COMUNE DI FOGGIA

Provincia di Foggia

ISTANZA di **Valutazione di Impatto Ambientale Nazionale,** ai sensi del D.L. 92/2021 e del D.lgs 152/2006 e s.m.i.

APR ENERGY TWO

Via Porto Galeo, 3222 04020 Santi Cosma e Damiano (LT)

REALIZZAZIONE di **Impianto Fotovoltaico a Terra, denominato "Foggia 3"** Connesso alla RTN di Potenza pari a 90,787 MWp

Progettazione

Società di Ingegneria

FARENTI S.r.I.

Via Don Giuseppe Corda, snc 03030 Santopadre (FR) Tel. 07761805460 Fax 07761800135

Ing. Piero Farenti

Codice documento

Titolo documento

VIA.REL11

CALCOLI PRELIMINARI DELLE STRUTTURE

Revisione Elaborato

N. REV.	DATA REV.	DESCRIZIONE REVISIONE	REDAZIONE	APPROVAZIONE
0	Dicembre 2022	Prima emissione	Ing. Andrea Farenti	Ing. Piero Farenti

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN

CALCOLI PRELIMINARI DI DIMENSIONAMENTO STRUTTURE

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

SOMMARIO

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture

Documento

VIA.REL11

SOMMARIO	1
DESCRIZIONE GENERALE	2
SCHEMA GEOMETRICO DEI CALCOLI STRUTTURALI	3
QUADRO NORMATIVO	5
ANALISI DEI CARICHI	6
COMBINAZIONI DELLE AZIONI	26
AZIONI ALLA BASE DEI PALI	27
CALCOLO DELLA LUNGHEZZA DEI PALI	32

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture

VIA.REL11

DESCRIZIONE GENERALE

La struttura meccanica è composta da due telai.

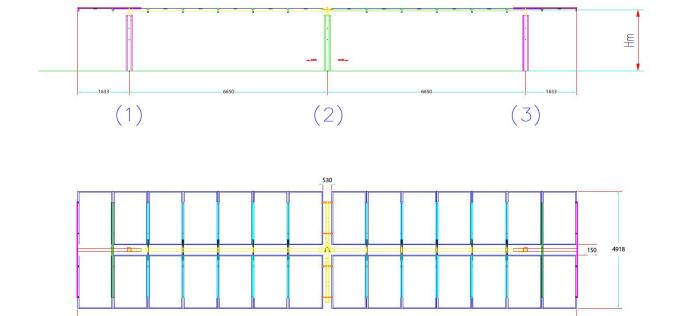
Tre elementi verticali sono fissati nel terreno mediante procedura di speronamento diretto. Sono realizzati in acciaio sezione Ω .

Nella parte superiore di questi, gli elementi di collegamento sono fissi e sostengono le travi principali, e rappresentano degli elementi orizzontali con una sezione tubolare quadrata.

Sulle travi principali, due file di pannelli fotovoltaici in configurazione verticale sono fissate attraverso due diversi tipi di supporto del modulo. Si tratta di traverse secondarie, composte da profilati d'acciaio tubolari rettangolari e sezione Ω .

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture


VIA.REL11

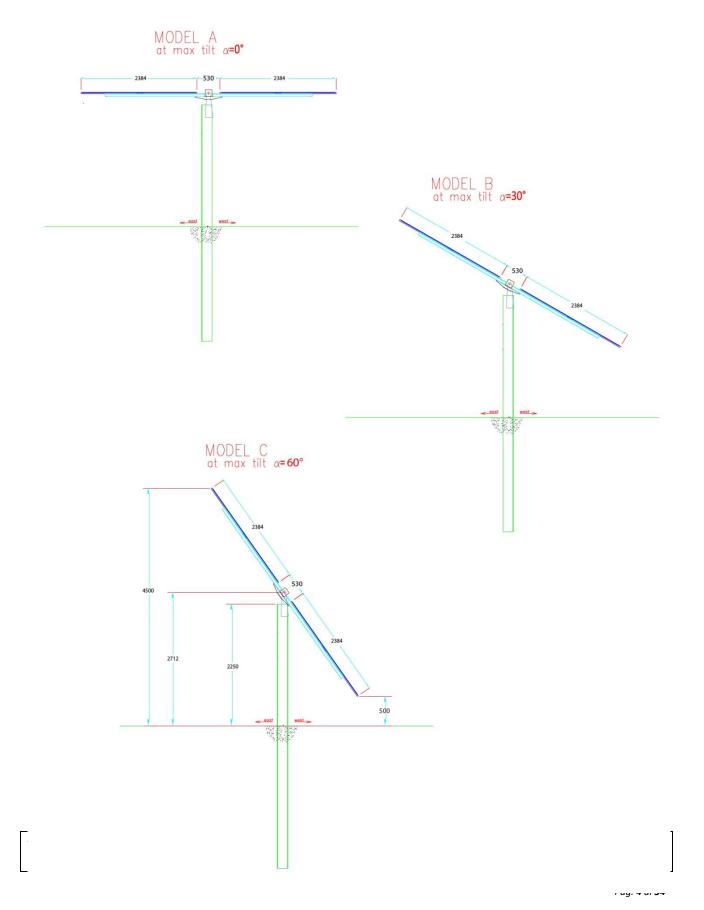
SCHEMA GEOMETRICO DEI CALCOLI STRUTTURALI

Per il calcolo strutturale abbiamo preso in considerazione tre configurazioni principali:

- MODELLO A: α = 0°;
- MODELLO B: α = 30°;
- MODELLO C: α = 55°;

Queste configurazioni sono quelle che generano il massimo stress nella struttura. Sotto è mostrato un diagramma delle dimensioni geometriche per queste configurazioni.

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600


APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture

VIA.REL11

QUADRO NORMATIVO

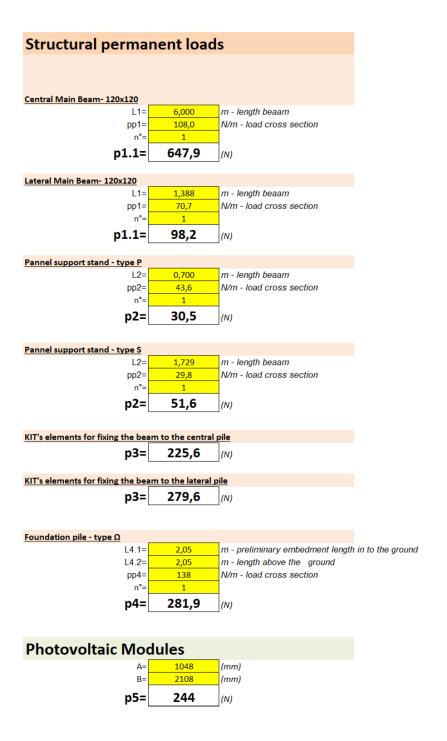
- EUROCODICE 1 Azioni sulle strutture Parte 1-4: Azioni in generale azioni del vento (UNI EN 1991-1-4:2005);
- EUROCODICE 3 Progettazione delle Strutture in acciaio Parte 1-1: Regole generali e regole per gli edifici (UNI EN 1993-1-1:2005);
- EUROCODICE 3 Progettazione delle Strutture in acciaio Parte 1-8: Progettazione dei collegamenti (UNI EN 1993-1-8:2005);
- D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni;
- Legge 2/2/74 n. 64 e DDMM 3/3/1975 Norme tecniche per la costruzione in zone sismiche.
- Costruzioni in acciaio: Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione.
 (C.N.R. 10011/85);
- Istruzioni per la valutazione delle Azioni sulle Costruzioni. (C.N.R. 10012/85);

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc — 03030 — Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

APR ENERGY

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello


Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

ANALISI DEI CARICHI

CARICO PERMANENTE

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

VIA.REL11

Calcoli preliminari dimensionamento strutture

CARICO DEL VENTO

Il carico del vento è determinato, secondo il D.M. 17 gennaio 2018 – Norme Tecniche per le Costruzioni:

- $\alpha = 0^\circ$: velocità del vento V = 27 m/s
- α ≠ 0°: velocità del vento V = 15 m/s

La velocità del vento di base è determinata secondo la Tabella 3.3.I del D.M. 17 gennaio 2018 - Norme Tecniche per le Costruzioni.

Il valore è la caratteristica velocità media del vento di 10 minuti, indipendentemente dalla direzione del vento e dal periodo dell'anno, a 10 m sopra il livello del suolo in terreni aperti con bassa vegetazione come erba e ostacoli isolati, con un probabilità di superare la forza progettata non superiore al 2% in 50 anni.

