

COMUNE DI ASCOLI SATRIANO

PROGETTO DEFINITIVO

PROGETTO AGRIVOLTAICO -

IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE RINNOVABILE DI TIPO FOTOVOLTAICO INTEGRATO DA PROGETTO DI RIQUALIFICAZIONE AGRICOLA

Committente:

Green Genius Italy Utility 6 srl

Corso Giuseppe Garibaldi, 49 20121 Milano (MI)

StudioTECNICO Ing. Marco G Balzano

Via Cancello Rotto, 3 70125 BARI | Italy +39 331.6794367

www.ingbalzano.com

Spazio Riservato agli Enti:

REV	DATA	ESEGUITO	VERIFICA	APPROV	DESCRIZ
R0	02/12/2022	Geol. Gigante	Geol. De Giorgio	MBG	Prima Emissione

Numero Commessa:

SV634

Data Elaborato:

02/12/2022

Revisione:

R₀

Titolo Elaborato:

Relazione Idrogeologica

Progettista:

ing.MarcoG.Balzano

Ordine degli Ingegneri della Provincia di Bari n.9341 Professionista Antincendio Elenco Ministero degli Interni BA09341101837 Consulente Tecnico d'Ufficio (CTU) Tribunale Bari

Elaborato:

V.13

Sommario

1.	PREMESSA	. 2
2.	UBICAZIONE DELL'AREA	. 3
3.	INQUADRAMENTO GEOLOGICO GENERALE DELL'AREA DI STUDIO	. 3
4.	GEOMORFOLOGIA ED IDROGRAFIA DEL TERRITORIO	. 7
5.	CARATTERISTICHE IDROGEOLOGICHE GENERALI	. 9
6.	CARATTERISTICHE IDROGEOLOGICHE SITO SPECIFICHE	11
7.	INTERFERENZA CON IL PIANO DI TUTELA DELLE ACQUE	11
8.	CONSIDERAZIONI CONCLUSIVE	15

1. Premessa

La presente relazione idrogeologica, redatta dal sottoscritto dott. Geol. Giuseppe Gigante a seguito dell'incarico conferito alla Geomonitek Srl dallo STUDIO TECNICO Ing. Marco Balzano integra la documentazione a corredo del *Progetto per la Realizzazione di impianto fotovoltaico Utility Scale* da realizzare su lotto posizionato nel territorio comunale di Ascoli Satriano, provincia di Foggia, su cui verranno installati pannelli fotovoltaici e denominato "SV634 – Agro PV Piscitelli". L'iniziativa nello specifico, prevede la realizzazione di un impianto di produzione di energia elettrica da fonte rinnovabile di tipo fotovoltaico integrato da progetto di riqualificazione agricola.

Lo studio è stato esteso oltre al sito su cui saranno installati i pannelli fotovoltaici anche alle aree interessate dalla realizzazione delle opere connesse e delle infrastrutture indispensabili alla perfetta funzionalizzazione dell'impianto su indicato, ossia l'elettrodotto di collegamento e la sottostazione di servizio.

A tal riguardo il presente documento fornisce uno studio idrogeologico del sito oggetto di studio e delle aree circostanti, al fine di delineare i lineamenti idrogeologici dei luoghi con l'intento ultimo di definire il *Modello Idrogeologico del Sottosuolo* di riferimento.

Verranno esaminate le caratteristiche geolitologiche del suolo e degli strati del sottosuolo al fine di valutare gli aspetti idrogeologici dell'area di progetto, e focalizzando l'attenzione in particolare sui punti di seguito elencati:

- Caratteristiche di permeabilità dei litotipi presenti nel sottosuolo;
- caratteristiche della falda idrica sotterranea;
- vulnerabilità dell'acquifero.

Per una ottimale definizione del Modello Idrogeologico del Sottosuolo lo studio è stato focalizzato sull'individuazione e definizione degli aspetti principali dell'ambito territoriale in esame quali: la sequenza litostratigrafia, l'assetto strutturale e geomorfologico dell'ammasso roccioso nel suo complesso, l'idrografia superficiale, i caratteri idrogeologici.

In relazione alla finalità dello studio quindi, le attività sono state articolate sviluppando il seguente programma:

- analisi della bibliografia esistente;
- analisi del Piano di Tutela delle Acque della Regione Puglia.

2. Ubicazione dell'area

L'area interessata dall'opera è situata nel territorio comunale di Ascoli Satriano (Fg), nell'area interna del Tavoliere delle Puglie.

