

COMUNE DI ASCOLI SATRIANO

PROGETTO DEFINITIVO

PROGETTO AGRIVOLTAICO -

IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE RINNOVABILE DI TIPO FOTOVOLTAICO INTEGRATO DA PROGETTO DI RIQUALIFICAZIONE AGRICOLA

Committente:

Green Genius Italy Utility 6 srl

Corso Giuseppe Garibaldi, 49 20121 Milano (MI)

StudioTECNICO Ing. Marco G Balzano

Via Cancello Rotto, 3 70125 BARI | Italy +39 331.6794367

www.ingbalzano.com

Spazio Riservato agli Enti:

REV	DATA	ESEGUITO	VERIFICA	APPROV	DESCRIZ
R0	02/12/2022	Geol. Gigante	Geol. De Giorgio	MBG	Prima Emissione

Numero Commessa:

SV634

Data Elaborato:

02/12/2022

Revisione:

R₀

Titolo Elaborato:

Relazione Geologica

Progettista:

ing.MarcoG.Balzano

Ordine degli Ingegneri della Provincia di Bari n.9341 Professionista Antincendio Elenco Ministero degli Interni BA09341101837 Consulente Tecnico d'Ufficio (CTU) Tribunale Bari

Elaborato:

Sommario

1. PREMESSA	3
2. NORMATIVA DI RIFERIMENTO	4
3. UBICAZIONE DELL'AREA	5
4. INQUADRAMENTO GEOLOGICO GENERALE DELL'AREA DI STUDIO	7
5. GEOMORFOLOGIA E IDROGRAFIA DEL TERRITORIO	
6. LINEAMENTI IDROGEOLOGICI	11
7. CAMPAGNA DI INDAGINI GEOGNOSTICHE: UBICAZIONE DEGLI STENDIMENTI GEOFISICI E DELL PENETROMETRICHE	
8. CARATTERIZZAZIONE GEOFISICA DEL SOTTOSUOLO: METODOLOGIA DI ANALISI E STRUMENTA UTILIZZATA	
8.1 IL METODO DELLA SISMICA A RIFRAZIONE 8.2 METODO MASW	15
9. ANALISI DI SISMICA A RIFRAZIONE	17
9.1 STENDIMENTO SISMICO AA': INTERPRETAZIONE DEI DATI	19 21
10. ANALISI MASW	27
10.1 STENDIMENTO SISMICO AA': INTERPRETAZIONE DEI DATI 10.2 STENDIMENTO SISMICO BB': INTERPRETAZIONE DEI DATI 10.3 STENDIMENTO SISMICO CC': INTERPRETAZIONE DEI DATI 10.4 STENDIMENTO SISMICO DD': INTERPRETAZIONE DEI DATI 10.5 STENDIMENTO SISMICO EE': INTERPRETAZIONE DEI DATI	31 33
11. CLASSIFICAZIONE DEL SOTTOSUOLO DI FONDAZIONE DEI SITI DI PROGETTO	37
11.1 DETERMINAZIONE DELLA CATEGORIA DI SOTTOSUOLO DELLO STENDIMENTO AA'	40 41
12. CARATTERIZZAZIONE ELASTICA DEI TERRENI DI FONDAZIONE	43
13. PROVE PENETROMETRICHE DINAMICHE	45
13.1 Prova SV634_P1 13.2 Prova SV634_P2 13.3 Prova SV634_P3 13.4 Prova SV634_P4 13.5 Prova SV634_P5 13.6 Prova SV634_P6	
14. MODELLO GEOLOGICO-TECNICO GENERALE	60
14.1 MODELLO GEOLOGICO-TECNICO CAMPO FOTOVOLTAICO: LOTTO 1-2-3-4. 14.2 MODELLO GEOLOGICO-TECNICO CAMPO FOTOVOLTAICO: LOTTO 5-6. 14.3 MODELLO GEOLOGICO-TECNICO CAMPO FOTOVOLTAICO: LOTTO 7 N. 14.4 MODELLO GEOLOGICO-TECNICO CAMPO FOTOVOLTAICO: LOTTO 7 S. 14.5 MODELLO GEOLOGICO-TECNICO CAMPO FOTOVOLTAICO: LOTTO 8. 14.6 MODELLO GEOLOGICO-TECNICO SOTTOSTAZIONE.	
15. CENNI SULLA SISMICITÀ DELL'AREA	
15.1 CLASSIFICAZIONE SISMICA	

15.2.1 Categoria di sottosuolo di riferimento	
15.2.2 Condizioni topografiche	
15.3 PERICOLOSITÀ SISMICA DI BASE	
15.4 ACCELERAZIONE MASSIMA ATTESA IN SUPERFICIE	68
16 CONSIDERATIONI CONCLUSIVE	70

1. Premessa

La presente relazione geologica, redatta dal sottoscritto dott. Geol. Giuseppe Gigante su incarico dello STUDIO TECNICO Ing. Marco Balzano integra la documentazione a corredo del *Progetto per la Realizzazione di impianto fotovoltaico Utility Scale* da realizzare su lotto posizionato nel territorio comunale di Ascoli Satriano, provincia di Foggia, su cui verranno installati pannelli fotovoltaici e denominato "SV634 - Agro PV Piscitelli". L'iniziativa nello specifico, prevede la realizzazione di un impianto di produzione di energia elettrica da fonte rinnovabile di tipo fotovoltaico integrato da progetto di riqualificazione agricola.

Lo studio è stato esteso oltre al sito su cui saranno installati i pannelli fotovoltaici anche alle aree interessate dalla realizzazione delle opere connesse e delle infrastrutture indispensabili alla perfetta funzionalizzazione dell'impianto su indicato, ossia l'elettrodotto di collegamento e la sottostazione di servizio.

Il presente documento fornisce quindi un'analisi geologica, stratigrafica, geomorfologica, idrogeologica e sismica del sito oggetto di studio e delle aree circostanti, orientata all'individuazione di fonti di rischio geologico, idraulico, idrogeologico e sismico con l'intento ultimo di definire il *Modello Geologico del Sottosuolo* di riferimento.

Per una ottimale definizione del Modello Geologico del Sottosuolo lo studio è stato focalizzato sull'individuazione e definizione degli aspetti principali dell'ambito territoriale in esame quali: la sequenza litostratigrafia, l'assetto strutturale e geomorfologico dell'ammasso roccioso nel suo complesso, l'idrografia superficiale, i caratteri idrogeologici, la definizione delle principali proprietà fisiche e meccaniche dei litotipi affioranti, la classificazione sismica nelle aree di intervento.

In relazione alla finalità dello studio quindi, le attività sono state articolate sviluppando il seguente programma:

- analisi della bibliografia esistente;
- analisi delle immagini satellitari della zona di studio;
- prospezione geologica e geomorfologica di superficie;
- realizzazione di n.5 tomografie sismiche per la valutazione della stratigrafia e dei caratteri tecnici dei litotipi costituenti gli strati superficiali del sottosuolo e interessati come terreno di fondazione delle strutture;
- realizzazione di n.5 indagini MASW (Multichannel Spectral Analysis of Surface Waves) per la definizione della categoria di sottosuolo di fondazione, come richiesto dall'attuale normativa vigente in materia antisismica e disciplinato dalle Nuove Norme Tecniche delle Costruzioni del 2018;
- Realizzazione di n.6 prove penetrometriche.

2. Normativa di riferimento

Nella redazione della presente relazione è stata presa in considerazione la vigente normativa tecnica italiana, ed in particolare, le seguenti disposizioni:

- D.M. 17 gennaio 2018: "Norme tecniche per le costruzioni" (G.U. del 20 febbraio 2018 Suppl. Ordinario n.42) e Circolare Applicativa C.S.LL.PP. 21 gennaio 2019 n.7: "ISTRUZIONI PER L'APPLICAZIONE DELL'AGGIORNAMENTO DELLE NORME TECNICHE PER LE COSTRUZIONI, DI CUI AL DECRETO MINISTERIALE 17 GENNAIO 2018" (G.U. n.35 del 11 febbraio 2019 Suppl. Ordinario n.5);
- D.G.R. 15 settembre 2009 n.1626: "D.M. 14.01.2008 NORME TECNICHE PER LE COSTRUZIONI. DISPOSIZIONE IN MERITO ALLE PROCEDURE DA ADOTTARE IN MATERIA DI CONTROLLI E/O AUTORIZZAZIONI, AI SENSI E PER GLI EFFETTI DI CUI AGLI ARTT. 93 E 94 DEL D.P.R. N. 06.06.2001, N. 380 E s.m.i." (Boll. Uff. Regione Puglia n.151 del 29.9.2009);
- Piano di Assetto Idrogeologico (PAI) dell'Autorità di Bacino della Puglia (12/11/04 e nota 25/CT del 15/12/04), in vigore dal Dicembre 2005;
- OPCM n.3274 del 20 marzo 2003: "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" successive modificazioni e collegata normativa regionale;
- Piano Urbanistico Territoriale Tematico / Paesaggio (PUTT/P), approvato con Del. GR. n.1748 del 15 dicembre 2000, in adempimento di quanto disposto dalla legge n. 431 del 8 Agosto 1985 e dalla legge regionale n.56 del 31 Maggio 1980.
- Piano Paesaggistico Territoriale Regionale della Puglia (PPTR), adottato con Del. GR n.1435 del 2 agosto 2013 (Boll. Uff. Regione Puglia n.108 del 06.08.2013).

Inoltre, la presente relazione è stata redatta tenuto conto di quanto espresso dal Piano di Assetto Idrogeologico (PAI) dell'Autorità di Bacino della Puglia (12/11/04 e nota 25/CT del 15/12/04) e relativi aggiornamenti, dal Piano di Tutela delle Acque (deliberazione della Giunta Regionale n. 883 del 19.06.2007) e dagli strumenti urbanistici e di tutela operanti sul territorio (P.R.G., P.R.G./ P.U.T.T. Paesaggio, ecc.).

3. Ubicazione dell'area

L'area interessata dall'opera è situata nel territorio comunale di Ascoli Satriano (Fg), nell'area interna del Tavoliere delle Puglie.

Nelle seguenti immagini si riporta la cartografia di riferimento con ubicazione dell'area interessata dalle opere:

- Stralcio della Carta Topografica d'Italia IGMI: F°175 III NE "Canestrello": fonte: www.pcn.minambiente.it (fig.1);
- Immagine satellitare anno 2016; fonte: www.sit.puglia.it (fig.2);
- Stralcio CTR della Regione Puglia: fonte: www.sit.puglia.it (fig.3).

Inoltre il sito ricade nel Foglio 175 "Cerignola" della Carta Geologica d'Italia alla scala 1:100.000.

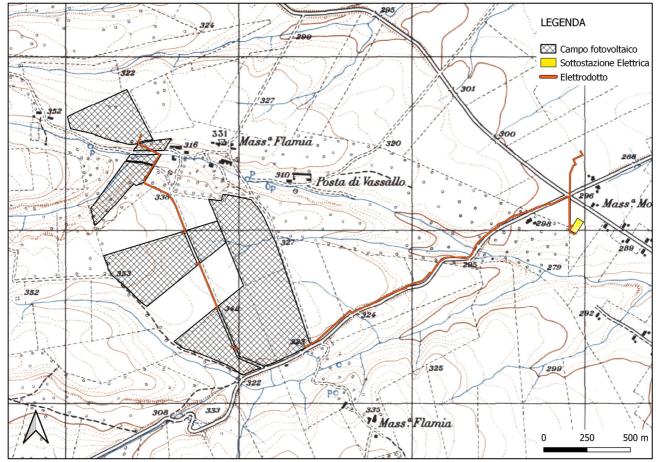


Figura 1 - Stralcio delle Tavolette IGMI F°175 I SO "Borgo Libertà" e F°175 II NO "San Carlo". Fonte: www.pcn.minambiente.it.

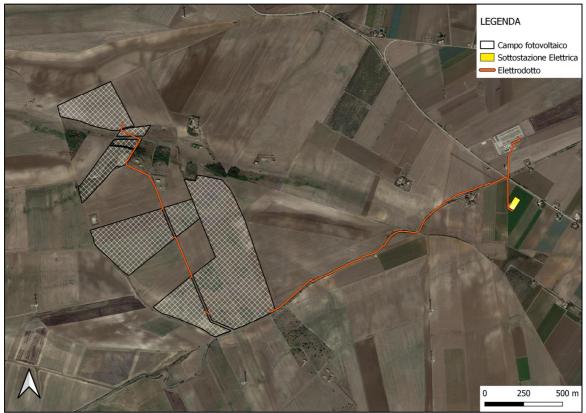


Figura 2 - Ubicazione del sito su Immagine satellitare del 2015. Fonte: www.sit.puglia.it

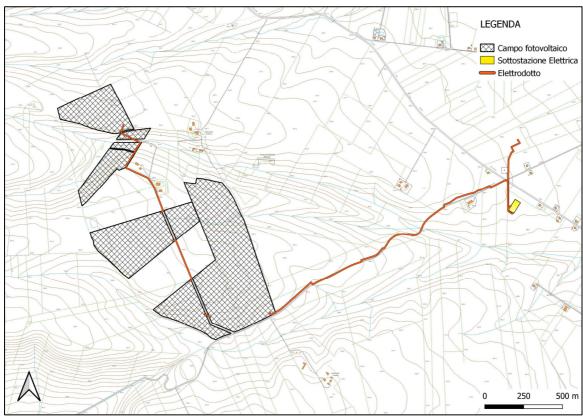


Figura 3 - Ubicazione del sito su CTR della Regione Puglia. Fonte: www.sit.puglia.it

4. Inquadramento geologico generale dell'area di studio

L'area in esame risulta inserita nella piana del Tavoliere delle Puglia, unità geografica appartenente al dominio geostrutturale dell'avanfossa bradanica, e costituita da depositi silicoclastici di riempimento di età pliocenica e infrapleistocenica e da depositi marini e alluvionali delle coperture medio-supra pleistoceniche e oloceniche della piana. Tali depositi, rinvenuti nel sottosuolo nel corso delle numerose perforazioni eseguite per la ricerca di idrocarburi, sono il prodotto dell'intensa attività sedimentaria, tipica di un bacino subsidente, che ha interessato l'Avanfossa appenninica a partire dal Pliocene inferiore. Si tratta di argille indicate con il generico termine di "Argille grigio azzurre" per via del loro colore tipico che, nella parte più superficiale, tende al giallastro a causa dei fenomeni di alterazione. All'interno della successione argillosa, sono presenti, a diverse altezze stratigrafiche, interstrati sabbiosi formanti corpi lenticolari di modesto spessore. La deposizione di guesta unità litologica ha avuto inizio nel Pliocene e si è conclusa nel Pleistocene Superiore, ed il suo spessore risulta particolarmente elevato spingendosi fino a raggiunge diverse centinaia di metri. Al di sopra dell'unità delle Argille grigio azzurre si rinvengono i depositi Quaternari che vanno a costituire un'estesa copertura in grado di raggiungere o superare le decine di metri in potenza e sono rappresentati da un'alternanza lenticolare di sedimenti alluvionali ghiaiosi, sabbiosi e argillosi, in parte limosi, di facies continentale che si incrociano e anastomizzano di frequente. Questi rappresentano il risultato dei numerosi episodi deposizionali che hanno interessato il Tavoliere. Le alluvioni del Tavoliere contengono, nella parte più superficiale, una crosta evaporitica di natura calcarea, il cui spessore può raggiungere anche gli 8 o 10 metri e la cui genesi sarebbe riconducibile al fenomeno della risalita capillare e al clima fortemente arido che in passato ha caratterizzato l'area. Verso la costa, affiorano i depositi palustri e di colmata olocenici, costituiti essenzialmente da limi. Il quadro stratigrafico si completa con i depositi costieri, anch'essi dell'Olocene, costituiti da sabbie e ghiaie formanti una stretta spiaggia delimitata verso terra da cordoni dunari.

L'area oggetto di studio ricade, come detto in precedenza, nella zona meridionale del Tavoliere, in corrispondenza della zona centrale del Foglio 175 "Cerignola", area caratterizzata dalla presenza di sedimenti silicoclastici la cui locale successione stratigrafica, desunta dall'analisi bibliografica e dalla lettura della Carta geologica di riferimento, risulta così costituita:

QC₁ – Conglomerati poligenici con ciottoli di medie e grandi dimensioni a volte fortemente cementati e con intercalazioni di sabbie e arenarie;

PQs - Sabbie e sabbie argillose con livelli arenaici di colore giallastro e lenti ciottolose fossilifere;

PQa - Argille e argille marnose grigio-azzurrognole, localmente sabbiose microfossilifere.

Le prime due unità, QC_1 e PQ_S , risultano affioranti in contatto eteropico, e poggiano in contatto erosivo con la sottostante unità PQ_a , localmente non affiorante.

Il campo fotovoltaico, l'elettrodotto e la sottostazione insistono per la maggior parte della loro estensione sui depositi conglomeratici QC₁ e solo il cavidotto interessa i depositi PQ_S in alcune zone corrispondenti a quelle di attraversamento dei reticoli idrografici.

