

COMUNE DI ASCOLI SATRIANO

PROGETTO DEFINITIVO

PROGETTO AGRIVOLTAICO -

IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE RINNOVABILE DI TIPO FOTOVOLTAICO INTEGRATO DA PROGETTO DI RIQUALIFICAZIONE AGRICOLA

Committente:

Green Genius Italy Utility 6 srl

Corso Giuseppe Garibaldi, 49 20121 Milano (MI)

StudioTECNICO Ing. Marco G Balzano

Via Cancello Rotto, 3 70125 BARI | Italy +39 331.6794367

www.ingbalzano.com

Spazio Riservato agli Enti:

REV	DATA	ESEGUITO	VERIFICA	APPROV	DESCRIZ
R0	02/12/2022	Geol. Gigante	Geol. De Giorgio	MBG	Prima Emissione

Numero Commessa:

SV634

Data Elaborato:

02/12/2022

Revisione:

R₀

Titolo Elaborato:

Relazione Idraulica

Progettista:

ing.MarcoG.Balzano

Ordine degli Ingegneri della Provincia di Bari n.9341 Professionista Antincendio Elenco Ministero degli Interni BA09341101837 Consulente Tecnico d'Ufficio (CTU) Tribunale Bari

Elaborato:

Sommario

1. PREMESSA	2
2. UBICAZIONE DELL'AREA	3
3. ANALISI DEI DATI PLUVIOMETRICI	3
4. CALCOLO DELLE PORTATE	8
5. CONSIDERAZIONI CONCLUSIVE	10

1. Premessa

La presente relazione idraulica, redatta dal sottoscritto dott. Geol. Giuseppe GIGANTE su incarico di STUDIO TECNICO Ing. Marco Balzano, integra la documentazione a corredo del *Progetto per la Realizzazione di impianto fotovoltaico Utility Scale* da realizzare su lotto posizionato nel territorio di Ascoli Satriano, provincia di Foggia, su cui verranno installati pannelli fotovoltaici e denominato "SV634 – Agro PV Piscitelli".

L'iniziativa nello specifico, prevede la realizzazione di un impianto di produzione di energia elettrica da fonte rinnovabile di tipo fotovoltaico integrato da progetto di riqualificazione agricola.

Il sito in cui saranno installati i pannelli fotovoltaici in particolare, è dislocato in 8 lotti di estensione e forma differente e per lo studio idraulico sono stati accorpati alcuni di essi al fine di determinare la portata di massima piena attesa per il dimensionamento delle eventuali opere di regimazione idraulica che potrebbero essere necessarie nella fase di progettazione esecutiva.

Si fa comunque presente che il terreno su cui saranno posizionati i pannelli non subirà alcun tipo di trasformazione ad eccezione delle zone perimetrali, dove saranno realizzate stradine interne di percorrenza mediante azioni di compattazione del terreno esistente e saranno posizionati ai lati di tali stradine delle piantumazioni arboree.

Sarà quindi preservata l'attuale conformazione plano altimetrica della superficie topografica e saranno conservati gli attuali coefficienti di permeabilità del suolo in quanto non sono previste opere di impermeabilizzazione delle superfici.

Nel presente documento saranno comunque calcolate e quantificate le portate delle acque meteoriche che insistono sul sito di progetto propedeutico alle eventuali opere di regimazione e canalizzazione delle stesse acque qualora se ne rendesse opportuna la realizzazione.

2. Ubicazione dell'area

L'area interessata dall'opera è situata nel territorio comunale di Ascoli Satriano (Fg), nell'area interna del Tavoliere delle Puglie.

Nelle seguenti immagini si riporta la cartografia di riferimento con ubicazione dell'area interessata dalle opere:

- Stralcio della Carta Topografica d'Italia IGMI: F°175 III NE "Canestrello": fonte: www.pcn.minambiente.it (fig.1);
- Immagine satellitare anno 2016; fonte: www.sit.puglia.it (fig.2);
- Stralcio CTR della Regione Puglia: fonte: www.sit.puglia.it (fig.3).