Nelle seguenti immagini si riporta la cartografia di riferimento con ubicazione dell'area interessata dalle opere:

- Stralcio della Carta Topografica d'Italia IGMI: F°175 III NE "Canestrello": fonte: www.pcn.minambiente.it (fig.1);
- Immagine satellitare anno 2016; fonte: www.sit.puglia.it (fig.2);
- Stralcio CTR della Regione Puglia: fonte: www.sit.puglia.it (fig.3).

Inoltre il sito ricade nel Foglio 175 "Cerignola" della Carta Geologica d'Italia alla scala 1:100.000.

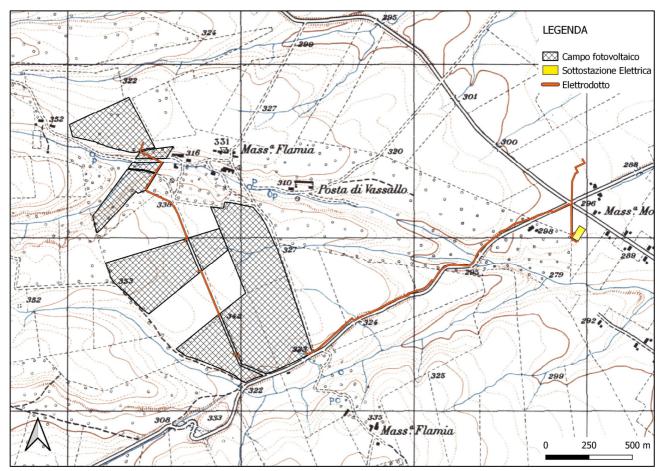


Figura 1 - Stralcio delle Tavolette IGMI F°175 I SO "Borgo Libertà" e F°175 II NO "San Carlo". Fonte: www.pcn.minambiente.it.

Figura 2 - Ubicazione del sito su Immagine satellitare del 2015. Fonte: www.sit.puglia.it

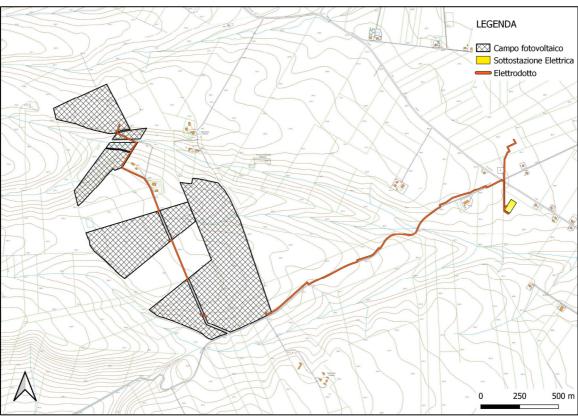


Figura 3 - Ubicazione del sito su CTR della Regione Puglia. Fonte: www.sit.puglia.it

3. Inquadramento geologico generale dell'area di studio

L'area in esame risulta inserita nella piana del Tavoliere delle Puglia, unità geografica appartenente al dominio geostrutturale dell'avanfossa bradanica, e costituita da depositi silicoclastici di riempimento di età pliocenica e infrapleistocenica e da depositi marini e alluvionali delle coperture medio-supra pleistoceniche e oloceniche della piana. Tali depositi, rinvenuti nel sottosuolo nel corso delle numerose perforazioni eseguite per la ricerca di idrocarburi, sono il prodotto dell'intensa attività sedimentaria, tipica di un bacino subsidente, che ha interessato l'Avanfossa appenninica a partire dal Pliocene inferiore. Si tratta di argille indicate con il generico termine di "Argille grigio azzurre" per via del loro colore tipico che, nella parte più superficiale, tende al giallastro a causa dei fenomeni di alterazione. All'interno della successione argillosa, sono presenti, a diverse altezze stratigrafiche, interstrati sabbiosi formanti corpi lenticolari di modesto spessore. La deposizione di guesta unità litologica ha avuto inizio nel Pliocene e si è conclusa nel Pleistocene Superiore, ed il suo spessore risulta particolarmente elevato spingendosi fino a raggiunge diverse centinaia di metri. Al di sopra dell'unità delle Argille grigio azzurre si rinvengono i depositi Quaternari che vanno a costituire un'estesa copertura in grado di raggiungere o superare le decine di metri in potenza e sono rappresentati da un'alternanza lenticolare di sedimenti alluvionali ghiaiosi, sabbiosi e argillosi, in parte limosi, di facies continentale che si incrociano e anastomizzano di frequente. Questi rappresentano il risultato dei numerosi episodi deposizionali che hanno interessato il Tavoliere. Le alluvioni del Tavoliere contengono, nella parte più superficiale, una crosta evaporitica di natura calcarea, il cui spessore può raggiungere anche gli 8 o 10 metri e la cui genesi sarebbe riconducibile al fenomeno della risalita capillare e al clima fortemente arido che in passato ha caratterizzato l'area. Verso la costa, affiorano i depositi palustri e di colmata olocenici, costituiti essenzialmente da limi. Il quadro stratigrafico si completa con i depositi costieri, anch'essi dell'Olocene, costituiti da sabbie e ghiaie formanti una stretta spiaggia delimitata verso terra da cordoni dunari.