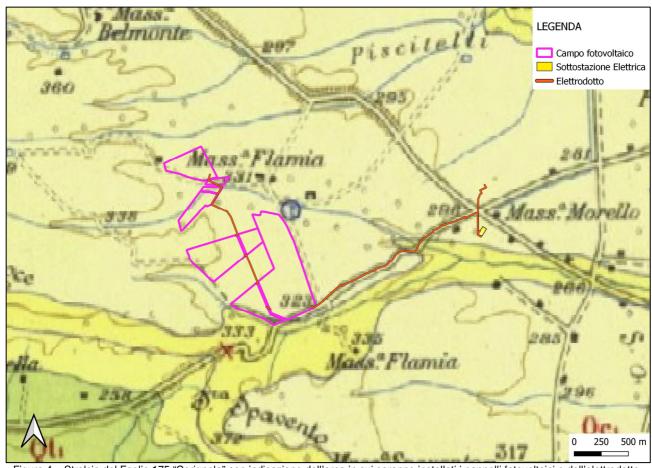


Figura 4 – Stralcio del Foglio 175 "Cerignola" con indicazione dell'area in cui saranno installati i pannelli fotovoltaici e dell'elettrodotto Fonte: www.isprambiente.gov.it

5. Geomorfologia e idrografia del territorio

I caratteri morfologici e idrografici del sito di studio sono quelli tipici del Tavoliere delle Puglie, caratterizzato da una serie di superfici pianeggianti, più o meno estese, interrotte dai principali corsi d'acqua e da locali canali e/o marane a deflusso spiccatamente stagionale. In tali aree l'evoluzione dei caratteri morfologici è stata evidentemente condizionata dalla natura del substrato geologico presente; gli affioramenti topograficamente più elevati, in corrispondenza dei quali spesso sorgono i centri urbani, sono caratterizzati dalla presenza di una litologia più resistente all'azione modellatrice degli agenti esogeni, al contrario le aree più depresse sono la testimonianza di una litologia meno competente e quindi più facilmente modellabile. Nel complesso l'area di progetto non è interessata dalla presenza di fenomeni erosivi in senso lato ne è soggetta a rapida evoluzione e rimodellamento morfologico (inteso esclusivamente in termini di agenti esogeni naturali), in quanto questo si esercita in forma marginale ed attenuata e del tutto trascurabile ai fini degli interventi previsti.

Il sito dove saranno installati i pannelli fotovoltaici è posizionato lungo un versante solcato da numerosi impluvi e digradante verso la zona orientale con pendenze non molto elevate.

Il tracciato dell'elettrodotto invece interesserà quasi esclusivamente i depositi conglomeratici QC₁ e solo in un tratto, quello dell'attraversamento del reticolo, interesserà i depositi PQs, formati da sabbie e sabbie argillose.

In quest'area l'idrografia superficiale presenta un regime tipicamente torrentizio, caratterizzato da lunghi periodi di magra interrotti da piene in occasione di eventi meteorici particolarmente intensi.

Per quanto attiene il reticolo idrografico inoltre, dall'analisi delle perimetrazioni del PAI Puglia presenti e visionabili sul sito dell'Autorità di Distretto dell'Appennino Meridionale è possibile osservare quanto segue.

Nessuna delle aree di progetto è interessata da zone a pericolosità idraulica PAI, ma le zone in cui saranno installati i pannelli fotovoltaici e il cavidotto sono interessate da numerosi reticoli idrografici segnati sulla cartografia IGM, per i quali è stato realizzato uno studio di compatibilità idraulica al fine di delineare le zone a Pericolosità idraulica e delimitare i tratti in TOC per il superamento dell'alveo del cavidotto.

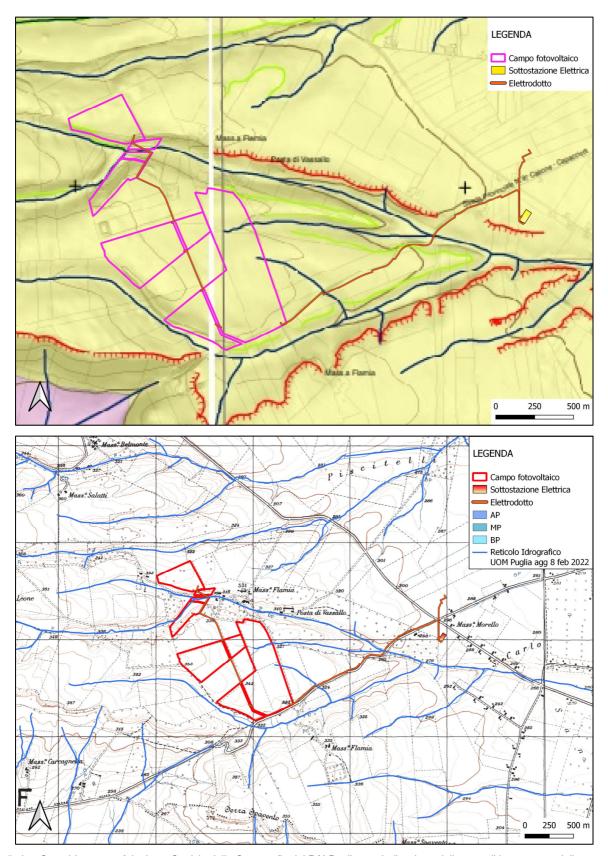


Fig. 5a,b – Carta idrogeomorfologica e Stralcio della Cartografia del PAI Puglia con indicazione delle aree di intervento e delle strutture connesse redatte dall'Autorità di Distretto dell'Appennino Meridionale

6. Lineamenti idrogeologici

Dal punto di vista idrogeologico, l'area di studio è interessata dalla presenza dell'acquifero poroso superficiale del Tavoliere, la cui falda è ospitata nei depositi quaternari di copertura di questa unità fisiografica.

Detti depositi, il cui spessore aumenta procedendo da SE verso NW, ospitano una estesa falda idrica generalmente frazionata su più livelli. Le stratigrafie dei numerosi pozzi per acqua realizzati in zona, evidenziano infatti l'esistenza di una successione di terreni sabbioso-ghiaioso, permeabili ed acquiferi, intercalati a livelli limo-argillosi a minore permeabilità, con ruolo di acquitardi.

La base della circolazione idrica è rappresentata dalle argille grigio-azzurre (argille subappennine) la cui profondità di rinvenimento risulta progressivamente maggiore procedendo da SE verso NW. I diversi livelli in cui l'acqua fluisce non costituiscono orizzonti separati ma idraulicamente interconnessi, dando luogo ad un unico sistema acquifero.

L'acqua si rinviene in condizioni di falda libera nei livelli idrici più superficiali e in pressione in quelli più profondi. A tale sistema acquifero, nel suo complesso, si dà il nome di falda superficiale del Tavoliere.

Trattandosi di un acquifero eterogeneo, sia in termini di spessore che di granulometria, la potenzialità, come pure la trasmissività idraulica, variano sensibilmente da zona a zona. L'andamento delle isopieze, ricostruite sulla base dei dati raccolti in un recente monitoraggio, mostra una generale corrispondenza con la topografia: le quote piezometriche, infatti, tendono a diminuire procedendo da SO verso NE consentendo di definire una direttrice di deflusso preferenziale in tal senso. Per le considerazioni su menzionate e per le caratteristiche dei litotipi che insistono nell'area oggetto di studio, questi ultimi rientrano nell'acquifero poroso superficiale".

Nell'area di interesse, attualmente, sulla base delle indicazioni e delle cartografie redatte per il PTA. Il Piano di Tutela delle Acque, la superficie piezometrica della falda acquifera, in stato di quiete, è compreso tra 200 m slm e 250 m slm (Fig.6).

In corrispondenza del sito di progetto, la falda, sulla base delle informazioni desunte da alcuni pozzi per il prelievo idrico presenti nel database dell'ISPRA, è posizionata a circa 30 metri di profondità dal piano campagna, e pertanto non dovrebbe interessare le strutture di fondazione dei locali e i sostegni dei tracker fotovolataici.

Tuttavia è possibile il rinvenimento di acquiferi sospesi sostenuti alla base da orizzonti a permeabilità bassa, a profondità inferiori dal piano campagna, a cui si dovrà prestare attenzione in fase di installazione dei moduli fotovoltaici.

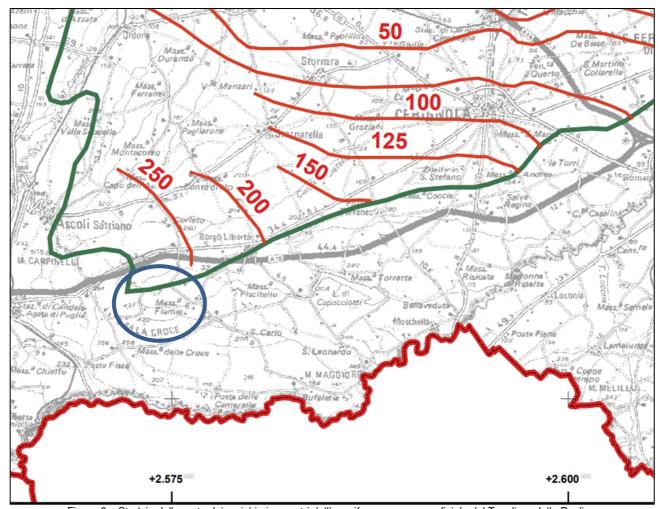


Figura 6 – Stralcio della carta dei carichi piezometri dell'acquifero poroso superficiale del Tavoliere delle Puglia. (Fonte: Piano di Tutela delle Acque della Regione Puglia)

7. Campagna di indagini geognostiche: ubicazione degli stendimenti geofisici e delle prove penetrometriche

Per la definizione del Modello Geologico del Sottosuolo e la determinazione della risposta sismica del sito, come previsto dall'attuale normativa (Norme Tecniche per le Costruzioni di cui al D.M.17/1/2018), l'indagine geognostica è consistita nella ricostruzione dei caratteri litostratigrafici e geostrutturali dell'ammasso roccioso nel suo volume significativo.

Per raggiungere tali obiettivi sono stati interpretati e correlati come detto i dati derivanti dalle indagini geofisiche indirette (sismica a rifrazione onde P e M.A.S.W.) eseguite nell'area in cui saranno installati i pannelli fotovoltaici e dove sarà realizzata la sottostazione di servizio (fig. 7), integrati dalle risultanze superficiali (osservazioni di scavi, fronti stradali, ecc.) rilevate durante sopralluoghi mirati, nonché da quanto emerso da studi pregressi e dalle prove penetrometriche realizzate in sito.

Il piano di indagini per la caratterizzazione dei terreni quindi, nel suo complesso, è consistito nella realizzazione di n. 6 prove penetrometriche e n. 5 indagini sismiche.

Per le indagini sismiche in particolare, sono state realizzate le prove in modalità tomografica e sono state eseguite le MASW sulla stessa traccia.

Nella seguente tabella sono sintetizzate le informazioni relative alla localizzazione delle indagini, illustrate inoltre in fig. 7a,b.

Gli stendimenti sismici con sigla AA', BB', CC' e DD' sono stati realizzati in corrispondenza del campo fotovoltaico, mentre lo stendimento EE' in corrispondenza della sottostazione di servizio.

Per quanto concerne le prove penetrometriche invece, le indagini P1, P2, P3, P4 e P5 sono state realizzate in corrispondenza del campo fotovoltaico, mentre la P6 in corrispondenza della sottostazione di servizio.

SIGLA PROVA PENETROMETRICA	LAT.	LONG.	SIGLA INDAGINE SISMICA	LAT.	LONG.
SV634 P1 (2.10 m)	4554018.97	555973.77	TOMO DD'	D - 4554000.1	D - 555987.0
			(36 m)	D' - 4554016.4	D' - 556021.4
SV634 P2 (3.10 m)	4554194.11	556085.27	TOMO CC'	C -4554424.2	C - 555999.9
		•	(36 m)	C' - 4554386.7	C' - 556014.7
SV634 P3 (1.80 m)	4554570.10	555966.17			
		•			
SV634 P4 (2.10 m)	4554647.41	555677.92	TOMO BB'	B - 4554609.8	B - 555640.2
		(36 m)		B' - 4554618.4	B' - 555674.2
SV634 P5 (2.10 m)	4555384.68	555250.24	TOMO AA'	A – 4555330.6	A – 555251.1
		•	(36 m)	A' - 4555325.4	A' - 555292.0
SV634 P6 (2.00 m)	4554837.70	557889.20	TOMO EE'	E - 4554923.9	E - 557940.4
			(24 m)	E' - 4554910.7	E' - 557958.8

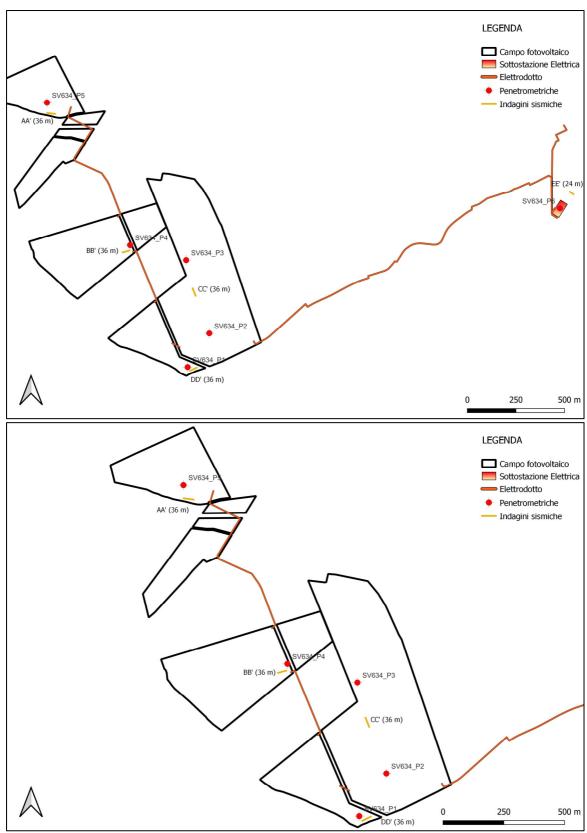


Figura 7 a,b – Ubicazione indagini geognostiche

8. Caratterizzazione geofisica del sottosuolo: metodologia di analisi e strumentazione utilizzata

Per la ricostruzione del modello geofisico del sito, come detto in premessa, è stata eseguita un'indagine di sismica superficiale caratterizzata dalla combinazione tra la tecnica di sismica a rifrazione con onde di volume longitudinali (o onde P) e il metodo di analisi spettrale delle onde di superficie (Rayleigh) con tecnica MASW che permette di determinare l'andamento della velocità delle onde sismiche di taglio (o onde S) in funzione della profondità attraverso lo studio della propagazione delle onde superficiali.

8.1 Il metodo della sismica a rifrazione

La prospezione sismica è un'indagine indiretta, che si occupa dell'esplorazione del sottosuolo attraverso lo studio della propagazione di onde elastiche generate in superficie. Tali perturbazioni sono generalmente provocate da vibrazioni impresse al terreno con mezzi meccanici o da esplosioni. Le discontinuità ricercate mediante la prospezione sono di natura fisico-elastica e pertanto la ricostruzione della geometria e natura del sottosuolo possono essere legate sia a reali variazioni litologiche sia a variazioni rinvenibili nell'ambito di uno stesso litotipo. Il metodo della sismica a rifrazione si basa sul concetto di bi-rifrazione delle onde elastiche a seguito di un fronte d'onda conico. Data quindi una sorgente di onde elastiche (massa battente, martello a percussione, piccola esplosione) e dato uno stendimento di trasduttori velocimetrici (geofoni) posizionati lungo un determinato allineamento, giungeranno ai geofoni onde dirette, onde riflesse ed onde birifratte (head wave). Le onde birifratte sono quelle analizzate attraverso il metodo della sismica a rifrazione. Tali perturbazioni giungono sulla superficie di separazione tra due mezzi elastici (2 litologie differenti) con un angolo di incidenza critico (legge di Snell), si propagano parallelamente alla superficie di discontinuità (prima rifrazione con angolo di 90°), e si rifrangono nuovamente verso la superficie con lo stesso angolo di incidenza.

Successivamente alla registrazione dei dati, la prima operazione svolta è consistita nell'individuazione dei primi arrivi sui singoli sismogrammi (picking). Dall'acquisizione dei tempi di primo arrivo, conoscendo le distanze relative alla configurazione geometrica adottata (interspazio geofonico), è stato ottenuto un diagramma tempi-distanze (dromocrona), attraverso il quale, applicando diverse metodologie, è stato possibile determinare le velocità di propagazione delle onde nel mezzo sottostante e i relativi spessori dei sismostrati attraversati dalla radiazione elastica. Per le analisi interpretative, è stato utilizzato il software Rayfract (versione 3.21) che ha permesso di ottenere l'andamento delle velocità delle onde P con la profondità.

8.2 Metodo MASW

Il metodo MASW (Multichannel Analysis of SurfaceWaves) è una tecnica di indagine non invasiva, utile a definire l'azione sismica di progetto, che individua il profilo delle velocità delle onde di taglio verticali Vs nei primi trenta metri di profondità a partire dal piano campagna, sulla base della misura delle onde superficiali in corrispondenza di diversi sensori (geofoni) posti sulla superficie del suolo. Il contributo più importante alle onde superficiali è dato dalle onde di Rayleigh, le uniche onde utilizzate nell'indagine MASW, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. L'impiego di tali onde è giustificato dalle proprietà che possiedono, infatti, trasportano circa i due terzi dell'energia generata dalla sorgente (scoppio) e allontanandosi da essa (scoppio) subiscono un'attenuazione geometrica inferiore rispetto a quella che eventualmente avrebbero le onde P ed SV, propagandosi, conseguentemente, a profondità più grandi.

Il metodo MASW può essere suddiviso in quattro fasi fondamentali (Roma, 2002):

• calcolo della curva di dispersione sperimentale;

- calcolo della curva di dispersione apparente numerica;
- calcolo della curva di dispersione effettiva numerica;
- individuazione del profilo di velocità delle onde di taglio verticali Vs.

Il calcolo della curva di dispersione sperimentale, si ottiene dalle misure effettuate in situ. Essa si estrae dallo spettro del dominio frequenza – numero d'onda applicando una doppia trasformata di Fourier al campo del moto nel dominio spaziotempo.

Il calcolo delle curve di dispersione numeriche, apparente ed effettiva invece, si ricava applicando un'unica trasformata di Fourier alla funzione di Green. Per il calcolo della prima è stato utilizzato il metodo Roma (2001), mentre per il calcolo della seconda (curva di dispersione effettiva numerica) è stato utilizzato il metodo Lai-Rix (1998).

L'individuazione del profilo Vs, infine, è stato desunto individuando la differenza (errore massimo) tra la curva di dispersione sperimentale e la curva di dispersione numerica corrispondente al modello di suolo assegnato. Minore appare tale imprecisione, maggiore risulta la probabilità che il profilo delle onde di taglio individuato sia quello giusto.