Inoltre il sito ricade nel Foglio 175 "Cerignola" della Carta Geologica d'Italia alla scala 1:100.000. Inoltre il sito ricade nel Foglio 175 "Cerignola" della Carta Geologica d'Italia alla scala 1:100.000.

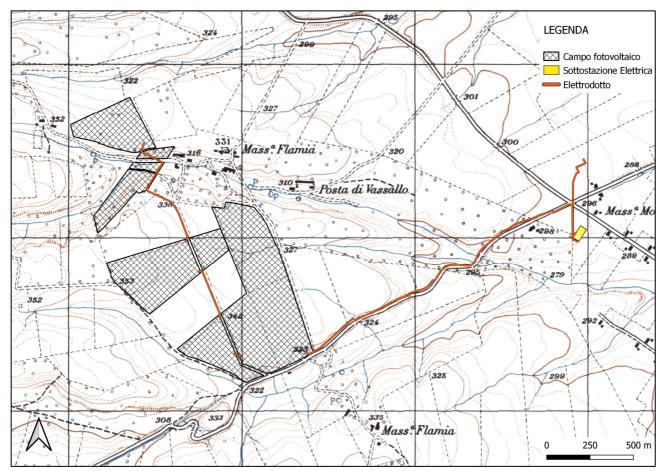


Figura 1 - Stralcio delle Tavolette IGMI F°175 I SO "Borgo Libertà" e F°175 II NO "San Carlo". Fonte: www.pcn.minambiente.it.

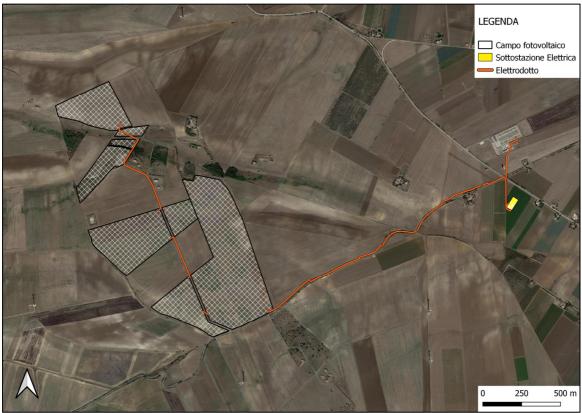


Figura 2 - Ubicazione del sito su Immagine satellitare del 2015. Fonte: www.sit.puglia.it

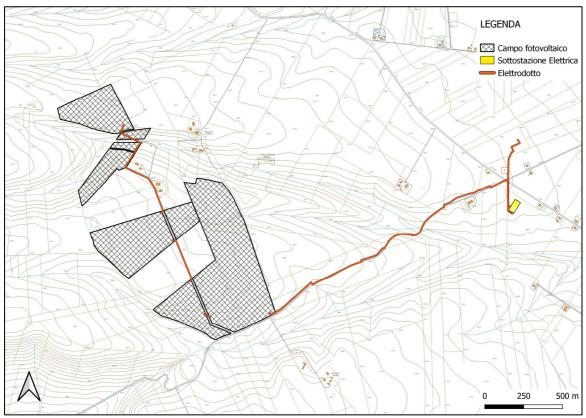


Figura 3 - Ubicazione del sito su CTR della Regione Puglia. Fonte: www.sit.puglia.it

3. Analisi dei dati pluviometrici

Per la determinazione delle altezze critiche di pioggia con il metodo di Gumbel si è provveduto alla individuazione delle altezze massime di pioggia per la durata di 1, 3, 6, 12 e 24 ore. I dati utilizzati per l'elaborazione della curva di probabilità pluviometrica, riportati in tabella 1, si riferiscono alla stazione termopluviometrica di Ascoli Satriano del Servizio Idrografico e Mareografico Italiano e riguardano gli anni di osservazione dal 1932 al 2000.

Tab.1 – Dati della stazione termopluviometrica di Ascoli Satriano.