L'area oggetto di studio ricade, come detto in precedenza, nella zona meridionale del Tavoliere, in corrispondenza della zona centrale del Foglio 175 "Cerignola", area caratterizzata dalla presenza di sedimenti silicoclastici la cui locale successione stratigrafica, desunta dall'analisi bibliografica e dalla lettura della Carta geologica di riferimento, risulta così costituita:

QC₁ – Conglomerati poligenici con ciottoli di medie e grandi dimensioni a volte fortemente cementati e con intercalazioni di sabbie e arenarie;

PQs - Sabbie e sabbie argillose con livelli arenaici di colore giallastro e lenti ciottolose fossilifere;

PQa - Argille e argille marnose grigio-azzurrognole, localmente sabbiose microfossilifere.

Le prime due unità, QC_1 e PQ_S , risultano affioranti in contatto eteropico, e poggiano in contatto erosivo con la sottostante unità PQ_a , localmente non affiorante.

Il campo fotovoltaico, l'elettrodotto e la sottostazione insistono per la maggior parte della loro estensione sui depositi conglomeratici QC₁ e solo il cavidotto interessa i depositi PQ_S in alcune zone corrispondenti a quelle di attraversamento dei reticoli idrografici.

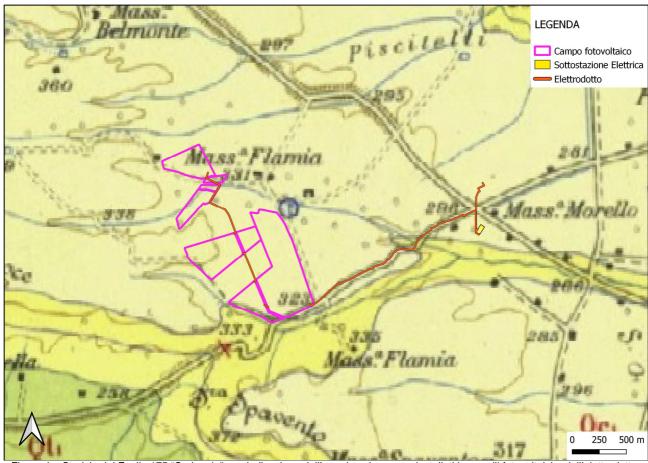


Figura 4 – Stralcio del Foglio 175 "Cerignola" con indicazione dell'area in cui saranno installati i pannelli fotovoltaici e dell'elettrodotto Fonte: www.isprambiente.gov.it

4. Geomorfologia ed idrografia del territorio

I caratteri morfologici e idrografici del sito di studio sono quelli tipici del Tavoliere delle Puglie, caratterizzato da una serie di superfici pianeggianti, più o meno estese, interrotte dai principali corsi d'acqua e da locali canali e/o marane a deflusso spiccatamente stagionale. In tali aree l'evoluzione dei caratteri morfologici è stata evidentemente condizionata dalla natura del substrato geologico presente; gli affioramenti topograficamente più elevati, in corrispondenza dei quali spesso sorgono i centri urbani, sono caratterizzati dalla presenza di una litologia più resistente all'azione modellatrice degli agenti esogeni, al contrario le aree più depresse sono la testimonianza di una litologia meno competente e quindi più facilmente modellabile. Nel complesso l'area di progetto non è interessata dalla presenza di fenomeni erosivi in senso lato ne è soggetta a rapida evoluzione e rimodellamento morfologico (inteso esclusivamente in termini di agenti esogeni naturali), in quanto questo si esercita in forma marginale ed attenuata e del tutto trascurabile ai fini degli interventi previsti.

