 ex = 2,24 [m] Lunghezza ridotta L' = L - 2 ey = 1,00 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 16,88$	$N_{q} = 7.82$	$N_{\gamma} = 7,13$
$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.49$	$i_q = 0.56$	$i_{\gamma} = 0,41$
$d_c = 1,30$	$d_{q} = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0 + 3.07 + 0.30 = 3.38 \text{ [kg/cmq]}$$

Applicando il coefficiente di sicurezza $\eta = 2,00$, otteniamo per la tensione ammissibile il seguente valore:

$$q_{amm} = q_u / \eta = 3,38 / 2,00 = 1,69[kg/cmq]$$

Per il muro M02 la tensione massima risulta pari a 1,08 [kg/cmq] < q_{amm} = 1,69 [kg/cmq] ; la verifica è soddisfatta.

Verifica sezione base parete

La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

H=64 cm. B=100 cm. Af=5Φ14/ 100 cm. Af=5Φ10 /100 cm

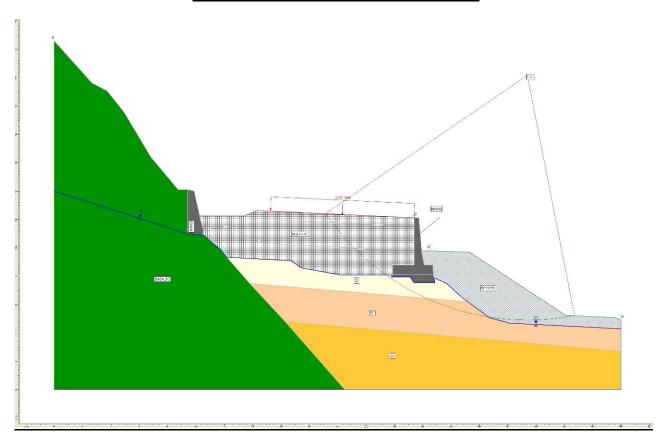
M=72,39 KNm/m N=64,52 KN/m

Risulta σ_c = 2,72 Mpa σ_c = 108,70 MPa

Foglio 39 di 260

-Verifica sezione di incastro della fondazione

La sezione di incastro della fondazione presenta le seguenti caratteristiche:


H=65 cm. B=100 cm. Af= 5Φ 12 /100 cm. Af= 5Φ 10 /100 cm.

M=22,6 KNm/m

Risulta σ_c = 1,12 Mpa σ_c = 75,82 MPa

8.6 Verifica di stabilità globale muro M02

Muro M02: Caso statico in condizioni drenate

Project Settings

Failure Direction: Left to Right

Units of Measurement: SI Units

Pore Fluid Unit Weight: 9.81 kN/m3

Foglio 40 di 260

Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off

Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used:

Bishop simplified

GLE/Morgenstern-Price with interslice force function: Half Sine

Spencer

Number of slices: 25

Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular

Radius increment: 10

Minimum Elevation: Not Defined

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Loading

1 Distributed Load present:

Distributed Load Constant Distribution, Orientation: Normal to boundary, Magnitude: 20 kN/m

Foglio 41 di 260

Material Properties

Material: Basalti

Strength Type: Mohr-Coulomb

Unit Weight: 26 kN/m3

Cohesion: 50 kPa

Friction Angle: 50 degrees

Water Surface: None

Material: S1

Strength Type: Mohr-Coulomb

Unit Weight: 18 kN/m3

Cohesion: 0 kPa

Friction Angle: 20 degrees

Water Surface: Water Table

Custom Hu value: 1

Material: S2

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 15 kPa

Friction Angle: 21 degrees

Water Surface: None

Material: S3

Strength Type: Mohr-Coulomb

Unit Weight: 20 kN/m3

Cohesion: 20 kPa

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 42 di 260

Friction Angle: 23 degrees

Water Surface: None

Material: Riporto

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 28 degrees

Water Surface: None

Material: Muro

Strength Type: Infinite strength

Unit Weight: 25 kN/m3

Material: Rlievato

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 34 degrees

Water Surface: None

Global Minimums

Method: bishop simplified

FS: 1.308200

Center: 33.385, 22.169

Radius: 17.268

Left Slip Surface Endpoint: 19.136, 12.414

Right Slip Surface Endpoint: 36.709, 5.224

Foglio 43 di 260

Resisting Moment=9905.6 kN-m

Driving Moment=7571.95 kN-m

Method: spencer

FS: 1.306990

Center: 33.385, 22.169

Radius: 17.268

Left Slip Surface Endpoint: 19.136, 12.414

Right Slip Surface Endpoint: 36.709, 5.224

Resisting Moment=9896.47 kN-m

Driving Moment=7571.95 kN-m

Resisting Horizontal Force=509.182 kN

Driving Horizontal Force=389.584 kN

Method: gle/morgenstern-price

FS: 1.309750

Center: 33.385, 22.169

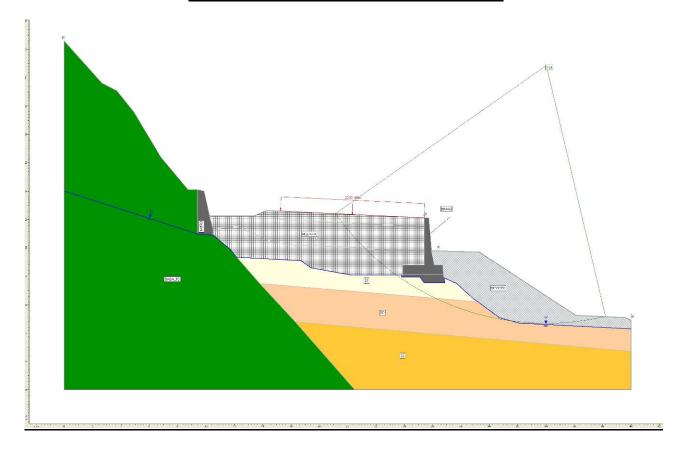
Radius: 17.268

Left Slip Surface Endpoint: 19.136, 12.414

Right Slip Surface Endpoint: 36.709, 5.224

Resisting Moment=9917.34 kN-m

Driving Moment=7571.95 kN-m


Resisting Horizontal Force=509.962 kN

Driving Horizontal Force=389.36 kN

Foglio 44 di 260

Muro M02: Caso statico in condizioni non drenate

Project Settings

Failure Direction: Left to Right

Units of Measurement: SI Units

Pore Fluid Unit Weight: 9.81 kN/m3

Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off

Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 45 di 260

Analysis Methods

Analysis Methods used:

Bishop simplified

GLE/Morgenstern-Price with interslice force function: Half Sine

Spencer

Number of slices: 25

Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular

Radius increment: 10

Minimum Elevation: Not Defined

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Loading

1 Distributed Load present:

Distributed Load Constant Distribution, Orientation: Normal to boundary, Magnitude: 20 kN/m

Material Properties

Material: Basalti

Strength Type: Mohr-Coulomb

Unit Weight: 26 kN/m3

Cohesion: 50 kPa

Friction Angle: 50 degrees

Water Surface: None

Foglio 46 di 260

Material: S1

Strength Type: Undrained

Unit Weight: 18 kN/m3

Cohesion Type: Constant

Cohesion: 60 kPa

Water Surface: None

Material: S2

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 15 kPa

Friction Angle: 21 degrees

Water Surface: None

Material: S3

Strength Type: Mohr-Coulomb

Unit Weight: 20 kN/m3

Cohesion: 20 kPa

Friction Angle: 23 degrees

Water Surface: None

Material: Riporto

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 28 degrees

Water Surface: None

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 47 di 260

Material: Muro

Strength Type: Infinite strength

Unit Weight: 25 kN/m3

Material: Rlievato

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 34 degrees

Water Surface: None

Global Minimums

Method: bishop simplified

FS: 1.535370

Center: 34.018, 22.854

Radius: 18.184

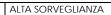
Left Slip Surface Endpoint: 19.129, 12.415

Right Slip Surface Endpoint: 38.210, 5.160

Resisting Moment=12714.4 kN-m

Driving Moment=8281 kN-m

Method: spencer


FS: 1.532900

Center: 34.018, 22.854

Radius: 18.184

Left Slip Surface Endpoint: 19.129, 12.415

Right Slip Surface Endpoint: 38.210, 5.160

Foglio 48 di 260

Resisting Moment=12693.9 kN-m

Driving Moment=8281 kN-m

Resisting Horizontal Force=617.546 kN

Driving Horizontal Force=402.862 kN

Method: gle/morgenstern-price

FS: 1.547880

Center: 34.018, 22.854

Radius: 18.184

Left Slip Surface Endpoint: 19.129, 12.415

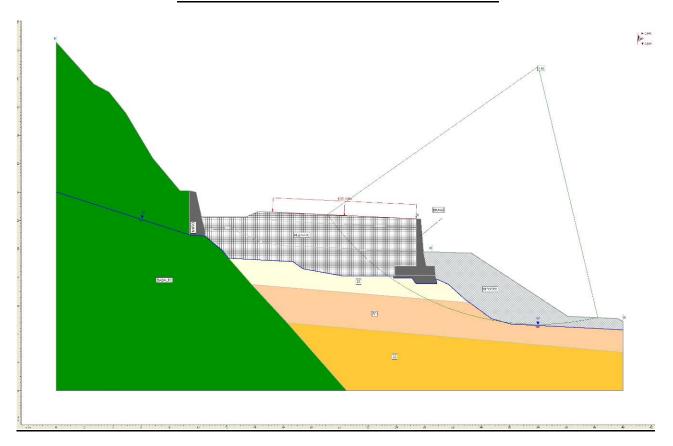
Right Slip Surface Endpoint: 38.210, 5.160

Resisting Moment=12818 kN-m

Driving Moment=8281 kN-m

Resisting Horizontal Force=622.532 kN

Driving Horizontal Force=402.185 kN



IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 49 di 260

Muro M02: Caso sismico in condizioni non drenate

Project Settings

Failure Direction: Left to Right

Units of Measurement: SI Units

Pore Fluid Unit Weight: 9.81 kN/m3

Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off

Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Foglio 50 di 260

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used:

Bishop simplified

GLE/Morgenstern-Price with interslice force function: Half Sine

Spencer

Number of slices: 25

Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular

Radius increment: 10

Minimum Elevation: Not Defined

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Loading

Seismic Load Coefficient (Horizontal): 0.048

Seismic Load Coefficient (Vertical): 0.024

1 Distributed Load present:

Distributed Load Constant Distribution, Orientation: Normal to boundary, Magnitude: 20 kN/m

Material Properties

Material: Basalti

Strength Type: Mohr-Coulomb

Unit Weight: 26 kN/m3

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 51 di 260

Cohesion: 50 kPa

Friction Angle: 50 degrees

Water Surface: None

Material: S1

Strength Type: Undrained

Unit Weight: 18 kN/m3

Cohesion Type: Constant

Cohesion: 60 kPa

Water Surface: None

Material: S2

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 15 kPa

Friction Angle: 21 degrees

Water Surface: None

Material: S3

Strength Type: Mohr-Coulomb

Unit Weight: 20 kN/m3

Cohesion: 20 kPa

Friction Angle: 23 degrees

Water Surface: None

Material: Riporto

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 52 di 260

Cohesion: 0 kPa

Friction Angle: 28 degrees

Water Surface: None

Material: Muro

Strength Type: Infinite strength

Unit Weight: 25 kN/m3

Material: Rlievato

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 34 degrees

Water Surface: None

Global Minimums

Method: bishop simplified

FS: 1.494580

Center: 34.018, 22.854

Radius: 18.184

Left Slip Surface Endpoint: 19.129, 12.415

Right Slip Surface Endpoint: 38.210, 5.160

Resisting Moment=12019.5 kN-m

Driving Moment=8042.09 kN-m

Method: spencer

FS: 1.492690

Center: 34.018, 22.854

Foglio 53 di 260

Radius: 18.184

Left Slip Surface Endpoint: 19.129, 12.415

Right Slip Surface Endpoint: 38.210, 5.160

Resisting Moment=12004.3 kN-m

Driving Moment=8042.09 kN-m

Resisting Horizontal Force=592.703 kN

Driving Horizontal Force=397.071 kN

Method: gle/morgenstern-price

FS: 1.503560

Center: 34.018, 22.854

Radius: 18.184

Left Slip Surface Endpoint: 19.129, 12.415

Right Slip Surface Endpoint: 38.210, 5.160

Resisting Moment=12091.8 kN-m

Driving Moment=8042.09 kN-m

Resisting Horizontal Force=596.931 kN

Driving Horizontal Force=397.011 kN

rzio Collegamenti Integrati Velo

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 54 di 260

8.6.1 Prova di carico su piastra

A maggior riprova della correttezza della scelta progettuale e al fine di ottemperare alla richiesta di maggiori approfondimenti sul terreno fondazionale è stata effettuata, in data 12/10/2012, una prova su piastra atta a verificare il grado di deformabilità del terreno in situ.

La prova effettuata sullo strato 1, argilla limosa, strato di fondazione dell'opera, ha prodotto un cedimento pari a 1.44 mm in corrispondenza di una sollecitazione di 0.10 N/mmq.

Il valore del cedimento si ritiene pienamente accettabile

Laboratorio autorizzato dal Ministero delle infrastrutture con D.M. n. 39073 del 23.3.1995 e successivi rinnovi, ai sensi dell'art. 20 Legge n. 1086/71 - Circ. Min. 7617/STC sett. A.

Azienda con Sistema di Gestione per la Qualità Certificato da DNV UNI EN ISO 9001:2008

RAPPORTO DI PROVA n. 124256 del 15/10/2012

Verbale di accettazione n° 24614 del 15/10/2012 PROVA DI CARICO SU PIASTRA (C.N.R. № 146)

RICHIEDENTE	IMPRESA ESECUTRICE
Consorzio Stabile Pamoter Via A. Rimassa 49/2 - 16129 Genova DIRETTORE DEI LAVORI	Consorzio stabile Pamoter Via A. Rimassa 49/2 - 16129 Genova COMMITTENTE OPERA
Richiesta non firmata dai Direttore dei Lavori CANTIERE DI RIFERIMENTO	Consorzio Cociv

STRATO DI PROVA E UBICAZIONE	DATA PROVA
Wbs: NV02-6	12/10/2012
Prova 2 mura di valla nº 3 - quota magrana	12/10/2012

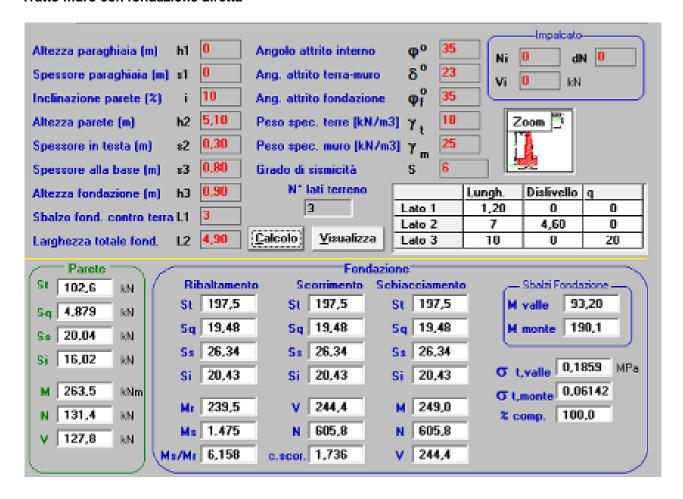
STRUMENTAZIONE UTILIZZATA

Piastra diametro 300 mm

Controls Mod. 35-T1173/D matricola 12017667

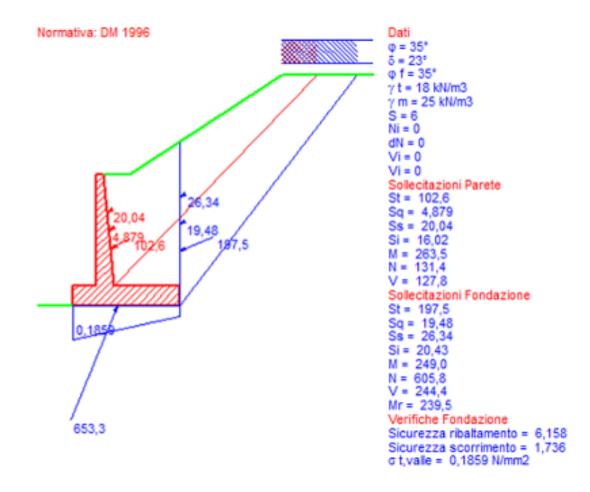
RISULTATI DELLE PROVE

Tensione [N/mm ²]	Tempo stabilizzazione		Cedimenti		Media	DIAGRAMMA TENSIONE - CEDIMENTO
figurine.)			[mm]		cedimenti	
	[min]	1	2	3	[mm]	
		Iº ciclo	di carico			Tensioni [N/mm²]
0,02	0	0,00	0,00	0,00	0,00	0,00 0,05 0,10 0,15 0,20 0,25 0,30
0,05	3	0,52	0,42	0,38	0,44	
0,10	3	1,52	1,40	1,40	1,44	
0,15	5	2,82	2,62	2,82	2,75	1,00
0,20	6	4,22	3,98	4,30	4,17	
0,25	7	5,92	5,54	6,12	5,86	2.00
		H° ciclo	di carico			
0,05						Lium 3.00
0,10						g 3,00
0,15						# \ \
0,20						8 400
0,25						1.0
	N	ODULO DI DE	FORMAZION	E		5,00
Md	Iº ddo	9,6	N/mm²			
M'd	IIº ciclo		N/mm²	(intervallo		
K =	Md/M'd			tra 0,15-0,2	:5 r(/mm²)	6,00


SPERIMENTATORE Geom. Giorgio Marzani DIRETTORE DEL LABORATORIO Ing. Fabio Beni

8.7 MURO DI SOTTOSCARPA M01 - Fondazione diretta

Questa opera è costituita da un tratto di muro ad altezza costante, con fondazione diretta (sezione tipo A) ed un tratto ad altezza variabile, con fondazione profonda.


Tratto muro con fondazione diretta

Foglio 56 di 260

Verifica sezione base parete

La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

H=80 cm. B=100 cm. Af=5Φ16+5Φ20/ 100 cm. Af=5Φ14 /100 cm

M=263,5 KNm/m N=131,4 KN./m

Risulta σ_c = 4,23 Mpa σ_c = 124,7 MPa

Verifica sezione di incastro della fondazione

La sezione di incastro della fondazione presenta le seguenti caratteristiche:

H=90 cm. B=100 cm. Af= 5Φ 24 /100 cm. Af= 5Φ 16 /100 cm.

M=190,1 KNm/m

Risulta σ_c = 2,43Mpa σ_c = 110,4 MPa

Foglio 57 di 260

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u \, / \, R > = \eta_q$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

Caso di terreno puramente coesivo ϕ =0

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = 1.5(N_q - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

per
$$\varphi \!\!=\!\! 0$$

$$s_c = 1 + 0.2 \frac{B}{I}.$$

per
$$\phi > 0$$
 $s_c = 1 + 0.2 - \frac{B (1 + \text{sen } \phi)}{L (1 + \text{sen } \phi)}$

Foglio 58 di 260

$$s_{q} = 1 + 0.1 - \begin{array}{c} B & (1 + sen \ \varphi) \\ \hline L & (1 + sen \ \varphi) \end{array}$$

$$s_{\gamma} = 1 + 0.1 - - - - L \quad (1+sen \ \phi)$$
 L $(1+sen \ \phi)$

Fattori di profondità

Si definisce il parametro k come

$$k = \frac{D}{B} \quad se \quad \frac{D}{S} = \frac{B}{B}$$

$$k = arctg - \underbrace{\hspace{1cm} D}_{\hspace{1cm} B} \hspace{1cm} se \hspace{1cm} - \underbrace{\hspace{1cm} D}_{\hspace{1cm} > \hspace{1cm} 1}$$

vari coefficienti si esprimono come

per
$$\phi = 0$$
 $d_c = 1 + 0.4k$

per
$$\varphi{>}0$$

$$d_{\rm c} = d_{\rm q} - \frac{1 - d_{\rm q}}{N_{\rm c} \; tg \; \varphi} \label{eq:dc}$$

$$d_q = 1 + 2 tg \phi (1-\sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come $A_f = B'xL'$ (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni $B' = B-2e_B$ $L' = L-2e_L$) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$per \; \phi = 0 \qquad \qquad i_c = 1 \; - \frac{m \; H}{A_f \; c_a \; N_c} \label{eq:ic}$$

Foglio 59 di 260

$$\mbox{per } \phi > 0 \qquad \qquad i_c = i_q - \frac{1 - i_q}{N_q - 1} \label{eq:continuous}$$

$$i_q = (1 - \frac{H}{V + A_f c_a \, ctg \phi})^m \label{eq:iq}$$

$$per \; \eta = 0 \qquad \qquad i_{\gamma} = (1 \; - \; \frac{H}{ V + A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:igamma}$$

dove
$$m = \frac{2 + B/L}{1 + B/L}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi = 0$$
 $b_c = 1 - \frac{2 \eta}{\pi + 2}$

per
$$\phi > 0$$

$$b_c = b_q - \frac{1 - b_q}{N_c tg \phi}$$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

$$g_c = \frac{1 - 2\beta}{\pi + 2}$$

per
$$\phi{>}0$$

$$g_c = g_q - \frac{1 - g_q}{N_c \; tg \; \phi} \label{eq:gc}$$

Foglio 60 di 260

$$g_q = g_y = (1 - tg\beta)^2$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

$$\beta + n \le 90^{\circ}$$

Caratteristiche fisico-meccaniche del terreno equivalente

La determinazione delle caratteristiche fisiche e meccaniche dello strato equivalente, nel caso di terreno stratificato è la seguente:

Media ponderata

$$\begin{split} \gamma_{eq} &= \frac{\gamma_{1} H_{1} + \gamma_{2} H_{2} + \dots + \gamma_{n} H_{n}}{\sum_{i} H_{i}} \\ c_{eq} &= \frac{c_{1} H_{1} + c_{2} H_{2} + \dots + c_{n} H_{n}}{\sum_{i} H_{i}} \\ \phi_{eq} &= \frac{\phi_{1} H_{1} + \phi_{2} H_{2} + \dots + \phi_{n} H_{n}}{\sum_{i} H_{i}} \end{split}$$

Criterio di Meyerhof

In questo caso le espressioni utilizzate sono le stesse viste per la media ponderata per quello che riguarda i valori della coesione e del peso specifico equivalenti, mentre per l'angolo di attrito equivalente la relazione è la seguente:

$$\phi_{\text{eq}} = \tan^{-1} \frac{H_1 \tan \phi_1 + H_2 \tan \phi_2 + \dots + H_n \tan \phi_n}{\sum_{i=1}^{n} H_i}$$

In tutte le espressioni si è utilizzata la seguente notazione:

ci è la coesione dello strato di altezza Hi (eventualmente nulla);

φi l'angolo di attrito dello strato di altezza Hi (eventualmente nullo);

yi è il peso di volume dello strato di altezza Hi (eventualmente nullo).

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 61 di 260

Nel caso in esame è stato adottato il criterio di Meyerhoff

Descrizione terreni

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

γ Peso di volume del terreno espresso in [kg/mc]

 γ_{sat} Peso di volume saturo del terreno espresso in [kg/mc]

 ϕ Angolo di attrito interno del terreno espresso in gradi

 δ Angolo di attrito palo-terreno espresso in gradi

c Coesione del terreno espressa in [kg/cmq]

Descrizione	γ	$\gamma_{\rm sat}$	ф	δ	c
Strato 1	1800,0	1900,0	22,00	22,00	0,000
Strato 2	1900,0	2000,0	22,00	22,00	0,150
Strato 3	2000.0	2100.0	24.00	24.00	0.200

Descrizione stratigrafia

Simbologia adottata

 n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno Terreno dello strato

Punto di sondaggio n° 1: X = 0.0 [m] Y = 0.0 [m]Punto di sondaggio n° 2: X = 3.0 [m] Y = 0.0 [m]Punto di sondaggio n° 3: X = 0.0 [m] Y = 3.0 [m]

N	Z 1	$\mathbb{Z}2$	Z 3	Terreno
1	-2,3	-2,3	-2,3	Strato 1
2	-4,8	-4,8	-4,8	Strato 2
3	-12,0	-12,0	-12,0	Strato 3

Coefficienti di sicurezza per le verifiche geotecniche

Capacità portante 2,00

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

$$q_u = c \ N_c \ s_c \ i_c \ d_c \ b_c \ g_c + q \ N_q \ s_q \ i_q \ d_q \ b_q \ g_q + 0.5 \ B\gamma \ N_\gamma \ s_\gamma \ i_g \ d_g \ b_\gamma \ g_\gamma$$

Foglio 62 di 260

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato il CRITERIO DI MEYERHOF

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione per carico eccentrico: MEYERHOF

Analisi in condizioni drenate.

Fondazione

Caratteristiche fisico-meccaniche del terreno equivalente

Coesione del terreno equivalente c = 0.15 [kg/cmq]*

*In via cautelativa si assume quale valore della coesione il valore pari al minimo dell'intervallo corrisponte al terreno di imposta della fondazione dell'opera.

Spessore dello strato del terreno equivalente	H = 3,67	[m]
Peso specifico terreno del terreno equivalente	$\gamma = 1934,65$	[kg/mc]
Angolo di attrito del terreno equivalente	$\phi = 22,70$	[°]
Modulo di taglio del terreno equivalente	G = 0.00	[kg/cmq]

Combinazione n° 1 (Fondazione)

Base ridotta B' = B - 2 ex = 4,08 [m] Lunghezza ridotta L' = L - 2 ey = 1,00 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 17,69$	$N_{q} = 8,40$	$N_{\gamma} = 7.86$
$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.38$	$i_q = 0.46$	$i_{y} = 0.31$
$d_c = 1.18$	$d_{q} = 1,15$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 1.17 + 1.91 + 0.95 = 4.04 \text{ [kg/cmq]}$$

Applicando il coefficiente di sicurezza $\eta = 2,00$, otteniamo per la tensione ammissibile il seguente valore:

$$q_{amm} = q_u / \eta = 4.04 / 2.00 = 2.02 [kg/cmq]$$

Per il muro M01 la tensione massima risulta pari a 1,859 [kg/cmq] < q_{amm =} 2,02 [kg/cmq] ; la verifica è soddisfatta

Muro di sostegno rilevato della strada M01-fondazione diretta

Foglio 63 di 260

8.8 Verifica di stabilità globale muro M01

FS: 1.305670

Center: 42.138, 25.571

Radius: 18.160

Left Slip Surface Endpoint: 24.780, 20.232

Right Slip Surface Endpoint: 49.265, 8.867

Resisting Moment=23570.9 kN-m

Driving Moment=18052.7 kN-m

Resisting Horizontal Force=1118.69 kN

Driving Horizontal Force=856.791 kN

Method: gle/morgenstern-price

FS: 1.314500

Center: 42.138, 25.571

Radius: 18.160

Left Slip Surface Endpoint: 24.780, 20.232

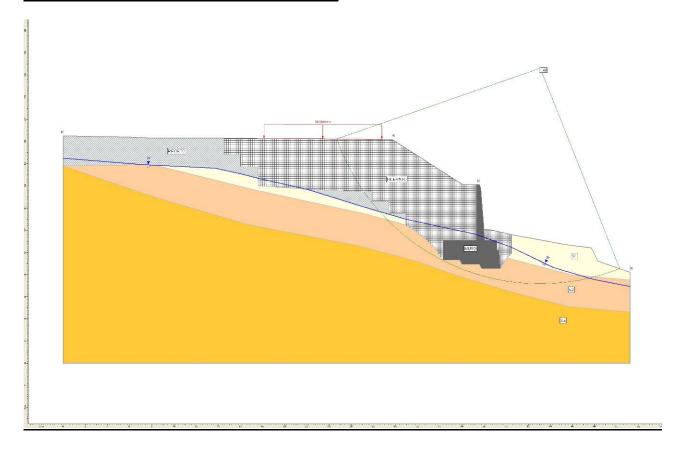
Right Slip Surface Endpoint: 49.265, 8.867

Resisting Moment=23730.3 kN-m

Driving Moment=18052.7 kN-m

Resisting Horizontal Force=1121.25 kN

Driving Horizontal Force=852.983 kN



IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 64 di 260

Muro M01: Caso statico in condizioni non drenate

Project Settings

Failure Direction: Left to Right

Units of Measurement: SI Units

Pore Fluid Unit Weight: 9.81 kN/m3

Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off

Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 65 di 260

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used:

Bishop simplified

GLE/Morgenstern-Price with interslice force function: Half Sine

Spencer

Number of slices: 25

Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular

Radius increment: 10

Minimum Elevation: Not Defined

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Loading

1 Distributed Load present:

Distributed Load Constant Distribution, Orientation: Normal to boundary, Magnitude: 20 kN/m

Material Properties

Material: S1

Strength Type: Undrained

Unit Weight: 18 kN/m3

Cohesion Type: Constant

Cohesion: 60 kPa

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 66 di 260

Water Surface: None

Material: S2

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 15 kPa

Friction Angle: 21 degrees

Water Surface: None

Material: S3

Strength Type: Mohr-Coulomb

Unit Weight: 20 kN/m3

Cohesion: 20 kPa

Friction Angle: 23 degrees

Water Surface: None

Material: Riporto

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 28 degrees

Water Surface: None

Material: Muro

Strength Type: Infinite strength

Unit Weight: 25 kN/m3

Material: Rilevato

Strength Type: Mohr-Coulomb

Foglio 67 di 260

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 34 degrees

Water Surface: None

Global Minimums

Method: bishop simplified

FS: 1.492240

Center: 43.096, 26.619

Radius: 19.471

Left Slip Surface Endpoint: 24.701, 20.232

Right Slip Surface Endpoint: 50.275, 8.519

Resisting Moment=29916.8 kN-m

Driving Moment=20048.3 kN-m

Method: spencer

FS: 1.459820

Center: 43.096, 26.619

Radius: 19.471

Left Slip Surface Endpoint: 24.701, 20.232

Right Slip Surface Endpoint: 50.275, 8.519

Resisting Moment=29266.9 kN-m

Driving Moment=20048.3 kN-m

Resisting Horizontal Force=1294.91 kN

Driving Horizontal Force=887.036 kN

Method: gle/morgenstern-price

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 68 di 260

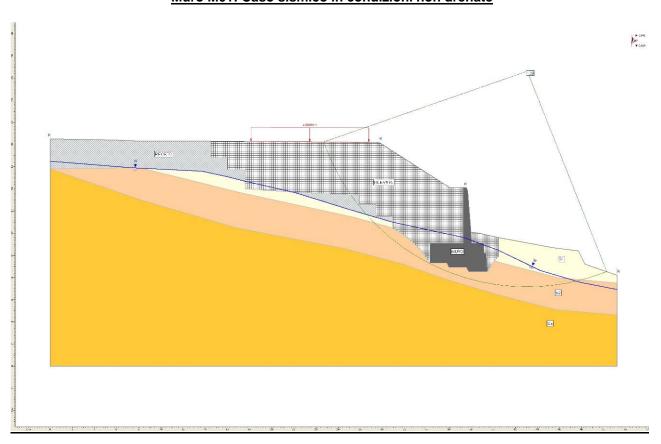
FS: 1.481520

Center: 43.096, 26.619

Radius: 19.471

Left Slip Surface Endpoint: 24.701, 20.232

Right Slip Surface Endpoint: 50.275, 8.519


Resisting Moment=29702 kN-m

Driving Moment=20048.3 kN-m

Resisting Horizontal Force=1312.41 kN

Driving Horizontal Force=885.853 kN

Muro M01: Caso sismico in condizioni non drenate

Foglio 69 di 260

Project Settings

Failure Direction: Left to Right

Units of Measurement: SI Units

Pore Fluid Unit Weight: 9.81 kN/m3

Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off

Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used:

Bishop simplified

GLE/Morgenstern-Price with interslice force function: Half Sine

Spencer

Number of slices: 25

Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular

Radius increment: 10

Minimum Elevation: Not Defined

Composite Surfaces: Disabled

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 70 di 260

Reverse Curvature: Create Tension Crack

Loading

Seismic Load Coefficient (Horizontal): 0.048

Seismic Load Coefficient (Vertical): 0.024

1 Distributed Load present:

Distributed Load Constant Distribution, Orientation: Normal to boundary, Magnitude: 20 kN/m

Material Properties

Material: S1

Strength Type: Undrained

Unit Weight: 18 kN/m3

Cohesion Type: Constant

Cohesion: 60 kPa

Water Surface: None

Material: S2

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 15 kPa

Friction Angle: 21 degrees

Water Surface: None

Material: S3

Strength Type: Mohr-Coulomb

Unit Weight: 20 kN/m3

Cohesion: 20 kPa

Friction Angle: 23 degrees

Foglio 71 di 260

Water Surface: None

Material: Riporto

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 28 degrees

Water Surface: None

Material: Muro

Strength Type: Infinite strength

Unit Weight: 25 kN/m3

Material: Rilevato

Strength Type: Mohr-Coulomb

Unit Weight: 19 kN/m3

Cohesion: 0 kPa

Friction Angle: 34 degrees

Water Surface: None

Global Minimums

Method: bishop simplified

FS: 1.390420

Center: 43.096, 26.619

Radius: 19.471

Left Slip Surface Endpoint: 24.701, 20.232

Right Slip Surface Endpoint: 50.275, 8.519

Resisting Moment=29297.3 kN-m

Foglio 72 di 260

Driving Moment=21070.8 kN-m

Method: spencer

FS: 1.357590

Center: 43.096, 26.619

Radius: 19.471

Left Slip Surface Endpoint: 24.701, 20.232

Right Slip Surface Endpoint: 50.275, 8.519

Resisting Moment=28605.6 kN-m

Driving Moment=21070.8 kN-m

Resisting Horizontal Force=1283.87 kN

Driving Horizontal Force=945.697 kN

Method: gle/morgenstern-price

FS: 1.380650

Center: 43.096, 26.619

Radius: 19.471

Left Slip Surface Endpoint: 24.701, 20.232

Right Slip Surface Endpoint: 50.275, 8.519

Resisting Moment=29091.4 kN-m

Driving Moment=21070.8 kN-m

Resisting Horizontal Force=1303.47 kN

Driving Horizontal Force=944.1 kN

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 73 di 260

8.8.1 Prova di carico su piastra

A maggior riprova della correttezza della scelta progettuale e al fine di ottemperare alla richiesta di maggiori approfondimenti sul terreno fondazionale è stata effettuata, in data 12/10/2012, una prova su piastra atta a verificare il grado di deformabilità del terreno in situ..

La prova, effettuata sullo strato S2 (argilla marnosa), strato di fondazione dell'opera, ha prodotto un cedimento pari a 1.2 mm circa provocato da una sollecitazione di 0.18 N/mmq. Il valore del cedimento si ritiene pienamente accettabile.

Laboratorio autorizzato dal Ministero delle infrastrutture con D.M. n. 39073 del 23.3.1995 e successivi rinnovi, ai sensi dell'art. 20 Legge n. 1086/71 - Circ. Min. 7617/STC sett. A.

Azienda con Sistema di Gestione per la Qualità Certificato da DNV UNI EN ISO 9001:2008

RAPPORTO DI PROVA n. 124255 del 15/10/2012

Verbale di accettazione n° 24614 del 15/10/2012 PROVA DI CARICO SU PIASTRA

(C.N.R. N° 146)

KICHIEDENIE	IMPRESA ESECUTRICE
Consorzio Stabile Pamoter	Consorzio stabile Pamoter
Vla A. Rimassa 49/2 - 16129 Genova	Via A. Rimassa 49/2 - 16129 Genova
DIRETTORE DEI LAVORI	COMMITTENTE OPERA
	Consorzio Cociv
Richiesta non firmata dal Direttore dei Lavori	
CANTIERE DI RIFERIMENTO	
Terzo valico dei Giovi	

STRATO DI PROVA E UBICAZIONE	DATA PROVA
Wbs: NV02-6	12/10/2012
Prova 1 muro di valle nº 3 - quota magrone	12/10/2012
STOLMENTAZIONE UTU IZZATA	

STRUMENTAZIONE UTILIZZATA

Controls Mod. 35-T1173/D matricola 12017667

RISULTATI DELLE PROVE

Tensione	Tempo		Cedimenti		Media		DIACDAM	MA TEN	CTONE	CEDIME	NTO	
[N/mm ²]	stabilizzazione		[mm]		cedimenti	DIAGRAMMA TENSIONE - CEDIMENTO						
	[min]	1	2	3	[mm]							
		I° ciclo	di carico						ioni [N/ı			
0,02	0	0,00	0,00	0,00	0,00	0,00 0,00 +	0,05	0,10	0,15	0,20	0,25	0,30
0,05	2	0,22	0,14	0,08	0,15							
0,10	3	0,58	0,42	0,53	0,51	0,50		11/				
0,15	3	0,97	0,77	0,85	0,86							
0,20	3	1,34	1,11	1,20	1,22	1,00						
0,25	3	1,70	1,45	1,57	1,57							
		IIº ciclo	di carico			₹ 1,50						
0,05						٤						
0,10						2,00 = 1,50 = 2,00						
0,15						ig						
0,20						Ö 2,50				_		
0,25												
	M	ODULO DI DE	FORMAZION	E		3,00						
Md	I° ciclo	42,2	N/mm²			3,50						
M'd	II° ciclo		N/mm²	(intervallo		4.00						
K =	Md/M'd			tra 0,15-0,2	15 N/MM²)	4,00						

SPERIMENTATORE Geom. Giorgio Marzani

DIRETTORE DEL LABORATORIO Ing. Fabio Beni

Foglio 74 di 260

8.9 MURO DI SOTTOSCARPA M01 – Tratto con fondazine profonda

Questo tratto ha altezza variabile; le verifiche sono eseguite a metro lineare di muro per due sezioni con altezze del paramento di 4,20 m. e 3,00 m.

Criteri di verifica dei muri fondati su pali

Calcolo della spinta sul muro

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno:
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

Foglio 75 di 260

$$\beta' = \beta + \theta$$

dove $\theta = arctg(C)$ essendo C il coefficiente di intensità sismica. Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1. Tale incremento di spinta deve essere applicato ad una distanza dalla base pari a 2/3 dell'altezza del muro stesso.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali che si destano per effetto del sisma. Tale forza viene valutata come

$$F_i = CW$$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_{q}

La Normativa Italiana (D.M. 1988) impone che η_g >=1.3

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 76 di 260

$$\Sigma_{i} \ (\frac{c_{i}b_{i}+(W_{i}-u_{i}b_{i})tg\varphi_{i}}{m})$$

$$\eta = \frac{\sum_{i}W_{i}sin\alpha_{i}}{\sum_{i}W_{i}sin\alpha_{i}}$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{\eta}) \cos\alpha$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

Analisi dei pali

Determinazione della capacità portante

Il carico verticale che grava sul palo va confrontato con il carico ammissibile del palo stesso. Il problema che si pone, quindi, è quello di determinare la capacità portante del palo. Determinata la capacità portante, il carico ammissibile del palo si ottiene applicando degli opportuni coefficienti di sicurezza.

La capacità portante di un palo viene valutata come somma di due contributi: portanza di base (o di punta) e portanza per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_I - W_P$$

dove:

Q_T Portanza totale del palo;Q_P Portanza di base del palo;

Q_L Portanza per attrito laterale del palo;

W_P Peso proprio del palo.

Le due componenti Q_P e Q_L sono calcolate in modo indipendente fra loro. Risulta molto difficoltoso, tranne che in poche situazioni, stabilire quanta parte del carico viene assorbita per attrito laterale e quanta per resistenza alla base.

Nel caso di pali soggetti a trazione la resistenza allo sfilamento vale:

$$Q_T = Q_L + W_P$$

Dalla capacità portante del palo si ricava il carico ammissibile del palo Q_A applicando degli opportuni coefficienti di sicurezza rispettivamente η_D e η_I .

I coefficienti η_p e η_l rappresentano rispettivamente i valori del coefficiente di sicurezza per la portanza di punta e quello per la portanza laterale.

Quindi nel caso di pali compressi abbiamo la seguente relazione:

$$Q_A = Q_p/\eta_p + Q_l/\eta_l - W_P$$

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 77 di 260

Nel caso invece di pali soggetti a sforzi di trazione abbiamo la seguente relazione:

$$Q_A = Q_I/\eta_I + W_P$$

Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P (c N_c + q_b N_q)$$

dove A_P è l'area portante efficace della punta del palo, c è la coesione, q_b è la pressione del terreno alla quota della punta del palo ed i coefficienti N_c e N_q sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di profondità.

 N_c ed N_q dipendono sia dalla geometria del palo che dalle caratteristiche del terreno angolo di attrito e coesione (ϕ e c).

In letteratura è possibile trovare diverse formule per il calcolo dei valori di N_c ed N_q.

Per pali in argilla in condizioni non drenate (ϕ =0, c=c_u) si assume in genere per N_c il valore proposto da Skempton pari a 9 (valore in corrispondenza della punta del palo) mentre N_q=1. Diversi autori hanno proposto altri valori per il fattore N_c ma in generale le variazioni sono abbastanza contenute.

Diverso è il caso del fattore N_q per il quale diversi autori propongono dei valori spesso molto discordanti fra di loro

In particolare da prove effettuati su pali realizzati in terreni non coesivi, si vede che la variazione della resistenza alla punta non cresce in modo lineare con la profondità, ma raggiunto un certo valore essa si mantiene pressocchè costante. Questo fenomeno è stato spiegato da Vesic mettendo in conto un <<effetto arco>> che si manifesta nei dintorni del palo.

Un modo semplice per tener conto del fatto che la resistenza alla punta non può crescere indefinitamente è quello di considerare il diagramma delle pressioni verticali in corrispondenza del palo opportunamente modificato.

In particolare si assume che la pressione verticale σ_v cresca linearmente (pressione geostatica) fino ad una certa profondità z_c ($\sigma_v = \sigma_c$); superata tale profondità il valore della pressione verticale si mantiene costante e pari a σ_c : in pratica si assume un diagramma bilatero per l'andamento della pressione verticale in corrispondenza del palo.

Il valore di z_c (detta anche profondità critica) dipende dal diametro del palo, D, dalla tecnologia di realizzazione (palo infisso o trivellato) dall'angolo di attrito del terreno ϕ .

Nella determinazione di z_c il valore di ϕ da considerare è funzione del valore dell'angolo di attrito prima dell'installazione del palo, ϕ ', secondo le seguenti relazioni:

Per pali infissi $\phi = 3/4 \phi' + 10$

Per pali trivellati $\phi = \phi' - 3$

A parità di diametro influisce il grado di addensamento del terreno (densità relativa D_r) e la resistenza alla punta cresce con il crescere della densità.

Nella sezione successiva descriveremo le relazioni per la determinazione di N_c ed N_d.

Capacità portante per attrito laterale

La portanza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limiti:

$$Q_1 = Int(\tau_a)dS$$

dove τ_a è dato dalla nota relazione di Coulomb:

$$\tau_a = c_a + \sigma_h tg \delta$$

Foglio 78 di 260

dove c_a è l'adesione palo-terreno, δ è l'angolo di attrito palo-terreno, e σ_h è la tensione orizzontale alla generica profondità z. La tensione orizzontale σ_h è legata alla pressione verticale σ_v tramite il coefficiente di spinta K_s

$$\sigma_h = K_s \sigma_v$$

Indicando con C il perimetro e con L la lunghezza del palo abbiamo:

$$Int^{L}(C(c_a + K_s\sigma_v tg \delta)dz)$$

Analisi del palo soggetto a forze orizzontali(Portanza trasversale)

La resistenza limite laterale di un palo è determinata dal minimo valore fra il carico orizzontale necessario per produrre il collasso del terreno lungo il fusto del palo ed il carico orizzontale necessario per produrre la plasticizzazione del palo. Il primo meccanismo (plasticizzazione del terreno) si verifica nel caso di pali molto rigidi in terreni poco resistenti (meccanismo di palo corto) mentre il secondo meccanismo si verifica nel caso di pali aventi rigidezze non eccessive rispetto al terreno di infissione (meccanismo di palo lungo o intermedio). Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante di rigidezza elastica, K_h , espressa in $Kg/cm^2/cm$ che rappresenta la pressione (in Kg/cm^2) che bisogna applicare per ottenere lo spostamento di 1 cm. La determinazione di questa costante può essere fatta o tramite prove di carico su piastra o mediante metodi analitici (convenzionali). La variazione della costante di Winkler con la profondità dipende dal tipo di terreno in cui il palo è immerso. Ad esempio nel caso di terreni coesivi in condizioni non drenate K_h assume un valore costante con la profondità mentre nel caso di terreni incoerenti la variazione di K_h è di tipo lineare (crescente con la profondità). In generale l'espressione di K_h assume una forma binomia del tipo:

$$K_h(z) = A + B z^n$$

Per l'analisi di pali caricati trasversalmente si utilizza il modello di Winkler. Il palo viene suddiviso in un determinato numero (100) di elementi tipo trave aventi area ed inerzia pari a quella della sezione trasversale del palo. In corrispondenza di ogni nodo di separazione fra i vari elementi viene inserita una molla orizzontale di opportuna rigidezza che schematizza il terreno. Il comportamento delle molle che schematizzano il terreno non è infinitamente elastico ma è di tipo elastoplastico. La singola molla reagisce fino ad un valore limite di spostamento o di reazione; una volta che è stato superato tale limite la molle non offre ulteriori incrementi di resistenza (diagramma tipo elastoplastico perfetto). Indicando con dy_ela lunghezza del tratto di influenza della molla, con D il diametro del palo la molla avrà una rigidezza pari a:

$$K_m = dy_e D K_k$$

La resistenza limite del terreno rappresenta il valore limite di resistenza che il terreno può esplicare quando il palo è soggetto ad un carico orizzontale. La resistenza limite pu=pu(z) dipende dalle caratteristiche del terreno e dalla geometria del palo. In terreni puramente coesivi (c=cu, ϕ =0) la resistenza cresce dal valore 0 in sommità fino ad un valore limite in corrispondenza di una profondità pari a circa 3 diametri. Il valore limite in tal caso è variabile fra 8 e 12 cu. Nel caso di terreni dotati di attrito e coesione la resistenza limite ad una generica profondità z è rappresentata dalla relazione (Brinch Hansen):

$$P_u = q K_{pq} + c K_{pc}$$

dove:

D diametro del palo q pressione geostatica alla profondità z

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 79 di 260

c coesione alla profondità z

 K_{pq} , K_{pc} coefficienti funzione dell'angolo di attrito del terreno ϕ e del rapporto z/D. Broms ha eseguito l'analisi considerando il caso sia di palo vincolato in testa che di palo libero immerso in un mezzo omogeneo. Nel caso di terreni coesivi Broms assume in questo caso un diagramma di resistenza nullo fino ad una profondità pari a 1,5D e poi valore costante pari a 9c_u D.

