

COMUNI di SANTERAMO IN COLLE e ALTAMURA

Proponente	EMER	A s.r.l.				Bayl	Na r.e.
Prop	Largo Augus	sto n°3 - 20122 Milano (MI)		s		a al 100% da Bay Augusto n°3 - 20	
Coordinamento		GINEERING S.R.L. 025 Marina di Ginosa (TA) ngineering.it ngineering.it 74025 Marina di Ginosa (TA) P. IVA: 03228130732	Progettazione Civile - Elettrica	Ing. Ro Via Giuse Tel. +39	berto Montemur	- 74016 Massafra (TA	
Studio Ambientale e Paesaggistico		GINEERING S.R.L. D25 Marina di Ginosa (TA) Ingineering.it D4 LOW EMPRO Serione A Serione A	Studio Acustico	Ing. Da Via Arma Tel. +39	PIO GIORDAN niele Giordano niele Giordano 3333613637 tudioinggiordano@g	0 Bari (BA)	
Stutio Inciderza Ambientale Flora fauna ed ecosistema	TECNOVIA S. Piazza Fiera n.1 - 3910 Tel. 0471/282823 e-mail: info@tecnovia	00 Bolzano (BZ)	Studio Geologico-Geotecnico	Dott. G Via Naza Tel. +39	LOGIA TECNI eologo Francesc rio Sauro n.6 - 74013 3479831826 rancosozio@tiscali.it	Ginosa (TA)	ITALE
Progettazione Civile - Elettrica	MATE SYSTE Via Papa Pio XII n.8 - Tel. 080/5746758 e-mail: info@matesys	70020 Cassano delle Murge (BA)	Studio Idrologico-Idraulico	Dott. G Via Naza Tel. +39	OGIA TECNI eologo Francesc rio Sauro n.6 - 74013 3479831826 rancosozio@tiscali.it	Ginosa (TA)	ITALE
Studio Agranomico	Via Carlo Levi snc - 74 Tel. 099/8294585	NCESCO PIGNATARO 1013 Ginosa (TA) 1010 diopignataro@gmail.com	Progettazione Strutturale	Ing. Vit Via Pietro Tel. +39	PIO INGEGNE o Giovanni Dell'A o Micca n.21 - 74012 3280019436 g.dellaere@gmail.com	Aere 2 Crispiano (TA)	RDINE DEGL'INGEGNERI Illa Provincia di TARANTO tt. Ingl. Illustration Illust
Opera	a 44,01 MWp e Santeramo in 0	ealizzazione di un impianto per produzione d' er e potenza di immissione pari a 42,00 MW su t Colle ed Altamura (Zona Industriale "lesce") l'esercizio dell'impianto nel Comune di Matera.	racker a	ad inseg	uimento mond	oassiale (nord-s	ud) nei Comuni di
	Folder: Calcoli preliminar	ri delle strutture e degli impianti del progetto definitivo					Sez.
Oggetto	Nome Elaborato: G4KMY67 Calco	liPrelStrutture_rev01.pdf				Codice Elaborato:	
O	Descrizione Elaborato:	ri delle strutture del progetto definitivo e verifica					
01	Settembre 2021	Riscontro alla nota di integrazione dell'Ufficio Energia n.8721 del	06/08/202	1	V.G. Dell'Aere	R. Montemurro	Emera S.r.l.
00	Febbraio 2021	Emissione per progetto definitivo			V.G. Dell'Aere	R. Montemurro	Emera S.r.l.
Rev.	Data	Oggetto della revisione			Elaborazione	Verifica	Approvazione
Scala: Formati	o: A4	Codice Pratica: G4KMY67					

Sommario

1.	Dati generali e anagrafica	2
2.	Premessa	4
2.1	Presentazione del proponente del progetto	5
2.2	Scenario di riferimento	5
3.	Descrizione del progetto e inquadramento territoriale	7
3.1	Localizzazione e caratteristiche del sito	7
3.2	Descrizione sintetica del progetto	11
4.	Caratteristiche geometriche, funzionali e costruttive degli elementi strutturali	13
5.	Ipotesi di calcolo e normative di riferimento	21
6.	Calcoli statici	22
6	.1. Analisi dei carichi	22
6	.2. Carichi permanenti	23
6	.3. Carichi accidentali	23
	6.3.1. Azioni sismiche	23
	6.3.2. Carico neve	25
	6.3.3. Azioni del vento	27
	6.3.4. Azioni della temperatura	31
	6.3.5. Riassunto finale carichi accidentali	31
7.	Combinazione di carico	32
8.	Modellazione strutturale	33
9.	Output dei risultati	33
10.	Classificazione delle sezioni	34
11.	Conclusioni	35
12.	Allegati	35

1. Dati generali e anagrafica

Ubicazione impianto

oblicatione implante	
Nome Impianto	EMERA
Comune	Santeramo in Colle (BA)
	Altamura (BA)
CAP	70029 – Santeramo in Colle
	70022 - Altamura
Indirizzo	Zona Industriale "lesce"
Coordinate Geografiche (gradi decimali)	Lat. 40.748338° - Long. 16.667778°
CTR	Regione Puglia
Proponente	
Ragione Sociale	EMERA S.r.l.
Indirizzo	Largo Augusto n.3, 20122 Milano (MI)
P.IVA	11169110969
Terreni	
Destinazione urbanistica	Santeramo in Colle – Zone "D3" per attività industriali
	Altamura – Zone "D1" per attività industriali artigianali
Estensione area	Circa 69,8914 ha
Estensione area di progetto	Circa 62,0000 ha
Caratteristiche dell'impianto	
Potenza di picco complessiva DC	44010,00 kWp
Potenza AC complessiva richiesta in immissione	42000,00 kW
Potenza unitaria singolo modulo fotovoltaico	450 Wp
Numero di moduli fotovoltaici (tot)	97800
Numero di moduli per stringa	25
Numero di stringhe (tot)	3912
Numero di inverter	338
Numero di sottocampi	34
Numero di cabine di trasformazione	34
Potenza trasformatori BT/MT in resina	800-1000-1250-1600 kVA
Tipologia di strutture di sostegno	Ad inseguimento monoassiale
Posa delle strutture di sostegno	Direttamente infisse nel terreno
Layout impianto	
Interasse tra le strutture	4,12 m
Distanza di rispetto da confine	5,00 m

Staff e professionisti coinvolti	
Progetto a cura di	Solaris Engineering S.r.l.
Project Manager	Ing. Roberto Montemurro
Responsabile elaborato	Ing. Vito Giovanni Dell'Aere

2. Premessa

La presente relazione integra e sostituisce quanto già depositato in sede di presentazione di Provvedimento Autorizzativo Unico Regionale (P.A.U.R.) in data 05/03/2021, al fine di ottemperare alla richiesta di integrazione dell'Ufficio Energia Regione Puglia, nota prot. A00_159/2021.08.06 n.8712 ricevuta a mazzo PEC in data 09/08/2021.

In dettaglio, il punto 8) della sopracitata nota richiede di integrare la presente relazione con le seguenti informazioni:

Con riferimento ai "Calcoli preliminari di strutture e impianti del progetto definitivo", di cui al punto 4.2.11 della D.D. n. 1/2011, si chiede ad integrazione di trasmettere i calcoli di tutte le strutture in c.a. oggetto di progettazione.... Si fa presente che, in conformità all'art. 29 del D.P.R. 207/2010, i calcoli "devono consentire di determinare tutti gli elementi dimensionali, dimostrandone la piena compatibilità con l'aspetto architettonico e più in generale con tutti gli altri aspetti del progetto. I calcoli delle strutture comprendono i criteri di impostazione del calcolo, le azioni, i criteri di verifica e della definizione degli elementi strutturali principali che interferiscono con l'aspetto architettonico e con le altre categorie di opere". Inoltre, "i calcoli di dimensionamento e verifica delle strutture e degli impianti devono essere sviluppati ad un livello di definizione tale che nella successiva progettazione esecutiva non si abbiano significative differenze tecniche e di costo. Nel caso di calcoli elaborati con l'impiego di programmi informatizzati, la relazione di calcolo specifica le ipotesi adottate e fornisce indicazioni atte a consentirne la piena leggibilità".

Tali indicazioni sono riportate all'interno dei capitoli 4) 5) 6) e 7) di questa relazione, e nelle relazioni allegate che riportano i calcoli di progetto e verifica di tutte le strutture in cemento armato previste per le opere di impianto e di connessione. Per la connessione dell'impianto in progetto non sono richiesti ampliamenti in Stazione Elettrica RTN 380/150 kV denominata "Matera" in quanto sarà connesso, assieme ad altri impianti di altri proponenti, su uno stallo già esistente in SE "Matera".

La presente relazione è parte integrante della documentazione di progetto per l'autorizzazione mediante **Provvedimento Autorizzativo Unico Regionale** (P.A.U.R.), ai sensi dell'articolo 27 bis del Decreto Legislativo numero 152 del 2006, dell'impianto fotovoltaico denominato "EMERA".

L'area di interesse ricade all'interno di un sito *IBA (Important Bird Areas*), pertanto il provvedimento autorizzativo dovrà essere corredato da **Valutazione di Incidenza Ambientale** (V.Inc.A. o VINCA), ai sensi del D.P.R. n.357 del 1997, successivo D.P.R. n.120 del 2003 e D.M. Ambiente 25/03/2005, nonché della L.R. n.11/2001 così come modificata dalla L.R. n.17/2007, L.R. n.25/2007, L.R. n.40/2007, R.R. n.28 del 22 Dicembre 2008 e D.G.R. n.1362 del 24/07/2018.

Il progetto prevede la realizzazione di un impianto fotovoltaico per la produzione di energia elettrica da fonte solare, di potenza di picco nominale pari a 44.010,00 kWp da localizzarsi su terreni industriali nel Comune di Santeramo in Colle (BA), con destinazione urbanistica "Zone D1", e nel Comune di Altamura (BA),

con destinazione urbanistica "Zone D3". L'impianto immetterà energia elettrica in rete attraverso una connessione in Alta Tensione a 150 kV dalla Stazione Elettrica di Trasformazione 150/33 kV "Emera" sulla Sottostazione Elettrica RTN 380/150 kV "Matera – lesce" di proprietà di Terna S.p.A.

I moduli fotovoltaici saranno montati su inseguitori (o *trackers*) monoassiali da 50 e 75 moduli cadauno, che ottimizzeranno l'esposizione dei generatori solari permettendo di sfruttare al meglio la radiazione solare.

Si stima che l'impianto produrrà 79,10 GWh all'anno di elettricità, equivalenti al fabbisogno medio annuo di circa 27.060 famiglie di 4 persone, permettendo un risparmio di CO2 equivalente immessa in atmosfera pari a circa 42.004 tonnellate all'anno (fattore di emissione: 531 gCO2/kWh, fonte dati: Ministero dell'Ambiente).

2.1 Presentazione del proponente del progetto

La proponente **EMERA S.r.l.** nasce come società di scopo della controllante BAYWA R.E. ITALIA S.r.l., società del gruppo BAYWA R.E., operante nel settore delle energie rinnovabili da oltre 10 anni, con un portfolio progetti e impianti realizzati di diverse centinaia di megawatt dislocati in Italia e in diversi Paesi di tutto il mondo.

2.2 Scenario di riferimento

Le necessità sempre più pressanti legate a fabbisogni energetici in continuo aumento spingono il progresso quotidiano verso l'applicazione di tecnologie innovative, atte a sopperire alla domanda energetica in modo sostenibile, limitando l'impatto che deriva da queste ultime e richiedendo un uso consapevole del territorio. In quest'ottica, con il Decreto Legislativo 29 dicembre 2003, n. 387, il Parlamento Italiano ha proceduto all'attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità.

Il presente impianto in progetto è compreso tra le tipologie di intervento riportate nell'Allegato IV alla Parte II, comma 2 del D.Lgs. n. 152 del 3/4/2006 (cfr. 2c), "Impianti industriali non termici per la produzione di energia, vapore ed acqua calda con potenza complessiva superiore a 1 MW", pertanto rientra nelle categorie di opere da sottoporre a procedura di Valutazione di Impatto Ambientale, in conformità a quanto disposto dal Testo Unico Ambientale (T.U.A.) e alla D.G.R. 45/24 del 2017.

Premesso che la Valutazione di Impatto Ambientale, ai sensi del Dlgs. 152/2006, è il procedimento mediante il quale vengono preventivamente individuati gli effetti sull'ambiente di un progetto, il presente Studio, redatto ai sensi dell'art. 22 del Dlgs. 152 e s.m.i., e dell'Allegato VII del suddetto decreto, è volto ad analizzare l'impatto, ossia l'alterazione qualitativa e/o quantitativa, diretta e indiretta, a breve e a lungo termine, permanente e temporanea, singola e cumulativa, positiva e negativa dell'ambiente, che le opere, di cui alla procedura autorizzativa, potrebbero avere sulle diverse componenti ambientali.

L'ambiente, ai sensi del Dlgs 152, è inteso come sistema di relazioni fra i fattori antropici, naturalistici, chimico-fisici, climatici, paesaggistici, architettonici, culturali, agricoli ed economici.

Lo studio e la progettazione definitiva, di cui questo documento è parte integrande, è basato su una verifica oggettiva della compatibilità degli interventi a realizzarsi con le predette componenti, e intende verificare e studiare i prevedibili effetti che l'intervento potrà avere sull'ambiente e il suo habitat naturale.

Nello specifico degli "Impatti cumulativi", la normativa regionale fa riferimento invece al DGR n.2122 del 23/10/2012, dove vengono forniti gli *Indirizzi per l'integrazione procedimentale e per la valutazione degli impatti cumulativi di impianti di produzione di energia da fonti rinnovabili nella Valutazione di Impatto Ambientale*.

Con la nuova normativa introdotta dal d.lgs. 30 giugno 2016, n. 127 (legge Madia), la conferenza dei servizi si potrà svolgere in modalità "Sincrona" o "Asincrona", nei casi previsti dalla legge.

Nel 2008 inoltre l'Unione Europea ha varato il "Pacchetto Clima-Energia" (meglio conosciuto anche come "Pacchetto 20/20/20") che prevede obbiettivi climatici sostanziali per tutti i Paesi membri dell'Unione, tra cui l'Italia, a) di ridurre del 20% le emissioni di gas serra rispetto ai livelli registrati nel 1990, b) di ottenere almeno il 20% dell'energia consumata da fonti rinnovabili, e c) ridurre del 20% i consumi previsti. Questo obbiettivo è stato successivamente rimodulato e rafforzato per l'anno 2030, portando per quella data al 40% la percentuale di abbattimento delle emissioni di gas serra, al 27% la quota di consumi generati da rinnovabili e al 27% il taglio dei consumi elettrici.

L'Italia ha fatto propri questi impegni redigendo un "Piano Nazionale Integrato per l'Energia e per il Clima". Riguardo alle energie rinnovabili in particolare, l'Italia prevede arrivare al 2030 con un minimo di 55,4% di energia prodotta da fonti rinnovabili, promuovendo la realizzazione di nuovi impianti di produzione e il revamping o repowering di quelli esistenti per tenere il passo con le evoluzioni tecnologiche.

Con la realizzazione dell'impianto, si intende conseguire gli obbiettivi sopra esposti, aumentando la quota di energia prodotta da fonte rinnovabile senza emettere gas serra in atmosfera, con un significativo risparmio energetico mediante il ricorso alla fonte energetica rinnovabile rappresentata dal Sole.

Il ricorso a tale tecnologia nasce dall'esigenza di coniugare:

- la compatibilità con esigenze paesaggistiche e di tutela ambientale;
- nessun inquinamento acustico;
- il risparmio di combustibile fossile;
- la produzione di energia elettrica senza emissioni di sostanze inquinanti.

Il progetto mira pertanto a contribuire al soddisfacimento delle esigenze di "Energia Verde" e allo "Sviluppo Sostenibile" invocate dal Protocollo di Kyoto, dalla Conferenza sul clima e l'ambiente di Copenaghen 2009 e dalla Conferenza sul clima di Parigi del 2015.

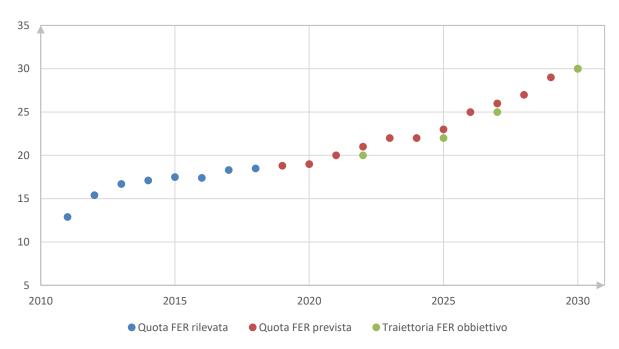


Tabella 1- Traiettoria della quota FER complessiva¹

Tra le politiche introdotte e necessarie per il raggiungimento degli obbiettivi prefissati, è stato dato incarico alle Regioni di individuare le aree idonee per la realizzazione di questi impianti, stabilendo criteri di priorità e di tutela del paesaggio e dell'ambiente.

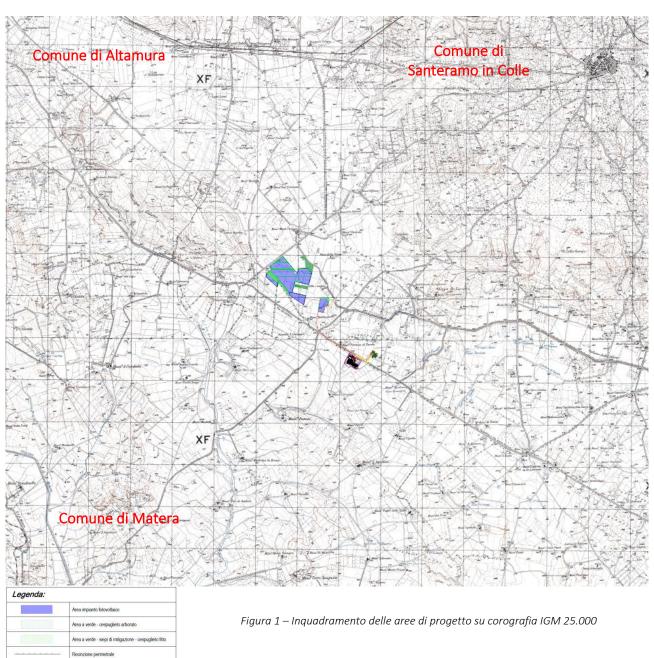
In conclusione, si evidenzia che in base all'art. 1 della legge 9 gennaio 1991 n. 10, l'intervento in progetto è opera di pubblico interesse e pubblica utilità "ex lege" ad ogni effetto e per ogni conseguenza, giuridica, economica, procedimentale, espropriativa, come anche definito dall'art. 12 del D.LGS. N. 387 del 29 dicembre 2003.

3. Descrizione del progetto e inquadramento territoriale

3.1 Localizzazione e caratteristiche del sito

L'area oggetto dell'intervento ricade nei Comuni di Santeramo in Colle e Altamura, in provincia di Bari, in località "lesce".

Tali aree sono classificate come "Zona D/3 – zone per attività industriali" (Santeramo in Colle) e "Zona D/1 – zone per attività artigianali" (Altamura); essenzialmente trattasi di aree di tipo industriale.