Per quanto riguarda, infine, la strumentazione necessaria all'esecuzione di tale indagine MASW, ci si è avvalsi delle seguenti componenti tecniche: registratore multicanale; geofoni o accelerometri da 4.5 Hz (almeno 12 canali); cavi per stendimenti sismici; sorgente energizzante composta da piastra metallica (per battuta) ed una massa battente di 5 - 10 Kg; bindella metrica per la disposizione geometricamente corretta dei geofoni con interasse compreso tra 0.5 e 5 metri.

8.3 Strumentazione utilizzata

La strumentazione utilizzata per la registrazione dei segnali è del tipo a 24 canali, modello DBS280b (anno 2020) della DOLANG interfacciato con un computer portatile.

L'attrezzatura è composta da:

- un sistema di energizzazione: la sorgente è costituita da una mazza del peso di 10 Kg battente verticalmente su piastra rettangolare in acciaio posta direttamente sul p.c. per la generazione prevalentemente di onde P e secondariamente di onde SV:
- un sistema di trigger: consiste in un circuito elettrico che viene chiuso nell'istante in cui il grave colpisce la base di battuta; in questo modo è possibile individuare e visualizzare l'esatto istante in cui la sorgente viene attivata e fissare l'inizio della registrazione.
- un sistema di ricezione: costituito da 24 geofoni verticali del tipo elettromagnetico a bobina mobile a massa sospesa, con frequenza di acquisizione 4,5 Hz.
- un sistema di acquisizione dati: con memoria dinamica a 16 bit composto da 12 dataloggers a 2 canali per un totale di 24 canali, 2 cavi sismici a 12 take-outs ciascuno spaziato a 5 metri, notebook PC Windows XP con software DBS280b Versione 5.1 della DOLANG

9. Analisi di sismica a rifrazione

9.1 Stendimento sismico AA': interpretazione dei dati

Il profilo di sismica a rifrazione AA' ha una lunghezza di 36 metri lineari con interspazio geofonico di 1.5 m e direttrice orientata N/S.

La configurazione adottata è a 7 shots così distribuiti: 2 end – shots, posti a 0.5 metri dai geofoni esterni (S1 e S7); 4 intermedi, posti rispettivamente tra il 4° e 5° (S2), tra 8° e 9° (S3), tra 16° e 17° (S5), tra 20° e 21° (S6); 1 centrale tra il 12° e il 13° geofono (S4) (Fig.8).

Fig.8 - Configurazione geometrica degli stendimenti sismici a rifrazione

L'analisi interpretativa ha permesso di ricostruire l'andamento delle velocità delle onde P con la profondità, così come mostrato nelle Figure 9 e 10 (sezione sismostratigrafica).

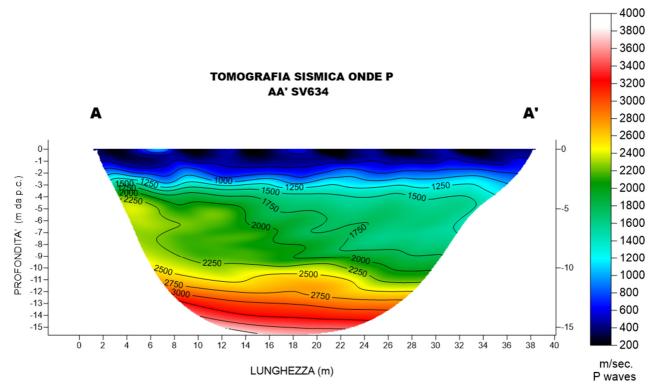


Fig. 9 - Sezione tomografica del profilo AA'

Dal risultato dell'analisi sismica eseguita è possibile rilevare la presenza di **3 sismostrati** con differenti valori di velocità delle onde sismiche longitudinali P.

Il primo sismostrato (Sismostrato A), è caratterizzato da valori di velocità delle onde P compresi tra 250 e 500 m/s. La profondità risulta costante e si spinge fino a circa 1.0/1.5 metro dal piano campagna. Il sismostrato B invece, è

caratterizzato da velocità delle onde P comprese tra 500 e 1250 m/s, che crescono in modo uniforme e continuo fino a raggiungere una profondità di circa 3.00 metri dal piano campagna. Il sismostrato C, è caratterizzato da valori di velocità delle onde P comprese tra 1250 e 2500 m/s, che aumentano gradualmente fino a raggiungere la profondità di circa 9/10 m dal p.c. e infine il sismostrato D è caratterizzato da valori di velocità delle onde P che aumentano gradualmente con la profondità fino a raggiungere la profondità investigata di circa 15 m da p.c.

Assimilando i valori delle velocità di propagazione delle onde P alle litologie presenti nell'area come da indagini pregresse, in prima analisi si può affermare che il sismostrato superficiale è riferibile a depositi sabbioso e siltosi poco o debolmente coesi molto alterati (sismostrato A), il secondo sismostrato a depositi conglomeratici immersi in matrice sabbioso-argillosa (sismostrato B) e i sismostrati C e D, sono riferibili all'unità argilloso-sabbiosa è riferibile all'unità argilloso-sabbiosa e ghiaiosa con competenza geotecnica maggiore, con frazione sabbiosa maggiormente presente nel sismostrato C e più compatti nel sismostrato D.

In corrispondenza dei Sismostrati A, B e C, l'andamento ondulato delle velocità sismiche permette di ipotizzare la presenza di variazioni granulometriche e di coesione che implicano la presenza di anisotropie laterali di facies litologiche.

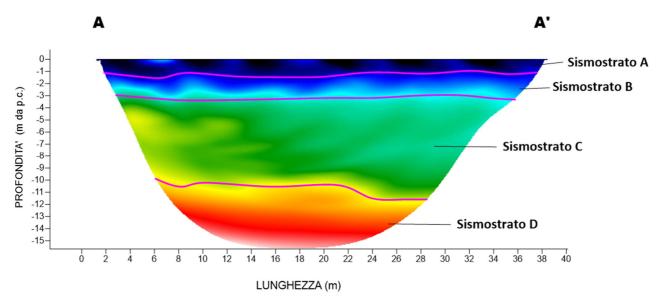
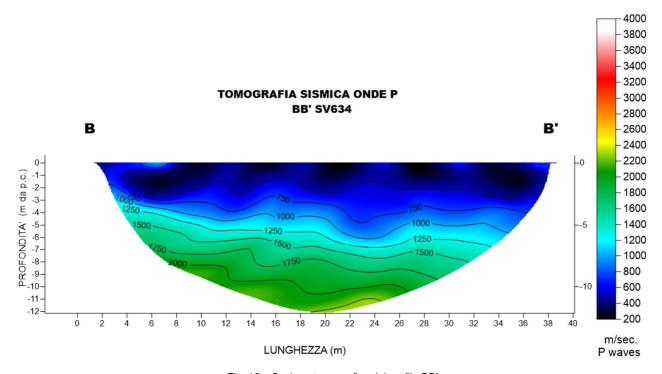


Fig. 10 – Interpretazione sezione tomografica del profilo AA'

9.2 Stendimento sismico BB': interpretazione dei dati


Il profilo di sismica a rifrazione BB' ha una lunghezza di 36 metri lineari con interspazio geofonico di 1.5 m e direttrice orientata N/S.

La configurazione adottata è a 7 shots così distribuiti: 2 end – shots, posti a 0.5 metrl dai geofoni esterni (S1 e S7); 4 intermedi, posti rispettivamente tra il 4° e 5° (S2), tra 8° e 9° (S3), tra 16° e 17° (S5), tra 20° e 21° (S6); 1 centrale tra il 12° e il 13° geofono (S4) (Fig.11).

Fig.11 - Configurazione geometrica degli stendimenti sismici a rifrazione

L'analisi interpretativa ha permesso di ricostruire l'andamento delle velocità delle onde P con la profondità, così come mostrato nelle Figure 12 e 13 (sezione sismostratigrafica).

 $Fig.\ 12-Sezione\ tomografica\ del\ profilo\ BB'$

Dal risultato dell'analisi sismica eseguita è possibile rilevare la presenza di **3 sismostrati** con differenti valori di velocità delle onde sismiche longitudinali P.

Il primo sismostrato (Sismostrato A), è caratterizzato da valori di velocità delle onde P compresi tra 250 e 500 m/s. La profondità si spinge fino a circa 2.5/3.0 metri dal piano campagna. Il sismostrato B invece, è caratterizzato da velocità delle onde P comprese tra 500 e 1250 m/s, che crescono in modo uniforme e continuo fino a raggiungere una profondità

di circa 4.00/6.00 metri dal piano campagna. Il sismostrato C infine, è caratterizzato da valori di velocità delle onde P che aumentano gradualmente con la profondità fino a raggiungere la profondità investigata di circa 12 m dal p.c.

Assimilando i valori delle velocità di propagazione delle onde P alle litologie presenti nell'area come da indagini pregresse, in prima analisi si può affermare che il sismostrato superficiale è riferibile a depositi sabbioso e siltosi poco o debolmente coesi molto alterati (sismostrato A), il secondo sismostrato a depositi conglomeratici immersi in matrice sabbioso-argillosa (sismostrato B), mentre il sismostrato C, è riferibile all'unità argilloso-sabbiosa e ghiaiosa con competenza geotecnica maggiore.

In corrispondenza dei Sismostrati A e B, l'andamento ondulato delle velocità sismiche permette di ipotizzare la presenza di variazioni granulometriche e di coesione che implicano la presenza di anisotropie laterali di facies litologiche.

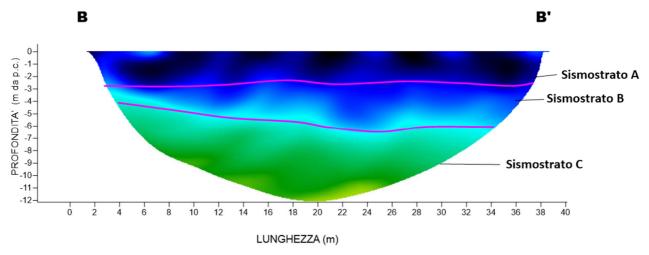


Fig. 13 – Interpretazione sezione tomografica del profilo BB'

9.3 Stendimento sismico CC': interpretazione dei dati

Il profilo di sismica a rifrazione CC' ha una lunghezza di 36 metri lineari con interspazio geofonico di 1.5 m e direttrice orientata N/S.

La configurazione adottata è a 7 shots così distribuiti: 2 end – shots, posti a 0.5 metri dai geofoni esterni (S1 e S7); 4 intermedi, posti rispettivamente tra il 4° e 5° (S2), tra 8° e 9° (S3), tra 16° e 17° (S5), tra 20° e 21° (S6); 1 centrale tra il 12° e il 13° geofono (S4) (Fig.14).

Fig.14 - Configurazione geometrica degli stendimenti sismici a rifrazione

L'analisi interpretativa ha permesso di ricostruire l'andamento delle velocità delle onde P con la profondità, così come mostrato nelle Figure 15 e 16 (sezione sismostratigrafica).

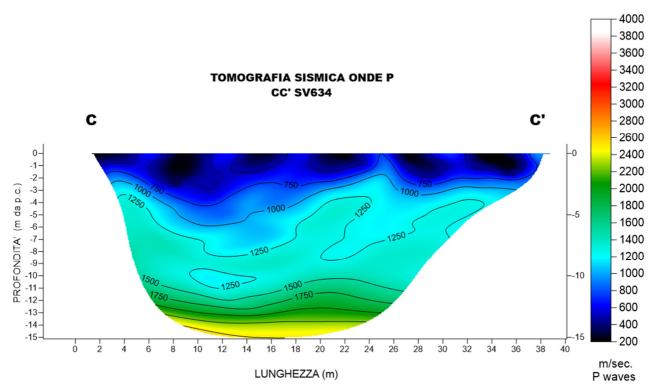


Fig. 15 – Sezione tomografica del profilo CC'

Dal risultato dell'analisi sismica eseguita è possibile rilevare la presenza di **3 sismostrati** con differenti valori di velocità delle onde sismiche longitudinali P.

Il primo sismostrato (Sismostrato A), è caratterizzato da valori di velocità delle onde P compresi tra 250 e 500 m/s. La profondità risulta molto irregolare e si spinge fino a circa 1/3 metri dal piano campagna. Il sismostrato B invece, è caratterizzato da velocità delle onde P comprese tra 500 e 1500 m/s, che crescono in modo estremamente irregolare fino a raggiungere una profondità di circa 10.00 metri dal piano campagna. Il sismostrato C infine, è caratterizzato da valori di

velocità delle onde P che aumentano gradualmente con la profondità fino a raggiungere la profondità investigata di circa 15 m dal p.c.

Assimilando i valori delle velocità di propagazione delle onde P alle litologie presenti nell'area come da indagini pregresse, in prima analisi si può affermare che il sismostrato superficiale è riferibile a depositi sabbioso e siltosi poco o debolmente coesi molto alterati (sismostrato A), il secondo sismostrato a depositi conglomeratici immersi in matrice sabbioso-argillosa (sismostrato B), mentre il sismostrato C, è riferibile all'unità argilloso-sabbiosa e ghiaiosa con competenza geotecnica maggiore.

In corrispondenza del Sismostrato B, l'andamento ondulato delle velocità sismiche permette di ipotizzare la presenza di variazioni granulometriche e di coesione che implicano la presenza di anisotropie laterali di facies litologiche molto marcate.

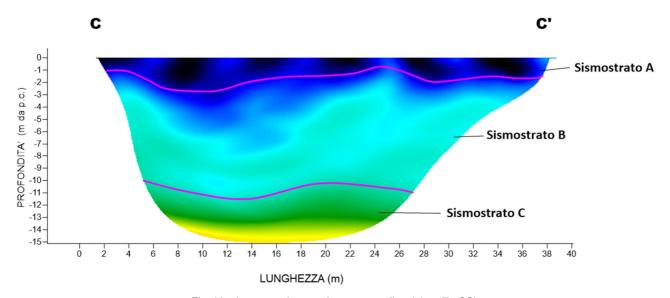


Fig. 16 – Interpretazione sezione tomografica del profilo CC'

9.4 Stendimento sismico DD': interpretazione dei dati

Il profilo di sismica a rifrazione DD' ha una lunghezza di 36 metri lineari con interspazio geofonico di 1.5 m e direttrice orientata NW/SE.

La configurazione adottata è a 7 shots così distribuiti: 2 end – shots, posti a 0.5 metri dai geofoni esterni (S1 e S7); 4 intermedi, posti rispettivamente tra il 4° e 5° (S2), tra 8° e 9° (S3), tra 16° e 17° (S5), tra 20° e 21° (S6); 1 centrale tra il 12° e il 13° geofono (S4) (Fig.17).

Fig.17 - Configurazione geometrica degli stendimenti sismici a rifrazione

L'analisi interpretativa ha permesso di ricostruire l'andamento delle velocità delle onde P con la profondità, così come mostrato nelle Figure 18 e 19 (sezione sismostratigrafica).

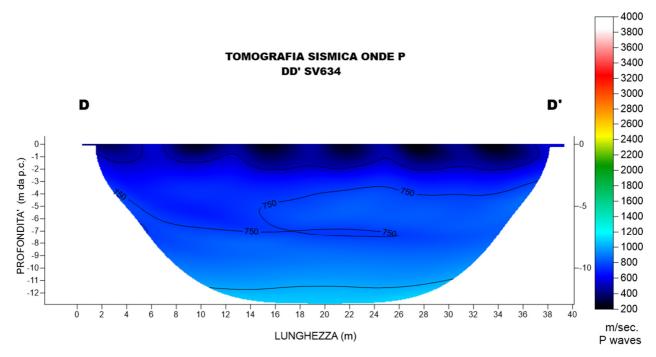


Fig. 18 – Sezione tomografica del profilo DD'

Dal risultato dell'analisi sismica eseguita è possibile rilevare la presenza di **2 sismostrati** con differenti valori di velocità delle onde sismiche longitudinali P.

Il primo sismostrato (Sismostrato A), è caratterizzato da valori di velocità delle onde P compresi tra 250 e 500 m/s. La profondità risulta costante e si spinge fino a circa 1.0/2.0 metri dal piano campagna. Il sismostrato B invece, è caratterizzato da velocità delle onde P comprese tra 500 e 1000 m/s, che crescono in modo uniforme e continuo fino a raggiungere la profondità investigata di circa 12 m da p.c.

Assimilando i valori delle velocità di propagazione delle onde P alle litologie presenti nell'area come da indagini pregresse, in prima analisi si può affermare che il sismostrato superficiale è riferibile a depositi sabbioso e siltosi poco o debolmente coesi molto alterati (sismostrato A), il secondo sismostrato a depositi conglomeratici immersi in matrice sabbioso-argillosa (sismostrato B).

In corrispondenza del Sismostrati B, l'andamento ondulato delle velocità sismiche permette di ipotizzare la presenza di variazioni granulometriche e di coesione che implicano la presenza di anisotropie laterali di facies litologiche.

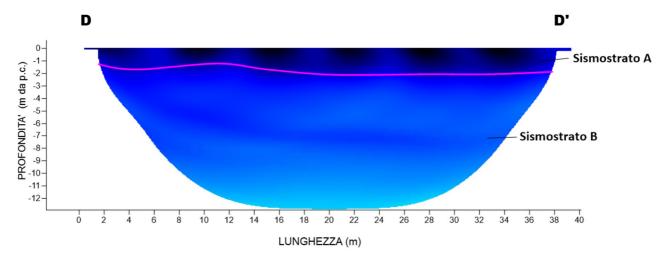


Fig. 19 – Interpretazione sezione tomografica del profilo DD'

9.5 Stendimento sismico EE': interpretazione dei dati

Il profilo di sismica a rifrazione EE' ha una lunghezza di 24 metri lineari con interspazio geofonico di 1.0 m e direttrice orientata NW/SE.