Nel caso di terreni incoerenti Broms assume che la resistenza laterale sia variabile con la profondità dal valore 0 (in testa) fino al valore $3\sigma_v K_p D$ (alla base) essendo K_p il coefficiente di resistenza passiva espresso da $K_p = \tan^2(45^\circ + \phi/2)$.

Normativa

Spinte e verifiche secondo:

- D.M. 11/03/1988

- D.M. 16/01/1996

Coefficienti di sicurezza

Carichi verticali (portanza alla punta) 2.50 Carichi verticali (portanza attrito laterale) 2.50 Carichi orizzontali 2.00

Foglio 80 di 260

Muro M01 h=4.2 m - fondazione su pali

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	4.20 [m]
Spessore in sommità	0.34 [m]
Spessore all'attacco con la fondazione	0.71 [m]
Inclinazione paramento esterno	5.00 [°]
Inclinazione paramento interno	0.00 [°]
<u>Fondazione</u>	
Lunghezza mensola fondazione di valle	0.98 [m]
Lunghezza mensola fondazione di monte	1.20 [m]
Lunghezza totale fondazione	2.89 [m]
Inclinazione piano di posa della fondazione	0.00 [°]
Spessore fondazione	0.80 [m]

Descrizione pali di fondazione

Pali armati con profilato tubolare

Numero di file di pali

Tipo di portanza Portanza laterale e portanza di punta

Simbologia adottata

numero d'ordine della fila

Χ ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m]

Numero di pali della fila nr.

diametro dei pali della fila espresso in [cm] D

lunghezza dei pali della fila espressa in [m] inclinazione dei pali della fila rispetto alla verticale espressa in [°] alfa

allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI) ALL

Dt diametro esterno del tubolare espresso in [mm]

spessore del tubolare espresso in [mm] St

Ν	X	nr.	D	L	alfa	ALL	Dt	St
1	0.45	10	30.00	10.00	0.00	Sfalsati	244.50	10.00
2	1.65	10	30.00	10.00	0.00	Sfalsati	244.50	10.00
3	2.45	10	30.00	10.00	0.00	Sfalsati	244.50	10.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale	0.00	[°]
Altezza del rinterro rispetto all'attacco fondaz valle-paramento	0.20	[m]

Foglio 81 di 260

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kg/mc] γ_s Peso di volume saturo del terreno espresso in [kg/mc]

 ϕ Angolo d'attrito interno espresso in [°] δ Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [kg/cmq]

*c*_a Adesione terra-muro espressa in [kg/cmq]

 σ_{d} Tensione di progetto espressa in [kg/cmq]

Descrizione	γ	γs	ф	δ	С	Ca	d_d
Nuovo Rilevato	1800	1900	35.00	35.00	0.000	0.000	0.00
strato 1	1800	1900	20.00	20.00	0.000	0.000	0.00
strato 2	1900	2000	21.00	21.00	0.150	0.100	0.00
strato 3	2000	2100	23.00	23.00	0.200	0.140	0.00

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	4.00	0.00	2.00	1.00	Nuovo Rilevato
2	2.00	0.00	2.00	1.00	strato 1
3	2.50	0.00	4.00	1.00	strato2
4	15.00	0.00	0.00	0.00	strato 3

Impostazioni analisi pali

Numero elementi palo 40

Tipo carico palo Distribuito

<u>Calcolo della portanza</u> metodo di Terzaghi

Costante di Winkler da Strato

Criterio di rottura del sistema terreno-palo

Pressione limite Brich-Hansen

Impostazioni di analisi

Metodo verifica sezioni

Tensioni ammissibili

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 82 di 260

Quadro riassuntivo coeff, di sicurezza calcolati

Simbologia adottata

Tipo Tipo combinazione
Sisma Combinazione sismica

 $\begin{array}{lll} CS_{SCO} & Coeff. \ di \ sicurezza \ allo \ scorrimento \\ CS_{RIB} & Coeff. \ di \ sicurezza \ al \ ribaltamento \\ CS_{OLIM} & Coeff. \ di \ sicurezza \ a \ carico \ limite \\ CS_{STAB} & Coeff. \ di \ sicurezza \ a \ stabilità \ globale \\ \end{array}$

Si rappresenta la condizione di carico più gravosa:

TipoSismacs_{sco}cs_{rib}cs_{qlim}cs_{stab}TAMMpresente------3.50

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate : Origine in testa al muro (spigolo di monte) Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo della stabilità globale metodo di Bishop
Calcolo della spinta in condizioni di Spinta attiva

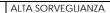
Sisma

Coefficiente di intensità sismica (percento) 4.80

Forma diagramma incremento sismico Triangolare con vertice in basso

Partecipazione spinta passiva (percento) 0.0

Lunghezza del muro 10.00 [m]


Peso muro 11274.03 [kg]

Baricentro del muro X=-0.26 Y=-3.50

Superficie di spinta

Punto inferiore superficie di spinta X = 1.20 Y = -5.00Punto superiore superficie di spinta X = 1.20 Y = 0.13

Altezza della superficie di spinta 5.13 [m] Inclinazione superficie di spinta(rispetto alla verticale) 0.00 [°]

Foglio 83 di 260

COMBINAZIONE sismica

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	9364.52 8227.79 4471.90 X = 1.20 28.52 43.34	[kg] [kg] [kg] [m] [°]	Y = -3.58	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	1413.17 X = 1.20 39.65	[kg] [m] [°]	Y = -1.59	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia del terrapieno fondazione di monte	9119.08 X = 0.60 541.15 437.72	[kg] [m] [kg] [kg]	Y = -2.09	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione	10517.41 26979.84 18170.48 53391.40 26979.84 10517.41 0.14 2.89 28957.34 21.30 3730.58	[kg] [kgm] [kgm] [kg] [m] [m] [kg] [kg] [kg]		

3.50

Coefficiente di sicurezza a stabilità globale

Stabilità globale muro + terreno

COMBINAZIONE sismica

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kg]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α

φ *C* angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kg/cmq]

larghezza della striscia espressa in [m] b

pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0.39 Y[m] = 3.53

Foglio 84 di 260

Raggio del cerchio R[m]= 18.57

Ascissa a valle del cerchio Xi[m]= -17.37 Ascissa a monte del cerchio Xs[m]= 18.17

Larghezza della striscia dx[m]= 1.42 Coefficiente di sicurezza C= 3.50 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	$Wsin \alpha$	b/cosα	ф	С	u
1	8949.23	78.51	8769.87	7.14	35.00	0.000	0.000
2	21418.80	62.65	19024.78	3.09	22.34	0.019	0.000
3	27636.94	54.12	22394.07	2.43	21.00	0.150	0.000
4	32445.68	47.15	23787.62	2.09	22.75	0.194	0.000
5	36375.83	41.02	23872.01	1.88	23.00	0.200	0.000
6	38869.23	35.41	22523.94	1.74	23.00	0.200	0.000
7	40292.60	30.18	20257.47	1.64	23.00	0.200	0.000
8	41230.71	25.22	17567.29	1.57	23.00	0.200	0.000
9	41746.98	20.45	14586.75	1.52	23.00	0.200	0.000
10	41884.35	15.83	11424.31	1.48	23.00	0.200	0.000
11	41672.21	11.31	8172.64	1.45	23.00	0.200	0.000
12	41171.77	6.86	4919.29	1.43	23.00	0.200	0.000
13	42157.62	2.46	1806.46	1.42	23.00	0.200	0.000
14	33010.50	-1.94	-1115.11	1.42	23.00	0.200	0.000
15	30092.25	-6.34	-3322.55	1.43	23.00	0.200	0.000
16	29482.82	-10.78	-5514.67	1.45	23.00	0.200	0.000
17	28545.40	-15.29	-7527.05	1.47	23.00	0.200	0.000
18	27261.24	-19.90	-9277.98	1.51	23.00	0.200	0.000
19	25602.28	-24.65	-10676.11	1.56	23.00	0.200	0.000
20	23527.45	-29.58	-11615.07	1.63	23.00	0.200	0.000
21	20976.28	-34.78	-11964.81	1.73	23.00	0.200	0.000
22	17856.65	-40.33	-11556.26	1.86	23.00	0.200	0.000
23	14018.93	-46.39	-10150.30	2.06	23.00	0.200	0.000
24	9325.32	-53.24	-7470.91	2.38	21.01	0.150	0.000
25	3326.52	-61.51	-2923.71	2.98	20.23	0.035	0.000

 ΣW_i = 718877.59 [kg] ΣW_i sin α_i = 105991.97 [kg] ΣW_i tan ϕ_i = 305471.45 [kg] Σ tan α_i tan ϕ_i = 3.63

Sollecitazioni paramento

COMBINAZIONE sismica

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kgm Sforzo normale positivo di compressione, espresso in kg
Taglio positivo se diretto da monte verso valle, espresso in kg

Nr. Y N M T

Foglio 85 di 260

1	0.42	376.24	29.81	167.25
2	1.05	1012.76	220.97	520.35
3	1.68	1735.88	656.53	1008.84
4	2.31	2545.58	1430.56	1663.47
5	2.94	3441.87	2645.89	2484.50
6	3.57	4424.75	4404.73	3471.36
7	4.20	5494.23	6757.76	4788.25

Inviluppo sollecitazioni piastra di fondazione

COMBINAZIONE sismica

Dimensioni della piastra(Simmetria)
Larghezza(m) = 5.00 Altezza(m) = 2.89
Origine all'attacco con il muro sull'asse di simmetria
Ascissa X positiva verso destra
Ordinata Y positiva dall'attacco con il muro verso l'estremo libero
I momenti negativi tendono le fibre superiori

Sollecitazioni in direzione Y

Nr.	Y	\mathbf{M}_{ymin}	$M_{ m ymax}$	T_{ymin}	T_{ymax}
1	0.00	-3.91	4.27	-368.56	160.65
2	0.10	-132.63	139.97	-1702.08	924.43
3	0.19	-142.41	119.74	-4460.45	2517.60
4	0.29	-307.52	212.63	-6195.36	4275.74
5	0.36	-472.50	513.85	0.00	5968.39
6	0.44	-160.95	948.40	0.00	8904.54
7	0.51	0.00	1526.73	0.00	15484.64
8	0.59	0.00	2230.21	0.00	23013.67
9	0.69	0.00	3500.72	0.00	19273.77
10	0.78	0.00	4921.24	0.00	17220.49
11	0.88	0.00	6359.89	0.00	17828.49
12	0.98	0.00	8051.79	0.00	17642.09
13	1.69	-5780.16	0.00	-10240.39	0.00
14	1.79	-4805.81	0.00	-9290.00	0.00
15	1.89	-3945.38	0.00	-8119.43	0.00
16	1.99	-3187.81	0.00	-7127.19	0.00
17	2.09	-2526.90	0.00	-6246.67	0.00
18	2.19	-1959.90	0.00	-5440.55	0.00
19	2.29	-1516.66	0.00	-4676.41	0.00
20	2.36	-1242.50	0.00	-4143.89	0.00
21	2.44	-970.36	0.00	-3838.48	0.00
22	2.51	-711.13	0.00	-3789.33	0.00
23	2.59	-454.24	0.00	-3800.35	0.00
24	2.69	-198.74	0.00	-2405.06	0.00
25	2.79	-54.18	0.00	-1167.11	0.00
26	2.89	0.00	8.43	-123.79	0.00

Sollecitazioni in direzione X

Nr. X M_{xmin}	M _{xmax}	Γ _{xmin}	T _{xmax}
------------------	-------------------	-------------------	-------------------

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 86 di 260

1	0.00	0.00	805.29	-2113.88	1028.09
2	0.18	0.00	615.52	-7906.60	2027.74
3	0.35	-617.78	1.80	-11447.00	2001.16
4	0.50	-1303.36	0.00	-3267.27	3267.98
5	0.65	-617.74	1.80	-2000.18	11448.41
6	0.83	0.00	615.59	-2026.75	7907.58
7	1.00	0.00	805.40	-2112.65	2114.95
8	1.18	0.00	615.69	-7905.14	2029.19
9	1.35	-617.54	1.80	-11443.95	2002.59
10	1.50	-1303.04	0.00	-3265.99	3269.54
11	1.65	-617.34	1.80	-1997.65	11451.03
12	1.82	0.00	616.15	-2024.19	7910.04
13	2.00	0.00	806.15	-2109.14	2117.92
14	2.18	0.00	616.70	-7901.12	2035.33
15	2.35	-616.18	1.81	-11434.88	2008.66
16	2.50	-1301.31	0.00	-3262.28	3274.21
17	2.65	-615.14	1.82	-1982.92	11454.16
18	2.83	0.00	618.94	-2009.27	7913.48
19	3.00	0.00	809.75	-2113.83	2118.77
20	3.18	0.00	620.42	-7916.20	2074.35
21	3.35	-612.62	1.83	-11454.18	2047.26
22	3.50	-1298.96	0.00	-3276.96	3257.63
23	3.65	-615.71	1.80	-1913.01	11333.10
24	3.83	0.00	610.76	-1938.24	7823.10
25	4.00	0.00	786.42	-2346.32	1969.67
26	4.17	0.00	569.45	-8257.44	2048.78
27	4.35	-726.45	1.36	-12017.09	2023.02
28	4.50	-1469.98	0.00	-3633.45	2840.59
29	4.65	-910.43	0.00	-3596.87	10341.09
30	4.83	-237.43	152.92	-4216.22	7115.88
31	5.00	-11.83	26.56	-4300.15	1061.87

Armature e tensioni nei materiali del muro

Combinazione sismica

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Н

base della sezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatura in corrispondenza del lembo di monte in [cmq] $A_{\text{fs}} \\$

 A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]

tensione nel calcestruzzo espressa in [kg/cmq] σ_{c}

tensione tangenziale nel calcestruzzo espressa in [kg/cmq] τ_{c}

tensione nell'armatura disposta sul lembo di monte in [kg/cmq] σ_{fs}

tensione nell'armatura disposta sul lembo di valle in [kg/cmq] σ_{fi}

Nr.	Υ	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{\mathbf{c}}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.42	100, 38	12.06	12.06	0.20	0.06	-0.02	-2.70
2	1.05	100, 43	12.06	12.06	1.04	0.15	15.80	-13.30
3	1.68	100, 49	12.06	12.06	2.57	0.26	66.36	-31.63
4	2.31	100, 54	12.06	12.06	4.68	0.38	155.32	-57.00
5	2.94	100, 60	12.06	12.06	7.36	0.52	285.93	-89.42
6	3.57	100, 65	12.06	12.06	10.57	0.66	460.31	-128.70

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 87 di 260

7 4.20 100, 71 12.06 12.06 14.17 0.83 673.18 -173.38

Fondazione Armature e tensioni nei materiali della fondazione

Combinazione sismica

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

 $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in } [\text{cmq}] \\$

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

 $\sigma_{\text{c}} \hspace{1cm} \text{tensione nel calcestruzzo espressa in [kg/cmq]} \\$

 τ_{c} tensione tangenziale nel calcestruzzo espressa in [kg/cmq]

 σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq]

 σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	${\sf A_{fs}}$	A_{fi}	σ_{c}	$ au_{c}$	σ_{fi}	σ_{fs}
1	0.19	100, 80	12.06	12.06	0.24	-0.22	13.66	16.24
2	0.44	100, 80	12.06	12.06	1.57	1.02	108.17	-18.44
3	0.69	100, 80	12.06	12.06	5.80	2.17	399.27	-68.06
4	0.98	100, 80	12.06	12.06	13.34	2.07	918.34	-156.54

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_fs	A_fi	σ_{c}	$ au_{c}$	σ_{fi}	σ_{fs}
1	0.10	100, 80	12.06	12.06	0.09	-0.15	-1.05	6.18
2	0.37	100, 80	12.06	12.06	1.18	-0.49	-13.83	81.11
3	0.60	100, 80	12.06	12.06	2.51	-0.63	-29.49	172.98
4	0.90	100, 80	12.06	12.06	5.28	-1.07	-61.98	363.58
5	1.20	100, 80	12.06	12.06	9.58	-1.51	-112.38	659.25

Analisi dei pali

Combinazione sismica

Risultanti sulla base della fondazione (per metro lineare di muro)

Orizzontale [kg] 10517.4 Verticale [kg] 26979.8 Momento [kgm] -3730.6

Spostamenti della piastra di fondazione

Orizzontale [cm] 0.24831 Verticale [cm] 0.01488 GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 88 di 260

Rotazione [°] -0.00693

Scarichi in testa ai pali

Fila nr.	N.pali	N [kg]	T [kg]	M [kgm]	Tu [kg]	Mu [kgm]
1	10	1630	3506	4076	15830	18405
2	10	9914	3506	4076	15830	18405
3	10	15436	3506	4076	15830	18405

Verifica della portanza assiale

Il metodo utilizzato per il calcolo della portanza verticale è: Hansen.

E' stato richiesto di correggere l'angolo di attrito in funzione del tipo di palo (Trivellato/Infisso).

L'andamento della pressione verticale σ_V con la profondità, per il calcolo della portanza di punta, è stata definita come: Pressione geostatica.

L'andamento della pressione verticale è stata utilizzata anche per il calcolo della portanza laterale.

Simbologia adottata

Comb Identificativo della combinazione Nc, Nq Fatto N'c = f(Nc, sc, dc) Fattori di capacità portante

N'q = f(Nq, sq, dq)

dove:

sc, sq Fattori di forma Fattori di profondità dc. da oc, oq Pattori di proficiali di Portanza laterale espressa in [kg] Portanza di punta espressa in [kg] Portanza ammissibile espressa in [kg] Scarico verticale in testa al palo espresso in [kg] PI Pp Pa N

Coeff. di sicurezza per carichi verticali

Comb	Nc	Nq	N'c	N'q	
1	14.83	6.40	34.32	9.51	
Comb	PI	Pр	Pa	N	η
1	31881	17855	17797	15436	1.15

Verifica della portanza trasversale

Costante di Winkler orizzontale definita da STRATO

Criterio di rottura palo-terreno: Pressione limite (Pressione passiva con moltiplicatore = 3.00)

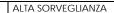
Simbologia adottata

Comb Identificativo della combinazione

Taglio resistente ultimo in testa al palo, espresso in [kg] Momento resistente ultimo in testa al palo, espresso in [kgm]

Taglio agente in testa al palo, espresso in [kg]

η=Tu/Tx Coeff. di sicurezza per carichi orizzontali


Comb Tu Mu η 2.33 8177.79 -9479.33 3506.00

Momento ultimo della sezione Np \mathbf{M}_{usez} 73.67 21615.97

Verifica a punzonamento della fondazione

D diametro dei pali della fila espresso in [cm]

 H_{f} altezza della fondazione in corrispondenza della fila espressa in [cm]

Foglio 89 di 260

- $\begin{array}{ll} S_I & \text{superficie di aderenza palo-fondazione } (H_I\Pi D) \text{ espressa in [cmq]} \\ N & \text{sforzo normale trasmesso dal palo alla fondazione espresso in [kg]} \end{array}$
- τ_c tensione tangenziale palo-fondazione espressa in [kg/cmq]

Fila	D	H_f	Sı	N	$ au_{c}$
1	30.0	80.0	7539.8	1630	0.22
2	30.0	500.0	47123.9	9914	0.21
3	30.0	80.0	7539.8	15436	2.05

Sollecitazioni nei pali e verifiche delle sezioni

Combinazione sismica

Nr. numero d'ordine della sezione a partire dall'attacco palo-fondazione

Y ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m])

M momento flettente espresso in [kgm]

N sforzo normale espresso in [kg]

T taglio espresso in [kg]

A_f area del tubolare armatura espressa in [cmq]

 $\sigma_{\text{f}} \qquad \quad \text{tensione normale nel tubolare espressa in [kg/cmq]}$

 au_{f} tensione tangenziale nel tubolare espressa in [kg/cmq]

 σ_{id} tensione ideale nel tubolare espressa in [kg/cmq]

Sollecitazioni e tensioni per la fila di pali nr. 1

Nr.	Υ	M	N	Т	A_{f}	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	4076	1630	3506	73.67	1004.35	95.18	1017.78
2	0.25	3200	1682	3416	73.67	793.86	92.75	809.95
3	0.50	2346	1735	3221	73.67	588.75	87.43	607.92
4	0.75	1540	1787	2902	73.67	395.44	78.77	418.32
5	1.00	815	1839	2443	73.67	221.35	66.31	249.37
6	1.25	204	1874	1631	73.67	74.66	44.28	107.03
7	1.50	-203	1909	950	73.67	74.95	25.80	87.26
8	1.75	-441	1944	400	73.67	132.67	10.86	134.00
9	2.00	-541	1979	-22	73.67	157.24	0.61	157.24
10	2.25	-535	2013	-319	73.67	156.37	8.67	157.09
11	2.50	-456	2048	-493	73.67	137.61	13.39	139.56
12	2.75	-332	2083	-547	73.67	108.36	14.86	111.37
13	3.00	-196	2118	-482	73.67	75.87	13.09	79.18
14	3.25	-75	2153	-300	73.67	47.28	8.14	49.34
15	3.50	0	2187	0	73.67	29.69	0.00	29.69
16	3.75	0	2215	0	73.67	30.07	0.00	30.07
17	4.00	0	2243	0	73.67	30.44	0.00	30.44
18	4.25	0	2271	0	73.67	30.82	0.00	30.82
19	4.50	0	2298	0	73.67	31.20	0.00	31.20
20	4.75	0	2326	0	73.67	31.57	0.00	31.57
21	5.00	0	2354	0	73.67	31.95	0.00	31.95
22	5.25	0	2381	0	73.67	32.33	0.00	32.33
23	5.50	0	2409	0	73.67	32.70	0.00	32.70
24	5.75	0	2437	0	73.67	33.08	0.00	33.08
25	6.00	0	2465	0	73.67	33.46	0.00	33.46
26	6.25	0	2492	0	73.67	33.83	0.00	33.83
27	6.50	0	2520	0	73.67	34.21	0.00	34.21
28	6.75	0	2548	0	73.67	34.58	0.00	34.58
29	7.00	0	2576	0	73.67	34.96	0.00	34.96

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 90 di 260

30	7.25	0	2603	0	73.67	35.34	0.00	35.34
31	7.50	0	2631	0	73.67	35.71	0.00	35.71
32	7.75	0	2659	0	73.67	36.09	0.00	36.09
33	8.00	0	2686	0	73.67	36.47	0.00	36.47
34	8.25	0	2714	0	73.67	36.84	0.00	36.84
35	8.50	0	2742	0	73.67	37.22	0.00	37.22
36	8.75	0	2770	0	73.67	37.59	0.00	37.59
37	9.00	0	2797	0	73.67	37.97	0.00	37.97
38	9.25	0	2825	0	73.67	38.35	0.00	38.35
39	9.50	0	2853	0	73.67	38.72	0.00	38.72
40	9.75	0	2881	0	73.67	39.10	0.00	39.10
41	10.00	0	2908	0	73.67	39.48	0.00	39.48

Sollecitazioni e tensioni per la fila di pali nr. 2

Nr.	Y	M	N	Т	A_f	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	4076	9914	3506	73.67	1116.79	95.18	1128.89
2	0.25	3200	9966	3416	73.67	906.30	92.75	920.43
3	0.50	2346	10019	3221	73.67	701.20	87.43	717.37
4	0.75	1540	10071	2902	73.67	507.89	78.77	525.90
5	1.00	815	10124	2443	73.67	333.80	66.31	353.00
6	1.25	204	10119	1631	73.67	186.58	44.28	201.73
7	1.50	-203	10115	950	73.67	186.33	25.80	191.61
8	1.75	-441	10110	400	73.67	243.52	10.86	244.25
9	2.00	-541	10106	-22	73.67	267.56	0.61	267.56
10	2.25	-535	10101	-319	73.67	266.15	8.67	266.58
11	2.50	-456	10097	-493	73.67	246.86	13.39	247.95
12	2.75	-332	10092	-547	73.67	217.08	14.86	218.60
13	3.00	-196	10088	-482	73.67	184.05	13.09	185.44
14	3.25	-75	10083	-300	73.67	154.93	8.14	155.57
15	3.50	0	10079	0	73.67	136.81	0.00	136.81
16	3.75	0	10052	0	73.67	136.44	0.00	136.44
17	4.00	0	10025	0	73.67	136.07	0.00	136.07
18	4.25	0	9997	0	73.67	135.70	0.00	135.70
19	4.50	0	9970	0	73.67	135.33	0.00	135.33
20	4.75	0	9943	0	73.67	134.96	0.00	134.96
21	5.00	0	9916	0	73.67	134.60	0.00	134.60
22	5.25	0	9888	0	73.67	134.23	0.00	134.23
23	5.50	0	9861	0	73.67	133.86	0.00	133.86
24	5.75	0	9834	0	73.67	133.49	0.00	133.49
25	6.00	0	9807	0	73.67	133.12	0.00	133.12
26	6.25	0	9780	0	73.67	132.75	0.00	132.75
27	6.50	0	9752	0	73.67	132.38	0.00	132.38
28	6.75	0	9725	0	73.67	132.01	0.00	132.01
29	7.00	0	9698	0	73.67	131.64	0.00	131.64
30	7.25	0	9671	0	73.67	131.27	0.00	131.27
31	7.50	0	9644	0	73.67	130.90	0.00	130.90
32	7.75	0	9616	0	73.67	130.53	0.00	130.53
33	8.00	0	9589	0	73.67	130.16	0.00	130.16
34	8.25	0	9562	0	73.67	129.79	0.00	129.79
35	8.50	0	9535	0	73.67	129.42	0.00	129.42

TALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

Consorzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 91 di 260

36	8.75	0	9507	0	73.67	129.05	0.00	129.05
37	9.00	0	9480	0	73.67	128.68	0.00	128.68
38	9.25	0	9453	0	73.67	128.31	0.00	128.31
39	9.50	0	9426	0	73.67	127.95	0.00	127.95
40	9.75	0	9399	0	73.67	127.58	0.00	127.58
41	10.00	0	9371	0	73.67	127.21	0.00	127.21

Sollecitazioni e tensioni per la fila di pali nr. 3

Nr.	Υ	M	N	Т	\mathbf{A}_{f}	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	4076	15436	3506	73.67	1191.76	95.18	1203.10
2	0.25	3200	15489	3416	73.67	981.27	92.75	994.33
3	0.50	2346	15541	3221	73.67	776.17	87.43	790.80
4	0.75	1540	15594	2902	73.67	582.86	78.77	598.61
5	1.00	815	15646	2443	73.67	408.76	66.31	424.59
6	1.25	204	15616	1631	73.67	261.19	44.28	272.22
7	1.50	-203	15585	950	73.67	260.58	25.80	264.39
8	1.75	-441	15554	400	73.67	317.42	10.86	317.98
9	2.00	-541	15524	-22	73.67	341.10	0.61	341.10
10	2.25	-535	15493	-319	73.67	339.34	8.67	339.67
11	2.50	-456	15463	-493	73.67	319.70	13.39	320.54
12	2.75	-332	15432	-547	73.67	289.56	14.86	290.70
13	3.00	-196	15401	-482	73.67	256.18	13.09	257.18
14	3.25	-75	15371	-300	73.67	226.70	8.14	227.14
15	3.50	0	15340	0	73.67	208.23	0.00	208.23
16	3.75	0	15276	0	73.67	207.36	0.00	207.36
17	4.00	0	15212	0	73.67	206.49	0.00	206.49
18	4.25	0	15148	0	73.67	205.63	0.00	205.63
19	4.50	0	15085	0	73.67	204.76	0.00	204.76
20	4.75	0	15021	0	73.67	203.89	0.00	203.89
21	5.00	0	14957	0	73.67	203.03	0.00	203.03
22	5.25	0	14893	0	73.67	202.16	0.00	202.16
23	5.50	0	14829	0	73.67	201.29	0.00	201.29
24	5.75	0	14765	0	73.67	200.43	0.00	200.43
25	6.00	0	14702	0	73.67	199.56	0.00	199.56
26	6.25	0	14638	0	73.67	198.69	0.00	198.69
27	6.50	0	14574	0	73.67	197.83	0.00	197.83
28	6.75	0	14510	0	73.67	196.96	0.00	196.96
29	7.00	0	14446	0	73.67	196.09	0.00	196.09
30	7.25	0	14382	0	73.67	195.23	0.00	195.23
31	7.50	0	14319	0	73.67	194.36	0.00	194.36
32	7.75	0	14255	0	73.67	193.49	0.00	193.49
33	8.00	0	14191	0	73.67	192.63	0.00	192.63
34	8.25	0	14127	0	73.67	191.76	0.00	191.76
35	8.50	0	14063	0	73.67	190.89	0.00	190.89
36	8.75	0	13999	0	73.67	190.03	0.00	190.03
37	9.00	0	13935	0	73.67	189.16	0.00	189.16
38	9.25	0	13872	0	73.67	188.29	0.00	188.29
39	9.50	0	13808	0	73.67	187.43	0.00	187.43
40	9.75	0	13744	0	73.67	186.56	0.00	186.56
41	10.00	0	13680	0	73.67	185.69	0.00	185.69

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 92 di 260

Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- σ_c tensione nel calcestruzzo espressa in [kg/cmq]
- τ_c tensione tangenziale nel calcestruzzo espressa in [kg/cmq]
- $\sigma_{\!\scriptscriptstyle fs}$ tensione nell'armatura disposta sul lembo di monte in [kg/cmq]
- σ_{fi} tensione nell'armatura disposta sul lembo di valle in [kg/cmq]

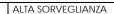
Nr.	Υ	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{\mathbf{c}}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.42	100, 38	12.06	12.06	0.20	0.06	-1.32	-2.70
2	1.05	100, 43	12.06	12.06	1.04	0.15	15.80	-13.30
3	1.68	100, 49	12.06	12.06	2.57	0.26	66.36	-31.63
4	2.31	100, 54	12.06	12.06	4.68	0.38	155.32	-57.00
5	2.94	100, 60	12.06	12.06	7.36	0.52	285.93	-89.42
6	3.57	100, 65	12.06	12.06	10.57	0.66	460.31	-128.70
7	4 20	100 71	12 06	12 06	14 17	0.83	673 18	-173 38

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [cmq]} \\$
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- σ_c tensione nel calcestruzzo espressa in [kg/cmq]
- τ_c tensione tangenziale nel calcestruzzo espressa in [kg/cmq]
- $\sigma_{\!\scriptscriptstyle fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq]
- σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazione di valle


(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{\mathbf{c}}$	σ_{fi}	σ_{fs}
1	0.19	100, 80	12.06	12.06	0.24	0.13	13.66	16.24
2	0.44	100, 80	12.06	12.06	1.57	1.02	108.17	19.20
3	0.69	100, 80	12.06	12.06	5.80	2.17	399.27	-68.06
4	0.98	100, 80	12.06	12.06	13.34	2.07	918.34	-156.54

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	B, H	A_fs	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.10	100, 80	12.06	12.06	0.15	0.00	-1.71	10.05
2	0.37	100, 80	12.06	12.06	1.31	0.00	-15.42	90.44
3	0.60	100, 80	12.06	12.06	2.51	0.15	-29.49	172.98

Foglio 93 di 260

4	0.90	100, 80	12.06	12.06	5.28	0.00	-61.98	363.58
5	1.20	100. 80	12.06	12.06	9.58	0.00	-112.38	659.25

Inviluppo sollecitazioni nei pali e verifiche delle sezioni

- Nr. Y
- numero d'ordine della sezione a partire dall'attacco palo-fondazione ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m])
- М momento flettente espresso in [kgm]
- sforzo normale espresso in [kg] Ν
- taglio espresso in [kg] Т
- area del tubolare armatura espressa in [cmq] A_{f}
- tensione normale nel tubolare espressa in [kg/cmq] σ_{f}
- tensione tangenziale nel tubolare espressa in [kg/cmq] τ_{f}
- tensione ideale nel tubolare espressa in [kg/cmq]

Inviluppo sollecitazioni fila di pali nr. 1

Nr.	Υ	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0.00	3251.99	4076.05	2742.60	3505.80	1629.70	5597.53
2	0.25	2566.35	3199.60	2653.16	3416.36	1682.15	5649.98
3	0.50	1903.06	2345.51	2457.40	3220.61	1734.59	5702.43
4	0.75	1288.71	1540.35	2138.47	2901.67	1787.04	5754.87
5	1.00	754.09	814.94	1811.93	2442.67	1839.49	5807.32
6	1.25	204.27	301.11	1245.14	1630.96	1874.28	5823.32
7	1.50	-203.47	-10.18	766.28	950.37	1909.07	5839.31
8	1.75	-441.06	-201.75	375.42	400.00	1943.86	5855.30
9	2.00	-541.06	-295.61	-22.29	71.60	1978.65	5871.29
10	2.25	-535.49	-313.50	-319.19	-146.64	2013.44	5887.29
11	2.50	-455.69	-276.84	-493.40	-280.86	2048.23	5903.28
12	2.75	-332.34	-206.63	-547.22	-332.46	2083.02	5919.27
13	3.00	-195.54	-123.51	-482.35	-302.48	2117.81	5935.26
14	3.25	-74.95	-47.89	-299.80	-191.57	2152.60	5951.26
15	3.50	0.00	0.00	0.00	0.00	2187.39	5967.25
16	3.75	0.00	0.00	0.00	0.00	2215.11	5968.66
17	4.00	0.00	0.00	0.00	0.00	2242.84	5970.07
18	4.25	0.00	0.00	0.00	0.00	2270.57	5971.48
19	4.50	0.00	0.00	0.00	0.00	2298.29	5972.89
20	4.75	0.00	0.00	0.00	0.00	2326.02	5974.30
21	5.00	0.00	0.00	0.00	0.00	2353.74	5975.71
22	5.25	0.00	0.00	0.00	0.00	2381.47	5977.12
23	5.50	0.00	0.00	0.00	0.00	2409.20	5978.53
24	5.75	0.00	0.00	0.00	0.00	2436.92	5979.94
25	6.00	0.00	0.00	0.00	0.00	2464.65	5981.35
26	6.25	0.00	0.00	0.00	0.00	2492.37	5982.76
27	6.50	0.00	0.00	0.00	0.00	2520.10	5984.17
28	6.75	0.00	0.00	0.00	0.00	2547.83	5985.58
29	7.00	0.00	0.00	0.00	0.00	2575.55	5986.98
30	7.25	0.00	0.00	0.00	0.00	2603.28	5988.39
31	7.50	0.00	0.00	0.00	0.00	2631.00	5989.80
32	7.75	0.00	0.00	0.00	0.00	2658.73	5991.21
33	8.00	0.00	0.00	0.00	0.00	2686.46	5992.62
34	8.25	0.00	0.00	0.00	0.00	2714.18	5994.03

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

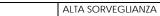
IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 94 di 260

35	8.50	0.00	0.00	0.00	0.00	2741.91	5995.44
36	8.75	0.00	0.00	0.00	0.00	2769.63	5996.85
37	9.00	0.00	0.00	0.00	0.00	2797.36	5998.26
38	9.25	0.00	0.00	0.00	0.00	2825.08	5999.67
39	9.50	0.00	0.00	0.00	0.00	2852.81	6001.08
40	9.75	0.00	0.00	0.00	0.00	2880.54	6002.49
41	10.00	0.00	0.00	0.00	0.00	2908.26	6003.90

Inviluppo verifiche fila di pali nr. 1

Nr.	Υ	A_{f}	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	73.67	1004.35	95.18	1017.78
2	0.25	73.67	793.86	92.75	809.95
3	0.50	73.67	588.75	87.43	607.92
4	0.75	73.67	395.44	78.77	418.32
5	1.00	73.67	260.54	66.31	274.12
6	1.25	73.67	151.60	44.28	162.52
7	1.50	73.67	81.72	25.80	89.31
8	1.75	73.67	132.67	10.86	134.00
9	2.00	73.67	157.24	1.94	157.24
10	2.25	73.67	156.37	8.67	157.09
11	2.50	73.67	146.84	13.39	147.44
12	2.75	73.67	130.14	14.86	131.08
13	3.00	73.67	110.33	13.09	111.24
14	3.25	73.67	92.32	8.14	92.76
15	3.50	73.67	81.00	0.00	81.00
16	3.75	73.67	81.02	0.00	81.02
17	4.00	73.67	81.04	0.00	81.04
18	4.25	73.67	81.06	0.00	81.06
19	4.50	73.67	81.08	0.00	81.08
20	4.75	73.67	81.09	0.00	81.09
21	5.00	73.67	81.11	0.00	81.11
22	5.25	73.67	81.13	0.00	81.13
23	5.50	73.67	81.15	0.00	81.15
24	5.75	73.67	81.17	0.00	81.17
25	6.00	73.67	81.19	0.00	81.19
26	6.25	73.67	81.21	0.00	81.21
27	6.50	73.67	81.23	0.00	81.23
28	6.75	73.67	81.25	0.00	81.25
29	7.00	73.67	81.27	0.00	81.27
30	7.25	73.67	81.29	0.00	81.29
31	7.50	73.67	81.31	0.00	81.31
32	7.75	73.67	81.32	0.00	81.32
33	8.00	73.67	81.34	0.00	81.34
34	8.25	73.67	81.36	0.00	81.36
35	8.50	73.67	81.38	0.00	81.38
36	8.75	73.67	81.40	0.00	81.40
37	9.00	73.67	81.42	0.00	81.42
38	9.25	73.67	81.44	0.00	81.44
39	9.50	73.67	81.46	0.00	81.46
40	9.75	73.67	81.48	0.00	81.48
41	10.00	73.67	81.50	0.00	81.50


Foglio 95 di 260

Inviluppo sollecitazioni fila di pali nr. 2

Nr.	Υ	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0.00	3251.99	4076.05	2742.60	3505.80	9164.69	9913.73
2	0.25	2566.35	3199.60	2653.16	3416.36	9217.13	9966.18
3	0.50	1903.06	2345.51	2457.40	3220.61	9269.58	10018.63
4	0.75	1288.71	1540.35	2138.47	2901.67	9322.03	10071.08
5	1.00	754.09	814.94	1811.93	2442.67	9374.48	10123.53
6	1.25	204.27	301.11	1245.14	1630.96	9373.58	10119.07
7	1.50	-203.47	-10.18	766.28	950.37	9372.67	10114.62
8	1.75	-441.06	-201.75	375.42	400.00	9371.76	10110.16
9	2.00	-541.06	-295.61	-22.29	71.60	9370.86	10105.71
10	2.25	-535.49	-313.50	-319.19	-146.64	9369.95	10101.25
11	2.50	-455.69	-276.84	-493.40	-280.86	9369.04	10096.79
12	2.75	-332.34	-206.63	-547.22	-332.46	9368.14	10092.34
13	3.00	-195.54	-123.51	-482.35	-302.48	9367.23	10087.88
14	3.25	-74.95	-47.89	-299.80	-191.57	9366.32	10083.43
15	3.50	0.00	0.00	0.00	0.00	9365.42	10078.97
16	3.75	0.00	0.00	0.00	0.00	9343.17	10051.76
17	4.00	0.00	0.00	0.00	0.00	9320.92	10024.54
18	4.25	0.00	0.00	0.00	0.00	9298.67	9997.32
19	4.50	0.00	0.00	0.00	0.00	9276.42	9970.11
20	4.75	0.00	0.00	0.00	0.00	9254.17	9942.89
21	5.00	0.00	0.00	0.00	0.00	9231.92	9915.67
22	5.25	0.00	0.00	0.00	0.00	9209.67	9888.46
23	5.50	0.00	0.00	0.00	0.00	9187.42	9861.24
24	5.75	0.00	0.00	0.00	0.00	9165.18	9834.02
25	6.00	0.00	0.00	0.00	0.00	9142.93	9806.81
26	6.25	0.00	0.00	0.00	0.00	9120.68	9779.59
27	6.50	0.00	0.00	0.00	0.00	9098.43	9752.37
28	6.75	0.00	0.00	0.00	0.00	9076.18	9725.16
29	7.00	0.00	0.00	0.00	0.00	9053.93	9697.94
30	7.25	0.00	0.00	0.00	0.00	9031.68	9670.72
31	7.50	0.00	0.00	0.00	0.00	9009.43	9643.51
32	7.75	0.00	0.00	0.00	0.00	8987.18	9616.29
33	8.00	0.00	0.00	0.00	0.00	8964.94	9589.07
34	8.25	0.00	0.00	0.00	0.00	8942.69	9561.85
35	8.50	0.00	0.00	0.00	0.00	8920.44	9534.64
36	8.75	0.00	0.00	0.00	0.00	8898.19	9507.42
37	9.00	0.00	0.00	0.00	0.00	8875.94	9480.20
38	9.25	0.00	0.00	0.00	0.00	8853.69	9452.99
39	9.50	0.00	0.00	0.00	0.00	8831.44	9425.77
40	9.75	0.00	0.00	0.00	0.00	8809.19	9398.55
41	10.00	0.00	0.00	0.00	0.00	8786.94	9371.34

Inviluppo verifiche fila di pali nr. 2

Nr.	Y	A_f	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	73.67	1116.79	95.18	1128.89
2	0.25	73.67	906.30	92.75	920.43
3	0.50	73.67	701.20	87.43	717.37
4	0.75	73.67	507.89	78.77	525.90

Foglio 96 di 260

5	1.00	73.67	333.80	66.31	353.00
6	1.25	73.67	199.80	44.28	208.20
7	1.50	73.67	186.33	25.80	191.61
8	1.75	73.67	243.52	10.86	244.25
9	2.00	73.67	267.56	1.94	267.56
10	2.25	73.67	266.15	8.67	266.58
11	2.50	73.67	246.86	13.39	247.95
12	2.75	73.67	217.08	14.86	218.60
13	3.00	73.67	184.05	13.09	185.44
14	3.25	73.67	154.93	8.14	155.57
15	3.50	73.67	136.81	0.00	136.81
16	3.75	73.67	136.44	0.00	136.44
17	4.00	73.67	136.07	0.00	136.07
18	4.25	73.67	135.70	0.00	135.70
19	4.50	73.67	135.33	0.00	135.33
20	4.75	73.67	134.96	0.00	134.96
21	5.00	73.67	134.60	0.00	134.60
22	5.25	73.67	134.23	0.00	134.23
23	5.50	73.67	133.86	0.00	133.86
24	5.75	73.67	133.49	0.00	133.49
25	6.00	73.67	133.12	0.00	133.12
26	6.25	73.67	132.75	0.00	132.75
27	6.50	73.67	132.38	0.00	132.38
28	6.75	73.67	132.01	0.00	132.01
29	7.00	73.67	131.64	0.00	131.64
30	7.25	73.67	131.27	0.00	131.27
31	7.50	73.67	130.90	0.00	130.90
32	7.75	73.67	130.53	0.00	130.53
33	8.00	73.67	130.16	0.00	130.16
34	8.25	73.67	129.79	0.00	129.79
35	8.50	73.67	129.42	0.00	129.42
36	8.75	73.67	129.05	0.00	129.05
37	9.00	73.67	128.68	0.00	128.68
38	9.25	73.67	128.31	0.00	128.31
39	9.50	73.67	127.95	0.00	127.95
40	9.75	73.67	127.58	0.00	127.58
41	10.00	73.67	127.21	0.00	127.21
• •		. 5.51	121.21	0.00	1 1

Inviluppo sollecitazioni fila di pali nr. 3

Nr.	Υ	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0.00	3251.99	4076.05	2742.60	3505.80	11542.79	15436.42
2	0.25	2566.35	3199.60	2653.16	3416.36	11595.24	15488.87
3	0.50	1903.06	2345.51	2457.40	3220.61	11647.69	15541.32
4	0.75	1288.71	1540.35	2138.47	2901.67	11700.14	15593.77
5	1.00	754.09	814.94	1811.93	2442.67	11752.59	15646.21
6	1.25	204.27	301.11	1245.14	1630.96	11740.41	15615.60
7	1.50	-203.47	-10.18	766.28	950.37	11728.24	15584.98
8	1.75	-441.06	-201.75	375.42	400.00	11716.07	15554.36
9	2.00	-541.06	-295.61	-22.29	71.60	11703.90	15523.74
10	2.25	-535.49	-313.50	-319.19	-146.64	11691.72	15493.12
11	2.50	-455.69	-276.84	-493.40	-280.86	11679.55	15462.50
12	2.75	-332.34	-206.63	-547.22	-332.46	11667.38	15431.89

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 97 di 260

13	3.00	-195.54	-123.51	-482.35	-302.48	11655.21	15401.27
14	3.25	-74.95	-47.89	-299.80	-191.57	11643.03	15370.65
15	3.50	0.00	0.00	0.00	0.00	11630.86	15340.03
16	3.75	0.00	0.00	0.00	0.00	11592.84	15276.19
17	4.00	0.00	0.00	0.00	0.00	11554.82	15212.34
18	4.25	0.00	0.00	0.00	0.00	11516.80	15148.50
19	4.50	0.00	0.00	0.00	0.00	11478.78	15084.65
20	4.75	0.00	0.00	0.00	0.00	11440.75	15020.80
21	5.00	0.00	0.00	0.00	0.00	11402.73	14956.96
22	5.25	0.00	0.00	0.00	0.00	11364.71	14893.11
23	5.50	0.00	0.00	0.00	0.00	11326.69	14829.27
24	5.75	0.00	0.00	0.00	0.00	11288.67	14765.42
25	6.00	0.00	0.00	0.00	0.00	11250.65	14701.58
26	6.25	0.00	0.00	0.00	0.00	11212.63	14637.73
27	6.50	0.00	0.00	0.00	0.00	11174.60	14573.89
28	6.75	0.00	0.00	0.00	0.00	11136.58	14510.04
29	7.00	0.00	0.00	0.00	0.00	11098.56	14446.20
30	7.25	0.00	0.00	0.00	0.00	11060.54	14382.35
31	7.50	0.00	0.00	0.00	0.00	11022.52	14318.51
32	7.75	0.00	0.00	0.00	0.00	10984.50	14254.66
33	8.00	0.00	0.00	0.00	0.00	10946.48	14190.82
34	8.25	0.00	0.00	0.00	0.00	10908.46	14126.97
35	8.50	0.00	0.00	0.00	0.00	10870.43	14063.13
36	8.75	0.00	0.00	0.00	0.00	10832.41	13999.28
37	9.00	0.00	0.00	0.00	0.00	10794.39	13935.43
38	9.25	0.00	0.00	0.00	0.00	10756.37	13871.59
39	9.50	0.00	0.00	0.00	0.00	10718.35	13807.74
40	9.75	0.00	0.00	0.00	0.00	10680.33	13743.90
41	10.00	0.00	0.00	0.00	0.00	10642.31	13680.05

Inviluppo verifiche fila di pali nr. 3

Nr.	Y	${\sf A_f}$	σ_{f}	$ au_{f}$	$\sigma_{\sf id}$
1	0.00	73.67	1191.76	95.18	1203.10
2	0.25	73.67	981.27	92.75	994.33
3	0.50	73.67	776.17	87.43	790.80
4	0.75	73.67	582.86	78.77	598.61
5	1.00	73.67	408.76	66.31	424.59
6	1.25	73.67	261.19	44.28	272.22
7	1.50	73.67	260.58	25.80	264.39
8	1.75	73.67	317.42	10.86	317.98
9	2.00	73.67	341.10	1.94	341.10
10	2.25	73.67	339.34	8.67	339.67
11	2.50	73.67	319.70	13.39	320.54
12	2.75	73.67	289.56	14.86	290.70
13	3.00	73.67	256.18	13.09	257.18
14	3.25	73.67	226.70	8.14	227.14
15	3.50	73.67	208.23	0.00	208.23
16	3.75	73.67	207.36	0.00	207.36
17	4.00	73.67	206.49	0.00	206.49
18	4.25	73.67	205.63	0.00	205.63
19	4.50	73.67	204.76	0.00	204.76
20	4.75	73.67	203.89	0.00	203.89

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 98 di 260

21	5.00	73.67	203.03	0.00	203.03
22	5.25	73.67	202.16	0.00	202.16
23	5.50	73.67	201.29	0.00	201.29
24	5.75	73.67	200.43	0.00	200.43
25	6.00	73.67	199.56	0.00	199.56
26	6.25	73.67	198.69	0.00	198.69
27	6.50	73.67	197.83	0.00	197.83
28	6.75	73.67	196.96	0.00	196.96
29	7.00	73.67	196.09	0.00	196.09
30	7.25	73.67	195.23	0.00	195.23
31	7.50	73.67	194.36	0.00	194.36
32	7.75	73.67	193.49	0.00	193.49
33	8.00	73.67	192.63	0.00	192.63
34	8.25	73.67	191.76	0.00	191.76
35	8.50	73.67	190.89	0.00	190.89
36	8.75	73.67	190.03	0.00	190.03
37	9.00	73.67	189.16	0.00	189.16
38	9.25	73.67	188.29	0.00	188.29
39	9.50	73.67	187.43	0.00	187.43
40	9.75	73.67	186.56	0.00	186.56
41	10.00	73.67	185.69	0.00	185.69

Foglio 99 di 260

8.9.2 Muro M01 H=3.00 m - fondazione su pali

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.