Geograficamente l'area è individuata alla Latitudine 40.747737° Nord e Longitudine 16.669562° Est; ha un'estensione di circa 69,89 ettari, di cui solamente 62,00 ettari circa saranno occupati dall'impianto. Le restanti aree, così come alcune aree interne al perimetro di impianto, saranno gestite "a verde", con la piantumazione di siepi, arbusti, alberi di tipo autoctono.

¹ Fonte: GSE, "Sviluppo e diffusione delle fonti rinnovabili di energia in Italia", Febbraio 2020

L'impianto sarà connesso alla rete di trasmissione nazionale (RTN) previo la realizzazione di una stazione elettrica di trasformazione AT/MT - 150/33 kV (SSE Utente) connessa mediante elettrodotto AT 150 kV alla stazione elettrica di trasformazione AAT/AT 380/150 kV "Matera – lesce" di proprietà e gestione Terna S.p.A. La SSE Utente e relative sbarre di parallelo AT, condivise con altri produttori, saranno posizionate su terreni agricoli prossimi alla SSE RTN.

Tutte le aree di progetto sono facilmente raggiungibili tramite viabilità pubblica. In particolare le aree di impianto sono raggiungibili percorrendo la strada provinciale SP160, o la SP236, nel Comune di Santeramo, e immettendosi sulla Contrada Matine di Santeramo prima, e sulla Contrada Baldassarre poi. Per raggiungere l'area più piccola di impianto sarà invece necessario realizzare una nuova strada su terreno agricolo che andrà a connettersi sempre sulla Contrada Matine di Santeramo.

La SSE Utente sarà invece raggiungibile mediante la realizzazione di nuova strada su terreno agricolo che andrà ad allacciarsi sulla strada provinciale SP140 sempre nel Comune di Santeramo in Colle.

Area impanto fotovoltaico
Area a verde - cespuglieto arborato
Area a verde - cespuglieto arborato
Area a verde - sespi di mitigazione - cespuglieto fitto
Recincione perimetrale
Liene di connessione MT 33 kV
Liene di connessione MT 33 kV
Liene di connessione MT 30 kV
Visibilità esterna area di impianto
Stazione Elettrica RTN 380150 kV Tema SpA - Matera
Area SSE Ulente AT/MT - Altri produttori
SSE Ulente AT/MT 150/33 kV - EMERA
Visibilità esterna area SSE Ulente e sbarre AT
Confine Comunale

Legenda:	
	Area impianto fotovoltaico
	Area a verde - cespuglieto arborato
	Area a verde - siepi di mitigazione - ceapuglieto fitto
	Cabina di parallelo in Media Tensione 33 kV
	Recinzione perimetrale
${}^{\smile}$	Cancello di accesso alle aree di impianto
	Linea di connessione MT 33 kV
	Linea di connessione AT 150 kV
	Viabilità esterna area di impianto
	Staziono Elettrica RTN 380/150 kV Tema SpA - Mater
15 Hear	Sharre di parallelo AT 150 kV
	Aree SSE Utente AT/MT - Altri produttori
10	SSE Utonto AT/MT 150/33 kV - EMERA
	Viabilità esterna area SSE Utente e sbarre AT

Figura 2 – Inquadramento delle aree di progetto su ortofoto

3.2 Descrizione sintetica del progetto

L'impianto fotovoltaico in progetto si estende su un'area di circa 62 ettari, con perimetro della zona di installazione coincidente con la recinzione di delimitazione, e distante mediamente 5 metri dal confine catastale.

Il generatore fotovoltaico si compone di 97.800 moduli fotovoltaici in silicio policristallino da 450 W di picco, connessi tra di loro in stringhe da 25 moduli per un totale di 3.912 stringhe e una potenza di picco installata pari a 44.010,00 kWp.

I moduli fotovoltaici sono posizionati su strutture ad inseguimento solare (trackers) di tipo "monoassiale", infisse direttamente nel terreno, con angolo di inclinazione pari a 0° e angolo di orientamento est-ovest variabile tra +50° e -50°. I trackers saranno multistringa, da 2 stringhe (50 moduli fotovoltaici) e da 3 stringhe (75 moduli fotovoltaici).

La conversione dell'energia da componente continua DC (generatore fotovoltaico) in componente alternata AC (tipicamente utilizzata dalle utenze e distribuita sulla rete elettrica nazionale) avviene per mezzo di convertitori AC/DC, comunemente chiamati "inverter": in impianto saranno posizionati n°338 inverter di stringa con potenza nominale in AC pari a 105,00 kW. Su ogni inverter saranno connesse 11 o 12 stringhe.

Gli inverter, in gruppi variabili da un minimo di 6 fino ad un massimo di 12 unità, saranno connessi sui quadri di parallelo in bassa tensione (800 V) delle cabine di trasformazione MT/bt - 33/0,8 kV.

Nell'area di impianto saranno disposte n.34 cabine di trasformazione MT/bt, di potenza nominale variabile (800 - 1000 - 1250 - 1600 kVA) a seconda del numero di inverter in ingresso. Le stesse saranno connesse in parallelo sul lato in media tensione a 33 kV a formare n.4 linee di connessione (2 linee MT prevederanno, ciascuna, il parallelo di n.9 cabine e le altre 2 linee MT, a testa, connetteranno in parallelo n.8 cabine).

Le n.4 linee in media tensione confluiranno nella Cabina di Parallelo in MT, dove si realizzerà la connessione in parallelo delle stesse, mediante quadri di protezione e distribuzione in media tensione, e partirà la linea di connessione dell'impianto alla Stazione Elettrica di Trasformazione Utente 150/33 kV. In quest'ultima, mediante un trasformatore AT/MT da 50 MVA, e specifici dispositivi di protezione e manovra, sia in media tensione che in alta tensione, l'impianto sarà connesso, in parallelo con altri produttori, alla Sottostazione Elettrica RTN di proprietà di Terna S.p.A. e quindi in parallelo con la rete elettrica nazionale, in cui verrà immessa una potenza stimata nominale di circa 42.000,00 kW.

Per il generatore fotovoltaico saranno previsti anche sistemi ausiliari di controllo e di sicurezza:

- Lungo il perimetro di impianto saranno posizionati, a distanza di 50 metri circa, pali di sostegno su cui verranno installate le cam di videosorveglianza e i fari per l'illuminazione di sicurezza.
 - I fari si accenderanno nelle ore notturne solamente in caso di allarme di antintrusione, o per motivi di sicurezza, e quindi azionati in modo automatico e anche da remoto dai responsabili del servizio vigilanza.
 - N.2 fari di illuminazione, uno per lato, saranno posizionati su ogni cabina di trasformazione, in modo da permettere l'illuminazione della viabilità interna.

Le cam saranno del tipo fisso, con illuminatore infrarosso integrato. Nei cambi di direzione del perimetro verranno anche installate delle "speed dome", che permetteranno una visualizzazione variabile delle zone di impianto in modo automatico, ma che potranno essere gestite anche in manuale a seconda delle necessità. Tutte le cam, a gruppi di 5 o 6 unità, saranno connesse su quadri di parallelo video, dove, date le considerevoli distanze delle connessioni, il segnale sarà convertito e trasmesso alla cabina di monitoraggio tramite dorsali in fibra ottica.

Le aree di impianto saranno delimitate da recinzione con rivestimento plastico, posata ad altezza di 20 cm dal suolo, e fissata su appositi paletti infissi nel terreno.

Sulle fasce perimetrali, così come in alcune aree interne dell'impianto, saranno piantumati arbusti e siepi autoctone, tali da permettere una mitigazione ambientale delle opere riducendone l'impatto visivo.

4. Caratteristiche geometriche, funzionali e costruttive degli elementi strutturali

I componenti strutturali impiegati nella realizzazione dell'impianto fotovoltaico e assoggettati a verifica strutturale sono:

a) Strutture di supporto dei moduli fotovoltaici:

Il "Modulo standard" utilizzato è costituito da una struttura in elevazione in acciaio del tipo "Tracker ad inseguimento solare monoassiale" infissa nel terreno per circa 1,5 - 2 mt.



Figura 3 – Sezione del tracker monoassiale

L'intera struttura è realizzata completamente in acciaio ed è caratterizzata da pilastri, posti ad un interasse di 6042 mm, 4028 mm per i tratti terminali, con due sbalzi di 1505 mm alle estremità e 3779 mm per i pilastri centrali ove vi è la presenza di un pilastro sul quale è posizionato il rotore.

Il pilastro centrale è costituito da Tubo esagonale SW 130x3,2 mm saldato, mentre tutti gli altri pilastri sono costituiti da elementi strutturali in acciaio del tipo S350GD+

Tutti i pilastri sono collegati tra di loro con Tubo esagonale SW 130x3,2 mm saldato in acciaio del tipo S350GD+.

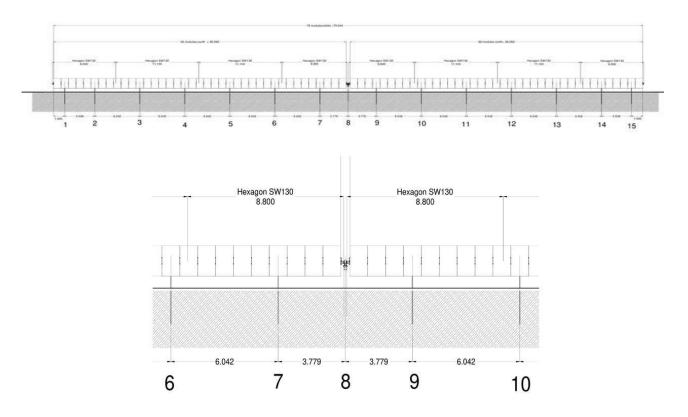


Figura 4 – Particolare longitudinale tracker monoassiale

b) Cabine elettriche monoblocco prefabbricate

Saranno utilizzate per i locali tecnici di progetto quali:

- Cabina elettrica generale di impianto

Lunghezza 11 mt., larghezza 2,5 mt e altezza fuori terra 2,5 mt, con vasca di fondazione monoblocco e predisposizione fori di passaggio cavi.

Figura 5 - Cabina elettrica monoblocco prefabbricata - Cabina elettrica generale di impianto

Tale manufatto sarà posizionato su platea di fondazione in cemento da 12,00 x 4,00 x 0,20 mt.

- Cabina elettrica di monitoraggio.

Lunghezza 6,74 mt., larghezza 2,5 mt e altezza fuori terra 2,80 mt, con vasca di fondazione monoblocco e predisposizione fori di passaggio cavi.

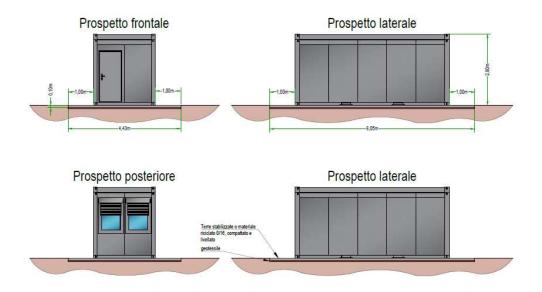


Figura 6 - Cabina elettrica monoblocco prefabbricata - Cabina elettrica di monitoraggio

Tale manufatto sarà posizionato su platea di fondazione in cemento da 7,50 x 4,00 x 0,20 mt.

c) Cabine elettriche di trasformazione MT/bt precablate

Sono cabine a struttura metallica con vasca di fondazione e predisposizione fori per il passaggio dei cavi in media e bassa tensione, nonché i cavi di segnale.

Hanno le dimensioni di 3,30 x 2,10 x h 2,65.

Figura 7 - Cabina elettrica di trasformazione – viste frontali

Figura 8 - Cabina elettrica di trasformazione - viste laterali

La platea di supporto delle cabine elettriche sarà realizzata sempre in cemento con dimensioni $4,30 \times 3,10 \times 0,20$.

d) Pali di sostegno sistemi perimetrali di sicurezza – illuminazione, antintrusione e TVCC

Sul perimetro di impianto saranno installati i sistemi di illuminazione notturna, antintrusione e videosorveglianza.

Sia i fari LED di illuminazione, che le CAM fisse e "Speed dome", che avranno la funzione di videocontrollo e antintrusione (mediante sistema *motion detection*), saranno installati su pali in acciaio zincato, del tipo conico o rastremato, con diametro superiore da 60 mm, altezza 3,00 metri e spessore di almeno 3 mm.

Tali pali saranno alloggiati all'interno di plinti porta palo prefabbricati, con foro di alloggio del palo, pozzetto e predisposizioni per il passaggio dei cavi e fessure per il drenaggio delle acque da pioggia.

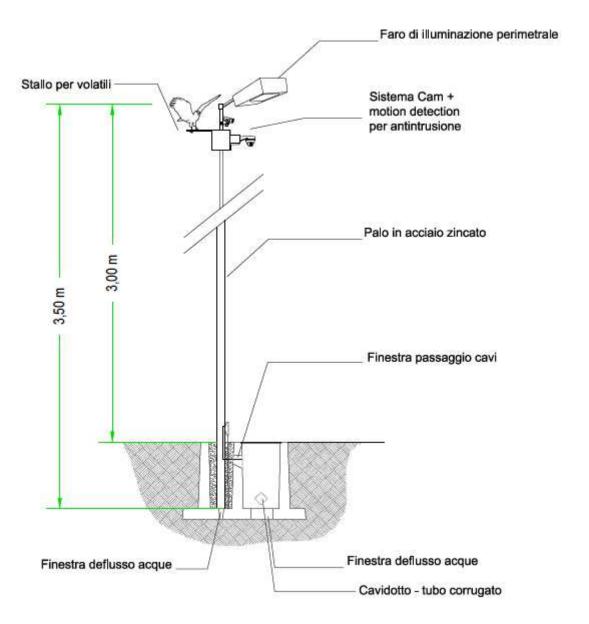


Figura 9 - particolare pali perimetrali di impianto

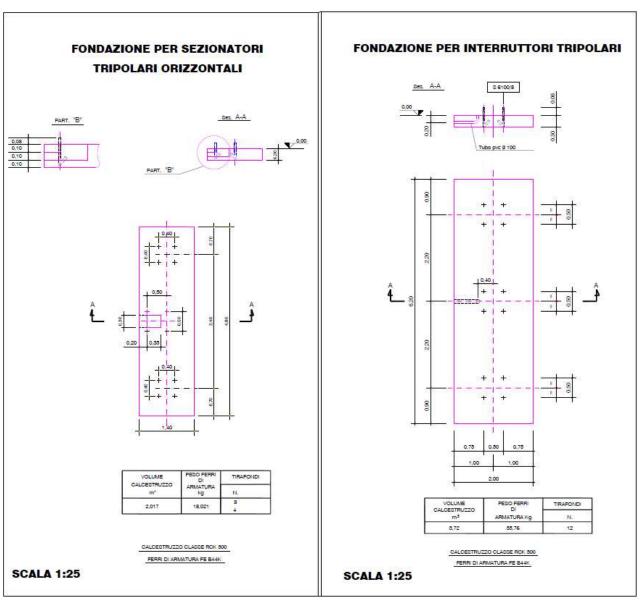
e) Recinzione perimetrale

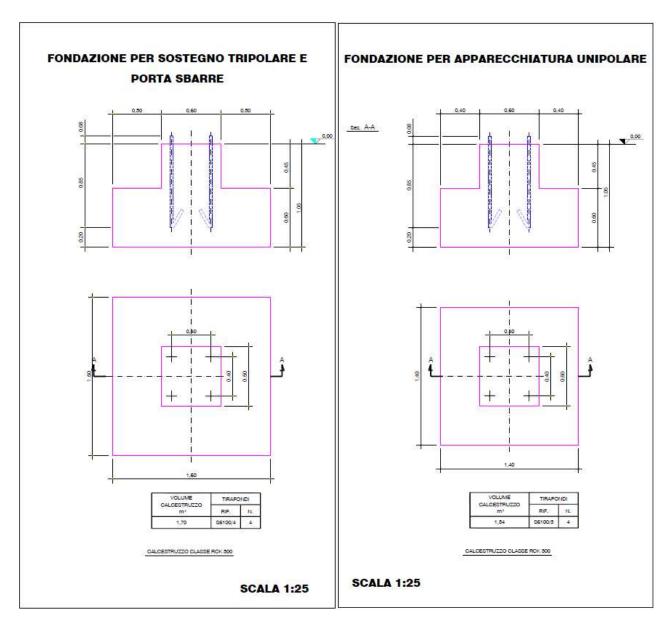
Sarà realizzata mediante rete metallica plastificata fissata su paletti in acciaio infissi direttamente nel terreno per una profondità di 0,50 metri.

L'altezza fuori terra della recinzione sarà di 2,00 metri e la stessa sarà sollevata rispetto al terreno si 0,20 metri per permettere il passaggio della fauna di piccole dimensioni.

La struttura sarà irrigidita per mezzo di tensori regolabili con cavi in acciaio.

Figura 10 - Recinzione perimetrale - dettaglio costruttivo


f) Elementi strutturali in Stazione Elettrica di Trasformazione Utente AT/MT e Stazione di Raccolta AT


In stazione elettrica di trasformazione AT/MT è prevista l'installazione di apparecchiatura elettromeccanica in alta e media tensione.

Tra i diversi dispositivi abbiamo:

- Colonnini di supporto portasbarre in alta tensione;
- Colonnini TA e TV;
- Interruttori e sezionatori tripolari;
- Trasformatore elevatore AT/MT 150/33 kV;
- Locali tecnici di sottostazione.

Per le apparecchiature sono previste diverse tipologie di fondazioni, come riportato nelle seguenti immagini:

I dettagli grafici delle fondazioni per trasformatore elevatore e locali tecnici di sottostazione sono riportati all'interno delle relazioni di calcolo allegate alla presente relazione.

5. Ipotesi di calcolo e normative di riferimento

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

K * u = F dove K = matrice di rigidezza

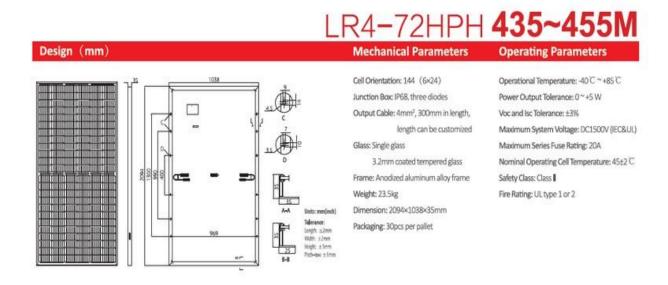
u = vettore spostamenti nodali

F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

La progettazione è stata effettuata facendo riferimento alle seguenti normative:


- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".
- 2. Circolare 21/01/19, n. 7 C.S.LL.PP "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni di cui al decreto ministeriale 17 gennaio 2018"
- 3. UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale.
- 4. UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- 5. UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-3: Azioni in generale Carichi da neve.

- 6. UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- 7. UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche.
- 8. UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- 9. UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.
- 10. UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- 11. UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- 12. UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 3: Valutazione e adeguamento degli edifici.
- 13. UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

6. Calcoli statici

6.1. Analisi dei carichi

Per determinare i carichi agenti sulla struttura si è fatto riferimento ai dati ottenuti dell'opera indicati in seguito e alle schede tecniche.

6.2. Carichi permanenti

Il peso del Pannello Fotovoltaico, inclusi gli elementi di montaggio è stimato in 24,00 daN/m²

6.3. Carichi accidentali

6.3.1. Azioni sismiche

Per la definizione del sisma si fa riferimento al paragrafo 3.2 Azione sismica del DM 17/01/2018 ed all'Allegato A alle Norme Tecniche per le Costruzioni: Pericolosità sismica ed all'Allegato B alle Norme Tecniche per le Costruzioni: Tabelle dei parametri che definiscono l'azione sismica del DM 14/01/2008 La struttura ricade nel Comune di Santeramo in Colle.