La configurazione adottata è a 7 shots così distribuiti: 2 end – shots, posti a 0.5 metri dai geofoni esterni (S1 e S7); 4 intermedi, posti rispettivamente tra il 4° e 5° (S2), tra 8° e 9° (S3), tra 16° e 17° (S5), tra 20° e 21° (S6); 1 centrale tra il 12° e il 13° geofono (S4) (Fig.20).

Fig.20 - Configurazione geometrica degli stendimenti sismici a rifrazione

L'analisi interpretativa ha permesso di ricostruire l'andamento delle velocità delle onde P con la profondità, così come mostrato nelle Figure 21 e 22 (sezione sismostratigrafica).

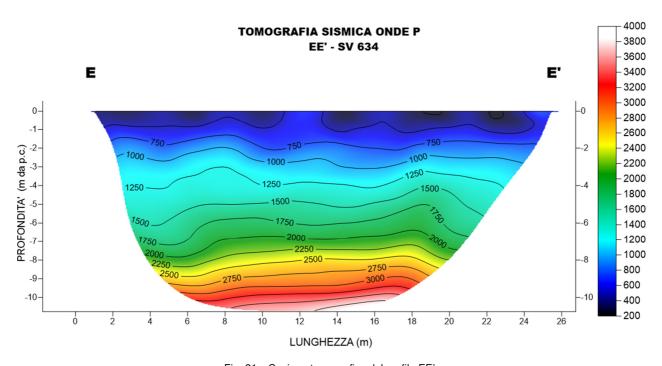


Fig. 21 – Sezione tomografica del profilo EE'

Dal risultato dell'analisi sismica eseguita è possibile rilevare la presenza di **4 sismostrati** con differenti valori di velocità delle onde sismiche longitudinali P.

Il primo sismostrato (Sismostrato A), è caratterizzato da valori di velocità delle onde P compresi tra 250 e 500 m/s. La profondità risulta costante e si spinge fino a circa 1.0 metro dal piano campagna. Il sismostrato B invece, è caratterizzato da velocità delle onde P comprese tra 500 e 1000 m/s, che crescono in modo uniforme e continuo fino a raggiungere una profondità di circa 3.00 metri dal piano campagna. Il sismostrato C, è caratterizzato da valori di velocità delle onde P comprese tra 1000 e 2000 m/s, che aumentano gradualmente con la profondità fino a raggiungere la profondità di circa

8.00 m dal p.c. e infine il sismostrato D è caratterizzato da valori di velocità delle onde P che aumentano gradualmente con la profondità fino a raggiungere la profondità investigata di circa 11 m da p.c.

Assimilando i valori delle velocità di propagazione delle onde P alle litologie presenti nell'area come da indagini pregresse, in prima analisi si può affermare che il sismostrato superficiale è riferibile a depositi sabbioso e siltosi poco o debolmente coesi molto alterati (sismostrato A), il secondo sismostrato a depositi conglomeratici immersi in matrice sabbioso-argillosa (sismostrato B) e i sismostrati C e D, sono riferibili all'unità argilloso-sabbiosa, con frazione sabbiosa maggiormente presente nel sismostrato C e più compatti nel sismostrato D.

In corrispondenza dei Sismostrati B e C, l'andamento ondulato delle velocità sismiche permette di ipotizzare la presenza di variazioni granulometriche e di coesione che implicano la presenza di anisotropie laterali di facies litologiche.

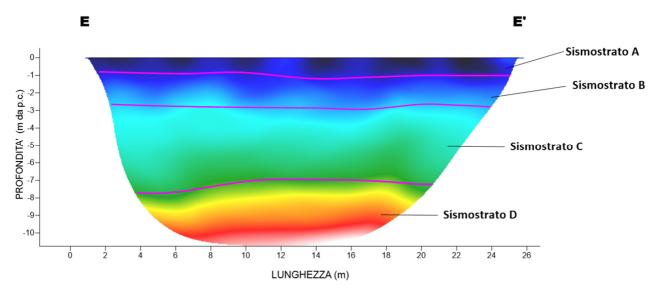


Fig. 22 – Interpretazione sezione tomografica del profilo EE'

10. Analisi MASW

L'indagine geofisica è stata completata con l'esecuzione di n.5 indagini MASW per la determinazione della categoria di suolo di fondazione e la stima del fattore di amplificazione sismica dell'area, sulla stessa traccia dei profili AA', BB', CC', DD' e EE'.

10.1 Stendimento sismico AA': interpretazione dei dati

Per il profilo in questione sono stati eseguiti 2 scoppi effettuati a 1.0 m di distanza dal primo geofono. Il treno di onde generato da ciascun colpo di massa battente è stato campionato con intervallo temporale di 1.22 secondi. Per la qualità del segnale si è scelto lo scoppio n.1 (Fig.23).

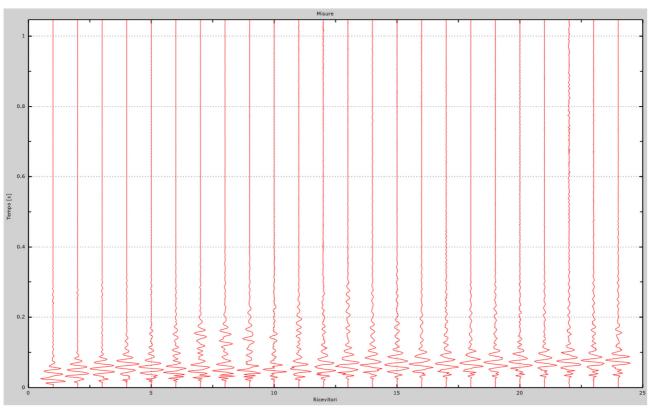


Fig.23 – Sismogrammi dello scoppio considerato per l'analisi MASW del profilo AA'

L'individuazione del profilo Vs in funzione della profondità è stato desunto individuando la differenza (errore massimo) tra la curva di dispersione sperimentale (Fig.24) e la curva di dispersione numerica corrispondente al modello di suolo assegnato (Fig.25). Minore appare tale imprecisione, maggiore risulta la probabilità che il profilo delle onde di taglio individuato sia quello giusto.

L'analisi dello spettro "velocità di fase -frequenza" ha consentito di ricostruire un modello sismico monodimensionale del sottosuolo, il quale risulta costituito dall'andamento della velocità delle onde di taglio Vs in funzione della profondità (Fig.26). Si precisa infine che, come esposto sinteticamente nel paragrafo inerente la metodologia M.A.S.W., il modello del sottosuolo e di conseguenza anche l'inversione di velocità rilevata, sono stati ottenuti in corrispondenza del punto medio del profilo di acquisizione.

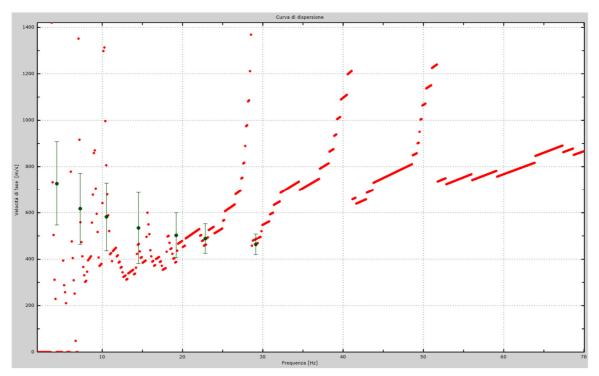


Fig.24 - Curva di dispersione sperimentale.

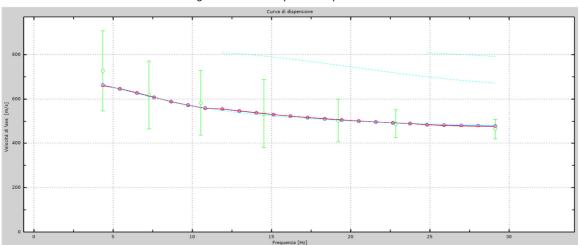


Fig.25 - Velocità numeriche – punti sperimentali (verde), modi di Rayleigth (ciano), curva apparente(blu), curva numerica (rosso). La percentuale di differenza è: 5%.

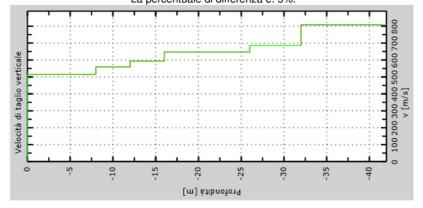


Fig.26 - Profilo verticale delle velocità delle Onde registrate

10.2 Stendimento sismico BB': interpretazione dei dati

Per il profilo in questione sono stati eseguiti 2 scoppi effettuati a 1.0 m di distanza dal primo geofono. Il treno di onde generato da ciascun colpo di massa battente è stato campionato con intervallo temporale di 1.22 secondi. Per la qualità del segnale si è scelto lo scoppio n.2 (Fig.27).

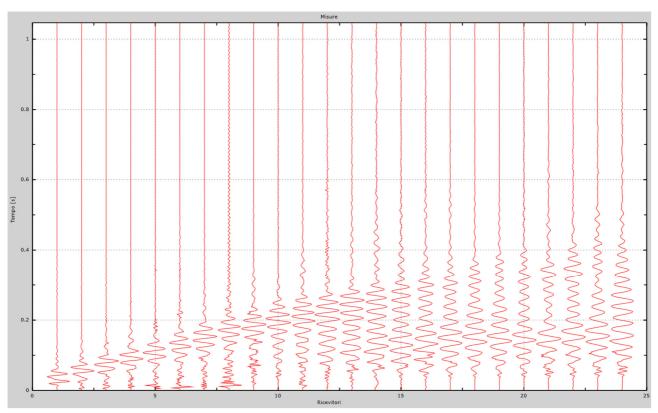


Fig.27 – Sismogrammi dello scoppio considerato per l'analisi MASW del profilo BB'

L'individuazione del profilo Vs in funzione della profondità è stato desunto individuando la differenza (errore massimo) tra la curva di dispersione sperimentale (Fig.28) e la curva di dispersione numerica corrispondente al modello di suolo assegnato (Fig.29). Minore appare tale imprecisione, maggiore risulta la probabilità che il profilo delle onde di taglio individuato sia quello giusto.

L'analisi dello spettro "velocità di fase -frequenza" ha consentito di ricostruire un modello sismico monodimensionale del sottosuolo, il quale risulta costituito dall'andamento della velocità delle onde di taglio Vs in funzione della profondità (Fig.30). Si precisa infine che, come esposto sinteticamente nel paragrafo inerente la metodologia M.A.S.W., il modello del sottosuolo e di conseguenza anche l'inversione di velocità rilevata, sono stati ottenuti in corrispondenza del punto medio del profilo di acquisizione.

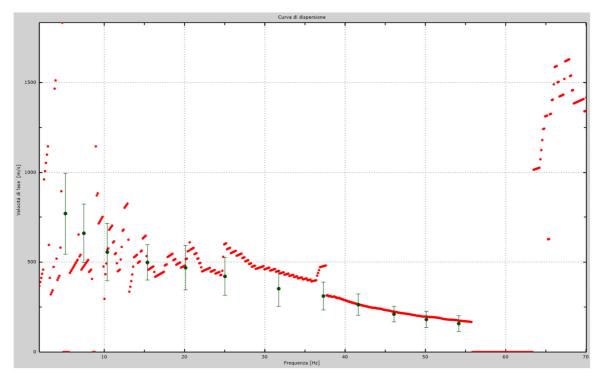


Fig.28 - Curva di dispersione sperimentale.

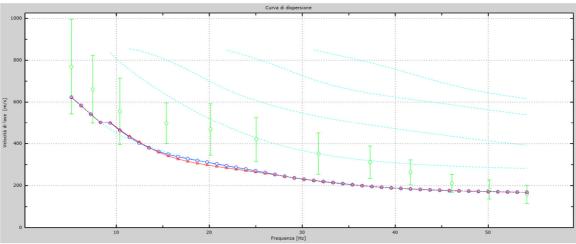


Fig.29 - Velocità numeriche – punti sperimentali (verde), modi di Rayleigth (ciano), curva apparente(blu), curva numerica (rosso). La percentuale di differenza è: 22%.

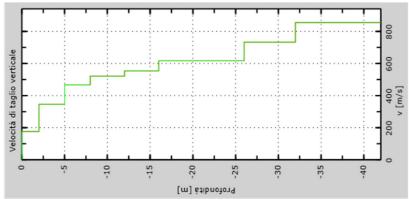
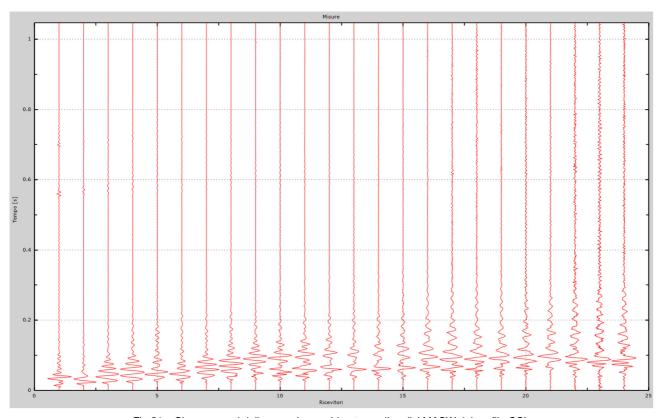



Fig.30 - Profilo verticale delle velocità delle Onde registrate

10.3 Stendimento sismico CC': interpretazione dei dati

Per il profilo in questione sono stati eseguiti 2 scoppi effettuati a 1.0 m di distanza dal primo geofono. Il treno di onde generato da ciascun colpo di massa battente è stato campionato con intervallo temporale di 1.22 secondi. Per la qualità del segnale si è scelto lo scoppio n.2 (Fig.31).

 $\label{eq:fig.31-Sismogrammi} \textbf{Fig.31-Sismogrammi dello scoppio considerato per l'analisi MASW del profilo CC'$

L'individuazione del profilo Vs in funzione della profondità è stato desunto individuando la differenza (errore massimo) tra la curva di dispersione sperimentale (Fig.32) e la curva di dispersione numerica corrispondente al modello di suolo assegnato (Fig.33). Minore appare tale imprecisione, maggiore risulta la probabilità che il profilo delle onde di taglio individuato sia quello giusto.

L'analisi dello spettro "velocità di fase -frequenza" ha consentito di ricostruire un modello sismico monodimensionale del sottosuolo, il quale risulta costituito dall'andamento della velocità delle onde di taglio Vs in funzione della profondità (Fig.34). Si precisa infine che, come esposto sinteticamente nel paragrafo inerente la metodologia M.A.S.W., il modello del sottosuolo e di conseguenza anche l'inversione di velocità rilevata, sono stati ottenuti in corrispondenza del punto medio del profilo di acquisizione.

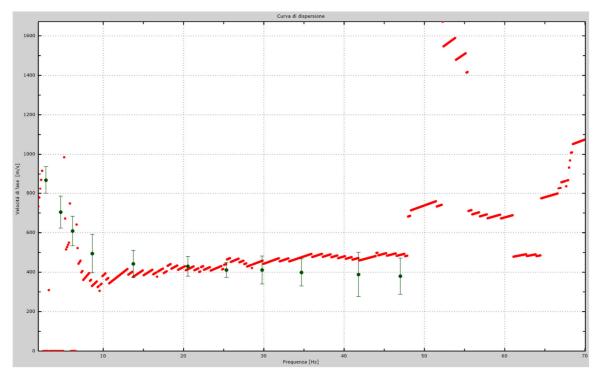


Fig.32 - Curva di dispersione sperimentale.

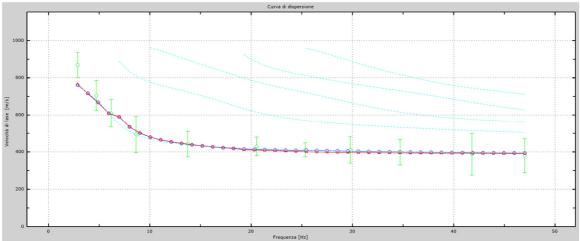


Fig.33 - Velocità numeriche – punti sperimentali (verde), modi di Rayleigth (ciano), curva apparente(blu), curva numerica (rosso). La percentuale di differenza è: 7%.

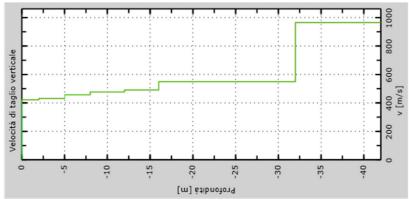
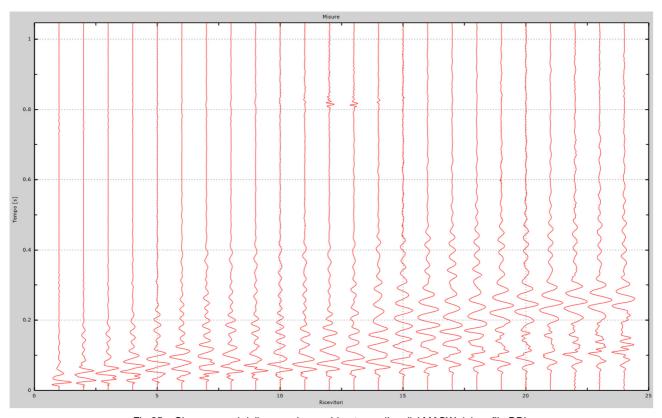



Fig.34 – Profilo verticale delle velocità delle Onde registrate

10.4 Stendimento sismico DD': interpretazione dei dati

Per il profilo in questione sono stati eseguiti 2 scoppi effettuati a 1.0 m di distanza dal primo geofono. Il treno di onde generato da ciascun colpo di massa battente è stato campionato con intervallo temporale di 1.22 secondi. Per la qualità del segnale si è scelto lo scoppio n.2 (Fig.35).

 ${\it Fig. 35-Sismogrammi\ dello\ scoppio\ considerato\ per\ l'analisi\ MASW\ del\ profilo\ DD'}$

L'individuazione del profilo Vs in funzione della profondità è stato desunto individuando la differenza (errore massimo) tra la curva di dispersione sperimentale (Fig.36) e la curva di dispersione numerica corrispondente al modello di suolo assegnato (Fig.37). Minore appare tale imprecisione, maggiore risulta la probabilità che il profilo delle onde di taglio individuato sia quello giusto.