Il sito dove saranno installati i pannelli fotovoltaici è dislocato su più lotti posizionati lungo un pendio degradante con pendenze non molto elevate verso la zona orientale ed è solcato da impluvi di basso rango gerarchico le cui direttrici sono rivolte verso est. Le pendenze non molto elevate.

Il tracciato dell'elettrodotto invece interesserà quasi esclusivamente i depositi sabbioso-conglomeratici QC₁ e nell'ultimo tratto attraverserà l'alveo di un reticolo idrografico.

In quest'area l'idrografia superficiale presenta un regime tipicamente torrentizio, caratterizzato da lunghi periodi di magra interrotti da piene in occasione di eventi meteorici particolarmente intensi.

Per quanto attiene il reticolo idrografico inoltre, dall'analisi delle perimetrazioni del PAI Puglia presenti e visionabili sul sito dell'Autorità di Distretto dell'Appennino Meridionale è possibile osservare quanto segue.

Nessuna delle aree di progetto è interessata da zone a pericolosità idraulica PAI, ma il campo fotovoltaico ed il cavidotto sono interessati dal reticolo idrografico IGM per il quale è stato realizzato uno studio di compatibilità idraulica al fine di delineare i tratti in TOC per il superamento dell'alveo.

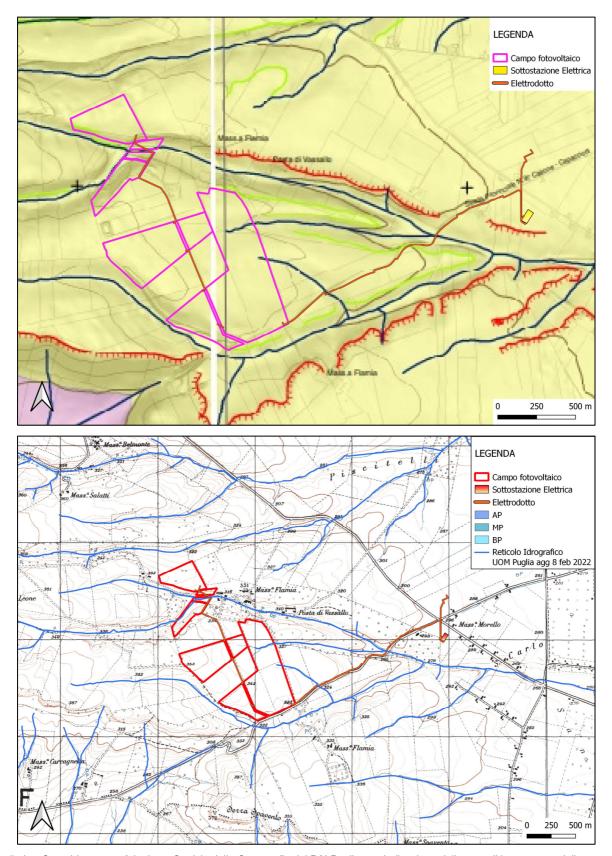
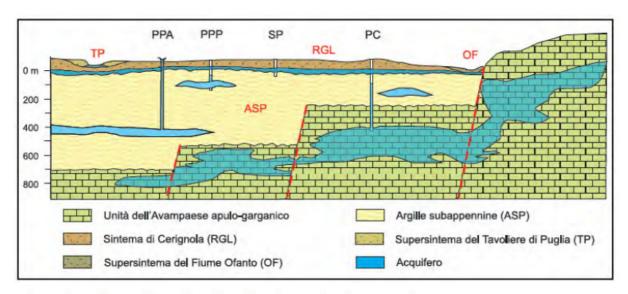


Fig. 5a,b – Carta idrogeomorfologica e Stralcio della Cartografia del PAI Puglia con indicazione delle aree di intervento e delle strutture connesse redatte dall'Autorità di Distretto dell'Appennino Meridionale


5. Caratteristiche idrogeologiche generali

Le unità acquifere principali presenti nell'area del Tavoliere (MAGGIORE ed alii, 1996; 2004), settore geostrutturale in cui è posizionata l'area di progetto, sono quelle che caratterizzano la seguente successione, dal basso verso l'alto:

- acquifero fessurato-carsico profondo;
- · acquifero poroso profondo;
- · acquifero poroso superficiale.