Il sito fotovoltaico si trova in zona 3 (Puglia), come si evince dalla tabella sottostante

Tab. 3.3.I -Valori dei parametri $v_{b,0}$, a_0 , k_s

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	\mathbf{k}_{s}
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

VIA.REL11

Calcoli preliminari dimensionamento strutture

Ne consegue che la velocità base del vento Vbo = 27 m/s

La velocità media del vento è determinata, in accordo con la sezione 3.3.1 del D. M. 17 gennaio 2018, second la seguente formula:

 $Vb = Ca \times Vbo$

Dove

Vbo = 27 m/s per l'inclinazione del tracker = 0°

Vbo = 15 m/s per l'inclinazione del tracker ≠ 0°

Ca è il coefficiente di altitudine pari a 1

$$\begin{aligned} c_a &= 1 & \text{per } a_s \leq a_0 \\ c_a &= 1 + k_s \left(\frac{a_s}{a_o} - 1\right) & \text{per } a_o < a_s \leq 1500 \text{ m} \end{aligned}$$

Quindi avremo:

$$Vb = 28 \text{ m/s } (\alpha = 0^{\circ})$$

$$Vb = 15 \text{ m/s } (\alpha \neq 0^{\circ})$$

La velocità di riferimento del vento è calcolata, secondo la sezione 3.3.2 del D.M. 17 gennaio 2018, secondo la seguente formula:

dove Cr è il coefficiente di ritorno, calcolato, rispetto ad un periodo di ritorno Tr di 25 anni, secondo la seguente formula:

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

$$c_r = 0.75 \sqrt{1 - 0.20 \cdot \ln\left[-\ln\left(1 - \frac{1}{T_R}\right)\right]} = 0.75 \sqrt{1 - 0.20 \cdot \ln\left[-\ln\left(1 - \frac{1}{25}\right)\right]} = 0.960$$

Quindi avremo:

Vbr = 0,960 x 27 = 25,92 m/s -
$$(\alpha = 0^{\circ})$$

Vbr =
$$1 \times 15 = 15 \text{ m/s} - (\alpha \neq 0^{\circ})$$

La pressione cinetica di riferimento è determinata dalla seguente espressione, secondo la sezione 3.3.6 del D.M. 17 gennaio 2018:

$$q_r = \frac{1}{2} \cdot \rho \cdot v_{b,r}^2$$

è la densità dell'aria, calcolata all'altezza di 50 metri sul livello del mare, pari a 1,2 kg/mq

Avremo quindi:

$$qr = 403 \text{ N/mq} - (\alpha = 0^{\circ})$$

$$qr = 135 \text{ N/mq} - (\alpha \neq 0^{\circ})$$

Il coefficiente di esposizione dipende dall'altezza della struttura z sopra il terreno e dalla categoria di esposizione del sito in cui si trova la struttura.

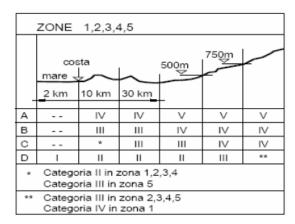
$$c_{e}(z) = k_{r}^{2} c_{t} \ln(z/z_{0}) [7 + c_{t} \ln(z/z_{0})] \quad \text{per } z \ge z_{min}$$

$$c_{e}(z) = c_{e}(z_{min}) \quad \text{per } z < z_{min}$$

Ī	APR ENERGY TWO Srl	FARENTI SRL
	Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
	P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

VIA.REL11


Calcoli preliminari dimensionamento strutture

La classe di rugosità dell'intervento può essere considerata la C, un'area a bassa vegetazione come erba e ostacoli isolati.

Tab. 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione	
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m	
В	Aree urbane (non di classe A), suburbane, industriali e boschive	
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D	
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa) c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)	

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per utti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

I parametri per il calcolo di ce, per il sito con categoria di esposizione III e con un fattore topografico uguale a ct = 1, sono riportati nella tabella seguente:

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	K _r	z ₀ [m]	$z_{ m min}$ [m]
I	0,17	0,01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

Pertanto, il valore del coefficiente di esposizione è

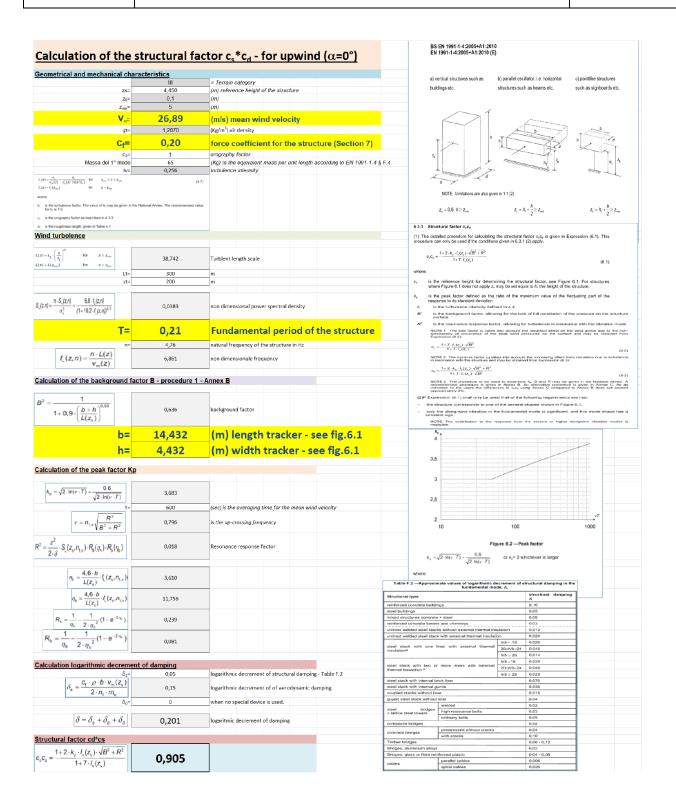
$$c_e = k_r^2 c_t \ln \left(\frac{z}{z_0}\right) \left[7 + c_t \ln \left(\frac{z}{z_0}\right)\right] = 0.20^2 \ln \left(\frac{5}{0.1}\right) \left[7 + \ln \left(\frac{5}{0.1}\right)\right] = 1.708$$

Il coefficiente dinamico Cd è determinato in riferimento al fattore CsCd.

I fattori strutturali Cs e Cd dovrebbero tenere conto dell'effetto sulle azioni del vento derivante dal verificarsi non simultaneo di picchi di pressione del vento sulla superficie insieme all'effetto delle vibrazioni della struttura dovute alla turbolenza. Il fattore strutturale CsCd può essere separato in un fattore dimensionale (cs) e un fattore dinamico (cd), in base al capitolo 6.3.1.

Il calcolo del fattore strutturale CsCd è stato eseguito mediante l'uso di un foglio Excel, come di seguito descritto.

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

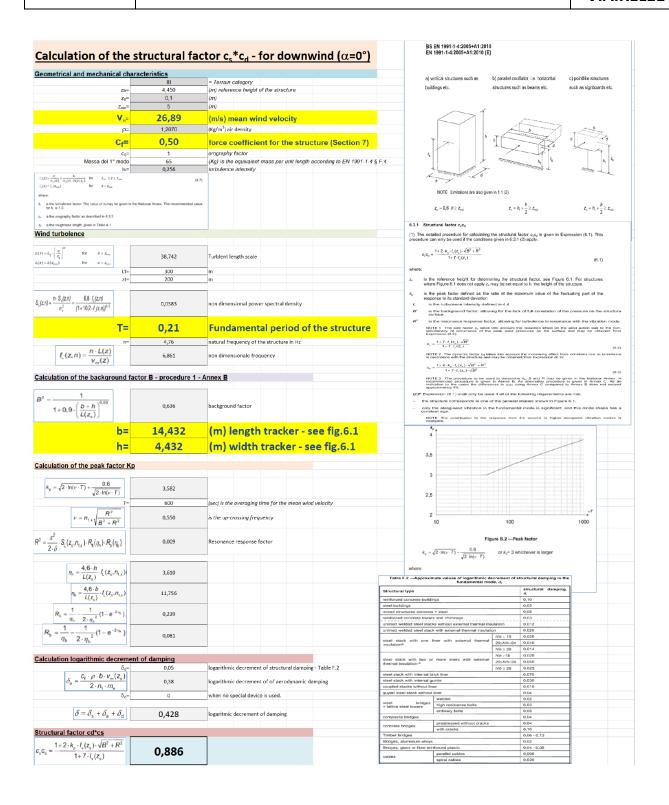


Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600



Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

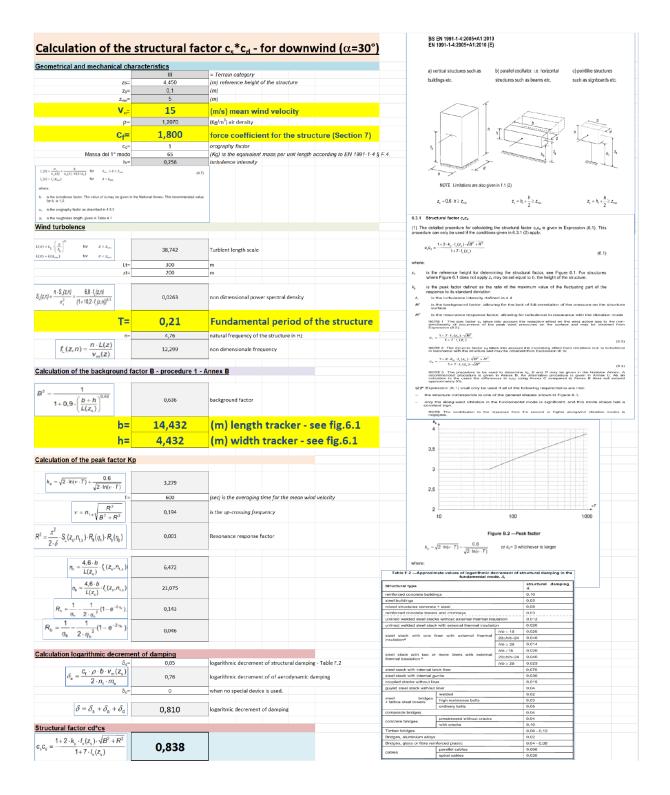
Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