Le coordinate geografiche (Latitudine e Longitudine), utili per la definizione dell'azione sismica, sono pari a 40.7418 N e 16.6832 E.

Si è considerato un terreno di categoria B secondo la classificazione riportata dalla "Tabella 3.2.II – Categorie di sottosuolo" al "paragrafo 3.2.2 Categorie di sottosuolo e condizioni topografiche" del DM 17/01/2018 in base alle prescrizioni dell'indagine geologico-tecnica nell'area.

Si è considerata una categoria topografica T1 – Superficie pianeggiante, pendii e rilievi isolati con inclinazione i<15° secondo la classificazione riportata dalla "Tabella 3.2.IV – Categorie topografiche" al "paragrafo 3.2.2 Sulla base di tali informazioni di latitudine e longitudine, terreno e categoria topografica, si determinano gli spettri di risposta elastici secondo le seguenti formule:

• Componente orizzontale (paragrafo 3.2.3.2.1 Spettro di risposta elastico in accelerazione delle componenti orizzontali):

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

• Componente verticale (paragrafo 3.2.3.2.2 Spettro di risposta elastico in accelerazione della componente verticale)

$$\begin{split} 0 &\leq T < T_B & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$
 [3.2.8]

• Vita nominale

Così come previsto dalla tabella 2.4.I "Valori minimi della Vita nominale NV di progetto per i diversi tipi di costruzioni" riportata di seguito:

Tab. 2.4.I - Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	$egin{aligned} & V_{a}lori\ minimi\ & di\ V_{N}\ (anni) \end{aligned}$
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

si assume una vita nominale maggiore di 50 anni.

Classi d'uso

In accordo al paragrafo 2.4.2 "Classi d'uso" si associa a tale struttura una CLASSE I definita come:

"Costruzioni con presenza solo occasionale di persone, edifici agricoli".

Periodo di riferimento per l'azione sismica

Il periodo di riferimento $_RV$ è definita dalla relazione: $V_R = V_N * C_U$

dove il valore di C_u è definito in accordo alla **tabella 2.4.II** "Valore del coefficiente d'uso C_u " riportata di seguito:

Tab. 2.4.II - Valori del coefficiente d'uso Cu

CLASSE D'USO	I	П	Ш	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

In base alle assunzioni fatte e alle considerazioni fatte si ottiene che:

$$V_{anni.8} = 50*0.7 = 35$$
 anni

L'azione sismica è definita sotto forma di spettro di risposta. Per poter definire la forma spettrale, in funzione della probabilità di superamento del periodo di riferimento V_R , si devono determinare i seguenti parametri:

- a_q accelerazione orizzontale massima al sito;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_c periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Tali parametri sono tabellati a mezzo di coordinate geografiche nell' Allegato B alle Norme Tecniche per le Costruzioni: Tabelle dei parametri che definiscono l'azione sismica.

Per il Comune di Santeramo in Colle si ha che le coordinate geografiche, utili per la determinazione dei parametri sismici e per la determinazione dello spettro, sono le seguenti:

- Latitudine 40.7418 N
- Longitudine 16.6832 E

Quindi avendo fissato le coordinate geografiche, il periodo di riferimento per la costruzione si ottengono i periodi di ritorno per la determinazione dell'azione sismica per i vari stati limite così come definiti al paragrafo 3.2.1. Stati limite e relative probabilità di superamento del Decreto Ministeriale 17/01/2018 "Norme Tecniche per le Costruzioni" e secondo le indicazioni della tabella C.3.2.I – Valori di TR espressi in funzione di VR della Circolare Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7.

6.3.2. Carico neve

Il carico neve sulla copertura è stato valutato in osservanza di quanto prescritto dal **DM 17/01/2018 al punto 3.4** - **Azioni della neve** con la seguente espressione:

$$q_s = \mu_i * q_{sk} * C_E * C_t$$

dove:

q_s è il carico neve sulla copertura;

 μ_i è il coefficiente di forma della copertura;

q_{sk} è il valore di riferimento del carico neve al suolo;

CE è il coefficiente di esposizione;

Ct è il coefficiente termico

Il carico agisce in direzione verticale ed è riferito alla proiezione orizzontale della superficie della copertura.

In base alla zone di neve nelle quali è stata classificata il territorio nazionale, come si vede dalla figura 3.4.1

- Zone di carico neve del DM 17/01/2018

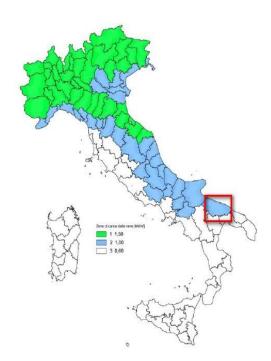


Fig. 3.4.1 - Zone di carico della neve

si riscontra che la struttura ricade in zona II, provincia di Bari.

Nota la quota sul livello del mare, circa 470 metri, si ottiene il carico neve al suolo dalla seguente relazione:

- Zona Neve = II
- Periodo di ritorno, Tr = 35 anni
- $q_{sk} = 0.85 [1 + (a_s/481)^2] kN/m^2 = 1.66 kN/m^2$

$$Ctr = [(1 - v (6^{1/2}/\pi) ln[-ln(1-1/Tr) + 0.57722]) / (1 + 2.5923v)] = 0.93$$

Il coefficiente di esposizione vento C_E , in funzione della tabella 3.4.I Valori di C_E per diverse classi di topografia del DM 14/01/2008, è pari a 0.9 assumendo che la topografia del terreno ove sorge l'opera possa essere definita "battuta dai venti".

Tab. 3.4.I - Valori di C_F per diverse classi di esposizione

Topografia	Descrizione	C _E
Battuta dai venti	Aree pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti	0,9
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

Il coefficiente termico C_t, in funzione del paragrafo 3.4.5. Coefficiente termico del DM 14/01/2008, è pari a 1. Per quanto riguarda il coefficiente di forma della copertura, trattandosi di una copertura piana inclinata, dal paragrafo 3.4.5.1 Coefficiente di forma per le coperture del DM 17/01/2018, si deduce che il valore del coefficiente di forma ② è determinato dalla tabella 3.4.Il Valori dei coefficienti di forma del DM 17/01/2018 ed è pari 0.27 in quanto l'angolo di inclinazione della copertura assunto è di 50°.

Tab. 3.4.II – Valori del coefficiente di forma

Coefficiente di forma $0^{\circ} \le \alpha \le 30^{\circ}$ $30^{\circ} < \alpha < 60^{\circ}$ $\alpha \ge 60^{\circ}$ $10^{\circ} = 10^{\circ}$ $10^{\circ} =$

Valore caratteristico del carico al suolo $Q_1 = q_{sk} C_e Ct = 140 daN/mq$

$$\mu_1 = 0.27 \implies Q_1 = 38 \text{ daN/mq}$$

6.3.3. Azioni del vento

Secondo quanto definito nella **tabella 3.3.1 Valori dei parametri** b,0 V , a a b l'opera in oggetto ricade nella **Zona 3 Puglia** con altitudine massima pari a 500 metri, per il calcolo del vento si utilizza la seguente formula:

$$p=q_b \cdot c_e \cdot c_p \cdot c_d$$

dove:

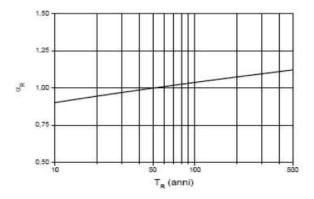
- q_b è la pressione cinetica di riferimento;
- c_e è il coefficiente di esposizione;
- c_p è il coefficiente di forma, funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento;
- c_d è il coefficiente dinamico, con cui si tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alle vibrazioni strutturali;

Velocità base della zona, Vb.o = 27 m/s (Tab. 3.3.I)

Altitudine base della zona, Ao = 500 m (Tab. 3.3.I)

Altitudine del sito, As = 470 m

Velocità di riferimento, Vb = 27,00 m/s (Vb = Vb.o per As ≤ Ao)


Periodo di ritorno, Tr = 35 anni

In funzione della classificazione dell'opera in termini di vita nominale e coefficienti d'uso definiti per il calcolo dell'azione sismica, si assume che il periodo di ritorno pari a: Tr = 35 anni

Secondo quanto prescritto al paragrafo C3.3.2 Circolare Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7- "Istruzioni per l'applicazione dell' «Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018" (Gazzetta Ufficiale 11/2/2019, n. 35 – Suppl. ord. n. 5)" si ottiene che la velocità di riferimento del vento per un generico periodo di ritorno è:

$$v_b(Tr) = \alpha_r \cdot v_b$$

 α_r è un coefficiente fornito dalla figura sottostante e dall'espressione

$$\alpha_R = 0.75 \sqrt{1 - 0.2 \cdot \ln \left[-\ln \left(1 - \frac{1}{T_R} \right) \right]}$$

Essendo il periodo di ritorno pari a 35 anni, α_r = 0.98 ed il valore della velocità di riferimento del vento $Cr = 0.75 \; (1 - 0.2 \; ln(-ln(1-1/Tr)))^{1/2} = 0.98$

Velocità riferita al periodo di ritorno di progetto, $Vr = V_b C_r = 26,47 \text{ m/s}$

Classe di rugosità del terreno: D

[Aree prive di ostacoli o con al di più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,..)]

Tab. 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione		
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m		
В	Aree urbane (non di classe A), suburbane, industriali e boschive		
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D		
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa)		
	c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)		

Categoria esposizione: (Entroterra fino a 500 m di altitudine) tipo II

(Kr = 0.19; Zo = 0.05 m; Zmin = 4 m)

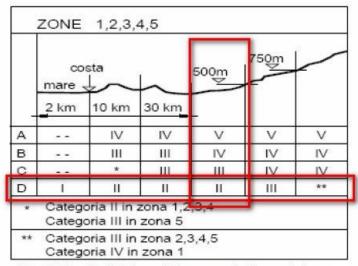


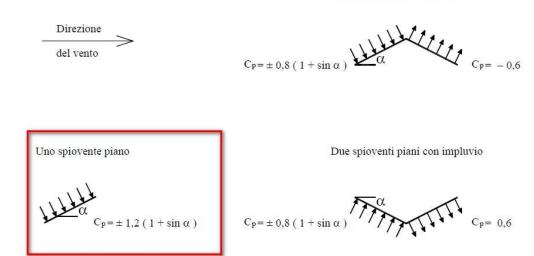
Fig. 3.3.2 - Definizione delle categorie di esposizione

Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	K _r	≈ ₀ [m]	zmin [m]
I	0.17	0.01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

$$q_r=1/2 \cdot \rho \cdot v_r^2$$

La Pressione cinetica di riferimento, $q_b = 44 \text{ daN/mq}$ riferita ad un periodo di ritorno di 35 anni.


L'azione del vento viene espressa in termini di pressione esercitata sulle pareti investite in direzione ortogonali alla direzione del vento; si determina dalla formula

$$c_e(z) = k_r^2 c_t \ln\left(\frac{z}{z_0}\right) \left[7 + c_t \ln\left(\frac{z}{z_0}\right)\right]$$

Coefficiente di esposizione, Ce = 1,80

Per il coefficiente di forma essendo catalogata tale struttura dalla Circolare Ministeriale n° 617 del 02/02/2009 – Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008" al paragrafo C3.3.10.3.1 Elementi con spioventi aventi inclinazione sull'orizzontale a≠0°:

Tettoie e pensiline a un solo spiovente piano (vedere figura C3.3.4)

Due spioventi piani con displuvio

Figura C3.3.4 Valori di c_p per diverse configurazioni strutturali di tettoie e pensiline

avendo gli elementi della copertura un'inclinazione rispetto all'orizzontale pari a 18° si ottiene il seguente coefficiente di pressione: $C_p = \pm 1.57$

Pertanto la pressione di riferimento per il vento è pari a:

$$p = 44 \cdot 1.8 \cdot 1.57 \cdot 1 = 124 \text{ daN/mq}$$

I Valori del coefficiente d'attrito della Circolare Ministeriale n°617 del 02/02/2009 – Istruzioni per l'applicazione delle "Nuove Norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008"

Tabella C3.3.I Valori del coefficiente d'attrito

Superficie	Coefficiente d'attrito c _f
Liscia (acciaio, cemento a faccia liscia)	0,01
Scabra (cemento a faccia scabra, catrame)	0,02
Molto scabra (ondulata, costolata, piegata)	0,04

Nel nostro caso si assumerà C_f pari a 0.01.

Pertanto non sono stati presi in considerazione i carichi del vento radente in quanto trascurabili.

6.3.4. Azioni della temperatura

Variazioni giornaliere e stagionali della temperatura esterna, irraggiamento solare e convezione comportano variazioni della distribuzione di temperatura nei singoli elementi strutturali.

La severità delle azioni termiche è in generale influenzata da più fattori, quali le condizioni climatiche del sito, l'esposizione, la massa complessiva della struttura e la eventuale presenza di elementi non strutturali isolanti. In relazione al punto 3.5.2. e 3.5.3 si considera:

- per la temperatura dell'area esterna, in mancanza di dati specifici relativi al sito in esame, possono assumersi i valori:

Tmax = 45 °C; Tmin =
$$-15$$
 °C

- e per la temperatura dell'area interna, in mancanza di più precise valutazioni, legate alla tipologia della costruzione ed alla sua destinazione d'uso, la temperatura dell'aria interna, "Tint", può essere assunta pari a 20 °C.

Per la valutazione degli effetti delle azioni termiche, si può fare riferimento ai coefficienti di dilatazione termica a temperatura ambiente a T riportati in Tab. 3.5.III.:

Tabella 3.5.III - Coefficienti di dilatazione termica a temperatura ambiente

Materiale	$\alpha_{\rm T} \ [10^{-6}/{\rm ^{\circ}C}]$
Alluminio	24
Acciaio da carpenteria	12
Calcestruzzo strutturale	10
Strutture miste acciaio-calcestruzzo	12
Calcestruzzo alleggerito	7
Muratura	6 ÷ 10
Legno (parallelo alle fibre)	5
Legno (ortogonale alle fibre)	30 ÷ 70

6.3.5. Riassunto finale carichi accidentali

Neve: carico q1 = 38 daN/m²

Vento: in pressione 124 daN/m²

Si precisa che l'azione del vento è stata determinata assumendo i pannelli con una inclinazione rispetto all'orizzontale di 18°.

L'azione della neve è stata determinata assumendo i pannelli con una inclinazione di 50°.

Idonei sistemi automatici di controllo e azionamento garantiranno, in condizioni limite di vento e neve, le inclinazioni di sicurezza previste per i pannelli fotovoltaici.

7. Combinazione di carico

LOCALIZZAZIONE DELL'INTERVENTO

Località: SANTERAMO IN COLLE

Provincia: BARI Regione: PUGLIA

Coordinate GPS:

Latitudine: 40,79400 N Longitudine: 16,75600 E

Altitudine s.l.m.: 489,0 m

CALCOLO DELLE AZIONI DELLA NEVE E DEL VENTO

Normativa di riferimento:

D.M. 17 gennaio 2018 - NORME TECNICHE PER LE COSTRUZIONI

Cap. 3 - AZIONI SULLE COSTRUZIONI - Par. 3.3 e 3.4

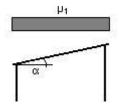
NEVE:

Zona Neve = II

Periodo di ritorno, Tr = 50 anni

Ctr = 1 per Tr = 50 anni

Ce (coeff. di esposizione al vento) = 0,90


Valore caratteristico del carico al suolo = qsk Ce Ctr = 156 daN/mq

Copertura ad una falda:

Angolo di inclinazione della falda α = 50,0°

$$\mu$$
1 = 0,27 => Q1 = 41 daN/mq

Schema di carico:

VENTO:

```
Zona vento = 3

Velocità base della zona, Vb.o = 27 m/s (Tab. 3.3.I)

Altitudine base della zona, Ao = 500 m (Tab. 3.3.I)

Altitudine del sito, As = 489 m

Velocità di riferimento, Vb = 27,00 m/s (Vb = Vb.o per As \leq Ao)

Periodo di ritorno, Tr = 50 anni

Cr = 1 per Tr = 50 anni

Velocità riferita al periodo di ritorno di progetto, Vr = Vb Cr = 27,00 m/s
```

Classe di rugosità del terreno: D

[Aree prive di ostacoli o con al di più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,..)]

```
Categoria esposizione: (Entroterra fino a 500 m di altitudine) tipo II (Kr = 0.19; Zo = 0.05 m; Zmin = 4 m) Pressione cinetica di riferimento, qb = 46 daN/mq
```

```
Coefficiente di forma, Cp = 1,50
Coefficiente dinamico, Cd = 1,00
Coefficiente di esposizione, Ce = 1,80
Coefficiente di esposizione topografica, Ct = 1,00
Altezza dell'edificio, h = 1,50 m
```

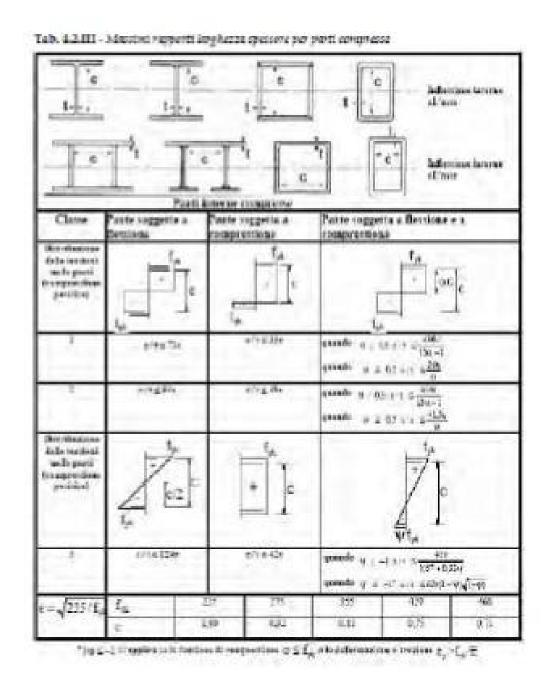
Pressione del vento, p = qb Ce Cp Cd = 123 daN/mq

TEMPERATURA DELL'ARIA ESTERNA:

```
Zona: III
T min = -11.42° [NTC 3.5.5]
T max = 41.85° [NTC 3.5.6]
```

8. Modellazione strutturale

I modelli strutturali sono stati implementati con il programma di calcolo e verifica PROSAP.


9. Output dei risultati

Si sono effettuate le verifiche strutturali considerando nel calcolo l'effettivo peso degli elementi, comprensivi dei profilati, fazzoletti di collegamento, saldature, bullonature, con il programma di calcolo PROSAP.

10. Classificazione delle sezioni

Tali profili vengono classificati in accordo con le prescrizioni del paragrafo 4.2.3.1. – Classificazione delle sezioni DM 17/01/2018, delle Tabelle 4.2III – Massimi rapporti larghezza spessore per parti compresse e del paragrafo C4.2.12.1.4 – Classificazione delle sezioni, instabilità locale e distorsione delle sezioni trasversali della Circolare Ministeriale n°7 del 21/01/2019.

Le sezioni trasversali si classificano in funzione della loro capacità rotazionale.

Dalla classificazione risulta che, per le strutture Tracker, il profilo Tubo Quadro 120*120*3 e Omega 65x30x25 sono di classe 3, mentre il profilo HEA160 è di classe 1.