Acquifero fessurato carsico profondo

L'unità più profonda trova sede nelle rocce calcaree del substrato prepliocenico dell'Avanfossa appenninica ed è in continuità (nel settore sud-orientale) con la falda carsica murgiana. Dato il tipo di acquifero, la circolazione idrica sotterranea è condizionata in maniera significativa sia dalle numerose faglie che dislocano le unità sepolte della Piattaforma Apula che dallo stato di fratturazione e carsificazione della roccia calcarea (GRASSI & TADOLINI, 1992). Nel Foglio "Cerignola" la possibilità di utilizzo di questa risorsa idrica è limitata alle zone dove le unità calcaree si trovano a profondità inferiori a qualche centinaio di metri, in pratica in prossimità del bordo ofantino del Tavoliere (MAGGIORE et alii, 1996; 2004). In prossimità del bordo ofantino l'acquifero fessurato-carsico profondo è alimentato dalle acque del sottosuolo murgiano (GRASSI et alii, 1986), come è anche dimostrato sulla base di dati idrochimici (MAGGIORE et alii, 2004).

Schema idrogeologico del Tavoliere di Puglia adattato al Foglio Cerignola. Legenda:

PC = acquifero fessurato-carsico profondo PPA = acquifero poroso profondo artesiano PPP = acquifero poroso profondo in pressione SP = acquifero poroso superficiale

Acquifero poroso profondo

L'acquifero poroso profondo si rinviene nei livelli sabbioso-limosi e, in minor misura, ghiaiosi, presenti a diverse altezze nella successione argillosa pliopleistocenica (MAGGIORE et alii, 2004). Al momento sono ancora poco note la distribuzione spaziale e la geometria di guesti corpi idrici, nonché le loro modalità di alimentazione e di deflusso (COTECCHIA et alii, 1995; MAGGIORE et alii, 1996; 2004). I livelli acquiferi sono costituiti da corpi discontinui di forma lenticolare, localizzati a profondità variabili tra i 150 m e i 500 m dal piano campagna ed il loro spessore non supera le poche decine di metri. Nelle lenti più profonde, si rinvengono acque connate, associate a idrocarburi, che si caratterizzano per i valori piuttosto elevati della temperatura (22-26°C) e per la ricorrente presenza di idrogeno solforato (MAGGIORE et alii, 1996; 2004). La falda è ovunque in pressione e presenta quasi sempre caratteri di artesianità. La produttività dei livelli idrici, pur essendo variabile da luogo a luogo, risulta sempre molto bassa con portate di pochi litri al secondo. In genere, la produttività tende a diminuire rapidamente a partire dall'inizio dell'esercizio del pozzo facendo registrare, in alcuni casi, il completo esaurimento della falda. Ciò dimostra che tali livelli possono costituire soltanto delle limitate fonti di approvvigionamento idrico, essendo la ricarica molto lenta (COTECCHIA et alii, 1995). I tracciati geochimici relativi dalle analisi condotte da MAGGIORE et alii (1996) per le acque circolanti in questo acquifero, pur evidenziando una notevole variabilità composizionale, mostrano una generale prevalenza dello ione sodio e dello ione bicarbonato mentre calcio, cloruri e solfati sono presenti in concentrazioni più basse. Questo porta a definire la facies idrochimica di queste acque come bicarbonato-sodica. Altra caratteristica è rappresentata dalla bassa salinità totale (<0.6 g/l), che tende tuttavia ad aumentare in prossimità del mare, e dalla prevalenza dello ione sodio sullo ione cloruro e sullo ione calcio. Infatti, i rispettivi rapporti caratteristici assumono valori di gran lunga superiori all'unità che, pur ammettendo un contributo da parte delle acque marine, risulta spiegabile solo ipotizzando un fenomeno di interazione tra gli ioni in soluzione e la matrice porosa dell'acquifero. Trattandosi, guindi, di acque con elevati valori di sodio, il loro utilizzo in agricoltura è fortemente sconsigliato soprattutto in presenza di terreni limo-argillosi, affioranti prevalentemente nella parte bassa del Tavoliere (MAGGIORE et alii, 2004).