		ctor $c_s * c_d$ - for upwind (α =30°)	
eometrical and mechanical chara	<u>icteristics</u>		And the first of the second of
ZS=	III 4,450	= Terrain category	a) vertical structures such as b) parallel oscillator, i.e. horizontal c) pointlike structures buildings etc. structures such as beams etc. such as signboards et
Z ₀ =	0,1	(m) reference height of the structure (m)	
Z _{min} =	5	(m)	~ 1
V _m =	15	(m/s) mean wind velocity	
ρ=	1,2070	(Kg/m ³) air density	
C _f =	1,200	force coefficient for the structure (Section 7)	
c ₀ =	1	orography factor	3 7 7
Massa del 1º modo	65	(Kg) is the equivalent mass per unit length according to EN 1991-1-4 § F.4.	h ₁ ² s h ₁
$ U = \frac{\sigma_c}{v_n(z)} = \frac{k_c}{c_n(z) \cdot \ln(z/z_0)} \text{for} z_{nn} \le z \le z_{nm}$	0,256	turbulence intensity	The state of the s
$v_m(z) = c_0(z) \cdot \ln(z \cdot z_0)$ $(z) = l_z(z_{min})$ for $z < z_{min}$	(4.7	'	6 7
here:			NOTE Limitations are also given in 1.1 (2)
is the turbulence factor. The value of ${\it A}_{\rm I}$ may be given in the for ${\it A}_{\rm I}$ is 1,0.	National Annex. The recommended value	•	$z_n = 0, 6 \cdot h \ge z_{min}$ $z_n = h_1 + \frac{h}{2} \ge z_{min}$ $z_n = h_1 + \frac{h}{2} \ge z_{min}$
is the orography factor as described in 4.3.3			2
is the roughness length, given in Table 4.1			6.3.1 Structural factor c _s c _d
nd turbolence			(1) The detailed procedure for calculating the structural factor c _i c ₀ is given in Expression (6.1). This procedure can only be used if the conditions given in 6.3.1 (2) apply.
$=L_{\xi} \cdot \left(\frac{z}{z_{\xi}}\right)^{cr}$ for $z \ge z_{min}$			$c_{c_{0}}c_{d} = \frac{1+2 \cdot k_{s} \cdot l_{s}(z_{s}) \cdot \sqrt{R^{2} + R^{2}}}{1+2 \cdot l_{s}(z_{s})}$
$y = L(Z_{min})$ for $z < Z_{min}$	38,742	Turblent length scale	$c_s c_d = \frac{1 + 7 \cdot l_s(z_s)}{1 + (6.1)}$
Lt=	300	m	where:
zt=	200	m	z _s is the reference height for determining the structural factor, see Figure 6.1. For structures where Figure 6.1 does not apply z _s may be set equal to h, the height of the structure.
n C (n n)			k _o is the peak factor defined as the ratio of the maximum value of the fluctuating part of the
$(z,n) = \frac{n \cdot S_v(z,n)}{\sigma_v^2} = \frac{6.8 \cdot f_v(z,n)}{(1+10.2 \cdot f_v(z,n))^{5/3}}$	0,0263	non dimensional power spectral density	/ is the turbulence intensity defined in 4.4
σ _γ (1+10,2+1 ₁ (Z,R))			B ² is the background factor, allowing for the lack of full correlation of the pressure on the strusurface
T=	0,21	Fundamental period of the structure	R ² is the resonance response factor, allowing for turbulence in resonance with the vibration of NOTE 1. The size factor c ₂ takes into account the reduction effect on the wins action due to the
1-	•		NOTE 1. The size factor o, takes into account the reduction effect on the wind action due to its simultaneity of occurrence of the peak wind pressures on the surface and may be obtained Expression (6.2).
n=	4,76	natural frequency of the structure in Hz	$G_{n} = \frac{1 + 7 \cdot I_{n}(\mathbf{z}_{n}) \cdot \sqrt{B^{2}}}{1 + 7 \cdot I_{n}(\mathbf{z}_{n})}$
$f_{\perp}(z,n) = \frac{n \cdot L(z)}{v_{m}(z)}$	12,299	non dimensionale frequency	NOTE 2. The dynamic factor c_0 takes into account the increasing effect from vibrations due to turbo in resonance with the structure and may be obtained from Expression (6.3):
V _m (2)			$G_d = \frac{1 + 2 \cdot k_D \cdot l_C \langle \mathcal{L}_1 \rangle \cdot \sqrt{B^2 + R^2}}{1 + 7 \cdot l_1 \langle \mathcal{L}_2 \rangle \cdot \sqrt{B^2}}$
Iculation of the background fac	tor B - procedure 1 -	Annex B	HOTE 3. The procedure to be used to determine N ₀ , D and if may be given in the National Air recommended procedure is given in Americ B. An alternative procedure is given in Americ C. approximately 55 size the efficience in No. 1 whiting Americ C. compand to Americ B does not approximately an expression of the control of the contr
			indication to the users the differences in c ₁ c ₃ using Annex C compared to Annex B does not a approximately 5%. (2)P Expression (6.1) shall only be used if all of the following requirements are met:
² = 1			 (2)P Expression (6.1) shall only be used if all of the following requirements are met: the structure corresponds to one of the general shapes shown in Figure 6.1,
$1+0.9 \cdot \left(\frac{b+h}{L(z_{\circ})}\right)^{0.63}$	0,636	background factor	 only the along-wind vibration in the fundamental mode is significant, and this mode shape constant sign.
(L(Z ₈))			NOTE The contribution to the response from the second or higher alongwind vibration mornegligible.
b=	14,432	(m) length tracker - see fig.6.1	4
h=	4,432	(m) width tracker - see fig.6.1	
11-	7,732	(III) WIGHT CLACKET - SEE TIG.O.1	3,5
Iculation of the peak factor Kp			
			3
$k_p = \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{0.6}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$	3,335		
$k_{p} = \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{0.6}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$			2,5
$\kappa_{p} = \sqrt{2 \cdot \ln(\nu \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$ $T = \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$	3,335 600	(sec) is the averaging time for the mean wind velocity	
$\kappa_{p} = \sqrt{2 \cdot \ln(\nu \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$ $T = \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$		(sec) is the averaging time for the mean wind velocity is the up-crossing frequency	2,5 2 10 100 1000
$K_{p} = \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$ $T = \frac{1}{\nu = n_{1,x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}}}$	600		2
$K_{p} = \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$ $T = \frac{1}{\nu = n_{1,x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}}}$	600		2
$\kappa_{p} = \sqrt{2 \cdot \ln(\nu \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$ $T = \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}}$	600	is the up-crossing frequency	2 10 100 1000 Figure 8.2 — Peak factor
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \\ & V &= n_{1,8} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{k}(Z_{b}, n_{1,k}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \end{split}$	600	is the up-crossing frequency	2
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \\ & V &= n_{1,8} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{k}(Z_{b}, n_{1,k}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \end{split}$	600	is the up-crossing frequency	2
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \\ & \nu = n_{1:x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{x} \left(\mathbf{z}_{y}, n_{1:x} \right) \cdot P_{y} \left(\eta_{y} \right) \cdot P_{y} \left(\eta_{y} \right) \\ & \eta_{h} &= \frac{4.6 \cdot h}{L(\mathbf{z}_{x})} \cdot \ell_{x} \left(\mathbf{z}_{x}, n_{1:x} \right) \end{split}$	600 0,234 0,002	is the up-crossing frequency	2 10 100 1000 1000 $ Figure \ B.2 - Peak \ factor \\ k_{\varphi} = \sqrt{2 \cdot \ln(v - T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v - T)}} \text{or } k_{\varphi} = 3 \text{ whichever is larger} $ where: $ v \text{is the up-crossing frequency given in (4)} $
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \\ & \nu = n_{1:x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{x} \left(\mathbf{z}_{y}, n_{1:x} \right) \cdot P_{y} \left(\eta_{y} \right) \cdot P_{y} \left(\eta_{y} \right) \\ & \eta_{h} &= \frac{4.6 \cdot h}{L(\mathbf{z}_{x})} \cdot \ell_{x} \left(\mathbf{z}_{x}, n_{1:x} \right) \end{split}$	600 0,234 0,002	is the up-crossing frequency	2 10 100 1000 1000 $Figure \ 8.2 - Peak \ factor$ $k_p = \sqrt{2 \cdot \ln(v \cdot T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v \cdot T)}} \text{or } k_p = 3 \text{ whichever is larger}$ where: $v \text{is the up-crossing frequency given in (4)}$ $T \text{is the averaging time for the mean wind velocity, } T = 600 \text{ seconds.}$
$\begin{aligned} R_b &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \end{aligned}$ $= \frac{\pi^2}{2 \cdot \delta} \cdot S_{\epsilon}(Z_b, n_{1,\epsilon}) \cdot R_b(\eta_b) \cdot R_b(\eta_b)$ $\eta_b &= \frac{4.6 \cdot h}{L(Z_b)} \cdot f_{\epsilon}(Z_b, n_{1,\epsilon})$ $\eta_b &= \frac{4.6 \cdot h}{L(Z_b)} \cdot f_{\epsilon}(Z_b, n_{1,\epsilon})$	0.00 0.234 0.002	is the up-crossing frequency	2
$\begin{aligned} R_b &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \end{aligned}$ $= \frac{\pi^2}{2 \cdot \delta} \cdot S_{\epsilon}(Z_b, n_{1,\epsilon}) \cdot R_b(\eta_b) \cdot R_b(\eta_b)$ $\eta_b &= \frac{4.6 \cdot h}{L(Z_b)} \cdot f_{\epsilon}(Z_b, n_{1,\epsilon})$ $\eta_b &= \frac{4.6 \cdot h}{L(Z_b)} \cdot f_{\epsilon}(Z_b, n_{1,\epsilon})$	0.00 0.234 0.002	is the up-crossing frequency	2 10 100 1000 Figure 8.2 — Peak factor $k_p = \sqrt{2 \cdot \ln(v \cdot T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v \cdot T)}}$ or $k_c = 3$ whichever is larger where: v is the up-crossing frequency given in (4) T is the averaging time for the mean wind velocity, $T = 600$ seconds. Table $P.2$ —Approximate values of logarithmic decrement of structural damping in the continuous type Brucetural type Structural type