Altezza del paramento	3.00 [m]
Spessore in sommità	0.34 [m]
Spessore all'attacco con la fondazione	0.60 [m]
Inclinazione paramento esterno	5.00 [°]
Inclinazione paramento interno	0.00 [°]
Lunghezza del muro	10.00 [m]
Spessore rivestimento	0.20 [m]
Desc on vivactiments	1000 00 []

Peso sp. rivestimento 1800.00 [kg/mc]

Fondazione

Lunghezza mensola fondazione di valle	0.98 [m]
Lunghezza mensola fondazione di monte	1.20 [m]
Lunghezza totale fondazione	2.78 [m]
Inclinazione piano di posa della fondazione	0.00 [°]
Spessore fondazione	0.80 [m]
Spessore magrone	0.15 [m]

Descrizione pali di fondazione

Pali armati con profilato tubolare

Numero di file di pali

Vincolo pali/fondazione Incastro

Tipo di portanza Portanza laterale e portanza di punta

Simbologia adottata

N numero d'ordine della fila

X ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m]

nr. Numero di pali della fila

D diametro dei pali della fila espresso in [cm]
L lunghezza dei pali della fila espressa in [m]

alfa inclinazione dei pali della fila rispetto alla verticale espressa in [°]

ALL allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI)

Dt diametro esterno del tubolare espresso in [mm]

St spessore del tubolare espresso in [mm]

N	X	nr.	D	L	alfa	ALL	Dt	St
1	0.45	10	30.00	10.00	0.00	Sfalsati	244.50	10.00
2	2.45	10	30.00	10.00	0.00	Sfalsati	244.50	10.00

Foglio 100 di 260

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

- X ascissa del punto espressa in [m]
- Y ordinata del punto espressa in [m]
- A inclinazione del tratto espressa in [°]

N	Χ	Υ	Α
1	0.01	0.00	0.00
2	0.80	0.00	0.00
3	11.20	3.40	18.10
4	15.20	3.40	0.00

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

 $\begin{array}{ll} \gamma & \text{Peso di volume del terreno espresso in [kg/mc]} \\ \gamma_{\text{s}} & \text{Peso di volume saturo del terreno espresso in [kg/mc]} \end{array}$

 $\begin{array}{ccc} \phi & & \text{Angolo d'attrito interno espresso in } [^\circ] \\ \delta & & \text{Angolo d'attrito terra-muro espresso in } [^\circ] \end{array}$

c Coesione espressa in [kg/cmq]

c_a Adesione terra-muro espressa in [kg/cmq]

 $\sigma_{\rm d}$ Tensione di progetto espressa in [kg/cmq]

Descrizione	γ	γs	ф	δ	С	Ca	d_d
Nuovo Rilevato	1800	1900	35.00	35.00	0.000	0.000	0.00
strato 1	1800	1900	20.00	20.00	0.000	0.000	0.00
strato2	1900	2000	21.00	21.00	0.150	0.100	0.00
strato 3	2000	2100	23.00	23.00	0.200	0.140	0.00

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	4.00	0.00	2.00	1.00	Nuovo Rilevato
2	2.00	0.00	2.00	1.00	strato 1
3	2.50	0.00	4.00	1.00	strato2
4	15.00	0.00	0.00	0.00	strato 3

GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 101 di 260

Impostazioni analisi pali

Numero elementi palo 40

<u>Tipo carico palo</u> Distribuito

<u>Calcolo della portanza</u> metodo di Terzaghi

<u>Costante di Winkler</u> da Strato

Criterio di rottura del sistema terreno-palo

Pressione limite Brich-Hansen

Impostazioni di analisi

Metodo verifica sezioni

Tensioni ammissibili

Quadro riassuntivo coeff, di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{R/B} Coeff. di sicurezza al ribaltamento CS_{STAB} Coeff. di sicurezza a carico limite COeff. di sicurezza a stabilità globale

Si rappresenta la condizione di carico più gravosa:

TipoSismacs_{sco}cs_{rib}cs_{qlim}cs_{stab}TAMMpresente------3.93

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate : Origine in testa al muro (spigolo di monte) Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta Calcolo della stabilità globale Calcolo della spinta in condizioni di metodo di Culmann metodo di Bishop Spinta attiva

Foglio 102 di 260

<u>Sisma</u>

Coefficiente di intensità sismica (percento) 4.80

Forma diagramma incremento sismico Triangolare con vertice in basso

Partecipazione spinta passiva (percento) 0.0

10.00 [m] Lunghezza del muro

Peso muro

9099.18 [kg] X=-0.21 Y=-2.72 Baricentro del muro

Superficie di spinta

Punto inferiore superficie di spinta X = 1.20Y = -3.80

Punto superiore superficie di spinta X = 1.20Y = 0.13

Altezza della superficie di spinta 3.93 [m] Inclinazione superficie di spinta(rispetto alla verticale) 0.00 [°]

COMBINAZIONE sismica

Valore della spinta statica	4489.38	[kg]		
Componente orizzontale della spinta statica	3677.48	[kg]		
Componente verticale della spinta statica	2575.00	[kg]		
Punto d'applicazione della spinta	X = 1.20	[m]	Y = -2.49	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	35.00	[°]		
Inclinazione linea di rottura in condizioni statiche	53.08	[°]		

Incremento sismico della spinta	728.94	[kg]		
Punto d'applicazione dell'incremento sismico di spinta	X = 1.20	[m]	Y = -1.18	[m]
Inclinazione linea di rottura in condizioni sismiche	49.77	[°]		

Peso terrapieno gravante sulla fondazione a monte	6527.08	[kg]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.60	[m]	Y = -1.49	[m]
Inerzia del muro	436.76	[kg]		
Inerzia del terrapieno fondazione di monte	313.30	[kg]		

Risultanti

Noutanti		
Risultante dei carichi applicati in dir. orizzontale	5076.50	[kg]
Risultante dei carichi applicati in dir. verticale	19699.36	[kg]
Momento ribaltante rispetto allo spigolo a valle	7703.61	[kgm]
Momento stabilizzante rispetto allo spigolo a valle	36167.72	[kgm]
Sforzo normale sul piano di posa della fondazione	19699.36	[kg]
Sforzo tangenziale sul piano di posa della fondazione	5076.50	[kg]
Eccentricità rispetto al baricentro della fondazione	-0.05	[m]
Lunghezza fondazione reagente	2.78	[m]
Risultante in fondazione	20342.95	[kg]
Inclinazione della risultante (rispetto alla normale)	14.45	[°]
Momento rispetto al baricentro della fondazione	-1057.70	[kgm]

Foglio 103 di 260

Coefficiente di sicurezza a stabilità globale

3.93

Stabilità globale muro + terreno

COMBINAZIONE sismica

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kg]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = 0.00 Y[m] = 2.77

Raggio del cerchio R[m]= 16.61

Ascissa a valle del cerchio Xi[m]= -15.59 Ascissa a monte del cerchio Xs[m]= 16.60

Larghezza della striscia dx[m]= 1.29 Coefficiente di sicurezza C= 3.93

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	9594.79	77.61	9371.25	6.00	35.00	0.000	0.000
2	19243.74	62.40	17054.63	2.78	22.06	0.008	0.000
3	24271.75	53.84	19596.30	2.18	21.00	0.150	0.000
4	28134.43	46.83	20518.16	1.88	22.12	0.178	0.000
5	30994.27	40.65	20191.58	1.70	23.00	0.200	0.000
6	32623.03	35.01	18717.31	1.57	23.00	0.200	0.000
7	33756.37	29.74	16746.16	1.48	23.00	0.200	0.000
8	34492.09	24.74	14433.82	1.42	23.00	0.200	0.000
9	34881.59	19.93	11890.01	1.37	23.00	0.200	0.000
10	34959.59	15.26	9204.24	1.33	23.00	0.200	0.000
11	34749.71	10.70	6453.23	1.31	23.00	0.200	0.000
12	34291.26	6.21	3708.11	1.30	23.00	0.200	0.000
13	34734.69	1.75	1061.78	1.29	23.00	0.200	0.000
14	29765.25	-2.69	-1398.92	1.29	23.00	0.200	0.000
15	26550.34	-7.16	-3307.28	1.30	23.00	0.200	0.000
16	25926.48	-11.66	-5240.72	1.31	23.00	0.200	0.000
17	25101.04	-16.24	-7021.16	1.34	23.00	0.200	0.000
18	23983.46	-20.93	-8569.38	1.38	23.00	0.200	0.000
19	22548.09	-25.78	-9806.32	1.43	23.00	0.200	0.000
20	20757.26	-30.83	-10638.82	1.50	23.00	0.200	0.000
21	18554.92	-36.17	-10951.13	1.60	23.00	0.200	0.000

Foglio 104 di 260

22	15854.06	-41.91	-10589.49	1.73	23.00	0.200	0.000
23	12548.46	-48.23	-9358.64	1.93	21.70	0.167	0.000
24	8485.75	-55.48	-6992.04	2.27	20.83	0.125	0.000
25	3090.01	-64.59	-2791.03	3.00	25.66	0.000	0.000

 $\Sigma W_i = 619892.42 \text{ [kg]}$ $\Sigma W_{i} \sin \alpha_{i} = 82281.66 \text{ [kg]}$ $\Sigma W_i \tan \phi_i = 263379.62 \text{ [kg]}$ $\Sigma tan\alpha_i tan\phi_i$ = 2.82

Sollecitazioni paramento

COMBINAZIONE sismica

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kgm Sforzo normale positivo di compressione, espresso in kg Taglio positivo se diretto da monte verso valle, espresso in kg

Nr.	Υ	N	M	Т
1	0.30	264.82	10.21	84.24
2	0.75	698.86	76.66	263.67
3	1.20	1177.08	229.18	506.83
4	1.65	1699.48	497.12	824.32
5	2.10	2266.06	916.76	1228.88
6	2.55	2876.81	1526.25	1719.60
7	3.00	3531.75	2363.30	2294.41

Inviluppo sollecitazioni piastra di fondazione

COMBINAZIONE sismica

Dimensioni della piastra(Simmetria) Larghezza(m) = 5.00 Altezza(m) = 2.78Origine all'attacco con il muro sull'asse di simmetria

Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero

I momenti negativi tendono le fibre superiori

Sollecitazioni in direzione Y

Nr.	Υ	$M_{ m vmin}$	M_{ymax}	T_{ymin}	T_{ymax}
1	0.00	-3.65	5.32	-213.46	202.86
2	0.09	-69.26	95.72	-2787.35	1595.77
3	0.18	-180.56	174.66	-4044.90	3045.36
4	0.26	-294.26	402.25	0.00	4497.22
5	0.33	-56.54	734.74	0.00	6798.01
6	0.41	0.00	1177.00	0.00	11734.54

Foglio 105 di 260

7	0.48	0.00	1715.55	0.00	17285.68
8	0.58	0.00	2689.24	0.00	14273.86
9	0.68	0.00	3738.92	0.00	12433.10
1	0 0.78	0.00	4747.86	0.00	11744.48
1	1 0.88	0.00	5771.36	0.00	12152.35
1	2 0.98	0.00	6933.98	0.00	11962.88
1	3 1.58	-12.64	797.34	-2938.53	289.74
1	4 1.68	0.00	786.24	-2374.40	784.89
1	5 1.78	0.00	752.49	-320.06	1293.86
1	6 1.88	0.00	664.33	0.00	2191.59
1	7 1.98	0.00	505.34	0.00	3403.62
1	8 2.08	0.00	252.95	0.00	5313.08
1	9 2.18	-269.93	3.57	0.00	7763.75
2	2.26	-606.15	0.00	0.00	4015.24
2	2.33	-729.02	0.00	-16.35	1547.55
2	2.41	-692.42	0.00	-1603.01	532.59
2	2.48	-443.26	0.00	-5989.23	14.02
2	2.58	-207.68	0.00	-3695.56	0.00
2	2.68	-100.12	47.09	-1614.96	0.00
2	2.78	0.00	7.81	-343.32	0.00

Sollecitazioni in direzione X

Nr.	X	M_{xmin}	M_{xmax}	T_{xmin}	T_{xmax}
1	0.00	0.00	688.50	-1721.78	513.74
2	0.18	0.00	495.42	-6223.47	993.01
3	0.35	-512.81	0.00	-9038.75	974.29
4	0.50	-1053.31	0.00	-2735.49	2736.19
5	0.65	-512.76	0.00	-973.40	9040.02
6	0.83	0.00	495.52	-992.10	6224.30
7	1.00	0.00	688.68	-1720.73	1722.69
8	1.18	0.00	495.64	-6222.23	994.32
9	1.35	-512.45	0.00	-9037.50	975.58
10	1.50	-1052.91	0.00	-2734.17	2737.74
11	1.65	-512.16	0.00	-971.10	9043.91
12	1.82	0.00	496.19	-989.76	6226.38
13	2.00	0.00	689.74	-1717.86	1725.16
14	2.18	0.00	496.82	-6219.02	999.90
15	2.35	-510.67	0.00	-9036.27	981.06
16	2.50	-1050.98	0.00	-2731.32	2740.19
17	2.65	-509.52	0.00	-957.94	9052.42
18	2.83	0.00	499.10	-976.35	6228.19
19	3.00	0.00	693.23	-1724.89	1724.02
20	3.18	0.00	500.24	-6236.66	1034.39
21	3.35	-508.39	0.00	-9106.33	1014.99
22	3.50	-1050.12	0.00	-2767.18	2681.76
23	3.65	-514.51	0.00	-898.71	8975.94
24	3.83	0.00	486.85	-915.82	6138.37
25	4.00	0.00	658.57	-1940.15	1581.30
26	4.17	0.00	441.31	-6543.31	989.66
27	4.35	-628.40	0.00	-9834.87	971.90
28	4.50	-1224.16	0.00	-3196.54	2197.11

Consorzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 106 di 260

29	4.65	-793.98	0.00	-2282.61	8276.59
30	4.83	-145.29	75.38	-2840.13	5573.15
31	5.00	-6.78	26.77	-2915.93	881.83

Armature e tensioni nei materiali del muro

COMBINAZIONE sismica

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]

A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]

 σ_c tensione nel calcestruzzo espressa in [kg/cmq]

 $\tau_c \qquad \qquad \text{tensione tangenziale nel calcestruzzo espressa in [kg/cmq]}$

 σ_{fs} tensione nell'armatura disposta sul lembo di monte in [kg/cmq] σ_{fi} tensione nell'armatura disposta sul lembo di valle in [kg/cmq]

Nr.	Υ	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.30	100, 37	12.06	12.06	0.10	0.03	-0.51	-1.46
2	0.75	100, 41	12.06	12.06	0.41	0.08	1.13	-5.54
3	1.20	100, 44	12.06	12.06	1.01	0.14	12.26	-13.23
4	1.65	100, 48	12.06	12.06	1.94	0.21	39.30	-24.60
5	2.10	100, 52	12.06	12.06	3.17	0.29	84.61	-39.47
6	2.55	100, 56	12.06	12.06	4.68	0.38	149.80	-57.87
7	3.00	100, 60	12.06	12.06	6.48	0.47	236.01	-79.80

Armature e tensioni nei materiali della fondazione

COMBINAZIONE sismica

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

σ_c tensione nel calcestruzzo espressa in [kg/cmq]

 au_c tensione tangenziale nel calcestruzzo espressa in [kg/cmq]

 $\sigma_{\!\scriptscriptstyle fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq]

 σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_fs	A_fi	σ_{c}	$ au_{c}$	σ_{fi}	σ_{fs}
1	0.18	100, 80	12.06	12.06	0.30	-0.29	19.92	20.59
2	0.41	100, 80	12.06	12.06	1.95	1.22	134.24	-22.88
3	0.68	100, 80	12.06	12.06	6.20	1.59	426.44	-72.69
4	0.98	100, 80	12.06	12.06	11.49	1.49	790.85	-134.81

ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 107 di 260

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	B, H	A_fs	A_fi	σ_{c}	$ au_{ extsf{c}}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.10	100, 80	12.06	12.06	0.17	-0.11	5.37	11.42
2	0.38	100, 80	12.06	12.06	1.15	-0.14	-13.46	78.97
3	0.60	100, 80	12.06	12.06	0.45	0.54	-5.25	30.79
4	0.90	100, 80	12.06	12.06	1.10	0.21	75.77	-12.92
5	1.20	100, 80	12.06	12.06	1.32	-0.12	90.94	-15.50

Analisi dei pali

COMBINAZIONE sismica

Risultanti sulla base della fondazione (per metro lineare di muro)

Orizzontale [kg] 5076.5 Verticale [kg] 19699.4 Momento [kgm] 1057.7

Spostamenti della piastra di fondazione

Orizzontale [cm] 0.19485 Verticale [cm] 0.01708 Rotazione [°] -0.00182

Scarichi in testa ai pali

Fila nr.	N.pali	N [kg]	T [kg]	M [kgm]	Tu [kg]	Mu [kgm]
1	10	8033	2538	2924	15689	18075
2	10	11666	2538	2924	15689	18075

Verifica della portanza assiale

Il metodo utilizzato per il calcolo della portanza verticale è: Hansen.

E' stato richiesto di correggere l'angolo di attrito in funzione del tipo di palo (Trivellato/Infisso).

L'andamento della pressione verticale σ_V con la profondità, per il calcolo della portanza di punta, è stata definita come: Pressione geostatica.

L'andamento della pressione verticale è stata utilizzata anche per il calcolo della portanza laterale.

Simbologia adottata

Comb Identificativo della combinazione Nc, Nq Fattori di capacità portante

Comb
Nc, Nq Fatton
N'c = f(Nc, sc, dc)
N'q = f(Nq, sq, dq)
dove:
sc, sq
dc, dq

Pp Pa N sc, sq Fattori di forma dc, dq Fattori di profondità Portanza laterale espressa in [kg] Portanza di punta espressa in [kg] Portanza ammissibile espressa in [kg] Scarico verticale in testa al palo espresso in [kg]

Coeff. di sicurezza per carichi verticali

Foglio 108 di 260

Comb	Nc	Nq	N'c	N'q
1	14.83	6.40	34.32	9.51

 Comb
 PI
 Pp
 Pa
 N
 η

 1
 31881
 17855
 17797
 11666
 1.53

Verifica della portanza trasversale

Costante di Winkler orizzontale definita da STRATO

Criterio di rottura palo-terreno: Pressione limite (Pressione passiva con moltiplicatore = 3.00)

Simbologia adottata

Comb Identificativo della combinazione

Tu Taglio resistente ultimo in testa al palo, espresso in [kg]
Mu Momento resistente ultimo in testa al palo, espresso in [kgm]

 $\begin{array}{ll} \text{Mu} & \text{Momento resistente ultimo in testa al palo, esp} \\ \text{Tx} & \text{Taglio agente in testa al palo, espresso in [kg]} \\ \eta = \text{Tu/Tx} & \text{Coeff. di sicurezza per carichi orizzontali} \\ \end{array}$

 Comb
 Tu
 Mu
 Tx
 η

 1
 8177.79
 -9479.33
 3506.00
 3.23

Momento ultimo della sezione

Np A_f **M**_{usez} 1 73.67 21615.97

Verifica a punzonamento della fondazione

 $\begin{array}{ll} D & \text{diametro dei pali della fila espresso in [cm]} \\ H_f & \text{altezza della fondazione in corrispondenza della fila espressa in [cm]} \\ S_i & \text{superficie di aderenza palo-fondazione } (H_f\Pi D) \text{ espressa in [cmq]} \\ N & \text{sforzo normale trasmesso dal palo alla fondazione espresso in [kg]} \end{array}$

τ_c tensione tangenziale palo-fondazione espressa in [kg/cmq]

Fila	D	H_f	Sı	N	$ au_{ extsf{c}}$
1	30.0	80.0	7539.8	8033	1.07
2	30.0	80.0	7539.8	11666	1.55

Sollecitazioni nei pali e verifiche delle sezioni

COMBINAZIONE sismica

Nr. numero d'ordine della sezione a partire dall'attacco palo-fondazione

Y ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m])

M momento flettente espresso in [kgm]

N sforzo normale espresso in [kg]

T taglio espresso in [kg]

 $\begin{array}{ll} A_f & \text{area del tubolare armatura espressa in [cmq]} \\ \sigma_f & \text{tensione normale nel tubolare espressa in [kg/cmq]} \\ \tau_f & \text{tensione tangenziale nel tubolare espressa in [kg/cmq]} \\ \sigma_{id} & \text{tensione ideale nel tubolare espressa in [kg/cmq]} \end{array}$

Sollecitazioni e tensioni per la fila di pali nr. 1

Nr. Y M N T A_f σ_f τ_f σ_{id}

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 109 di 260

1	0.00	2924	8033	2538	73.67	813.71	68.91	822.41
2	0.25	2290	8086	2449	73.67	661.51	66.48	671.45
3	0.50	1677	8138	2253	73.67	514.69	61.17	525.48
4	0.75	1114	8190	1934	73.67	379.67	52.51	390.41
5	1.00	631	8243	1575	73.67	263.87	42.76	274.06
6	1.25	237	8295	1255	73.67	169.69	34.06	179.65
7	1.50	-77	8348	973	73.67	131.81	26.42	139.53
8	1.75	-320	8400	731	73.67	191.15	19.84	194.21
9	2.00	-503	8453	526	73.67	235.88	14.29	237.17
10	2.25	-634	8496	191	73.67	268.16	5.19	268.31
11	2.50	-682	8500	-73	73.67	279.74	1.99	279.76
12	2.75	-664	8504	-271	73.67	275.39	7.35	275.68
13	3.00	-596	8509	-404	73.67	259.14	10.98	259.84
14	3.25	-495	8513	-477	73.67	234.83	12.96	235.91
15	3.50	-376	8518	-492	73.67	206.13	13.37	207.43
16	3.75	-253	8522	-451	73.67	176.53	12.24	177.80
17	4.00	-140	8527	-355	73.67	149.42	9.63	150.35
18	4.25	-51	8531	-204	73.67	128.11	5.55	128.47
19	4.50	0	8536	0	73.67	115.86	0.00	115.86
20	4.75	0	8536	0	73.67	115.87	0.00	115.87
21	5.00	0	8522	0	73.67	115.67	0.00	115.67
22	5.25	0	8507	0	73.67	115.47	0.00	115.47
23	5.50	0	8492	0	73.67	115.27	0.00	115.27
24	5.75	0	8477	0	73.67	115.07	0.00	115.07
25	6.00	0	8463	0	73.67	114.87	0.00	114.87
26	6.25	0	8448	0	73.67	114.67	0.00	114.67
27	6.50	0	8433	0	73.67	114.47	0.00	114.47
28	6.75	0	8418	0	73.67	114.27	0.00	114.27
29	7.00	0	8404	0	73.67	114.07	0.00	114.07
30	7.25	0	8389	0	73.67	113.87	0.00	113.87
31	7.50	0	8374	0	73.67	113.67	0.00	113.67
32	7.75	0	8359	0	73.67	113.47	0.00	113.47
33	8.00	0	8345	Ō	73.67	113.27	0.00	113.27
34	8.25	Ō	8330	Ö	73.67	113.07	0.00	113.07
35	8.50	0	8315	Ō	73.67	112.87	0.00	112.87
36	8.75	0	8300	0	73.67	112.67	0.00	112.67
37	9.00	Ö	8286	Ö	73.67	112.47	0.00	112.47
38	9.25	0	8271	0	73.67	112.27	0.00	112.27
39	9.50	0	8256	0	73.67	112.07	0.00	112.07
40	9.75	Ö	8241	0	73.67	111.87	0.00	111.87
41	10.00	0	8227	0	73.67	111.67	0.00	111.67
		•		•			0.00	

Sollecitazioni e tensioni per la fila di pali nr. 2

Nr.	Υ	M	N	Т	A_{f}	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	2924	11666	2538	73.67	863.02	68.91	871.24
2	0.25	2290	11719	2449	73.67	710.82	66.48	720.09
3	0.50	1677	11771	2253	73.67	564.01	61.17	573.87
4	0.75	1114	11824	1934	73.67	428.99	52.51	438.52
5	1.00	631	11876	1575	73.67	313.18	42.76	321.82
6	1.25	237	11928	1255	73.67	219.00	34.06	226.81
7	1.50	-77	11981	973	73.67	181.13	26.42	186.82

sorzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 110 di 260

8	1.75	-320	12033	731	73.67	240.46	19.84	242.91
9	2.00	-503	12086	526	73.67	285.19	14.29	286.26
10	2.25	-634	12125	191	73.67	317.43	5.19	317.56
11	2.50	-682	12112	-73	73.67	328.78	1.99	328.80
12	2.75	-664	12100	-271	73.67	324.19	7.35	324.44
13	3.00	-596	12087	-404	73.67	307.71	10.98	308.29
14	3.25	-495	12074	-477	73.67	283.17	12.96	284.06
15	3.50	-376	12061	-492	73.67	254.23	13.37	255.28
16	3.75	-253	12049	-451	73.67	224.40	12.24	225.40
17	4.00	-140	12036	-355	73.67	197.06	9.63	197.76
18	4.25	-51	12023	-204	73.67	175.51	5.55	175.77
19	4.50	0	12010	0	73.67	163.03	0.00	163.03
20	4.75	0	11992	0	73.67	162.79	0.00	162.79
21	5.00	0	11954	0	73.67	162.26	0.00	162.26
22	5.25	0	11915	0	73.67	161.73	0.00	161.73
23	5.50	0	11876	0	73.67	161.20	0.00	161.20
24	5.75	0	11837	0	73.67	160.68	0.00	160.68
25	6.00	0	11798	0	73.67	160.15	0.00	160.15
26	6.25	0	11759	0	73.67	159.62	0.00	159.62
27	6.50	0	11721	0	73.67	159.09	0.00	159.09
28	6.75	0	11682	0	73.67	158.57	0.00	158.57
29	7.00	0	11643	0	73.67	158.04	0.00	158.04
30	7.25	0	11604	0	73.67	157.51	0.00	157.51
31	7.50	0	11565	0	73.67	156.99	0.00	156.99
32	7.75	0	11526	0	73.67	156.46	0.00	156.46
33	8.00	0	11488	0	73.67	155.93	0.00	155.93
34	8.25	0	11449	0	73.67	155.40	0.00	155.40
35	8.50	0	11410	0	73.67	154.88	0.00	154.88
36	8.75	0	11371	0	73.67	154.35	0.00	154.35
37	9.00	0	11332	0	73.67	153.82	0.00	153.82
38	9.25	0	11293	0	73.67	153.30	0.00	153.30
39	9.50	0	11254	0	73.67	152.77	0.00	152.77
40	9.75	0	11216	0	73.67	152.24	0.00	152.24
41	10.00	0	11177	0	73.67	151.71	0.00	151.71

Foglio 111 di 260

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kgm] Sforzo normale positivo di compressione, espresso in [kg] Taglio positivo se diretto da monte verso valle, espresso in [kg]

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.30	264.82	264.82	-0.06	10.21	16.57	84.24
2	0.75	698.86	698.86	14.73	76.66	103.56	263.67
3	1.20	1177.08	1177.08	76.44	229.18	265.19	506.83
4	1.65	1699.48	1699.48	219.34	497.12	512.03	824.32
5	2.10	2266.06	2266.06	484.61	916.76	856.86	1228.88
6	2.55	2876.81	2876.81	915.28	1526.25	1298.74	1719.60
7	3 00	3531 75	3531 75	1554 00	2363 30	1835 60	2294 41

Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- σ_{c} $\,$ tensione nel calcestruzzo espressa in [kg/cmq]
- τ_c tensione tangenziale nel calcestruzzo espressa in [kg/cmq]
- σ_{fs} tensione nell'armatura disposta sul lembo di monte in [kg/cmq]
- σ_{fi} tensione nell'armatura disposta sul lembo di valle in [kg/cmq]

Nr.	Y	В, Н	${\sf A_{fs}}$	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	σ_{fi}
1	0.30	100, 37	12.06	12.06	0.10	0.03	-0.99	-1.46
2	0.75	100, 41	12.06	12.06	0.41	0.08	-1.80	-5.54
3	1.20	100, 44	12.06	12.06	1.01	0.14	12.26	-13.23
4	1.65	100, 48	12.06	12.06	1.94	0.21	39.30	-24.60
5	2.10	100, 52	12.06	12.06	3.17	0.29	84.61	-39.47
6	2.55	100, 56	12.06	12.06	4.68	0.38	149.80	-57.87
7	3.00	100, 60	12.06	12.06	6.48	0.47	236.01	-79.80

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [cmq]} \\$
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- σ_c tensione nel calcestruzzo espressa in [kg/cmq]
- τ_c tensione tangenziale nel calcestruzzo espressa in [kg/cmq]
- σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq]
- σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Foglio 112 di 260

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	A_fs	A_{fi}	σ_{c}	$ au_{\mathbf{c}}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.18	100, 80	12.06	12.06	0.30	0.22	19.92	20.59
2	0.41	100, 80	12.06	12.06	1.95	1.22	134.24	-22.88
3	0.68	100, 80	12.06	12.06	6.20	1.59	426.44	-72.69
4	0.98	100, 80	12.06	12.06	11.49	1.49	790.85	-134.81

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${\sf A_{fs}}$	A_{fi}	σ_{c}	$ au_{\mathbf{c}}$	σ_{fi}	σ_{fs}
1	0.10	100, 80	12.06	12.06	0.19	0.00	7.27	13.07
2	0.38	100, 80	12.06	12.06	1.21	0.12	-14.14	82.96
3	0.60	100, 80	12.06	12.06	0.48	0.80	32.93	30.79
4	0.90	100, 80	12.06	12.06	2.39	0.47	164.48	-28.04
5	1.20	100, 80	12.06	12.06	3.47	0.15	239.17	-40.77

Inviluppo sollecitazioni nei pali e verifiche delle sezioni

- Nr. numero d'ordine della sezione a partire dall'attacco palo-fondazione
- Y ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m])
- M momento flettente espresso in [kgm]
- N sforzo normale espresso in [kg]
- T taglio espresso in [kg]
- A_f area del tubolare armatura espressa in [cmq]
- $\sigma_f \qquad \qquad \text{tensione normale nel tubolare espressa in [kg/cmq]}$
- τ_f tensione tangenziale nel tubolare espressa in [kg/cmq]
- σ_{id} tensione ideale nel tubolare espressa in [kg/cmq]

Inviluppo sollecitazioni fila di pali nr. 1

Nr.	Υ	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0.00	2159.25	2924.23	1838.74	2538.25	8033.13	9726.67
2	0.25	1699.57	2289.67	1749.30	2448.81	8085.58	9779.12
3	0.50	1262.24	1677.47	1553.55	2253.06	8138.03	9831.57
4	0.75	873.85	1114.21	1303.31	1934.12	8190.48	9884.02
5	1.00	548.03	630.67	1074.81	1575.13	8242.93	9936.46
6	1.25	236.89	279.32	869.47	1254.60	8295.38	9988.91
7	1.50	-76.76	61.96	688.05	973.15	8347.83	10041.36
8	1.75	-320.05	-110.06	530.71	730.64	8400.27	10093.81
9	2.00	-502.71	-242.73	397.20	526.26	8452.72	10146.26
10	2.25	-634.27	-342.03	176.60	191.22	8495.57	10187.51
11	2.50	-682.08	-386.18	-73.29	0.71	8500.03	10183.94
12	2.75	-663.75	-386.36	-270.72	-132.40	8504.48	10180.37
13	3.00	-596.07	-353.26	-404.43	-224.71	8508.94	10176.80

GENERAL CONTRACTOR

ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 113 di 260

14	3.25	-494.97	-297.08	-477.46	-278.01	8513.39	10173.23
15	3.50	-375.60	-227.58	-492.34	-293.80	8517.84	10169.66
16	3.75	-252.52	-154.13	-451.00	-273.27	8522.30	10166.09
17	4.00	-139.76	-85.81	-354.75	-217.20	8526.75	10162.52
18	4.25	-51.08	-31.51	-204.31	-126.05	8531.21	10158.95
19	4.50	0.00	0.00	0.00	0.00	8535.66	10155.39
20	4.75	0.00	0.00	0.00	0.00	8536.27	10147.34
21	5.00	0.00	0.00	0.00	0.00	8521.53	10121.36
22	5.25	0.00	0.00	0.00	0.00	8506.79	10095.38
23	5.50	0.00	0.00	0.00	0.00	8492.04	10069.41
24	5.75	0.00	0.00	0.00	0.00	8477.30	10043.43
25	6.00	0.00	0.00	0.00	0.00	8462.55	10017.45
26	6.25	0.00	0.00	0.00	0.00	8447.81	9991.48
27	6.50	0.00	0.00	0.00	0.00	8433.07	9965.50
28	6.75	0.00	0.00	0.00	0.00	8418.32	9939.53
29	7.00	0.00	0.00	0.00	0.00	8403.58	9913.55
30	7.25	0.00	0.00	0.00	0.00	8388.83	9887.57
31	7.50	0.00	0.00	0.00	0.00	8374.09	9861.60
32	7.75	0.00	0.00	0.00	0.00	8359.35	9835.62
33	8.00	0.00	0.00	0.00	0.00	8344.60	9809.64
34	8.25	0.00	0.00	0.00	0.00	8329.86	9783.67
35	8.50	0.00	0.00	0.00	0.00	8315.11	9757.69
36	8.75	0.00	0.00	0.00	0.00	8300.37	9731.72
37	9.00	0.00	0.00	0.00	0.00	8285.63	9705.74
38	9.25	0.00	0.00	0.00	0.00	8270.88	9679.76
39	9.50	0.00	0.00	0.00	0.00	8256.14	9653.79
40	9.75	0.00	0.00	0.00	0.00	8241.39	9627.81
41	10.00	0.00	0.00	0.00	0.00	8226.65	9601.84

Inviluppo verifiche fila di pali nr. 1

Nr.	Y	A_{f}	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	73.67	813.71	68.91	822.41
2	0.25	73.67	661.51	66.48	671.45
3	0.50	73.67	514.69	61.17	525.48
4	0.75	73.67	379.67	52.51	390.41
5	1.00	73.67	266.94	42.76	274.06
6	1.25	73.67	202.90	34.06	206.98
7	1.50	73.67	151.23	26.42	154.65
8	1.75	73.67	191.15	19.84	194.21
9	2.00	73.67	235.88	14.29	237.17
10	2.25	73.67	268.16	5.19	268.31
11	2.50	73.67	279.74	1.99	279.76
12	2.75	73.67	275.39	7.35	275.68
13	3.00	73.67	259.14	10.98	259.84
14	3.25	73.67	234.83	12.96	235.91
15	3.50	73.67	206.13	13.37	207.43
16	3.75	73.67	176.53	12.24	177.80
17	4.00	73.67	158.62	9.63	158.95
18	4.25	73.67	145.49	5.55	145.61
19	4.50	73.67	137.85	0.00	137.85
20	4.75	73.67	137.74	0.00	137.74

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 114 di 260

21	5.00	73.67	137.39	0.00	137.39
22	5.25	73.67	137.03	0.00	137.03
23	5.50	73.67	136.68	0.00	136.68
24	5.75	73.67	136.33	0.00	136.33
25	6.00	73.67	135.98	0.00	135.98
26	6.25	73.67	135.62	0.00	135.62
27	6.50	73.67	135.27	0.00	135.27
28	6.75	73.67	134.92	0.00	134.92
29	7.00	73.67	134.57	0.00	134.57
30	7.25	73.67	134.21	0.00	134.21
31	7.50	73.67	133.86	0.00	133.86
32	7.75	73.67	133.51	0.00	133.51
33	8.00	73.67	133.16	0.00	133.16
34	8.25	73.67	132.80	0.00	132.80
35	8.50	73.67	132.45	0.00	132.45
36	8.75	73.67	132.10	0.00	132.10
37	9.00	73.67	131.75	0.00	131.75
38	9.25	73.67	131.39	0.00	131.39
39	9.50	73.67	131.04	0.00	131.04
40	9.75	73.67	130.69	0.00	130.69
41	10.00	73.67	130.34	0.00	130.34

Inviluppo sollecitazioni fila di pali nr. 2

Nr.	Υ	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0.00	2159.25	2924.23	1838.74	2538.25	9554.59	11666.23
2	0.25	1699.57	2289.67	1749.30	2448.81	9607.04	11718.68
3	0.50	1262.24	1677.47	1553.55	2253.06	9659.49	11771.13
4	0.75	873.85	1114.21	1303.31	1934.12	9711.94	11823.58
5	1.00	548.03	630.67	1074.81	1575.13	9764.39	11876.03
6	1.25	236.89	279.32	869.47	1254.60	9816.84	11928.48
7	1.50	-76.76	61.96	688.05	973.15	9869.28	11980.93
8	1.75	-320.05	-110.06	530.71	730.64	9921.73	12033.38
9	2.00	-502.71	-242.73	397.20	526.26	9974.18	12085.83
10	2.25	-634.27	-342.03	176.60	191.22	10015.59	12125.23
11	2.50	-682.08	-386.18	-73.29	0.71	10012.84	12112.48
12	2.75	-663.75	-386.36	-270.72	-132.40	10010.08	12099.72
13	3.00	-596.07	-353.26	-404.43	-224.71	10007.33	12086.96
14	3.25	-494.97	-297.08	-477.46	-278.01	10004.58	12074.20
15	3.50	-375.60	-227.58	-492.34	-293.80	10001.82	12061.45
16	3.75	-252.52	-154.13	-451.00	-273.27	9999.07	12048.69
17	4.00	-139.76	-85.81	-354.75	-217.20	9996.31	12035.93
18	4.25	-51.08	-31.51	-204.31	-126.05	9993.56	12023.17
19	4.50	0.00	0.00	0.00	0.00	9990.81	12010.42
20	4.75	0.00	0.00	0.00	0.00	9983.64	11992.44
21	5.00	0.00	0.00	0.00	0.00	9958.80	11953.60
22	5.25	0.00	0.00	0.00	0.00	9933.97	11914.76
23	5.50	0.00	0.00	0.00	0.00	9909.13	11875.92
24	5.75	0.00	0.00	0.00	0.00	9884.30	11837.08
25	6.00	0.00	0.00	0.00	0.00	9859.46	11798.24
26	6.25	0.00	0.00	0.00	0.00	9834.63	11759.40
27	6.50	0.00	0.00	0.00	0.00	9809.79	11720.56

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

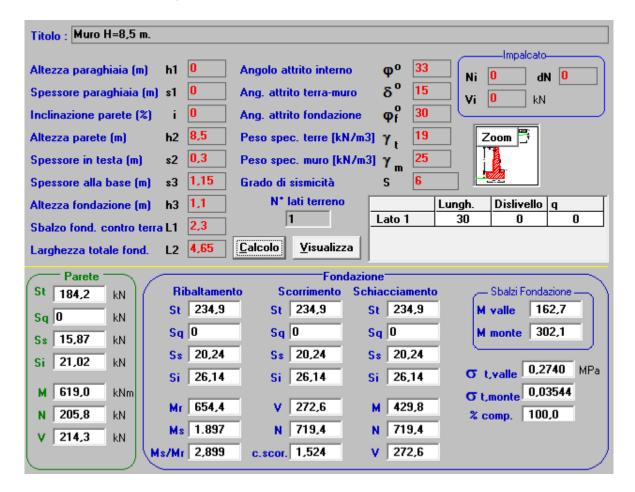
IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 115 di 260

28	6.75	0.00	0.00	0.00	0.00	9784.96	11681.72
29	7.00	0.00	0.00	0.00	0.00	9760.12	11642.88
30	7.25	0.00	0.00	0.00	0.00	9735.29	11604.04
31	7.50	0.00	0.00	0.00	0.00	9710.45	11565.20
32	7.75	0.00	0.00	0.00	0.00	9685.62	11526.36
33	8.00	0.00	0.00	0.00	0.00	9660.78	11487.52
34	8.25	0.00	0.00	0.00	0.00	9635.95	11448.68
35	8.50	0.00	0.00	0.00	0.00	9611.11	11409.84
36	8.75	0.00	0.00	0.00	0.00	9586.28	11371.00
37	9.00	0.00	0.00	0.00	0.00	9561.44	11332.16
38	9.25	0.00	0.00	0.00	0.00	9536.61	11293.32
39	9.50	0.00	0.00	0.00	0.00	9511.77	11254.48
40	9.75	0.00	0.00	0.00	0.00	9486.94	11215.64
41	10.00	0.00	0.00	0.00	0.00	9462.10	11176.80

Inviluppo verifiche fila di pali nr. 2

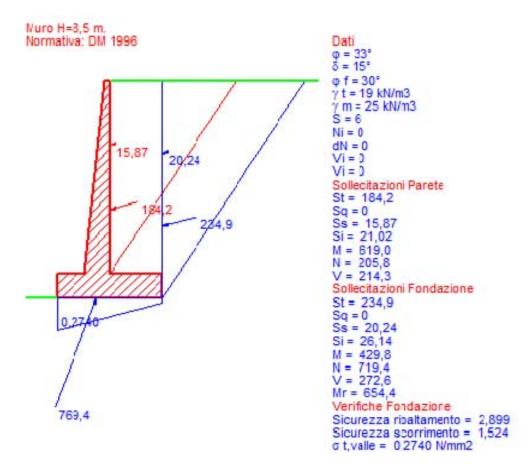
Nr.	Υ	A_{f}	σ_{f}	$ au_{f}$	σ_{id}
1	0.00	73.67	863.02	68.91	871.24
2	0.25	73.67	710.82	66.48	720.09
3	0.50	73.67	564.01	61.17	573.87
4	0.75	73.67	428.99	52.51	438.52
5	1.00	73.67	313.18	42.76	321.82
6	1.25	73.67	219.00	34.06	226.81
7	1.50	73.67	181.13	26.42	186.82
8	1.75	73.67	240.46	19.84	242.91
9	2.00	73.67	285.19	14.29	286.26
10	2.25	73.67	317.43	5.19	317.56
11	2.50	73.67	328.78	1.99	328.80
12	2.75	73.67	324.19	7.35	324.44
13	3.00	73.67	307.71	10.98	308.29
14	3.25	73.67	283.17	12.96	284.06
15	3.50	73.67	254.23	13.37	255.28
16	3.75	73.67	224.40	12.24	225.40
17	4.00	73.67	197.06	9.63	197.76
18	4.25	73.67	175.51	5.55	175.77
19	4.50	73.67	163.03	0.00	163.03
20	4.75	73.67	162.79	0.00	162.79
21	5.00	73.67	162.26	0.00	162.26
22	5.25	73.67	161.73	0.00	161.73
23	5.50	73.67	161.20	0.00	161.20
24	5.75	73.67	160.68	0.00	160.68
25	6.00	73.67	160.15	0.00	160.15
26	6.25	73.67	159.62	0.00	159.62
27	6.50	73.67	159.09	0.00	159.09
28	6.75	73.67	158.57	0.00	158.57
29	7.00	73.67	158.04	0.00	158.04
30	7.25	73.67	157.51	0.00	157.51
31	7.50	73.67	156.99	0.00	156.99
32	7.75	73.67	156.46	0.00	156.46
33	8.00	73.67	155.93	0.00	155.93
34	8.25	73.67	155.40	0.00	155.40


35	8.50	73.67	154.88	0.00	154.88
36	8.75	73.67	154.35	0.00	154.35
37	9.00	73.67	153.82	0.00	153.82
38	9.25	73.67	153.30	0.00	153.30
39	9.50	73.67	152.77	0.00	152.77
40	9.75	73.67	152.24	0.00	152.24
41	10.00	73.67	151.71	0.00	151.71

8.10 MURI LATERALI IMBOCCO GALLERIA M06

I muri laterali al portale della galleria hanno una lunghezza di 17,00 m. ed un'altezza del paramento variabile da 8,50 m. a 2,18 m.