11. Conclusioni

L'analisi di verifica strutturale, condotta con l'ausilio del software PROSAP versione 2019 prodotto dalla 2SI ha permesso di verificare la tenuta strutturale degli elementi di impianto sotto l'azione combinata degli agenti atmosferici e fisici come precedentemente descritti.

Gli allegati alla presente relazione, elaborazioni di verifica del Software PROSAP, <u>confermano l'idoneità degli</u> elementi strutturali scelti per il progetto dell'impianto fotovoltaico.

12. Allegati

- Tabulati di calcolo struttura tracker monoassiale;
- Tabulati di calcolo per le fondazioni di cabina di trasformazione 430x310x20;
- Tabulati di calcolo per la fondazione di cabina di monitoraggio 750x400x20;
- Tabulati di calcolo per la fondazione della cabina elettrica generale 1200x200x20;
- Tabulati di calcolo per le recinzioni;
- Tabulati di calcolo per i pali di illuminazione;
- Tabulati di calcolo locali tecnici di sottostazione;
- Tabulati di calcolo basamento trasformatore elevatore;
- Tabulati di calcolo delle fondazioni degli interruttori tripolari in alta tensione;
- Tabulati di calcolo delle fondazioni dei sezionatori tripolari in alta tensione;
- Tabulati di calcolo delle fondazioni dei colonnini portasbarre in alta tensione;
- Tabulati di calcolo delle fondazioni degli apparati unipolari in alta tensione.

Taranto, Settembre 2021

Il Tecnico Ing. Vito Giovanni Dell'Aere

IMPIANTO FOTOVOLTAICO "EMERA" – Codice pratica G4KMY67
Tabulati di calcolo struttura tracker monoassiale

Relazione di calcolo strutturale impostata e redatta secondo le modalità previste nel D.M. 17 Gennaio 2018 cap. 10 "Redazione dei progetti strutturali esecutivi e delle relazioni di calcolo".

D.M. 17/01/18 cap. 10.2 Affidabilità dei codici utilizzati https://www.2si.it/it/prodotti/affidabilita/

INTESTAZIONE E CONTENUTI DELLA RELAZIONE	4
Progetto	4
CARATTERISTICHE MATERIALI UTILIZZATI	6
LEGENDA TABELLA DATI MATERIALI	6
MODELLAZIONE DELLE SEZIONI	12
LEGENDA TABELLA DATI SEZIONI	12
MODELLAZIONE STRUTTURA: NODI	14
LEGENDA TABELLA DATI NODI	14
TABELLA DATI NODI	14
MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	16
TABELLA DATI TRAVI	16
MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO	20
LEGENDA TABELLA DATI SOLAI-PANNELLI	20
MODELLAZIONE DELLE AZIONI	24
LEGENDA TABELLA DATI AZIONI	24
SCHEMATIZZAZIONE DEI CASI DI CARICO	27
LEGENDA TABELLA CASI DI CARICO	27
DEFINIZIONE DELLE COMBINAZIONI	34
LEGENDA TABELLA COMBINAZIONI DI CARICO	
AZIONE SISMICA	
VALUTAZIONE DELL' AZIONE SISMICA	
Parametri della struttura	38
RISULTATI ANALISI SISMICHE	39
LEGENDA TABELLA ANALISI SISMICHE	39
RISULTATI NODALI	50
LEGENDA RISULTATI NODALI	
RISULTATI ELEMENTI TIPO TRAVE	59
LEGENDA RISULTATI ELEMENTI TIPO TRAVE	59

INTESTAZIONE E CONTENUTI DELLA RELAZIONE

ogetto	

Contenuti della relazione:

RELAZIONE DI CALCOLO STRUTTURALE

- Origine e Caratteristiche dei Codici di Calcolo
- Affidabilità dei codici utilizzati
- Validazione dei codici
- Tipo di analisi svolta
- Modalità di presentazione dei risultati
- Informazioni generali sull'elaborazione Giudizio motivato di accettabilità dei risultati

STAMPA DEI DATI DI INGRESSO

- Normative prese a riferimento
- Criteri adottati per le misure di sicurezza
- Criteri seguiti nella schematizzazione della struttura, dei vincoli e delle sconessioni
- Interazione tra terreno e struttura
- Legami costitutivi adottati per la modellazione dei materiali e dei terreni
- Schematizzazione delle azioni, condizioni e combinazioni di carico
- Metodologie numeriche utilizzate per l' analisi strutturale
- -Metodologie numeriche utilizzate per la progettazione e la verifica degli elementi strutturali STAMPA DEI RISULTATI

CARATTERISTICHE MATERIALI UTILIZZATI

LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
3	materiale tipo muratura
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano

quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

<u>epiner arconimitation</u>	terraine renigente ripertata in talle enter rengalenta estat.			
Young	modulo di elasticità normale E			
Poisson	coefficiente di contrazione trasversale ni			
G	modulo di elasticità tangenziale			
Gamma	peso specifico			
Alfa	coefficiente di dilatazione termica			
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo			
	se diverso da quello globale della struttura)			
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo			
	se diverso da quello globale della struttura)			
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari			
Massima compressione	Massima tensione di compressione per aste non lineari			
Massima trazione	Massima tensione di trazione per aste non lineari			
Fattore attrito	Coefficinete di attrito per aste non lineari			
Rapporto HRDb	Rapporto di hardening a flessione			
Rapporto HRDv	Rapporto di hardening a taglio			

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	cemento		
	armato	Resistenza Rc Resistenza fctm Coefficiente ksb	resistenza a cmpressione cubica resistenza media a trazione semplice Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
2	acciaio	Tensione ft Tensione fy Resistenza fd Resistenza fd (>40) Tensione ammissibile Tensione ammissibile (>40)	Valore della tensione di rottura Valore della tensione di snervamento Resistenza di calcolo per SL CNR-UNI 10011 Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm Tensione ammissibile CNR-UNI 10011 Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
3	muratura	Muratura consolidata Incremento resistenza Incremento rigidezza Resistenza f Resistenza fv0 Resistenza fh Resistenza fb Resistenza fb Resistenza fbt Resistenza ftv0h Resistenza ft v0h Resistenza ft Resistenza ft Coefficiente mu Coefficiente fi Coefficiente ksb	Muratura per la quale si prevedono interventi di rinforzo" Incremento conseguito in termini di resistenza Incremento conseguito in termini di rigidezza Valore della resistenza a compressione Valore della resistenza a taglio in assenza di tensioni normali Valore della resistenza a compressione orizzontale Valore della resistenza a compressione dei blocchi Valore della resistenza a compressione dei blocchi in direzione orizzontale Valore della resistenza a taglio in assenza di tensioni normali per le travi Valore della resistenza a trazione per fessurazione diagonale Valore della massima resistenza a taglio Valore della resistenza a trazione dei blocchi Coefficiente d'attrito utilizzato per la resistenza a taglio (tipicamente 0.4) Coefficiente d'ingranamento utilizzato per la resistenza a taglio Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
4	legno	E0,05 Resistenza fc0 Resistenza ft0 Resistenza fm Resistenza fv Resist. ft0k Resist. fmk	Modulo di elasticità corrispondente ad un frattile del 5% Valore della resistenza a compressione parallela Valore della resistenza a trazione parallela Valore della resistenza a flessione Valore della resistenza a taglio Resistenza caratteristica (tensione amm. per REGLES) per trazione Resistenza caratteristica (tensione amm. per REGLES) per flessione

Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
Modulo E0,05	Modulo elastico parallelo caratteristico
Lamellare	lamellare o massiccio

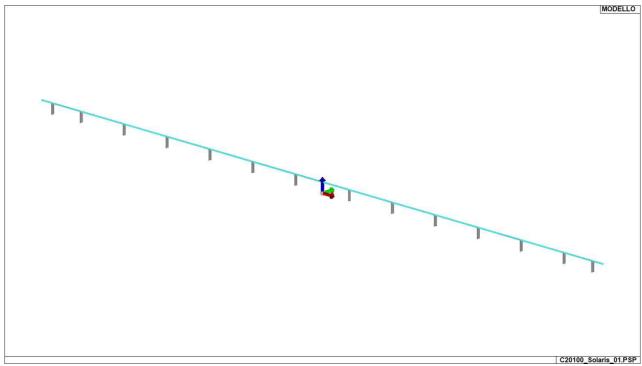
Vengono inoltre riportate le tabelle conteneti il riassunto delle nformazioni assegnate nei criteri di progetto in uso.

Con riferimento al **Documento di Affidabilità** "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" - versione Maggio 2011, disponibile per il download sul sito **www.2si.it**, si segnalano i seguenti esempi applicativi:

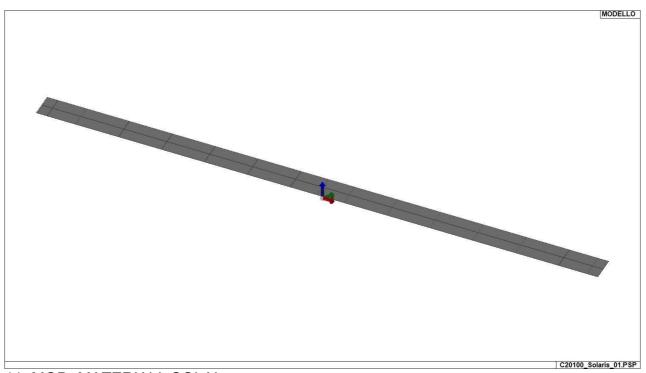
Modellazione di strutture in c.a.

Test N°	Titolo
41	GERARCHIA DELLE RESISTENZE PER TRAVI IN C.A.
42	GERARCHIA DELLE RESISTENZE PER PILASTRI IN C.A.
43	VERIFICA ALLE TA DI STRUTTURE IN C.A.
44	VERIFICA AGLI SLU DI STRUTTURE IN C.A.
45	VERIFICA A PUNZONAMENTO ALLO SLU DI PIASTRE IN C.A.
46	VERIFICA A PUNZONAMENTO ALLO SLU DI TRAVI IN C.A.
47	PROGETTAZIONE A TAGLIO DI STRUTTURE IN C.A. SECONDO IL D.M. 9/1/96
48	PROGETTAZIONE A TAGLIO DI STRUTTURE IN C.A. SECONDO IL D.M. 14/1/2008
49	VERIFICA ALLO SLE (TENSIONI E FESSURAZIONE) DI STRUTTURE IN C.A.
50	VERIFICA ALLO SLE (DEFORMAZIONE) DI STRUTTURE IN C.A.
51	FATTORE DI STRUTTURA
52	SOVRARESISTENZE
53	DETTAGLI COSTRUTTIVI C.A.: LIMITI D'ARMATURA PILASTRI E NODI TRAVE-PILASTRO
54	PARETI IN C.A. SNELLE IN ZONA SISMICA
80	ANALISI PUSHOVER DI UN EDIFICIO IN C.A.
120	PROGETTO E VERIFICA DI TRAVI PREM

Modellazione di strutture in acciaio


Test N°	Titolo
55	VERIFICA DI STABILITA' DI ASTE COMPRESSE IN ACCIAIO – METODO OMEGA
56	LUCE LIBERA DI TRAVI E ASTE IN ACCIAIO
57	LUCE LIBERA DI COLONNE IN ACCIAIO
58	SVERGOLAMENTO DI TRAVI IN ACCIAIO
59	FATTORE DI STRUTTURA
60	ACCIAIO D.M.2008
61	ACCIAIO EC3
62	GERARCHIA RESISTENZE STRUTTURE IN ACCIAIO
63	STABILITA' DI ASTE COMPOSTE IN ACCIAIO
73	COLLEGAMENTI IN ACCIAIO: NODO TRAVE COLONNA FLANGIATO CON PRESENZA IRRIGIDIMENTI TRASVERSALI
74	COLLEGAMENTI IN ACCIAIO: NODO TRAVE COLONNA FLANGIATO CON PRESENZA DI UN PIATTO DI RINFORZO SALDATO ALL'ANIMA DELLA COLONNA
75	COLLEGAMENTI IN ACCIAIO: NODO TRAVE COLONNA FLANGIATO CON PRESENZA DI DUE PIATTI DI RINFORZO SALDATI ALL'ANIMA DELLA COLONNA
76	COLLEGAMENTI IN ACCIAIO: NODO TRAVE COLONNA FLANGIATO A DUE VIE SU ALI COLONNA
77	COLLEGAMENTI IN ACCIAIO: NODO TRAVE COLONNA FLANGIATO A UNA VIA CON DUE COMBINAZIONI DI CARICO
78	COLLEGAMENTI IN ACCIAIO: NODO TRAVE COLONNA FLANGIATO SU ANIMA SENZA RINFORZI A QUATTRO FILE DI BULLONI DI CUI UNA SU PIASTRA INFERIORE E UNA SU PIASTRA SUPERIORE
79	VERIFICA DELLA PIASTRA NODO TRAVE COLONNA
85	TELAIO ACCIAIO: CONTROVENTI CONCENTRICI

Test N°	Titolo
81	ANALISI PUSHOVER DI UNA STRUTTURA IN MURATURA
84	ANALISI ELASTO PLASTICA INCREMENTALE, PARETE IN MURATURA
86	VERIFICA NON SISMICA DELLE MURATURE (D.M. 87 TA)
87	VERIFICA NON SISMICA DELLE MURATURE (D.M. 2005 SL)
88	FATTORE DI STRUTTURA


Modellazione di strutture in legno

Test N°	Titolo
17	SOLAIO: MISTO LEGNO-CALCESTRUZZO
89	VERIFICA ALLO SLU DI STRUTTURE IN LEGNO SECONDO EC5
90	VERIFICA ALLO SLE DI STRUTTURE IN LEGNO SECONDO EC5
91	FATTORE DI STRUTTURA
92	VERIFICHE EC5
93	SNELLEZZE EC5
94	VERIFICA AL FUOCO DI STRUTTURE IN LEGNO SECONDO EC5
117	PROGETTO E VERIFICA DI GUSCI IN MATERIALE XLAM
118	PROGETTO E VERIFICA DI PARETI IN MATERIALE XLAM E RELATIVI COLLEGAMENTI
119	PROGETTO E VERIFICA DI SOLAI IN MATERIALE XLAM

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
11	Acciaio Fe360 - S235-acciaio Fe360-S235			2.100e+06	0.30	8.077e+05	7.85e-03	1.20e-05	
	Tensione ft	3600.0							
	Resistenza fd	2350.0							
	Resistenza fd (>40)	2100.0							
	Tensione ammissibile	1600.0							
	Tensione ammissibile (>40)	1400.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
12	Acciaio Fe430 - S275-acciaio Fe430-S275			2.100e+06	0.30	8.077e+05	7.85e-03	1.20e-05	
	Tensione ft	4300.0							
	Resistenza fd	2750.0							
	Resistenza fd (>40)	2500.0							
	Tensione ammissibile	1900.0							
	Tensione ammissibile (>40)	1700.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
13	Acciaio Fe510 - S355-acciaio Fe510-S355			2.100e+06	0.30	8.077e+05	7.85e-03	1.20e-05	
	Tensione ft	5100.0							
	Resistenza fd	3550.0							
	Resistenza fd (>40)	3150.0							
	Tensione ammissibile	2400.0							
	Tensione ammissibile (>40)	2100.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

11_MOD_MATERIALI_D2

11_MOD_MATERIALI_SOLAI

Pilastri acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
Metodo di calcolo 2-2	Assegnato					
2-2 Beta assegnato	2.00					
2-2 Beta * L assegnato [cm]	0.0					
Metodo di calcolo 3-3	Assegnato					
3-3 Beta assegnato	2.00					
3-3 Beta * L assegnato [cm]	0.0					
1-1 Beta assegnato	1.00					

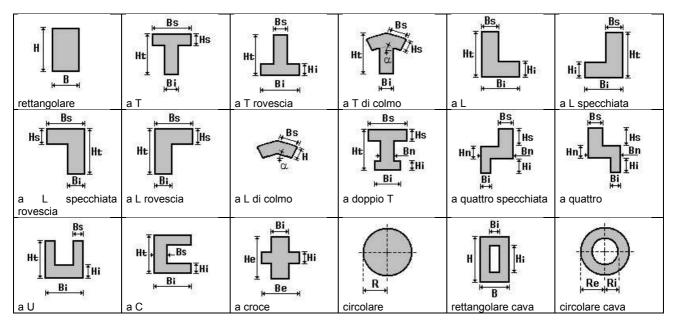
Pilastri acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
1-1 Beta * L assegnato [cm]	0.0					
Generalità						
Coefficiente gamma M0	1.05					
Coefficiente gamma M1	1.05					
Coefficiente gamma M2	1.25					
Effetti del 2 ordine	Si					
Momenti equivalenti	Si					
Usa condizioni I e II	Si					

Travi acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
3-3 Beta * L automatico	Si					
3-3 Beta assegnato	1.00					
3-3 Beta assegnato [cm]	0.0					
2-2 Beta * L automatico	Si					
2-2 Beta assegnato	1.00					
2-2 Beta * L assegnato [cm]	0.0					
1-1 Beta * L automatico	Si					
1-1 Beta assegnato	1.00					
1-1 Beta * L assegnato [cm]	0.0					
Generalità						
Coefficiente gamma M0	1.05					
Coefficiente gamma M1	1.05					
Coefficiente gamma M2	1.25					
Luce di taglio per GR [cm]	1.00					
Usa condizioni I e II	Si					
Momenti equivalenti	Si					

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Usa tensioni ammissibili	No					
Af inf: da traliccio	Si					
Consenti armatura a taglio	No					
Incrementa armatura longitudinale per taglio	Si					
Af inf: da q*L*L /	20.00					
Incremento fascia piena [cm]	5.00					
Armatura						
Minima tesa	0.15					
Massima tesa	3.00					
Minima compressa	0.0					
Af/h [cm]	7.000e-02					
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00					
Tipo acciaio	tipo C					
Coefficiente gamma s	1.15					
Coefficiente gamma c	1.50					
Fattore di ridistribuzione	0.0					
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	85.00					
Tensione amm. acciaio [daN/cm2]	2600.00					
Rapporto omogeneizzazione N	15.00					
Massimo rapporto area compressa/tesa	1.00					
Verifica freccia						
Infinita	250.00					
stantanea	500.00					
Fattore viscosità	3.00					
Usa J non fessurato	No					
Elementi non strutturali						
Tamponatura antiespulsione	No					
Tamponatura con armatura	No					
Fattore di struttura/comportamento	2.00					
Coefficiente gamma m	0.0					
Periodo Ta	0.0					
Altezza pannello	0.0					

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI

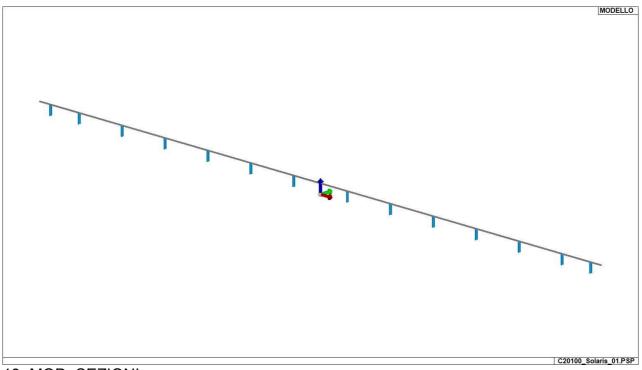

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.


Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

Con riferimento al Documento di Affidabilità "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" - versione Settembre 2014, disponibile per il download sul sito www.2si.it, si segnalano i seguenti esempi applicativi:

Test N°	Titolo
1	CARATTERISTICHE GEOMETRICHE E INERZIALI
45	VERIFICA AGLI SLU DI STRUTTURE IN C.A.
48	PROGETTAZIONE A TAGLIO DI STRUTTURE IN C.A. SECONDO IL D.M. 9/1/96
49	PROGETTAZIONE A TAGLIO DI STRUTTURE IN C.A. SECONDO IL D.M. 14/1/2008
50	VERIFICA ALLO SLE (TENSIONI E FESSURAZIONE) DI STRUTTURE IN C.A.
51	VERIFICA ALLO SLE (DEFORMAZIONE) DI STRUTTURE IN C.A.
104	ANALISI DI RESISTENZA AL FUOCO

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	TUBO 133.0x3.2	13.05	0.0	0.0	549.96	274.98	274.98	41.35	41.35	53.92	53.92
2	profilo C250x90x3.0 (Section Maker)	13.79	0.0	0.0	0.41	145.61	1310.82	22.78	104.87	33.99	122.84

13_MOD_SEZIONI

MODELLAZIONE STRUTTURA: NODI

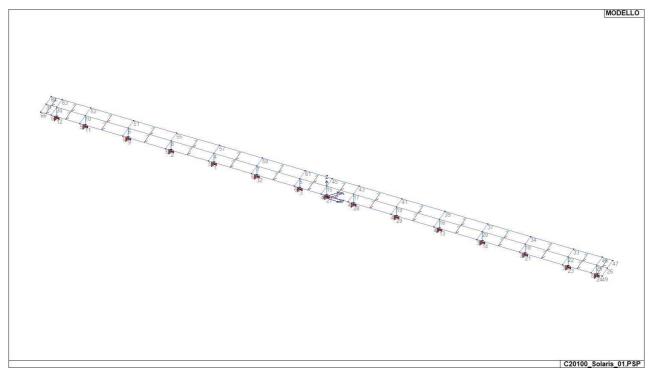
LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z


Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

Nodo	X	Υ	Z	Nodo	X	Υ	Z	Nodo	Х	Y	Z
	cm	cm	cm		cm	cm	cm		cm	ı cm	cm
4	-1586.0	0.0	115.0	5	-378.0	0.0	115.0	6	-2794.0	0.0	115.0
7	-982.0	0.0	115.0	8	-2190.0	0.0	115.0	10	-3398.0	0.0	115.0
15	0.0	0.0	115.0	16	1586.0	0.0	115.0	17	378.0	0.0	115.0
18	2794.0	0.0	115.0	19	982.0	0.0	115.0	20	2190.0	0.0	115.0
22	3398.0	0.0	115.0	25	3801.0	0.0	115.0	26	3951.0	0.0	115.0
30	-3801.0	0.0	115.0	31	-3951.0	0.0	115.0	33	3398.0	76.6	179.3
34	2794.0	76.6	179.3	35	3398.0	-76.6	50.7	36	2794.0	-76.6	50.7
37	2190.0	76.6	179.3	38	2190.0	-76.6	50.7	39	1586.0	76.6	179.3
40	1586.0	-76.6	50.7	41	982.0	76.6	179.3	42	982.0	-76.6	50.7
43	378.0	76.6	179.3	44	378.0	-76.6	50.7	45	0.0	76.6	179.3
46	0.0	-76.6	50.7	47	3951.0	76.6	179.3	48	3801.0	76.6	179.3
49	3951.0	-76.6	50.7	50	3801.0	-76.6	50.7	51	-2794.0	76.6	179.3
52	-3398.0	76.6	179.3	53	-2794.0	-76.6	50.7	54	-3398.0	-76.6	50.7
55	-2190.0	76.6	179.3	56	-2190.0	-76.6	50.7	57	-1586.0	76.6	179.3
58	-1586.0	-76.6	50.7	59	-982.0	76.6	179.3	60	-982.0	-76.6	50.7
61	-378.0	76.6	179.3	62	-378.0	-76.6	50.7	63	-3801.0	76.6	179.3
64	-3951.0	76.6	179.3	65	-3801.0	-76.6	50.7	66	-3951.0	-76.6	50.7
Nodo	X	Υ	Z		Note	Rig. TX	Rig. TY	Rig. TZ	Rig. RX	Rig. RY	Rig. RZ
	cm	cm	cm			daN/cm	daN/cm	daN/cm da	aN cm/rad	daN cm/rad	daN cm/rad
1	-1586.0	0.0	0.0	v=1	111111						
2	-2190.0	0.0	0.0	v=1	111111						
3	-378.0	0.0	0.0	v=1	111111						
9	-2794.0	0.0	0.0	v=1	111111						
11	-3398.0	0.0	0.0	v=1	111111						
12	-3801.0	0.0	0.0	v=1	111111						
13	1586.0	0.0	0.0	v=1	111111						
14	2190.0	0.0	0.0	v=1	111111						
21	2794.0	0.0	0.0	v=1	111111						
23	3398.0	0.0	0.0	v=1	111111						
24	3801.0	0.0	0.0	v=1	111111						
27	0.0	0.0	0.0	v=1	111111						
28	378.0	0.0	0.0	v=1	111111						
29	982.0	0.0	0.0	v=1	111111						

14_MOD_NUMERAZIONE_NODI

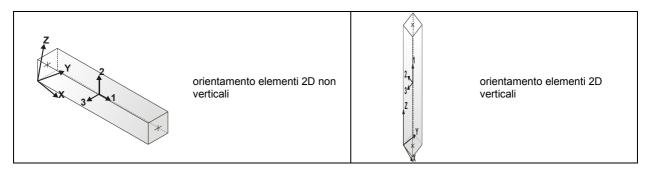

MODELLAZIONE STRUTTURA: ELEMENTI TRAVE

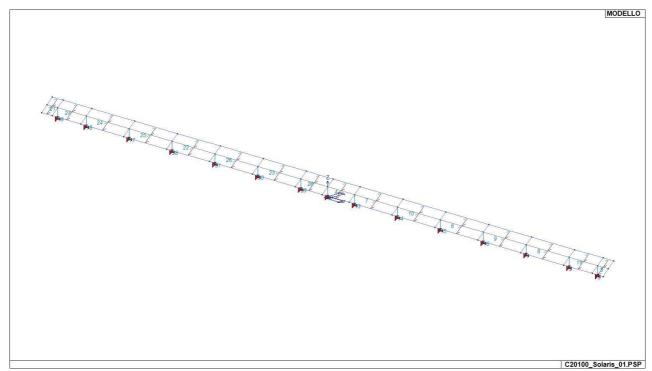
TABELLA DATI TRAVI

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.

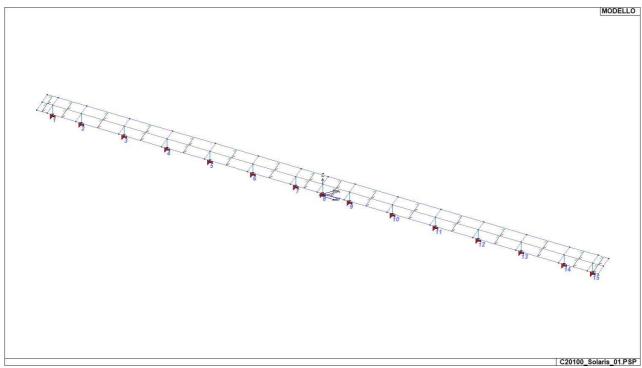
Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

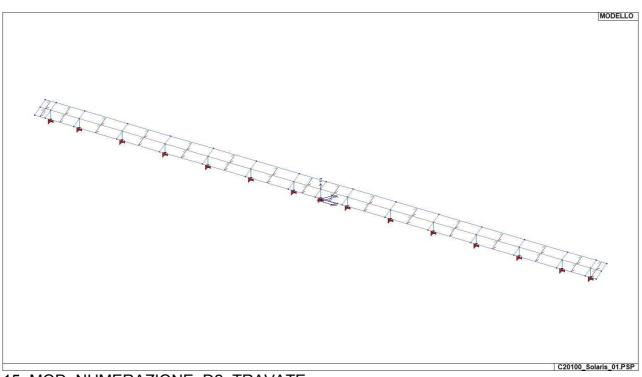
In particolare per ogni elemento viene indicato in tabella:


	chiento viene indicato in tabella.
Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I (J)	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale

Con riferimento al **Documento di Affidabilità** "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" - versione Settembre 2014, disponibile per il download sul sito **www.2si.it**, si segnalano i seguenti esempi applicativi:


Test N°	Titolo
2	TRAVI A UNA CAMPATA
3	TRAVE A PIU' CAMPATE
4	TRAVE A UNA CAMPATA SU TERRENO ALLA WINKLER
5	TRAVI SU TERRENO ALLA WINKLER CON CARICO TRASVERSALE
6	TELAI PIANI CON CERNIERE ALLA BASE
7	TELAI PIANI CON INCASTRI ALLA BASE
11	STRUTTURE SOGGETTE A VARIAZIONI TERMICHE
12	STRUTTURE SU TERRENO ALLA WINKLER SOTTOPOSTE A CARICHI DISTRIBUITI TRIANGOLARI
21	DRILLING
24	TENSIONI E ROTAZIONI RISPETTO ALLA CORDA DI ELEMENTI TRAVE
27	FRECCIA DI ELEMENTI TRAVE
42	GERARCHIA DELLE RESISTENZE PER TRAVI IN C.A.
43	GERARCHIA DELLE RESISTENZE PER PILASTRI IN C.A.
44	VERIFICA ALLE TA DI STRUTTURE IN C.A.
45	VERIFICA AGLI SLU DI STRUTTURE IN C.A.
47	VERIFICA A PUNZONAMENTO ALLO SLU DI TRAVI IN C.A.
48	PROGETTAZIONE A TAGLIO DI STRUTTURE IN C.A. SECONDO IL D.M. 9/1/96
49	PROGETTAZIONE A TAGLIO DI STRUTTURE IN C.A. SECONDO IL D.M. 14/1/2008
50	VERIFICA ALLO SLE (TENSIONI E FESSURAZIONE) DI STRUTTURE IN C.A.
51	VERIFICA ALLO SLE (DEFORMAZIONE) DI STRUTTURE IN C.A.
52	FATTORE DI STRUTTURA
53	SOVRARESISTENZE
54	DETTAGLI COSTRUTTIVI C.A.: LIMITI D'ARMATURA PILASTRI E NODI TRAVE-PILASTRO
56	VERIFICA DI STABILITA' DI ASTE COMPRESSE IN ACCIAIO – METODO OMEGA
57	LUCE LIBERA DI TRAVI E ASTE IN ACCIAIO
58	LUCE LIBERA DI COLONNE IN ACCIAIO
59	SVERGOLAMENTO DI TRAVI IN ACCIAIO
64	STABILITA' DI ASTE COMPOSTE IN ACCIAIO
73	VALUTAZIONE EFFETTO P-δ SU PILASTRATA
74	VALUTAZIONE EFFETTO P-δ SU TELAIO 3D
85	ANALISI PUSHOVER DI UN EDIFICIO IN C.A.
87	ANALISI ELASTO PLASTICA INCREMENTALE
88	ANALISI ELASTO PLASTICA INCREMENTALE
98	VERIFICA ALLO SLU DI STRUTTURE IN LEGNO SECONDO EC5
99	VERIFICA ALLO SLE DI STRUTTURE IN LEGNO SECONDO EC5
102	SNELLEZZE EC5
130	PROGETTO E VERIFICA DI TRAVI PREM

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Rotaz. gradi	Svincolo I	Svincolo J	Wink V daN/cm3	Wink O daN/cm3
1	Pilas.	21	18	12	2	90.00				
2	Pilas.	23	22	12	2	90.00				
3	Pilas.	24	25	12	2	90.00				
4	Trave	15	17	13	1					
5	Trave	25	26	13	1					
6	Trave	16	20	13	1					
7	Trave	17	19	13	1					
8	Trave	18	22	13	1					
9	Trave	20	18	13	1					
10	Trave	19	16	13	1					


11 12 13 14 15 16 17 18 19 20 21 22 23	Trave Pilas. Pilas. Pilas. Pilas. Pilas. Pilas. Pilas. Pilas. Pilas. Trave Trave Trave	22 27 28 29 13 14 9 11 12 5 31 8 7	25 15 17 19 16 20 6 10 30 15 30 4 5	13 12 12 12 12 12 12 12 12 13 13 13	1 2 2 2 2 2 2 2 2 1 1 1	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
23	Trave	7		13	1	
24 25	Trave Trave	10 6	6 8	13 13	1	
26	Trave	4	7	13	1	
27	Trave	30	10	13	1	
28	Pilas.	2	8	12	2	90.00
29	Pilas.	3	5	12	2	90.00
30	Pilas.	32	7	12	2	90.00
31	Pilas.	1	4	12	2	90.00

15_MOD_NUMERAZIONE_D2

15_MOD_NUMERAZIONE_D2_PILASTRATE

15_MOD_NUMERAZIONE_D2_TRAVATE

MODELLAZIONE DELLA STRUTTURA: ELEMENTI **SOLAIO-PANNELLO**

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello. Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.

L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio. I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse. L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

ld.Arch.	Identificativo dell' archivio					
Tipo	Tipo di carico					
•	Variab. Carico variabile generico					
	Var. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)					
	Neve Carico di neve					
G1k	carico permanente (comprensivo del peso proprio)					
G2k	carico permanente non strutturale e non compiutamente definito					
Qk	carico variabile					
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."					
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul					
	capitolo "normativa di riferimento")					
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro					
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente					
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente					
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: per la definizione					
	delle masse sismiche					
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici					

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'elemento					
Tipo	codice di comportamento					
	S elemento utilizzato solo per scarico					
	C elemento utilizzato per scarico e per modellazione piano rigido					
	P elemento utilizzato come pannello					
	M scarico monodirezionale					
	B scarico bidirezionale					
Id.Arch.	Identificativo dell' archivio					
Mat	codice del materiale assegnato all'elemento					
Spessore	spessore dell'elemento (costante)					
Orditura	angolo (rispetto all'asse X) della direzione dei travetti principali					
Gk	carico permanente solaio (comprensivo del peso proprio)					
Qk	carico variabile solaio					
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)					

Nel caso in cui si sia proceduto alla progettazione dei solai con le tensioni ammissibili vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale); nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite vengono riportati il rapporto x/d e le verifiche per sollecitazioni proporzionali nonché le verifiche in esercizio.

In particolare i simboli utilizzati in tabella assumono il seguente significato:

ili particolare i si	mboli dilizzati in tabella assumono il seguente significato.						
Elem.	numero identificativo dell'elemento						
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali						
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m);						
Pos.	Ascissa del punto di verifica						
F ist, F infi	Frecce instantanee e a tempo infinito						
Momento	Momento flettente						
Taglio	Sollecitazione di taglio						
Af inf.	Area di armatura longitudinale posta all'intradosso della trave						
Af sup.	Area di armatura longitudinale posta all'estradosso della trave						
AfV	Area dell'armatura atta ad assorbire le azioni di taglio						
Beff	Base della sezione di cls per l'assorbimento del taglio						
	simboli utilizzati con il metodo delle tensioni ammissibili:						
sc max	Massima tensione di compressione del calcestruzzo						

sf max	Massima tensione nell'acciaio
tau max	Massima tensione tangenziale nel cls
	simboli utilizzati con il metodo degli stati limite:
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione
	(per sola flessione)
verif.	rapporto Sd/Su con sollecitazioni ultime proporzionali:
	valore minore o uguale a 1 per verifica positiva
Verif.V	rapporto Sd/Su con sollecitazioni taqlianti proporzionali
	valore minore o uguale a 1 per verifica positiva
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare
	[normalizzato a 1]
rFfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni frequenti
	[normalizzato a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi permanenti
	[normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni frequenti [normalizzato
1	a 11
rFyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato
1	a ij
rPfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni quasi permanenti
	[normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]
	apartament and an area and record of a control of the particular periods and periods are periods and periods are periods and periods and periods and periods are periods are periods are periods and periods are p

Nel caso in cui si sia proceduto alla verifica delle tamponature secondo il D.M. 17.01.2018 - §7.2.3 viene riportata una tabella riassuntiva delle verifiche degli elementi pannello. La verifica confronta i momenti sollecitanti indotti dal sisma con i momenti resistenti, secondo tre ipotesi, due basate sulla resistenza a pressoflessione della tamponatura ed una basata sul cinematismo a seguito della formazione di tre cerniere plastiche sulla tamponatura (rif. Ufficio di Vigilanza sulle Costruzioni, Provincia di Terni).

Qualora la tamponatura sia di tipo antiespulsione (nelle due possibili varianti ordinaria o armata) viene condotta una verifica con meccanismo ad arco con degrado di resistenza. La verifica confronta le pressioni sollecitanti indotte dal sisma con le pressioni resistenti che la tamponatura sviluppa attraverso il meccanismo ad arco. La verifica considera anche il degrado di resistenza dovuto al danneggiamento nel piano della tamponatura.

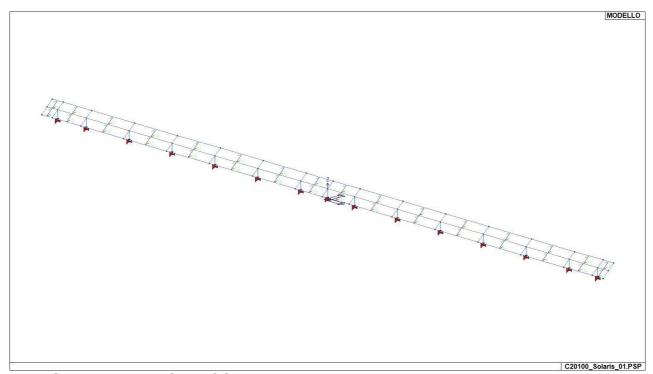
Per quest'ultima tamponatura sono disponibili, in funzione del materiale impiegato (materiale [52] o materiale [53]):

- Tamponatura Antiespulsione ordinaria Poroton[®] Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova.
 - Utilizzabile per il materiale [52]
- Tamponatura Antiespulsione armata Poroton[®] Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova.

Utilizzabile per il materiale [53].