$\begin{aligned} R_{b} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \frac{r}{2 \cdot \delta} \cdot S_{a}(Z_{b}, n_{1,k}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \\ &\eta_{b} &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot I_{c}(Z_{b}, n_{1,k}) \\ &\eta_{b} &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot I_{c}(Z_{b}, n_{1,k}) \\ &R_{b} &= \frac{1}{1 - 1} - \frac{1}{2 \cdot n^{2}} (1 - e^{-2n_{b}}), \end{aligned}$	0,002 0,234 0,002 6,472 21,075	is the up-crossing frequency	2 10 100 1000 Figure 8.2 — Peak factor $k_p = \sqrt{2 \cdot \ln(v \cdot T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v \cdot T)}}$ where: v is the up-crossing frequency given in (4) T is the averaging time for the mean wind velocity, $T = 600$ seconds. Table F .2 — Approximate values of logarithmic decrement of structural damping in the forestending form of the second s
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(v \cdot T)} + \sqrt{2 \cdot \ln(v \cdot T)} \\ v &= n_{1,x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ \frac{x^{2}}{2 \cdot \delta} \cdot S_{\epsilon}(Z_{s}, n_{1,x}) \cdot P_{\delta}(\eta_{\delta}) \cdot P_{\delta}(\eta_{\delta}) \cdot P_{\delta}(\eta_{\delta}) \\ \eta_{b} &= \frac{4.6 \cdot h}{L(Z_{s})} \cdot f_{\epsilon}(Z_{s}, n_{1,x}) \\ \eta_{b} &= \frac{4.6 \cdot h}{L(Z_{s})} \cdot f_{\epsilon}(Z_{s}, n_{1,x}) \\ R_{b} &= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot (1 - e^{-2\tau_{b}}) \end{split}$	0,002 0,234 0,002 6,472 21,075	is the up-crossing frequency	
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(v \cdot T)} + \sqrt{2 \cdot \ln(v \cdot T)} \\ v &= n_{1,x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ \frac{x^{2}}{2 \cdot \delta} \cdot S_{\epsilon}(Z_{s}, n_{1,x}) \cdot P_{\delta}(\eta_{\delta}) \cdot P_{\delta}(\eta_{\delta}) \cdot P_{\delta}(\eta_{\delta}) \\ \eta_{b} &= \frac{4.6 \cdot h}{L(Z_{s})} \cdot f_{\epsilon}(Z_{s}, n_{1,x}) \\ \eta_{b} &= \frac{4.6 \cdot h}{L(Z_{s})} \cdot f_{\epsilon}(Z_{s}, n_{1,x}) \\ R_{b} &= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot (1 - e^{-2\tau_{b}}) \end{split}$	600 0,234 0,002 6,472 21,075	is the up-crossing frequency	
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(v \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(v \cdot I)}} \\ &= \frac{1}{v \cdot e} \frac{1}{\ln x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{c}(Z_{b}, n_{1,k}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot f_{c}(Z_{b}, n_{1,k}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot f_{c}(Z_{b}, n_{1,k}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot f_{c}(Z_{b}, n_{1,k}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} (1 - e^{-2 \cdot h_{b}}) \\ &= R_{b} = \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} (1 - e^{-2 \cdot h_{b}}) \end{split}$	600 0.234 0.002 6.472 21,075 0.143	is the up-crossing frequency	Table F.2.—Approximate values of logarithmic decrement of structural damping in the fundamental mode, $\kappa_{p} = \sqrt{2 \cdot \ln(v - T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v - T)}}$ or $k_{p} = 3$ whichever is larger where: where: is the up-crossing frequency given in (4) T is the averaging time for the mean wind velocity, $T = 600$ seconds. Table F.2.—Approximate values of logarithmic decrement of structural damping in the fundamental mode, κ_{c} . Structural type varieties occurred type varieties occurred type varieties occurred to substraings steel taukstraing logarithmic decremental damping, 0.05 structural damping,
$\begin{split} R_{b} &= \sqrt{2 \cdot \ln(v \cdot T)} + \sqrt{2 \cdot \ln(v \cdot T)} \\ &= \frac{e^{2}}{2 \cdot \delta} \cdot S_{c} \left(z_{b}, n_{1,k} \right) \cdot P_{b} \left(\eta_{b} \right) \cdot P_{b} \left(\eta_{b} \right) \cdot P_{b} \left(\eta_{b} \right) \\ &= \frac{e^{2}}{2 \cdot \delta} \cdot S_{c} \left(z_{b}, n_{1,k} \right) \cdot P_{b} \left(\eta_{b} \right)$	600 0.234 0.002 6.472 21,075 0.143	is the up-crossing frequency	2 10 100 1000 Figure 8.2 — Peak factor $k_p = \sqrt{2 \cdot \ln(v \cdot T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v \cdot T)}}$ or $k_e = 3$ whichever is larger where: v is the up-crossing frequency given in (4) T is the averaging time for the mean wind velocity, $T = 600$ seconds. Table T .2 — Approximate values of Toparthhick decreverset of structural damping in the fundamental mode, A , Structural type A structural damping in the fundamental mode, A , Structural concrete buildings states buildings states buildings states buildings states buildings temporared concrete sweat and chimerys unified weeked alset stack with contamal thermal involution unified weeked alset stack with external thermal involution steel stack with one liner with external thermal modulation 10020 steel stack with one liner with external thermal modulation 10020 steel stack with one liner with external thermal modulation 10020 steel stack with one liner with external thermal modulation 10020
$\begin{split} R_{b} &= \sqrt{2 \cdot \ln(v \cdot T)} + \sqrt{2 \cdot \ln(v \cdot T)} \\ &= \frac{e^{2}}{2 \cdot \delta} \cdot S_{c} \left(z_{b}, n_{1,k} \right) \cdot P_{b} \left(\eta_{b} \right) \cdot P_{b} \left(\eta_{b} \right) \cdot P_{b} \left(\eta_{b} \right) \\ &= \frac{e^{2}}{2 \cdot \delta} \cdot S_{c} \left(z_{b}, n_{1,k} \right) \cdot P_{b} \left(\eta_{b} \right)$	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05	is the up-crossing frequency Resonance response factor Resonance response factor Resonance response factor	Table F.2.—Approximate values of logarithmic decrement of structural damping in the fundamental modes, δ . Structural type Table F.2.—Approximate values of logarithmic decrement of structural damping in the fundamental modes, δ . Structural type Structural type Structural damping in the fundamental modes, δ . Structural type Structural damping in the fundamental modes, δ . Structural type Structural damping in the fundamental modes, δ . Structural type Structural damping in the fundamental modes, δ . Structural damping in the fundamental modes in δ . Structural damping in the fundamental modes in δ . Structural damping in the fundamental modes in δ . Structural damping in the fundamental modes in δ . Structural damping in the fundamental modes in δ . Structural damping in the fundamental modes in δ . Structural damping in the fundamental modes in δ .
$\begin{aligned} R_{p} &= \sqrt{2 \cdot \ln(v \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(v \cdot I)}} \\ &= \frac{1}{v \cdot e} \frac{1}{\ln x} \sqrt{\frac{R^{2}}{B^{2} + R^{2}}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{c}(Z_{b}, n_{1,k}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot f_{c}(Z_{b}, n_{1,k}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot f_{c}(Z_{b}, n_{1,k}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot f_{c}(Z_{b}, n_{1,k}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} (1 - e^{-2 \cdot h_{b}}) \end{aligned}$	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05 0,51	is the up-crossing frequency Resonance response factor Resonance response factor Resonance response factor Resonance response factor	Table $F.2$ —Approximate values of logarithmic decrement of structural damping in the fundamental mode, A , and A is the un-crossing frequency given in (4) Table $F.2$ —Approximate values of logarithmic decrement of structural damping in the fundamental mode, A . Structural type Table $F.2$ —Approximate values of logarithmic decrement of structural damping in the fundamental mode, A . Structural type Table A is the unit of the mean wind value of A is structural damping in the fundamental mode, A . Structural type Table A is the unit of A is the structural damping in the fundamental mode, A is structural damping. The fundamental decrement of A is the structural damping, A is structural damping. The fundamental mode of A is the structural damping, A is structural dam
$\begin{aligned} R_{b} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a}(z_{b}, n_{1,a}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \\ &= \frac{\pi^{2}}{1 \cdot \delta} \cdot S_{a}(z_{b}, n_{1,a}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \\ &= \frac{4.6 \cdot h}{L(z_{b})} \cdot I_{c}(z_{a}, n_{t,a}) \\ &= \frac{4.6 \cdot h}{L(z_{b})} \cdot I_{c}(z_{a}, n_{t,a}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}} \cdot (1 - e^{-2\eta_{b}}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}} \cdot (1 - e^{-2\eta_{b}}) \end{aligned}$	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05	is the up-crossing frequency Resonance response factor Resonance response factor Resonance response factor	Table $F.2$ —Approximate values of logarithmic decrement of structural damping in the fundamental mode, $K_p = \sqrt{2 \cdot \ln(v - T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v - T)}}$ or $k_p = 3$ whichever is larger where: where: where: is the up-crossing frequency given in (4) T is the averaging time for the mean wind velocity, $T = 600$ seconds. Table $F.2$ —Approximate values of logarithmic decrement of structural damping in the fundamental mode, $K_p = \frac{1}{2} $