Acquifero poroso superficiale

L'acquifero poroso superficiale si rinviene nei depositi quaternari che ricoprono con notevole continuità laterale le formazioni argillose pleistoceniche. Le stratigrafie dei numerosi pozzi per acqua evidenziano l'esistenza di una successione di terreni sabbioso-ghiaioso-ciottolosi, permeabili ed acquiferi, intercalati da livelli limo-argillosi, a luoghi sabbiosi, a minore permeabilità. I diversi livelli in cui l'acqua fluisce costituiscono orizzonti idraulicamente interconnessi, dando luogo ad un unico sistema acquifero. In linea generale, i sedimenti a granulometria grossolana che prevalgono nelle aree più interne svolgono il ruolo di acquifero, mentre, procedendo verso la costa, si fanno più frequenti ed aumentano di spessore le intercalazioni limoso-sabbiose meno permeabili che svolgono il ruolo di acquitardo. Ne risulta, quindi, che l'acqua circola in condizioni freatiche nelle aree più interne ed in pressione man mano che ci si avvicina alla linea di costa (COTECCHIA, 1956; MAGGIORE et alii, 2004). Anche la potenzialità reale della falda, essendo strettamente legata a fattori di ordine morfologico e stratigrafico, varia sensibilmente da zona a zona. Le acque, infatti, tendono ad accumularsi preferenzialmente dove il tetto delle argille forma dei veri e propri impluvi o laddove lo spessore dei terreni permeabili è maggiore e dove la loro natura è prevalentemente ghiaiosa (CALDARA & PENNETTA, 1993a). Circa le modalità di alimentazione della falda superficiale, un contributo importante proviene dalle precipitazioni. Oltre che dalle acque di infiltrazione, diversi Autori ritengono che al ravvenamento della falda superficiale contribuiscano anche i corsi d'acqua che attraversano aree il cui substrato è permeabile (ZORZI & REINA, 1956; COLACICCO, 1953; COTECCHIA, 1956; MAGGIORE et alii, 1996).

6. Caratteristiche idrogeologiche sito specifiche

Dal punto di vista idrogeologico, l'area di studio è interessata dalla presenza dell'acquifero poroso superficiale del Tavoliere, la cui falda è ospitata nei depositi quaternari di copertura di questa unità fisiografica.

Detti depositi, il cui spessore aumenta procedendo da SE verso NW, ospitano una estesa falda idrica generalmente frazionata su più livelli. Le stratigrafie dei numerosi pozzi per acqua realizzati in zona, evidenziano infatti l'esistenza di una successione di terreni sabbioso-ghiaioso, permeabili ed acquiferi, intercalati a livelli limo-argillosi a minore permeabilità, con ruolo di acquitardi.

La base della circolazione idrica è rappresentata dalle argille grigio-azzurre (argille subappennine) la cui profondità di rinvenimento risulta progressivamente maggiore procedendo da SE verso NW. I diversi livelli in cui l'acqua fluisce non costituiscono orizzonti separati ma idraulicamente interconnessi, dando luogo ad un unico sistema acquifero.

L'acqua si rinviene in condizioni di falda libera nei livelli idrici più superficiali e in pressione in quelli più profondi. A tale sistema acquifero, nel suo complesso, si dà il nome di falda superficiale del Tavoliere.

Trattandosi di un acquifero eterogeneo, sia in termini di spessore che di granulometria, la potenzialità, come pure la trasmissività idraulica, variano sensibilmente da zona a zona. L'andamento delle isopieze, ricostruite sulla base dei dati raccolti in un recente monitoraggio, mostra una generale corrispondenza con la topografia: le quote piezometriche, infatti, tendono a diminuire procedendo da SO verso NE consentendo di definire una direttrice di deflusso preferenziale in tal senso. Per le considerazioni su menzionate e per le caratteristiche dei litotipi che insistono nell'area oggetto di studio, questi ultimi rientrano nell'"*Acquifero poroso superficiale*".

Nell'area di interesse, attualmente, sulla base delle indicazioni e delle cartografie redatte per il PTA. Il Piano di Tutela delle Acque, la superficie piezometrica della falda acquifera, in stato di quiete, è compreso tra 200 m slm e 250 m slm (Fig.7).

In corrispondenza del sito di progetto, la falda, sulla base delle informazioni desunte da alcuni pozzi per il prelievo idrico presenti nel database dell'ISPRA, è posizionata a circa 30 metri di profondità dal piano campagna, e pertanto non dovrebbe interessare le strutture di fondazione su cui saranno installati i tracker dei pannelli fotovoltaici.

Tuttavia è possibile il rinvenimento di acquiferi sospesi sostenuti alla base da orizzonti a permeabilità bassa, a profondità inferiori dal piano campagna, a cui si dovrà prestare attenzione in fase di installazione dei moduli fotovoltaici.