Le verifiche sono eseguite a metro lineare di muro per tre sezioni con altezze del paramento di 8,50 m., 6,65m. e 4,80 m.


8.10.1 Muro con altezza H=8,50 m.

Foglio 117 di 260

Verifica sezione base parete

La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

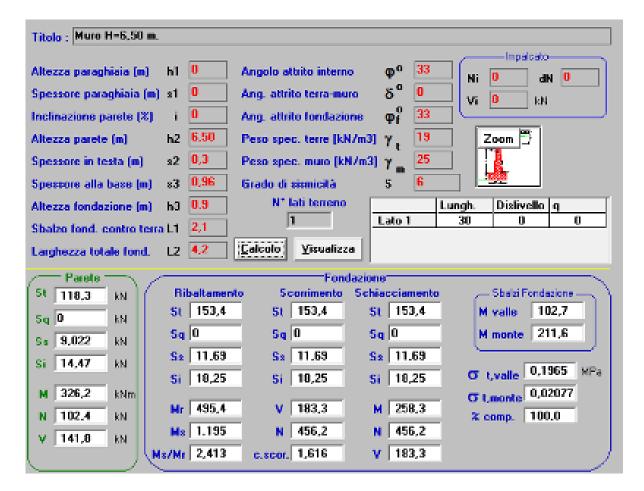
H=115 cm. B=100 cm. Af=5Φ16+5Φ20/ 100 cm. Af=5Φ12 /100 cm

M=619 KNm/m N=205 KN/m

Risulta σ_c = 4,98 Mpa σ_c = 207 MPa

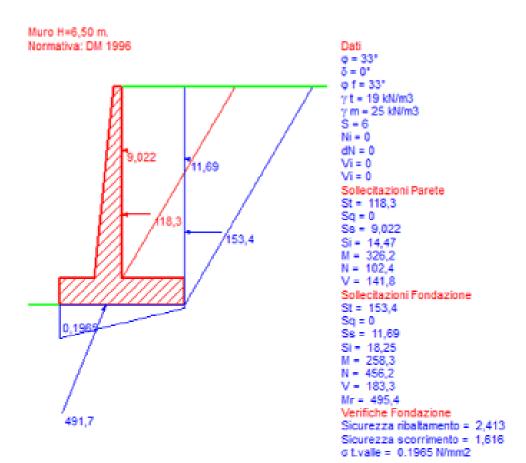
-Verifica sezione di incastro della fondazione

La sezione di incastro della fondazione presenta le seguenti caratteristiche:


H=110 cm. B=100 cm. Af= $10\Phi16/100$ cm. Af= $5\Phi14/100$ cm.

M=302 KN.m./m.

Risulta σ_c = 2,79 Mpa σ_c = 158,4 MPa


8.10.2 Muro con altezza H=6,65 m.

Foglio 119 di 260

Verifica sezione base parete

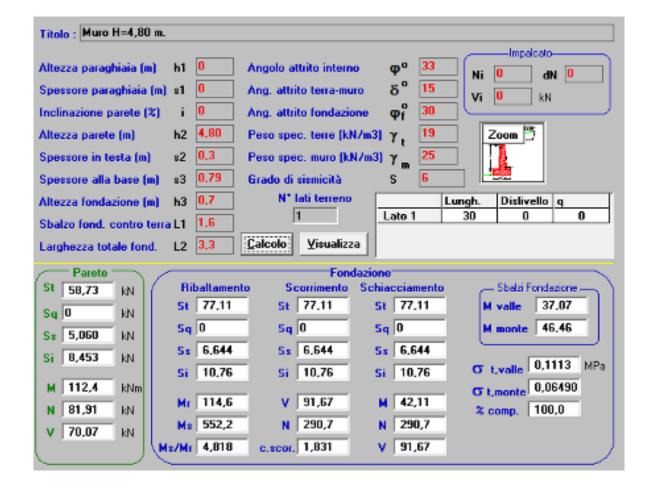
La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

H=96 cm. B=100 cm. Af= $10\Phi16/100$ cm. Af= $5\Phi12/100$ cm

M=326,2 KNm/m N=102,4 KN/m Risulta σ_c = 3,92 Mpa σ_c = 175,6 MPa

Verifica sezione di incastro della fondazione

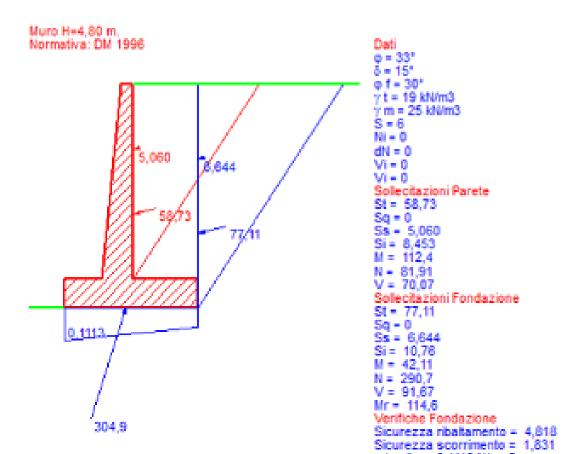
La sezione di incastro della fondazione presenta le seguenti caratteristiche:


H=90 cm. B=100 cm. Af= $7,5\Phi16/100$ cm. Af= $5\Phi14/100$ cm.

M=211,16 KNm/m

Risulta σ_c = 3,11 Mpa σ_c = 183,9 MPa

8.10.3 Muro con altezza H=4,80 m.



ot valle = 0.1113 N/mm2

Foglio 121 di 260

Verifica sezione base parete

La sezione della soletta allo sbalzo presenta le seguenti caratteristiche:

H=79 cm. B=100 cm. Af= 5Φ 16/ 100 cm. Af= 5Φ 10 /100 cm

M=112,4 KNm/m N=81,91 KN/m

Risulta σ_c = 2,51 Mpa σ_c = 128,4 MPa

Verifica sezione di incastro della fondazione

La sezione di incastro della fondazione presenta le seguenti caratteristiche:

H=70 cm. B=100 cm. Af= 5Φ 14 /100 cm. Af= 5Φ 12 /100 cm.

M=46,46 KNm/m

Risulta σ_c = 1,28 Mpa σ_c = 79,75 MPa

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 122 di 260

8.11 VERIFICHE DELLA STRUTTURA MURO IMBOCCO M07

Si riportano di seguito le verifiche agli stati limite ultimi svolte sulle opere oggetto della seguente relazione.

In accordo al DM96 le verifiche necessarie da svolgere su muri di sotegno sono le seguenti:

- Verifiche strutturali del muro di sostegno;
- Verifiche alla traslazione sul piano di posa: coefficiente di sicurezza pari a 1.3;
- Verifiche al ribaltamento del muro: coefficiente di sicurezza pari a 1.5;
- Verifiche al carico limite dell'insieme fondazione-terreno: coefficiente di sicurezza pari a 2;
- Verifica di stabilità globale.

8.12 MURO AD U

Si riportano di seguito le verifiche svolte su due sezioni del muro ad U.

8.12.1 Altezza paramento verticale pari a 10.00 m

Geometria scatolare

Descrizione: Scatolare tipo vasca

Altezza esterna 11.30 [m]

Larghezza esterna 15.45 [m]

Lunghezza mensola di fondazione sinistra 0.50 [m]

Lunghezza mensola di fondazione destra 0.50 [m]

Spessore piedritto sinistro 1.30 [m]

Spessore piedritto destro 1.30 [m]

Spessore fondazione 1.30 [m]

Caratteristiche strati terreno

Strato di rinfianco

Descrizione Rilevato

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 123 di 260

Peso di volume 18.0000 [kN/mc]

Peso di volume saturo 18.0000 [kN/mc]

Angolo di attrito 35.00 [°]

Angolo di attrito terreno struttura 10.00 [°]

Coesione 0.000 [N/mmq]

Costante di Winkler 0.000 [N/mmq/cm]

Strato di base

Descrizione Argille Marnose

Peso di volume 20.0000 [kN/mc]

Peso di volume saturo 20.0000 [kN/mc]

Angolo di attrito 22.00 [°]

Angolo di attrito terreno struttura 20.00 [°]

Coesione 0.030 [N/mmq]

Costante di Winkler 0.010 [N/mmq/cm]

Tensione ammissibile 0.300 [N/mmq]

Caratteristiche materiali utilizzati

Materiale calcestruzzo

R_{ck} calcestruzzo 30.000 [N/mmq]

Peso specifico calcestruzzo 24.5170 [kN/mc]

Modulo elastico E 27910.659 [N/mmq]

Tensione ammissibile acciaio 254.977 [N/mmq]

Tensione ammissibile cls (σ_{amm}) 9.707 [N/mmq]

Tensione tang.ammissibile cls (τ_{c0}) 0.596 [N/mmq]

Collegamenti Integrati Velo

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 124 di 260

Tensione tang.ammissibile cls (τ_{c1}) 1.810 [N/mmq]

Coeff. omogeneizzazione cls teso/compresso (n') 0.50

Coeff. omogeneizzazione acciaio/cls (n)15.00

Coefficiente dilatazione termica 0.0000120

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

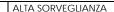
Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati

Y ordinata del punto di applicazione dei carichi orizzontali concentrati

F_y componente Y del carico concentrato

F_x componente X del carico concentrato


M momento

Forze distribuite

 $X_{i},\,X_{f}$ ascisse del punto iniziale e finale per carichi distribuiti verticali

 $\mathbf{Y}_{\mathrm{i}},\,\mathbf{Y}_{\mathrm{f}}$ ordinate del punto iniziale e finale per carichi distribuiti orizzontali

 V_{ni} componente normale del carico distribuito nel punto iniziale

Foglio 125 di 260

 V_{nf} componente normale del carico distribuito nel punto finale V_{ti} componente tangenziale del carico distribuito nel punto iniziale V_{tf} componente tangenziale del carico distribuito nel punto finale D_{te} variazione termica lembo esterno espressa in gradi centigradi D_{ti} variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

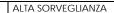
Condizione di carico n°5 (Sisma da destra)

Condizione di carico n° 7 (carico traffico centro)

Distr Fondaz. X_i = 3.60 X_f = 6.60 V_{ni} = 2.50 V_{nf} = 2.50 V_{ti} = 0.00 V_{tf} = 0.00

Distr Fondaz. X_i = 6.60 X_f = 9.60 V_{ni} = 9.00 V_{nf} = 9.00 V_{tf} = 0.00 V_{tf} = 0.00

Distr Fondaz. X_i = 9.60 X_f = 13.65 V_{ni} = 2.50 V_{nf} = 2.50 V_{ti} = 0.00 V_{tf} = 0.00


Conc Fondaz. X = 7.10 $F_y = 300.00$ $F_x = 0.00$ M = 0.00

Conc Fondaz. $X = 9.10 F_y = 300.00 F_x = 0.00 M = 0.00$

Condizione di carico n° 8 (carico terreno)

Distr Terreno X_i = 15.95 X_f = 19.95 V_{ni} = 20.00 V_{nf} = 20.00

Condizione di carico n° 9 (traffico concentrato sx)

Foglio 126 di 260

Conc Fondaz. X = 4.10 $F_y = 300.00$ $F_x = 0.00$ M = 0.00

Conc Fondaz. X = 6.10 $F_y = 300.00$ $F_x = 0.00$ M = 0.00

Distr Fondaz. X_i = 3.60 X_f = 6.60 V_{ni} = 9.00 V_{nf} = 9.00 V_{ti} = 0.00 V_{tf} = 0.00

Distr Fondaz. X_i = 6.60 X_f = 14.65 V_{ni} = 2.50 V_{nf} = 2.50 V_{ti} = 0.00 V_{tf} = 0.00

Impostazioni di progetto

Verifica materiali: Tensioni ammissibili

Verifiche secondo:

- D.M. 11/03/1988

- D.M. 16/01/1996

Copriferro sezioni 3.00 [cm]

Descrizione combinazioni di carico

Simbologia adottata

 γ Coefficiente di partecipazione della condizione

 ${\it \Psi}$ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Coeff. di combinazione Ψ_0 = 0.70 Ψ_1 = 0.50 Ψ_2 = 0.20

Combinazione n° 1 Tensioni ammissibili - Sismica

, Ψ С

Peso Proprio 1.00 1.00 1.00

Spinta terreno sinistra 1.00 1.00 1.00

Foglio 127 di 260

Spinta terreno des	1.00	1.00	1.00	
carico traffico cen	1.00	1.00	1.00	
carico terreno	1.00	1.00	1.00	
Sisma da sinistra	1.00	1.00	1.00	

Combinazione n° 2 Tensioni ammissibili - Sismica

γ	Ψ	С		
Peso Proprio	1.00	1.00	1.00	
Spinta terreno si	1.00	1.00	1.00	
Spinta terreno de	1.00	1.00	1.00	
carico traffico ce	1.00	1.00	1.00	
Sisma da sinistra	a 1.00	1.00	1.00	

Combinazione n° 3 Tensioni ammissibili - Sismica

γ	Ψ	С		
Peso Proprio	1.00	1.00	1.00	
Spinta terreno sini	1.00	1.00	1.00	
Spinta terreno des	1.00	1.00	1.00	
carico terreno	1.00	1.00	1.00	
traffico concentrato	1.00	1.00	1.00	
Sisma da sinistra	1.00	1.00	1.00	

Combinazione n° 4 Tensioni ammissibili - Sismica

у Ψ С

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 128 di 260

Peso Proprio	1.00	1.00	1.00	
Spinta terreno sinis	1.00	1.00	1.00	
Spinta terreno des	tra	1.00	1.00	1.00
carico terreno	1.00	1.00	1.00	
Sisma da sinistra	1.00	1.00	1.00	

Combinazione n° 5 Tensioni ammissibili - Sismica

γ	Ψ	С		
Peso Proprio	1.00	1.00	1.00	
Spinta terreno si	1.00	1.00	1.00	
Spinta terreno de	1.00	1.00	1.00	
traffico concentra	1.00	1.00	1.00	
Sisma da sinistra	a 1.00	1.00	1.00	

Combinazione n° 6 Tensioni ammissibili - Sismica

γ	Ψ	С		
Peso Proprio	1.00	1.00	1.00	
Spinta terreno si	1.00	1.00	1.00	
Spinta terreno de	1.00	1.00	1.00	
carico traffico cer	1.00	1.00	1.00	
carico terreno	1.00	1.00	1.00	
Sisma da destra	1.00	1.00	1.00	

Foglio 129 di 260

Combinazione n° 7 Tensioni ammissibili - Sismica

	γ	Ψ	С		
Peso F	roprio	1.00	1.00	1.00	
Spinta terreno sinistra			1.00	1.00	1.00
Spinta terreno destra			1.00	1.00	1.00
carico traffico centro			1.00	1.00	1.00
Sisma	da destra	1.00	1.00	1.00	

Combinazione n° 8 Tensioni ammissibili - Sismica

γ	Ψ	С		
Peso Proprio	1.00	1.00	1.00	
Spinta terreno sin	1.00	1.00	1.00	
Spinta terreno des	1.00	1.00	1.00	
carico terreno	1.00	1.00	1.00	
traffico concentrat	1.00	1.00	1.00	
Sisma da destra	1.00	1.00	1.00	

Combinazione n° 9 Tensioni ammissibili - Sismica

γ		Ψ	С		
Peso Proprio)	1.00	1.00	1.00	
Spinta terreno sinistra			1.00	1.00	1.00
Spinta terreno destra			1.00	1.00	1.00
carico terren	10	1.00	1.00	1.00	
Sisma da de	stra	1.00	1.00	1.00	

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 130 di 260

Combinazione n° 10 Tensioni ammissibili - Sismica

γ	Ψ	С		
Peso Proprio	1.00	1.00	1.00	
Spinta terreno sinistra		1.00	1.00	1.00
Spinta terreno destra		1.00	1.00	1.00
traffico concentrato sx		1.00	1.00	1.00
Sisma da destra	1.00	1.00	1.00	

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Le forze orizzontali sono considerate positive se agenti verso destra

Le forze verticali sono considerate positive se agenti verso il basso

X ascisse (espresse in m) positive verso destra

Y ordinate (espresse in m) positive verso l'alto

M momento espresso in kNm

V taglio espresso in kN

SN sforzo normale espresso in kN

ux spostamento direzione X espresso in cm

uy spostamento direzione Y espresso in cm

 σ_t pressione sul terreno espressa in N/mmq

Tipo di analisi

Pressione in calotta Pressione geostatica

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 131 di 260

Spinta sui piedritti Attiva [combinazione 1]

Attiva [combinazione 2]

Attiva [combinazione 3]

Attiva [combinazione 4]

Attiva [combinazione 5]

Attiva [combinazione 6]

Attiva [combinazione 7]

Attiva [combinazione 8]

Attiva [combinazione 9]

Attiva [combinazione 10]

Sisma

Coefficiente di intensità sismica (percento) 4.80

Forma diagramma incremento sismico Triangolare con vertice in basso

Spinta sismica Mononobe-Okabe

Angolo diffusione sovraccarico 30.00 [°]

Coefficienti di spinta

N°com	binazione	Statico	Sismico
1	0.253	0.279	
2	0.253	0.279	
3	0.253	0.279	

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 132 di 260

4	0.253	0.279
5	0.253	0.279
6	0.253	0.279
7	0.253	0.279
8	0.253	0.279
9	0.253	0.279
10	0.253	0.279

Discretizzazione strutturale

Numero elementi fondazione 177

Numero elementi piedritto sinistro 108

Numero elementi piedritto destro 108

Numero molle piedritto sinistro 109

Numero molle piedritto destro 109

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 133 di 260

Analisi della combinazione n° 1

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa]
-14.71 15.95 0.0000
15.95 19.95 20.0000
19.95 31.16 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 3.8259 [kPa] Pressione inf. 54.4630 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 5.2596 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 134 di 260

Xi Xj Q[kPa]

-14.71 31.16 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 5.2596 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

-14.71 15.95 0.0000

15.95 19.95 20.0000

19.95 31.16 0.0000

Spinte sui piedritti

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 135 di 260

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 3.8259 [kPa] Pressione inf. 54.4630 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 5.2596 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 4

0.0000

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-14.71	15.95	0.0000
15.95	19.95	20.0000

Spinte sui piedritti

19.95 31.16

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 3.8259 [kPa] Pressione inf. 54.4630 [kPa]

Spinte sismiche sui piedritti

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 136 di 260

Piedritto sinistro Pressione sup. 5.2596 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

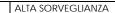
Xi Xj Q[kPa]

-14.71 31.16 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]


Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 5.2596 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 6

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Foglio 137 di 260

Xi Xj Q[kPa]

-14.71 15.95 0.0000

15.95 19.95 20.0000

19.95 31.16 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 3.8259 [kPa] Pressione inf. 54.4630 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 6.0544 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa]

-14.71 31.16 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 138 di 260

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 5.2596 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-14.71	15.95	0.0000
15.95	19.95	20.0000
19.95	31.16	0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 3.8259 [kPa] Pressione inf. 54.4630 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 6.0544 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 9

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 139 di 260

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa]

-14.71 15.95 0.0000

15.95 19.95 20.0000

19.95 31.16 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 3.8259 [kPa] Pressione inf. 54.4630 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 6.0544 [kPa] Pressione inf. 0.0000 [kPa]

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa]

-14.71 31.16 0.0000

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 140 di 260

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 50.6371 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 5.2596 [kPa] Pressione inf. 0.0000 [kPa]

Foglio 141 di 260

Spostamenti

Spostamenti fondazione (Combinazione nº 1)

X [m]	u _x [cm]	u _y [cm]
0.00	3.339	11.725
4.10	3.337	12.231
8.22	3.334	12.526
12.37	3.331	12.606
16.45	3.328	12.516

Spostamenti piedritto sinistro (Combinazione nº 1)

Y [m]	u _x [cm]	u _y [cm]
0.65	3.339	11.888
5.98	4.311	11.892
11.30	5.429	11.893

Spostamenti piedritto destro (Combinazione nº 1)

Y [m]	u _x [cm]	u _y [cm]
0.65	3.328	12.559
5.98	2.949	12.562
11.30	2.456	12.564

Spostamenti fondazione (Combinazione n° 2)

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 142 di 260

X [m]	u _x [cm]	u _y [cm]
0.00	6.252	11.389
4.10	6.250	12.018
8.22	6.247	12.446
12.37	6.244	12.688

16.45 6.242 12.808

Spostamenti piedritto sinistro (Combinazione n° 2)

Y [m]	u _x [cm]	u _y [cm]
0.65	6.252	11.586
5.98	7.383	11.590
11.30	8.660	11.591

Spostamenti piedritto destro (Combinazione n° 2)

Y [m]	u _x [cm]	u _y [cm]
0.65	6.242	12.788
5.98	6.201	12.791
11 30	6 080	12 702

Spostamenti fondazione (Combinazione n° 3)

X [m] $u_x [cm]$ $u_y [cm]$

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 143 di 260

0.00	3.339	15.912
4.10	3.337	14.310
8.22	3.334	12.456
12.37	3.331	10.542
16.45	3.328	8.587

Spostamenti piedritto sinistro (Combinazione n° 3)

Y [m]	u _x [cm]	u _y [cm]
0.65	3.339	15.487
5.98	1.583	15.490
11.30	-0.026	15.492

Spostamenti piedritto destro (Combinazione nº 3)

Y [m]	u _x [cm]	u _y [cm]
0.65	3.328	9.153
5.98	0.528	9.156
11.30	-2.388	9.158

Spostamenti fondazione (Combinazione n° 4)

X [m]	u _x [cm]	u _y [cm]
0.00	3.339	7.898
4.10	3.337	8.218
8.22	3.334	8.451

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 144 di 260

12.37 3.331 8.746

16.45 3.328 8.984

Spostamenti piedritto sinistro (Combinazione n° 4)

Y [m]	u _x [cm]	u _y [cm]
0.65	3.339	8.007
5.98	4.058	8.011
11 30	4 924	8 012

Spostamenti piedritto destro (Combinazione n° 4)

Y [m]	u _x [cm]	u _y [cm]
0.65	3.328	8.932
5.98	3.387	8.936
11.30	3.332	8.937

Spostamenti fondazione (Combinazione n° 5)

X [m]	u _x [cm]	u _y [cm]
0.00	6.252	15.576
4.10	6.250	14.097
8.22	6.247	12.376
12.37	6.244	10.624
16.45	6.242	8.879

GENERAL CONTRACTOR

ITALFERR

GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 145 di 260

Spostamenti piedritto sinistro (Combinazione n° 5)

Y [m]	u _x [cm]	u _y [cm]
0.65	6.252	15.185
5.98	4.655	15.188
11.30	3.204	15.190

Spostamenti piedritto destro (Combinazione n° 5)

Y [m]	u _x [cm]	u _y [cm]
0.65	6.242	9.381
5.98	3.779	9.385
11.30	1.236	9.386

Spostamenti fondazione (Combinazione n° 6)

X [m]	u _x [cm]	u _y [cm]
0.00	-9.475	13.504
4.10	-9.477	13.087
8.22	-9.481	12.529
12.37	-9.484	11.748
16 45	-9 486	10 724

Spostamenti piedritto sinistro (Combinazione n° 6)

 $Y [m] \qquad u_x [cm] \quad u_y [cm]$

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 146 di 260

0.65 -9.475 13.400

5.98 -9.816 13.404

11.30 -10.077 13.405

Spostamenti piedritto destro (Combinazione nº 6)

Y [m] u_x [cm] u_y [cm] 0.65 -9.486 11.039 5.98 -11.206 11.042

11.30 -13.114 11.044

Spostamenti fondazione (Combinazione n° 7)

X [m] u_x [cm] u_y [cm] 0.00 -6.242 13.104 4.10 -6.244 12.840 8.22 -6.247 12.446 12.37 -6.250 11.863 16.45 -6.252 11.093

Spostamenti piedritto sinistro (Combinazione nº 7)

Y [m]	u _x [cm]	u _y [cm]
0.65	-6.242	13.043
5.98	-6.386	13.047
11.30	-6.451	13.048

ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 147 di 260

Spostamenti piedritto destro (Combinazione nº 7)

Y [m]	u _x [cm]	u _y [cm]
0.65	-6.252	11.331
5.98	-7.568	11.335
11.30	-9.031	11.336

Spostamenti fondazione (Combinazione n° 8)

X [m]	u _x [cm]	u _y [cm]
0.00	-9.475	17.691
4.10	-9.477	15.166
8.22	-9.481	12.459
12.37	-9.484	9.684
16.45	-9.486	6.795

Spostamenti piedritto sinistro (Combinazione n° 8)

Y [m]	u _x [cm]	u _y [cm]
0.65	-9.475	16.999
5.98	-12.544	17.002
11.30	-15.533	17.004

Spostamenti piedritto destro (Combinazione nº 8)

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 148 di 260

Y [m]	u _x [cm]	u _y [cm]
0.65	-9.486	7.633
5.98	-13.628	7.636
11.30	-17.957	7.638

Spostamenti fondazione (Combinazione n° 9)

X [m]	u _x [cm]	u _y [cm]
0.00	-9.475	9.677
4.10	-9.477	9.074
8.22	-9.481	8.454
12.37	-9.484	7.888
16.45	-9.486	7.193

Spostamenti piedritto sinistro (Combinazione n° 9)

Y [m]	u _x [cm]	u _y [cm]
0.65	-9.475	9.519
5.98	-10.069	9.522
11.30	-10.582	9.524

Spostamenti piedritto destro (Combinazione nº 9)

Y [m]	u _x [cm]	u _y [cm]
0.65	-9.486	7.412
5.98	-10.768	7.416

Foglio 149 di 260

11.30 -12.238 7.417

Spostamenti fondazione (Combinazione nº 10)

X [m]	u _x [cm]	u _y [cm
0.00	-6.242	17.291
4.10	-6.244	14.919
8.22	-6.247	12.376
12.37	-6.250	9.799
16.45	-6.252	7.164

Spostamenti piedritto sinistro (Combinazione nº 10)

Y [m]	u _x [cm]	u _y [cm]
0.65	-6.242	16.641
5.98	-9.114	16.645
11.30	-11.906	16.646

Spostamenti piedritto destro (Combinazione nº 10)

Y [m]	u _x [cm]	u _y [cm]
0.65	-6.252	7.925
5.98	-9.990	7.929
11.30	-13.874	7.930

GRUPPO FERROVIE DELLO STATO ITALIANE

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 150 di 260

Sollecitazioni

Sollecitazioni fondazione (Combinazione n° 1)

X [m]	M [kNm] V [kN]	N [kN]
0.00	0.0000 4.8854	-23.3520
4.10	-578.7301	-63.6649 282.9706
8.22	-704.0210	-4.4001 289.2813
12.37	-432.7713	65.4224 295.6162
16.45	0.0000 -5.2149	23.2731

Sollecitazioni piedritto sinistro (Combinazione nº 1)

t [m]	W [KNIII]	v [KN]	N [KN]	
0.65	-1193.5752		300.0502	339.4381
5.98	-197.3449		93.0923	169.7190
11.30	0.0000	0.0000	0.0000	

Sollecitazioni piedritto destro (Combinazione nº 1)

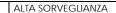
Y [m]	M [kNm] V [kN]	N [kN]	
0.65	-1032.4567	-278.5912 339.4381	
5.98	-145.3529	-75.7637 169.7190	
11.30	0.0000 0.0000	0.0000	

Sollecitazioni fondazione (Combinazione n° 2)

Foglio 151 di 260

X [m]	M [kNm] V [kN]	N [kN]
0.00	0.0000 4.7452	-43.7221
4.10	-553.8879	-75.0439 262.6006
8.22	-618.1627	-21.8319 268.9112
12.37	-272.3716	47.9746 275.2462
16.45	0.0000 -5.3368	43.6487

Sollecitazioni piedritto sinistro (Combinazione n° 2)


Y [m]	M [kNm] V [kN]	N [kN]	
0.65	-1193.5752	300.0502 339.4381	
5.98	-197.3449	93.0923 169.7190	
11.30	0.0000 0.0000	0.0000	

Sollecitazioni piedritto destro (Combinazione n° 2)

Y [m]	M [kNm] V [kN]	N [kN]	
0.65	-815.4865	-237.8456	339.4381
5.98	-91.1103 -55.3909	9 169.7190	
11.30	0.0000 0.0000	0.0000	

Sollecitazioni fondazione (Combinazione n° 3)

X [m] M [kNm] V [kN] N [kN]

Foglio 152 di 260

0.00 0.0000 6.6300 -23.3520

4.10 -871.0076 -237.3620 282.9706

8.22 -53.2881 -143.5404 289.2813

12.37 -152.2646 189.3860 295.6162

16.45 0.0000 -3.5779 23.2731

Sollecitazioni piedritto sinistro (Combinazione nº 3)

Y [m] M [kNm] V [kN] N [kN]

0.65 -1193.5752 300.0502 339.4381

5.98 -197.3449 93.0923 169.7190

11.30 0.0000 0.0000 0.0000

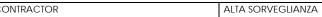
Sollecitazioni piedritto destro (Combinazione n° 3)

Y [m] M [kNm] V [kN] N [kN]

0.65 -1032.4567 -278.5912 339.4381

5.98 -145.3529 -75.7637 169.7190

11.30 0.0000 0.0000 0.0000


Sollecitazioni fondazione (Combinazione n° 4)

X [m] M [kNm] V	/ [kN]	N [kN]
-----------------	--------	--------

0.00 0.0000 3.2908 -23.3520

4.10 -251.9764 -225.1570 282.9706

8.22 258.5038 -12.7455 289.2813

Foglio 153 di 260

-130.9874 12.37 211.3476 295.6162

16.45 0.0000 -3.7435 23.2731

Sollecitazioni piedritto sinistro (Combinazione n° 4)

Y [m]	M [kNm] V [kN]	N [kN]
0.65	-1193.5752	300.0502 339.4381
5.98	-197.3449	93.0923 169.7190

11.30 0.0000 0.0000 0.0000

Sollecitazioni piedritto destro (Combinazione n° 4)

Y [m]	M [kNm] V [kN]	N [kN]	
0.65	-1032.4567	-278.5912	339.4381
5.98	-145.3529	-75.7637 169.719	90
11.30	0.0000 0.0000	0.0000	

Sollecitazioni fondazione (Combinazione n° 5)

X [m]	M [kNm]	V [kN]	N [kN]		
0.00	0.0000	6.4898	-43.7221		
4.10	-846.165	4	-248.741	0	262.6006
8.22	32.5703	-160.972	2	268.9112	2
12.37	8.1351	171.9381	1 275.2462	2	
16.45	0.0000	-3.6997	43.6487		

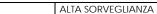
Foglio 154 di 260

Sollecitazioni piedritto sinistro (Combinazione n° 5)

Y [m]	M [kNm] V [kN]	N [kN]
0.65	-1193.5752	300.0502 339.4381
5.98	-197.3449	93.0923 169.7190

11.30 0.0000 0.0000 0.0000

Sollecitazioni piedritto destro (Combinazione n° 5)


Y [m]	M [kNm] V [kN]	N [kN]	
0.65	-815.4865	-237.8456	339.4381
5.98	-91.1103 -55.3909	169.7190	
11.30	0.0000 0.0000	0.0000	

Sollecitazioni fondazione (Combinazione n° 6)

X [m]	M [kNm]) V [kN]	N [kN]	
0.00	0.0000	5.6265	66.2562	
4.10	-323.719	92	-9.5432	297.8294
8.22	-718.918	32	66.8938	291.5187
12.37	-718.922	25	118.7809	285.1838
16.45	0.0000	-4.4684	-66.3357	

Sollecitazioni piedritto sinistro (Combinazione n° 6)

Y [m] M [kNm] V [kN] N [kN]

Foglio 155 di 260

0.65 -815.4865 237.8456 339.4381

5.98 -91.1103 55.3909 169.7190

11.30 0.0000 0.0000 0.0000

Sollecitazioni piedritto destro (Combinazione n° 6)

Y [m]	M [KNM] V [KN]	N [KN]	
0.65	-1441.4570	-345.2713	339.4381
5.98	-261.0851	-116.7000	169.7190

Sollecitazioni fondazione (Combinazione n° 7)

11.30 0.0000 0.0000 0.0000

X [m]	M [kNm] V [kN]	N [kN]
0.00	0.0000 5.4598	43.6487
4.10	-294.3434	-22.9502 275.2219
8.22	-618.1619	46.6606 268.9112
12.37	-532.7344	99.1391 262.5763
16.45	0.0000 -4.6222	-43.7221

Sollecitazioni piedritto sinistro (Combinazione nº 7)

Y [m]	M [kNm] V [kN]	N [kN]
0.65	-815.4865	237.8456 339.4381
5.98	-91.1103 55.3909	169.7190
11.30	0.0000 0.0000	0.0000

rzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 156 di 260

Sollecitazioni piedritto destro (Combinazione nº 7)

Y [m] M [kN	m] V [kN]	N [kN]
-------------	-----------	--------

0.65 -1193.5752 -300.0502 339.4381

5.98 -197.3449 -93.0923 169.7190

11.30 0.0000 0.0000 0.0000

Sollecitazioni fondazione (Combinazione n° 8)

X [m] M [kNm] V [kN] N [kN]

0.00 0.0000 7.3711 66.2562

4.10 -615.9966 -183.2402 297.8294

8.22 -68.1852 -72.2465 291.5187

12.37 -438.4157 242.7445 285.1838

16.45 0.0000 -2.8313 -66.3357

Sollecitazioni piedritto sinistro (Combinazione nº 8)

Y [m] M [kNm	1 V [kN]	N [kN]
--------------	----------	--------

0.65 -815.4865 237.8456 339.4381

5.98 -91.1103 55.3909 169.7190

11.30 0.0000 0.0000 0.0000

Sollecitazioni piedritto destro (Combinazione n° 8)

rzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 157 di 260

Y [m]	M [kNm] V [kN]	N [kN]
0.65	1441 4570	245.07

0.65 -1441.4570 -345.2713 339.4381

5.98 -261.0851 -116.7000 169.7190

11.30 0.0000 0.0000 0.0000

Sollecitazioni fondazione (Combinazione nº 9)

X [m] M [kNm] V [kN] N [kN]

0.00 0.0000 4.0320 66.2562

4.10 3.0345 -171.0352 297.8294

8.22 243.6067 58.5485 291.5187

12.37 -417.1385 264.7061 285.1838

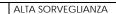
16.45 0.0000 -2.9969 -66.3357

Sollecitazioni piedritto sinistro (Combinazione n° 9)

Y [m] M [kNm] V [kN] N [kN]

0.65 -815.4865 237.8456 339.4381

5.98 -91.1103 55.3909 169.7190


11.30 0.0000 0.0000 0.0000

Sollecitazioni piedritto destro (Combinazione n° 9)

Υ	[m]	M	[kNm]	٧	[kN]	Ν	[kN]	
---	-----	---	-------	---	------	---	------	--

0.65 -1441.4570 -345.2713 339.4381

5.98 -261.0851 -116.7000 169.7190

Foglio 158 di 260

11.30 0.0000 0.0000 0.0000

Sollecitazioni fondazione (Combinazione nº 10)

X [m]	M [kNm]	V [kN]	N [kN]	
0.00	0.0000	7.2045	43.6487	
4.10	-586.620	8	-196.6472	275.2219
8.22	32.5711	-92.4797	268.9112	
12.37	-252.227	7	223.1026 262.5763	;
16.45	0.0000	-2.9851	-43.7221	

Sollecitazioni piedritto sinistro (Combinazione nº 10)

Y [m]	M [kNm] V	[kN]	N [kN]
0.65	-815.4865		237.8456 339.4381
5.98	-91.1103 5	5.3909	169.7190
11.30	0.0000 0	.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 10)

Y [m]	M [kNm] V [kN	i] N [kN]	
0.65	-1193.5752	-300.0502	339.4381
5.98	-197.3449	-93.0923 169.	7190
11.30	0.0000 0.000	0.0000	

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 159 di 260

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione n° 1)

X [m]	σ_t [N/mmq]
0.00	0.117
4.10	0.122
8.22	0.125
12.37	0.126
16.45	0.125

Pressioni sul terreno di fondazione (Combinazione n° 2)

X [m]	σ_t [N/mmq]
0.00	0.114
4.10	0.120
8.22	0.124
12.37	0.127
16.45	0.128

Pressioni sul terreno di fondazione (Combinazione n° 3)

X [m]	σ _t [N/mmq]
0.00	0.159
4.10	0.143
8.22	0.125

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 160 di 260

12.37 0.105

16.45 0.086

Pressioni sul terreno di fondazione (Combinazione n° 4)

X [m]	σ_t [N/mmq]
0.00	0.079
4.10	0.082
8.22	0.085
12.37	0.087

0.090

16.45

Pressioni sul terreno di fondazione (Combinazione n° 5)

X [m]	σ_t [N/mmq]
0.00	0.156
4.10	0.141
8.22	0.124
12.37	0.106
16.45	0.089

Pressioni sul terreno di fondazione (Combinazione n° 6)

X [m]	σ_t [N/mmq]
0.00	0.135
4.10	0.131

Foglio 161 di 260

8.22 0.125

12.37 0.117

16.45 0.107

Pressioni sul terreno di fondazione (Combinazione n° 7)

X [m] σ_t [N/mmq]
0.00 0.131
4.10 0.128
8.22 0.124
12.37 0.119

0.111

16.45

Pressioni sul terreno di fondazione (Combinazione n° 8)

X [m] σ_t [N/mmq]

0.00 0.177

4.10 0.152

8.22 0.125

12.37 0.097

0.068

16.45

Pressioni sul terreno di fondazione (Combinazione n° 9)

 $X [m] \sigma_t [N/mmq]$

0.00 0.097

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 162 di 260

4.10 0.091

8.22 0.085

12.37 0.079

16.45 0.072

Pressioni sul terreno di fondazione (Combinazione n° 10)

X [m]	σ _t [N/mmq]
0.00	0.173
4.10	0.149
8.22	0.124
12.37	0.098

16.45 0.072

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 163 di 260

Verifiche

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m

M Momento flettente, espresso in kNm

/ Taglio, espresso in kN

N Sforzo normale, espresso in kN

A_{fi} Area armatura inferiore, espressa in cmq

A_{fs} Area armatura superiore, espressa in cmq

 $\sigma_{\!\scriptscriptstyle fs}$ tensione nell'armatura disposta in corrispondenza del lembo superiore, espressa in N/mmq

 $\sigma_{\rm fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore, espressa in N/mmq

 σ_{c} tensione nel calcestruzzo, espresse in N/mmq

 au_{c} tensione tangenziale nel calcestruzzo, espresse in N/mmq

<u>Verifica sezioni fondazione [Combinazione nº 1 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-23.35	22.62	22.62	5.16	5.16	0.00
2	4.10	578.73	282.97	45.24	22.62	38.05	83.11	2.73
3	8.22	704.02	289.28	45.24	22.62	45.73	105.93	3.29
4	12.37	432.77	295.62	45.24	22.62	29.17	54.99	2.08
5	16.45	0.00	23.27	22.62	22.62	0.26	0.26	0.02

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 164 di 260

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.00	4.89	0.005	0.00
2	4.10	-63.66	-0.069	0.00
3	8.22	-4.40	-0.015	0.00
4	12.37	65.42	0.061	0.00
5	16 45	-5 21	-0 005	0.00

Verifica sezioni piedritto sinistro [Combinazione nº 1 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	М	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1193.58	339.44	22.62	36.19	238.33	80.99	5.91
2	5.98	-197.34	169.72	22.62	22.62	40.69	16.23	1.17
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

N°	X	V τ_c		\mathbf{A}_{sw}	
1	0.65	300.05	0 278	0.00	

Foglio 165 di 260

2 5.98 93.09 0.086 0.00

3 11.30 0.00 0.000 0.00

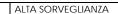
<u>Verifica sezioni piedritto destro [Combinazione nº 1 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1032.46	339.44	22.62	45.24	162.95	66.14	4.78
2	5.98	-145.35	169.72	22.62	22.62	22.76	11.93	0.85
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00


Verifiche taglio

N°	X	V	$ au_c$	$\boldsymbol{A}_{\text{sw}}$
1	0.65	-278.59	-0.258	0.00
2	5.98	-75.76	-0.070	0.00
3	11.30	0.00	0.000	0.00

<u>Verifica sezioni fondazione [Combinazione n° 2 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Foglio 166 di 260

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.00	0.00	-43.72	22.62	22.62	9.66	9.66	0.00
2	4.10	553.89	262.60	45.24	22.62	36.33	80.26	2.61
3	8.22	618.16	268.91	45.24	22.62	40.31	91.70	2.90
4	12.37	272.37	275.25	45.24	22.62	18.92	27.57	1.34
5	16.45	0.00	43.65	22.62	22.62	0.48	0.48	0.03

Verifiche taglio

N°	X	V	$ au_{c}$	$\boldsymbol{A}_{\text{sw}}$
1	0.00	4.75	0.004	0.00
2	4.10	-75.04	-0.079	0.00
3	8.22	-21.83	-0.031	0.00
4	12.37	47.97	0.044	0.00
5	16.45	-5.34	-0.005	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 2 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1193.58	339.44	22.62	36.19	238.33	80.99	5.91
2	5.98	-197.34	169.72	22.62	22.62	40.69	16.23	1.17

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 167 di 260

3 11.30 0.00 0.00 22.62 22.62 0.00 0.00 0.00

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.65	300.05	0.278	0.00
2	5.98	93.09	0.086	0.00
3	11 30	0.00	0.000	0.00

Verifica sezioni piedritto destro [Combinazione n° 2 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	М	N	A _{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-815.49	339.44	22.62	45.24	122.32	53.02	3.82
2	5.98	-91.11	169.72	22.62	22.62	6.65	7.17	0.50
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

N°	X	٧	τ _c	\mathbf{A}_{sw}
1	0.65	-237.85	-0.220	0.00
2	5.98	-55.39	-0.051	0.00
3	11.30	0.00	0.000	0.00

ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 168 di 260

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-23.35	22.62	22.62	5.16	5.16	0.00
2	4.10	871.01	282.97	45.24	22.62	55.76	137.77	4.03
3	8.22	53.29	289.28	45.24	22.62	5.57	0.74	0.38
4	12.37	152.26	295.62	45.24	22.62	11.06	7.02	0.77
5	16 45	0.00	23 27	22 62	22 62	0.26	0.26	0.02

Verifiche taglio

N°	X	V	$ au_{c}$	$\boldsymbol{A}_{\text{sw}}$
1	0.00	6.63	0.006	0.00
2	4.10	-237.36	-0.220	0.00
3	8.22	-143.54	-0.144	0.00
4	12.37	189.39	0.175	0.00
5	16.45	-3.58	-0.003	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 3 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

orzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 169 di 260

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1193.58	339.44	22.62	36.19	238.33	80.99	5.91
2	5.98	-197.34	169.72	22.62	22.62	40.69	16.23	1.17
3	11 30	0.00	0.00	22 62	22.62	0.00	0.00	0.00

Verifiche taglio

N°	Х	V	$ au_{c}$	A _{sw}
1	0.65	300.05	0.278	0.00
2	5.98	93.09	0.086	0.00
3	11.30	0.00	0.000	0.00

Verifica sezioni piedritto destro [Combinazione n° 3 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1032.46	339.44	22.62	45.24	162.95	66.14	4.78
2	5.98	-145.35	169.72	22.62	22.62	22.76	11.93	0.85
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.65	-278.59	-0.258	0.00
2	5.98	-75.76	-0.070	0.00

Foglio 170 di 260

3 11.30 0.00 0.000 0.00

<u>Verifica sezioni fondazione [Combinazione n° 4 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-23.35	22.62	22.62	5.16	5.16	0.00
2	4.10	251.98	282.97	45.24	22.62	17.63	23.44	1.24
3	8.22	-258.50	289.28	45.24	22.62	40.08	19.07	1.37
4	12.37	130.99	295.62	45.24	22.62	9.69	4.46	0.67
5	16.45	0.00	23.27	22.62	22.62	0.26	0.26	0.02

N°	X	V	τ_{c}	$\boldsymbol{A}_{\text{sw}}$
1	0.00	3.29	0.003	0.00
2	4.10	-225.16	-0.215	0.00
3	8.22	-12.75	-0.019	0.00
4	12.37	211.35	0.196	0.00
5	16.45	-3.74	-0.003	0.00

Foglio 171 di 260

<u>Verifica sezioni piedritto sinistro [Combinazione nº 4 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1193.58	339.44	22.62	36.19	238.33	80.99	5.91
2	5.98	-197.34	169.72	22.62	22.62	40.69	16.23	1.17
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.65	300.05	0.278	0.00
2	5.98	93.09	0.086	0.00
3	11.30	0.00	0.000	0.00

Verifica sezioni piedritto destro [Combinazione nº 4 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1032 46 339 44	22 62	45 24	162 95	66 14	4 78

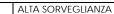
Foglio 172 di 260

2 5.98 -145.35 169.72 22.62 22.62 11.93 0.85 22.76 3 11.30 0.00 0.00 22.62 22.62 0.00 0.00 0.00

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.65	-278.59	-0.258	0.00
2	5.98	-75.76	-0.070	0.00
3	11.30	0.00	0.000	0.00

<u>Verifica sezioni fondazione [Combinazione nº 5 - Tensioni ammissibili - Sismica]</u>


Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\textrm{fi}}$	σ_{c}
1	0.00	0.00	-43.72	22.62	22.62	9.66	9.66	0.00
2	4.10	846.17	262.60	45.24	22.62	54.02	134.96	3.91
3	8.22	-32.57	268.91	45.24	22.62	1.65	4.04	0.27
4	12.37	-8.14	275.25	45.24	22.62	2.77	3.11	0.21
5	16.45	0.00	43.65	22.62	22.62	0.48	0.48	0.03

N°	X	V	$ au_{c}$	\mathbf{A}_{sw}
1	0.00	6 49	0.006	0.00

Foglio 173 di 260

2 4.10 0.00 -248.74 -0.230 3 8.22 -160.97 -0.160 0.00 4 12.37 171.94 0.159 0.00 5 16.45 -3.70 -0.003 0.00

<u>Verifica sezioni piedritto sinistro [Combinazione nº 5 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1193.58	339.44	22.62	36.19	238.33	80.99	5.91
2	5.98	-197.34	169.72	22.62	22.62	40.69	16.23	1.17
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