$\begin{split} R_{p} &= \sqrt{2 \cdot \ln(\nu \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot I)}} \\ &= \frac{1}{2 \cdot \delta} \cdot S_{L}(Z_{b}, n_{1,k}) \cdot R_{b}(\eta_{h}) \cdot R_{b}(\eta_{h}) \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{L}(Z_{b}, n_{1,k}) \cdot R_{b}(\eta_{h}) \cdot R_{b}(\eta_{h}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot L(Z_{b}, n_{1,k}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot L(Z_{b}, n_{1,k}) \\ &= \frac{1}{\eta_{h}} - \frac{1}{2 \cdot \eta_{h}^{2}} (1 - e^{-2\gamma_{h}}) \\ &= \frac{1}{\eta_{h}} - \frac{1}{2 \cdot \eta_{h}^{2}} (1 - e^{-2\gamma_{h}}) \\ &= \frac{1}{\eta_{h}} - \frac{1}{2 \cdot \eta_{h}^{2}} (1 - e^{-2\gamma_{h}}) \\ &= \frac{1}{\delta_{a}} - \frac{1}{2 \cdot \eta_{h}^{2}} (1 - e^{-2\gamma_{h}}) \\ &= \frac{1}{\delta_{a}} - \frac{1}{2 \cdot \eta_{h}^{2}} (1 - e^{-2\gamma_{h}}) \\ &= \frac{1}{\delta_{a}} - \frac{1}{2 \cdot \eta_{h}^{2}} \left(1 - e^{-2\gamma_{h}} \right) \\ &= \frac{\delta_{c}}{\delta_{a}} - \frac{\delta_{c}}{2 \cdot n_{1} \cdot m_{h}} \\ &= \frac{\delta_{c}}{\delta_{c}} - \frac{\delta_{c}}{\delta_{c}} - \frac{\delta_{c}}{\delta_{c}} \\ &= \frac{\delta_{c}}{\delta_{c}} - $	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05 0,51	is the up-crossing frequency Resonance response factor logarithmic decrement of structural damping - Table F.2 logarithmic decrement of of aerodynamic damping when no special device is used.	Table $F.2$ —Approximate values of logarithmic decrement of structural damping in the transferred concrete value of transferred damping in the transferred concrete value of transferred damping. The steel stack with one liner with external thermal resultation 0.052 transferred concrete values and concrete values of togerithmic decrement of structural damping in the transferred concrete value of logarithmic decrement of structural damping in the transferred concrete value of logarithmic decrement of structural damping in the transferred concrete value of the mean wind value $V.7$ = 600 seconds. Structural type
$\begin{aligned} R_{b} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a}(z_{b}, n_{1,a}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \\ &= \frac{\pi^{2}}{1 \cdot \delta} \cdot S_{a}(z_{b}, n_{1,a}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \\ &= \frac{4.6 \cdot h}{L(z_{b})} \cdot I_{c}(z_{a}, n_{t,a}) \\ &= \frac{4.6 \cdot h}{L(z_{b})} \cdot I_{c}(z_{a}, n_{t,a}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}} \cdot (1 - e^{-2\eta_{b}}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}} \cdot (1 - e^{-2\eta_{b}}) \end{aligned}$	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05 0,51	is the up-crossing frequency Resonance response factor Resonance response factor Resonance response factor Resonance response factor	Table $P.2$ —Approximate values of logarithmic decrement of structural damping in the structural type $\frac{1}{\sqrt{2} \cdot \ln(v \cdot T)} + \frac{0.6}{\sqrt{2} \cdot \ln(v \cdot T)}$ or $k_c = 3$ whichever is larger where: v is the up-crossing frequency given in (4) T is the averaging time for the mean wind valoidly, $T = 600$ seconds. Table $P.2$ —Approximate values of logarithmic decrement of structural damping in the structural type $\frac{1}{\sqrt{2} \cdot \ln(v \cdot T)} = \frac{1}{\sqrt{2} \cdot \ln(v \cdot T)} $
$\begin{split} R_{b} &= \sqrt{2 \cdot \ln(\nu \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot I)}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a} \left(Z_{b}, n_{1,b} \right) \cdot R_{b} \left(\eta_{b} \right) \cdot R_{b} \left(\eta_{b} \right) \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a} \left(Z_{b}, n_{1,b} \right) \cdot R_{b} \left(\eta_{b} \right) \cdot R_{b} \left(\eta_{b} \right) \\ &= \frac{4.6 \cdot h}{L(z_{b})} \cdot L_{b} \left(Z_{b}, n_{1,b} \right) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) $	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05 0,51	is the up-crossing frequency Resonance response factor logarithmic decrement of structural damping - Table F.2 logarithmic decrement of of aerodynamic damping when no special device is used.	Table $F.Z$ —Approximate values of logarithmic decrement of structural damping in the functional state buildings. Table $F.Z$ —Approximate values of logarithmic decrement of structural damping in the functional state of the structural damping in the functional state buildings. Table $F.Z$ —Approximate values of logarithmic decrement of structural damping in the fundamental mode, δ . Structural type Structural state of the structural damping in the fundamental mode, δ . Structural state buildings Structural damping in the fundamental mode, δ .
$\begin{split} R_{b} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a}(Z_{b}, n_{1,x}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a}(Z_{b}, n_{1,x}) \cdot R_{b}(\eta_{b}) \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ $	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05 0,51	is the up-crossing frequency Resonance response factor logarithmic decrement of structural damping - Table F.2 logarithmic decrement of of aerodynamic damping when no special device is used.	Table $F.Z$ —Approximate values of logarithmic decrement of structural damping in the functional state buildings. Table $F.Z$ —Approximate values of logarithmic decrement of structural damping in the functional state buildings. Table $F.Z$ —Approximate values of logarithmic decrement of structural damping in the fundamental mode, δ . Structural type Structural state of structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ . Structural structural damping in the fundamental mode, δ .
$\begin{split} R_{b} &= \sqrt{2 \cdot \ln(\nu \cdot T)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot T)}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a}(Z_{b}, n_{1,x}) \cdot R_{b}(\eta_{b}) \cdot R_{b}(\eta_{b}) \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a}(Z_{b}, n_{1,x}) \cdot R_{b}(\eta_{b}) \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{4.6 \cdot h}{L(Z_{b})} \cdot I_{b}(Z_{a}, n_{1,x}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ &= \frac{1}{\omega_{b}} - \frac{1}{2 \cdot \eta_{b}^{-2}} (1 - e^{-2 \cdot n_{b}}) \\ $	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05 0,51 0 0,557	is the up-crossing frequency Resonance response factor logarithmic decrement of structural damping - Table F.2 logarithmic decrement of of aerodynamic damping when no special device is used.	Table $P.2 - 100$ of 1000 1000 1000 1000 1000 1000 1000 1
$\begin{split} R_{b} &= \sqrt{2 \cdot \ln(\nu \cdot I)} + \frac{1}{\sqrt{2 \cdot \ln(\nu \cdot I)}} \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a} \left(Z_{b}, n_{1,b} \right) \cdot R_{b} \left(\eta_{b} \right) \cdot R_{b} \left(\eta_{b} \right) \\ &= \frac{\pi^{2}}{2 \cdot \delta} \cdot S_{a} \left(Z_{b}, n_{1,b} \right) \cdot R_{b} \left(\eta_{b} \right) \cdot R_{b} \left(\eta_{b} \right) \\ &= \frac{4.6 \cdot h}{L(z_{b})} \cdot L_{b} \left(Z_{b}, n_{1,b} \right) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{\eta_{b}} - \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) \\ &= \frac{1}{2 \cdot \eta_{b}^{2}} \left(1 - e^{-2 \cdot h_{b}} \right) $	600 0,234 0,002 6,472 21,075 0,143 0,046 of damping 0,05 0,51	is the up-crossing frequency Resonance response factor logarithmic decrement of structural damping - Table F.2 logarithmic decrement of of aerodynamic damping when no special device is used.	Title Processor of the mean wind velocity, $T = 600$ seconds. Figure 8.2 — Peak factor $k_p = \sqrt{2 \cdot \ln(v \cdot T)} + \frac{0.6}{\sqrt{2 \cdot \ln(v \cdot T)}}$ where: v is the up-crossing frequency given in (4) T is the averaging time for the mean wind velocity, $T = 600$ seconds. Table F -2 — Approximate values of togenithmic decrement of structural damping in the fundamental models, A . Structural type Table F -3 — Approximate values of togenithmic decrement of structural damping in the fundamental models, A . Structural type Table F -3 — Approximate values of togenithmic decrement of structural damping in the fundamental type A in the fundamental models A . Structural type Table F -3 — Approximate values of togenithmic decrement of structural damping in the fundamental type A in the fundamental damping A in the