	DURATA (h)							
Anno	1 3		6	12	24			
1929	>>	>>	47.8	61.0	96.2			
1932	19.2	19.2	20.0	26.0	45.0			
1933	14.0	14.4	24.8	33.3	116.6			
1934	20.8	44.4	70.0	92.0	110.6			
1941	35.0	35.0	35.0	35.0	46.0			
1951	38.4	50.2	53.4	55.8	57.4			
1952	20.0	30.6	32.2	40.4	62.2			
1953	29.0	39.6	39.8	39.8	59.2			
1954	17.2	22.4	35.2	41.4	66.6			
1955	34.8	42.8	54.0	80.4	131.0			
1956	37.6	48.8	55.2	56.2	70.6			
1957	16.8	19.2	30.0	37.4	53.6			
1958	9.0	16.2	20.0	33.6	37.4			
1959	18.2	29.8	29.8	45.0	55.6			
1960	16.2	22.4	30.2	31.4	32.8			
1961	23.4	30.0	36.2	36.2	42.0			
1962	23.0	30.2	30.2	30.2	31.2			
1963	42.6	45.4	45.4	59.8	73.2			
1964	39.6	40.2	41.8	41.8	45.8			
1966	31.8	31.8	31.8	40.8	41.0			
1967	31.0	36.6	37.8	38.0	39.4			
1968	18.6	21.0	24.2	24.8	30.0			
1969	17.2	21.6	28.6	40.0	41.8			
1970	43.4	43.8	45.8	61.0	70.0			
1971	19.6	23.6	30.0	54.4	65.6			
1972	53.4	57.6	66.6	70.4	91.6			
1973	30.0	60.3	70.0	13.0	73.2			
1974	24.4	26.4	32.2	44.2	52.4			
1975	>>	>>	39.2	57.2	65.0			
1976	41.0	42.6	42.6	>>	>>			
1977	10.6	21.2	23.8	24.4	27.4			
1978	19.0	30.6	35.4	44.0	44.8			
1979	30.4	31.4	31.4	33.2	62.4			
1980	23.8	26.8	33.6	42.2	50.6			
1981	20.8	20.8	20.8	25.0	29.0			
1983	26.0	49.6	65.6	90.2	109.8			
1984	24.0	27.4	28.6	49.8	54.2			

1985	11.4	23.6	43.6	61.8	75.4
1986	28.2	29.2	29.2	29.6	37.6
1987	66.0	69.8	69.8	69.8	69.8
1988	34.6	41.2	47.0	53.2	54.2
1990	16.0	35.0	58.0	75.4	89.8
1991	20.0	20.2	23.0	35.6	56.6
1992	34.4	34.4	34.4	43.8	47.0
1993	25.0	31.2	51.2	54.0	66.4
1994	30.0	30.0	30.0	31.6	34.6
1996	8.6	18.6	22.6	24.4	31.8
1997	>>	^	>>	33.6	46.8
1998	32.0	36.6	36.6	36.6	49.6
1999	14.0	19.2	24.6	44.8	59.0
2000	17.0	28.2	37.6	51.2	51.2

La determinazione della curva di possibilità climatica per l'area in esame è il passo successivo alla raccolta dei dati pluviometrici. Tale risultato scaturisce dalla distribuzione di probabilità per i campioni in esame, ossia le piogge massime annuali di durata pari a 1 h, 3 h, 6 h, 12 h e 24 h.

Tra tutte le distribuzioni di probabilità disponibili in letteratura è stata utilizzata quella relativa ai valori massimi di Gumbel.