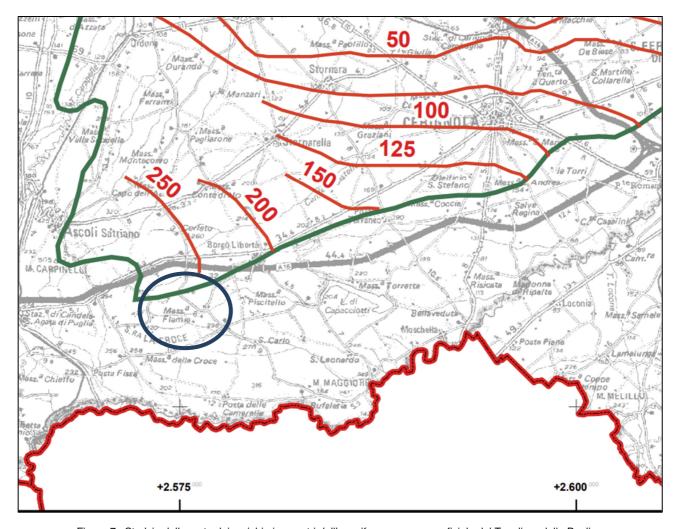


Figura 7– Stralcio della carta dei carichi piezometri dell'acquifero poroso superficiale del Tavoliere delle Puglia. (Fonte: Piano di Tutela delle Acque della Regione Puglia)

7. Interferenza con il piano di tutela delle acque

La Regione Puglia, con Delibera nº 230 del 20/10/2009, ha adottato il Piano di Tutela delle Acque ai sensi dell'articolo 121 del Decreto legislativo n. 152/2006, strumento finalizzato al raggiungimento degli obiettivi di qualità dei corpi idrici e, più in generale, alla protezione dell'intero sistema idrico superficiale e sotterraneo.

Con tale Piano vengono adottate alcune misure di salvaguardia distinte in:

- 1. Misure di Tutela quali-quantitativa dei corpi idrici sotterranei;
- 2. Misure di salvaguardia per le zone di protezione speciale idrogeologica;
- 3. Misure integrative (area di rispetto del canale principale dell'Acquedotto Pugliese).

Si tratta di prescrizioni a carattere immediatamente vincolanti per le Amministrazioni, per gli Enti Pubblici, nonché per i soggetti privati. Inoltre, il perseguimento dell'obiettivo di Tutela quali-quantitativa dei corpi idrici, ha portato all'individuazione di particolari perimetrazioni a Protezione Speciale Idrogeologica, il cui obiettivo è quello di ridurre, mitigare e regolamentare le attività antropiche che si svolgono o che si potranno svolgere in tali aree.

Con riferimento alle cartografie allegate al Piano, l'area di progetto non ricade in nessuna delle aree sottoposte a tutela (Fig.8).

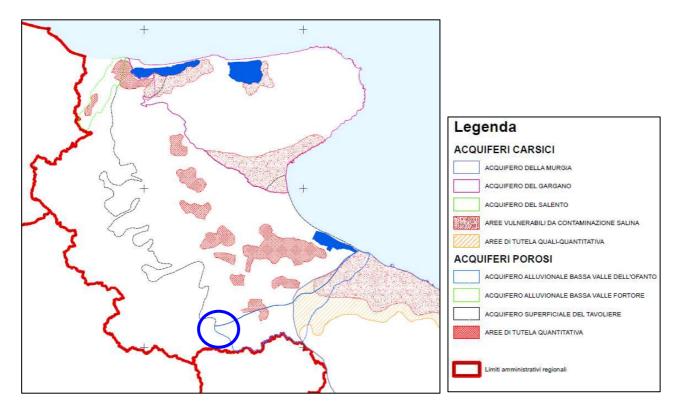


Fig.8 - Aree di tutela quantitativa (stralcio della Tav.8 -- Aree di vincolo d'uso degli acquiferi del Tavoliere, alla scala 1:300.000, del Piano di Tutela della Regione Puglia).

Per quanto attiene la vulnerabilità dell'acquifero poroso superficiale, per l'area di studio in Fig.9 è riportato uno stralcio della Tav.8.5 del Piano di Tutela della Regione Puglia, dal titolo: Vulnerabilità intrinseca acquifero superficiale del tavoliere - unità idrogeologiche del Tavoliere, Gargano, Murgia e Salento (scala 1:300.000). Tale cartografia è una sintesi, espressa in termini quantitativi, di una serie di carte tematiche che illustrano i fondamentali caratteri idrogeologici del territorio; tale carta offre uno scenario statico che mostra una certa variabilità nella suscettibilità specifica dei sistemi acquiferi ad ingerire e diffondere un inquinante idroveicolato, tale da produrre impatto sulla qualità delle acque sotterranee, che varia nello spazio e nel tempo.