Γ	APR ENERGY TWO Srl	FARENTI SRL
	Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
	P.I. 03188150597	P.I. 02604750600

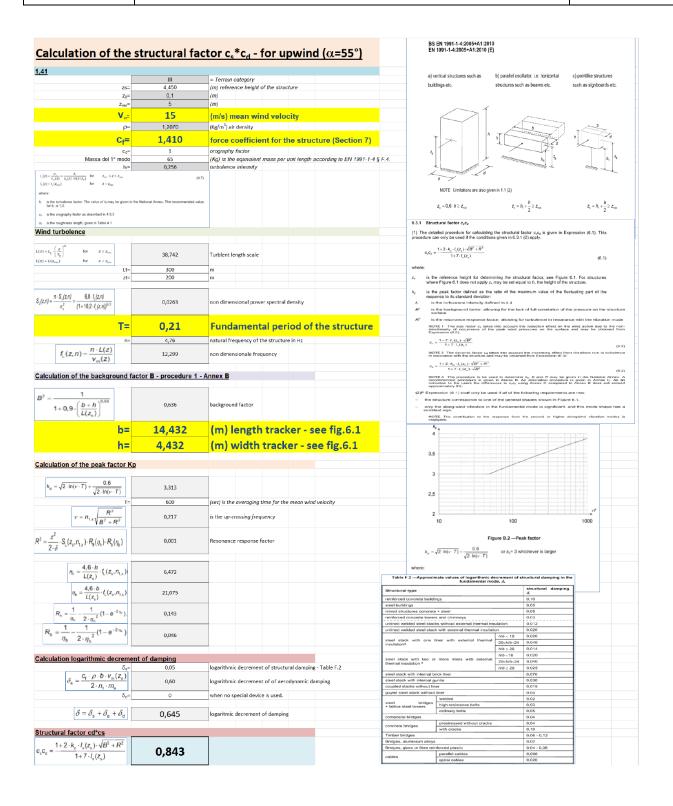


Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

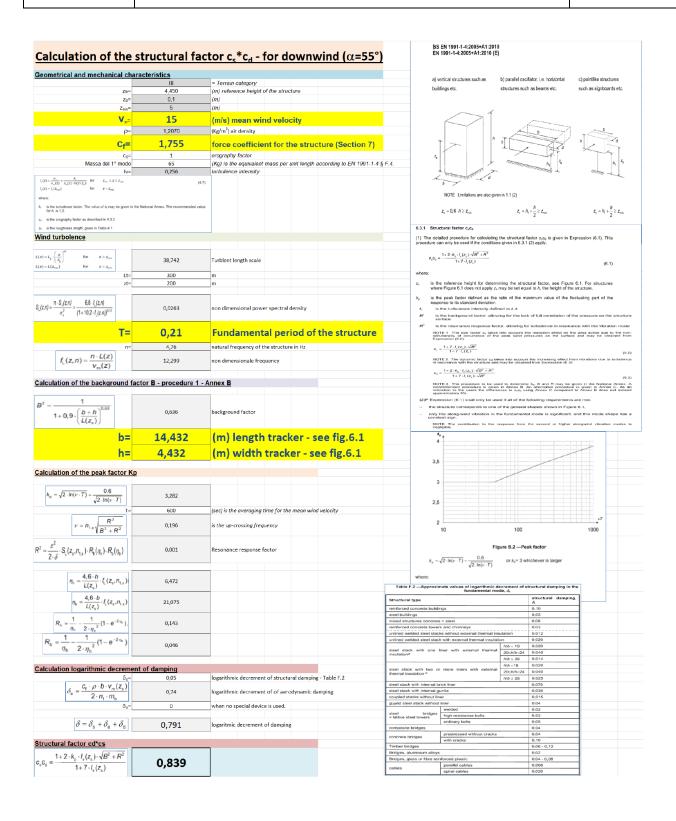


Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

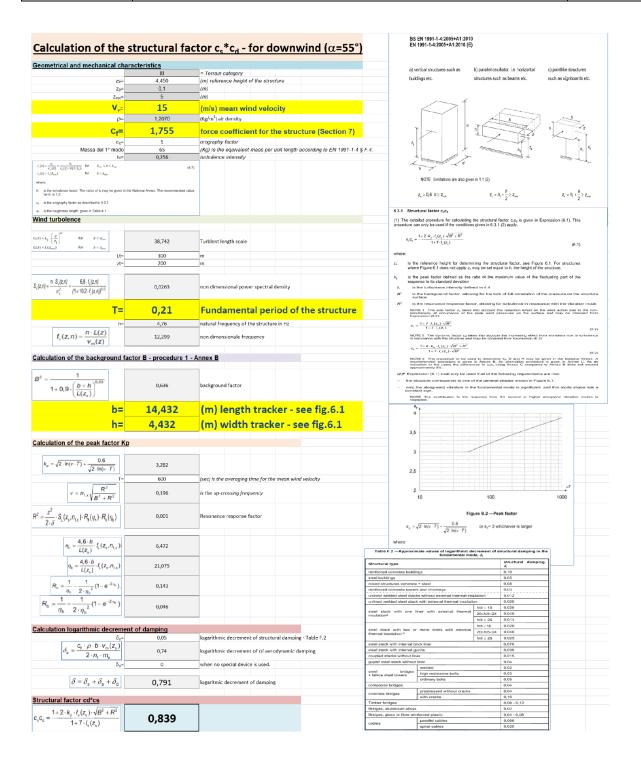


Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Г	-	
	APK ENEKGT IWO SII	PAKENII SKL
	Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc — 03030 — Santopadre (FR)
	P.I. 03188150597	P.I. 02604750600



Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

VIA.REL11

Calcoli preliminari dimensionamento strutture

Il coefficiente di pressione Cp dipende dalla tipologia e dalla geometria della costruzione e dal suo orientamento rispetto alla direzione del vento.

Il coefficiente d'attrito cf dipende dalla scabrezza della superficie sulla quale il vento esercita l'azione tangente.

Entrambi questi coefficienti, definiti coefficienti aerodinamici, possono essere ricavati da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

La condizione ϕ =1 è sostanzialmente diversa da quella prevista per gli edifici in quanto l'eventuale ostruzione può essere offerta anche da elementi che non delimitano completamente e permanentemente lo spazio al di sotto della tettoia.

A valle della massima ostruzione si adotta φ=0.

Le azioni aerodinamiche esercitate dal vento sulle tettoie dipendono fortemente dal grado di bloccaggio in quanto la presenza di un'ostruzione, anche soltanto sul lato sottovento, impedisce il passaggio dell'aria al di sotto della tettoia.

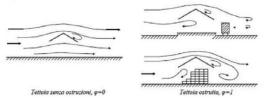


Figura C3.3.20 - Differenze nel flusso dell'aria per tettoie con ϕ =0 e ϕ =1

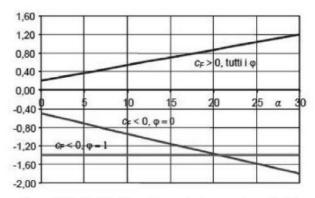


Figura C3.3.21 - Coefficienti di pressione complessiva per tettoie a semplice falda

Tabella C3.3.XV - Coefficienti di forza per tettoie a semplice falda (α in °).

Valori positivi	Tutti i valori di o	$c_F = +0.2 + \alpha/30$
Valori negativi	φ=0	$c_F = -0.5 - 1.3 \cdot \alpha/30$
valout angatevi	φ=1	$c_F = -1.4$

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

APR ENERGY

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

Model A, α=0°

-
$$c_{pn,+0^{\circ}} = 0.2 + \alpha/30 = +0.20$$
 upwind

-
$$c_{pn,-0^{\circ}} = -0.5 - 1.3 \cdot \alpha/30 = -0.50$$
 downwind

Model B, α=30°

-
$$c_{pn,+30^{\circ}} = 0.2 + \alpha/30 = +1.20$$
 upwind

-
$$c_{pn,-30^{\circ}} = -0.5 - 1.3 \cdot \alpha/30 = -1.80$$
 downwind

Il calcolo della pressione del vento è determinato secondo la Sezione 3.3.4 del D.M. 17 gennaio 2018 - Norme Tecniche per le Costruzioni, basato sulla seguente espressione:

$$P_{w,\alpha} = q_{r,\alpha} \cdot c_e \cdot c_d \cdot c_{pn,\alpha}$$

Pertanto, le condizioni di carico sono:

Model A, α=0°

$$- P_{w,+0^\circ} = q_{r,+0^\circ} \cdot c_e \cdot c_s c_d \cdot c_{pn,+0^\circ} = 436 \cdot 1,708 \cdot 0,905 \cdot 0,20 = 135 \ N/m^2 \ .. \ (\text{upwind});$$