Distribuzione di Gumbel

La distribuzione di probabilità di Gumbel è espessa dalla relazione:

 $P(h) = e^{w} \text{ (equazione 1)}$ dove $w = -e^{-\alpha(h-\beta)} \text{ (equazione 2)}$ dove $\alpha = 1,283/\sigma$ $\beta = \mu-0,450*\sigma$

essendo μ e σ rispettivamente media e scarto quadratico medio di ciascuna serie storica; per cui per ciascuna seria storica si ha:

Durata	1 h	3 h	6 h	12 h	24 h
μ	26.2	32.7	38.5	45.5	59.0
σ	11.61543	12.24677	13.81355	17.11086	23.70837
α	0.110457	0.104762	0.09288	0.074982	0.054116
β	20.96192	27.22163	32.31752	37.79612	48.354

Dalla relazione

 $P(h) = (T_r - 1)/T_r$

dove T_r è definito tempo di ritorno e rappresenta il tempo ipotizzato nel progetto che deve intercorrere tra il verificarsi di due eventi sfavorevoli successivi, fissando un tempo di ritorno pari a 5 anni, come imposto dalla normativa vigente,

precisamente dall'art. 7, appendice A1 del Piano Direttore a stralcio del Piano di Tutela delle Acque della Regione Puglia (2009), è possibile conoscere P(h) = (5-1)/5 = 0.8

Noti questi dati, dalle equazioni 1 e 2 si ricava, in corrispondenza di ciascuna durata, l'altezza della pioggia massima che ha l'80% di probabilità di essere superata 1 volta ogni 5 anni.

Durata (h)	1	3	6	12	24
h (mm)	34.55006	41.54835	48.47711	57.81302	76.08892

La curva di possibilità pluviometrica è quella che interpola i dati precedenti, ed è descritta da una funzione del tipo:

 $\mathbf{h} = \mathbf{a} \mathbf{T}^{\mathbf{n}}$, dove a ed n sono i parametri caratteristici della curva.

Nel caso in esame quindi, il suo andamento è graficamente riportato nella figura 6 ed analiticamente è espresso dalla seguente funzione esponenziale:

$h (mm) = 29.761 t^{0.267}$

nella quale t rappresenta il tempo di pioggia in ore e h rappresenta la corrispondente altezza di pioggia che si verifica mediamente una volta ogni 5 anni.

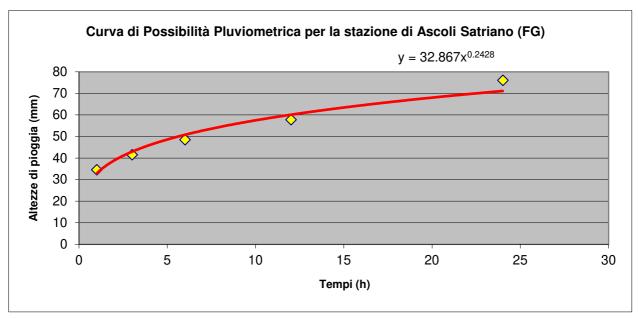


Figura 5 – Curva di possibilità pluviometrica con tempo di ritorno Tr =5 anni

4. Calcolo delle portate

La determinazione della portata di piena è stata effettuata utilizzando il metodo razionale sulla base delle caratteristiche del bacino e delle precipitazioni critiche.

Il modello presuppone che la massima portata si realizzi quando l'intera superficie del bacino contribuisce alla formazione della portata di piena, ovvero quando l'evento meteorico sia di durata pari almeno al tempo di corrivazione, per cui anche le particelle d'acqua cadute sulle parti più lontane dalla sezione di chiusura raggiungano quest'ultima.

Il metodo razionale si basa sulla seguente formula:

$$Q_P = 0.28 * C * i * A$$

dove:

Q_P: portata di progetto [m³/s];

C: coefficiente di deflusso [adim], di valore pari a "0,5" per superficie con permeabilità medio-elevata quale il terreno vegetale;

i : intensità di pioggia critica [mm/h]

A: superficie del bacino [kmq].