La verifica è stata calibrata sulla base di prove sperimentali sul sistema di Tamponatura Antiespulsione anche in presenza di aperture. (rif. Rapporti di Prova redatti dal Dipartimento ICEA - Università degli Studi di Padova di test sperimentali condotti sul sistema Tamponatura Antiespulsione di Cis Edil)

In particolare i simboli utilizzati in tabella assumono il seguente significato:

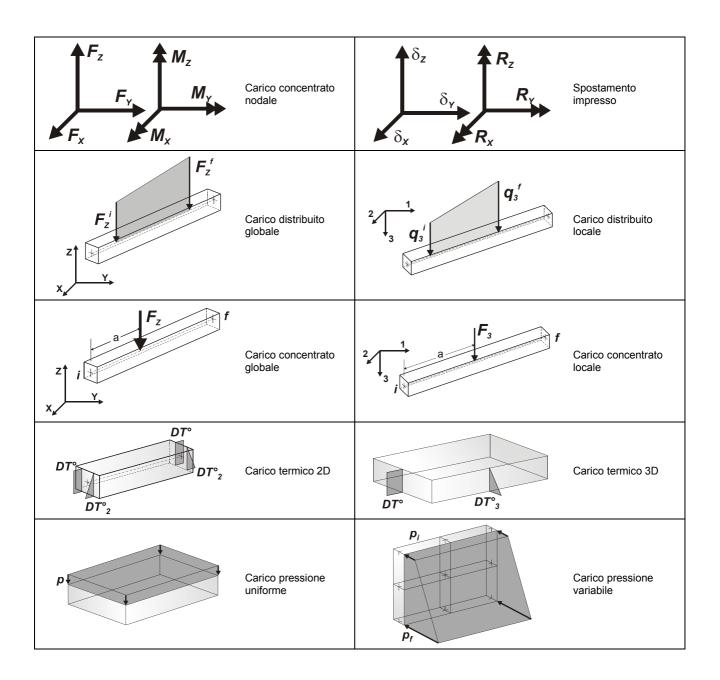

III partioolare i simbe	il utilizzati ili tabella assumono il seguente significato.						
Elem.	Numero identificativo dell'elemento						
Stato	Codice di verifica						
Ver. c.c.	Verifica nell'ipotesi di trave appoggiata con carico concentrato in mezzeria						
Ver. c.d.	Verifica nell'ipotesi di trave appoggiata con carico distribuito						
Ver. c.cin.	Verifica nell'ipotesi di cinematismo con formazione di cerniere plastiche in appoggio e mezzeria						
Ver. CIS	Rapporto pa/pr (valore minore o uguale a 1 per verifica positiva)						
Z	Quota del baricentro dell'elemento						
T1	Periodo proprio dell'edificio nella direzione di interesse (ortogonale al pannello)						
Та	Periodo proprio della parete						
Sa	Accelerazione massima, adimensionalizzata allo SLV						
pa	Pressione sulla parete causata dall'azione sismica						
pr	Pressione resistente del meccanismo ad arco						
Drift	Spostamento relativo interpiano allo SLV valutato secondo il D.M. 14.01.2018 - § 7.3.3.3						
Beta a	Coef. riduttivo per tener conto del danneggiamento del piano dipendente dallo spostamento, ottenuto sperimentalmente						

Con riferimento al **Documento di Affidabilità** "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" - versione Maggio 2011, disponibile per il download sul sito **www.2si.it**, si segnalano i seguenti esempi applicativi:

Test N°	Titolo Titolo							
14	ANALISI DEI CARICHI PER UN SOLAIO DI COPERTURA							
15	EFFETTI DELLO SPESSORE SULLA RIGIDEZZA DEI SOLAI							
16	SOLAIO: CONFRONTO FRA RIGIDO E DEFORMABILE							
17	SOLAIO: MISTO LEGNO-CALCESTRUZZO							

28	FRECCIA DI SOLAI IN C.A.
119	PROGETTO E VERIFICA DI SOLAI IN MATERIALE XLAM

ID Arch.	Tipo	G1k daN/ m2	G2k daN/ m2	daN/		att. A	s sis.	Psi 0	Psi 1	Psi 2	Psi S 2	Fatt. Fi
6	Neve	500.00	darw mz	100			1.00	0.50	0.20	0.0	0.0	1.00
Elem.	Tipo ID Arc	ch. Mat.	SpessoreC	rditura	G1k daN/ m2	G2k daN/ m2		Nodo 1/6 I	Nodo 2/7 N	Nodo 3/8	Nodo	Nodo
1	PM	m=11	1.0	90.0				 22	33	34	18	
2	PM	m=11	1.0	90.0				35	22	18	36	
3	PM	m=11	1.0	90.0				18	34	37	20	
4	PM	m=11	1.0	90.0				36	18	20	38	
5	PM	m=11	1.0	90.0				20	37	39	16	
6	PM	m=11	1.0	90.0				38	20	16	40	
7	PM	m=11	1.0	90.0				16	39	41	19	
8	PM	m=11	1.0	90.0				40	16	19	42	
9	PM	m=11	1.0	90.0				19	41	43	17	
10	PM	m=11	1.0	90.0				42	19	17	44	
11	PM	m=11	1.0	90.0				17	43	45	15	
12	PM	m=11	1.0	90.0				44	17	15	46	
13	PM	m=11	1.0	90.0				26	47	48	25	
14	PM	m=11	1.0	90.0				49	26	25	50	
15	PM	m=11	1.0	90.0				25	48	33	22	
16	PM	m=11	1.0	90.0				50	25	22	35	
17	PM	m=11	1.0	90.0				6	51	52	10	
18	PM	m=11	1.0	90.0				53	6	10	54	
19	PM	m=11	1.0	90.0				8	55	51	6	
20	PM	m=11	1.0	90.0				56	8	6	53	
21	PM	m=11	1.0	90.0				4	57	55	8	
22	PM	m=11	1.0	90.0				58	4	8	56	
23	PM	m=11	1.0	90.0				7	59	57	4	
24	PM	m=11	1.0	90.0				60	7	4	58	
25	PM	m=11	1.0	90.0				5	61	59	7	
26	PM	m=11	1.0	90.0				62	5	7	60	
27	PM	m=11	1.0	90.0				15	45	61	5	
28	PM	m=11	1.0	90.0				46	15	5	62	
29	PM	m=11	1.0	90.0				30	63	64	31	
30	PM	m=11	1.0	90.0				65	30	31	66	
31	PM	m=11	1.0	90.0				10	52	63	30	
32	PM	m=11	1.0	90.0				54	10	30	65	

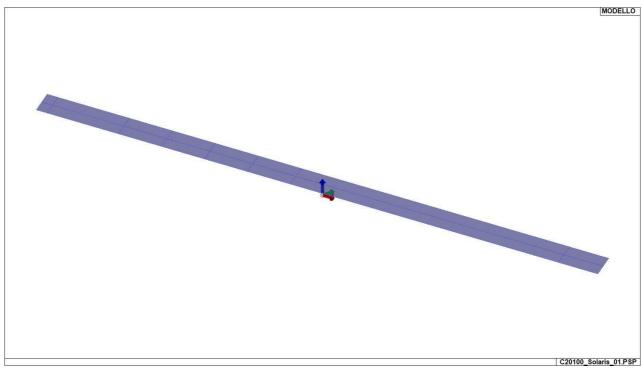


MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)
4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo iniziale e finale)
8	carico di pressione uniforme su elemento tipo piastra
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	1 dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico e la larghezza
	d'influenza per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione centrale del primo,
	dimensioni dell' impronta, interasse tra i carichi



Tipo	carico distribuito globale su trave

ld	Tipo	Pos.	fx	fy	fz	mx	my	mz
		m	daN/ m	daN/ m	daN/ m	daN	daN	daN
2	Neve	0.0	0.0	0.0	-120.00	0.0	0.0	0.0
		0.0	0.0	0.0	-120 00	0.0	0.0	0.0

T:	agrica di procciona uniforma au picatra
Tipo	I carico di pressione uniforme su piastra

ld	Tipo	pressione
		daN/ m2
1	Vento	120.00

21_CAR_CARICHI_SOLAI

SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

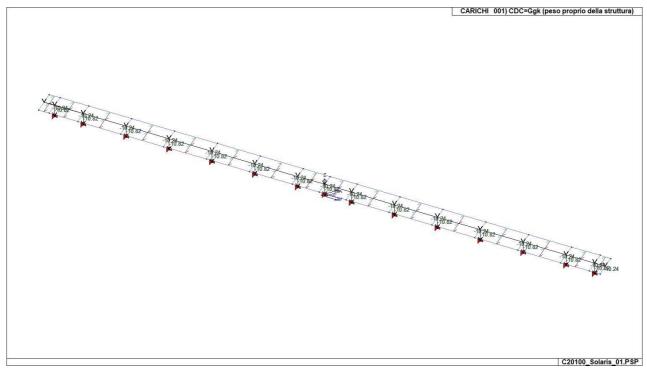
Sono previsti i sequenti 11 tipi di casi di carico:

			T tipl di dati di carico.
	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti
3	Qk	NA	caso di carico con azioni variabili
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura
9	Esk	SA	caso di carico sismico con analisi statica equivalente
10	Edk	SA	caso di carico sismico con analisi dinamica
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in condizione sismica
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni

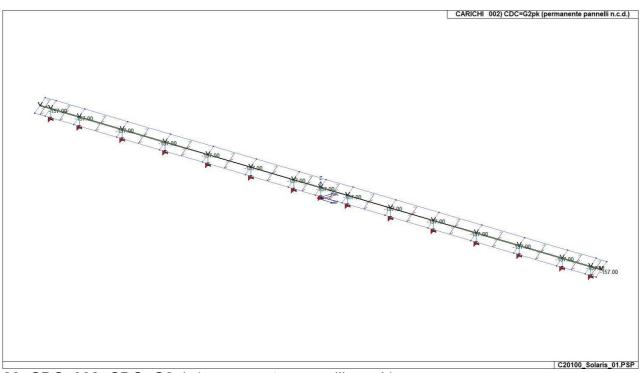
Sono di tipo automatico A (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Onk

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico: 7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

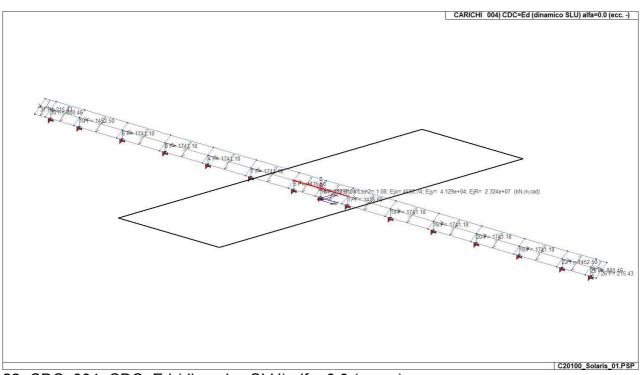

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

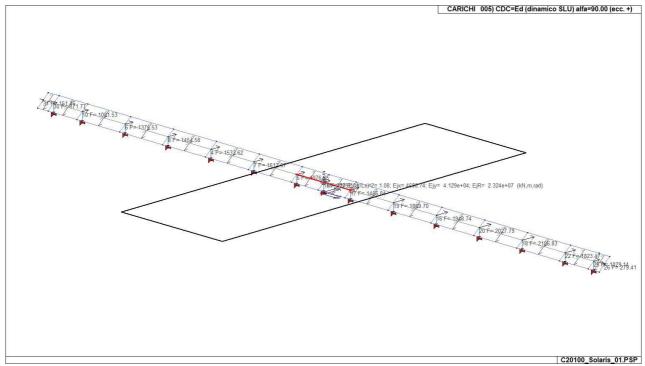
Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: *Numero Tipo* e *Sigla identificativa*, *Valore di riferimento* del caso di carico (se previsto).

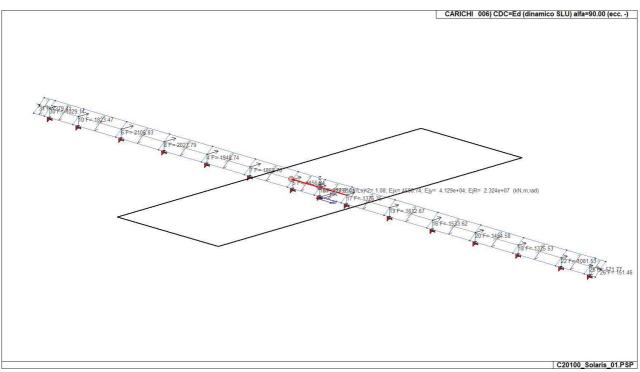

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

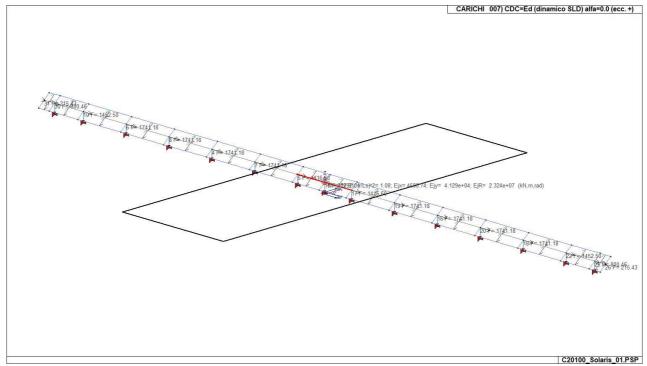
Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

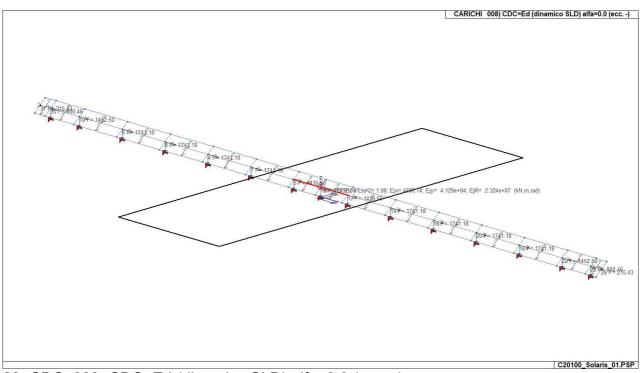
CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Gsk	CDC=G2pk (permanente pannelli n.c.d.)	
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:1.00 per 2 CDC=G2pk (permanente pannelli n.c.d.)
			partecipazione:1.00 per 12 CDC=Qk neve
4	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
6	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
10	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico
11	Qvk	CDC=Qvk (carico da vento) dir Y	Pannello:da 1 a 32 Azione : Vento
12	Qk	CDC=Qk neve	D2 :da 4 a 11 Azione : Neve
			D2 :da 20 a 27 Azione : Neve

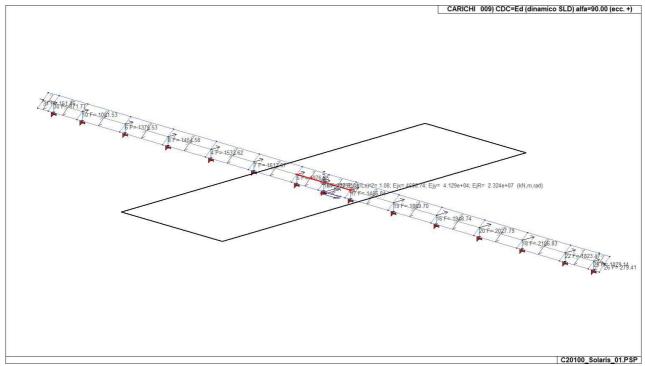

22_CDC_001_CDC=Ggk (peso proprio della struttura)

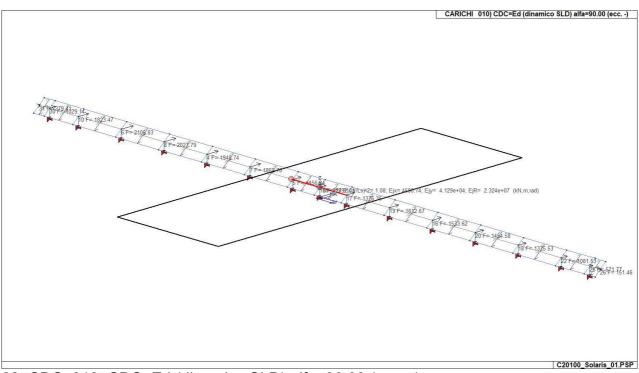

22_CDC_002_CDC=G2pk (permanente pannelli n.c.d.)


22_CDC_003_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)

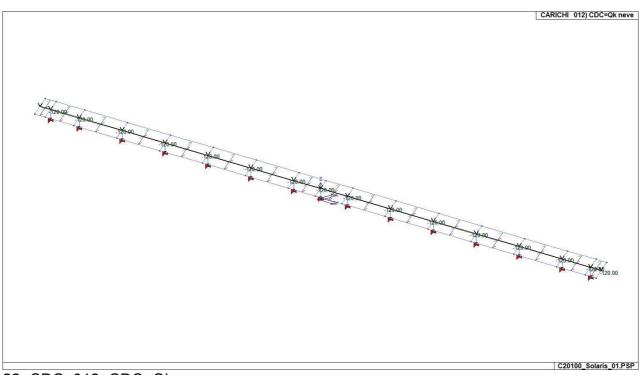

22_CDC_004_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. -)


22_CDC_005_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)


22_CDC_006_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. -)


22_CDC_007_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)


22_CDC_008_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. -)


22_CDC_009_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)

22_CDC_010_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. -)

22_CDC_011_CDC=Qvk (carico da vento) dir Y

22_CDC_012_CDC=Qk neve

DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Combinazione frequente SLE

 $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi_{21}Qk_1 + \psi_{22}Qk_2 + \psi_{23}Qk_3 + ...$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

 $G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$

Dove:

NTC 2018 Tabella 2.5.I

1110 2010 1450114 2.0.1										
Destinazione d'uso/azione	Ψ0	Ψ1	ψ2							
Categoria A residenziali	0,70	0,50	0,30							
Categoria B uffici	0,70	0,50	0,30							
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60							
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60							
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80							
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60							
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30							
Categoria H Coperture	0,00	0,00	0,00							
Vento	0,60	0,20	0,00							
Neve a quota <= 1000 m	0,50	0,20	0,00							
Neve a quota > 1000 m	0,70	0,50	0,20							
Variazioni Termiche	0,60	0,50	0,00							

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A1	A2
		γf			
Carichi permanenti	Favorevoli Sfavorevoli	γG1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	γG2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 1	
2	SLU	Comb. SLU A1 2	
3	SLU	Comb. SLU A1 3	
4	SLU	Comb. SLU A1 4	
5	SLU	Comb. SLU A1 5	
6	SLU	Comb. SLU A1 6	
7	SLU	Comb. SLU A1 7	