-
$$P_{w,-0^{\circ}} = q_{r,-0^{\circ}} \cdot c_e \cdot c_s c_d \cdot c_{pn,-0^{\circ}} = -436 \cdot 1,708 \cdot 0,886 \cdot 0,5 = -330 \, N/m^2$$
 (downwind);

Model B, α =30°

-
$$P_{w,+30^{\circ}} = q_{r,+30^{\circ}} \cdot c_e \cdot c_s c_d \cdot c_{pn,+30^{\circ}} = 136 \cdot 1 \cdot 0,847 \cdot 1,20 = 138 \, N/m^2 \dots$$
 (upwind);

-
$$P_{w,-30^{\circ}} = q_{r,-30^{\circ}} \cdot c_e \cdot c_s c_d \cdot c_{pn,-30^{\circ}} = -136 \cdot 1 \cdot 0,838 \cdot 1,8 = -205 \, N/m^2$$
. (downwind);

Model C, α=55°

-
$$P_{w,+55^{\circ}} = q_{r,+55^{\circ}} \cdot c_e \cdot c_s c_d \cdot c_{pp,+55^{\circ}} = 136 \cdot 1 \cdot 0,843 \cdot 1,410 = 161 \, N/m^2 \dots \text{ (upwind)};$$

$$- \quad P_{w,-55^{\circ}} = q_{r,-55^{\circ}} \cdot c_e \cdot c_s c_d \cdot c_{pn,-55^{\circ}} = -136 \cdot 1 \cdot 0,839 \cdot 1,755 = -200 \ N/m^2 \qquad \text{(downwind)};$$

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture

VIA.REL11

Documento

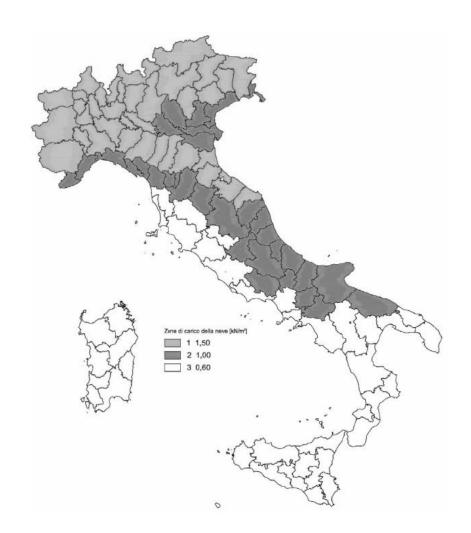
AZIONE DELLA NEVE

Il calcolo del carico neve è determinato in base alle indicazioni del D.M. 17 gennaio 2018 – Norme Tecniche per le Costruzioni.

Il carico della neve al suolo dipende dalle condizioni locali di clima e di esposizione, considerata la variabilità delle precipitazioni nevose da zona a zona.

In mancanza di adeguate indagini statistiche e specifici studi locali, che tengano conto sia dell'altezza del manto nevoso che della sua densità, il carico di riferimento della neve al suolo, per località poste a quota inferiore a 1500 m sul livello del mare, non dovrà essere assunto minore di quello calcolato in base alle espressioni riportate nel seguito, cui corrispondono valori associati ad un periodo di ritorno pari a 50 anni per le varie zone indicate nella Fig. 3.4.1.

APR ENERGY TWO SRL


Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

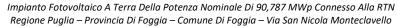
Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

Il sito in oggetto è localizzato in zona 2, ad un'altitudine di circa 112 metri sul livello del mare.

Zona II


Arezzo, Ascoli Piceno, Avellino, Bari, Barletta-Andria-Trani, Benevento, Campobasso, Chieti, Fermo, Ferrara, Firenze, Foggia, Frosinone, Genova, Gorizia, Imperia, Isemia, L'Aquila, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rieti, Rovigo, Savona, Teramo, Trieste, Venezia, Verona:

$$q_{sk} = 1,00 \; kN/m^2 \qquad \qquad a_s \leq 200 \; m$$

$$q_{sk} = 0,85 \; [1 + (a_s/481)^2] \; kN/m^2 \qquad \qquad a_s > 200 \; m$$

Quindi avremo:

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Calcoli preliminari dimensionamento strutture

$$q_{sk} = 600 \, N/m^2$$

Secondo l'allegato D della EN 1991-1-3: 2003 è possibile utilizzare un coefficiente che tenga conto di un periodo di ritorno diverso da 50 anni. Per un periodo di ritorno pari a 25 anni il carico di neve caratteristiche è

$$q_{sn} = q_{sk} \cdot \left\{ \frac{1 - V\frac{\sqrt{6}}{\pi} \left[ln \left(-ln(1 - P_n) \right) + 0,57722 \right]}{(1 + 2,5923V)} \right\} = q_{sk} \cdot \left\{ \frac{1 - 0,6\frac{\sqrt{6}}{\pi} \left[ln \left(-ln \left(1 - \frac{1}{25} \right) \right) + 0,57722 \right]}{(1 + 2,5923 \cdot 0,6)} \right\}$$

$$= 522,7 \ N/m^2$$

I coefficienti di forma delle coperture dipendono dalla forma stessa della copertura e dall'inclinazione sull'orizzontale delle sue parti componenti e dalle condizioni climatiche locali del sito ove sorge la costruzione.

In assenza di dati suffragati da opportuna documentazione, i valori nominali del coefficiente di forma $\mu 1$ possono essere ricavati dalla Tab. 3.4.II, essendo α , espresso in gradi sessagesimali, l'angolo formato dalla falda con l'orizzontale.

Tab. 3.4.II – Valori del coefficiente di forma

Coefficiente di forma		0°≤ α ≤ 30°	30° < α < 60°	α≥60°
	μ1	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Quindi avremo:

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

APR ENERGY

APR ENERGY TWO SRL

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

$$\mu = 0.8;$$

$$\mu = 0.8$$
;

$$\mu = \frac{0.8 \cdot (60 - \alpha)}{30} = \frac{0.8 \cdot (60 - 55)}{30} = 0.13;$$

La struttura dell'inseguitore non può essere classificata come tetto monoposto standard perché durante un'intera giornata i pannelli ruotano da -55 ° a + 55 °. Per tutte le configurazioni si presume che la semplificazione utilizzi un coefficiente di forma pari alla media tra i valori riportati per la configurazione principale:

$$\mu = \frac{(0.47 \cdot 25^{\circ}) + (0.8 \cdot 30^{\circ})}{55^{\circ}} = 0.65$$

COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione CE tiene conto delle caratteristiche specifiche dell'area in cui sorge l'opera. Valori consigliati di questo coefficiente sono forniti in Tab. 3.4.I per diverse classi di esposizione.

Tab. 3.4.I – Valori di C_E per diverse classi di esposizione

Topografia	Descrizione	
Battuta dai venti	1 00	
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

Si assume

$$c_e = 0.9$$

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

COEFFICIENTE TERMICO

Il coefficiente termico ct dovrebbe essere utilizzato per tenere conto della riduzione dei carichi di neve sui tetti con elevata trasmittanza termica.

Secondo il capitolo 3.4.5 del D.M. 17 gennaio 2018 - Norme Tecniche per le Costruzioni, il valore è:

$$c_t = 1$$

CALCOLO CARICO NEVE

Il calcolo del carico neve è determinato secondo il capitolo 3.4.1 del D.M. 17 gennaio 2018 - Norme Tecniche per le Costruzioni:

$$q_{s,\alpha} = \mu_{i,\alpha} \cdot c_e \cdot c_t \cdot q_{sk}$$

Pertanto, per le tre diverse configurazioni i carichi sono:

Model A, α=0°

-
$$q_{s,0^{\circ}} = \mu_i \cdot c_e \cdot c_t \cdot s_k = 0.65 \cdot 0.9 \cdot 522.7 = 305.8 \ N/m^2$$

Model B, α=30°

-
$$q_{s,30^{\circ}} = \mu_i \cdot c_e \cdot c_t \cdot s_k = 0.65 \cdot 0.9 \cdot 522.7 = 305.8 \ N/m^2$$

Model C, α=55°

-
$$q_{s,55^{\circ}} = \mu_i \cdot c_e \cdot c_t \cdot s_k = 0,65 \cdot 0,9 \cdot 522,7 = 305,8 \ N/m^2$$

ı	APR ENERGY TWO Srl	FARENTI SRL
	Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
l	P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

COMBINAZIONI DELLE AZIONI

Le combinazioni di carico sono determinate secondo D.M. 17 gennaio 2018 - Norme Tecniche per le Costruzioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):
$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
[2.5.1]

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\scriptscriptstyle F}$			
Carishi marmananti Ca	Favorevoli	Υ _{G1}	0,9	1,0	1,0
Carichi permanenti Gı	Sfavorevoli		1,1	1,3	1,0
Conidian and the state of the s	Favorevoli	Υ _{G2}	0,8	8,0	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli		1,5	1,5	1,3
Aminoni sensiahili O	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	Υ _{Qi}	1,5	1,5	1,3

⁽¹⁾Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψοϳ	Ψ1j	ψ_{2j}
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da val	utarsi ca	so per
Categoria K – Coperture per usi speciali (impianti, eliporti,)		caso	
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

AZIONI ALLA BASE DEI PALI

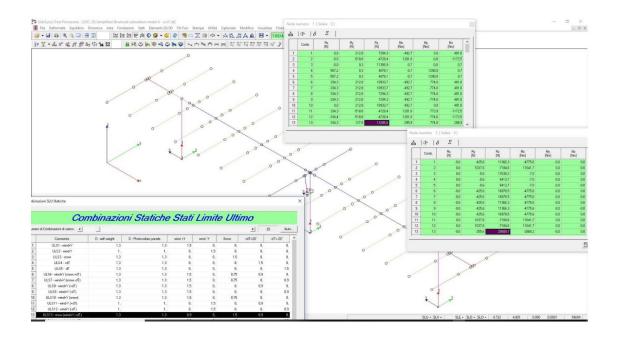
I calcoli sono stati effettuati utilizzando un modello ad elementi finiti sviluppato mediante l'uso del software Winstrand (versione 2015-043).