Verifiche taglio

N°	X	V	$ au_{c}$	\mathbf{A}_{sw}
1	0.65	300.05	0.278	0.00
2	5.98	93.09	0.086	0.00
3	11.30	0.00	0.000	0.00

<u>Verifica sezioni piedritto destro [Combinazione nº 5 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Foglio 174 di 260

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-815.49	339.44	22.62	45.24	122.32	53.02	3.82
2	5.98	-91.11	169.72	22.62	22.62	6.65	7.17	0.50
3	11 30	0.00	0.00	22 62	22 62	0.00	0.00	0.00

Verifiche taglio

N°	X	V	τ _c	\mathbf{A}_{sw}
1	0.65	-237.85	-0.220	0.00
2	5.98	-55.39	-0.051	0.00
3	11.30	0.00	0.000	0.00

<u>Verifica sezioni fondazione [Combinazione n° 6 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

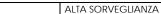
N°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\textrm{fi}}$	σ_{c}
1	0.00	0.00	66.26	22.62	22.62	0.73	0.73	0.05
2	4.10	323.72	297.83	45.24	22.62	22.33	34.99	1.58
3	8.22	718.92	291.52	45.24	22.62	46.66	108.52	3.36
4	12.37	718.92	285.18	45.24	22.62	46.59	109.09	3.36
5	16.45	0.00	-66.34	22.62	22.62	14.66	14.66	0.00

Foglio 175 di 260

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.00	5.63	0.005	0.00
2	4.10	-9.54	-0.020	0.00
3	8.22	66.89	0.062	0.00
4	12.37	118.78	0.110	0.00
5	16.45	-4.47	-0.004	0.00

<u>Verifica sezioni piedritto sinistro [Combinazione nº 6 - Tensioni ammissibili - Sismica]</u>


Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-815.49	339.44	22.62	36.19	150.47	56.53	4.10
2	5.98	-91.11	169.72	22.62	22.62	6.65	7.17	0.50
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

N°	X	V	$ au_{c}$	\mathbf{A}_{sw}
1	0.65	237.85	0.220	0.00
2	5.98	55.39	0.051	0.00
3	11 30	0.00	0.000	0.00

Foglio 176 di 260

<u>Verifica sezioni piedritto destro [Combinazione nº 6 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1441.46	339.44	22.62	45.24	239.75	90.72	6.58
2	5.98	-261.09	169.72	22.62	22.62	63.49	21.27	1.55
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

Verifiche taglio

N°	X	V	$ au_{c}$	\mathbf{A}_{sw}
1	0.65	-345.27	-0.320	0.00
2	5.98	-116.70	-0.108	0.00
3	11.30	0.00	0.000	0.00


<u>Verifica sezioni fondazione [Combinazione nº 7 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	43.65	22.62	22.62	0.48	0.48	0.03
2	4.10	294.34	275.22	45.24	22.62	20.33	31.47	1.44

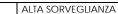
Foglio 177 di 260

3	8.22	618.16	268.91	45.24	22.62	40.31	91.69	2.90
4	12.37	532.73	262.58	45.24	22.62	35.04	76.32	2.52
5	16.45	0.00	-43.72	22.62	22.62	9.66	9.66	0.00

Verifiche taglio

N°	X	V	$ au_{c}$	\mathbf{A}_{sw}
1	0.00	5.46	0.005	0.00
2	4.10	-22.95	-0.032	0.00
3	8.22	46.66	0.043	0.00
4	12.37	99.14	0.092	0.00
5	16.45	-4.62	-0.004	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 7 - Tensioni ammissibili - Sismica]


B = 100 cmBase sezione

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	М	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-815.49	339.44	22.62	36.19	150.47	56.53	4.10
2	5.98	-91.11	169.72	22.62	22.62	6.65	7.17	0.50
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

N°	X	V	τ_{c}	\mathbf{A}_{sw}
1	0.65	237 85	0.220	0.00

Foglio 178 di 260

2 5.98 55.39 0.051 0.00

3 11.30 0.00 0.000 0.00

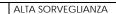
<u>Verifica sezioni piedritto destro [Combinazione nº 7 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1193.58	339.44	22.62	45.24	193.18	75.84	5.49
2	5.98	-197.34	169.72	22.62	22.62	40.69	16.23	1.17
3	11 30	0.00	0.00	22 62	22 62	0.00	0.00	0 00


Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.65	-300.05	-0.278	0.00
2	5.98	-93.09	-0.086	0.00
3	11.30	0.00	0.000	0.00

<u>Verifica sezioni fondazione [Combinazione n° 8 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

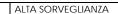
Foglio 179 di 260

Verifiche presso-flessione

N°	X	M	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	66.26	22.62	22.62	0.73	0.73	0.05
2	4.10	616.00	297.83	45.24	22.62	40.46	88.75	2.91
3	8.22	68.19	291.52	45.24	22.62	6.23	0.15	0.43
4	12.37	438.42	285.18	45.24	22.62	29.44	56.90	2.10
5	16.45	0.00	-66.34	22.62	22.62	14.66	14.66	0.00

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.00	7.37	0.007	0.00
2	4.10	-183.24	-0.170	0.00
3	8.22	-72.25	-0.078	0.00
4	12.37	242.74	0.225	0.00
5	16.45	-2.83	-0.003	0.00


Verifica sezioni piedritto sinistro [Combinazione nº 8 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-815.49	339.44	22.62	36.19	150.47	56.53	4.10
2	5.98	-91.11	169.72	22.62	22.62	6.65	7.17	0.50

Foglio 180 di 260

3 11.30 0.00 0.00 22.62 22.62 0.00 0.00 0.00

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.65	237.85	0.220	0.00
2	5.98	55.39	0.051	0.00
3	11 30	0.00	0.000	0.00

Verifica sezioni piedritto destro [Combinazione n° 8 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

1	۷°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	I	0.65	-1441.46	339.44	22.62	45.24	239.75	90.72	6.58
2	2	5.98	-261.09	169.72	22.62	22.62	63.49	21.27	1.55
3	3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

N°	X	V	τ _c	\mathbf{A}_{sw}
1	0.65	-345.27	-0.320	0.00
2	5.98	-116.70	-0.108	0.00
3	11.30	0.00	0.000	0.00

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 181 di 260

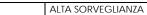
Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	66.26	22.62	22.62	0.73	0.73	0.05
2	4.10	-3.03	297.83	45.24	22.62	3.25	3.13	0.22
3	8.22	-243.61	291.52	45.24	22.62	34.84	17.94	1.28
4	12.37	417.14	285.18	45.24	22.62	28.12	52.98	2.01
5	16.45	0.00	-66.34	22.62	22.62	14.66	14.66	0.00

Verifiche taglio


N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.00	4.03	0.004	0.00
2	4.10	-171.04	-0.166	0.00
3	8.22	58.55	0.054	0.00
4	12.37	264.71	0.245	0.00
5	16.45	-3.00	-0.003	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 9 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

Foglio 182 di 260

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-815.49	339.44	22.62	36.19	150.47	56.53	4.10
2	5.98	-91.11	169.72	22.62	22.62	6.65	7.17	0.50
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

Verifiche taglio

N°	Х	V	$ au_{c}$	A_{sw}
1	0.65	237.85	0.220	0.00
2	5.98	55.39	0.051	0.00
3	11.30	0.00	0.000	0.00

Verifica sezioni piedritto destro [Combinazione nº 9 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1441.46	339.44	22.62	45.24	239.75	90.72	6.58
2	5.98	-261.09	169.72	22.62	22.62	63.49	21.27	1.55
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

Verifiche taglio

N°	X	V	τ _c	\mathbf{A}_{sw}
1	0.65	-345.27	-0.320	0.00
2	5.98	-116.70	-0.108	0.00

Foglio 183 di 260

3 11.30 0.00 0.000 0.00

Verifica sezioni fondazione [Combinazione n° 10 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	43.65	22.62	22.62	0.48	0.48	0.03
2	4.10	586.62	275.22	45.24	22.62	38.45	85.25	2.76
3	8.22	-32.57	268.91	45.24	22.62	1.65	4.04	0.27
4	12.37	252.23	262.58	45.24	22.62	17.56	24.96	1.24
5	16.45	0.00	-43.72	22.62	22.62	9.66	9.66	0.00

Verifiche taglio

N°	X	V	$ au_c$	$\boldsymbol{A}_{\text{sw}}$
1	0.00	7.20	0.007	0.00
2	4.10	-196.65	-0.182	0.00
3	8.22	-92.48	-0.097	0.00
4	12.37	223.10	0.207	0.00
5	16.45	-2.99	-0.003	0.00

<u>Verifica sezioni piedritto sinistro [Combinazione nº 10 - Tensioni ammissibili - Sismica]</u>

Base sezione B = 100 cm

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 184 di 260

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-815.49	339.44	22.62	36.19	150.47	56.53	4.10
2	5.98	-91.11	169.72	22.62	22.62	6.65	7.17	0.50
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

Verifiche taglio

N°	X	V	$ au_c$	\mathbf{A}_{sw}
1	0.65	237.85	0.220	0.00
2	5.98	55.39	0.051	0.00
3	11.30	0.00	0.000	0.00

Verifica sezioni piedritto destro [Combinazione nº 10 - Tensioni ammissibili - Sismica]

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	\mathbf{A}_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-1193.58	339.44	22.62	45.24	193.18	75.84	5.49
2	5.98	-197.34	169.72	22.62	22.62	40.69	16.23	1.17
3	11.30	0.00	0.00	22.62	22.62	0.00	0.00	0.00

Verifiche taglio

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 185 di 260

N°	X	V	$ au_c$	$\boldsymbol{A}_{\text{sw}}$
1	0.65	-300.05	-0.278	0.00
2	5.98	-93.09	-0.086	0.00
3	11 30	0.00	0.000	0.00

orzio **C**ollegamenti **I**ntegrati **V**eloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 186 di 260

Inviluppo spostamenti nodali

Inviluppo spostamenti fondazione

X [m]	u _{Xmin} [cn	n]	u _{Xmax} [cr	n]	u _{Ymin} [cm]	u _{Ymax} [cm]
0.00	-9.4746	6.2522	7.8980	17.6907		
4.10	-9.4772	6.2502	8.2180	15.1664		
8.22	-9.4806	6.2472	8.4507	12.5292		
12.37	-9.4839	6.2441	7.8879	12.6883		
16.37	-9.4859	6.2417	6.7952	12.8083		

Inviluppo spostamenti piedritto sinistro

Y [m]	u _{Xmin} [cm]	u _{Xmax} [cm]	u _{Ymin} [cm]	u _{Ymax} [cm]
0.65	-9.4748 6.2523	8.0068 16.9986	3	
5.98	-12.5436 7.3828	8.0106 17.0023	i	
11.30	-15.5326 8.6597	8.0118 17.0035	į	

Inviluppo spostamenti piedritto destro

Y [m]	u _{Xmin} [cm]	u _{Xmax} [cm]	u _{Ymin} [cm]	u _{Ymax} [cm]
0.65	-9.4861 6.2419	7.4124 12.7875	i	
5.98	-13.6280 6.2008	7.4161 12.7912	!	
11.30	-17.9573 6.0799	7.4174 12.7925	;	

Foglio 187 di 260

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione

X [m]	M _{min} [kN	m]	M _{max} [kN	lm]	V _{min} [kN]	V_{max} [kN] N_{min} [kN] N_{max} [kN]
0.00	0.00	0.00	3.29	7.37	-43.72	66.26
4.10	-871.01	3.03	-248.74	-9.54	262.60	297.83
8.22	-718.92	258.50	-160.97	66.89	268.91	291.52
12.37	-718.92	8.14	47.97	264.71	262.58	295.62
16.45	0.00	0.00	-5.34	-2.83	-66.34	43.65

Inviluppo sollecitazioni piedritto sinistro

Y [m]	M _{min} [kNm]	M _{max}	kNm]	V _{min} [kN]	V_{max} [kN] N_{min} [kN] N_{max} [kN]
0.65	-1193.58 -8	15.49 237.8	5 300.05	339.44	339.44
5.98	-197.34 -9	1.11 55.39	93.09	169.72	169.72
11.30	0.00 0.0	00.00	0.00	0.00	0.00

Inviluppo sollecitazioni piedritto destro

Y [m]	M _{min} [kN	m]	M _{max} [kN	m]	V _{min} [kN]	V_{max} [kN] N_{min} [kN] N_{max} [kN]
0.65	-1441.46	-815.49	-345.27	-237.85	339.44	339.44
5.98	-261.09	-91.11	-116.70	-55.39	169.72	169.72
11.30	0.00	0.00	0.00	0.00	0.00	0.00

Inviluppo pressioni terreno

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 188 di 260

Inviluppo pressioni sul terreno di fondazione

X [m]	σ _{tmin} [N/	mmq]	$\sigma_{\text{tmax}} \text{ [N/mmq]}$
0.00	0.079	0.177	
4.10	0.082	0.152	
8.22	0.085	0.125	
12.37	0.079	0.127	
16.45	0.068	0.128	

Inviluppo verifiche

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

x	\mathbf{A}_{fi}	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.00	22.62	22.62	0.048	9.665	9.665
4.10	45.24	22.62	4.029	137.774	55.755
8.22	45.24	22.62	3.361	108.521	46.658
12.37	45.24	22.62	3.357	109.086	46.591
16.45	22.62	22.62	0.032	14.663	14.663

X	τ_{c}	A_{sw}	
0.00	0.01	0.00	

Foglio 189 di 260

 4.10
 -0.23
 0.00

 8.22
 -0.16
 0.00

 12.37
 0.25
 0.00

 16.45
 0.00
 0.00

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

Y	A _{fi}	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.65	22.62	36.19	5.914	80.991	238.330
5.98	22.62	22.62	1.174	16.228	40.694
11.30	22.62	22.62	0.000	0.000	0.000

Y	$ au_c$	A_{sw}
0.65	0.28	0.00
5.98	0.09	0.00
11.30	0.00	0.00

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cm

Altezza sezione H = 130.00 cm

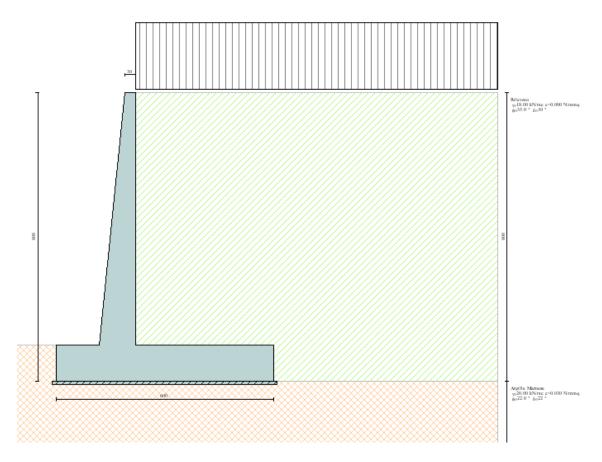
 $Y \hspace{0.5cm} \textbf{A}_{\text{fi}} \hspace{0.5cm} \textbf{A}_{\text{fs}} \hspace{0.5cm} \boldsymbol{\sigma}_{\text{c}} \hspace{0.5cm} \boldsymbol{\sigma}_{\text{fi}} \hspace{0.5cm} \boldsymbol{\sigma}_{\text{fs}}$

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 190 di 260


0.65	22.62	45.24	6.581	90.722	239.754
5.98	22.62	22.62	1.555	21.269	63.485
11.30	22.62	22.62	0.000	0.000	0.000

Υ	$ au_c$	\mathbf{A}_{sw}
0.65	-0.32	0.00
5.98	-0.11	0.00
11.30	0.00	0.00

8.13 MURI DI SOSTEGNO

Si riportano di seguito le verifiche svolte sui muri di sostegno

8.13.1 Muro di sostegno con altezza del paramento verticale pari a 7.00 m

Si riassumono nel seguito le caratteristiche geometriche del muro:

GEOMETRIA MURO E FONDAZIONE MURO	
Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro	7.00 [m] 0.30 [m] 1.00 [m] 10% 0.00 [°] 1.00 [m]
FONDAZIONE Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione	1.20 [m] 3.80 [m] 6.00 [m]

Consorzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 192 di 260

Inclinazione piano di posa della fondazione 0.00 [°]
Spessore fondazione 1.00 [m]
Spessore magrone 0.10 [m]

Si riportano quindi i risultati dell'analisi e le verifiche della struttura.

8.13.1.1 Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione
Sisma Combinazione sismica

 $\begin{array}{lll} \text{CS}_{\text{SCO}} & \text{Coeff. di sicurezza allo scorrimento} \\ \text{CS}_{\text{RIB}} & \text{Coeff. di sicurezza al ribaltamento} \\ \text{CS}_{\text{QLIM}} & \text{Coeff. di sicurezza a carico limite} \\ \text{CS}_{\text{STAB}} & \text{Coeff. di sicurezza a stabilità globale} \\ \end{array}$

Combinazione	CS _{sco}	CS _{rib}	CS _{qlim}	CS _{stab}
1	1.71	5.08	3.48	1.57
2	1.84	5.43	3.27	1.56
3	1.33	3.62	2.70	1.48
4	1.41	3.82	2.66	1.47

8.13.1.2 Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle e quelle forze verticali se agenti dall'alto verso il basso. Il calcolo è riferito ad 1.00 m di muro.

Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo del carico limite metodo di Meyerhof
Calcolo della stabilità globale metodo di Fellenius
Calcolo della spinta in condizioni di Spinta attiva

<u>Sisma</u>

Coefficiente di intensità sismica (percento) 4.80

Forma diagramma incremento sismico Triangolare con vertice in basso

Partecipazione spinta passiva (percento) 0.0

Lunghezza del muro 1.00 [m]

 Peso muro
 258.6545 [kN]

 Baricentro del muro
 X=0.30 Y=-6.05

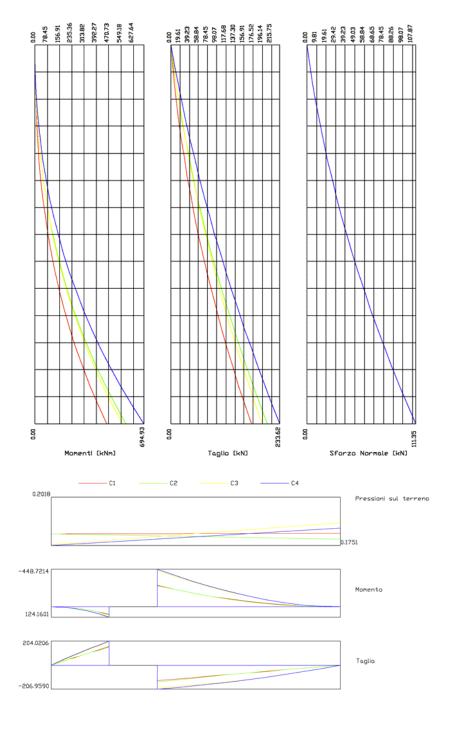
Foglio 193 di 260

COMBINAZIONE n° 4

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale a Inclinazione linea di rottura in condizioni sta	ılla superficie	220.2199 216.8743 38.2408 X = 3.80 10.00 61.01	[kN] [kN] [kN] [m] [°]	Y = -4.85	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismic Inclinazione linea di rottura in condizioni sis		22.6590 X = 3.80 58.89	[kN] [m] [°]	Y = -2.67	[m]
Peso terrapieno gravante sulla fondazione Baricentro terrapieno gravante sulla fondaz Inerzia del muro Inerzia del terrapieno fondazione di monte		691.6000 X = 1.90 12.4154 33.1968	[kN] [m] [kN] [kN]	Y = -3.50	[m]
Risultanti Risultante dei carichi applicati in dir. orizzon Risultante dei carichi applicati in dir. vertica Momento ribaltante rispetto allo spigolo a v Momento stabilizzante rispetto allo spigolo Sforzo normale sul piano di posa della fono Sforzo tangenziale sul piano di posa della f Eccentricità rispetto al baricentro della fond Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla no Momento rispetto al baricentro della fondaz Carico ultimo della fondazione	alle alle a valle dazione fondazione dazione formale)	284.8013 992.4300 976.7552 3735.5761 992.4300 284.8013 0.22 6.00 1032.4868 16.01 218.4691 2642.1389	[kN] [kN] [kNm] [kNm] [kN] [m] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		6.00 0.20182 0.12899	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori inclinazione Fattori profondità	$N_c = 16.88$ $s_c = 1.00$ $i_c = 0.68$ $d_c = 1.05$	$N_{q} = 7.$ $s_{q} = 1.$ $i_{q} = 0.$ $d_{r} = 1.$	00 68		$N_{\gamma} = 4.07$ $S_{\gamma} = 1.00$ $I_{\gamma} = 0.07$ $I_{\gamma} = 0.07$

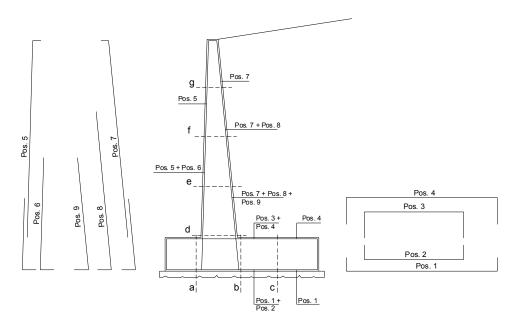
Coeff. capacità portante	$N_c = 16.88$	$N_q = 7.82$	$N_{\gamma} = 4.07$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{y} = 1.00$
Fattori inclinazione	$i_c = 0.68$	$i_q = 0.68$	$i_{\gamma} = 0.07$
Fattori profondità	$d_c = 1.05$	$d_{q} = 1.02$	$d_{y} = 1.02$
I as afficient NI to make a selection of the selection of		the all manufactors and a second	in alia amia a a is a salia

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_{c} = 12.88$ $N'_{q} = 5.83$ $N'_{\gamma} = 0.66$


COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento	3.82
Coefficiente di sicurezza a scorrimento	1.41
Coefficiente di sicurezza a carico ultimo	2.66
Coefficiente di sicurezza a stabilità globale	1.47

8.13.1.3 Sollecitazioni e verifiche strutturali


Si riportano di seguito le sollecitazioni interne al paramento verticale del muro in termini di momento flettente, taglio e azione assiali e della fondazione.

Nella tabella seguente si riassumono i ferri longitudinali adottati.

SCHEMA DELLE ARMATURE

Posizione	Ф mm	Numero di barre al metro
Pos 1	20	5
Pos 2	20	-
Pos 3	20	5
Pos 4	20	4
Pos 5	20	4
Pos 6	20	-
Pos 7	20	4
Pos 8	20	6
Pos 9	20	-

Si riportano quindi le verifiche alle tensioni ammissibili per la combinazione più sfavorevole che risulta essere la quarta.

Paramento verticale del muro

В	base della sezione espressa in [cm]
н	altezza della sezione espressa in [cm]

 $\begin{array}{ll} A_{fs} & \text{area di armatura in corrispondenza del lembo di monte in [cmq]} \\ A_{fi} & \text{area di armatura in corrispondenza del lembo di valle in [cmq]} \end{array}$

 σ_c tensione nel calcestruzzo espressa in [N/mmq]

 $\begin{array}{ll} \tau_c & \text{tensione tangenziale nel calcestruzzo espressa in [N/mmq]} \\ \sigma_{fs} & \text{tensione nell'armatura disposta sul lembo di monte in [N/mmq]} \\ \sigma_{fi} & \text{tensione nell'armatura disposta sul lembo di valle in [N/mmq]} \end{array}$

Foglio 196 di 260

Nr.	Υ	B, H	A _{fs}	A _{fi}	N	М	Т	σ _c	τ _c	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	12.57	12.57	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.35	100, 34	12.57	12.57	2.7240	1.2439	7.3205	0.097	0.029	2.710	-0.892
3	0.70	100, 37	12.57	12.57	5.7472	5.0816	15.1093	0.327	0.054	11.354	-2.941
4	1.05	100, 41	12.57	12.57	9.0699	11.6704	23.3583	0.636	0.075	24.497	-5.813
5	1.40	100, 44	12.57	12.57	12.6919	21.1655	32.0657	0.994	0.094	41.202	-9.293
6	1.75	100, 48	12.57	12.57	16.6132	33.7221	41.2314	1.383	0.112	60.843	-13.236
7	2.10	100, 51	12.57	12.57	20.8338	49.4953	50.8553	1.793	0.127	82.991	-17.537
8	2.45	100, 55	12.57	12.57	25.3538	68.6403	60.9375	2.217	0.142	107.338	-22.123
9	2.80	100, 58	12.57	12.57	30.1731	91.3122	71.4781	2.652	0.156	133.660	-26.939
10	3.15	100, 62	12.57	12.57	35.2918	117.6660	82.4769	3.095	0.169	161.787	-31.947
11	3.50	100, 65	12.57	12.57	40.7098	147.8570	93.9341	3.544	0.181	191.591	-37.117
12	3.85	100, 69	12.57	12.57	46.4271	182.0403	105.8495	3.998	0.193	222.973	-42.426
13	4.20	100, 72	31.42	12.57	52.4438	220.3709	118.2232	3.197	0.205	106.369	-38.876
14	4.55	100, 76	31.42	12.57	58.7598	263.0041	131.0552	3.521	0.216	120.565	-43.109
15	4.90	100, 79	31.42	12.57	65.3752	310.0950	144.3456	3.845	0.226	135.325	-47.388
16	5.25	100, 83	31.42	12.57	72.2899	361.7986	158.0942	4.172	0.237	150.632	-51.709
17	5.60	100, 86	31.42	12.57	79.5039	418.2702	172.3011	4.499	0.247	166.471	-56.069
18	5.95	100, 90	31.42	12.57	87.0173	479.6648	186.9663	4.827	0.257	182.831	-60.466
19	6.30	100, 93	31.42	12.57	94.8300	546.1376	202.0898	5.157	0.267	199.701	-64.898
20	6.65	100, 97	31.42	12.57	102.9420	617.8437	217.6716	5.487	0.277	217.073	-69.363
21	7.00	100, 100	31.42	12.57	111.3534	694.9301	233.6239	5.819	0.286	234.936	-73.859

Cassaraio Collegamenti Integrati Voloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 197 di 260

Fondazione del muro

B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]

 $\begin{array}{ll} A_{\text{fi}} & \text{area di armatura in corrispondenza del lembo inferiore in [cmq]} \\ A_{\text{fs}} & \text{area di armatura in corrispondenza del lembo superiore in [cmq]} \end{array}$

 $\sigma_c \qquad \qquad \text{tensione nel calcestruzzo espressa in [N/mmq]}$

 τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]

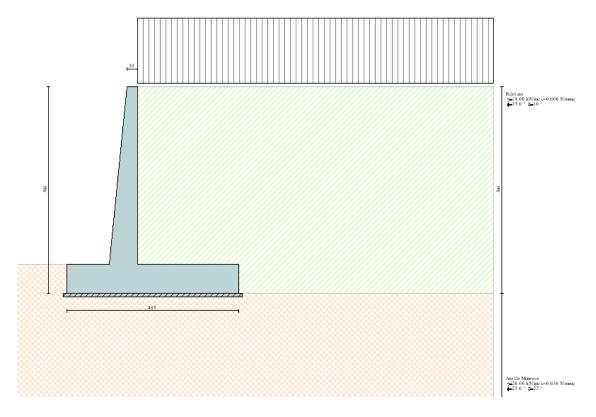
 $\sigma_{\rm fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq] $\sigma_{\rm fs}$ tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

COMBINAZIONE n° 4

Fondazione di valle

L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	B, H	A _{fs}	A_{fi}	М	Т	σ_{c}	τ _c	$\sigma_{\!\scriptscriptstyle fi}$	σ_{fs}
1	0.00	100, 100	12.57	15.71	0.0000	0.0000	0.000	0.000	0.000	0.00
2	0.12	100, 100	12.57	15.71	1.2731	21.1886	0.014	0.026	0.897	-0.158
3	0.24	100, 100	12.57	15.71	5.0783	42.2023	0.054	0.052	3.579	-0.631
4	0.36	100, 100	12.57	15.71	11.3946	63.0413	0.122	0.077	8.030	-1.416
5	0.48	100, 100	12.57	15.71	20.2012	83.7056	0.216	0.103	14.235	-2.510
6	0.60	100, 100	12.57	15.71	31.4770	104.1950	0.336	0.128	22.181	-3.912
7	0.72	100, 100	12.57	15.71	45.2010	124.5097	0.483	0.153	31.852	-5.617
8	0.84	100, 100	12.57	15.71	61.3523	144.6496	0.656	0.177	43.234	-7.624
9	0.96	100, 100	12.57	15.71	79.9099	164.6147	0.854	0.202	56.311	-9.930
10	1.08	100, 100	12.57	15.71	100.8528	184.4051	1.078	0.226	71.069	-12.533
11	1.20	100, 100	12.57	15.71	124.1601	204.0206	1.327	0.250	87.493	-15.429


Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	В, Н	A _{fs}	A _{fi}	М	Т	σ_{c}	τ _c	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 100	21.99	15.71	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.38	100, 100	21.99	15.71	-5.4862	-28.5826	0.050	-0.035	-0.609	2.784
3	0.76	100, 100	21.99	15.71	-21.5008	-55.4127	0.198	-0.068	-2.385	10.911
4	1.14	100, 100	21.99	15.71	-47.3778	-80.4901	0.435	-0.099	-5.255	24.042
5	1.52	100, 100	21.99	15.71	-82.4513	-103.8149	0.757	-0.127	-9.145	41.841

6	1.90	100, 100	21.99	15.71	-126.0552	-125.3871	1.158	-0.154	-13.982	63.968
7	2.28	100, 100	21.99	15.71	-177.5235	-145.2067	1.631	-0.178	-19.690	90.086
8	2.66	100, 100	21.99	15.71	-236.1903	-163.2737	2.170	-0.200	-26.198	119.857
9	3.04	100, 100	21.99	15.71	-301.3895	-179.5881	2.769	-0.220	-33.429	152.943
10	3.42	100, 100	21.99	15.71	-372.4552	-194.1499	3.422	-0.238	-41.312	189.007
11	3.80	100, 100	21.99	15.71	-448.7214	-206.9590	4.122	-0.254	-49.771	227.709

8.13.2 Muro di sostegno con altezza del paramento verticale pari a 5.00 m

Si riassumono nel seguito le caratteristiche geometriche del muro:

GEOMETRIA MURO E FONDAZIONE

MURO

Altezza del paramento	5.00 [m]
Spessore in sommità	0.30 [m]
Spessore all'attacco con la fondazione	0.80 [m]
Inclinazione paramento esterno	10%
Inclinazione paramento interno	0.00 [°]
Lunghezza del muro	1.00 [m]

FONDAZIONE

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 199 di 260

Lunghezza mensola fondazione di valle 1.20 [m] Lunghezza mensola fondazione di monte 2.85 [m] Lunghezza totale fondazione 4.85 [m] Inclinazione piano di posa della fondazione 0.00 [°] 0.80 [m] Spessore fondazione Spessore magrone 0.10 [m]

Si riportano quindi i risultati dell'analisi e le verifiche della struttura.

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

С Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

CS_{sco} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento CS_{QLIM} Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

Combinazione	CS _{sco}	CS _{rib}	CS _{qlim}	CS _{stab}
1	1.73	5.68	4.26	1.70
2	1.77	5.43	3.88	1.65
3	1.33	4.08	3.76	1.60
4	1.37	3.99	3.45	1.55

8.13.2.1 Analisi della spinta e verifiche

Si riporta il calcolo dei coefficienti di sicurezza allo scorrimento, ribaltamento e carico limite per la combinazione più critica, cioè la quarta.

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle e quelle forze verticali se agenti dall'alto verso il basso. Il calcolo è riferito ad 1.00 m di muro.

4.80

<u>Sisma</u>

Coefficiente di intensità sismica (percento)

Forma diagramma incremento sismico Triangolare con vertice in basso

Partecipazione spinta passiva (percento)

0.0 Lunghezza del muro 1.00 [m]

162.5478 [kN] Peso muro Baricentro del muro X=0.13 Y=-4.35

Superficie di spinta

Foglio 200 di 260

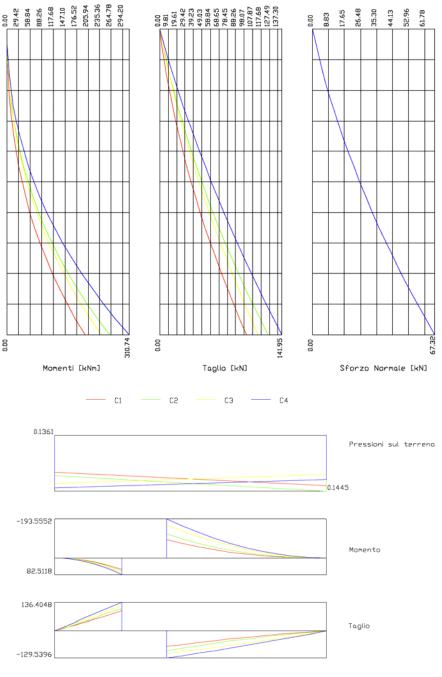
Punto inferiore superficie di spinta	X = 2.85	Y = -5.80
Punto superiore superficie di spinta	X = 2.85	Y = 0.00
Altezza della superficie di spinta	5.80	[m]
Inclinazione superficie di spinta(rispetto alla verticale)	0.00	[°]

COMBINAZIONE n° 4

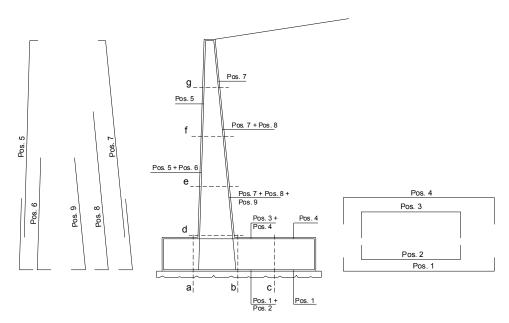
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla supe Inclinazione linea di rottura in condizioni statiche	erficie	139.9932 137.8664 24.3096 X = 2.85 10.00 62.39	[kN] [kN] [kN] [m] [°]	Y = -3.28	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spi Inclinazione linea di rottura in condizioni sismiche	nta	13.5569 X = 2.85 60.26	[kN] [m] [°]	Y = -1.93	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a r Inerzia del muro Inerzia del terrapieno fondazione di monte		416.1000 X = 1.43 7.8023 19.9728	[kN] [m] [kN] [kN]	Y = -2.50	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	ne	178.9924 605.3115 476.4508 1900.1676 605.3115 178.9924 0.07 4.85 631.2213 16.47 44.1635 2090.1966	[kN] [kN] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		4.85 0.13607 0.11354	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante	N _c = 16.88	N _a = 7.8	32		N. = 4.07

Coeff. capacità portante	$N_c = 16.88$	$N_q = 7.82$	$N_{\gamma} = 4.07$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.67$	$i_q = 0.67$	$i_{\gamma} = 0.06$
Fattori profondità	$d_c = 1.05$	$d_{q} = 1.02$	$d_{\gamma} = 1.02$
I coefficienti N' tengono conto dei fattori di f	orma, profondità, inclinazione c	arico, inclinazione piano di posa, i	nclinazione pendio.
	N' _c = 12.91	$N'_{q} = 5.84$	$N'_{\gamma} = 0.67$

COEFFICIENTI DI SICUREZZA


Coefficiente di sicurezza a ribaltamento	3.99
Coefficiente di sicurezza a scorrimento	1.37
Coefficiente di sicurezza a carico ultimo	3.45
Coefficiente di sicurezza a stabilità globale	1.55

Per quanto riguarda le verifiche di stabilità globale si rimanda ai calcoli in allegato.


8.13.2.2 Sollecitazioni e verifiche strutturali

Si riportano di seguito le sollecitazioni interne al paramento verticale del muro in termini di momento flettente, taglio e azione assiali e della fondazione.

Nella tabella seguente si riassumono i ferri longitudinali adottati.

SCHEMA DELLE ARMATURE

Posizione	Ф mm	Numero di barre al metro
Pos 1	20	4
Pos 2	-	-
Pos 3	-	-
Pos 4	20	4
Pos 5	16	4
Pos 6	-	-
Pos 7	16	4
Pos 8	16	5
Pos 9	-	-

Si riportano quindi le verifiche alle tensioni ammissibili per la combinazione più critica che risulta essere la combinazione 4. Per i risultati delle altre combinazioni si rimanda alle tabelle in allegato.

Paramento verticale del muro

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

 $A_{fs} \hspace{1cm} \text{area di armatura in corrispondenza del lembo di monte in [cmq]} \\$

A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]

 $\sigma_{c} \hspace{1cm} \text{tensione nel calcestruzzo espressa in [N/mmq]} \\$

 au_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]

 σ_{fs} tensione nell'armatura disposta sul lembo di monte in [N/mmq]

σ_{fi} tensione nell'armatura disposta sul lembo di valle in [N/mmq]

COMBINAZIONE n° 4

Nr.	Υ	В, Н	A _{fs}	A_{fi}	N	М	Т	σ_{c}	τ _c	σ_{fs}	$\sigma_{\rm fi}$	l
-----	---	------	-----------------	----------	---	---	---	--------------	----------------	---------------	-------------------	---

Foglio 203 di 260

1	0.00	100, 30	8.04	8.04	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.25	100, 33	8.04	8.04	1.9151	0.6055	4.9779	0.060	0.021	1.767	-0.530
3	0.50	100, 35	8.04	8.04	3.9830	2.4597	10.1880	0.216	0.039	8.370	-1.737
4	0.75	100, 38	8.04	8.04	6.2036	5.6176	15.6221	0.434	0.055	18.925	-3.477
5	1.00	100, 40	8.04	8.04	8.5769	10.1329	21.2785	0.697	0.070	32.748	-5.655
6	1.25	100, 43	8.04	8.04	11.1029	16.0594	27.1569	0.991	0.083	49.339	-8.198
7	1.50	100, 45	8.04	8.04	13.7817	23.4506	33.2575	1.308	0.095	68.327	-11.045
8	1.75	100, 48	8.04	8.04	16.6132	32.3602	39.5803	1.642	0.107	89.428	-14.148
9	2.00	100, 50	8.04	8.04	19.5974	42.8416	46.1252	1.989	0.118	112.421	-17.468
10	2.25	100, 53	8.04	8.04	22.7343	54.9486	52.8922	2.346	0.128	137.133	-20.974
11	2.50	100, 55	16.08	8.04	26.0239	68.7348	59.8814	2.077	0.138	83.968	-22.121
12	2.75	100, 58	16.08	8.04	29.4663	84.2538	67.0927	2.357	0.148	98.174	-25.375
13	3.00	100, 60	16.08	8.04	33.0614	101.5592	74.5261	2.641	0.157	113.078	-28.709
14	3.25	100, 63	16.08	8.04	36.8092	120.7045	82.1817	2.927	0.165	128.642	-32.113
15	3.50	100, 65	16.08	8.04	40.7098	141.7435	90.0595	3.216	0.174	144.832	-35.578
16	3.75	100, 68	16.08	8.04	44.7630	164.7298	98.1593	3.506	0.182	161.624	-39.097
17	4.00	100, 70	16.08	8.04	48.9690	189.7169	106.4814	3.798	0.190	178.993	-42.666
18	4.25	100, 73	16.08	8.04	53.3278	216.7584	115.0255	4.091	0.198	196.921	-46.279
19	4.50	100, 75	18.10	8.04	57.8392	245.9081	123.7918	4.457	0.205	199.600	-42.850
20	4.75	100, 78	18.10	8.04	62.5034	277.2194	132.7803	4.688	0.213	215.000	-45.690
21	5.00	100, 80	18.10	8.04	67.3202	310.7431	141.9461	5.037	0.220	234.800	-49.46

Foglio 204 di 260

Fondazione del muro

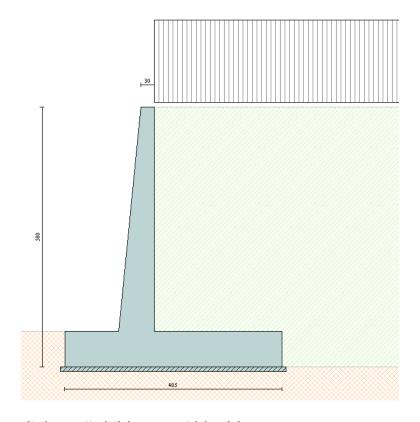
- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [cmq]} \\$
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- σ_c tensione nel calcestruzzo espressa in [N/mmq]
- au_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- $\sigma_{\rm fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq] $\sigma_{\rm fs}$ tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

COMBINAZIONE n° 4

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	B, H	A _{fs}	A _{fi}	М	Т	σ _c	τ _c	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 80	12.57	12.57	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.12	100, 80	12.57	12.57	0.8372	13.9415	0.014	0.022	0.933	-0.150
3	0.24	100, 80	12.57	12.57	3.3433	27.8161	0.056	0.043	3.724	-0.601
4	0.36	100, 80	12.57	12.57	7.5103	41.6238	0.126	0.064	8.366	-1.349
5	0.48	100, 80	12.57	12.57	13.3303	55.3646	0.224	0.086	14.849	-2.395
6	0.60	100, 80	12.57	12.57	20.7952	69.0386	0.349	0.107	23.164	-3.737
7	0.72	100, 80	12.57	12.57	29.8969	82.6456	0.501	0.128	33.302	-5.372
8	0.84	100, 80	12.57	12.57	40.6275	96.1857	0.681	0.149	45.255	-7.300
9	0.96	100, 80	12.57	12.57	52.9788	109.6590	0.888	0.170	59.013	-9.519
10	1.08	100, 80	12.57	12.57	66.9429	123.0653	1.123	0.191	74.568	-12.028
11	1.20	100, 80	12.57	12.57	82.5118	136.4048	1.384	0.211	91.910	-14.826


Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	B, H	A _{fs}	A _{fi}	σ _c	τ _c	$\sigma_{\rm fi}$	σ_{fs}	М	Т
1	0.00	100, 80	12.57	12.57	0.000	0.000	0.000	0.000	0.0000	0.0000
2	0.28	100, 80	12.57	12.57	0.035	-0.023	-0.377	2.336	-2.0969	-14.6519
3	0.57	100, 80	12.57	12.57	0.139	-0.045	-1.494	9.263	-8.3157	-28.9265
4	0.85	100, 80	12.57	12.57	0.311	-0.066	-3.333	20.662	-18.5491	-42.8237
5	1.14	100, 80	12.57	12.57	0.548	-0.087	-5.874	36.413	-32.6894	-56.3437
6	1.42	100, 80	12.57	12.57	0.849	-0.108	-9.097	56.396	-50.6291	-69.4863
7	1.71	100, 80	12.57	12.57	1.212	-0.127	-12.984	80.491	-72.2607	-82.2516
8	2.00	100, 80	12.57	12.57	1.635	-0.147	-17.515	108.579	-97.4767	-94.6395
9	2.28	100, 80	12.57	12.57	2.116	-0.165	-22.670	140.540	-126.1694	-106.6502
10	2.56	100, 80	12.57	12.57	2.654	-0.183	-28.431	176.254	-158.2315	-118.2835
11	2.85	100, 80	12.57	12.57	3.246	-0.201	-34.778	215.601	-193.5552	-129.5396

8.13.3 Muro di sostegno con altezza del paramento verticale pari a 4.25 m

Si riassumono nel seguito le caratteristiche geometriche del muro:

GEOMETRIA MURO E FONDAZIONE MURO	
Altezza del paramento	4.25 [m]
Spessore in sommità	0.30 [m]
Spessore all'attacco con la fondazione	0.73 [m]
Inclinazione paramento esterno	5.71 [°]
Inclinazione paramento interno	0.00 [°]
Lunghezza del muro	1.00 [m]
FONDAZIONE	
Lunghezza mensola fondazione di valle	1.20 [m]
Lunghezza mensola fondazione di monte	2.50 [m]
Lunghezza totale fondazione	4.42 [m]
Inclinazione piano di posa della fondazione	0.00 [°]
Spessore fondazione	0.73 [m]
Spessore magrone	0.10 [m]

Si riportano quindi i risultati dell'analisi e le verifiche della struttura.

Collegamenti Integrati Velo

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 206 di 260

8.13.3.1 Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

С Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento **CS**QLIM Coeff. di sicurezza a carico limite Coeff. di sicurezza a stabilità globale **CS**STAB

Combinazione	CS _{sco}	CS _{rib}	CS _{glim}	CS _{stab}
1	1.74	6.07	4.67	1.77
2	1.71	5.53	4.16	1.68
3	1.34	4.37	4.41	1.66
4	1.33	4.12	3.91	1.59

8.13.3.2 Analisi della spinta e verifiche

Si riporta il calcolo dei coefficienti di sicurezza allo scorrimento, ribaltamento e carico limite per la combinazione più critica, cioè la quarta.

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle e quelle forze verticali se agenti dall'alto verso il basso. Il calcolo è riferito ad 1.00 m di muro.