Cmb	Tine	Sigla Id	offotto D-dolta
8 8	Tipo SLU	Sigla Id Comb. SLU A1 8	effetto P-delta
9	SLU	Comb. SLU A1 (SLV sism.) 9	
10	SLU	Comb. SLU A1 (SLV sism.) 10	
11	SLU	Comb. SLU A1 (SLV sism.) 11	
12	SLU	Comb. SLU A1 (SLV sism.) 12	
13	SLU	Comb. SLU A1 (SLV sism.) 13	
14	SLU	Comb. SLU A1 (SLV sism.) 14	
15	SLU	Comb. SLU A1 (SLV sism.) 15	
16	SLU SLU	Comb. SLU A1 (SLV sism.) 16 Comb. SLU A1 (SLV sism.) 17	
17 18	SLU	Comb. SLU A1 (SLV sism.) 18	
19	SLU	Comb. SLU A1 (SLV sism.) 19	
20	SLU	Comb. SLU A1 (SLV sism.) 20	
21	SLU	Comb. SLU A1 (SLV sism.) 21	
22	SLU	Comb. SLU A1 (SLV sism.) 22	
23	SLU	Comb. SLU A1 (SLV sism.) 23	
24	SLU	Comb. SLU A1 (SLV sism.) 24	
25	SLU	Comb. SLU A1 (SLV sism.) 25	
26	SLU	Comb. SLU A1 (SLV sism.) 26	
27 28	SLU SLU	Comb. SLU A1 (SLV sism.) 27 Comb. SLU A1 (SLV sism.) 28	
29	SLU	Comb. SLU A1 (SLV sism.) 29	
30	SLU	Comb. SLU A1 (SLV sism.) 30	
31	SLU	Comb. SLU A1 (SLV sism.) 31	
32	SLU	Comb. SLU A1 (SLV sism.) 32	
33	SLU	Comb. SLU A1 (SLV sism.) 33	
34	SLU	Comb. SLU A1 (SLV sism.) 34	
35	SLU	Comb. SLU A1 (SLV sism.) 35	
36	SLU	Comb. SLU A1 (SLV sism.) 36	
37	SLU	Comb. SLU A1 (SLV sism.) 37	
38 39	SLU SLU	Comb. SLU A1 (SLV sism.) 38 Comb. SLU A1 (SLV sism.) 39	
40	SLU	Comb. SLU A1 (SLV sism.) 40	
41	SLD(sis)	Comb. SLE (SLD Danno sism.) 41	
42	SLD(sis)	Comb. SLE (SLD Danno sism.) 42	
43	SLD(sis)	Comb. SLE (SLD Danno sism.) 43	
44	SLD(sis)	Comb. SLE (SLD Danno sism.) 44	
45	SLD(sis)	Comb. SLE (SLD Danno sism.) 45	
46	SLD(sis)	Comb. SLE (SLD Danno sism.) 46	
47	SLD(sis)	Comb. SLE (SLD Danno sism.) 47	
48 49	SLD(sis) SLD(sis)	Comb. SLE (SLD Danno sism.) 48 Comb. SLE (SLD Danno sism.) 49	
50	SLD(sis)	Comb. SLE (SLD Danno sism.) 50	
51	SLD(sis)	Comb. SLE (SLD Danno sism.) 51	
52	SLD(sis)	Comb. SLE (SLD Danno sism.) 52	
53	SLD(sis)	Comb. SLE (SLD Danno sism.) 53	
54	SLD(sis)	Comb. SLE (SLD Danno sism.) 54	
55	SLD(sis)	Comb. SLE (SLD Danno sism.) 55	
56	SLD(sis)	Comb. SLE (SLD Danno sism.) 56	
57	SLD(sis)	Comb. SLE (SLD Danno sism.) 57	
58 50	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
59 60	SLD(sis) SLD(sis)	Comb. SLE (SLD Danno sism.) 59 Comb. SLE (SLD Danno sism.) 60	
61	SLD(sis)	Comb. SLE (SLD Danno sism.) 60 Comb. SLE (SLD Danno sism.) 61	
62	SLD(sis)	Comb. SLE (SLD Danno sism.) 62	
63	SLD(sis)	Comb. SLE (SLD Danno sism.) 63	
64	SLD(sis)	Comb. SLE (SLD Danno sism.) 64	
65	SLD(sis)	Comb. SLE (SLD Danno sism.) 65	
66	SLD(sis)	Comb. SLE (SLD Danno sism.) 66	
67	SLD(sis)	Comb. SLE (SLD Danno sism.) 67	
68	SLD(sis)	Comb. SLE (SLD Danno sism.) 68	
69 70	SLD(sis)	Comb. SLE (SLD Danno sism.) 69	
70 71	SLD(sis) SLD(sis)	Comb. SLE (SLD Danno sism.) 70 Comb. SLE (SLD Danno sism.) 71	
71 72	SLD(sis)	Comb. SLE (SLD Danno sism.) 71 Comb. SLE (SLD Danno sism.) 72	
73	SLE(r)	Comb. SLE(rara) 73	
74	SLE(r)	Comb. SLE(rara) 74	
75	SLE(r)	Comb. SLE(rara) 75	
			•

Cmb	Tipo	Sigla Id	effetto P-delta
76	SLE(r)	Comb. SLE(rara) 76	
77	SLE(f)	Comb. SLE(freq.) 77	
78	SLE(f)	Comb. SLE(freq.) 78	
79	SLE(f)	Comb. SLE(freq.) 79	
80	SLE(p)	Comb. SLE(perm.) 80	

	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
1	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50	0.0		
2	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50	0.75		
3	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50	0.0	—	
4	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50	0.75	—	
5	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90	0.0		
6	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90	1.50		
/	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90	0.0	 	
8	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90	1.50	 	
9	1.00	1.00	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	_
	1.00	1.00	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	_
11	1.00	1.00	1.00 1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	
12 13	1.00	1.00	-1.00	0.0	0.30 0.0	0.0 -0.30	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	-	-	-1.00	_	+			_	-		+	+	+	+
14 15	1.00	1.00	1.00	0.0	0.0	0.30 -0.30	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	1.00	1.00	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.0	+	+
16 17	1.00	1.00	0.0	-1.00	-0.30	0.30	0.0	0.0	0.0	0.0	0.0	0.0	+	+
18	1.00	1.00	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	-	1.00	-	_	-0.30	0.0		0.0	0.0	0.0	0.0	0.0	+	+
19 20	1.00	1.00	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	1.00			_	0.30			0.0	0.0			0.0	+	+
21 22	1.00	1.00	0.0	-1.00 -1.00	0.0	-0.30 0.30	0.0	0.0	0.0	0.0	0.0	0.0	+	+
22 23	1.00	1.00	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.0	+-	+
	1.00	1.00	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.0	+	+
24 25	1.00	1.00	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	1.00	1.00	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
20 27	1.00	1.00	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	1.00	1.00	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
29	1.00	1.00	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
30	1.00	1.00	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
31	1.00	1.00	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
32	1.00	1.00	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	1.00	1.00	-0.30	0.00	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	+	+
34	1.00	1.00	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	+	+
35	1.00	1.00	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	+	+
36	1.00	1.00	0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	+	+
37	1.00	1.00	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	1.00	1.00	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	+	+
39	1.00	1.00	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0	+	+
	1.00	1.00	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	†	+
41	1.00	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	t	1
	1.00	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	\top	1
	1.00	1.00	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	1 	1
	1.00	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0	0.0	0.0		
	1.00	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30	0.0	0.0	1	1
	1.00	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30	0.0	0.0	1	1
47	1.00	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30	0.0	0.0	1	
48	1.00	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30	0.0	0.0		
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.0	0.0	0.0	1	1
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0	0.0	0.0	1	
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0	0.0	0.0	1	
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0	0.0	0.0		
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0	0.0		
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	0.0	1	
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0	0.0		
	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0	0.0		
		1.00	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	t	1
57	1.00													
57 58	1.00 1.00	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0	0.0	0.0		

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
60	1.00	1.00	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0	0.0	0.0		
61	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0	0.0	0.0		
62	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0	0.0	0.0		
63	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0	0.0	0.0		
64	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0	0.0	0.0		
65	1.00	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00	0.0	0.0		
66	1.00	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00	0.0	0.0		
67	1.00	1.00	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00	0.0	0.0		
68	1.00	1.00	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00	0.0	0.0		
69	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0	0.0		
70	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0	0.0		
71	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0	0.0		
72	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0	0.0		
73	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0		
74	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.50		
75	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.60	0.0		
76	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.60	1.00		
77	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.20	0.0		
78	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
79	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.20		
80	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri della struttura						
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica	
I	50.0	0.7	35.0	В	T1	

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

ld nodo	Longitudine		Latitudine		Distanza	
						Km
Loc.		16.756		40.794		
33238		16.726		40.789		2.577
33239		16.792		40.787		3.119
33017		16.795		40.837		5.780
33016		16.729		40.839		5.477

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	30.0	0.032	2.460	0.260
SLD	63.0	35.0	0.034	2.470	0.270
SLV	10.0	332.0	0.079	2.620	0.410
SLC	5.0	682.0	0.100	2.660	0.440

SL	ag	S	Fo	Fv	Tb	Tc	Td
	g				sec	sec	sec
SLO	0.032	1.200	2.460	0.591	0.125	0.374	1.727
SLD	0.034	1.200	2.470	0.613	0.129	0.386	1.735
SLV	0.079	1.200	2.620	0.995	0.180	0.539	1.916
SLC	0.100	1.200	2.660	1.133	0.190	0.570	1.998

RISULTATI ANALISI SISMICHE

LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i seguenti valori:

Angolo di ingresso	Angolo di ingresso dell'azione sismica orizzontale
Fattore di importanza	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
Zona sismica	Zona sismica
Accelerazione ag	Accelerazione orizzontale massima sul suolo
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di duttilità CD	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
Fattore riduz. SLD	Fattore di riduzione dello spettro elastico per lo stato limite di danno
Periodo proprio T1	Periodo proprio di vibrazione della struttura
Coefficiente Lambda	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Ordinata spettro Sd(T1)	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale (verticale Svd)
Ordinata spettro Se(T1)	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno,
	componente orizzontale (verticale Sve)
Ordinata spettro S (Tb-Tc)	Valore dell' ordinata dello spettro in uso nel tratto costante
numero di modi considerati	Numero di modi di vibrare della struttura considerati nell'analisi dinamica

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

- a) analisi sismica statica equivalente:
 - quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - azione sismica complessiva
- b) analisi sismica dinamica con spettro di risposta:
 - quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
 - massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo la circolare n.7/2019 del C.S.LL.PP nelle combinazioni in SLC come previsto dal DM 17-01-2018. Per ogni combinazione è riportato il codice di verifica ed i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell'elastomero e tensioni nell'acciaio.

Qualora si applichi l'Ordinanza 3274 e s.m.i. le verifiche sono eseguite in accordo con l'allegato 10.A. In particolare la tabella, per ogni combinazione di calcolo, riporta:

Nodo	Nodo di appoggio dell' isolatore
Cmb	Combinazione oggetto della verifica
Verif.	Codice di verifica ok – verifica positiva , NV – verifica negativa, ND – verifica non completata
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi) combinato con la regola del 30%
Ang fi	Angolo utilizzato per il calcolo dell' area ridotta Ar (per dispositivi circolari)
٧	Azione verticale agente
Ar	Area ridotta efficace
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione
Sig s	Tensione nell' inserto in acciaio

Gam c(a,s,t)	Deformazioni di taglio dell' elestomero
Vcr	Carico critico per instabilità

Affinché la verifica sia positiva deve essere:

- V > 0
- 1) 2) 3) 4)
- Sig s < fyk
 Gam t < 5
 Gam s < Gam * (caratteristica dell' elastomero)
 Gam s < 2
- V < 0.5 Vcr

Con riferimento al **Documento di Affidabilità** "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" - versione Maggio 2011, disponibile per il download sul sito **www.2si.it**, si segnalano i seguenti esempi applicativi:

Test N°	Titolo				
23	DM 2008: SPETTRO				
29	SISMICA 1000/H, SOMMA V, EFFETTO P-δ				
30	NALISI DI UN EDIFICIO CON ISOLATORI SISMICI				
70	MASSE SISMICHE				
75	PROGETTO DI ISOLATORI ELASTOMERICI				
76	VERIFICA DI ISOLATORI ELASTOMERICI				
77	VERIFICA DI ISOLATORI FRICTION PENDULUM				

CDC	Tipo	Sigla Id	Note
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.249 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.206 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 24
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	0.0	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	4.039	0.248	0.249	0.0	0.0	489.57	2.1	0.0	0.0	0.0	0.0
2	4.865	0.206	0.249	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
3	5.679	0.176	0.245	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
4	6.030	0.166	0.237	4820.00	21.1	0.0	0.0	0.0	0.0	0.0	0.0
5	8.126	0.123	0.200	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
6	8.840	0.113	0.192	0.0	0.0	1.423e+04	62.4	0.0	0.0	0.0	0.0
7	9.080	0.110	0.189	0.0	0.0	1164.02	5.1	0.0	0.0	0.0	0.0
8	9.143	0.109	0.188	0.0	0.0	0.10	4.52e-04	0.0	0.0	0.0	0.0
9	9.967	0.100	0.181	0.0	0.0	2585.65	11.3	0.0	0.0	0.0	0.0
10	10.066	0.099	0.180	0.0	0.0	2728.30	12.0	0.0	0.0	0.0	0.0
11	11.711	0.085	0.168	0.0	0.0	456.92	2.0	0.0	0.0	0.0	0.0
12	13.269	0.075	0.159	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	13.647	0.073	0.158	0.0	0.0	1141.17	5.0	0.0	0.0	0.0	0.0
14	18.691	0.054	0.141	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
15	23.949	0.042	0.131	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
16	29.402	0.034	0.124	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.120	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.115	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.113	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.109	0.01	5.55e-05	0.0	0.0	0.0	0.0	0.0	0.0
21	60.074	0.017	0.109	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.108	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.105	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.103	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In				100.00		100.00		100.00			
percentuale											

CDC	Tipo	Sigla Id	Note
4	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.249 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.206 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 24
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	0.0	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	1 '		Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	4.039	0.248	0.249	0.0	0.0	489.57	2.1	0.0	0.0	0.0	0.0
2	4.865	0.206	0.249	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
3	5.679	0.176	0.245	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
4	6.030	0.166	0.237	4820.00	21.1	0.0	0.0	0.0	0.0	0.0	0.0
5	8.126	0.123	0.200	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
6	8.840	0.113	0.192	0.0	0.0	1.423e+04	62.4	0.0	0.0	0.0	0.0
7	9.080	0.110	0.189	0.0	0.0	1164.02	5.1	0.0	0.0	0.0	0.0
8	9.143	0.109	0.188	0.0	0.0	0.10	4.52e-04	0.0	0.0	0.0	0.0
9	9.967	0.100	0.181	0.0	0.0	2585.65	11.3	0.0	0.0	0.0	0.0
10	10.066	0.099	0.180	0.0	0.0	2728.30	12.0	0.0	0.0	0.0	0.0
11	11.711	0.085	0.168	0.0	0.0	456.92	2.0	0.0	0.0	0.0	0.0
12	13.269	0.075	0.159	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	13.647	0.073	0.158	0.0	0.0	1141.17	5.0	0.0	0.0	0.0	0.0
14	18.691	0.054	0.141	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0
15	23.949	0.042	0.131	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
16	29.402	0.034	0.124	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.120	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.115	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.113	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.109	0.01	5.55e-05	0.0	0.0	0.0	0.0	0.0	0.0
21	60.074	0.017	0.109	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.108	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.105	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.103	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.249 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.108 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 24
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	3.95	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	3.547	0.282	0.249	0.0	0.0	318.18	1.4	0.0	0.0	0.0	0.0
2	4.817	0.208	0.249	0.0	0.0	171.38	8.0	0.0	0.0	0.0	0.0
3	4.865	0.206	0.249	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
4	5.679	0.176	0.245	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
5	6.030	0.166	0.237	4820.00	21.1	0.0	0.0	0.0	0.0	0.0	0.0
6	8.126	0.123	0.200	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
7	8.140	0.123	0.200	0.0	0.0	5707.78	25.0	0.0	0.0	0.0	0.0
8	8.538	0.117	0.195	0.0	0.0	3527.67	15.5	0.0	0.0	0.0	0.0
9	9.281	0.108	0.187	0.0	0.0	5795.89	25.4	0.0	0.0	0.0	0.0
10	10.073	0.099	0.180	0.0	0.0	4777.35	21.0	0.0	0.0	0.0	0.0
11	11.790	0.085	0.167	0.0	0.0	2078.85	9.1	0.0	0.0	0.0	0.0
12	13.269	0.075	0.159	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	16.139	0.062	0.148	0.0	0.0	414.32	1.8	0.0	0.0	0.0	0.0
14	18.691	0.054	0.141	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0
15	23.949	0.042	0.131	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
	29.402	0.034	0.124	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.120	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.115	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.113	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.109	0.01	5.55e-05	0.0	0.0	0.0		0.0	0.0
21	60.074	0.017	0.109	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.108	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.105	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.103	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
6	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.249 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.108 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 24
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	-3.95	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Ζxg			v
	Hz	sec	g	daN		daN		daN			
1	3.547	0.282	0.249	0.0	0.0	318.18	1.4	0.0	0.0	0.0	0.0
2	4.817	0.208	0.249	0.0	0.0	171.38	8.0	0.0	0.0	0.0	0.0
3	4.865	0.206	0.249	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
4	5.679	0.176	0.245	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
5	6.030	0.166	0.237	4820.00	21.1	0.0	0.0	0.0	0.0	0.0	0.0
6	8.126	0.123	0.200	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
7	8.140	0.123	0.200	0.0	0.0	5707.78	25.0	0.0	0.0	0.0	0.0
8	8.538	0.117	0.195	0.0	0.0	3527.67	15.5	0.0	0.0	0.0	0.0
9	9.281	0.108	0.187	0.0	0.0	5795.89	25.4	0.0	0.0	0.0	0.0
10	10.073	0.099	0.180	0.0	0.0	4777.35	21.0	0.0	0.0	0.0	0.0
11	11.790	0.085	0.167	0.0	0.0	2078.85	9.1	0.0	0.0	0.0	0.0
12	13.269	0.075	0.159	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	16.139	0.062	0.148	0.0	0.0	414.32	1.8	0.0	0.0	0.0	0.0
14	18.691	0.054	0.141	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0
15	23.949	0.042	0.131	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
16	29.402	0.034	0.124	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.120	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.115	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.113	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.109	0.01	5.55e-05	0.0	0.0	0.0	0.0	0.0	0.0
21	60.074	0.017	0.109	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.108	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.105	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.103	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.206 sec.
			numero di modi considerati: 24
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	0.0	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			V
	Hz	sec	g	daN		daN		daN			
1	4.039	0.248	0.100	0.0	0.0	489.57	2.1	0.0	0.0	0.0	0.0
2	4.865	0.206	0.100	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
3	5.679	0.176	0.100	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
4	6.030	0.166	0.100	4820.00	21.1	0.0	0.0	0.0	0.0	0.0	0.0
5	8.126	0.123	0.097	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
6	8.840	0.113	0.093	0.0	0.0	1.423e+04	62.4	0.0	0.0	0.0	0.0
7	9.080	0.110	0.091	0.0	0.0	1164.02	5.1	0.0	0.0	0.0	0.0
8	9.143	0.109	0.091	0.0	0.0	0.10	4.52e-04	0.0	0.0	0.0	0.0
9	9.967	0.100	0.087	0.0	0.0	2585.65	11.3	0.0	0.0	0.0	0.0
10	10.066	0.099	0.086	0.0	0.0	2728.30	12.0	0.0	0.0	0.0	0.0

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
11	11.711	0.085	0.080	0.0	0.0	456.92	2.0	0.0	0.0	0.0	0.0
12	13.269	0.075	0.075	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	13.647	0.073	0.074	0.0	0.0	1141.17	5.0	0.0	0.0	0.0	0.0
14	18.691	0.054	0.065	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0
15	23.949	0.042	0.060	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
16	29.402	0.034	0.056	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.054	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.051	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.050	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.048	0.01	5.55e-05	0.0	0.0	0.0	0.0	0.0	0.0
21	60.074	0.017	0.048	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.047	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.046	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.045	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.206 sec.
			numero di modi considerati: 24
			combinaz. modale: CQC

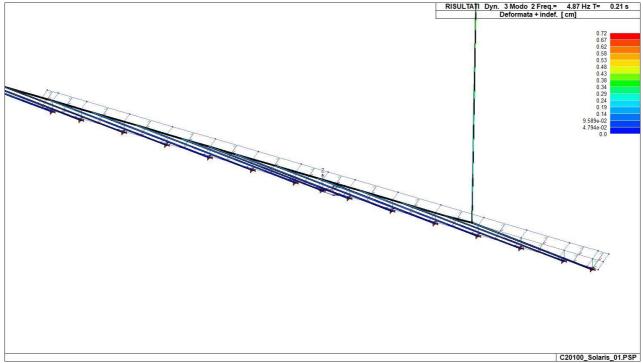
Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	0.0	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									