Attraverso l'analisi delle combinazioni di carico sui tre modelli principali, i carichi peggiori da utilizzare durante le prove di estrazione risultano dal modello A.

MODEL (A) $-\alpha=0^{\circ}$

Azione perpendicolare verticale – Compressione

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600



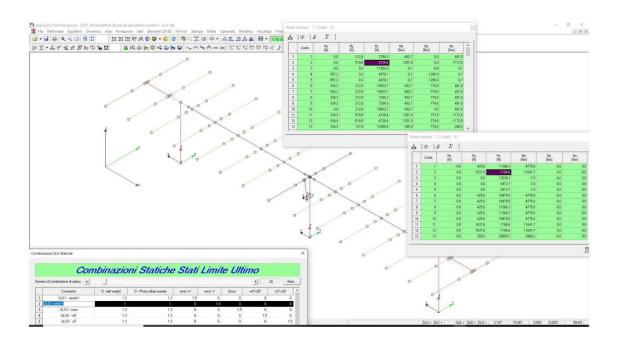
Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture

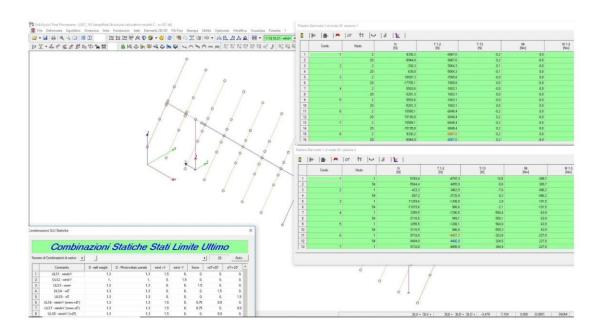
Nmax = 14147,1 N - per i pali laterali

Nmax = 21987 N - per il palo centrale del motore

Azione perpendicolare verticale – Trazione


APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello


Calcoli preliminari dimensionamento strutture

Nmax = -5539,2 N - per i pali laterali

Nmax = -8406 N - per il palo centrale del motore

Azione orizzontale

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture

VIA.REL11

Tmax = 4807 N - per i pali laterali

Tmax = 6867 N - per il palo centrale del motore

Sulla base delle indicazioni NTC-2018, se vengono eseguite solo prove di carico di estrazione (azione perpendicolare verticale - trazione) con un minimo di 5 prove, il carico di progetto deve essere aumentato del coefficiente indicato al paragrafo 6.4.3.1.1.

6.4.3.1.1 Resistenze di pali soggetti a carichi assiali

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tab. 6.4. Π .

 $\textbf{Tab. 6.4.II} - \textit{Coefficienti parziali } \gamma_{R} \ \textit{da applicare alle resistenze caratteristiche a carico verticale dei pali}$

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	Ϋ́R	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Υs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Υst	1,25	1,25	1,25

⁽º) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Documento

VIA.REL11

Calcoli preliminari dimensionamento strutture

(a) Se il valore caratteristico della resistenza a compressione del palo, $R_{c,k'}$ o a trazione, $R_{t,k'}$ è dedotto dai corrispondenti valori $R_{c,m}$ o $R_{t,m'}$ ottenuti elaborando i risultati di una o più prove di carico di progetto, il valore caratteristico della resistenza a compressione e a trazione è pari al minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze misurate i fattori di correlazione ξ riportati nella Tab. 6.4.III, in funzione del numero n di prove di carico su pali pilota:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_{l}}; \frac{\left(R_{c,m}\right)_{min}}{\xi_{2}} \right\}$$
 [6.4.1]

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,m}\right)_{media}}{\xi_{l}}; \frac{\left(R_{t,m}\right)_{min}}{\xi_{2}} \right\}$$
 [6.4.2]

Tab. 6.4.III - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove di carico statico su pali pilota

Numero di prove di carico	1	2	3	4	≥ 5
ξ ₁	1,40	1,30	1,20	1,10	1,0
ξ ₂	1,40	1,20	1,05	1,00	1,0

Secondo le indicazioni precedentemente riportate, le forze massime che devono essere applicate per le prove di estrazione sono:

Massima azione verticale perpendicolare:

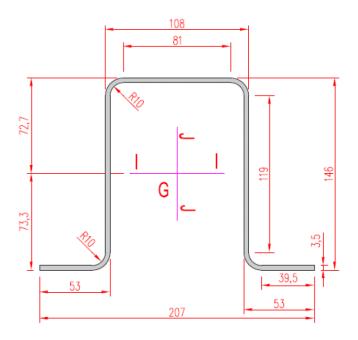
Nmax,trac test = Nmax,trac x Yst

Nmax,trac test = $-8406 \times 1,25 = 10508 \text{ N} = 1072 \text{ Kg}$

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture


VIA.REL11

CALCOLO DELLA LUNGHEZZA DEI PALI

Questo capitolo analizza i controlli geotecnici sui pali della struttura dell'inseguitore.

Il calcolo della lunghezza del palo nel terreno viene effettuato con il software GEOSTRU MP,

Le dimensioni geometriche del palo sono:

Inertia Characteristics (dimensions in mm)

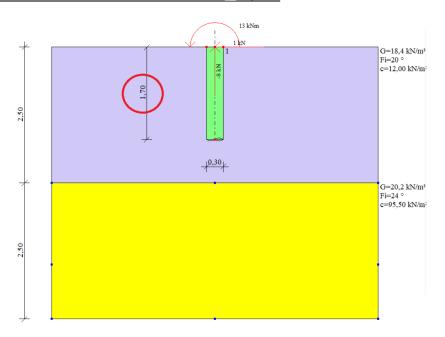
- Barycenter: X: 0.0000/ Y: 0.0000
- Moments of inertia: X: 4991037.7770 / Y: 5118921.7495
- Products of inertia:XY: 0.000
- Main moments and direction X-Y compared to the barycenter:
 - I: 4991037.7770 lungo [1.0000 0.0000]
 - J: 5118921.7495 lungo [0.0000 1.0000]

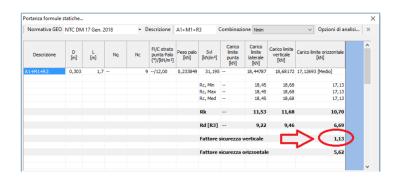
Per il calcolo del carico della resistenza del palo di carico, si inserisce nel software il diametro equivalente:

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

APR ENERGY

APR ENERGY TWO SRL


Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello



Calcoli preliminari dimensionamento strutture

$$D_{eq} = 951/\pi = 303mm \cong 300mm$$

DESIGN RESISTANCE TO AXIAL LOADS - combination with N_{max}=-8,406kN

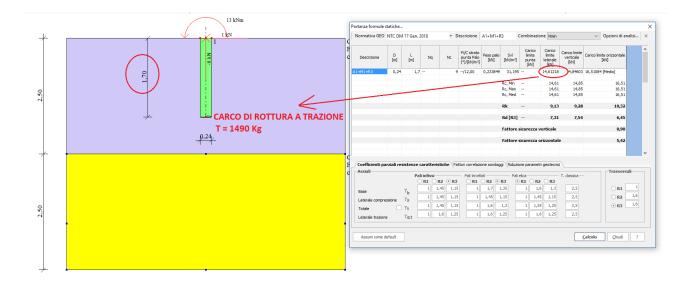
La lunghezza calcolata è:

 $L_{emb} = 1700 \ mm.$

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600

APR ENERGY

APR ENERGY TWO SRL


Impianto Fotovoltaico A Terra Della Potenza Nominale Di 90,787 MWp Connesso Alla RTN Regione Puglia – Provincia Di Foggia – Comune Di Foggia – Via San Nicola Monteclavello

Calcoli preliminari dimensionamento strutture

VIA.REL11

Al fine di utilizzare la stessa lunghezza di inclinazione del progetto e ottenere lo stesso fattore di sicurezza, è stato deciso di utilizzare un test di carico di estrazione aumentato per ottenere risultati coerenti

Pertanto, la lunghezza di inclinazione calcolata è $Lemb = 1700 \ mm$ e l'equivalente della massima azione perpendicolare verticale (trazione) è Nmax, trac. test = 1490kg ($\gg Nmax$, trac. $test = 1072 \ kg$).

APR ENERGY TWO Srl	FARENTI SRL
Via Porto Galeo, 3222 – 04020 – Santi Cosma e Damiano (LT)	Via Don Giuseppe Corda, snc – 03030 – Santopadre (FR)
P.I. 03188150597	P.I. 02604750600