Sisma

Coefficiente di intensità sismica (percento) 4 80

Forma diagramma incremento sismico Triangolare con vertice in basso

0.0 Partecipazione spinta passiva (percento)

Lunghezza del muro 1.00 [m]

132.5972 [kN] Peso muro X=0.06 Y=-3.73

Baricentro del muro

Superficie di spinta

Punto inferiore superficie di spinta X = 2.50 Y = -4.98X = 2.50 Y = 0.00Punto superiore superficie di spinta Altezza della superficie di spinta 4.98 [m] Inclinazione superficie di spinta(rispetto alla verticale) 0.00 [°]

sorzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

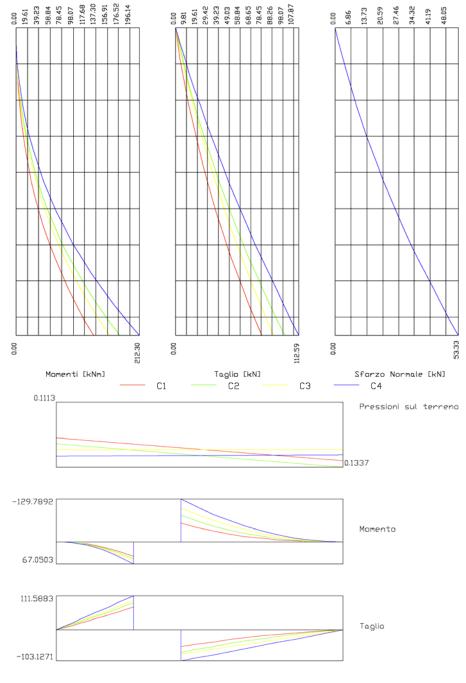
IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 207 di 260

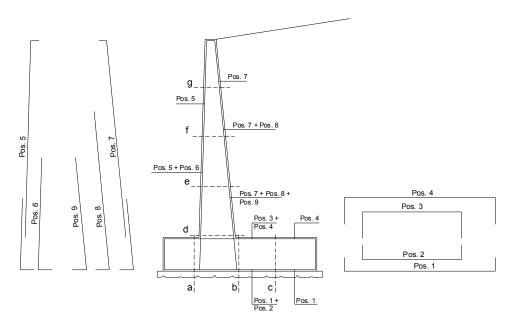
COMBINAZIONE n° 4

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla super Inclinazione linea di rottura in condizioni statiche	ficie	116.0051 114.2427 20.1441 X = 2.50 10.00 63.45	[kN] [kN] [kN] [m] [°] [°]	Y = -2.76	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spin Inclinazione linea di rottura in condizioni sismiche	ıta	10.7234 X = 2.50 61.33	[kN] [m] [°]	Y = -1.66	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a m Inerzia del muro Inerzia del terrapieno fondazione di monte	onte	331.2500 X = 1.25 6.3647 15.9000	[kN] [m] [kN] [kN]	Y = -2.13	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	ne	147.0679 485.8534 342.5776 1412.6463 485.8534 147.0679 0.01 4.42 507.6243 16.84 4.8819 1897.3897	[kN] [kN] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		4.42 0.11129 0.10830	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori inclinazione Fattori profondità I coefficienti N' tengono conto dei fattori di forma, pr	N_c = 16.88 s_c = 1.00 i_c = 0.66 d_c = 1.05 ofondità, inclinazione caric N'_c = 12.94	$\begin{aligned} N_q &= 7.8\\ s_q &= 1.0\\ i_q &= 0.6\\ d_q &= 1.0\\ o, inclinazione p\\ N'_q &= 5.8 \end{aligned}$	00 66 02 iano di posa	, inclinazione	$N_{\gamma} = 4.07$ $s_{\gamma} = 1.00$ $i_{\gamma} = 0.05$ $d_{\gamma} = 1.02$ pendio. $J'_{\gamma} = 0.69$

COEFFICIENTI DI SICUREZZA


Coefficiente di sicurezza a ribaltamento	4.12
Coefficiente di sicurezza a scorrimento	1.33
Coefficiente di sicurezza a carico ultimo	3.91
Coefficiente di sicurezza a stabilità globale	1.59

Per quanto riguarda le verifiche di stabilità globale si rimanda ai calcoli in allegato.


8.13.3.3 Sollecitazioni e verifiche strutturali

Si riportano di seguito le sollecitazioni interne al paramento verticale del muro in termini di momento flettente, taglio e azione assiali e della fondazione.

Nella tabella seguente si riassumono i ferri longitudinali adottati.

SCHEMA DELLE ARMATURE

Posizione	Ф mm	Numero di barre al metro
Pos 1	20	4
Pos 2	-	-
Pos 3	-	-
Pos 4	20	4
Pos 5	16	4
Pos 6	-	-
Pos 7	16	4
Pos 8	16	5
Pos 9	-	-

Si riportano quindi le verifiche alle tensioni ammissibili per la combinazione più critica che risulta essere la combinazione 4. Per i risultati delle altre combinazioni si rimanda alle tabelle in allegato.

Paramento verticale del muro

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

 $A_{fs} \hspace{1cm} \text{area di armatura in corrispondenza del lembo di monte in [cmq]} \\$

A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]

 $\sigma_{c} \hspace{1cm} \text{tensione nel calcestruzzo espressa in [N/mmq]} \\$

τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]

 σ_{fs} tensione nell'armatura disposta sul lembo di monte in [N/mmq]

σ_{fi} tensione nell'armatura disposta sul lembo di valle in [N/mmq]

COMBINAZIONE n° 4

Foglio 210 di 260

Nr.	Y	B, H	A _{fs}	A _{fi}	N	М	Т	σ_{c}	τ _c	σ _{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	8.04	8.04	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.21	100, 32	8.04	8.04	1.6181	0.4283	4.1388	0.043	0.017	1.134	-0.395
3	0.42	100, 34	8.04	8.04	3.3466	1.7359	8.4435	0.158	0.033	5.790	-1.295
4	0.64	100, 36	8.04	8.04	5.1854	3.9561	12.9061	0.323	0.047	13.421	-2.593
5	0.85	100, 39	8.04	8.04	7.1346	7.1210	17.5245	0.525	0.060	23.560	-4.229
6	1.06	100, 41	8.04	8.04	9.1941	11.2625	22.2989	0.754	0.072	35.854	-6.154
7	1.27	100, 43	8.04	8.04	11.3639	16.4126	27.2291	1.003	0.083	50.031	-8.324
8	1.49	100, 45	8.04	8.04	13.6441	22.6031	32.3152	1.267	0.093	65.878	-10.705
9	1.70	100, 47	8.04	8.04	16.0346	29.8661	37.5572	1.544	0.103	83.224	-13.268
10	1.91	100, 49	8.04	8.04	18.5355	38.2335	42.9550	1.831	0.112	101.933	-15.990
11	2.13	100, 51	8.04	8.04	21.1467	47.7371	48.5088	2.124	0.121	121.893	-18.850
12	2.34	100, 53	8.04	8.04	23.8683	58.4091	54.2184	2.424	0.129	143.012	-21.832
13	2.55	100, 56	12.06	8.04	26.7002	70.2813	60.0840	2.328	0.137	111.796	-23.521
14	2.76	100, 58	12.06	8.04	29.6424	83.3856	66.1054	2.590	0.145	127.474	-26.438
15	2.98	100, 60	12.06	8.04	32.6950	97.7541	72.2827	2.854	0.153	143.801	-29.421
16	3.19	100, 62	12.06	8.04	35.8580	113.4186	78.6158	3.121	0.160	160.746	-32.465
17	3.40	100, 64	12.06	8.04	39.1312	130.4111	85.1049	3.389	0.167	178.282	-35.564
18	3.61	100, 66	12.06	8.04	42.5149	148.7635	91.7498	3.659	0.174	196.388	-38.711
19	3.82	100, 68	12.06	8.04	46.0088	168.5078	98.5507	3.931	0.180	215.043	-41.903
20	4.04	100, 70	12.06	8.04	49.6131	189.6760	105.5074	4.203	0.187	234.230	-45.137
21	4.25	100, 73	12.06	8.04	53.3278	212.2981	112.5876	4.477	0.193	253.933	-48.409

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 211 di 260

Fondazione del muro

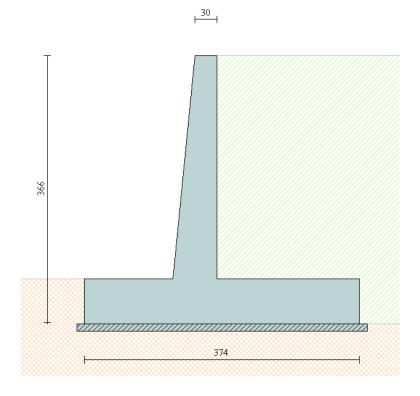
- B base della sezione espressa in [cm]
 H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq] A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- $\sigma_c \qquad \qquad \text{tensione nel calcestruzzo espressa in [N/mmq]}$
- τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- $\sigma_{\rm fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq] $\sigma_{\rm fs}$ tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

COMBINAZIONE n° 4

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	х	В, Н	A _{fs}	A _{fi}	М	Т	σ _c	τ _c	σ _{fi}	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.12	100, 73	12.57	12.57	0.6723	11.2026	0.013	0.019	0.827	-0.137
3	0.24	100, 73	12.57	12.57	2.6882	22.3955	0.052	0.038	3.309	-0.548
4	0.36	100, 73	12.57	12.57	6.0468	33.5787	0.118	0.057	7.442	-1.234
5	0.48	100, 73	12.57	12.57	10.7467	44.7521	0.209	0.076	13.227	-2.193
6	0.60	100, 73	12.57	12.57	16.7869	55.9158	0.327	0.095	20.662	-3.425
7	0.72	100, 73	12.57	12.57	24.1662	67.0698	0.471	0.114	29.744	-4.930
8	0.84	100, 73	12.57	12.57	32.8833	78.2140	0.641	0.133	40.473	-6.709
9	0.96	100, 73	12.57	12.57	42.9371	89.3485	0.837	0.152	52.847	-8.760
10	1.08	100, 73	12.57	12.57	54.3265	100.4732	1.059	0.171	66.866	-11.084
11	1.20	100, 73	12.57	12.57	67.0503	111.5883	1.307	0.190	82.526	-13.679


Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	В, Н	A _{fs}	A _{fi}	M	T	σ_{c}	τ _c	σ _{fi}	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.25	100, 73	12.57	12.57	-1.3137	-10.5029	0.026	-0.018	-0.268	1.617
3	0.50	100, 73	12.57	12.57	-5.2479	-20.9635	0.102	-0.036	-1.071	6.459
4	0.75	100, 73	12.57	12.57	-11.7920	-31.3818	0.230	-0.054	-2.406	14.514
5	1.00	100, 73	12.57	12.57	-20.9353	-41.7579	0.408	-0.071	-4.271	25.767
6	1.25	100, 73	12.57	12.57	-32.6674	-52.0918	0.637	-0.089	-6.665	40.207
7	1.50	100, 73	12.57	12.57	-46.9777	-62.3833	0.915	-0.106	-9.584	57.821
8	1.75	100, 73	12.57	12.57	-63.8555	-72.6326	1.244	-0.124	-13.028	78.594
9	2.00	100, 73	12.57	12.57	-83.2905	-82.8397	1.623	-0.141	-16.993	102.515
10	2.25	100, 73	12.57	12.57	- 105.2719	-93.0045	2.051	-0.159	-21.477	129.570
11	2.50	100, 73	12.57	12.57	-	-	2.529	-0.176	-26.479	159.746

		129.7892	103.1271		

8.13.4 Muro di sostegno con altezza del paramento verticale pari a 3.05 m

Si riassumono nel seguito le caratteristiche geometriche del muro:

GEOMETRIA MURO E FONDAZIONE MURO	
Altezza del paramento Spessore in sommità	3.05 [m] 0.30 [m]
Spessore all'attacco con la fondazione	0.60 [m]
Inclinazione paramento esterno Inclinazione paramento interno	5.71 [°] 0.00 [°]
Lunghezza del muro	1.00 [m]
FONDAZIONE	
Lunghezza mensola fondazione di valle	1.20 [m]
Lunghezza mensola fondazione di monte	1.94 [m]
Lunghezza totale fondazione	3.75 [m]
Inclinazione piano di posa della fondazione	0.00 [°]
Spessore fondazione	0.61 [m]
Spessore magrone	0.10 [m]

Si riportano quindi i risultati dell'analisi e le verifiche della struttura.

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 213 di 260

8.13.4.1 Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione
Sisma Combinazione sismica

 $\begin{array}{lll} \text{CS}_{\text{SCO}} & \text{Coeff. di sicurezza allo scorrimento} \\ \text{CS}_{\text{RIB}} & \text{Coeff. di sicurezza al ribaltamento} \\ \text{CS}_{\text{QLIM}} & \text{Coeff. di sicurezza a carico limite} \\ \text{CS}_{\text{STAB}} & \text{Coeff. di sicurezza a stabilità globale} \\ \end{array}$

Combinazione	CS _{sco}	CS _{rib}	CS _{glim}	CS _{stab}
1	1.74	1.95	7.96	6.33
2	1.71	1.69	6.65	5.13
3	1.34	1.47	5.62	5.96
4	1.33	1.31	4.89	4.85

8.13.4.2 Analisi della spinta e verifiche

Si riporta il calcolo dei coefficienti di sicurezza allo scorrimento, ribaltamento e carico limite per la combinazione più critica, cioè la quarta.

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle e quelle forze verticali se agenti dall'alto verso il basso. Il calcolo è riferito ad 1.00 m di muro.

Sisma

Coefficiente di intensità sismica (percento) 4.80

Forma diagramma incremento sismico Triangolare con vertice in basso

Partecipazione spinta passiva (percento) 0.0

Lunghezza del muro 1.00 [m]

Peso muro 89.8444 [kN]

Baricentro del muro X=-0.05 Y=-2.73 Superficie di spinta

Punto inferiore superficie di spinta X = 1.94 Y = -3.66 Punto superiore superficie di spinta X = 1.94 Y = 0.00 Altezza della superficie di spinta 3.66 [m] Inclinazione superficie di spinta(rispetto alla verticale) 0.00 [°]

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 214 di 260

COMBINAZIONE n° 4

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla supe	erficie	116.0051 114.2427 20.1441 X = 2.50 10.00	[kN] [kN] [kN] [m] [°]	Y = -2.76	[m]
Inclinazione linea di rottura in condizioni statiche		63.45	[°]		
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spi Inclinazione linea di rottura in condizioni sismiche	inta	10.7234 X = 2.50 61.33	[kN] [m] [°]	Y = -1.66	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a I Inerzia del muro Inerzia del terrapieno fondazione di monte		331.2500 X = 1.25 6.3647 15.9000	[kN] [m] [kN] [kN]	Y = -2.13	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Scentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	one	147.0679 485.8534 342.5776 1412.6463 485.8534 147.0679 0.01 4.42 507.6243 16.84 4.8819 1897.3897	[kN] [kN] [kNm] [kNm] [kN] [m] [m] [kN] [°] [kNm]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		4.42 0.11129 0.10830	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante					
Coeff. capacità portante	$N_c = 16.88$	$N_{g} = 7.8$	2		$N_{\nu} = 4.07$
Fattori forma	$s_c = 1.00$	s _q = 1.0			$s_{y} = 1.00$
Fattori inclinazione	$i_c = 0.66$	$i_q = 0.6$			$i_{y} = 0.05$
Fattori profondità	$d_c = 1.05$	$d_{q} = 1.0$			$d_{y} = 1.02$
I coefficienti N' tengono conto dei fattori di forma, p					
-	$N'_{c} = 12.94$	$N'_{q} = 5.8$			$N'_{\gamma} = 0.69$

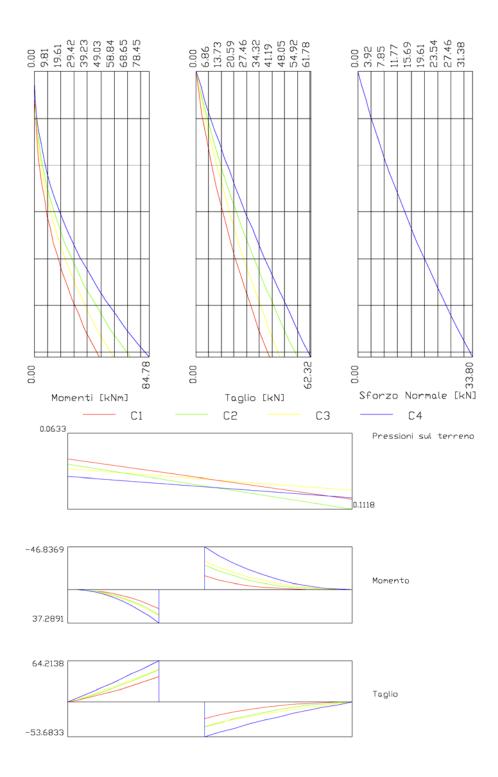
COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento	4.12
Coefficiente di sicurezza a scorrimento	1.33
Coefficiente di sicurezza a carico ultimo	3.91
Coefficiente di sicurezza a stabilità globale	1.59

Per quanto riguarda le verifiche di stabilità globale si rimanda ai calcoli in allegato.

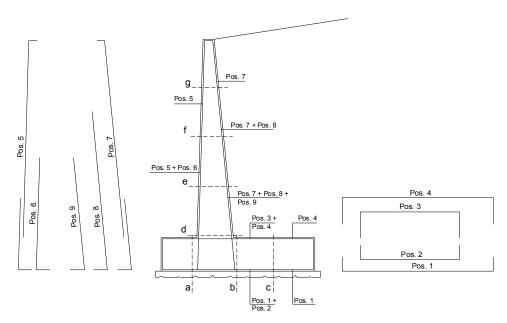
GENERAL CONTRACTOR

ALTA SORVEGLIANZA



IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 215 di 260


8.13.4.3 Sollecitazioni e verifiche strutturali

Si riportano di seguito le sollecitazioni interne al paramento verticale del muro in termini di momento flettente, taglio e azione assiali e della fondazione.

Nella tabella seguente si riassumono i ferri longitudinali adottati.

SCHEMA DELLE ARMATURE

Posizione	Ф mm	Numero di barre al metro
Pos 1	16	5
Pos 2	-	-
Pos 3	-	-
Pos 4	16	5
Pos 5	16	5
Pos 6	-	-
Pos 7	16	5
Pos 8	-	-
Pos 9	-	-

Si riportano quindi le verifiche alle tensioni ammissibili per la combinazione più critica che risulta essere la combinazione 4. Per i risultati delle altre combinazioni si rimanda alle tabelle in allegato.

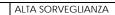
Paramento verticale del muro

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

 A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]

A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]

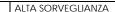

σ_c tensione nel calcestruzzo espressa in [N/mmq]

τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]

 σ_{fs} tensione nell'armatura disposta sul lembo di monte in [N/mmq]

 $\sigma_{\rm fi}$ tensione nell'armatura disposta sul lembo di valle in [N/mmq]

Nr.	Υ	B, H	A _{fs}	A _{fi}	N	М	Т	σ_{c}	τ _c	σ_{fs}	$\sigma_{\rm fi}$
		1 -						-0	-0	- 13	



Foglio 218 di 260

1	0.00	100, 30	10.05	10.05	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.15	100, 32	10.05	10.05	1.1501	0.1747	2.3629	0.016	0.010	0.212	-0.176
3	0.30	100, 33	10.05	10.05	2.3570	0.7074	4.8123	0.062	0.019	1.583	-0.588
4	0.46	100, 35	10.05	10.05	3.6207	1.6103	7.3417	0.131	0.028	4.061	-1.175
5	0.61	100, 36	10.05	10.05	4.9412	2.8950	9.9494	0.217	0.036	7.506	-1.918
6	0.76	100, 38	10.05	10.05	6.3186	4.5731	12.6355	0.318	0.044	11.812	-2.798
7	0.92	100, 39	10.05	10.05	7.7528	6.6560	15.4000	0.430	0.052	16.891	-3.799
8	1.07	100, 41	10.05	10.05	9.2439	9.1552	18.2429	0.552	0.059	22.673	-4.908
9	1.22	100, 42	10.05	10.05	10.7917	12.0824	21.1642	0.682	0.065	29.097	-6.114
10	1.37	100, 44	10.05	10.05	12.3964	15.4490	24.1639	0.819	0.072	36.115	-7.406
11	1.52	100, 45	10.05	10.05	14.0580	19.2664	27.2420	0.961	0.078	43.684	-8.777
12	1.68	100, 47	10.05	10.05	15.7763	23.5464	30.3984	1.108	0.084	51.767	-10.218
13	1.83	100, 48	10.05	10.05	17.5515	28.3002	33.6333	1.258	0.089	60.335	-11.723
14	1.98	100, 50	10.05	10.05	19.3835	33.5396	36.9465	1.413	0.095	69.360	-13.287
15	2.13	100, 51	10.05	10.05	21.2723	39.2759	40.3381	1.570	0.100	78.820	-14.905
16	2.29	100, 53	10.05	10.05	23.2180	45.5208	43.8081	1.730	0.105	88.694	-16.571
17	2.44	100, 54	10.05	10.05	25.2205	52.2857	47.3565	1.893	0.111	98.965	-18.284
18	2.59	100, 56	10.05	10.05	27.2798	59.5821	50.9833	2.057	0.116	109.618	-20.038
19	2.75	100, 57	10.05	10.05	29.3960	67.4216	54.6884	2.224	0.120	120.638	-21.832
20	2.90	100, 59	10.05	10.05	31.5690	75.8157	58.4720	2.392	0.125	132.014	-23.662
21	3.05	100, 61	10.05	10.05	33.7988	84.7752	62.3172	2.561	0.130	143.734	-25.526

Foglio 219 di 260

Fondazione del muro

base della sezione espressa in [cm]

Н altezza della sezione espressa in [cm]

area di armatura in corrispondenza del lembo inferiore in [cmq] $A_{\text{fi}} \\$

area di armatura in corrispondenza del lembo superiore in [cmq] $A_{\text{fs}} \\$

tensione nel calcestruzzo espressa in [N/mmq] σ_{c}

tensione tangenziale nel calcestruzzo espressa in [N/mmq] τ_{c}

tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq] σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq] σ_{fs}

COMBINAZIONE n° 4

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	A _{fs}	A _{fi}	М	Т	σ_{c}	τ _c	σ _{fi}	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.12	100, 61	10.05	10.05	0.3506	5.8637	0.010	0.012	0.654	-0.098
3	0.24	100, 61	10.05	10.05	1.4123	11.8514	0.041	0.024	2.635	-0.393
4	0.36	100, 61	10.05	10.05	3.1999	17.9630	0.094	0.037	5.970	-0.890
5	0.48	100, 61	10.05	10.05	5.7283	24.1985	0.168	0.050	10.687	-1.594
6	0.60	100, 61	10.05	10.05	9.0125	30.5579	0.264	0.063	16.814	-2.508
7	0.72	100, 61	10.05	10.05	13.0672	37.0413	0.383	0.076	24.379	-3.636
8	0.84	100, 61	10.05	10.05	17.9073	43.6485	0.525	0.090	33.409	-4.983
9	0.96	100, 61	10.05	10.05	23.5478	50.3797	0.691	0.104	43.932	-6.552
10	1.08	100, 61	10.05	10.05	30.0034	57.2348	0.880	0.118	55.975	-8.349
11	1.20	100, 61	10.05	10.05	37.2891	64.2138	1.094	0.133	69.568	-10.376

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	В, Н	A _{fs}	A _{fi}	М	Т	σ _c	τ _c	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.0000	0.0000	0.000	0.000	0.000	0.000
2	0.19	100, 61	10.05	10.05	-0.3741	-3.9109	0.011	-0.008	-0.104	0.698
3	0.39	100, 61	10.05	10.05	-1.5384	-8.1457	0.045	-0.017	-0.428	2.870
4	0.58	100, 61	10.05	10.05	-3.5556	-12.7043	0.104	-0.026	-0.989	6.633
5	0.78	100, 61	10.05	10.05	-6.4886	-17.5869	0.190	-0.036	-1.806	12.105
6	0.97	100, 61	10.05	10.05	-10.4002	-22.7933	0.305	-0.047	-2.894	19.403
7	1.16	100, 61	10.05	10.05	-15.3533	-28.3235	0.450	-0.058	-4.272	28.644
8	1.36	100, 61	10.05	10.05	-21.4107	-34.1777	0.628	-0.071	-5.958	39.945
9	1.55	100, 61	10.05	10.05	-28.6352	-40.3557	0.840	-0.083	-7.968	53.423
10	1.75	100, 61	10.05	10.05	-37.0897	-46.8576	1.088	-0.097	-10.321	69.196
11	1.94	100, 61	10.05	10.05	-46.8369	-53.6833	1.374	-0.111	-13.033	87.381

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 220 di 260

9. ALLEGATO: RISULTATI DEL CALCOLO PER LE DIVERSE COMBINAZIONI DI CALCOLO.

9.1 MURO H=7 m

9.1.1 Verifiche geotecniche

COMBINAZIONE n° 1

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	218.2882 214.9719 37.9053 X = 3.80 10.00 60.83	[kN] [kN] [kN] [m] [°]	Y = -4.89	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	615.6000 X = 1.90	[kN] [m]	Y = -3.50	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	214.9719 912.1598 669.1041 3398.3552 912.1598 214.9719 0.01 6.00 937.1491 13.26 7.2285 3176.0740	[kN] [kN] [kNm] [kNm] [kN] [m] [m] [kN] [kN] [kN] [kN] [kN]		
Tensioni sul terreno				
Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	6.00 0.15323 0.15082	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante				

Coeff. capacità portante	$N_c = 16.88$	$N_q = 7.82$	$N_{y} = 4.07$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{y} = 1.00$
Fattori inclinazione	$i_c = 0.73$	$i_{q} = 0.73$	$i_{y} = 0.16$
Fattori profondità	d ₂ = 1.05	$d_{r} = 1.02$	d = 1.02

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 12.88$ $N'_{q} = 5.83$ $N'_{\gamma} = 0.66$

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 221 di 260

Coefficiente di sicurezza a ribaltamento	5.08
Coefficiente di sicurezza a scorrimento	1.71
Coefficiente di sicurezza a carico ultimo	3.48
Coefficiente di sicurezza a stabilità globale	1.57

COMBINAZIONE n° 2

Valore della spinta statica	220.2199	[kN]		
Componente orizzontale della spinta statica	216.8743	[kN]		
Componente verticale della spinta statica	38.2408	[kN]		
Punto d'applicazione della spinta	X = 3.80	[m]	Y = -4.85	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	10.00	[°]		
Inclinazione linea di rottura in condizioni statiche	61.01	[°]		
Peso terrapieno gravante sulla fondazione a monte	691.6000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.90	[m]	Y = -3.50	[m]

Risultanti

Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	216.8743 988.4953 684.0953 3711.9679 988.4953 216.8743 -0.06 6.00 1012.0066 12.37 -62.3867 3233 9548	[kN] [kNm] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [kN] [sy] [kN] [sy]
Carico ultimo della fondazione	3233.9548	[kN]

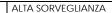
Tensioni sul terreno

Lunghezza fondazione reagente	6.00	[m]
Tensione terreno allo spigolo di valle	0.15435	[N/mmq]
Tensione terreno allo spigolo di monte	0.17515	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 16.88$	$N_q = 7.82$	$N_{\gamma} = 4.07$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{v} = 1.00$
Fattori inclinazione	$i_c = 0.74$	$i_{g} = 0.74$	$i_{y} = 0.19$
Fattori profondità	$d_c = 1.05$	$d_0 = 1.02$	d _v = 1.02

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.


N' _c = 12.88	$N'_{q} = 5.83$	$N'_{\gamma} = 0.66$
-------------------------	-----------------	----------------------

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento	5.43
Coefficiente di sicurezza a scorrimento	1.84
Coefficiente di sicurezza a carico ultimo	3.27
Coefficiente di sicurezza a stabilità globale	1.56

COMBINAZIONE n° 3

Valore della spinta statica 218.2882 [kN]

 $N'_q = 5.83$

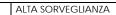
 $N'_{\gamma} = 0.66$

Foglio 222 di 260

Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale al Inclinazione linea di rottura in condizioni sta	la superficie	214.9719 37.9053 X = 3.80 10.00 60.83	[kN] [kN] [m] [°] [°]	Y = -4.89	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismic Inclinazione linea di rottura in condizioni sis		22.6728 X = 3.80 58.70	[kN] [m] [°]	Y = -2.67	[m]
Peso terrapieno gravante sulla fondazione a Baricentro terrapieno gravante sulla fondazi Inerzia del muro Inerzia del terrapieno fondazione di monte		615.6000 X = 1.90 12.4154 29.5488	[kN] [m] [kN] [kN]	Y = -3.50	[m]
Risultanti Risultante dei carichi applicati in dir. orizzon Risultante dei carichi applicati in dir. vertical Momento ribaltante rispetto allo spigolo a va Momento stabilizzante rispetto allo spigolo a Sforzo normale sul piano di posa della fonda Sforzo tangenziale sul piano di posa della fonda Eccentricità rispetto al baricentro della fonda Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla non Momento rispetto al baricentro della fondazi Carico ultimo della fondazione	e alle a valle azione ondazione azione rmale)	279.2644 916.0969 945.4202 3421.9777 916.0969 279.2644 0.30 6.00 957.7172 16.95 271.7333 2478.0029	[kN] [kN] [kNm] [kNm] [kN] [m] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		6.00 0.19797 0.10739	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori inclinazione	$N_c = 16.88$ $s_c = 1.00$ $i_c = 0.66$	$\begin{aligned} N_q &= 7.\\ s_q &= 1.\\ i_q &= 0. \end{aligned}$	00 66	;	$N_{\gamma} = 4.07$ $S_{\gamma} = 1.00$ $I_{\gamma} = 0.05$
Fattori profondità I coefficienti N' tengono conto dei fattori di fo	d _c = 1.05 orma, profondità, inclinazione	d _q = 1. e carico, inclinazione p			$d_{\gamma} = 1.02$ pendio.

 $N'_c = 12.88$

COEFFICIENTI DI SICUREZZA


Coefficiente di sicurezza a ribaltamento	3.62
Coefficiente di sicurezza a scorrimento	1.33
Coefficiente di sicurezza a carico ultimo	2.70
Coefficiente di sicurezza a stabilità globale	1.48

STABILITÀ GLOBALE MURO + TERRENO

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra) peso della striscia espresso in [kN] W

- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α
- φ
- angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [N/mmq] С
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq] и

Foglio 223 di 260

Metodo di Fellenius Numero di cerchi analizzati 36 Numero di strisce 25

Combinazione n° 1

Cerchio critico

Coordinate del centro X[m] = -1.35 Y[m] = 0.00

Raggio del cerchio R[m]= 9.51

Ascissa a valle del cerchio
Ascissa a monte del cerchio
Larghezza della striscia
Coefficiente di sicurezza

Xi[m]= -7.80
Xs[m]= 8.17
dx[m]= 0.64
C= 1.57

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	4353.20	79.44	4279.52	3.49	35.00	0.000	0.000
2	7144.12	64.43	6444.21	1.48	35.00	0.000	0.000
3	8491.55	56.48	7079.46	1.16	35.00	0.000	0.000
4	9502.92	50.00	7279.96	0.99	35.00	0.000	0.000
5	10314.66	44.32	7206.51	0.89	35.00	0.000	0.000
6	10985.01	39.15	6935.43	0.82	35.00	0.000	0.000
7	11616.41	34.34	6552.76	0.77	33.00	0.047	0.000
8	12468.62	29.79	6195.24	0.74	22.00	0.306	0.000
9	12899.75	25.45	5542.48	0.71	22.00	0.306	0.000
10	13255.65	21.25	4804.67	0.69	22.00	0.306	0.000
11	13543.08	17.17	3998.93	0.67	22.00	0.306	0.000
12	13766.92	13.18	3140.15	0.66	22.00	0.306	0.000
13	14036.77	9.26	2258.76	0.65	22.00	0.306	0.000
14	11691.40	5.38	1096.00	0.64	22.00	0.306	0.000
15	4087.28	1.52	108.61	0.64	22.00	0.306	0.000
16	3472.66	-2.33	-140.99	0.64	22.00	0.306	0.000
17	3143.90	-6.19	-338.83	0.64	22.00	0.306	0.000
18	2945.40	-10.08	-515.29	0.65	22.00	0.306	0.000
19	2767.69	-14.01	-670.13	0.66	22.00	0.306	0.000
20	2528.61	-18.02	-782.11	0.67	22.00	0.306	0.000
21	2224.28	-22.12	-837.43	0.69	22.00	0.306	0.000
22	1849.31	-26.34	-820.52	0.71	22.00	0.306	0.000
23	1396.22	-30.72	-713.34	0.74	22.61	0.291	0.000
24	886.04	-35.32	-512.25	0.78	35.00	0.000	0.000
25	304.48	-40.20	-196.51	0.84	35.00	0.000	0.000

$$\begin{split} \Sigma W_i &= 1762.0471 \text{ [kN]} \\ \Sigma W_i \sin \alpha_i &= 660.9324 \text{ [kN]} \\ \Sigma W_i \cos \alpha_i \tan \phi_i &= 714.5987 \text{ [kN]} \\ \Sigma c_i b_i / \cos \alpha_i &= 326.0856 \text{ [kN]} \end{split}$$

Combinazione n° 2

Cerchio critico

Coordinate del centro X[m] = -1.35 Y[m] = 0.00

Raggio del cerchio R[m]= 9.51

Ascissa a valle del cerchio Xi[m]= -7.80
Ascissa a monte del cerchio Xs[m]= 8.17
Larghezza della striscia dx[m]= 0.64
Coefficiente di sicurezza C= 1.56

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	C	u
1	4353.20	79.44	4279.52	3.49	35.00	0.000	0.000
2	7144.12	64.43	6444.21	1.48	35.00	0.000	0.000

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 224 di 260

3	8491.55	56.48	7079.46	1.16	35.00	0.000	0.000
4	9502.92	50.00	7279.96	0.99	35.00	0.000	0.000
5	10314.66	44.32	7206.51	0.89	35.00	0.000	0.000
6	10985.01	39.15	6935.43	0.82	35.00	0.000	0.000
7	12239.83	34.34	6904.43	0.77	33.00	0.047	0.000
8	13771.14	29.79	6842.42	0.74	22.00	0.306	0.000
9	14202.27	25.45	6102.12	0.71	22.00	0.306	0.000
10	14558.17	21.25	5276.78	0.69	22.00	0.306	0.000
11	14845.60	17.17	4383.53	0.67	22.00	0.306	0.000
12	15069.44	13.18	3437.25	0.66	22.00	0.306	0.000
13	15058.36	9.26	2423.15	0.65	22.00	0.306	0.000
14	11691.40	5.38	1096.00	0.64	22.00	0.306	0.000
15	4087.28	1.52	108.61	0.64	22.00	0.306	0.000
16	3472.66	-2.33	-140.99	0.64	22.00	0.306	0.000
17	3143.90	-6.19	-338.83	0.64	22.00	0.306	0.000
18	2945.40	-10.08	-515.29	0.65	22.00	0.306	0.000
19	2767.69	-14.01	-670.13	0.66	22.00	0.306	0.000
20	2528.61	-18.02	-782.11	0.67	22.00	0.306	0.000
21	2224.28	-22.12	-837.43	0.69	22.00	0.306	0.000
22	1849.31	-26.34	-820.52	0.71	22.00	0.306	0.000
23	1396.22	-30.72	-713.34	0.74	22.61	0.291	0.000
24	886.04	-35.32	-512.25	0.78	35.00	0.000	0.000
25	304.48	-40.20	-196.51	0.84	35.00	0.000	0.000

 $\begin{array}{l} \Sigma W_{i} = 1842.0471 \; [kN] \\ \Sigma W_{i} sin\alpha_{i} = 689.1435 \; [kN] \\ \Sigma W_{i} cos\alpha_{i} tan\varphi_{i} = 745.7768 \; [kN] \\ \Sigma C_{i} b_{i} cos\alpha_{i} = 326.0856 \; [kN] \end{array}$

orzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 225 di 260

Combinazione n° 3

Cerchio critico

Coordinate del centro X[m] = -1.35

Raggio del cerchio R[m]= 10.09 Ascissa a valle del cerchio Xi[n Ascissa a valle del cerchio Xi[m]= -7.91
Ascissa a monte del cerchio Xs[m]= 8.72
Larghezza della striscia dx[m]= 0.67 Coefficiente di sicurezza C= 1.48

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	4252.98	77.36	4149.98	3.04	35.00	0.000	0.000
2	6913.74	64.45	6237.85	1.54	35.00	0.000	0.000
3	8379.82	56.63	6998.48	1.21	35.00	0.000	0.000
4	9484.42	50.24	7291.02	1.04	35.00	0.000	0.000
5	10373.30	44.63	7287.52	0.93	35.00	0.000	0.000
6	11109.14	39.52	7069.99	0.86	35.00	0.000	0.000
7	11726.09	34.77	6687.94	0.81	35.00	0.000	0.000
8	12517.55	30.29	6312.76	0.77	27.50	0.176	0.000
9	13168.46	26.00	5771.71	0.74	22.00	0.306	0.000
10	13565.03	21.86	5050.20	0.72	22.00	0.306	0.000
11	13887.80	17.84	4253.86	0.70	22.00	0.306	0.000
12	14142.13	13.91	3398.56	0.69	22.00	0.306	0.000
13	14331.88	10.04	2498.50	0.68	22.00	0.306	0.000
14	13877.43	6.22	1503.63	0.67	22.00	0.306	0.000
15	5557.31	2.43	235.47	0.67	22.00	0.306	0.000
16	3488.94	-1.35	-82.36	0.67	22.00	0.306	0.000
17	3228.57	-5.14	-289.23	0.67	22.00	0.306	0.000
18	2963.29	-8.95	-460.98	0.67	22.00	0.306	0.000
19	2789.74	-12.80	-618.06	0.68	22.00	0.306	0.000
20	2551.80	-16.71	-733.73	0.69	22.00	0.306	0.000
21	2245.85	-20.70	-793.96	0.71	22.00	0.306	0.000
22	1866.84	-24.80	-783.19	0.73	22.00	0.306	0.000
23	1408.17	-29.05	-683.72	0.76	23.65	0.267	0.000
24	895.07	-33.47	-493.69	0.80	35.00	0.000	0.000
25	307.72	-38.14	-190.05	0.85	35.00	0.000	0.000

Y[m] = 0.67

 ΣW_i = 1814.5836 [kN] $\Sigma W_{i} \sin \alpha_{i} = 682.7354 \text{ [kN]}$ Σ W_icos α _itan ϕ _i= 752.8946 [kN] $\Sigma c_i b_i / cos \alpha_i = 323.5943 [kN]$

orzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 226 di 260

Combinazione n° 4

Cerchio critico

Coordinate del centro X[m] = -1.35

Raggio del cerchio R[m]= 9.51 Ascissa a valle del cerchio X Xi[m] = -7.80Ascissa a monte del cerchio Xs[m]= 8.17 dx[m] = 0.64Larghezza della striscia Coefficiente di sicurezza C= 1.47

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	4353.20	79.44	4279.52	3.49	35.00	0.000	0.000
2	7144.12	64.43	6444.21	1.48	35.00	0.000	0.000
3	8491.55	56.48	7079.46	1.16	35.00	0.000	0.000
4	9502.92	50.00	7279.96	0.99	35.00	0.000	0.000
5	10314.66	44.32	7206.51	0.89	35.00	0.000	0.000
6	10985.01	39.15	6935.43	0.82	35.00	0.000	0.000
7	12239.83	34.34	6904.43	0.77	33.00	0.047	0.000
8	13771.14	29.79	6842.42	0.74	22.00	0.306	0.000
9	14202.27	25.45	6102.12	0.71	22.00	0.306	0.000
10	14558.17	21.25	5276.78	0.69	22.00	0.306	0.000
11	14845.60	17.17	4383.53	0.67	22.00	0.306	0.000
12	15069.44	13.18	3437.25	0.66	22.00	0.306	0.000
13	15058.36	9.26	2423.15	0.65	22.00	0.306	0.000
14	11691.40	5.38	1096.00	0.64	22.00	0.306	0.000
15	4087.28	1.52	108.61	0.64	22.00	0.306	0.000
16	3472.66	-2.33	-140.99	0.64	22.00	0.306	0.000
17	3143.90	-6.19	-338.83	0.64	22.00	0.306	0.000
18	2945.40	-10.08	-515.29	0.65	22.00	0.306	0.000
19	2767.69	-14.01	-670.13	0.66	22.00	0.306	0.000
20	2528.61	-18.02	-782.11	0.67	22.00	0.306	0.000
21	2224.28	-22.12	-837.43	0.69	22.00	0.306	0.000
22	1849.31	-26.34	-820.52	0.71	22.00	0.306	0.000
23	1396.22	-30.72	-713.34	0.74	22.61	0.291	0.000
24	886.04	-35.32	-512.25	0.78	35.00	0.000	0.000
25	304.48	-40.20	-196.51	0.84	35.00	0.000	0.000

Y[m] = 0.00

 ΣW_i = 1842.0471 [kN] Σ W_isinα_i= 689.1435 [kN] $\Sigma W_i \cos \alpha_i \tan \phi_i = 745.7768 \text{ [kN]}$ $\Sigma c_i b_i / \cos \alpha_i = 326.0856 \text{ [kN]}$

Foglio 227 di 260

9.1.2 Verifiche strutturali

Paramento verticale del muro

base della sezione espressa in [cm]

Н altezza della sezione espressa in [cm]

 $A_{\text{fs}} \\$ area di armatura in corrispondenza del lembo di monte in [cmq]

area di armatura in corrispondenza del lembo di valle in [cmq] tensione nel calcestruzzo espressa in [N/mmq] A_{fi}

 σ_{c}

tensione tangenziale nel calcestruzzo espressa in [N/mmq] τ_{c}

tensione nell'armatura disposta sul lembo di monte in [N/mmq] σ_{fs}

tensione nell'armatura disposta sul lembo di valle in [N/mmq]

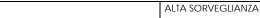
COMBINAZIONE n° 1

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	12.57	12.57	0.000	0.000	0.000	0.000
2	0.35	100, 34	12.57	12.57	0.043	0.014	0.715	-0.464
3	0.70	100, 37	12.57	12.57	0.153	0.026	4.144	-1.521
4	1.05	100, 41	12.57	12.57	0.308	0.038	9.966	-3.021
5	1.40	100, 44	12.57	12.57	0.495	0.050	17.890	-4.892
6	1.75	100, 48	12.57	12.57	0.707	0.061	27.724	-7.081
7	2.10	100, 51	12.57	12.57	0.940	0.072	39.338	-9.550
8	2.45	100, 55	12.57	12.57	1.190	0.082	52.637	-12.266
9	2.80	100, 58	12.57	12.57	1.455	0.093	67.552	-15.207
10	3.15	100, 62	12.57	12.57	1.734	0.103	84.031	-18.354
11	3.50	100, 65	12.57	12.57	2.025	0.113	102.035	-21.691
12	3.85	100, 69	12.57	12.57	2.327	0.123	121.533	-25.207
13	4.20	100, 72	31.42	12.57	1.907	0.133	59.601	-23.416
14	4.55	100, 76	31.42	12.57	2.135	0.143	68.907	-26.373
15	4.90	100, 79	31.42	12.57	2.368	0.153	78.800	-29.426
16	5.25	100, 83	31.42	12.57	2.608	0.163	89.274	-32.573
17	5.60	100, 86	31.42	12.57	2.853	0.173	100.324	-35.808
18	5.95	100, 90	31.42	12.57	3.103	0.183	111.946	-39.128
19	6.30	100, 93	31.42	12.57	3.358	0.192	124.136	-42.530
20	6.65	100, 97	31.42	12.57	3.619	0.202	136.891	-46.012
21	7.00	100, 100	31.42	12.57	3.884	0.211	150.206	-49.569

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	σ_{fi}
1	0.00	100, 30	12.57	12.57	0.000	0.000	0.000	0.000
2	0.35	100, 34	12.57	12.57	0.067	0.021	1.580	-0.660
3	0.70	100, 37	12.57	12.57	0.231	0.039	7.344	-2.161
4	1.05	100, 41	12.57	12.57	0.456	0.055	16.482	-4.283
5	1.40	100, 44	12.57	12.57	0.721	0.070	28.434	-6.894
6	1.75	100, 48	12.57	12.57	1.016	0.085	42.830	-9.900
7	2.10	100, 51	12.57	12.57	1.333	0.098	59.413	-13.235
8	2.45	100, 55	12.57	12.57	1.667	0.111	78.000	-16.849
9	2.80	100, 58	12.57	12.57	2.016	0.123	98.457	-20.704
10	3.15	100, 62	12.57	12.57	2.377	0.135	120.682	-24.774
11	3.50	100, 65	12.57	12.57	2.748	0.147	144.600	-29.036
12	3.85	100, 69	12.57	12.57	3.129	0.158	170.150	-33.473
13	4.20	100, 72	31.42	12.57	2.531	0.170	82.203	-30.896
14	4.55	100, 76	31.42	12.57	2.811	0.181	94.085	-34.538
15	4.90	100, 79	31.42	12.57	3.095	0.192	106.586	-38.264
16	5.25	100, 83	31.42	12.57	3.384	0.202	119.696	-42.069
17	5.60	100, 86	31.42	12.57	3.677	0.213	133.406	-45.950
18	5.95	100, 90	31.42	12.57	3.973	0.223	147.709	-49.902
19	6.30	100, 93	31.42	12.57	4.274	0.234	162.597	-53.924

Consorzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA



IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 228 di 260

20	6.65	100, 97	31.42	12.57	4.579	0.244	178.067	-58.012
21	7.00	100, 100	31.42	12.57	4.887	0.254	194.109	-62.164

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	12.57	12.57	0.000	0.000	0.000	0.000
2	0.35	100, 34	12.57	12.57	0.069	0.021	1.658	-0.676
3	0.70	100, 37	12.57	12.57	0.237	0.039	7.576	-2.207
4	1.05	100, 41	12.57	12.57	0.464	0.056	16.855	-4.355
5	1.40	100, 44	12.57	12.57	0.731	0.071	28.882	-6.978
6	1.75	100, 48	12.57	12.57	1.025	0.084	43.250	-9.978
7	2.10	100, 51	12.57	12.57	1.338	0.097	59.679	-13.283
8	2.45	100, 55	12.57	12.57	1.667	0.109	77.967	-16.843
9	2.80	100, 58	12.57	12.57	2.007	0.121	97.969	-20.618
10	3.15	100, 62	12.57	12.57	2.357	0.132	119.574	-24.580
11	3.50	100, 65	12.57	12.57	2.716	0.143	142.698	-28.709
12	3.85	100, 69	12.57	12.57	3.082	0.154	167.275	-32.985
13	4.20	100, 72	31.42	12.57	2.485	0.164	80.541	-30.346
14	4.55	100, 76	31.42	12.57	2.751	0.174	91.870	-33.820
15	4.90	100, 79	31.42	12.57	3.021	0.184	103.741	-37.360
16	5.25	100, 83	31.42	12.57	3.293	0.193	116.143	-40.961
17	5.60	100, 86	31.42	12.57	3.568	0.203	129.065	-44.620
18	5.95	100, 90	31.42	12.57	3.847	0.212	142.501	-48.335
19	6.30	100, 93	31.42	12.57	4.128	0.222	156.443	-52.102
20	6.65	100, 97	31.42	12.57	4.411	0.231	170.885	-55.920
21	7.00	100, 100	31.42	12.57	4.698	0.240	185.820	-59.788

Foglio 229 di 260

Fondazione del muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- $\sigma_c \qquad \qquad \text{tensione nel calcestruzzo espressa in [N/mmq]}$
- τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- $\sigma_{\text{fi}} \hspace{1cm} \text{tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]} \\$
- σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