L'analisi dello spettro "velocità di fase -frequenza" ha consentito di ricostruire un modello sismico monodimensionale del sottosuolo, il quale risulta costituito dall'andamento della velocità delle onde di taglio Vs in funzione della profondità (Fig.38). Si precisa infine che, come esposto sinteticamente nel paragrafo inerente la metodologia M.A.S.W., il modello del sottosuolo e di conseguenza anche l'inversione di velocità rilevata, sono stati ottenuti in corrispondenza del punto medio del profilo di acquisizione.

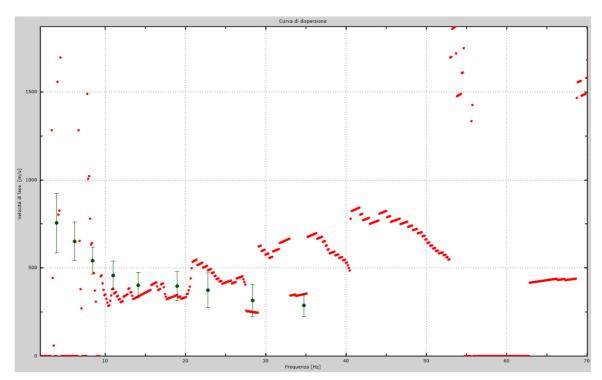
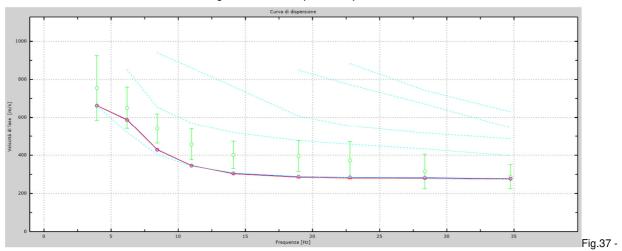



Fig.36 - Curva di dispersione sperimentale.

Velocità numeriche – punti sperimentali (verde), modi di Rayleigth (ciano), curva apparente(blu), curva numerica (rosso). La percentuale di differenza è: 15%.

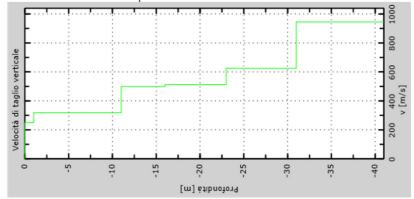
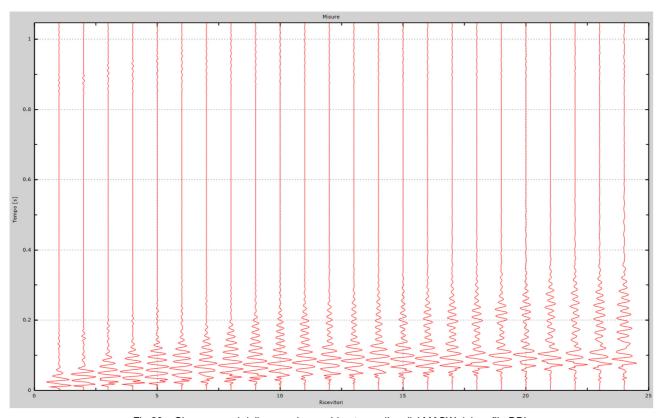



Fig.38 - Profilo verticale delle velocità delle Onde registrate

10.5 Stendimento sismico EE': interpretazione dei dati

Per il profilo in questione sono stati eseguiti 2 scoppi effettuati a 1.0 m di distanza dal primo geofono. Il treno di onde generato da ciascun colpo di massa battente è stato campionato con intervallo temporale di 1.22 secondi. Per la qualità del segnale si è scelto lo scoppio n.2 (Fig.39).

 ${\it Fig. 39-Sismogrammi\ dello\ scoppio\ considerato\ per\ l'analisi\ MASW\ del\ profilo\ DD'}$

L'individuazione del profilo Vs in funzione della profondità è stato desunto individuando la differenza (errore massimo) tra la curva di dispersione sperimentale (Fig.40) e la curva di dispersione numerica corrispondente al modello di suolo assegnato (Fig.41). Minore appare tale imprecisione, maggiore risulta la probabilità che il profilo delle onde di taglio individuato sia quello giusto.

L'analisi dello spettro "velocità di fase -frequenza" ha consentito di ricostruire un modello sismico monodimensionale del sottosuolo, il quale risulta costituito dall'andamento della velocità delle onde di taglio Vs in funzione della profondità (Fig.42). Si precisa infine che, come esposto sinteticamente nel paragrafo inerente la metodologia M.A.S.W., il modello del sottosuolo e di conseguenza anche l'inversione di velocità rilevata, sono stati ottenuti in corrispondenza del punto medio del profilo di acquisizione.

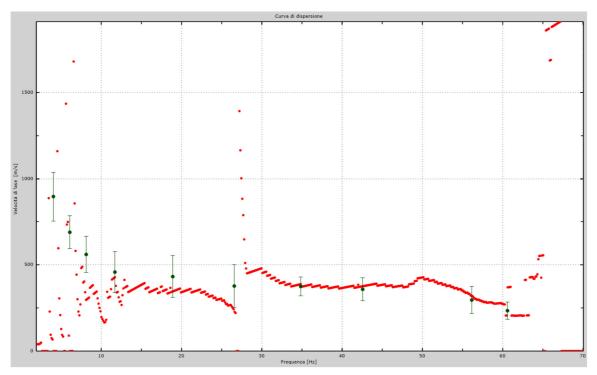


Fig.40 - Curva di dispersione sperimentale.

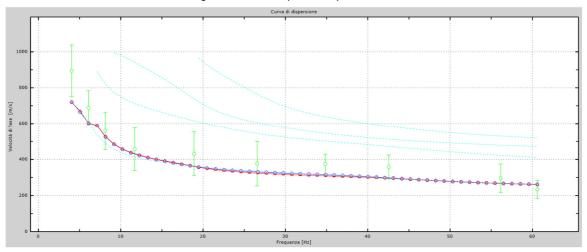


Fig.41 - Velocità numeriche – punti sperimentali (verde), modi di Rayleigth (ciano), curva apparente(blu), curva numerica (rosso). La percentuale di differenza è: 15%.

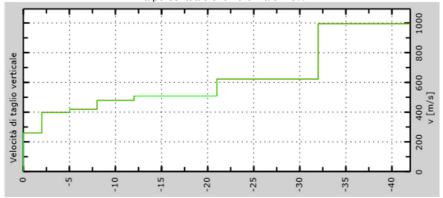
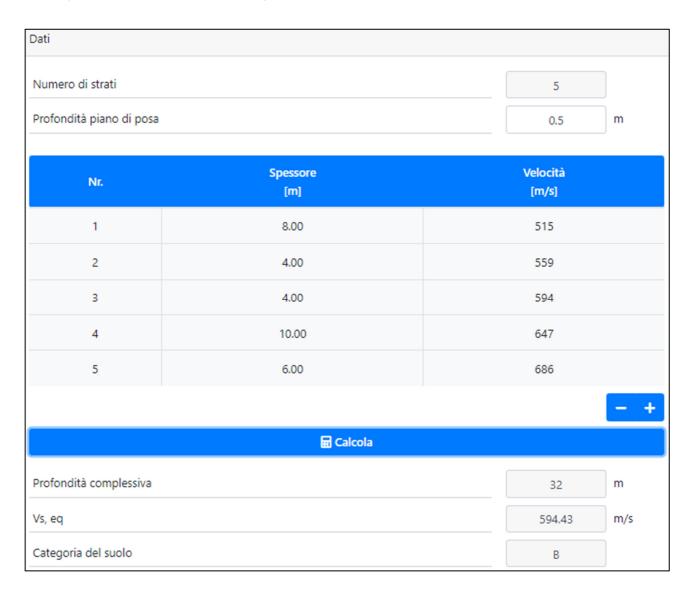


Fig.42 - Profilo verticale delle velocità delle Onde registrate

11. Classificazione del sottosuolo di fondazione dei siti di progetto

Sulla base delle risultanze dell'indagine MASW condotte nell'area oggetto di studio, il sottosuolo di fondazione è stato classificato ai sensi delle normative che attualmente regolano il settore (Ordinanza della Presidenza del Consiglio dei Ministri n. 3274 del 20 marzo 2003, recepita dalla Regione Puglia nel marzo 2004; DGR Puglia 2 marzo 2004 e dalle modifiche allo stesso portate dal Consiglio dei ministri con ordinanza n.3431 del 03.05.2005, DM 17/01/2018).

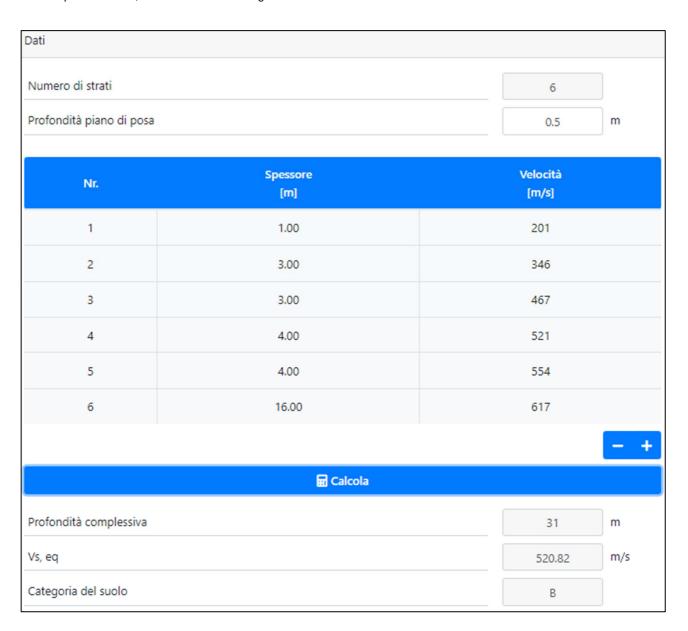
L'indagine M.A.S.W. ha consentito la stima dei valori delle velocità medie delle onde sismiche di taglio e, da queste, le Vs,eq, utilizzando la seguente formula:


$$V_{s eq=} \frac{H}{\sum_{i=1}^{N} \frac{hi}{V_{s,i}}}$$

in cui Vs,i e hi indicano la velocità delle onde di taglio (in m/s) e lo spessore (in m) del sismostrato i-esimo per un totale di N sismostrati presenti.

11.1 Determinazione della categoria di sottosuolo dello stendimento AA'

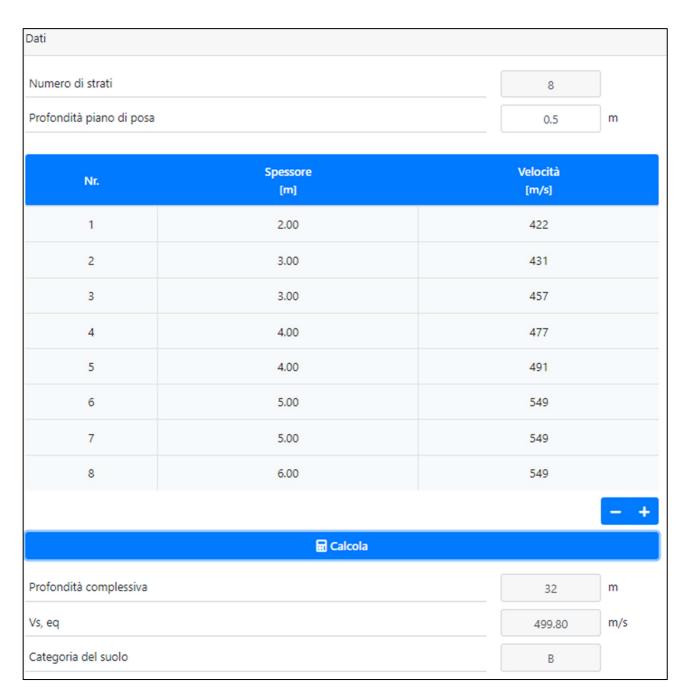
Per l'acquisizione AA', sono stati ottenuti i seguenti risultati:



Vs,_{eq}: 594.43 m/s Categoria del suolo: B

11.2 Determinazione della categoria di sottosuolo dello stendimento BB'

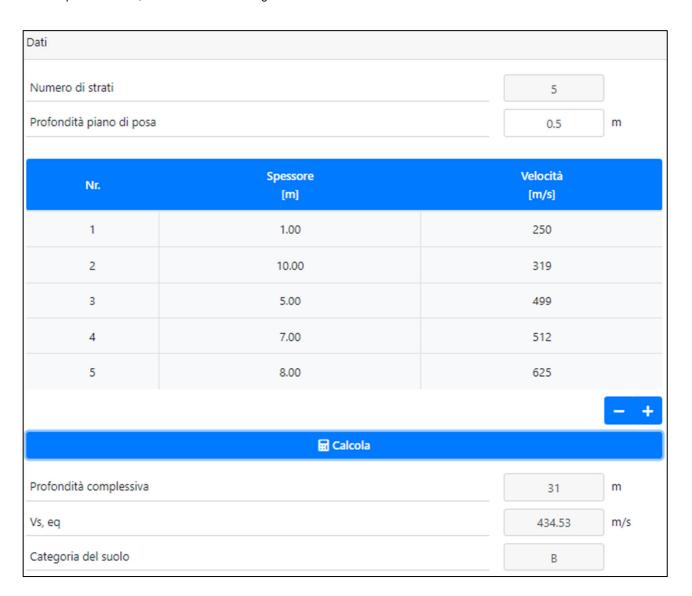
Per l'acquisizione BB', sono stati ottenuti i seguenti risultati:



Vs,_{eq}: 520.82 m/s Categoria del suolo: B

11.3 Determinazione della categoria di sottosuolo dello stendimento CC'

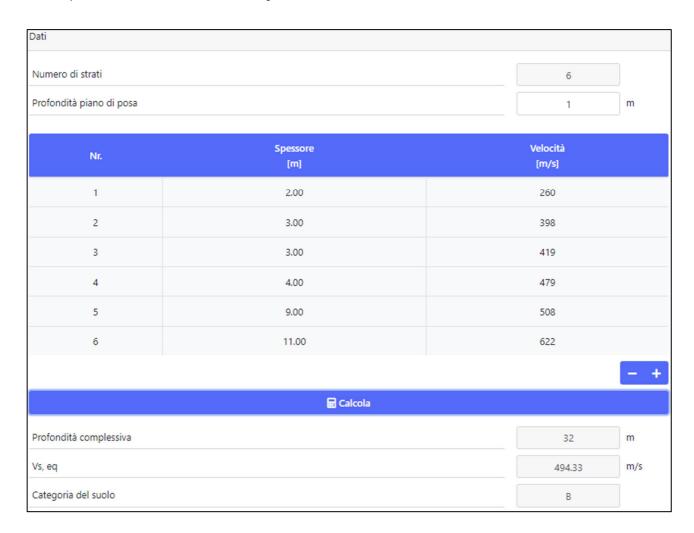
Per l'acquisizione CC', sono stati ottenuti i seguenti risultati:



Vs,_{eq}: 499.80 m/s Categoria del suolo: B

11.4 Determinazione della categoria di sottosuolo dello stendimento DD'

Per l'acquisizione DD', sono stati ottenuti i seguenti risultati:



Vs,_{eq}: 434.53 m/s Categoria del suolo: B

11.5 Determinazione della categoria di sottosuolo dello stendimento EE'

Per l'acquisizione DD', sono stati ottenuti i seguenti risultati:

Vs,_{eq}: 494.33 m/s Categoria del suolo: B

12. Caratterizzazione elastica dei terreni di fondazione

Nei paragrafi precedenti sono state descritte le metodologie di esecuzione delle prove e l'interpretazione dei risultati delle indagini indirette realizzate per il presente studio che hanno permesso di ricostruire con sufficiente dettaglio la stratigrafia dei primi metri del sottosuolo. Nel dettaglio quindi saranno riportate due tabelle riassuntive delle principali caratteristiche elastiche dei sismostrati individuati, riferite alle zone dove sono state eseguite le indagini sismiche. I valori delle Vs sono stati ricavati in modo indiretto dalla prova MASW.