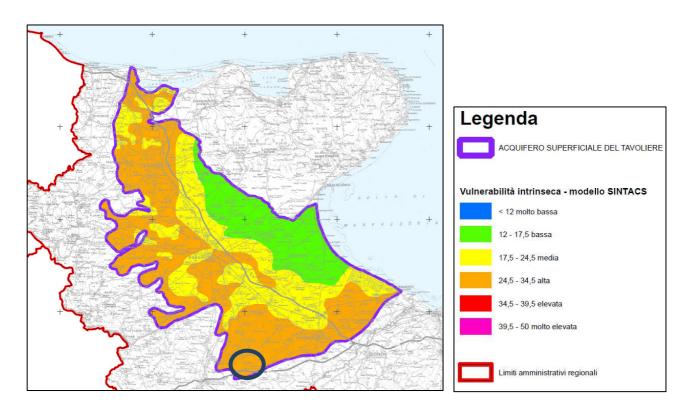


Fig.9 - Vulnerabilità intrinseca dell'area di studio. (stralcio della Tav.8.5 - Vulnerabilità intrinseca acquifero superficiale del tavoliere unità idrogeologiche del Gargano, Murgia e Salento, alla scala 1:300.000, del Piano di Tutela della Regione Puglia).

Da tale cartografia si rileva che l'area in esame ricade nella classe di **Vulnerabilità alta**, ciò è ascrivibile alle caratteristiche geologiche ed idrogeologiche del territorio del Tavoliere in generale che espongono l'acquifero superficiale ad un rischio potenziale d'inquinamento alto.

Ciò detto rilevando nel sito oggetto di studio una Vulnerabilità Intrinseca alta dell'Acquifero Superficiale, tenuto conto che la quota di attestazione della falda idrica dal piano campagna è mediamente di 30 m e considerato che al momento della redazione della presente non si individuano centri di pericolo nei terreni oggetto di studio che possano influire negativamente sulla qualità delle acque sotterranee, si ritiene che non debbano essere adottate misure specifiche per preservare lo stato qualitativo se non quelle già indicate dalle normative vigenti.

8. Considerazioni conclusive

L'analisi geologica, geomorfologica ed idrogeologica condotta per il presente studio ha permesso di delineare i lineamenti idrogeologici dell'area interessata dalla realizzazione degli impianti fotovoltaici, caratterizzata dalla presenza di una falda freatica che circola a pelo libero con cadenti piezometriche piuttosto basse verso l'attuale linea di costa, ospitata nei depositi sabbioso-ghiaiosi e sabbioso-limosi, le cui anisotropie tessiturali sia verticali che laterali si riflettono in anisotropi gradi di permeabilità relativa che variano da medio-basso nei terreni con frazione granulometrica più fine, a medio-elevato in quelli a granulometria grossolana.

Questa falda è sostenuta alla base dalla formazione delle argille subappennine, impermeabili, che hanno quindi il ruolo di acquicludo e si spingono fino a notevoli profondità dal piano campagna. Il tetto delle argille, in corrispondenza del sito di progetto, si attesta a circa 60 metri di profondità dal piano campagna.

I livelli idrici di questa falda risultano estremamente variabili nel corso dell'anno idrogeologico, maggiori ovviamente nel corso del periodo tardo autunnale e primaverile e che tendono quasi ad esaurirsi nel periodo estivo, a causa della concomitante azione della diminuzione delle precipitazioni meteoriche che insistono sul bacino idrografico e dei maggiori prelievi delle acque dai numerosi pozzi a scopo irriguo presenti nell'area.

Nell'area di interesse, attualmente, la superficie piezometrica della falda acquifera, in stato di quiete, è pari a 200-250 m m s.l.m., anche se pozzi limitrofi hanno indicato la presenza di livelli idrici ad una profondità dal p.c. di 30 metri.

Localizzati e limitati arealmente possono essere presenti acquiferi sospesi confinati in terreni a maggiore permeabilità e sostenuti alla base da livelli impermeabili che potrebbero interessare le fondazioni di progetto e pertanto risulta necessario porre particolare attenzione a quest'aspetto.

Alberobello, 02.12.2022

Dott. Geol. Giuseppe Gigante