COMBINAZIONE n° 1

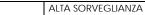
Fondazione di valle

L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 100	12.57	15.71	0.000	0.000	0.000	0.000
2	0.12	100, 100	12.57	15.71	0.010	0.019	0.653	-0.115
3	0.24	100, 100	12.57	15.71	0.040	0.038	2.612	-0.461
4	0.36	100, 100	12.57	15.71	0.089	0.057	5.875	-1.036
5	0.48	100, 100	12.57	15.71	0.158	0.076	10.444	-1.842
6	0.60	100, 100	12.57	15.71	0.247	0.095	16.316	-2.877
7	0.72	100, 100	12.57	15.71	0.356	0.113	23.492	-4.143
8	0.84	100, 100	12.57	15.71	0.485	0.132	31.972	-5.638
9	0.96	100, 100	12.57	15.71	0.633	0.151	41.754	-7.363
10	1.08	100, 100	12.57	15.71	0.801	0.170	52.838	-9.318
11	1.20	100, 100	12.57	15.71	0.989	0.189	65.224	-11.502

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)


Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	τ_{c}	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 100	21.99	15.71	0.000	0.000	0.000	0.000
2	0.38	100, 100	21.99	15.71	0.024	-0.017	-0.285	1.306
3	0.76	100, 100	21.99	15.71	0.094	-0.033	-1.140	5.216
4	1.14	100, 100	21.99	15.71	0.212	-0.050	-2.562	11.720
5	1.52	100, 100	21.99	15.71	0.377	-0.066	-4.548	20.806
6	1.90	100, 100	21.99	15.71	0.588	-0.082	-7.095	32.463
7	2.28	100, 100	21.99	15.71	0.845	-0.098	-10.203	46.679
8	2.66	100, 100	21.99	15.71	1.149	-0.115	-13.867	63.444
9	3.04	100, 100	21.99	15.71	1.498	-0.131	-18.086	82.746
10	3.42	100, 100	21.99	15.71	1.893	-0.147	-22.857	104.575
11	3.80	100, 100	21.99	15.71	2.334	-0.163	-28.178	128.919

COMBINAZIONE n° 2

Fondazione di valle

L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 100	12.57	15.71	0.000	0.000	0.000	0.000
2	0.12	100, 100	12.57	15.71	0.010	0.019	0.659	-0.116
3	0.24	100, 100	12.57	15.71	0.040	0.038	2.641	-0.466
4	0.36	100, 100	12.57	15.71	0.090	0.058	5.948	-1.049
5	0.48	100, 100	12.57	15.71	0.161	0.077	10.585	-1.867
6	0.60	100. 100	12.57	15.71	0.251	0.096	16.556	-2.920

Foglio 230 di 260

7	0.72	100, 100	12.57	15.71	0.362	0.116	23.867	-4.209
8	0.84	100, 100	12.57	15.71	0.493	0.135	32.520	-5.735
9	0.96	100, 100	12.57	15.71	0.645	0.155	42.520	-7.498
10	1.08	100, 100	12.57	15.71	0.817	0.174	53.871	-9.500
11	1.20	100, 100	12.57	15.71	1.010	0.194	66.577	-11.741

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 100	21.99	15.71	0.000	0.000	0.000	0.000
2	0.38	100, 100	21.99	15.71	0.021	-0.015	-0.255	1.165
3	0.76	100, 100	21.99	15.71	0.086	-0.030	-1.033	4.726
4	1.14	100, 100	21.99	15.71	0.195	-0.047	-2.356	10.779
5	1.52	100, 100	21.99	15.71	0.352	-0.063	-4.244	19.419
6	1.90	100, 100	21.99	15.71	0.557	-0.081	-6.720	30.745
7	2.28	100, 100	21.99	15.71	0.812	-0.099	-9.803	44.851
8	2.66	100, 100	21.99	15.71	1.119	-0.117	-13.516	61.836
9	3.04	100, 100	21.99	15.71	1.481	-0.136	-17.878	81.794
10	3.42	100, 100	21.99	15.71	1.898	-0.156	-22.912	104.824
11	3.80	100, 100	21.99	15.71	2.372	-0.177	-28.638	131.021

COMBINAZIONE n° 3

Fondazione di valle

L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 100	12.57	15.71	0.000	0.000	0.000	0.000
2	0.12	100, 100	12.57	15.71	0.013	0.025	0.877	-0.155
3	0.24	100, 100	12.57	15.71	0.053	0.050	3.496	-0.616
4	0.36	100, 100	12.57	15.71	0.119	0.075	7.838	-1.382
5	0.48	100, 100	12.57	15.71	0.211	0.100	13.885	-2.449
6	0.60	100, 100	12.57	15.71	0.328	0.124	21.618	-3.812
7	0.72	100, 100	12.57	15.71	0.470	0.148	31.020	-5.470
8	0.84	100, 100	12.57	15.71	0.638	0.172	42.072	-7.419
9	0.96	100, 100	12.57	15.71	0.830	0.196	54.755	-9.656
10	1.08	100, 100	12.57	15.71	1.047	0.219	69.051	-12.177
11	1.20	100, 100	12.57	15.71	1.288	0.242	84.942	-14.979

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 100	21.99	15.71	0.000	0.000	0.000	0.000
2	0.38	100, 100	21.99	15.71	0.051	-0.036	-0.618	2.829
3	0.76	100, 100	21.99	15.71	0.200	-0.068	-2.412	11.035
4	1.14	100, 100	21.99	15.71	0.438	-0.099	-5.289	24.199
5	1.52	100, 100	21.99	15.71	0.759	-0.126	-9.158	41.900
6	1.90	100, 100	21.99	15.71	1.153	-0.151	-13.927	63.717
7	2.28	100, 100	21.99	15.71	1.615	-0.173	-19.503	89.230
8	2.66	100, 100	21.99	15.71	2.137	-0.192	-25.796	118.019
9	3.04	100, 100	21.99	15.71	2.709	-0.209	-32.712	149.663
10	3.42	100, 100	21.99	15.71	3.326	-0.223	-40.161	183.742
11	3.80	100, 100	21.99	15.71	3.980	-0.235	-48.050	219.836

9.2 MURO H=5 m

 $N'_q = 5.84$

 $N'_{\gamma} = 0.67$

Foglio 231 di 260

9.2.1 Verifiche geotecniche

COMBINAZIONE n° 1

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale all Inclinazione linea di rottura in condizioni stat		129.2488 127.2852 22.4438 X = 2.85 10.00 60.83	[kN] [kN] [kN] [m] [°] [°]	Y = -3.47	[m]
Peso terrapieno gravante sulla fondazione a Baricentro terrapieno gravante sulla fondazio		359.1000 X = 1.43	[kN] [m]	Y = -2.50	[m]
Risultanti Risultante dei carichi applicati in dir. orizzont Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a va Momento stabilizzante rispetto allo spigolo a Sforzo normale sul piano di posa della fonda Sforzo tangenziale sul piano di posa della fonda Cccentricità rispetto al baricentro della fonda Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla nori Momento rispetto al baricentro della fondazio Carico ultimo della fondazione	e Ille I valle azione Indazione Izione male)	127.2852 544.0916 296.4121 1684.4763 544.0916 127.2852 -0.13 4.85 558.7819 13.17 -68.6420 2316.4895	[kN] [kNm] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [kN] [kN] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		4.85 0.09467 0.12969	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori inclinazione Fattori profondità	$N_c = 16.88$ $s_c = 1.00$ $i_c = 0.73$ $d_c = 1.05$	$N_{q} = 7.8$ $s_{q} = 1.0$ $i_{q} = 0.7$ $d_{q} = 1.0$)0 73)2	:	$N_{\gamma} = 4.07$ $S_{\gamma} = 1.00$ $S_{\gamma} = 0.16$ $S_{\gamma} = 1.02$
I coefficienti N' tengono conto dei fattori di fo		carico, inclinazione p			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento	5.68
Coefficiente di sicurezza a scorrimento	1.73
Coefficiente di sicurezza a carico ultimo	4.26
Coefficiente di sicurezza a stabilità globale	1.70

COMBINAZIONE n° 2

Valore della spinta statica	139.9932	[kN]		
Componente orizzontale della spinta statica	137.8664	[kN]		
Componente verticale della spinta statica	24.3096	[kN]		
Punto d'applicazione della spinta	X = 2.85	[m]	Y = -3.28	[m]
Inclinaz, della spinta rispetto alla normale alla superficie	10.00	[°]		
Inclinazione linea di rottura in condizioni statiche	62.39	[°]		

 $N'_c = 12.91$

Foglio 232 di 260

Peso terrapieno gravante sulla fondazione a monte	416.1000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.43	[m]	Y = -2.50	[m]

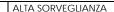
Risultanti

Risultante dei carichi applicati in dir. orizzontale	137.8664	[kN]
Risultante dei carichi applicati in dir. verticale	602.9574	[kN]
Momento ribaltante rispetto allo spigolo a valle	347.6368	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	1888.7501	[kNm]
Sforzo normale sul piano di posa della fondazione	602.9574	[kN]
Sforzo tangenziale sul piano di posa della fondazione	137.8664	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.13	[m]
Lunghezza fondazione reagente	4.85	[m]
Risultante in fondazione	618.5182	[kN]
Inclinazione della risultante (rispetto alla normale)	12.88	[°]
Momento rispetto al baricentro della fondazione	-78.9417	[kNm]
Carico ultimo della fondazione	2337.8063	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	4.85	[m]
Tensione terreno allo spigolo di valle	0.10419	[N/mmq]
Tensione terreno allo spigolo di monte	0.14446	[N/mma]

Fattori per il calcolo della capacità portante


Coeff. capacità portante	$N_c = 16.88$	$N_q = 7.82$	$N_{\gamma} = 4.07$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.73$	$i_q = 0.73$	$i_{\gamma} = 0.17$
Fattori profondità	$d_c = 1.05$	$d_{q} = 1.02$	$d_{\gamma} = 1.02$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_c = 12.91$ $N'_q = 5.84$ $N'_\gamma = 0.67$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento	5.43
Coefficiente di sicurezza a scorrimento	1.77
Coefficiente di sicurezza a carico ultimo	3.88
Coefficiente di sicurezza a stabilità globale	1.65

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	129.2488 127.2852 22.4438 X = 2.85 10.00 60.83	[kN] [kN] [kN] [m] [°] [°]	Y = -3.47	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	13.4246 X = 2.85 58.70	[kN] [m] [°]	Y = -1.93	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia del terrapieno fondazione di monte	359.1000 X = 1.43 7.8023 17.2368	[kN] [m] [kN] [kN]	Y = -2.50	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle	165.5450 546.4228 415.6936 1695.7824	[kN] [kN] [kNm] [kNm]		

Foglio 233 di 260

Sforzo normale sul piano di posa della fondazione 546.4228 [kN] Sforzo tangenziale sul piano di posa della fondazione 165.5450 [kN] Eccentricità rispetto al baricentro della fondazione 0.08 [m] Lunghezza fondazione reagente 4 85 [m]570.9492 Risultante in fondazione [kN] Inclinazione della risultante (rispetto alla normale) 16.85 [°] [kNm] Momento rispetto al baricentro della fondazione 44.9864 Carico ultimo della fondazione 2052.9650 [kN]

Tensioni sul terreno

Lunghezza fondazione reagente4.85[m]Tensione terreno allo spigolo di valle0.12414[N/mmq]Tensione terreno allo spigolo di monte0.10119[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante $N_c = 16.88$ $N_{\gamma} = 4.07$ $N_q = 7.82$ Fattori forma $s_c = 1.00$ $s_q = 1.00$ $s_{y} = 1.00$ $i_q = 0.66$ Fattori inclinazione $i_c = 0.66$ $i_{y} = 0.05$ Fattori profondità $d_c = 1.05$ $d_q = 1.02$ $d_v = 1.02$ I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 12.91$ $N'_{g} = 5.84$ $N'_{y} = 0.67$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento4.08Coefficiente di sicurezza a scorrimento1.33Coefficiente di sicurezza a carico ultimo3.76Coefficiente di sicurezza a stabilità globale1.60

STABILITÀ GLOBALE MURO + TERRENO

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W peso della striscia espresso in [kN]

 α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [N/mmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Fellenius

Numero di cerchi analizzati 36

Numero di strisce 25

Combinazione n° 1

Cerchio critico

Coordinate del centro X[m]= -0.99 Y[m]= 0.50

Raggio del cerchio R[m]= 7.37

Ascissa a valle del cerchio Xi[m]= -5.92
Ascissa a monte del cerchio Xs[m]= 6.37
Larghezza della striscia dx[m]= 0.49
Coefficiente di sicurezza C= 1.70
Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	2788.02	77.28	2719.60	2.23	35.00	0.000	0.000

Foglio 234 di 260

2	4232.67	64.33	3814.87	1.14	35.00	0.000	0.000
3	5028.95	56.46	4191.41	0.89	35.00	0.000	0.000
4	5628.25	50.02	4312.86	0.77	35.00	0.000	0.000
5	6109.96	44.37	4272.90	0.69	35.00	0.000	0.000
6	6508.22	39.23	4116.29	0.63	35.00	0.000	0.000
7	6841.60	34.45	3870.09	0.60	35.00	0.000	0.000
8	7347.91	29.93	3665.83	0.57	24.33	0.251	0.000
9	7647.54	25.60	3304.79	0.55	22.00	0.306	0.000
10	7859.90	21.43	2871.96	0.53	22.00	0.306	0.000
11	8031.89	17.38	2398.80	0.52	22.00	0.306	0.000
12	8166.38	13.41	1894.03	0.51	22.00	0.306	0.000
13	8256.34	9.51	1364.00	0.50	22.00	0.306	0.000
14	7532.50	5.65	741.83	0.49	22.00	0.306	0.000
15	3042.79	1.82	96.65	0.49	22.00	0.306	0.000
16	2010.66	-2.00	-70.28	0.49	22.00	0.306	0.000
17	1977.47	-5.84	-201.06	0.49	22.00	0.306	0.000
18	1700.57	-9.69	-286.37	0.50	22.00	0.306	0.000
19	1592.27	-13.60	-374.38	0.51	22.00	0.306	0.000
20	1454.58	-17.57	-439.07	0.52	22.00	0.306	0.000
21	1278.77	-21.63	-471.34	0.53	22.00	0.306	0.000
22	1061.80	-25.81	-462.23	0.55	22.00	0.306	0.000
23	800.21	-30.14	-401.77	0.57	24.98	0.236	0.000
24	509.42	-34.67	-289.79	0.60	35.00	0.000	0.000
25	173.23	-39.47	-110.12	0.64	35.00	0.000	0.000

 ΣW_i = 1055.0350 [kN] $\Sigma W_i \sin \alpha_i = 397.4648 [kN]$ $\Sigma W_i \cos \alpha_i \tan \phi_i = 433.9556 \text{ [kN]}$ $\Sigma c_i b_i / \cos \alpha_i = 241.9373 \text{ [kN]}$

Combinazione n° 2

Cerchio critico

Coordinate del centro X[m] = -0.99

Raggio del cerchio R[m]= 6.96 Ascissa a valle del cerchio Xi

Larghezza della striscia

Xi[m]= -5.84 Ascissa a monte del cerchio Xs[m]= 5.97 dx[m]= 0.47 C= 1.65

Coefficiente di sicurezza Le strisce sono numerate da monte verso valle Y[m] = 0.00

Striscia	w	α(°)	Wsinα	b/cosα	ф	С	u
1	2824.24	79.38	2775.91	2.56	35.00	0.000	0.000
2	4340.20	64.28	3910.34	1.09	35.00	0.000	0.000
3	5071.47	56.29	4218.90	0.85	35.00	0.000	0.000
4	5619.88	49.78	4290.90	0.73	35.00	0.000	0.000
5	6864.00	44.06	4773.06	0.66	35.00	0.000	0.000
6	7385.01	38.85	4632.83	0.61	35.00	0.000	0.000
7	7790.10	34.01	4357.29	0.57	30.08	0.116	0.000
8	8213.33	29.43	4035.82	0.54	22.00	0.306	0.000
9	8444.91	25.05	3575.84	0.52	22.00	0.306	0.000
10	8635.37	20.82	3069.89	0.51	22.00	0.306	0.000
11	8788.38	16.71	2527.38	0.49	22.00	0.306	0.000
12	8906.56	12.69	1956.48	0.48	22.00	0.306	0.000
13	8556.12	8.73	1298.45	0.48	22.00	0.306	0.000
14	6371.76	4.81	534.27	0.47	22.00	0.306	0.000
15	2306.78	0.91	36.78	0.47	22.00	0.306	0.000
16	1998.89	-2.98	-103.87	0.47	22.00	0.306	0.000
17	1934.35	-6.88	-231.87	0.48	22.00	0.306	0.000
18	1683.07	-10.82	-316.04	0.48	22.00	0.306	0.000
19	1579.52	-14.81	-403.87	0.49	22.00	0.306	0.000
20	1441.70	-18.88	-466.54	0.50	22.00	0.306	0.000
21	1267.28	-23.05	-496.18	0.51	22.00	0.306	0.000
22	1053.03	-27.35	-483.83	0.53	22.00	0.306	0.000

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 235 di 260

23	794.69	-31.83	-419.13	0.56	23.84	0.263	0.000
24	505.75	-36.54	-301.12	0.59	35.00	0.000	0.000
25	172.85	-41.56	-114.67	0.63	35.00	0.000	0.000

orzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 236 di 260

Combinazione n° 3

Cerchio critico

Coordinate del centro X[m] = -0.99

Raggio del cerchio R[m]= 7.80 Ascissa a valle del cerchio Xi Xi[m] = -6.00Ascissa a monte del cerchio Xs[m]= 6.76 Larghezza della striscia dx[m]= 0.51 Coefficiente di sicurezza C= 1.60

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	2774.67	75.16	2682.08	1.99	35.00	0.000	0.000
2	4161.94	63.81	3734.50	1.16	35.00	0.000	0.000
3	5004.38	56.19	4157.92	0.92	35.00	0.000	0.000
4	5644.94	49.91	4318.36	0.79	35.00	0.000	0.000
5	6162.52	44.37	4309.64	0.71	35.00	0.000	0.000
6	6592.05	39.33	4177.73	0.66	35.00	0.000	0.000
7	6952.81	34.63	3950.75	0.62	35.00	0.000	0.000
8	7352.10	30.18	3696.07	0.59	30.76	0.100	0.000
9	7803.07	25.93	3411.82	0.57	22.00	0.306	0.000
10	8035.56	21.82	2987.39	0.55	22.00	0.306	0.000
11	8225.10	17.84	2519.43	0.54	22.00	0.306	0.000
12	8374.75	13.94	2017.09	0.53	22.00	0.306	0.000
13	8486.74	10.10	1488.59	0.52	22.00	0.306	0.000
14	8275.18	6.31	909.89	0.51	22.00	0.306	0.000
15	4108.59	2.55	182.86	0.51	22.00	0.306	0.000
16	2019.71	-1.20	-42.29	0.51	22.00	0.306	0.000
17	1991.70	-4.96	-172.06	0.51	22.00	0.306	0.000
18	1738.56	-8.73	-263.97	0.52	22.00	0.306	0.000
19	1602.52	-12.55	-348.20	0.52	22.00	0.306	0.000
20	1465.17	-16.42	-414.26	0.53	22.00	0.306	0.000
21	1288.30	-20.38	-448.58	0.54	22.00	0.306	0.000
22	1069.06	-24.44	-442.23	0.56	22.00	0.306	0.000
23	804.92	-28.63	-385.67	0.58	26.07	0.210	0.000
24	512.48	-33.00	-279.11	0.61	35.00	0.000	0.000
25	173.30	-37.60	-105.74	0.64	35.00	0.000	0.000

Y[m] = 0.99

 ΣW_i = 1084.8299 [kN] $\Sigma W_{i} \sin \alpha_{i} = 408.3749 \text{ [kN]}$ $\Sigma W_i \cos \alpha_i \tan \phi_i = 456.1404 \text{ [kN]}$ $\Sigma c_i b_i / cos \alpha_i = 240.3424 \text{ [kN]}$

orzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 237 di 260

Combinazione n° 4

Cerchio critico

Coordinate del centro X[m] = -0.99

Raggio del cerchio R[m]= 7.37 Ascissa a valle del cerchio X Xi[m] = -5.92Ascissa a monte del cerchio Xs[m]= 6.37 Larghezza della striscia dx[m]= 0.49 Coefficiente di sicurezza C= 1.55

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	2788.02	77.28	2719.60	2.23	35.00	0.000	0.000
2	4232.67	64.33	3814.87	1.14	35.00	0.000	0.000
3	5028.95	56.46	4191.41	0.89	35.00	0.000	0.000
4	5628.25	50.02	4312.86	0.77	35.00	0.000	0.000
5	6282.79	44.37	4393.77	0.69	35.00	0.000	0.000
6	7511.01	39.23	4750.53	0.63	35.00	0.000	0.000
7	7844.39	34.45	4437.33	0.60	35.00	0.000	0.000
8	8350.69	29.93	4166.11	0.57	24.33	0.251	0.000
9	8650.32	25.60	3738.13	0.55	22.00	0.306	0.000
10	8862.69	21.43	3238.37	0.53	22.00	0.306	0.000
11	9034.67	17.38	2698.29	0.52	22.00	0.306	0.000
12	9169.16	13.41	2126.61	0.51	22.00	0.306	0.000
13	9221.63	9.51	1523.47	0.50	22.00	0.306	0.000
14	7532.50	5.65	741.83	0.49	22.00	0.306	0.000
15	3042.79	1.82	96.65	0.49	22.00	0.306	0.000
16	2010.66	-2.00	-70.28	0.49	22.00	0.306	0.000
17	1977.47	-5.84	-201.06	0.49	22.00	0.306	0.000
18	1700.57	-9.69	-286.37	0.50	22.00	0.306	0.000
19	1592.27	-13.60	-374.38	0.51	22.00	0.306	0.000
20	1454.58	-17.57	-439.07	0.52	22.00	0.306	0.000
21	1278.77	-21.63	-471.34	0.53	22.00	0.306	0.000
22	1061.80	-25.81	-462.23	0.55	22.00	0.306	0.000
23	800.21	-30.14	-401.77	0.57	24.98	0.236	0.000
24	509.42	-34.67	-289.79	0.60	35.00	0.000	0.000
25	173.23	-39.47	-110.12	0.64	35.00	0.000	0.000

Y[m] = 0.50

 ΣW_i = 1135.0350 [kN] $\Sigma W_{i} \sin \alpha_{i} = 429.9637 \text{ [kN]}$ Σ W_icosα_itanφ_i= 468.3794 [kN] $\Sigma c_i b_i / cos \alpha_i = 241.9373 [kN]$

orzio Collegamenti Integrati Veloc

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 238 di 260

9.2.2 Verifiche strutturali

Paramento verticale del muro

base della sezione espressa in [cm]

Н altezza della sezione espressa in [cm] A_{fs}

area di armatura in corrispondenza del lembo di monte in [cmq] area di armatura in corrispondenza del lembo di valle in [cmq] tensione nel calcestruzzo espressa in [N/mmq] $A_{\text{fi}} \\$

 σ_{c}

tensione tangenziale nel calcestruzzo espressa in [N/mmq] τ_{c}

tensione nell'armatura disposta sul lembo di monte in [N/mmq] σ_{fs}

tensione nell'armatura disposta sul lembo di valle in [N/mmq] σ_{fi}

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	8.04	8.04	0.000	0.000	0.000	0.000
2	0.25	100, 33	8.04	8.04	0.026	0.010	0.332	-0.283
3	0.50	100, 35	8.04	8.04	0.100	0.019	2.780	-0.951
4	0.75	100, 38	8.04	8.04	0.210	0.028	7.313	-1.896
5	1.00	100, 40	8.04	8.04	0.346	0.037	13.688	-3.089
6	1.25	100, 43	8.04	8.04	0.503	0.045	21.747	-4.506
7	1.50	100, 45	8.04	8.04	0.679	0.053	31.371	-6.126
8	1.75	100, 48	8.04	8.04	0.869	0.061	42.470	-7.932
9	2.00	100, 50	8.04	8.04	1.073	0.069	54.976	-9.908
10	2.25	100, 53	8.04	8.04	1.288	0.076	68.834	-12.043
11	2.50	100, 55	16.08	8.04	1.168	0.084	43.422	-12.740
12	2.75	100, 58	16.08	8.04	1.347	0.091	51.861	-14.811
13	3.00	100, 60	16.08	8.04	1.532	0.099	60.932	-16.980
14	3.25	100, 63	16.08	8.04	1.722	0.106	70.622	-19.240
15	3.50	100, 65	16.08	8.04	1.919	0.113	80.922	-21.585
16	3.75	100, 68	16.08	8.04	2.120	0.121	91.822	-24.013
17	4.00	100, 70	16.08	8.04	2.326	0.128	103.314	-26.518
18	4.25	100, 73	16.08	8.04	2.537	0.135	115.393	-29.099
19	4.50	100, 75	32.17	16.08	2.036	0.142	65.792	-25.110
20	4.75	100, 78	16.08	8.04	2.972	0.149	141.288	-34.472
21	5.00	100, 80	16.08	8.04	3.196	0.156	155.093	-37.259

Foglio 239 di 260

COMBINAZIONE n° 2

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	τ _c	$\sigma_{\!\scriptscriptstyle fs}$	$\sigma_{\rm fi}$
1	0.00	100, 30	8.04	8.04	0.000	0.000	0.000	0.000
2	0.25	100, 33	8.04	8.04	0.042	0.015	0.979	-0.409
3	0.50	100, 35	8.04	8.04	0.156	0.029	5.433	-1.337
4	0.75	100, 38	8.04	8.04	0.319	0.041	12.892	-2.668
5	1.00	100, 40	8.04	8.04	0.517	0.053	22.928	-4.346
6	1.25	100, 43	8.04	8.04	0.743	0.064	35.234	-6.324
7	1.50	100, 45	8.04	8.04	0.990	0.074	49.582	-8.563
8	1.75	100, 48	8.04	8.04	1.254	0.085	65.794	-11.033
9	2.00	100, 50	8.04	8.04	1.532	0.094	83.736	-13.707
10	2.25	100, 53	8.04	8.04	1.823	0.104	103.301	-16.564
11	2.50	100, 55	16.08	8.04	1.631	0.113	64.045	-17.522
12	2.75	100, 58	16.08	8.04	1.866	0.122	75.608	-20.238
13	3.00	100, 60	16.08	8.04	2.106	0.130	87.886	-23.053
14	3.25	100, 63	16.08	8.04	2.351	0.139	100.857	-25.958
15	3.50	100, 65	16.08	8.04	2.601	0.147	114.500	-28.947
16	3.75	100, 68	16.08	8.04	2.855	0.155	128.798	-32.014
17	4.00	100, 70	16.08	8.04	3.113	0.163	143.738	-35.154
18	4.25	100, 73	16.08	8.04	3.375	0.171	159.306	-38.363
19	4.50	100, 75	32.17	16.08	2.683	0.179	89.974	-32.908
20	4.75	100, 78	16.08	8.04	3.909	0.187	192.291	-44.974
21	5.00	100, 80	16.08	8.04	4.180	0.195	209.688	-48.370

Nr.	Y	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	σ_{fs}	σ_{fi}
1	0.00	100, 30	8.04	8.04	0.000	0.000	0.000	0.000
2	0.25	100, 33	8.04	8.04	0.041	0.014	0.912	-0.397
3	0.50	100, 35	8.04	8.04	0.150	0.027	5.139	-1.296
4	0.75	100, 38	8.04	8.04	0.305	0.039	12.206	-2.575
5	1.00	100, 40	8.04	8.04	0.494	0.050	21.679	-4.178
6	1.25	100, 43	8.04	8.04	0.708	0.061	33.246	-6.058
7	1.50	100, 45	8.04	8.04	0.940	0.070	46.674	-8.177
8	1.75	100, 48	8.04	8.04	1.188	0.079	61.786	-10.503
9	2.00	100, 50	8.04	8.04	1.448	0.088	78.445	-13.011
10	2.25	100, 53	8.04	8.04	1.718	0.097	96.541	-15.681
11	2.50	100, 55	16.08	8.04	1.535	0.105	59.750	-16.528
12	2.75	100, 58	16.08	8.04	1.751	0.113	70.375	-19.045
13	3.00	100, 60	16.08	8.04	1.972	0.121	81.621	-21.644
14	3.25	100, 63	16.08	8.04	2.198	0.128	93.463	-24.318
15	3.50	100, 65	16.08	8.04	2.426	0.136	105.883	-27.061
16	3.75	100, 68	16.08	8.04	2.658	0.143	118.862	-29.867
17	4.00	100, 70	16.08	8.04	2.892	0.150	132.388	-32.732
18	4.25	100, 73	16.08	8.04	3.130	0.157	146.446	-35.653
19	4.50	100, 75	32.17	16.08	2.486	0.164	82.600	-30.532
20	4.75	100, 78	16.08	8.04	3.612	0.171	176.124	-41.649
21	5.00	100, 80	16.08	8.04	3.857	0.177	191.723	-44.718

Foglio 240 di 260

Fondazione del muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- σ_c tensione nel calcestruzzo espressa in [N/mmq]
- au_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

COMBINAZIONE n° 1

Fondazione di valle

L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 80	12.57	12.57	0.000	0.000	0.000	0.000
2	0.12	100, 80	12.57	12.57	0.009	0.014	0.604	-0.097
3	0.24	100, 80	12.57	12.57	0.037	0.028	2.427	-0.391
4	0.36	100, 80	12.57	12.57	0.083	0.043	5.481	-0.884
5	0.48	100, 80	12.57	12.57	0.147	0.057	9.780	-1.578
6	0.60	100, 80	12.57	12.57	0.231	0.072	15.339	-2.474
7	0.72	100, 80	12.57	12.57	0.334	0.087	22.172	-3.577
8	0.84	100, 80	12.57	12.57	0.456	0.102	30.292	-4.886
9	0.96	100, 80	12.57	12.57	0.598	0.117	39.714	-6.406
10	1.08	100, 80	12.57	12.57	0.760	0.132	50.450	-8.138
11	1.20	100, 80	12.57	12.57	0.941	0.147	62.516	-10.084

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 80	12.57	12.57	0.000	0.000	0.000	0.000
2	0.28	100, 80	12.57	12.57	0.011	-0.007	-0.121	0.751
3	0.57	100, 80	12.57	12.57	0.047	-0.016	-0.505	3.129
4	0.85	100, 80	12.57	12.57	0.110	-0.025	-1.181	7.320
5	1.14	100, 80	12.57	12.57	0.203	-0.035	-2.179	13.510
6	1.42	100, 80	12.57	12.57	0.329	-0.046	-3.530	21.885
7	1.71	100, 80	12.57	12.57	0.491	-0.058	-5.264	32.631
8	2.00	100, 80	12.57	12.57	0.692	-0.071	-7.410	45.935
9	2.28	100, 80	12.57	12.57	0.933	-0.085	-9.998	61.982
10	2.56	100, 80	12.57	12.57	1.219	-0.100	-13.059	80.959
11	2.85	100, 80	12.57	12.57	1.551	-0.116	-16.623	103.053

COMBINAZIONE n° 2

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 80	12.57	12.57	0.000	0.000	0.000	0.000
2	0.12	100, 80	12.57	12.57	0.010	0.016	0.681	-0.110
3	0.24	100, 80	12.57	12.57	0.041	0.032	2.734	-0.441
4	0.36	100, 80	12.57	12.57	0.093	0.048	6.176	-0.996
5	0.48	100, 80	12.57	12.57	0.166	0.064	11.023	-1.778
6	0.60	100, 80	12.57	12.57	0.260	0.081	17.290	-2.789
7	0.72	100, 80	12.57	12.57	0.376	0.098	24.993	-4.032
8	0.84	100, 80	12.57	12.57	0.514	0.115	34.149	-5.509
9	0.96	100. 80	12.57	12.57	0.674	0.132	44.773	-7.222

ALTA SORVEGLIANZA

Consorzio Collegamenti Integrati Veloc

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 241 di 260

10	1.08	100, 80	12.57	12.57	0.856	0.149	56.882	-9.176
11	1.20	100.80	12.57	12.57	1.061	0.166	70.491	-11.371

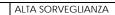
Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 80	12.57	12.57	0.000	0.000	0.000	0.000
2	0.28	100, 80	12.57	12.57	0.015	-0.010	-0.160	0.993
3	0.57	100, 80	12.57	12.57	0.062	-0.021	-0.664	4.114
4	0.85	100, 80	12.57	12.57	0.144	-0.033	-1.545	9.577
5	1.14	100, 80	12.57	12.57	0.265	-0.046	-2.839	17.597
6	1.42	100, 80	12.57	12.57	0.427	-0.060	-4.579	28.388
7	1.71	100, 80	12.57	12.57	0.635	-0.075	-6.801	42.163
8	2.00	100, 80	12.57	12.57	0.890	-0.091	-9.539	59.137
9	2.28	100, 80	12.57	12.57	1.197	-0.108	-12.828	79.524
10	2.56	100, 80	12.57	12.57	1.559	-0.126	-16.702	103.538
11	2.85	100, 80	12.57	12.57	1.978	-0.146	-21.195	131.393

COMBINAZIONE n° 3

Fondazione di valle


(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 80	12.57	12.57	0.000	0.000	0.000	0.000
2	0.12	100, 80	12.57	12.57	0.013	0.019	0.837	-0.135
3	0.24	100, 80	12.57	12.57	0.050	0.039	3.341	-0.539
4	0.36	100, 80	12.57	12.57	0.113	0.058	7.504	-1.210
5	0.48	100, 80	12.57	12.57	0.200	0.077	13.316	-2.148
6	0.60	100, 80	12.57	12.57	0.313	0.096	20.768	-3.350
7	0.72	100, 80	12.57	12.57	0.449	0.115	29.851	-4.815
8	0.84	100, 80	12.57	12.57	0.611	0.133	40.556	-6.542
9	0.96	100, 80	12.57	12.57	0.796	0.152	52.874	-8.529
10	1.08	100, 80	12.57	12.57	1.006	0.170	66.796	-10.775
11	1.20	100, 80	12.57	12.57	1.239	0.189	82.312	-13.278

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	х	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 80	12.57	12.57	0.000	0.000	0.000	0.000
2	0.28	100, 80	12.57	12.57	0.030	-0.019	-0.321	1.989
3	0.57	100, 80	12.57	12.57	0.119	-0.038	-1.270	7.876
4	0.85	100, 80	12.57	12.57	0.264	-0.056	-2.829	17.538
5	1.14	100, 80	12.57	12.57	0.464	-0.074	-4.977	30.853
6	1.42	100, 80	12.57	12.57	0.718	-0.091	-7.694	47.700
7	1.71	100, 80	12.57	12.57	1.023	-0.107	-10.962	67.955
8	2.00	100, 80	12.57	12.57	1.378	-0.123	-14.759	91.498
9	2.28	100, 80	12.57	12.57	1.780	-0.138	-19.068	118.206
10	2.56	100, 80	12.57	12.57	2.228	-0.152	-23.867	147.958
11	2.85	100, 80	12.57	12.57	2.719	-0.166	-29.137	180.630

Foglio 242 di 260

9.3 MURO H=4.25 m

9.3.1 Verifiche geotecniche

COMBINAZIONE n° 1

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale a Inclinazione linea di rottura in condizioni sta	lla superficie	101.6911 100.1462 17.6585 X = 2.50 10.00 60.83	[kN] [kN] [kN] [m] [°]	Y = -2.95	[m]
Peso terrapieno gravante sulla fondazione a Baricentro terrapieno gravante sulla fondaz		281.2500 X = 1.25	[kN] [m]	Y = -2.13	[m]
Risultanti Risultante dei carichi applicati in dir. orizzor Risultante dei carichi applicati in dir. vertica Momento ribaltante rispetto allo spigolo a vi Momento stabilizzante rispetto allo spigolo Sforzo normale sul piano di posa della fond Sforzo tangenziale sul piano di posa della fond Eccentricità rispetto al baricentro della fond Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla no Momento rispetto al baricentro della fondaz Carico ultimo della fondazione	lle alle a valle lazione ondazione lazione azione	100.1462 431.5057 203.3297 1234.6578 431.5057 100.1462 -0.18 4.42 442.9745 13.07 -76.6217 2016.7417	[kN] [kNm] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [kN] [kN] [kN] [kN] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		4.42 0.07404 0.12099	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori inclinazione Fattori profondità I coefficienti N' tengono conto dei fattori di f	$N_c = 16.88$ $s_c = 1.00$ $i_c = 0.73$ $d_c = 1.05$	$\begin{array}{c} N_q=7.\\ s_q=1.\\ i_q=0.\\ d_q=1.\\ \end{array}$ e carico, inclinazione μ	00 73 02 biano di posa	, inclinazione	$N_{\gamma} = 4.07$ $s_{\gamma} = 1.00$ $i_{\gamma} = 0.16$ $d_{\gamma} = 1.02$ a pendio. $s_{\gamma} = 0.69$
COEFFICIENTI DI SICUREZZA					

COEFFICIENTI DI SICUREZZA

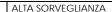
Coefficiente di sicurezza a ribaltamento	6.07
Coefficiente di sicurezza a scorrimento	1.74
Coefficiente di sicurezza a carico ultimo	4.67
Coefficiente di sicurezza a stabilità globale	1.77

Valore della spinta statica	116.0051	[kN]
Componente orizzontale della spinta statica	114.2427	[kN]
Componente verticale della spinta statica	20.1441	[kN]

Foglio 243 di 260

Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	X = 2.50 10.00 63.45	[m] [°] [°]	Y = -2.76	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	331.2500 X = 1.25	[kN] [m]	Y = -2.13	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	114.2427 483.9913 254.1696 1404.4066 483.9913 114.2427 -0.16 4.42 497.2916 13.28 -79.4063 2013.5680	[kN] [kN] [kNm] [kNm] [kN] [m] [m] [kN] [kN] [kN] [kN] [sh] [kN] [sh] [kN] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	4.42 0.08504 0.13371	[m] [N/mmq] [N/mmq]		

	Fattori per	<u>il calcolo</u>	della ca	<u>ipacità</u>	<u>portante</u>	
--	-------------	-------------------	----------	----------------	-----------------	--


Coeff. capacità portante	$N_c = 16.88$	$N_q = 7.82$	$N_{\gamma} = 4.07$			
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$			
Fattori inclinazione	$i_c = 0.73$	$i_q = 0.73$	$i_{\gamma} = 0.16$			
Fattori profondità	$d_c = 1.05$	$d_q = 1.02$	$d_{\gamma} = 1.02$			
I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.						
	$N'_{c} = 12.94$	$N'_{q} = 5.85$	$N'_{\gamma} = 0.69$			

COEF	FICIENTI	DI SICUREZZA

Coefficiente di sicurezza a ribaltamento	5.53
Coefficiente di sicurezza a scorrimento	1.71
Coefficiente di sicurezza a carico ultimo	4.16
Coefficiente di sicurezza a stabilità globale	1.68

COMBINAZIONE n° 3				
Valore della spinta statica	101.6911	[kN]		
Componente orizzontale della spinta statica	100.1462	[kN]		
Componente verticale della spinta statica	17.6585	[kN]		
Punto d'applicazione della spinta	X = 2.50	[m]	Y = -2.95	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	10.00	[°]		
Inclinazione linea di rottura in condizioni statiche	60.83	[°]		
Incremento sismico della spinta	10.5623	[kN]		
Punto d'applicazione dell'incremento sismico di spinta	X = 2.50	[m]	Y = -1.66	[m]
Inclinazione linea di rottura in condizioni sismiche	58.70	[°]		
Peso terrapieno gravante sulla fondazione a monte	281.2500	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.25	[m]	Y = -2.13	[m]
Inerzia del muro	6.3647	[kN]		
Inerzia del terrapieno fondazione di monte	13.5000	[kN]		
Risultanti				

<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	130.4126	[kN]
Risultante dei carichi applicati in dir. verticale	433.3398	[kN]
Momento ribaltante rispetto allo spigolo a valle	284.3590	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	1242.7737	[kNm]

Foglio 244 di 260

Sforzo normale sul piano di posa della fondazione	433.3398	[kN]
Sforzo tangenziale sul piano di posa della fondazione	130.4126	[kN]
Eccentricità rispetto al baricentro della fondazione	0.00	[m]
Lunghezza fondazione reagente	4.42	[m]
Risultante in fondazione	452.5382	[kN]
Inclinazione della risultante (rispetto alla normale)	16.75	[°]
Momento rispetto al baricentro della fondazione	0.3496	[kNm]
Carico ultimo della fondazione	1911.6481	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente 4.42 [m] 0.09804 Tensione terreno allo spigolo di valle [N/mmq] Tensione terreno allo spigolo di monte 0.09782 [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 16.88$	$N_q = 7.82$	$N_{\gamma} = 4.07$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.66$	$i_{q} = 0.66$	$i_{\gamma} = 0.06$
Fattori profondità	$d_c = 1.05$	$d_{q} = 1.02$	$d_{\gamma} = 1.02$
I coefficienti N' tengono conto dei fattori di	forma, profondità, inclinazione ca	rico, inclinazione piano di posa	, inclinazione pendio.