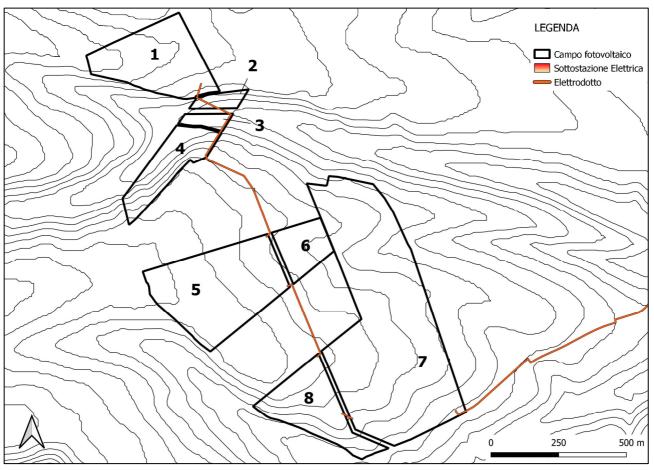
Il tempo di corrivazione tc del bacino è stato calcolato utilizzando la formula empirica di Giandotti.

$$Tc = \frac{\left(4 \cdot \sqrt{S}\right) + \left(1, 5 \cdot L\right)}{\left(0, 8 \cdot \sqrt{H_m - H_0}\right)}$$

Questo intervallo di tempo è quello teoricamente richiesto ad una goccia d'acqua per giungere dal punto idraulicamente più distante del bacino fino alla sezione di chiusura (rappresentata dalla singola caditoia con griglia) e dipende dalle caratteristiche morfologiche del bacino stesso.

Nel caso in esame l'intera area oggetto dell'intervento è stata suddivisa in quattro sottobacini ognuno dei quali è munito di griglia di captazione posta nella sezione di chiusura dello stesso sottobacino. Per ciascun sottobacino sono state calcolati il tempo di accesso alla rete di drenaggio (mediante la succitata formula empirica di Giandotti) e quindi l'intensità di pioggia critica.

I suddetti valori di intensità sono stati poi presi in considerazione nel calcolo della portata delle acque meteoriche che insistono sulle aree di progetto.


La seguente tabella riporta i valori ottenuti:

Il coefficiente di afflusso utilizzato è C=0.35 in quanto si tratta di terreni con medio grado di permeabilità.

Per ogni singolo lotto, sono state quindi calcolate tutte le caratteristiche fisiche per il calcolo della portata.

La suddivisione dei lotti è riportata nell'immagine seguente, mentre il calcolo delle portate nella tabella associata.

Lotto	Superficie (Km²)	T _c (h)	i (mm/h)	h (t _a) (mm)	Lunghezza considerata (km)	dislivello (m)	Q _p (m ³ /s)
1	0.088752	1.145553	29.65334	33.96949	0.483	12	0.257916
2	0.00995	1.14263	29.71077	33.94842	0.145	5	0.028971
3	0.008513	1.807598	20.99339	37.94761	0.176	2	0.017514
4	0.04728	1.036354	31.99022	33.1532	0.380	11	0.148225
5	0.0828	1.004071	32.76605	32.89944	0.460	15	0.265877
6	0.031691	1.337213	26.37552	35.26968	0.180	5	0.081915
7	0.315578	1.536436	23.74277	36.47924	0.852	14	0.734284
8	0.068758	0.951744	34.12123	32.47467	0.400	15	0.229919

5. Considerazioni conclusive

Nella presente relazione idraulica è stata calcolata la portata di massima piena relativa all'area su cui saranno installati i pannelli fotovoltaici. Le portate calcolate nello specifico, si riferiscono ad ogni singolo lotto in cui si articola il campo fotovoltaico.

Nell'area di progetto saranno realizzate stradine interne lungo il perimetro, contornate da filari di piantumazioni arboree, mentre saranno completamente conservate le attuali configurazioni plano altimetriche presenti e non saranno apportate azioni per il miglioramento tecnico del terreno mediante costipazione meccanica.

Non si prevedono inoltre opere per la raccolta e l'incanalamento delle acque meteoriche che, saranno libere di fluire assecondando le attuali conformazioni fisiografiche del versante.

Qualora si rendesse necessario realizzare tali opere per la regimazione delle acque meteoriche, si dovranno utilizzare le portate calcolate nella presente relazione idraulica, calcolate in base ai metodi esposti nei paragrafi precedenti, per ogni singolo lotto.

Alberobello, 02.12.2022

Dott. Geol. Giuseppe Gigante