Sezione AA' - Tabella 1

Prof.	Unità	VPi	VSi	g	G_0	K	E	М	μ	Vp/Vs	IS
(m da p.c.)	Office	(m/sec)	(m/sec)	(gr/cm ³)	(Kg/cm ²)	(Kg/cm ²)	(kg/cm ²)	(kg/cm ²)	μ	v p/ v s	(t*m ⁻² *sec ⁻¹)
0.10	A - TETTO	250.00	115.00	1.46	194.9	661.2	532.4	921.0	0.37	2.17	167.45
1/1.5	A - LETTO	500.00	287.00	1.66	1384.7	2356.5	3473.7	4202.7	0.25	1.74	476.71
1/1.5	В - ТЕТТО	500.00	287.00	1.66	1384.7	2356.5	3473.7	4202.7	0.25	1.74	476.71
3.00	B - LETTO	1250.00	515.00	1.98	5306.6	24186.8	14834.8	31262.2	0.40	2.43	1018.10

Sezione BB' - Tabella 2

-												
	Prof. (m da p.c.)	Unità	VPi (m/sec)	VSi (m/sec)	g (gr/cm ³)	G₀ (Kg/cm²)	K (Kg/cm ²)	E (kg/cm ²)	M (kg/cm ²)	μ	Vp/Vs	IS (t*m ⁻² *sec ⁻¹)
	0.10	A - TETTO	250.00	176.00	1.46	456.5	312.4	920.9	921.0	0.01	1.42	256.27
	2.5/3.0	A - LETTO	500.00	346.00	1.66	2012.5	1519.3	4188.3	4202.7	0.04	1.45	574.71
	2.5/3.0	B - TETTO	500.00	346.00	1.66	2012.5	1519.3	4188.3	4202.7	0.04	1.45	574.71
	4.0/6.00	B - LETTO	1250.00	617.00	1.98	7616.8	21106.5	20396.7	31262.2	0.34	2.03	1219.74

Sezione CC' - Tabella 3

Prof. (m da p.c.)	Unità	VPi (m/sec)	VSi (m/sec)	g (gr/cm ³)	G₀ (Kg/cm²)	K (Kg/cm ²)	E (kg/cm ²)	M (kg/cm ²)	μ	Vp/Vs	IS (t*m ⁻² *sec ⁻¹)
0.10	A - TETTO	250.00	176.00	1.46	456.5	312.4	920.9	921.0	0.01	1.42	256.27
1.0/3.0	A - LETTO	500.00	311.00	1.66	1626.0	2034.8	3851.9	4202.7	0.18	1.61	516.58
1.0/3.0	В - ТЕТТО	500.00	311.00	1.66	1626.0	2034.8	3851.9	4202.7	0.18	1.61	516.58
10.00	B - LETTO	1500.00	549.00	2.05	6242.9	38280.5	17763.2	46604.4	0.42	2.73	1123.57

Sezione DD' - Tabella 4

Prof. (m da p.c.)	Unità	VPi (m/sec)	VSi (m/sec)	g (gr/cm ³)	G₀ (Kg/cm²)	K (Kg/cm ²)	E (kg/cm ²)	M (kg/cm ²)	μ	Vp/Vs	IS (t*m ^{-2*} sec ⁻¹)
0.10	A - TETTO	250.00	156.00	1.46	358.6	442.9	847.2	921.0	0.18	1.60	227.15
1.0/2.0	A - LETTO	500.00	319.00	1.66	1710.7	1921.8	3957.8	4202.7	0.16	1.57	529.86
1.0/2.0	B - TETTO	500.00	319.00	1.66	1710.7	1921.8	3957.8	4202.7	0.16	1.57	529.86
10.00	B - LETTO	1500.00	625.00	2.05	8091.0	35816.3	22573.3	46604.4	0.39	2.40	1279.11

Sezione EE' - Tabella 5

002:0::0	abona t										
Prof. (m da p.c.)	Unità	VPi (m/sec)	VSi (m/sec)	g (gr/cm ³)	G ₀ (Kg/cm ²)	K (Kg/cm ²)	E (kg/cm ²)	M (kg/cm ²)	μ	Vp/Vs	IS (t*m ⁻² *sec ⁻¹)
0.10	A - TETTO	250.00	125.00	1.46	230.3	614.0	614.0	921.0	0.33	2.00	182.01
1.00	A - LETTO	500.00	260.00	1.66	1136.4	2687.5	2988.1	4202.7	0.31	1.92	431.86
1.00	В - ТЕТТО	500.00	260.00	1.66	1136.4	2687.5	2988.1	4202.7	0.31	1.92	431.86
3.00	B - LETTO	1000.00	419.00	1.89	3366.8	14688.2	9383.4	19177.3	0.39	2.39	793.93

Dove:

g = densità sismica calcolata mediante la seguente formula: $0.51 * Vp^{0.19}$; $G_0 = Modulo di taglio$; K = Modulo di volume;

 $E = Modulo di Young; \mu = Modulo di Poisson; IS = Impedenza sismica.$

13. Prove Penetrometriche dinamiche

Per la definizione delle caratteristiche geotecniche dei depositi interessati dalla realizzazione dell'impianto fotovoltaico e delle opere ad esso connesse, è stata eseguita una campagna di indagine di prospezione geologica dei terreni a mezzo di N° 6 Prove Penetrometriche Dinamiche realizzate come indicato in figura 6a,b.

Le prime 5 Prove penetrometriche sono state realizzate in corrispondenza del campo fotovoltaico (P1, P2, P3, P4, P5) mentre la sesta (P6) è stata realizzata in corrispondenza della sottostazione elettrica.

La prova penetrometrica dinamica consiste nel misurare la resistenza alla penetrazione di una punta conica, infissa per battitura nel terreno, per mezzo di un idoneo dispositivo di percussione, secondo una procedura standardizzata.

Le prove in sito sono state effettuate utilizzando un penetrometro dinamico modello DM30 della GEO DEEP DRILL, eseguite secondo lo standard DIN 4094 (la prova consiste nell'infiggere la punta conica nel terreno, per tratti consecutivi di 10 cm, misurando il numero di colpi necessari).

Caratteristiche Tecniche-Strum	entali Sonda: GEO DEEP DRILL DM30
Rif. Norme	DIN 4094
Peso Massa battente	30 Kg
Altezza di caduta libera	0,20 m
Peso sistema di battuta	3.5 Kg
Diametro punta conica	50,46 mm
Area di base punta	10 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	3 Kg/m
Profondità giunzione prima asta	0,80 m
Avanzamento punta	0,10 m
Numero colpi per punta	N(20)
Rivestimento/fanghi	No
Angolo di apertura punta	60°

La resistenza opposta dal terreno alla punta conica viene correlata alle caratteristiche fisico-meccaniche e portanti del terreno, consentendo inoltre di riconoscere, con buona approssimazione, la stratigrafia del sottosuolo; il tutto fino alla profondità a cui la resistenza del terreno è tale da non permetterne più l'infissione (rigetto della punta).

Per il riconoscimento ed il calcolo delle più significative caratteristiche fisico-meccaniche del terreno di fondazione, sono state elaborate le norme relative al penetrometro utilizzato per la prova eseguita.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

 $NSPT = \beta_t \cdot N$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

Dove:

M = peso massa battente.

M' = peso aste.

H = altezza di caduta.

A = area base punta conica.

D = passo di avanzamento.

Attraverso la nota "Formula degli Olandesi", di seguito riportata, ci si ricava la resistenza dinamica alla punta (altrimenti detta resistenza di rottura dinamica alla punta) (Rpd), parametro caratteristico dello stato di addensamento di un terreno incoerente e della consistenza di un terreno coesivo.

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Nei successivi paragrafi saranno illustrate nello specifico le 6 prove realizzate, con l'indicazione della stratigrafia desunta e dei relativi parametri geotecnici delle litologie incontrate.

13.1 Prova SV634_P1

La prova penetrometrica SV634_P1 è stata spinta fino ad una profondità di 2.10 m dal p.c. Qui di seguito si riportano i risultati sintetici.

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res. dinamica (Mpa)	Pres. ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.10	1	0.857	0.33	0.38	16.44	19.19
0.20	1	0.855	0.33	0.38	16.40	19.19
0.30	1	0.853	0.33	0.38	16.36	19.19
0.40	1	0.851	0.33	0.38	16.32	19.19
0.50		0.849	1.95	2.30	97.72	115.12
0.60	13	0.797	3.98	4.99	198.80	249.43
0.70		0.745	7.43	9.98	371.73	498.86
0.80	22	0.743	6.28	8.44	313.77	422.11
0.90	22	0.742	5.88	7.93	293.85	396.27
1.00	20	0.790	5.69	7.20	284.50	360.24
1.10	19	0.788	5.39	6.84	269.68	342.23
1.20	19	0.786	5.38	6.84	269.09	342.23
1.30	20	0.785	5.65	7.20	282.63	360.24
1.40	17	0.783	4.79	6.12	239.72	306.21
1.50	15	0.781	4.22	5.40	211.07	270.18
1.60	13	0.780	3.65	4.68	182.54	234.16
1.70	15	0.778	4.20	5.40	210.18	270.18
1.80	14	0.776	3.92	5.04	195.77	252.17
1.90	20	0.775	5.26	6.79	263.00	339.46
2.00	28	0.723	6.87	9.50	343.69	475.25
2.10	46	0.622	9.71	15.62	485.35	780.76

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume	Peso unita' di volume	Tensione efficace	Coeff. di correlaz.	NSPT	Descrizione
()		(-:- -r -y)		(KN/m^3)	saturo	(KPa)	con Nspt		
					(KN/m^3)				
0.6	3.83	1.47	Coesivo	15.98	18.24	0.0	0.75	2.88	Argilla
1.3	21.14	7.78	Coesivo	20.4	22.46	0.0	0.75	15.88	Limo
									sabbioso
1.9	15.67	5.57	Coesivo	19.71	21.67	0.0	0.75	11.77	Limo
2.1	37	12.56	Incoerente	20.69	19.91	0.0	0.75	27.79	Sabbie e
									ghiaia

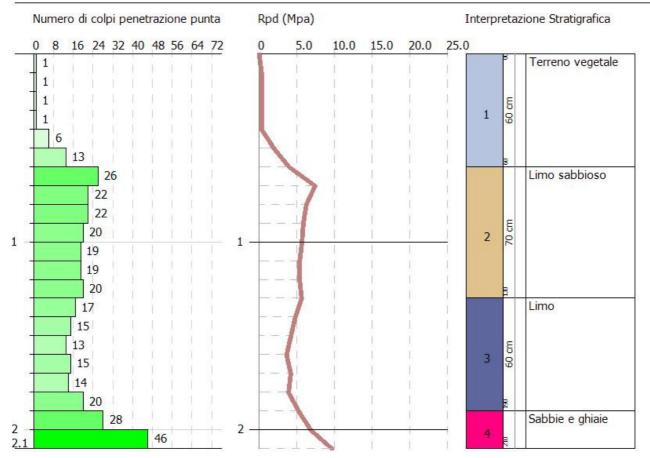
Descrizione	Prof. Strato [m]	Coesione non drenata Cu [KPa]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Class. A.G.I.
		Terzaghi-Peck	Trofimenkov (1974), Mitchell e Gardner	D'Apollonia	A.G.I. 1977
(1) Argilla	0 – 0.5	17.65	3.06	2.82	Poco consistente
(2) Limo sabbioso	0.5 – 1.3	105.13	16.06	15.57	Molto consistente
(3) Sabbia e ghiaia	1.3 – 1.9	77.86	11.95	11.54	Consistente

Terreni incoerenti

Descrizione	Prof. Strato [m]	Densità Relativa	Angolo di attrito [†] [°]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Modulo di taglio G [Mpa]	Poisson	Class. A.G.I.
		Skempton	Sowers (1961)	Menzenbach e Malcev	Schultze- Menzenbach	Ohsaki	A.G.I.	A.G.I. 1977
(4) Sabbia e ghiaia	1.9 – 2.1	61.18	35.78	15.88	32.23	145.11	0.3	Moderatamente Addensato

GeoMoniTek s.r.l.

via Trieste e Trento. 112 - Alberobello (BA)


Sito: www.geomonitek.com - email: info@geomonitek.com

PROVA PENETROMETRICA DINAMICA SV634_P1 Strumento utilizzato... GeoDeepDrill DM30

Committente: GMT Descrizione: PENETROMETRICA 12/4/2022

Localita': ASCOLI SATRIANO

Scala 1:20

13.2 Prova SV634_P2

La prova penetrometrica SV634_P2 è stata spinta fino ad una profondità di 3.10 m dal p.c. Qui di seguito si riportano i risultati sintetici.

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res. dinamica (Mpa)	Pres. ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.10	1	0.857	0.33	0.38	16.44	19.19
0.20	1	0.855	0.33	0.38		19.19
0.30	1	0.853	0.33	0.38		19.19
0.40	3	0.851	0.98	1.15		57.56
0.50	3	0.849	0.98	1.15	48.86	57.56
0.60	8	0.847	2.60	3.07	130.01	153.50
0.70	39	0.645	9.66	14.97	482.77	748.29
0.80	39	0.643	9.63	14.97	481.40	748.29
0.90	25	0.742	6.68	9.01	333.92	450.31
1.00	22	0.740	5.86	7.93	293.14	396.27
1.10	18	0.788	5.11	6.48		324.22
1.20	18	0.786	5.10	6.48		324.22
1.30	18	0.785	5.09	6.48		324.22
1.40	18	0.783	5.08	6.48		324.22
1.50	16	0.781	4.50	5.76		288.20
1.60	16	0.780	4.49	5.76	224.66	288.20
1.70	16	0.778	4.48	5.76	224.20	288.20
1.80	16	0.776	4.47	5.76	223.73	288.20
1.90	18	0.775	4.73	6.11	236.70	305.51
2.00	35	0.673	8.00	11.88	399.91	594.06
2.10	33	0.672	7.52	11.20	376.19	560.11
2.20	31	0.670	7.05	10.52	352.60	526.16
2.30	30	0.719	7.32	10.18	365.92	509.19
2.40	30	0.717	7.30	10.18		509.19
2.50	30	0.716	7.29	10.18		509.19
2.60	30	0.714	7.27	10.18		509.19
2.70	28	0.713	6.78	9.50	338.77	475.25
2.80	25	0.711	6.04	8.49	301.87	424.33
2.90	29	0.710	6.61	9.31	330.43	465.37
3.00	34	0.659	7.19	10.91	359.38	545.61
3.10	35	0.657	7.38	11.23	369.19	561.65

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.6	2.83	1.09	Coesivo	15.4	18.14	4.62	0.75	2.13	Argilla
0.8	39	14.97	Incoerente	20.89	20.01	11.33	0.75	29.29	Sabbie e ghiaie
1.9	18.27	6.55	Coesivo	20.1	22.06	24.47	0.75	13.72	Limo
3.1	30.83	10.32	Incoerente	20.1	19.61	47.59	0.75	23.15	Sabbie ghiaiose

Stima dei parametri geotecnici

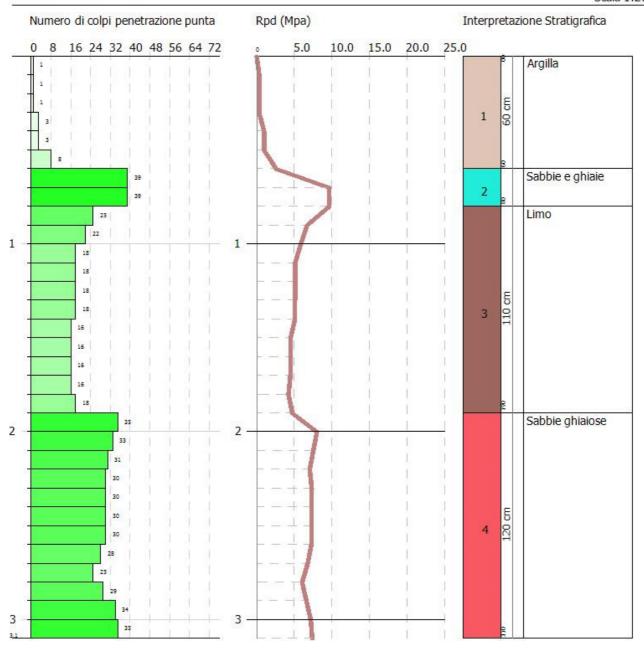
Terreni coesivi

Descrizione	Prof. Strato [m]	Coesione non drenata Cu [KPa]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Class. A.G.I.
		Terzaghi-Peck	Trofimenkov (1974), Mitchell e Gardner	D'Apollonia	A.G.I. 1977
(1) Argilla	0 – 0.6	13.04	2.31	2.09	Poco consistente
(3) Limo	0.8 – 1.9	90.81	13.90	13.45	Consistente

Terreni incoerenti

Descrizione	Prof. Strato [m]	Densità Relativa	Angolo di attrito † [°]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Modulo di taglio G [Mpa]	Poisson	Class. A.G.I.
		Skempton	Sowers (1961)	Menzenbach e Malcev	Schultze- Menzenbach	Ohsaki	A.G.I.	A.G.I. 1977
(2) Sabbia ghiaiosa	0.6 – 0.8	62.78	36.2	16.54	33.96	152.46	0.3	Moderatamente addensato
(4) Sabbia e ghiaia	1.9 – 3.1	55.62	34.48	13.85	26.86	122.21	0.31	Moderatamente addensato

GeoMoniTek s.r.l.


via Trieste e Trento. 112 - Alberobello (BA) Sito: www.geomonitek.com — email: info@geomonitek.com

PROVA PENETROMETRICA DINAMICA SV634_P2 Strumento utilizzato... GeoDeepDrill DM30

Committente: GMT 12/4/2022

Descrizione: PENETROMETRICA Localita': ASCOLI SATRIANO

Scala 1:20

13.3 Prova SV634_P3

La prova penetrometrica SV634_P3 è stata spinta fino ad una profondità di 1.80 m dal p.c. Qui di seguito si riportano i risultati sintetici.