 $N'_c = 12.94$

 $N'_{q} = 5.85$

 $N'_{y} = 0.69$

COEFFICIENTI DI SICUREZZA

4.37 Coefficiente di sicurezza a ribaltamento Coefficiente di sicurezza a scorrimento 1.34 Coefficiente di sicurezza a carico ultimo 4.41 Coefficiente di sicurezza a stabilità globale 1 66

STABILITÀ GLOBALE MURO + TERRENO

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia φ

С coesione del terreno lungo la base della striscia espressa in [N/mmq]

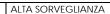
b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [N/mmq] и

Metodo di Fellenius

Numero di cerchi analizzati Numero di strisce 25

Combinazione n° 1


Cerchio critico

X[m] = -0.43Y[m] = 0.43Coordinate del centro

Raggio del cerchio R[m]= 6.15

Ascissa a valle del cerchio Xi[m] = -4.43Ascissa a monte del cerchio Xs[m]= 5.71 Larghezza della striscia dx[m] = 0.41Coefficiente di sicurezza C= 1.77 Le strisce sono numerate da monte verso valle

Striscia W α(°) Wsinα b/cosa

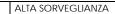
Foglio 245 di 260

1	2158.18	77.26	2105.03	1.84	35.00	0.000	0.000
2	3142.44	64.43	2834.60	0.94	35.00	0.000	0.000
3	3687.59	56.61	3078.82	0.74	35.00	0.000	0.000
4	4098.40	50.21	3149.41	0.63	35.00	0.000	0.000
5	4428.99	44.60	3110.02	0.57	35.00	0.000	0.000
6	4702.65	39.50	2991.07	0.53	35.00	0.000	0.000
7	4932.08	34.75	2810.95	0.49	35.00	0.000	0.000
8	5142.00	30.26	2590.83	0.47	33.98	0.024	0.000
9	5492.06	25.96	2404.42	0.45	22.00	0.306	0.000
10	5639.08	21.82	2096.35	0.44	22.00	0.306	0.000
11	5758.73	17.80	1760.55	0.43	22.00	0.306	0.000
12	5852.96	13.87	1402.89	0.42	22.00	0.306	0.000
13	5923.21	10.00	1028.64	0.41	22.00	0.306	0.000
14	5970.47	6.18	642.66	0.41	22.00	0.306	0.000
15	5564.36	2.39	231.58	0.41	22.00	0.306	0.000
16	2830.81	-1.40	-69.08	0.41	22.00	0.306	0.000
17	1301.22	-5.19	-117.66	0.41	22.00	0.306	0.000
18	1260.48	-9.00	-197.20	0.41	22.00	0.306	0.000
19	1166.48	-12.85	-259.51	0.42	22.00	0.306	0.000
20	938.51	-16.77	-270.76	0.42	22.00	0.306	0.000
21	824.22	-20.76	-292.21	0.43	22.00	0.306	0.000
22	682.69	-24.87	-287.12	0.45	22.00	0.306	0.000
23	515.53	-29.12	-250.87	0.46	30.76	0.100	0.000
24	330.09	-33.55	-182.44	0.49	35.00	0.000	0.000
25	110.78	-38.23	-68.55	0.52	35.00	0.000	0.000

 ΣW_i = 808.6106 [kN] $\Sigma W_{i} \sin \alpha_{i} = 296.5815 [kN]$ Σ W_icos α _itan ϕ _i= 341.4568 [kN] $\Sigma c_i b_i / \cos \alpha_i = 182.8135 [kN]$

Combinazione n° 2

Cerchio critico


X[m] = -0.86Coordinate del centro Y[m] = 0.00

Raggio del cerchio R[m]= 6.01

Ascissa a valle del cerchio Xi[m]= -5.11
Ascissa a monte del cerchio Xs[m]= 5.15
Larghezza della striscia dx[m]= 0.41 Coefficiente di sicurezza C= 1.68

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	2328.79	79.35	2288.66	2.22	35.00	0.000	0.000
2	3470.55	64.19	3124.40	0.94	35.00	0.000	0.000
3	4189.38	56.17	3480.14	0.74	35.00	0.000	0.000
4	5270.68	49.63	4015.49	0.63	35.00	0.000	0.000
5	5601.26	43.89	3882.96	0.57	35.00	0.000	0.000
6	5873.68	38.66	3669.31	0.53	35.00	0.000	0.000
7	6212.65	33.80	3455.67	0.49	28.18	0.160	0.000
8	6508.53	29.20	3174.79	0.47	22.00	0.306	0.000
9	6681.66	24.79	2802.07	0.45	22.00	0.306	0.000
10	6823.70	20.55	2394.85	0.44	22.00	0.306	0.000
11	6937.41	16.41	1960.24	0.43	22.00	0.306	0.000
12	7024.73	12.37	1504.47	0.42	22.00	0.306	0.000
13	6520.59	8.38	950.57	0.41	22.00	0.306	0.000
14	4776.49	4.44	369.67	0.41	22.00	0.306	0.000
15	1766.61	0.52	15.91	0.41	22.00	0.306	0.000
16	1560.49	-3.40	-92.66	0.41	22.00	0.306	0.000
17	1528.72	-7.34	-195.31	0.41	22.00	0.306	0.000
18	1346.65	-11.31	-264.15	0.42	22.00	0.306	0.000
19	1226.53	-15.34	-324.47	0.43	22.00	0.306	0.000
20	1118.74	-19.45	-372.47	0.44	22.00	0.306	0.000
21	982.80	-23.66	-394.44	0.45	22.00	0.306	0.000

Foglio 246 di 260

22	816.10	-28.02	-383.37	0.46	22.00	0.306	0.000
23	615.43	-32.56	-331.22	0.49	24.65	0.244	0.000
24	391.74	-37.35	-237.65	0.52	35.00	0.000	0.000
25	132.23	-42.47	-89.28	0.56	35.00	0.000	0.000

 $\Sigma W_i = 879.7308 [kN]$ $\Sigma W_i \sin \alpha_i = 337.3951 [kN]$ $\Sigma W_i \cos \alpha_i \tan \phi_i = 353.8184 \text{ [kN]}$ $\Sigma c_i b_i / \cos \alpha_i = 213.3140 \text{ [kN]}$

Combinazione n° 3

Cerchio critico

X[m] = -0.43Coordinate del centro

1322.50

1281.32

1196.96

952.17

836.47

692.48

523.14

334.52

111.41

-4.33

-8.06

-11.83

-15.65

-19.55

-23.54

-27.65

-31.93

-36.42

Raggio del cerchio R[m]= 6.53

Ascissa a valle del cerchio Xi[m] = -4.51Ascissa a monte del cerchio Xs[m]= 6.05 dx[m] = 0.42Larghezza della striscia Coefficiente di sicurezza C= 1.66 Le strisce sono numerate da monte verso valle

Y[m] = 0.86

Striscia	w	α(°)	Wsinα	b/cosα	ф	С	u
1	2165.13	75.04	2091.79	1.64	35.00	0.000	0.000
2	3112.77	63.86	2794.31	0.96	35.00	0.000	0.000
3	3692.54	56.30	3072.07	0.76	35.00	0.000	0.000
4	4134.18	50.07	3170.11	0.66	35.00	0.000	0.000
5	4491.51	44.57	3152.32	0.59	35.00	0.000	0.000
6	4788.46	39.57	3050.05	0.55	35.00	0.000	0.000
7	5038.26	34.90	2882.51	0.52	35.00	0.000	0.000
8	5249.11	30.49	2662.97	0.49	35.00	0.000	0.000
9	5551.34	26.27	2456.64	0.47	27.54	0.176	0.000
10	5794.55	22.19	2188.93	0.46	22.00	0.306	0.000
11	5927.12	18.24	1855.13	0.44	22.00	0.306	0.000
12	6032.48	14.37	1497.44	0.44	22.00	0.306	0.000
13	6112.18	10.57	1121.42	0.43	22.00	0.306	0.000
14	6167.31	6.82	732.17	0.43	22.00	0.306	0.000
15	5925.14	3.09	319.75	0.42	22.00	0.306	0.000
16	3704.55	-0.62	-39.96	0.42	22.00	0.306	0.000

-99.90

-179.76

-245.43

-256.90

-279.86

-276.53

-242.80

-176.93

-66.14

0.42

0.43

0.43

0.44

0.45

0.46

0.48

0.50

0.53

22.00

22.00

22.00

22.00

22.00

22.00

31.81

35.00

35.00

0.306

0.306

0.306

0.306

0.306

0.306

0.075

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

 $\Sigma W_i = 834.9278 [kN]$ $\Sigma W_{i} \sin \alpha_{i} = 305.8096 [kN]$ $\Sigma W_i \cos \alpha_i \tan \phi_i = 360.2140 \text{ [kN]}$ $\Sigma c_i b_i / \cos \alpha_i = 181.7292 [kN]$

Combinazione n° 4

17

18

19

20

21

22

23

24

25

Cerchio critico Coordinate del centroX[m]= -0.86 Y[m]= 0.43 Raggio del cerchio R[m]= 6.37 Ascissa a valle del cerchioXi[m]= -5.19 Ascissa a monte del cerchioXs[m]= 5.50 Larghezza della strisciadx[m]= 0.43 Coefficiente di sicurezzaC= 1.59

orzio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 247 di 260

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	2310.76	77.26	2253.87	1.94	35.00	0.000	0.000
2	3399.39	64.21	3060.78	0.98	35.00	0.000	0.000
3	3997.95	56.31	3326.62	0.77	35.00	0.000	0.000
4	4878.97	49.86	3729.69	0.66	35.00	0.000	0.000
5	5681.90	44.19	3960.39	0.60	35.00	0.000	0.000
6	5980.81	39.03	3766.08	0.55	35.00	0.000	0.000
7	6230.79	34.22	3504.32	0.52	35.00	0.000	0.000
8	6653.45	29.68	3294.63	0.49	22.22	0.301	0.000
9	6848.38	25.34	2930.78	0.47	22.00	0.306	0.000
10	7006.67	21.15	2527.59	0.46	22.00	0.306	0.000
11	7134.43	17.07	2094.23	0.45	22.00	0.306	0.000
12	7233.81	13.08	1637.32	0.44	22.00	0.306	0.000
13	7130.86	9.16	1134.88	0.43	22.00	0.306	0.000
14	5631.45	5.28	517.87	0.43	22.00	0.306	0.000
15	2276.34	1.42	56.39	0.43	22.00	0.306	0.000
16	1570.38	-2.43	-66.61	0.43	22.00	0.306	0.000
17	1542.48	-6.29	-169.06	0.43	22.00	0.306	0.000
18	1380.08	-10.18	-243.99	0.43	22.00	0.306	0.000
19	1236.17	-14.12	-301.61	0.44	22.00	0.306	0.000
20	1128.29	-18.13	-351.11	0.45	22.00	0.306	0.000
21	991.12	-22.23	-375.03	0.46	22.00	0.306	0.000
22	822.22	-26.46	-366.38	0.48	22.00	0.306	0.000
23	619.16	-30.85	-317.53	0.50	25.85	0.215	0.000
24	394.06	-35.46	-228.59	0.52	35.00	0.000	0.000
25	132.23	-40.34	-85.60	0.56	35.00	0.000	0.000

 $\begin{array}{l} \Sigma W_{i} \!\!=\! 904.3066 \; [kN] \\ \Sigma W_{i} \!\!sin\alpha_{i} \!\!=\! 346.0815 \; [kN] \\ \Sigma W_{i} \!\!cos\alpha_{i} \!\!tan\varphi_{i} \!\!=\! 372.0227 \; [kN] \\ \Sigma C_{i} \!\!b_{i} \!\!cos\alpha_{i} \!\!=\! 211.9053 \; [kN] \end{array}$

ITALFERR

ALTA SORVEGLIANZA

GRUPPO FERROVIE DELLO STATO ITALIANE orzio Collegamenti Integrati Veloc

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 248 di 260

9.3.2 Verifiche strutturali

Paramento verticale del muro

Н

base della sezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatura in corrispondenza del lembo di monte in [cmq] $A_{\text{fs}} \\$

area di armatura in corrispondenza del lembo di valle in [cmq] A_{fi}

tensione nel calcestruzzo espressa in [N/mmq] σ_{c}

tensione tangenziale nel calcestruzzo espressa in [N/mmq] τ_{c} tensione nell'armatura disposta sul lembo di monte in [N/mmq] σ_{fs}

tensione nell'armatura disposta sul lembo di valle in [N/mmq] σ_{fi}

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	8.04	8.04	0.000	0.000	0.000	0.000
2	0.21	100, 32	8.04	8.04	0.018	0.008	0.171	-0.211
3	0.42	100, 34	8.04	8.04	0.074	0.016	1.811	-0.720
4	0.64	100, 36	8.04	8.04	0.157	0.024	5.032	-1.438
5	0.85	100, 39	8.04	8.04	0.261	0.031	9.651	-2.345
6	1.06	100, 41	8.04	8.04	0.383	0.039	15.550	-3.423
7	1.27	100, 43	8.04	8.04	0.520	0.046	22.640	-4.659
8	1.49	100, 45	8.04	8.04	0.669	0.053	30.853	-6.040
9	1.70	100, 47	8.04	8.04	0.830	0.059	40.135	-7.556
10	1.91	100, 49	8.04	8.04	1.000	0.066	50.442	-9.198
11	2.13	100, 51	8.04	8.04	1.179	0.073	61.739	-10.956
12	2.34	100, 53	8.04	8.04	1.365	0.079	73.995	-12.826
13	2.55	100, 56	12.06	8.04	1.335	0.085	59.188	-13.877
14	2.76	100, 58	12.06	8.04	1.506	0.092	68.728	-15.776
15	2.98	100, 60	12.06	8.04	1.681	0.098	78.871	-17.753
16	3.19	100, 62	12.06	8.04	1.862	0.104	89.608	-19.806
17	3.40	100, 64	12.06	8.04	2.047	0.111	100.930	-21.930
18	3.61	100, 66	12.06	8.04	2.237	0.117	112.830	-24.124
19	3.82	100, 68	12.06	8.04	2.430	0.123	125.300	-26.384
20	4.04	100, 70	12.06	8.04	2.628	0.129	138.335	-28.707
21	4.25	100, 73	12.06	8.04	2.829	0.135	151.928	-31.092

TALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

Consorzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 249 di 260

COMBINAZIONE n° 2

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	8.04	8.04	0.000	0.000	0.000	0.000
2	0.21	100, 32	8.04	8.04	0.031	0.013	0.606	-0.308
3	0.42	100, 34	8.04	8.04	0.116	0.025	3.756	-1.013
4	0.64	100, 36	8.04	8.04	0.240	0.036	9.193	-2.023
5	0.85	100, 39	8.04	8.04	0.394	0.046	16.615	-3.300
6	1.06	100, 41	8.04	8.04	0.571	0.056	25.801	-4.814
7	1.27	100, 43	8.04	8.04	0.767	0.065	36.580	-6.536
8	1.49	100, 45	8.04	8.04	0.977	0.074	48.818	-8.445
9	1.70	100, 47	8.04	8.04	1.200	0.083	62.409	-10.522
10	1.91	100, 49	8.04	8.04	1.434	0.091	77.266	-12.749
11	2.13	100, 51	8.04	8.04	1.676	0.099	93.321	-15.114
12	2.34	100, 53	8.04	8.04	1.927	0.107	110.515	-17.604
13	2.55	100, 56	12.06	8.04	1.865	0.114	87.244	-19.031
14	2.76	100, 58	12.06	8.04	2.089	0.122	100.306	-21.518
15	2.98	100, 60	12.06	8.04	2.318	0.129	114.053	-24.086
16	3.19	100, 62	12.06	8.04	2.550	0.137	128.464	-26.731
17	3.40	100, 64	12.06	8.04	2.787	0.144	143.522	-29.448
18	3.61	100, 66	12.06	8.04	3.027	0.151	159.215	-32.233
19	3.82	100, 68	12.06	8.04	3.271	0.158	175.528	-35.081
20	4.04	100, 70	12.06	8.04	3.518	0.164	192.453	-37.990
21	4.25	100, 73	12.06	8.04	3.768	0.171	209.975	-40.957

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	8.04	8.04	0.000	0.000	0.000	0.000
2	0.21	100, 32	8.04	8.04	0.029	0.012	0.526	-0.293
3	0.42	100, 34	8.04	8.04	0.109	0.023	3.406	-0.963
4	0.64	100, 36	8.04	8.04	0.225	0.033	8.400	-1.914
5	0.85	100, 39	8.04	8.04	0.368	0.043	15.209	-3.110
6	1.06	100, 41	8.04	8.04	0.531	0.052	23.615	-4.520
7	1.27	100, 43	8.04	8.04	0.712	0.060	33.450	-6.118
8	1.49	100, 45	8.04	8.04	0.905	0.068	44.581	-7.882
9	1.70	100, 47	8.04	8.04	1.109	0.076	56.905	-9.793
10	1.91	100, 49	8.04	8.04	1.322	0.083	70.337	-11.835
11	2.13	100, 51	8.04	8.04	1.542	0.090	84.807	-13.997
12	2.34	100, 53	8.04	8.04	1.769	0.097	100.260	-16.267
13	2.55	100, 56	12.06	8.04	1.711	0.104	79.050	-17.530
14	2.76	100, 58	12.06	8.04	1.913	0.111	90.730	-19.780
15	2.98	100, 60	12.06	8.04	2.118	0.117	102.990	-22.099
16	3.19	100, 62	12.06	8.04	2.326	0.123	115.810	-24.480
17	3.40	100, 64	12.06	8.04	2.538	0.130	129.175	-26.920
18	3.61	100, 66	12.06	8.04	2.752	0.136	143.070	-29.414
19	3.82	100, 68	12.06	8.04	2.969	0.142	157.483	-31.961
20	4.04	100, 70	12.06	8.04	3.189	0.147	172.404	-34.556
21	4.25	100, 73	12.06	8.04	3.410	0.153	187.822	-37.197

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 250 di 260

Fondazione del muro

- В
- base della sezione espressa in [cm] altezza della sezione espressa in [cm] Н
- area di armatura in corrispondenza del lembo inferiore in [cmq] A_{fi}
- $A_{\text{fs}} \\$ area di armatura in corrispondenza del lembo superiore in [cmq]
- tensione nel calcestruzzo espressa in [N/mmq] σ_{c}
- tensione tangenziale nel calcestruzzo espressa in [N/mmq] τ_{c}
- tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq] σ_{fi}
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq] σ_{fs}

COMBINAZIONE n° 1

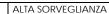
Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.000	0.000	0.000	0.000
2	0.12	100, 73	12.57	12.57	0.008	0.012	0.501	-0.083
3	0.24	100, 73	12.57	12.57	0.032	0.023	2.020	-0.335
4	0.36	100, 73	12.57	12.57	0.073	0.036	4.579	-0.759
5	0.48	100, 73	12.57	12.57	0.130	0.048	8.201	-1.359
6	0.60	100, 73	12.57	12.57	0.204	0.061	12.908	-2.140
7	0.72	100, 73	12.57	12.57	0.296	0.074	18.722	-3.103
8	0.84	100, 73	12.57	12.57	0.406	0.087	25.668	-4.255
9	0.96	100, 73	12.57	12.57	0.535	0.100	33.766	-5.597
10	1.08	100, 73	12.57	12.57	0.681	0.114	43.039	-7.134
11	1.20	100, 73	12.57	12.57	0.847	0.128	53.511	-8.870

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)


Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.000	0.000	0.000	0.000
2	0.25	100, 73	12.57	12.57	0.006	-0.005	-0.066	0.396
3	0.50	100, 73	12.57	12.57	0.027	-0.010	-0.285	1.719
4	0.75	100, 73	12.57	12.57	0.066	-0.017	-0.692	4.173
5	1.00	100, 73	12.57	12.57	0.126	-0.025	-1.320	7.964
6	1.25	100, 73	12.57	12.57	0.210	-0.034	-2.204	13.294
7	1.50	100, 73	12.57	12.57	0.322	-0.044	-3.376	20.367
8	1.75	100, 73	12.57	12.57	0.465	-0.056	-4.871	29.389
9	2.00	100, 73	12.57	12.57	0.642	-0.068	-6.724	40.562
10	2.25	100, 73	12.57	12.57	0.856	-0.082	-8.966	54.091
11	2.50	100. 73	12.57	12.57	1.111	-0.097	-11.633	70.181

COMBINAZIONE n° 2

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.000	0.000	0.000	0.000
2	0.12	100, 73	12.57	12.57	0.009	0.014	0.599	-0.099
3	0.24	100, 73	12.57	12.57	0.038	0.028	2.411	-0.400
4	0.36	100, 73	12.57	12.57	0.086	0.042	5.461	-0.905
5	0.48	100, 73	12.57	12.57	0.155	0.057	9.770	-1.619

Foglio 251 di 260

6	0.60	100. 73	12.57	12.57	0.243	0.072	15 363	-2.547
7	0.72	100, 73	12.57	12.57	0.353	0.087	22.264	-3.690
8	0.84	100, 73	12.57	12.57	0.483	0.103	30.494	-5.055
9	0.96	100, 73	12.57	12.57	0.635	0.119	40.079	-6.643
10	1.08	100, 73	12.57	12.57	0.808	0.135	51.041	-8.460
11	1.20	100, 73	12.57	12.57	1.004	0.151	63.403	-10.510

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.000	0.000	0.000	0.000
2	0.25	100, 73	12.57	12.57	0.011	-0.008	-0.112	0.677
3	0.50	100, 73	12.57	12.57	0.045	-0.017	-0.472	2.850
4	0.75	100, 73	12.57	12.57	0.107	-0.027	-1.115	6.729
5	1.00	100, 73	12.57	12.57	0.198	-0.038	-2.076	12.526
6	1.25	100, 73	12.57	12.57	0.324	-0.050	-3.390	20.454
7	1.50	100, 73	12.57	12.57	0.486	-0.064	-5.092	30.722
8	1.75	100, 73	12.57	12.57	0.689	-0.079	-7.218	43.544
9	2.00	100, 73	12.57	12.57	0.936	-0.094	-9.801	59.129
10	2.25	100, 73	12.57	12.57	1.230	-0.111	-12.878	77.691
11	2.50	100, 73	12.57	12.57	1.574	-0.130	-16.483	99.439

COMBINAZIONE n° 3

Fondazione di valle (L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.000	0.000	0.000	0.000
2	0.12	100, 73	12.57	12.57	0.011	0.016	0.710	-0.118
3	0.24	100, 73	12.57	12.57	0.045	0.033	2.841	-0.471
4	0.36	100, 73	12.57	12.57	0.101	0.049	6.391	-1.059
5	0.48	100, 73	12.57	12.57	0.180	0.066	11.362	-1.883
6	0.60	100, 73	12.57	12.57	0.281	0.082	17.752	-2.943
7	0.72	100, 73	12.57	12.57	0.405	0.098	25.563	-4.237
8	0.84	100, 73	12.57	12.57	0.551	0.115	34.793	-5.767
9	0.96	100, 73	12.57	12.57	0.720	0.131	45.443	-7.533
10	1.08	100, 73	12.57	12.57	0.911	0.148	57.512	-9.533
11	1.20	100, 73	12.57	12.57	1.124	0.164	71.001	-11.769

Fondazione di monte (L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 73	12.57	12.57	0.000	0.000	0.000	0.000
2	0.25	100, 73	12.57	12.57	0.020	-0.014	-0.208	1.253
3	0.50	100, 73	12.57	12.57	0.079	-0.028	-0.831	5.010
4	0.75	100, 73	12.57	12.57	0.178	-0.042	-1.868	11.272
5	1.00	100, 73	12.57	12.57	0.317	-0.055	-3.321	20.037
6	1.25	100, 73	12.57	12.57	0.496	-0.069	-5.189	31.303
7	1.50	100, 73	12.57	12.57	0.714	-0.083	-7.471	45.071
8	1.75	100, 73	12.57	12.57	0.971	-0.097	-10.168	61.339
9	2.00	100, 73	12.57	12.57	1.268	-0.111	-13.278	80.107
10	2.25	100, 73	12.57	12.57	1.605	-0.125	-16.803	101.373
11	2.50	100, 73	12.57	12.57	1.981	-0.139	-20.742	125.136

9.4 MURO H=3.05 m

Foglio 252 di 260

9.4.1 Verifiche geotecniche

Risultante dei carichi applicati in dir. verticale

Momento ribaltante rispetto allo spigolo a valle

COMBINAZIONE n° 1

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale Inclinazione linea di rottura in condizioni	a e alla superficie	53.5768 52.7629 9.3035 X = 1.94 10.00 60.83	[kN] [kN] [kN] [m] [°]	Y = -2.18	[m]
Peso terrapieno gravante sulla fondazion Baricentro terrapieno gravante sulla fond		155.0060 X = 0.97	[kN] [m]	Y = -1.52	[m]
Risultanti Risultante dei carichi applicati in dir. orizz Risultante dei carichi applicati in dir. verti Momento ribaltante rispetto allo spigolo a Momento stabilizzante rispetto allo spigolo Sforzo normale sul piano di posa della fo Sforzo tangenziale sul piano di posa della Eccentricità rispetto al baricentro della fo Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla Momento rispetto al baricentro della fond Carico ultimo della fondazione	cale a valle lo a valle ndazione a fondazione ndazione ndazione	52.7629 254.1540 78.2796 622.9877 254.1540 52.7629 -0.27 3.75 259.5730 11.73 -68.8049 1608.5234	[kN] [kNm] [kNm] [kNm] [kN] [m] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN]		
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		3.75 0.03843 0.09730	[m] [N/mmq] [N/mmq]		
Fattori per il calcolo della capacità portan	nte.				
Coeff. capacità portante	$N_c = 16.88$	$N_q = 7$.	82	N	$I_{\gamma} = 4.07$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.$			$s_{y} = 1.00$
Fattori inclinazione	$i_c = 0.76$	$i_q = 0$			$i_{\gamma} = 0.22$
Fattori profondità	d _c = 1.05	$d_q = 1$.			$I_{\gamma} = 1.02$
I coefficienti N' tengono conto dei fattori o					
	$N'_{c} = 13.39$	$N'_{q} = 6.$	06	N	$r_{\gamma} = 0.91$
COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a ribaltamento Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo Coefficiente di sicurezza a stabilità globa	le	7.96 1.95 6.33 2.09			
COMBINAZIONE n° 2 Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale Inclinazione linea di rottura in condizioni	a e alla superficie	72.0763 70.9813 12.5159 X = 1.94 10.00 60.83	[kN] [kN] [kN] [m] [°]	Y = -2.09	[m]
Peso terrapieno gravante sulla fondazion Baricentro terrapieno gravante sulla fond		193.8060 X = 0.97	[kN] [m]	Y = -1.52	[
Risultanti Risultante dei carichi applicati in dir. orizz Risultante dei carichi applicati in dir. verti		70.9813 296 1664	[kN] [kN]		

296.1664

111.6106

[kN]

[kNm]

Consorzio Collegamenti Integrati Veloci

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 253 di 260

Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	742.6881 296.1664 70.9813 -0.26 3.75 304.5535 13.48 -76.5060 1519.9669	[kNm] [kN] [kN] [m] [m] [kN] [°] [kNm]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	3.75 0.04635 0.11181	[m] [N/mmq] [N/mmq]		
COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a ribaltamento Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo Coefficiente di sicurezza a stabilità globale	6.65 1.69 5.13 1.82			
COMBINAZIONE n° 3 Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	53.5768 52.7629 9.3035 X = 1.94 10.00 60.83	[kN] [kN] [kN] [m] [°]	Y = -2.18	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	5.5648 X = 1.94 58.70	[kN] [m] [°]	Y = -1.22	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia del terrapieno fondazione di monte	155.0060 X = 0.97 4.3125 7.4403	[kN] [m] [kN] [kN]	Y = -1.52	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	69.9960 255.1203 111.5458 626.6066 255.1203 69.9960 -0.15 3.75 264.5483 15.34 -37.3481 1519.5141	[kN] [kN] [kNm] [kNm] [kN] [m] [m] [kN] [°] [kNm] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	3.75 0.05215 0.08410	[m] [N/mmq] [N/mmq]		
COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a ribaltamento Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo Coefficiente di sicurezza a stabilità globale	5.62 1.47 5.96 1.94			

STABILITÀ GLOBALE MURO + TERRENO

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 254 di 260

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [N/mmq]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Fellenius

Numero di cerchi analizzati 36

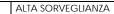
Numero di strisce 25

Combinazione n° 1

Cerchio critico

Coordinate del centro X[m]= -0.32 Y[m]= 0.64

Raggio del cerchio R[m]= 4.86


Ascissa a valle del cerchio Xi[m]= -3.49
Ascissa a monte del cerchio Xs[m]= 4.50
Larghezza della striscia dx[m]= 0.32
Coefficiente di sicurezza C= 2.09
Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	1162.07	74.83	1121.57	1.22	35.00	0.000	0.000
2	1698.69	63.71	1522.99	0.72	35.00	0.000	0.000
3	2028.50	56.07	1683.10	0.57	35.00	0.000	0.000
4	2279.20	49.77	1740.09	0.50	35.00	0.000	0.000
5	2481.67	44.22	1730.72	0.45	35.00	0.000	0.000
6	2649.59	39.16	1673.02	0.41	35.00	0.000	0.000
7	2790.50	34.44	1578.03	0.39	35.00	0.000	0.000
8	2909.09	29.97	1453.39	0.37	35.00	0.000	0.000
9	3140.05	25.70	1361.92	0.36	22.24	0.300	0.000
10	3232.36	21.58	1189.05	0.34	22.00	0.306	0.000
11	3305.65	17.58	998.30	0.34	22.00	0.306	0.000
12	3363.28	13.66	794.23	0.33	22.00	0.306	0.000
13	3406.11	9.81	580.06	0.32	22.00	0.306	0.000
14	3434.74	6.00	358.77	0.32	22.00	0.306	0.000
15	3271.88	2.21	126.32	0.32	22.00	0.306	0.000
16	2027.66	-1.56	-55.22	0.32	22.00	0.306	0.000
17	818.04	-5.34	-76.14	0.32	22.00	0.306	0.000
18	792.26	-9.14	-125.91	0.32	22.00	0.306	0.000
19	752.70	-12.99	-169.19	0.33	22.00	0.306	0.000
20	666.96	-16.90	-193.83	0.33	22.00	0.306	0.000
21	512.17	-20.88	-182.58	0.34	22.00	0.306	0.000
22	423.71	-24.98	-178.95	0.35	22.00	0.306	0.000
23	320.96	-29.22	-156.70	0.37	33.12	0.044	0.000
24	205.75	-33.65	-114.01	0.38	35.00	0.000	0.000
25	68.97	-38.32	-42.76	0.41	35.00	0.000	0.000

$$\begin{split} \Sigma W_i &= 468.2021 \text{ [kN]} \\ \Sigma W_i \sin \alpha_i &= 162.9524 \text{ [kN]} \\ \Sigma W_i \cos \alpha_i \tan \phi_i &= 199.5956 \text{ [kN]} \\ \Sigma c_i b_i / \cos \alpha_i &= 141.0162 \text{ [kN]} \end{split}$$

Combinazione n° 2

Cerchio critico

Foglio 255 di 260

Coordinate del centro Y[m] = 0.00X[m] = -0.32

Raggio del cerchio R[m]= 4.30

Ascissa a valle del cerchio Xi[m] = -3.37Ascissa a monte del cerchio Xs[m] = 3.98 Larghezza della striscia dx[m] = 0.29 Coefficiente di sicurezza C= 1.82

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	1770.82	79.35	1740.30	1.59	35.00	0.000	0.000
2	2356.63	64.19	2121.62	0.68	35.00	0.000	0.000
3	2639.06	56.17	2192.36	0.53	35.00	0.000	0.000
4	2850.75	49.63	2171.98	0.45	35.00	0.000	0.000
5	3020.37	43.89	2093.97	0.41	35.00	0.000	0.000
6	3160.15	38.67	1974.37	0.38	35.00	0.000	0.000
7	3283.77	33.80	1826.80	0.35	34.30	0.017	0.000
8	3498.01	29.20	1706.61	0.34	22.00	0.306	0.000
9	3586.63	24.80	1504.49	0.32	22.00	0.306	0.000
10	3659.36	20.55	1284.71	0.31	22.00	0.306	0.000
11	3717.59	16.42	1050.92	0.31	22.00	0.306	0.000
12	3762.31	12.37	806.30	0.30	22.00	0.306	0.000
13	3794.25	8.39	553.70	0.30	22.00	0.306	0.000
14	3454.87	4.45	267.96	0.29	22.00	0.306	0.000
15	2832.39	0.53	26.02	0.29	22.00	0.306	0.000
16	1188.95	-3.39	-70.37	0.29	22.00	0.306	0.000
17	792.78	-7.33	-101.13	0.30	22.00	0.306	0.000
18	764.59	-11.30	-149.81	0.30	22.00	0.306	0.000
19	724.04	-15.33	-191.37	0.30	22.00	0.306	0.000
20	637.03	-19.43	-211.94	0.31	22.00	0.306	0.000
21	496.16	-23.65	-199.01	0.32	22.00	0.306	0.000
22	410.70	-28.00	-192.82	0.33	22.00	0.306	0.000
23	310.28	-32.54	-166.91	0.35	30.99	0.094	0.000
24	198.64	-37.33	-120.45	0.37	35.00	0.000	0.000
25	65.61	-42.44	-44.28	0.40	35.00	0.000	0.000

 ΣW_i = 519.5228 [kN] $\Sigma W_{i} \sin \alpha_{i} = 194.9009 [kN]$ $\Sigma W_i cos \alpha_i tan \phi_i = 211.3400 [kN]$ $\Sigma c_i b_i / \cos \alpha_i = 142.6839 [kN]$

Combinazione n° 3

Cerchio critico

Coordinate del centro X[m] = -0.32

Raggio del cerchio R[m]= 5.15 Ascissa a valle del cerchio Xi Xi[m] = -3.56Ascissa a monte del cerchio Xs[m]= 4.74 Larghezza della striscia dx[m]= 0.33 C= 1.94 Coefficiente di sicurezza

Le strisce sono numerate da monte verso valle

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	1170.27	72.68	1117.19	1.11	35.00	0.000	0.000
2	1690.70	62.75	1503.04	0.72	35.00	0.000	0.000
3	2033.83	55.45	1675.20	0.59	35.00	0.000	0.000
4	2298.47	49.36	1744.08	0.51	35.00	0.000	0.000
5	2513.73	43.96	1744.80	0.46	35.00	0.000	0.000
6	2693.12	39.01	1695.29	0.43	35.00	0.000	0.000
7	2844.25	34.40	1606.76	0.40	35.00	0.000	0.000
8	2971.89	30.02	1487.04	0.38	35.00	0.000	0.000
9	3155.74	25.84	1375.39	0.37	28.04	0.164	0.000
10	3311.88	21.80	1229.77	0.36	22.00	0.306	0.000
11	3391.81	17.87	1040.64	0.35	22.00	0.306	0.000
12	3455.17	14.02	837.20	0.34	22.00	0.306	0.000
13	3502.87	10.24	622.82	0.34	22.00	0.306	0.000

Y[m] = 0.97

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 256 di 260

14	3535.54	6.51	400.60	0.33	22.00	0.306	0.000
15	3411.86	2.80	166.53	0.33	22.00	0.306	0.000
16	2458.47	-0.90	-38.57	0.33	22.00	0.306	0.000
17	845.09	-4.60	-67.76	0.33	22.00	0.306	0.000
18	804.06	-8.32	-116.33	0.34	22.00	0.306	0.000
19	764.98	-12.07	-160.02	0.34	22.00	0.306	0.000
20	678.15	-15.88	-185.60	0.35	22.00	0.306	0.000
21	518.62	-19.77	-175.39	0.35	22.00	0.306	0.000
22	428.83	-23.75	-172.69	0.36	22.00	0.306	0.000
23	325.22	-27.85	-151.95	0.38	34.15	0.020	0.000
24	208.29	-32.12	-110.76	0.39	35.00	0.000	0.000
25	69.70	-36.61	-41.56	0.41	35.00	0.000	0.000

$$\begin{split} \Sigma W_i &= 481.3430 \text{ [kN]} \\ \Sigma W_i \sin \alpha_i &= 166.9678 \text{ [kN]} \\ \Sigma W_i \cos \alpha_i \tan \phi_i &= 209.4359 \text{ [kN]} \\ \Sigma c_i b_i / \cos \alpha_i &= 140.2244 \text{ [kN]} \end{split}$$

Combinazione n° 4

Cerchio critico

Coordinate del centro X[m]= -0.32

Raggio del cerchio R[m]= 4.30

Ascissa a valle del cerchio Xi[m]= -3.37
Ascissa a monte del cerchio Xs[m]= 3.98
Larghezza della striscia dx[m]= 0.29
Coefficiente di sicurezza C= 1.72
Le strisce sono numerate da monte verso valle

Y[m] = 0.00

Striscia	w	α(°)	Wsinα	b/cosα	ф	С	u
1	1770.82	79.35	1740.30	1.59	35.00	0.000	0.000
2	2356.63	64.19	2121.62	0.68	35.00	0.000	0.000
3	2639.06	56.17	2192.36	0.53	35.00	0.000	0.000
4	2850.75	49.63	2171.98	0.45	35.00	0.000	0.000
5	3020.37	43.89	2093.97	0.41	35.00	0.000	0.000
6	3160.15	38.67	1974.37	0.38	35.00	0.000	0.000
7	3283.77	33.80	1826.80	0.35	34.30	0.017	0.000
8	3498.01	29.20	1706.61	0.34	22.00	0.306	0.000
9	3586.63	24.80	1504.49	0.32	22.00	0.306	0.000
10	3659.36	20.55	1284.71	0.31	22.00	0.306	0.000
11	3717.59	16.42	1050.92	0.31	22.00	0.306	0.000
12	3762.31	12.37	806.30	0.30	22.00	0.306	0.000
13	3794.25	8.39	553.70	0.30	22.00	0.306	0.000
14	3454.87	4.45	267.96	0.29	22.00	0.306	0.000
15	2832.39	0.53	26.02	0.29	22.00	0.306	0.000
16	1188.95	-3.39	-70.37	0.29	22.00	0.306	0.000
17	792.78	-7.33	-101.13	0.30	22.00	0.306	0.000
18	764.59	-11.30	-149.81	0.30	22.00	0.306	0.000
19	724.04	-15.33	-191.37	0.30	22.00	0.306	0.000
20	637.03	-19.43	-211.94	0.31	22.00	0.306	0.000
21	496.16	-23.65	-199.01	0.32	22.00	0.306	0.000
22	410.70	-28.00	-192.82	0.33	22.00	0.306	0.000
23	310.28	-32.54	-166.91	0.35	30.99	0.094	0.000
24	198.64	-37.33	-120.45	0.37	35.00	0.000	0.000
25	65.61	-42.44	-44.28	0.40	35.00	0.000	0.000

 $\begin{array}{l} \Sigma W_{i} = 519.5228 \ [kN] \\ \Sigma W_{i} sin\alpha_{i} = 194.9009 \ [kN] \\ \Sigma W_{i} cos\alpha_{i} tan\varphi_{i} = 211.3400 \ [kN] \\ \Sigma c_{i} b_{i} / cos\alpha_{i} = 142.6839 \ [kN] \end{array}$

orzio Collegamenti Integrati Veloc

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

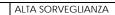
Foglio 257 di 260

9.4.2 Verifiche strutturali

Paramento verticale del muro

Н

base della sezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatura in corrispondenza del lembo di monte in [cmq] $A_{\text{fs}} \\$


area di armatura in corrispondenza del lembo di valle in [cmq] A_{fi}

tensione nel calcestruzzo espressa in [N/mmq] σ_{c}

tensione tangenziale nel calcestruzzo espressa in [N/mmq] τ_{c} tensione nell'armatura disposta sul lembo di monte in [N/mmq] σ_{fs}

tensione nell'armatura disposta sul lembo di valle in [N/mmq] σ_{fi}

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	τ_{c}	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	10.05	10.05	0.000	0.000	0.000	0.000
2	0.15	100, 32	10.05	10.05	0.007	0.004	-0.009	-0.091
3	0.30	100, 33	10.05	10.05	0.024	0.009	0.193	-0.283
4	0.46	100, 35	10.05	10.05	0.053	0.013	0.873	-0.583
5	0.61	100, 36	10.05	10.05	0.093	0.017	2.042	-0.963
6	0.76	100, 38	10.05	10.05	0.140	0.021	3.664	-1.415
7	0.92	100, 39	10.05	10.05	0.195	0.025	5.716	-1.935
8	1.07	100, 41	10.05	10.05	0.255	0.029	8.183	-2.521
9	1.22	100, 42	10.05	10.05	0.322	0.034	11.052	-3.169
10	1.37	100, 44	10.05	10.05	0.394	0.038	14.314	-3.876
11	1.52	100, 45	10.05	10.05	0.471	0.042	17.958	-4.641
12	1.68	100, 47	10.05	10.05	0.553	0.046	21.979	-5.461
13	1.83	100, 48	10.05	10.05	0.639	0.050	26.369	-6.333
14	1.98	100, 50	10.05	10.05	0.729	0.054	31.124	-7.257
15	2.13	100, 51	10.05	10.05	0.822	0.058	36.239	-8.230
16	2.29	100, 53	10.05	10.05	0.920	0.062	41.710	-9.251
17	2.44	100, 54	10.05	10.05	1.020	0.067	47.533	-10.319
18	2.59	100, 56	10.05	10.05	1.124	0.071	53.705	-11.431
19	2.75	100, 57	10.05	10.05	1.232	0.075	60.223	-12.587
20	2.90	100, 59	10.05	10.05	1.342	0.079	67.086	-13.786
21	3.05	100, 61	10.05	10.05	1.455	0.083	74.289	-15.026

Foglio 258 di 260

COMBINAZIONE n° 2

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fs}	$\sigma_{\rm fi}$
1	0.00	100, 30	10.05	10.05	0.000	0.000	0.000	0.000
2	0.15	100, 32	10.05	10.05	0.011	0.007	0.076	-0.136
3	0.30	100, 33	10.05	10.05	0.045	0.015	0.915	-0.461
4	0.46	100, 35	10.05	10.05	0.097	0.021	2.617	-0.926
5	0.61	100, 36	10.05	10.05	0.163	0.028	5.084	-1.512
6	0.76	100, 38	10.05	10.05	0.241	0.034	8.247	-2.210
7	0.92	100, 39	10.05	10.05	0.330	0.041	12.055	-3.009
8	1.07	100, 41	10.05	10.05	0.426	0.047	16.465	-3.902
9	1.22	100, 42	10.05	10.05	0.531	0.052	21.441	-4.881
10	1.37	100, 44	10.05	10.05	0.642	0.058	26.954	-5.940
11	1.52	100, 45	10.05	10.05	0.758	0.064	32.978	-7.072
12	1.68	100, 47	10.05	10.05	0.880	0.069	39.491	-8.274
13	1.83	100, 48	10.05	10.05	1.007	0.074	46.475	-9.540
14	1.98	100, 50	10.05	10.05	1.138	0.080	53.915	-10.868
15	2.13	100, 51	10.05	10.05	1.272	0.085	61.796	-12.252
16	2.29	100, 53	10.05	10.05	1.411	0.090	70.106	-13.692
17	2.44	100, 54	10.05	10.05	1.552	0.095	78.835	-15.182
18	2.59	100, 56	10.05	10.05	1.697	0.100	87.973	-16.722
19	2.75	100, 57	10.05	10.05	1.845	0.105	97.513	-18.309
20	2.90	100, 59	10.05	10.05	1.996	0.110	107.446	-19.940
21	3.05	100, 61	10.05	10.05	2.149	0.114	117.766	-21.615

Nr.	Υ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	σ_{fs}	σ _{fi}
1	0.00	100, 30	10.05	10.05	0.000	0.000	0.000	0.000
2	0.15	100, 32	10.05	10.05	0.009	0.006	0.031	-0.117
3	0.30	100. 33	10.05	10.05	0.037	0.012	0.602	-0.394
4	0.46	100, 35	10.05	10.05	0.080	0.018	1.890	-0.792
5	0.61	100, 36	10.05	10.05	0.134	0.023	3.807	-1.291
6	0.76	100, 38	10.05	10.05	0.199	0.029	6.296	-1.880
7	0.92	100, 39	10.05	10.05	0.272	0.034	9.311	-2.553
8	1.07	100, 41	10.05	10.05	0.352	0.039	12.819	-3.303
9	1.22	100, 42	10.05	10.05	0.438	0.043	16.788	-4.123
10	1.37	100, 44	10.05	10.05	0.529	0.048	21.194	-5.008
11	1.52	100, 45	10.05	10.05	0.626	0.053	26.016	-5.954
12	1.68	100, 47	10.05	10.05	0.726	0.057	31.237	-6.957
13	1.83	100, 48	10.05	10.05	0.831	0.062	36.841	-8.013
14	1.98	100, 50	10.05	10.05	0.939	0.066	42.815	-9.119
15	2.13	100, 51	10.05	10.05	1.050	0.070	49.148	-10.271
16	2.29	100, 53	10.05	10.05	1.164	0.074	55.830	-11.468
17	2.44	100, 54	10.05	10.05	1.281	0.079	62.852	-12.708
18	2.59	100, 56	10.05	10.05	1.401	0.083	70.206	-13.988
19	2.75	100, 57	10.05	10.05	1.523	0.087	77.885	-15.306
20	2.90	100, 59	10.05	10.05	1.647	0.091	85.884	-16.662
21	3.05	100, 61	10.05	10.05	1.774	0.095	94.196	-18.052

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 259 di 260

Fondazione del muro

- В
- base della sezione espressa in [cm] altezza della sezione espressa in [cm] Н
- area di armatura in corrispondenza del lembo inferiore in [cmq] A_{fi}
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- tensione nel calcestruzzo espressa in [N/mmq] σ_{c}
- tensione tangenziale nel calcestruzzo espressa in [N/mmq] τ_{c}
- tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq] σ_{fi}
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

COMBINAZIONE n° 1

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	х	В, Н	A_{fs}	A_{fi}	σ_{c}	τ_{c}	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.000	0.000	0.000	0.000
2	0.12	100, 61	10.05	10.05	0.005	0.006	0.324	-0.048
3	0.24	100, 61	10.05	10.05	0.021	0.013	1.329	-0.198
4	0.36	100, 61	10.05	10.05	0.048	0.020	3.066	-0.457
5	0.48	100, 61	10.05	10.05	0.088	0.027	5.586	-0.833
6	0.60	100, 61	10.05	10.05	0.141	0.035	8.939	-1.333
7	0.72	100, 61	10.05	10.05	0.207	0.043	13.176	-1.965
8	0.84	100, 61	10.05	10.05	0.289	0.052	18.348	-2.737
9	0.96	100, 61	10.05	10.05	0.385	0.061	24.505	-3.655
10	1.08	100, 61	10.05	10.05	0.498	0.071	31.698	-4.728
11	1 20	100 61	10.05	10.05	0.629	0.082	39 978	-5 963

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	τ _c	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.000	0.000	0.000	0.000
2	0.19	100, 61	10.05	10.05	0.001	0.000	0.050	-0.007
3	0.39	100, 61	10.05	10.05	0.001	0.000	0.058	-0.009
4	0.58	100, 61	10.05	10.05	0.003	-0.003	-0.029	0.191
5	0.78	100, 61	10.05	10.05	0.014	-0.006	-0.136	0.911
6	0.97	100, 61	10.05	10.05	0.036	-0.010	-0.345	2.315
7	1.16	100, 61	10.05	10.05	0.073	-0.016	-0.689	4.619
8	1.36	100, 61	10.05	10.05	0.126	-0.023	-1.199	8.036
9	1.55	100, 61	10.05	10.05	0.201	-0.031	-1.906	12.779
10	1.75	100, 61	10.05	10.05	0.300	-0.041	-2.844	19.065
11	1.94	100, 61 10.05	10.05	0.426	-0.051	-4.043 2	7.106	

COMBINAZIONE n° 2

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	τ _c	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.000	0.000	0.000	0.000
2	0.12	100, 61	10.05	10.05	0.007	0.008	0.431	-0.064
3	0.24	100, 61	10.05	10.05	0.028	0.017	1.762	-0.263
4	0.36	100, 61	10.05	10.05	0.064	0.026	4.049	-0.604
5	0.48	100, 61	10.05	10.05	0.116	0.035	7.349	-1.096
6	0.60	100, 61	10.05	10.05	0.184	0.045	11.718	-1.748
7	0.72	100, 61	10.05	10.05	0.271	0.056	17.212	-2.567
8	0.84	100.61	10.05	10.05	0.376	0.067	23.887	-3.563

zio Collegamenti Integrati Veloci

ALTA SORVEGLIANZA

IG51-01-E-CV-CL-NV02-05-001-C00

Foglio 260 di 260

9	0.96	100, 61	10.05	10.05	0.500	0.079	31.801	-4.743
10	1.08	100, 61	10.05	10.05	0.645	0.091	41.009	-6.116
11	1.20	100, 61	10.05	10.05	0.811	0.104	51.567	-7.691

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Х	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.000	0.000	0.000	0.000
2	0.19	100, 61	10.05	10.05	0.002	-0.002	-0.022	0.146
3	0.39	100, 61	10.05	10.05	0.012	-0.005	-0.111	0.745
4	0.58	100, 61	10.05	10.05	0.032	-0.010	-0.303	2.033
5	0.78	100, 61	10.05	10.05	0.067	-0.016	-0.634	4.249
6	0.97	100, 61	10.05	10.05	0.120	-0.023	-1.138	7.631
7	1.16	100, 61	10.05	10.05	0.195	-0.032	-1.852	12.417
8	1.36	100, 61	10.05	10.05	0.296	-0.042	-2.811	18.845
9	1.55	100, 61	10.05	10.05	0.427	-0.053	-4.050	27.154
10	1.75	100, 61	10.05	10.05	0.591	-0.066	-5.605	37.581
11	1.94	100, 61	10.05	10.05	0.792	-0.080	-7.512	50.364

COMBINAZIONE n° 3

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

NI	v	ъ п						
Nr.	Х	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	σ_{fi}	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.000	0.000	0.000	0.000
2	0.12	100, 61	10.05	10.05	0.008	0.009	0.504	-0.075
3	0.24	100, 61	10.05	10.05	0.032	0.019	2.035	-0.304
4	0.36	100, 61	10.05	10.05	0.073	0.029	4.620	-0.689
5	0.48	100, 61	10.05	10.05	0.130	0.039	8.286	-1.236
6	0.60	100, 61	10.05	10.05	0.205	0.049	13.062	-1.948
7	0.72	100, 61	10.05	10.05	0.298	0.060	18.974	-2.830
8	0.84	100, 61	10.05	10.05	0.410	0.071	26.051	-3.885
9	0.96	100, 61	10.05	10.05	0.540	0.082	34.319	-5.119
10	1.08	100, 61	10.05	10.05	0.689	0.093	43.806	-6.534
11	1 20	100 61	10.05	10.05	0.858	0.105	54 540	-8 135

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

NI	v	ъ.,						
Nr.	Х	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	100, 61	10.05	10.05	0.000	0.000	0.000	0.000
2	0.19	100, 61	10.05	10.05	0.006	-0.005	-0.059	0.397
3	0.39	100, 61	10.05	10.05	0.026	-0.010	-0.248	1.665
4	0.58	100, 61	10.05	10.05	0.062	-0.016	-0.585	3.921
5	0.78	100, 61	10.05	10.05	0.114	-0.023	-1.086	7.281
6	0.97	100, 61	10.05	10.05	0.187	-0.030	-1.769	11.861
7	1.16	100, 61	10.05	10.05	0.280	-0.038	-2.651	17.777
8	1.36	100, 61	10.05	10.05	0.395	-0.046	-3.750	25.146
9	1.55	100, 61	10.05	10.05	0.536	-0.056	-5.083	34.083
10	1.75	100, 61	10.05	10.05	0.703	-0.066	-6.668	44.705
11	1.94	100, 61	10.05	10.05	0.898	-0.076	-8.521	57.129