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res. dinamica (Mpa)	Pres. ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.10		0.857	0.33	0.38		19.19
0.20		0.855	0.33	0.38	16.40	19.19
0.30		0.853	0.98	1.15	49.08	57.56
0.40		0.851	0.33	0.38	16.32	19.19
0.50		0.849	0.33	0.38		19.19
0.60	1	0.847	0.33	0.38	16.25	19.19
0.70		0.845	3.89	4.60	194.59	230.24
0.80		0.693	9.84	14.20	492.21	709.92
0.90	37	0.692	9.22	13.33	460.87	666.45
1.00		0.690	8.45	12.25	422.42	612.42
1.10	29	0.738	7.71	10.45	385.50	522.35
1.20	41	0.636	9.40	14.77	469.88	738.50
1.30	45	0.635	10.29	16.21	514.34	810.55
1.40	54	0.633	12.31	19.45	615.56	972.66
1.50		0.631	12.51	19.81	625.31	990.67
1.60		0.630	12.70	20.17	635.02	1008.68
1.70	55	0.628	12.44	19.81	622.07	990.67
1.80	50	0.626	11.28	18.01	564.08	900.61

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.7	2.86	1.1	Coesivo	15.4	18.14	5.39	0.75	2.15	Terreno vegetale argilloso
1.1	34.25	12.56	Incoerente	20.5	19.81	14.88	0.75	25.72	Sabbia limosa
1.8	50.86	18.32	Incoerente	21.48	20.5	26.5	0.75	38.2	Limo sabbioso con ghiaia

Stima dei parametri geotecnici

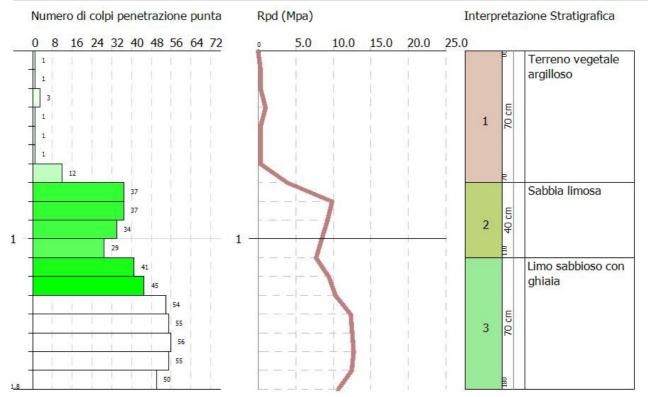
Terreni coesivi

Descrizione	Prof. Strato [m]	Coesione non drenata Cu [KPa]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Class. A.G.I.
		Terzaghi-Peck	Trofimenkov (1974), Mitchell e Gardner	D'Apollonia	A.G.I. 1977
(1) Terreno vegetale argilloso	0 – 0.7	13.14	2.33	2.11	Poco consistente

Terreni incoerenti

Descrizione	Prof. Strato [m]	Densità relativa	Angolo di attrito	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Modulo di taglio G [Mpa]	Poisson	Class. A.G.I.
		Skempton (1986)	Sowers (1961)	Menzenbach e Malcev	Schultze- Menzenbach	Ohsaki	A.G.I.	A.G.I. 1977
(2) Sabbia limosa	0.7 – 1.10	58.82	35.2	14.98	29.83	134.92	0.3	Moderatamente addensato
(3) Limo sabbioso con ghiaia	1.1 – 1.8	70.91	38.7	20.43	29.97	195.69	0.28	Addensato

GeoMoniTek s.r.l.


via Trieste e Trento. 112 - Alberobello (BA) Sito: www.geomonitek.com – email: info@geomonitek.com

PROVA PENETROMETRICA DINAMICA SV634_P3 Strumento utilizzato... GeoDeepDrill DM30

Committente: GMT Descrizione: PENETROMETRICA 12/4/2022

Localita': ASCOLI SATRIANO

Scala 1:20

13.4 Prova SV634_P4

La prova penetrometrica SV634_P4 è stata spinta fino ad una profondità di 1.8 m dal p.c. Qui di seguito si riportano i risultati sintetici.

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res. dinamica (Mpa)	Pres. ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.10	1	0.857	0.33	0.38	16.44	19.19
0.20		0.855	0.33	0.38	16.40	19.19
0.30		0.853	0.98	1.15	49.08	57.56
0.40		0.801	5.53	6.91	276.56	345.36
0.50		0.849	1.63	1.92	81.44	95.93
0.60		0.847	3.90	4.60	195.02	230.24
0.70	41	0.645	10.15	15.73	507.52	786.66
0.80		0.643	9.87	15.35	493.74	767.48
0.90		0.742	6.68	9.01	333.92	450.31
1.00		0.740	5.60	7.57	279.82	378.26
1.10	19	0.788	5.39	6.84	269.68	342.23
1.20	36	0.686	8.90	12.97	445.00	648.44
1.30	49	0.635	11.20	17.65	560.06	882.60
1.40		0.633	11.40	18.01	569.97	900.61
1.50	55	0.631	12.51	19.81	625.31	990.67
1.60		0.630	12.25	19.45	612.34	972.66
1.70	53	0.628	11.99	19.09	599.45	954.65
1.80	55	0.626	12.41	19.81	620.48	990.67

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.6	6.67	2.56	Coesivo	17.26	18.44	5.18	0.75	5.01	Terreno vegetale argilloso limoso
1.1	29.2	10.9	Incoerente	19.91	19.52	15.33	0.75	21.93	Limo
1.8	50.29	18.12	Incoerente	21.48	20.5	27.83	0.75	37.77	Limo sabbioso con ghiaia

Stima dei parametri geotecnici

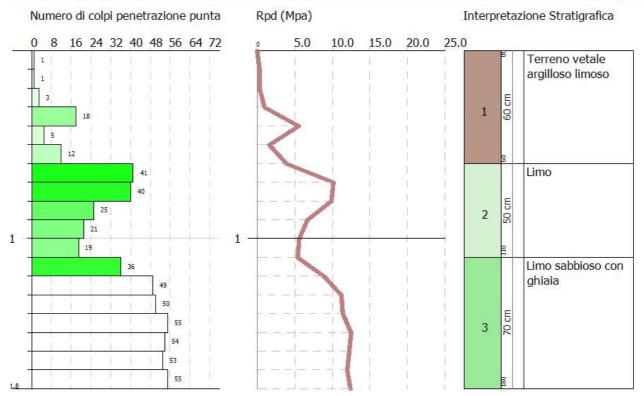
Terreni coesivi

Descrizione	Prof. Strato [m]	Coesione non drenata Cu [KPa]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Class. A.G.I.
		Terzaghi-Peck	Trofimenkov (1974), Mitchell e Gardner	D'Apollonia	A.G.I. 1977
(1) Terreno vegetale argilloso-lomoso	0 – 0.6	30.69	5.19	4.91	Moderatamente consistente

Terreni incoerenti

Descrizione	Prof. Strato [m]	Densità relativa	Angolo di attrito ^φ [°]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Modulo di taglio G [Mpa]	Poisson	Class. A.G.I.
		Skempton (1986)	Sowers (1961)	Menzenbach e Malcev	Schultze- Menzenbach	Ohsaki	A.G.I.	A.G.I. 1977
(2) Limo	0.6 – 1.1	53.99	34.14	13.32	25.45	116.15	0.31	Moderatamente addensato
(3) Limo- sabbioso con ghiaia	1.1 – 1.8	70.56	38.58	20.25	43.78	193.62	0.28	addensato

GeoMoniTek s.r.l.


via Trieste e Trento. 112 - Alberobello (BA) Sito: www.geomonitek.com – email: info@geomonitek.com

PROVA PENETROMETRICA DINAMICA SV634_P4 Strumento utilizzato... GeoDeepDrill DM30

Committente: GMT 12/4/2022

Descrizione: PENETROMETRICA Localita': ASCOLI SATRIANO

Scala 1:20

13.5 Prova SV634_P5

La prova penetrometrica SV634_P5 è stata spinta fino ad una profondità di 1.70 m dal p.c. Qui di seguito si riportano i risultati sintetici.

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res. dinamica (Mpa)	Pres. ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.10	1	0.857	0.33	0.38	16.44	19.19
0.20	1	0.855	0.33	0.38	16.40	19.19
0.30	1	0.853	0.33	0.38	16.36	19.19
0.40	1	0.851	0.33	0.38	16.32	19.19
0.50	3	0.849	0.98	1.15	48.86	57.56
0.60	4	0.847	1.30	1.53	65.01	76.75
0.70	6	0.845	1.95	2.30	97.30	115.12
0.80	31	0.693	8.25	11.90	412.39	594.79
0.90	50	0.642	11.56	18.01	577.77	900.61
1.00	42	0.640	9.68	15.13	483.98	756.51
1.10	44	0.638	10.11	15.85	505.64	792.54
1.20	55	0.636	12.61	19.81	630.33	990.67
1.30	56	0.635	12.80	20.17	640.07	1008.68
1.40	55	0.633	12.54	19.81	626.96	990.67
1.50	58	0.631	13.19	20.89	659.42	1044.71
1.60	55	0.630	12.47	19.81	623.68	990.67
1.70	56	0.628	12.67	20.17	633.38	1008.68

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.7	2.43	0.9299999	Coesivo	15.2	18.14	5.32	0.75	1.82	Terreno vegetale argilloso
1.7	50.2	18.16	Incoerente	21.48	20.5	21.38	0.75	37.7	Limo sabbioso

Stima dei parametri geotecnici

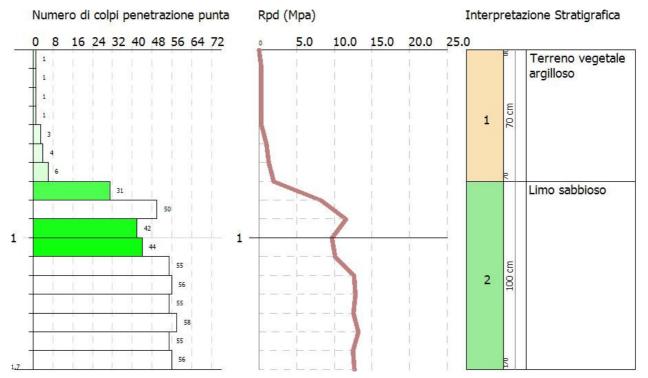
Terreni coesivi

Descrizione	Prof. Strato [m]	Coesione non drenata Cu [KPa]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Class. A.G.I.
		Terzaghi-Peck	Trofimenkov (1974), Mitchell e Gardner	D'Apollonia	A.G.I. 1977
(1) Terreno vegetale argilloso	0 – 0.7	11.18	2.00	1.78	Privo di consistenza

Terreni incoerenti

Descrizion	Prof. Strato [m]	Densità relativa	Angolo di attrito † [°]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Modulo di taglio G [Mpa]	Poisson	Class. A.G.I.
		Skempton	Sowers	Menzenbach	Schultze-	Ohsaki	A.G.I.	A.G.I. 1977

		(1986)	(1961)	e Malcev	Menzenbach			
(2) Limo sabbioso	0.7 – 1.7	70.5	38.56	20.22	43.69	193.28	0.28	addensato


GeoMoniTek s.r.l. via Trieste e Trento. 112 - Alberobello (BA) Sito: www.geomonitek.com — email: info@geomonitek.com

PROVA PENETROMETRICA DINAMICA SV634_P5 Strumento utilizzato... GeoDeepDrill DM30

12/4/2022

Committente: GMT Descrizione: PENETROMETRICA Localita': ASCOLI SATRIANO

Scala 1:20

13.6 Prova SV634_P6

La prova penetrometrica SV634_P6 è stata spinta fino ad una profondità di 2.00 m dal p.c. Qui di seguito si riportano i risultati sintetici.

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Res. dinamica (Mpa)	Pres. ammissibile con riduzione Herminier - Olandesi (KPa)	Pres. ammissibile Herminier - Olandesi (KPa)
0.10	4	0.857	1.31	1.53	65.74	76.75
0.20	6	0.855	1.97	2.30	98.39	115.12
0.30	4	0.853	1.31	1.53	65.44	76.75
0.40	4	0.851	1.31	1.53	65.29	76.75
0.50	7	0.849		2.69	114.01	134.31
0.60	19	0.797	5.81	7.29	290.55	364.55
0.70	25	0.745			357.43	479.67
0.80	20	0.793		7.67	304.43	383.74
0.90	17	0.792	4.85	6.12	242.37	306.21
1.00	14	0.790	3.98	5.04	199.15	252.17
1.10	15	0.788	4.26	5.40	212.90	270.18
1.20	22	0.736	5.84	7.93	291.76	396.27
1.30	30	0.735	7.94	10.81	396.93	540.37
1.40	78	0.633		28.10	889.15	1404.95
1.50	77	0.631	17.51	27.74	875.44	1386.94
1.60	75	0.630	17.01	27.02	850.47	1350.92
1.70	75	0.628	16.97	27.02	848.28	1350.92
1.80	77	0.626	17.37	27.74	868.68	1386.94
1.90	79	0.625	16.75	26.82	837.70	1340.87
2.00	77	0.623	16.29	26.14	814.45	1306.93

Prof.	NPDM	Rd	Tipo	Peso unita' di	Peso unita' di	Tensione	Coeff. di	NSPT	Descrizione
Strato		(Mpa)	·	volume	volume saturo	efficace	correlaz.		
(m)				(KN/m³)	(KN/m^3)	(KPa)	con Nspt		
0.5	5	1.92	Coesivo	16.48	18.34	4.12	0.75	3.75	Argilla
0.5 -1.3	20.25	7.48	Incoerente	18.53	19.12	15.65	0.75	15.21	Sabbia e ghiaia
1.3 - 2	76.86	27.23	Incoerente	22.26	21.28	30.86	0.75	57.72	Ghiaie e sabbie

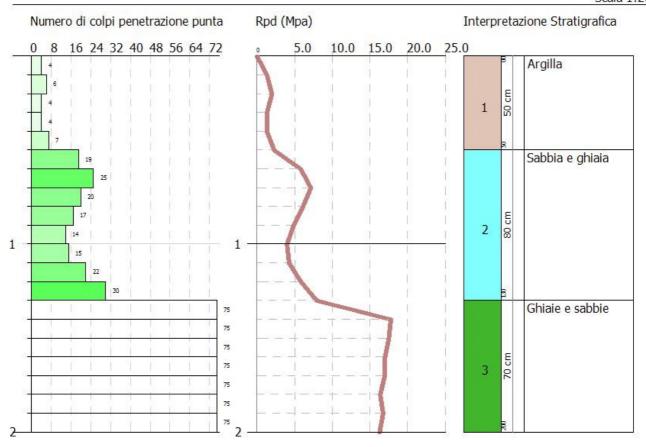
Stima dei parametri geotecnici

Terreni coesivi

Descrizione	Prof. Strato [m]	Coesione non drenata Cu [KPa]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Class. A.G.I.
		Terzaghi-Peck	Trofimenkov (1974), Mitchell e Gardner	D'Apollonia	A.G.I. 1977
(1) Argilla	0 – 0.5	22.95	3.93	3.68	Poco consistente

15Terreni incoerenti

Descrizione	Prof. Strato [m]	Angolo di attrito [‡] [°]	Modulo Edometrico Ed [Mpa]	Modulo di Young Ey [Mpa]	Modulo di taglio G [Mpa]	Poisson	Class. A.G.I.
		Sowers (1961)	Menzenbach e Malcev	Schultze- Menzenbach	Ohsaki	A.G.I.	A.G.I. 1977
(2) Sabbia e ghiaia	0.5 – 1.30	32.26	10.38	17.67	82.34	0.32	Moderatamente addensato
(3) Ghiaia e sabbia	1.3 – 2.0	44.16	28.97	66.86	288.46	0.24	Molto addensato



GeoMoniTek s.r.l. via Trieste e Trento. 112 - Alberobello (BA) Sito: www.geomonitek.com — email: info@geomonitek.com

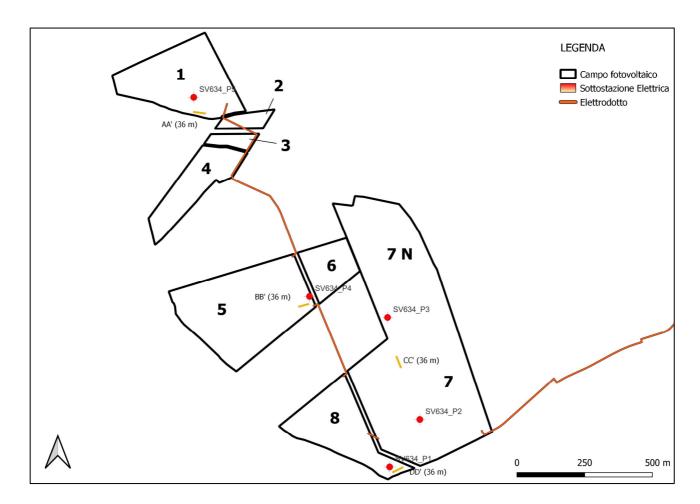
PROVA PENETROMETRICA DINAMICA SV634_P6 Strumento utilizzato... GeoDeepDrill DM30

Committente: GMT Descrizione: Prova penetrometrica Localita': Ascoli Satriano 11/22/2022

Scala 1:20

14. Modello geologico-tecnico generale

L'analisi compiuta ed illustrata nei precedenti paragrafi permette di ricostruire con discreto dettaglio il modello geologicotecnico generale dei terreni interessati dall'installazione dei pannelli fotovoltaici e la realizzazione delle opere connesse e delle infrastrutture indispensabili alla sua costruzione e funzionalità.


Tutta la zona infatti, risulta essere caratterizzata da una stessa tematica deposizionale, caratterizzata da unità litotecniche che dall'alto verso il basso, pur evidenziando arealmente differenze nello spessore ed eteropie laterali che si traducono in anisotropie litotecniche, sono così organizzate.

Unità A - E' costituita da sedimenti argillosi, limosi e sabbie fini in genere sciolti e poco consistenti che raggiungono una profondità compresa tra 0.5 e 1.5/2.0 m dal p.c.;

Unità B - E' costituita da sabbie, sabbie limose e limi sabbiosi a cui si intercalano lenti ghiaiose e che tendenzialmente raggiungono una profondità ci circa 5-7 metri dal p.c.

Nei seguenti paragrafi si riportano nello specifico le tabelle geologico-tecniche per i singoli lotti del campo fotovoltaico e la sottostazione di servizio.

Nell'immagine seguente si riportano le sigle individuate per ogni lotto del campo fotovoltaico.

14.1 Modello geologico-tecnico campo fotovoltaico: Lotto 1-2-3-4

Per i lotti n. 1-2-3-4, posizionati nella zona dell'area di progetto, è possibile far riferimento ai parametri desunti dalla prova penetrometrica SV634_P5 e dalla Tomografia sismica AA'.

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.7	2.43	0.9299999	Coesivo	15.2	18.14	5.32	0.75	1.82	Terreno vegetale argilloso (1)
1.7	50.2	18.16	Incoerente	21.48	20.5	21.38	0.75	37.7	Limo sabbioso (2)

Strato	Peso di volume	Angolo di attrito	Coesione	Coesione efficacie	Modulo edometrico	Modulo elastico	k1x	k1y	k1z
	[N/cmc]	[°]	drenata [N/mmq]	[N/mmq]	[N/mmq]	[N/mmq]	[N/cmc]	[N/cmc]	[N/cmc]
1	0.0152	-	0,01118	-	2.00	1.78	2	2	5
2	0.02148	38.56	-		20.22	43.69	35	35	110

14.2 Modello geologico-tecnico campo fotovoltaico: Lotto 5-6

Per i lotti n. 5-6, posizionati nella zona centrale dell'area di progetto, è possibile far riferimento ai parametri desunti dalla prova penetrometrica SV634_P4 e dalla Tomografia sismica BB'.

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.6	6.67	2.56	Coesivo	17.26	18.44	5.18	0.75	5.01	Terreno vegetale argilloso limoso (1)
1.1	29.2	10.9	Incoerente	19.91	19.52	15.33	0.75	21.93	Limo (2)
1.8	50.29	18.12	Incoerente	21.48	20.5	27.83	0.75	37.77	Limo sabbioso con ghiaia (3)

Strato	Peso di volume	Angolo di attrito	Coesione non drenata	Coesione efficacie	Modulo edometrico	Modulo elastico	k1x	k1y	k1z
	[N/cmc]	[°]	[N/mmq]	[N/mmq]	[N/mmq]	[N/mmq]	[N/cmc]	[N/cmc]	[N/cmc]
1	0.01726	-	0,03069	-	5.19	4.91	3	3	12
2	0.01991	34.14	-	-	13.32	25.45	10	10	30
3	0.02148	38.58	-	-	20.25	43.78	35	35	110

14.3 Modello geologico-tecnico campo fotovoltaico: Lotto 7 N

Per il lotto n. 7 N, posizionato nella zona centro-orientale dell'area di progetto, è possibile far riferimento ai parametri desunti dalla prova penetrometrica SV634_P3 e dalla Tomografia sismica CC'.

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.7	2.86	1.1	Coesivo	15.4	18.14	5.39	0.75	2.15	Terreno vegetale argilloso (1)
1.1	34.25	12.56	Incoerente	20.5	19.81	14.88	0.75	25.72	Sabbia limosa (2)
1.8	50.86	18.32	Incoerente	21.48	20.5	26.5	0.75	38.2	Limo sabbioso con ghiaia (3)

Strato	Peso di	Angolo	Coesione	Coesione	Modulo	Modulo	k1x	k1y	k1z
	volume	di attrito	non	efficacie	edometrico	elastico			
			drenata						
	[N/cmc]	[°]	[N/mmq]	[N/mmq]	[N/mmq]	[N/mmq]	[N/cmc]	[N/cmc]	[N/cmc]
1	0.0154	-	0.01314	-	2.33	2.11	2	2	6
2	0.0205	35.2	-	-	14.98	29.83	10	10	30
3	0.02148	38.7	-	-	20.43	29.97	35	35	110

14.4 Modello geologico-tecnico campo fotovoltaico: Lotto 7 S

Per il lotto n. 7 N, posizionato nella zona meridionale dell'area di progetto, è possibile far riferimento ai parametri desunti dalla prova penetrometrica SV634_P2 e dalla Tomografia sismica CC'.

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.6	2.83	1.09	Coesivo	15.4	18.14	4.62	0.75	2.13	Argilla (1)
0.8	39	14.97	Incoerente	20.89	20.01	11.33	0.75	29.29	Sabbie e ghiaie (2)
1.9	18.27	6.55	Coesivo	20.1	22.06	24.47	0.75	13.72	Limo (3)
3.1	30.83	10.32	Incoerente	20.1	19.61	47.59	0.75	23.15	Sabbie ghiaiose (4)

Strato	Peso di volume	Angolo di attrito	Coesione non drenata	Coesione efficacie	Modulo edometrico	Modulo elastico	k1x	k1y	k1z
	[N/cmc]	[°]	[N/mmq]	[N/mmq]	[N/mmq]	[N/mmq]	[N/cmc]	[N/cmc]	[N/cmc]
1	0.0154	-	0.01304	-	2.31	2.09	2	2	6
2	0.02089	36.2	-	-	16.54	33.96	10	10	30
3	0.0201	-	0.09081	-	13.90	13.45	10	10	30
4	0.0201	34.48	-	-	13.85	26.86	10	10	30

14.5 Modello geologico-tecnico campo fotovoltaico: Lotto 8

Per il lotto n. 8, posizionato nella zona meridionale dell'area di progetto, è possibile far riferimento ai parametri desunti dalla prova penetrometrica SV634_P1 e dalla Tomografia sismica DD'.

Prof. Strato (m)	NPDM	Rd (Mpa)	Tipo	Peso unita' di volume (KN/m³)	Peso unita' di volume saturo (KN/m³)	Tensione efficace (KPa)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0.6	3.83	1.47	Coesivo	15.98	18.24	0.0	0.75	2.88	Argilla (1)
1.3	21.14	7.78	Coesivo	20.4	22.46	0.0	0.75	15.88	Limo sabbioso (2)
1.9	15.67	5.57	Coesivo	19.71	21.67	0.0	0.75	11.77	Limo (3)
2.1	37	12.56	Incoerente	20.69	19.91	0.0	0.75	27.79	Sabbie e ghiaia (4)

Strato	Peso di volume	Angolo di attrito	Coesione non drenata	Coesione efficacie	Modulo edometrico	Modulo elastico	k1x	k1y	k1z
	[N/cmc]	[°]	[N/mmq]	[N/mmq]	[N/mmq]	[N/mmq]	[N/cmc]	[N/cmc]	[N/cmc]
1	0.01598	-	0.01765	-	3.06	2.82	2	2	7
2	0.0204	-	0.10516	-	16.06	15.57	12	12	36
3	0.01971	-	0.07786	-	11.95	11.54	10	10	30
4	0.02069	35.78	-	-	15.88	32.23	10	10	30

14.6 Modello geologico-tecnico sottostazione

Per la sottostazione, posizionato nella zona orientale dell'area di progetto, è possibile far riferimento ai parametri desunti dalla prova penetrometrica SV634_P6 e dalla Tomografia sismica EE'.

Strato	profondità	Peso unità di volume	k1x	k1y	k1z	Angolo di attrito
	[m da p.c.]	[N/cmc]	[N/cmc]	[N/cmc]	[N/cmc]	[°]
Argille e depositi fini sciolti o poco addensati	0 – 0.5	0.01648	15	15	45	0
Sabbie e ghiaie addensate	0.5 – 3.0	0.01853	25	25	75	32 - 34

Strato	profondità	Coesione non drenata	Coesione efficacie	Modulo edometrico	Modulo elastico
	[m da p.c.]	[N/mmq]	[N/mmq]	[N/mmq]	[N/mmq]
Argille e depositi fini sciolti o poco addensati	0 – 0.5	0.02295	-	3.93	17.67
Sabbie e ghiaie addensate	0.5 – 3.0	-	-	28.97	66.86

15. Cenni sulla sismicità dell'area

Per definire l'azione sismica di progetto si dovrebbe valutare l'effetto della risposta sismica locale mediante specifiche analisi da condurre in sito. In assenza di tali analisi comunque, per la definizione dell'azione sismica si può fare riferimento ad un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III) e sulle condizioni topografiche. Nell'ambito del presente studio per definire l'azione simica di progetto è stato utilizzato l'approccio semplificato, utilizzando la categoria di sottosuolo di fondazione desunta dalla prova sperimentale MASW eseguita nell'area di studio e utilizzando i parametri sismici definiti dai dati pubblicati sul sito dell'Istituto Nazionale di Geofisica e Vulcanologia (INGV, http://esse1.mi.ingv.it/).

15.1 Classificazione sismica

In base alla classificazione sismica dei comuni italiani di cui all'ordinanza n.3274 del 20 marzo 2003 (allegato 1 - Allegato A) il comune di Ascoli Satriano viene classificato come Zona 2.

15.2 Categoria di sottosuolo e condizioni topografiche (D.M. 17/01/2018)

Ai fini della definizione dell'azione sismica di progetto, in assenza della valutazione della risposta sismica locale sulla base di analisi specifiche è possibile fare riferimento ad una metodologia semplificata basata sulle categorie di sottosuolo di riferimento (Tabella 3.2.IV del D.M. 17/01/2018) e sulle categorie topografiche (Tabella 3.2.IV del D.M. 17/01/2018).

15.2.1 Categoria di sottosuolo di riferimento

Per la determinazione della categoria di sottosuolo di fondazione sono stati considerati i risultati delle indagini sismiche realizzate nei siti di progetto. Pertanto, sulla base delle risultanze delle indagini sismiche considerate, poichè il substrato sismico non risulta affiorante e presente nei primi 30 metri di profondità dal p.c., è possibile affermare che il profilo stratigrafico del suolo di fondazione delle opere in progetto ricada nella **categoria B**: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

15.2.2 Condizioni topografiche

In relazione all'andamento morfologico locale con inclinazione del pendio $i \le 15^{\circ}$ è possibile classificare il sito di interesse come categoria: T1 - superficie pianeggiante, pendii e rilievi isolati con inclinazione media $\le 15^{\circ}$.

15.3 Pericolosità sismica di Base

Le Nuove Norme Tecniche per le Costruzioni (NTC) D.M. 17.01.2018 introducono il concetto di pericolosità sismica di base in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

La "pericolosità sismica di base", nel seguito chiamata pericolosità sismica, costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche da applicare alle costruzioni e alle strutture connesse.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito dell'Istituto Nazionale di Geofisica e Vulcanologia (INGV, http://esse1.mi.ingv.it/).

Le NTC introducono il concetto di nodo di riferimento di un reticolo composto da 10751 punti in cui è stato suddiviso l'intero territorio italiano. Le stesse NTC forniscono, per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno T_r considerati nella pericolosità sismica, tre parametri:

- a_g = accelerazione orizzontale massima del terreno (espressa in g/10);
- F₀ = valore massimo del fattore di amplificazione dello spettro di accelerazione orizzontale;
- T*_C = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Da un punto di vista normativo pertanto, la pericolosità sismica di un sito non è sintetizzata più dall'unico parametro (a_g), ma dipende dalla posizione rispetto ai nodi della maglia elementare del reticolo di riferimento contenente il punto in esame, dalla Vita Nominale e dalla Classe d'uso dell'opera. I punti del reticolo di riferimento riportati nella Tabella A1 delle NTC hanno un passo di circa 10 km e sono definiti in termini di Latitudine e Longitudine.

La rappresentazione grafica dello studio di pericolosità sismica di base dell'INGV, da cui è stata tratta la Tabella A1 delle NTC, è caratterizzata da una mappa di pericolosità Sismica del Territorio Nazionale, espressa in termini di accelerazione massima del suolo rigido (in g) in funzione della probabilità di eccedenza nel periodo di riferimento considerato.

Nella tabella seguente, per i vari Stati Limite, sono indicati i valori dei parametri a_g , F_0 e T^*_C , calcolati come media dei valori dei nodi della griglia di riferimento, utilizzando il foglio di calcolo pubblicato nel sito del Ministero Lavori Pubblici, per una costruzione di Classe d'uso II e Vita Nominale ≥ 50 anni.

Latitudine Longitudine Stato *T**c[s] T_R (anni) a_g [g] F₀[-] limite (ED 50) (ED 50) SLO 41.141698 15.665991 30 0.047 2.468 0.289 41.141698 SLD 15.665991 50 0,062 2.521 0.302 41.141698 15.665991 SLV 475 0.197 2.449 0.403

975

0.278

2.377

0.415

SLC

Tabella: Parametri spettrali: Classe d'uso II - V_N ≥ 50 anni

15.4 Accelerazione massima attesa in superficie

15.665991

In assenza di analisi specifiche della risposta sismica locale è possibile valutare l'accelerazione massima attesa al sito mediante la relazione:

$$a_{max} = S_S \cdot S_T \cdot a_g$$

in cui

Ss, è il coefficiente che tiene conto dell'effetto dell'amplificazione stratigrafica;

S_T, è il coefficiente che tiene conto dell'effetto dell'amplificazione topografica;

ag è l'accelerazione orizzontale massima su suolo di categoria A,

nel caso in esame, potrà essere assunto:

41.141698

 S_S (Amplificazione stratigrafica) = 1.20 (SLO) – 1.20 (SLD) – 1.20 (SLV) – 1.14 (SLC);

C_c (Coeff. Funzione categoria) = 1.41 (SLO) - 1.40 (SLD) - 1.32 (SLV) - 1.31 (SLC).

 $S_T = 1.00$ (categoria topografica T1);

 $a_g = 0.047 g (SLO) - 0.062 g (SLD) - 0.197 g (SLV) - 0.278 g (SLC).$

Sulla base dei dati sopra riportati risulta pertanto che A_{max} in funzione degli SL varia nella seguente maniera:

- A_{max} (SLO) = $S_S \cdot S_T \cdot a_g = 1.20 \cdot 1.41 \cdot 0.047 g = 0.557 m/s²;$
- A_{max} (SLD) = $S_S \cdot S_T \cdot a_g = 1.20 \cdot 1.40 \cdot 0.062 g = 0.731 m/s²;$
- A_{max} (SLV) = $S_S \cdot S_T \cdot a_g = 1.20 \cdot 1.32 \cdot 0.197 g =$ **2.234 m/s^2**;
- A_{max} (SLC) = $S_S \cdot S_T \cdot a_g = 1.14 \cdot 1.31 \cdot 0.278 g = 3.112 m/s^2$.

I coefficienti sismici inoltre, sono riportati nella seguente tabella:

	Kh [-]	Kv [-]	β[-]
SLO	0,011	0,006	0,200
SLD	0,015	0,007	0,200
SLV	0,057	0,028	0,240
SLC	0.089	0.044	0.280

Dove Kh e Kv sono i coefficienti sismici orizzontale e verticale desunti dalle seguenti relazioni:

 $\mathsf{Kh} = \beta \cdot \mathsf{A}_{\mathsf{max}}/\mathsf{g};$

 $Kv = 0.5 \cdot Kh$.

16. Considerazioni conclusive

I risultati delle indagini compiute durante i sopralluoghi effettuati direttamente sul campo, le osservazioni delle immagini satellitari della zona e i dati bibliografici consultati permettono di delineare il seguente sintetico quadro geologico, geomorfologico, idrogeologico, geologico-tecnico e sismico.

L'analisi compiuta ed illustrata nei precedenti paragrafi permette di ricostruire con discreto dettaglio il modello geologicotecnico generale dei terreni interessati dall'installazione dei pannelli fotovoltaici e la realizzazione delle opere connesse e delle infrastrutture indispensabili alla sua costruzione e funzionalità.

Tutta la zona infatti, risulta essere caratterizzata da una stessa tematica deposizionale, caratterizzata da unità litotecniche che dall'alto verso il basso, pur evidenziando arealmente differenze nello spessore ed eteropie laterali che si traducono in anisotropie litotecniche, sono così organizzate.

Unità A – costituita da sedimenti argillosi, limosi e sabbie fini in genere sciolti e poco consistenti che raggiungono una profondità compresa tra 0.5 e 1.5/2.0 m dal p.c.;

Unità B – costituita da sabbie, sabbie limose e limi sabbiosi a cui si intercalano lenti ghiaiose e che tendenzialmente raggiungono una profondità fino anche a 10 metri dal p.c.

In corrispondenza di tutte le unità inoltre, l'andamento ondulato delle velocità sismiche permette di ipotizzare la presenza di variazioni granulometriche e di coesione che implicano la presenza di anisotropie laterali di facies litologiche e litotecniche.

Lo stesso modello litostratigrafico è presente in corrispondenza della sottostazione di servizio e lungo il tracciato dell'elettrodotto, opera che si svilupperà in sotterraneo a differenti profondità dal piano campagna in relazione agli attraversamenti. A favore di sicurezza infatti, l'elettrodotto sarà installato ad una profondità di circa 2 metri al di sotto degli alvei dei torrenti attraversati. Il piano di posa nelle zone non interessate da attraversamenti sarà posizionato invece a circa 1,0 metro dal piano campagna.

Dal punto di vista idrogeologico, l'unico acquifero presente è quello poroso superficiale la cui soggiacenza dal piano campagna risulta a circa 30 metri di profondità e quindi le fondazioni non dovrebbero essere influenzate dalle acque sotterranee. Si fa tuttavia presente la possibilità di rinvenimento di limitate e poco estese falde sospese presenti nelle sacche sabbiose e sostenute localmente da lenti impermeabili.

A seguito delle indagini sismiche effettuate inoltre, sono state riscontrate velocità delle Vs eg come di seguito indicato:

- AA' 36 m Vseq = 594.43 m/s;
- BB' 36 m Vseq = 520.82 m/s;
- CC' 36 m Vseq = 499.80 m/s;
- DD' 36 m Vseq = 434.53 m/s;
- EE' 24 m Vseq = 494.33 m/s;

Pertanto è possibile definire quanto segue:

- il suolo di fondazione è attribuibile alla **categoria B** (O.P.C.M. n.3274/del 20.03.2003, Norme Tecniche sulle Costruzioni del 17/01/2018), sia per la zona del campo fotovoltaico che per quella della sottostazione.

Da tali considerazioni è possibile affermare che non sussistono specifici problemi per la realizzazione dell'opera in progetto e delle opere connesse. Particolare cura comunque, dovrà essere rivolta durante i lavori di captazione e smaltimento delle acque sia piovane che, eventualmente, di falda, al fine di evitare infiltrazioni e ristagni idrici al livello e al di sotto dei piani fondali, con conseguente scadimento delle caratteristiche geotecniche dei terreni di fondazione. Si consiglia inoltre di comunicare al sottoscritto l'inizio dei lavori di posa delle fondazioni, al fine di poter fornire eventuali integrazioni, chiarimenti e suggerimenti tecnici per variazioni progettuali da adottare in corso d'opera, richiesti da possibili imprevisti geologici.

Alberobello, 02.12.2022

Dott. Geol. Giuseppe Gigante

geologo

DOCUMENTAZIONE FOTOGRAFICA INDAGINI

STENDIMENTO SISMICO AA' - 36 m

STENDIMENTO SISMICO BB' - 36 m

STENDIMENTO SISMICO CC' - 36 m

STENDIMENTO SISMICO DD' - 36 m

STENDIMENTO SISMICO EE' - 24 m