Modo	Frequenza	Periodo	Acc. Spettrale	M efficace X x q	%	M efficace Y x g		M efficace Z x q	%	Energia	Energia x v
	Hz	sec	q	daN		daN		daN			1
1	4.039	0.248	0.100	0.0	0.0	489.57	2.1	0.0	0.0	0.0	0.0
2	4.865	0.206	0.100	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
3	5.679	0.176	0.100	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
4	6.030	0.166	0.100	4820.00	21.1	0.0	0.0	0.0	0.0	0.0	0.0
5	8.126	0.123	0.097	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
6	8.840	0.113	0.093	0.0	0.0	1.423e+04	62.4	0.0	0.0	0.0	0.0
7	9.080	0.110	0.091	0.0	0.0	1164.02	5.1	0.0	0.0	0.0	0.0
8	9.143	0.109	0.091	0.0	0.0	0.10	4.52e-04	0.0	0.0	0.0	0.0
9	9.967	0.100	0.087	0.0	0.0	2585.65	11.3	0.0	0.0	0.0	0.0
10	10.066	0.099	0.086	0.0	0.0	2728.30	12.0	0.0	0.0	0.0	0.0
11	11.711	0.085	0.080	0.0	0.0	456.92	2.0	0.0	0.0	0.0	0.0
12	13.269	0.075	0.075	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	13.647	0.073	0.074	0.0	0.0	1141.17	5.0	0.0	0.0	0.0	0.0
14	18.691	0.054	0.065	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0
15	23.949	0.042	0.060	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
16	29.402	0.034	0.056	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.054	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.051	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.050	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.048	0.01	5.55e-05	0.0	0.0	0.0	0.0	0.0	0.0
21	60.074	0.017	0.048	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.047	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.046	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.045	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In percentuale				100.00		100.00		100.00			

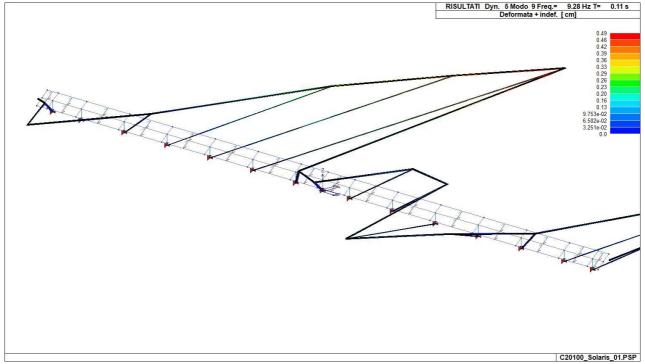
CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.108 sec.
			numero di modi considerati: 24
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	3.95	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									

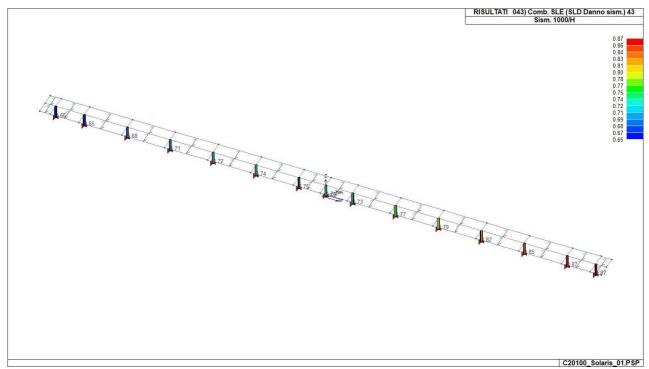
Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			V
	Hz	sec	g	daN		daN		daN			
1	3.547	0.282	0.100	0.0	0.0	318.18	1.4	0.0		0.0	0.0
2	4.817	0.208	0.100	0.0	0.0	171.38	8.0	0.0	0.0	0.0	0.0
3	4.865	0.206	0.100	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
4	5.679	0.176	0.100	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
5	6.030	0.166	0.100	4820.00	21.1	0.0		0.0	0.0	0.0	0.0
6	8.126	0.123	0.097	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
7	8.140	0.123	0.097	0.0	0.0	5707.78	25.0	0.0	0.0	0.0	0.0
8	8.538	0.117	0.095	0.0	0.0	3527.67	15.5	0.0	0.0	0.0	0.0
9	9.281	0.108	0.090	0.0	0.0	5795.89	25.4	0.0	0.0	0.0	0.0
10	10.073	0.099	0.086	0.0	0.0	4777.35	21.0	0.0	0.0	0.0	0.0
11	11.790	0.085	0.080	0.0	0.0	2078.85	9.1	0.0	0.0	0.0	0.0
12	13.269	0.075	0.075	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	16.139	0.062	0.069	0.0	0.0	414.32	1.8	0.0	0.0	0.0	0.0
14	18.691	0.054	0.065	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0
15	23.949	0.042	0.060	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
16	29.402	0.034	0.056	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.054	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.051	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.050	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.048	0.01	5.55e-05	0.0	0.0	0.0	0.0	0.0	0.0
21	60.074	0.017	0.048	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.047	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.046	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.045	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In percentuale				100.00		100.00		100.00			


CDC	Tipo	Sigla Id	Note
10	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.108 sec.
			numero di modi considerati: 24
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
1.15	2.279e+04	0.0	0.0	-3.95	0.0	0.0	0.0	1.082	0.0	0.0
Risulta	2.279e+04									


Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	3.547	0.282	0.100	0.0	0.0	318.18	1.4	0.0	0.0	0.0	0.0
2	4.817	0.208	0.100	0.0	0.0	171.38	8.0	0.0	0.0	0.0	0.0
3	4.865	0.206	0.100	1.797e+04	78.8	0.0	0.0	0.0	0.0	0.0	0.0
4	5.679	0.176	0.100	0.0	0.0	0.0	0.0	411.71	1.8	0.0	0.0
5	6.030	0.166	0.100	4820.00	21.1	0.0	0.0	0.0	0.0	0.0	0.0
6	8.126	0.123	0.097	0.0	0.0	0.0	0.0	22.09	9.69e-02	0.0	0.0
7	8.140	0.123	0.097	0.0	0.0	5707.78	25.0	0.0	0.0	0.0	0.0
8	8.538	0.117	0.095	0.0	0.0	3527.67	15.5	0.0	0.0	0.0	0.0
9	9.281	0.108	0.090	0.0	0.0	5795.89	25.4	0.0	0.0	0.0	0.0
10	10.073	0.099	0.086	0.0	0.0	4777.35	21.0	0.0	0.0	0.0	0.0
11	11.790	0.085	0.080	0.0	0.0	2078.85	9.1	0.0	0.0	0.0	0.0
12	13.269	0.075	0.075	2.42	1.06e-02	0.0	0.0	0.0	0.0	0.0	0.0
13	16.139	0.062	0.069	0.0	0.0	414.32	1.8	0.0	0.0	0.0	0.0
14	18.691	0.054	0.065	0.0	0.0	0.0	0.0	0.29	1.26e-03	0.0	0.0
15	23.949	0.042	0.060	2.29	1.01e-02	0.0	0.0	0.0	0.0	0.0	0.0
16	29.402	0.034	0.056	0.0	0.0	0.0	0.0	0.04	1.81e-04	0.0	0.0
17	33.814	0.030	0.054	8.40e-03	3.69e-05	0.0	0.0	0.0	0.0	0.0	0.0
18	42.279	0.024	0.051	0.07	3.15e-04	0.0	0.0	0.0	0.0	0.0	0.0
19	47.947	0.021	0.050	0.0	0.0	0.0	0.0	1.18	5.16e-03	0.0	0.0
20	59.922	0.017	0.048	0.01	5.55e-05	0.0	0.0	0.0	0.0	0.0	0.0
21	60.074	0.017	0.048	0.0	0.0	0.0	0.0	1.481e+04	65.0	0.0	0.0
22	67.577	0.015	0.047	0.0	0.0	0.0	0.0	5608.23	24.6	0.0	0.0
23	87.340	0.011	0.046	0.0	0.0	0.0	0.0	1935.84	8.5	0.0	0.0
24	110.118	0.009	0.045	2.14e-03	9.39e-06	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.279e+04		2.279e+04		2.279e+04			
In percentuale				100.00		100.00		100.00			

	-	•		•	•	•	-	•	•			_
Cmb	Pilas. 100	00 etaT/h	etaT	inter. h	Pilas. 1	000 etaT/h	etaT	inter. h	Pilas.	1000 etaT/h	etaT	inter. h
			cm	cm			cm	cm			cm	cm
41	1	0.69	0.08	115.0	2	0.65	80.0	115.0	3	0.66	0.08	115.0
	12	0.74	0.08	115.0	13	0.75	0.09	115.0	14	0.74	0.09	115.0
	15	0.73	0.08	115.0	16	0.71	0.08	115.0	17	0.84	0.10	115.0
	18	0.87	0.10	115.0	19	0.87	0.10	115.0	28	0.82	0.09	115.0
	29	0.73	0.08	115.0	30	0.77	0.09	115.0	31	0.79	0.09	115.0
42	1	0.69	0.08	115.0	2	0.65	0.08	115.0	3	0.66	0.08	115.0
	12	0.74	0.08	115.0	13	0.75	0.09	115.0	14	0.74	0.09	115.0
	15	0.73	0.08	115.0	16	0.71	0.08	115.0	17	0.84	0.10	115.0
	18	0.87	0.10	115.0	19	0.87	0.10	115.0	28	0.82	0.09	115.0
	29	0.73	0.08	115.0	30	0.77	0.09	115.0	31	0.79	0.09	115.0
43	1	0.85	0.10	115.0	2	0.87	0.10	115.0	3	0.87	0.10	115.0
	12	0.74	0.08	115.0	13	0.73	0.08	115.0	14	0.77	0.09	115.0
	15	0.79	0.09	115.0	16	0.82	0.09	115.0	17	0.68	0.08	115.0
	18	0.65	0.07	115.0	19	0.66	0.08	115.0	28	0.71	0.08	115.0
	29	0.75	0.09	115.0	30	0.74	0.08	115.0	31	0.72	0.08	115.0
44	1	0.85	0.10	115.0	2	0.87	0.10	115.0	3	0.87	0.10	115.0
	12	0.74	0.08	115.0	13	0.73	0.08	115.0	14	0.77	0.09	115.0
	15	0.79	0.09	115.0	16	0.82	0.09	115.0	17	0.68	0.08	115.0
	18	0.65	0.07	115.0	19	0.66	0.08	115.0	28	0.71	0.08	115.0
	29	0.75	0.09	115.0	30	0.74	0.08	115.0	31	0.72	0.08	115.0
45	1	0.68	0.08	115.0	2	0.65	0.07	115.0	3	0.66	0.08	115.0
	12	0.74	0.08	115.0	13	0.75	0.09	115.0	14	0.74	0.08	115.0
	15	0.72	0.08	115.0	16	0.71	0.08	115.0	17	0.85	0.10	115.0
	18	0.87	0.10	115.0	19	0.87	0.10	115.0	28	0.82	0.09	115.0
	29	0.73	0.08	115.0	30	0.77	0.09	115.0	31	0.79	0.09	115.0
46	1	0.68	0.08	115.0	2	0.65	0.07	115.0	3	0.66	0.08	115.0
	12	0.74	0.08	115.0	13	0.75	0.09	115.0	14	0.74	0.08	115.0
	15	0.72	0.08	115.0	16	0.71	0.08	115.0	17	0.85	0.10	115.0
	18	0.87	0.10	115.0	19	0.87	0.10	115.0	28	0.82	0.09	115.0
	29	0.73	0.08	115.0	30	0.77	0.09	115.0	31	0.79	0.09	115.0
47	1	0.84	0.10	115.0	2	0.87	0.10	115.0	3	0.87	0.10	115.0
••	12	0.74	0.08	115.0	13	0.73	0.08	115.0	14	0.77	0.09	115.0
	15	0.79	0.09	115.0	16	0.82	0.09	115.0	17	0.69	0.08	115.0
	18	0.65	0.08	115.0	19	0.66	0.08	115.0	28	0.71	0.08	115.0
	29	0.75	0.09	115.0	30	0.74	0.09	115.0	31	0.73	0.08	115.0
48	1	0.84	0.10	115.0	2	0.87	0.10	115.0	3	0.87	0.10	115.0
40	12	0.74	0.08	115.0	13	0.73	0.08	115.0	14	0.77	0.09	115.0
	15	0.79	0.09	115.0	16	0.82	0.09	115.0	17	0.69	0.08	115.0
	18	0.75	0.08	115.0	19	0.66	0.08	115.0	28	0.03	0.08	115.0
	29	0.75	0.09	115.0	30	0.74	0.09	115.0	31	0.73	0.08	115.0
49	1	0.69	0.08	115.0	2	0.65	0.08	115.0	3	0.66	0.08	115.0
70	'	0.03	0.00	115.0	_	0.00	0.00	115.0	3	0.00	0.00	115.0


	12	0.74	0.08	115.0	13	0.75	0.09	115.0	14	0.74	0.09	115.0
	15	0.73	0.08	115.0	16	0.71	0.08	115.0	17	0.84	0.10	115.0
	18	0.87	0.10	115.0	19	0.87	0.10	115.0	28	0.82	0.09	115.0
	29	0.73	0.08	115.0	30	0.77	0.09	115.0	31	0.79	0.09	115.0
50	1	0.69	0.08	115.0	2	0.65	0.08	115.0	3	0.66	0.08	115.0
	12	0.74	0.08	115.0	13	0.75	0.09	115.0	14	0.74	0.09	115.0
	15	0.73	0.08	115.0	16	0.71	80.0	115.0	17	0.84	0.10	115.0
	20	0.00	0.00	445.0	20	0.05	0.04	115.0	24	0.00	0.04	445.0
72	29	0.30	0.03	115.0	30	0.35	0.04	115.0	31	0.36	0.04	115.0
Cmb	100	0 etaT/h										
		0.87										

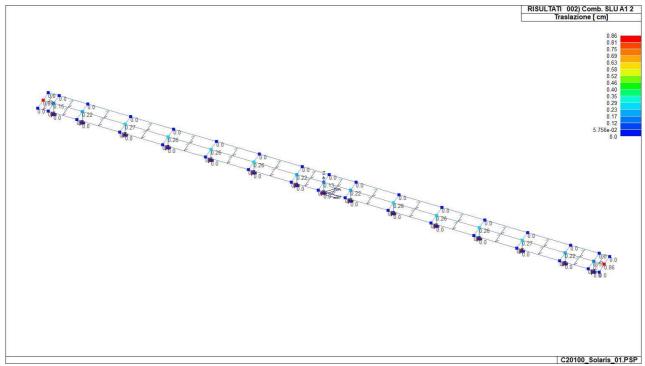
31_RIS_MODOX_002_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)

31_RIS_MODOY_009_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)

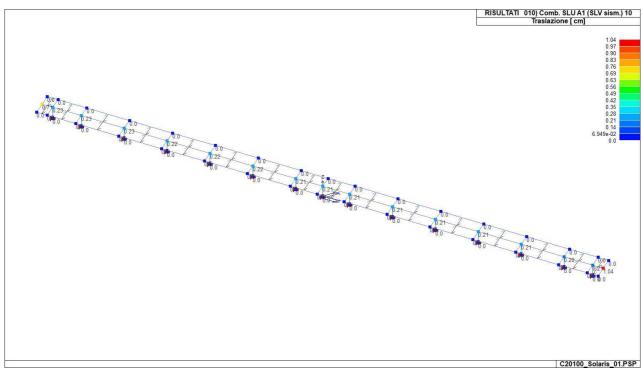
31_RIS_SLE_043_Comb. SLE (SLD Danno sism.) 43

RISULTATI NODALI

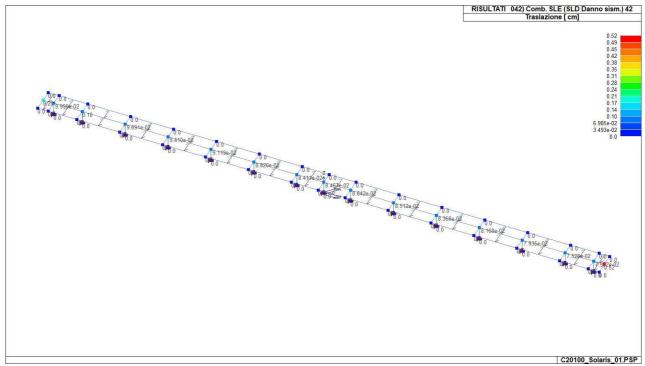
LEGENDA RISULTATI NODALI

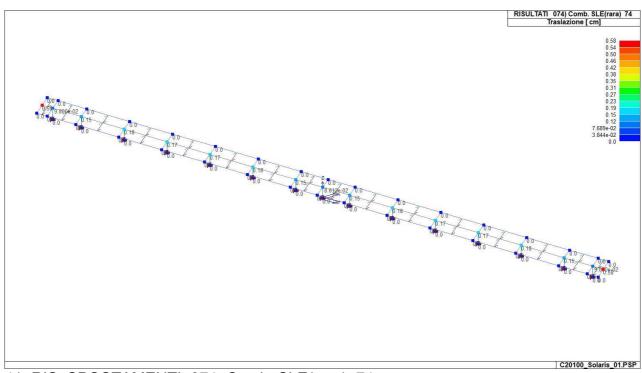

Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

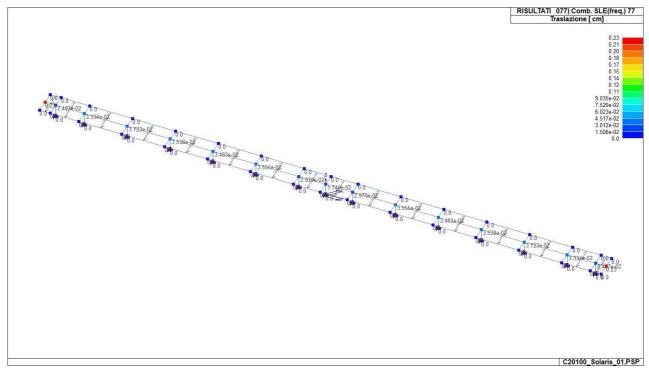
Una prima tabella riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.

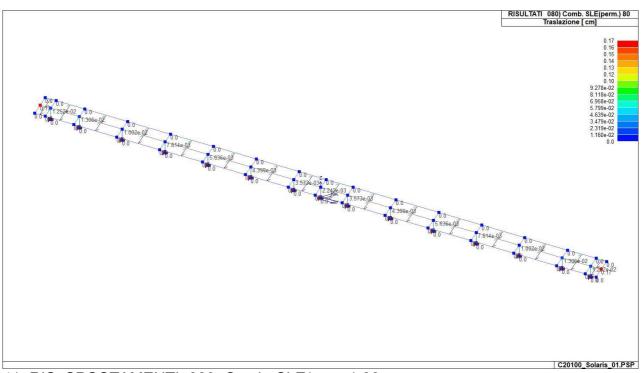

Una <u>seconda tabella</u> riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.


Nodo	Cmb	Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione Z
		cm	cm	cm			
1	1	0.0	0.0	0.0	0.0	0.0	0.0
1	9	0.0	0.0	0.0	0.0	0.0	0.0
1	41	0.0	0.0	0.0	0.0	0.0	0.0
1	73	0.0	0.0	0.0	0.0	0.0	0.0
1	77	0.0	0.0	0.0	0.0	0.0	0.0
1	80	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	0.0	0.0	0.0
2	9	0.0	0.0	0.0	0.0	0.0	0.0
2	41	0.0	0.0	0.0	0.0	0.0	0.0
2 2 2 3 3	73	0.0	0.0	0.0	0.0	0.0	0.0
2	77	0.0	0.0	0.0	0.0	0.0	0.0
2	80	0.0	0.0	0.0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0	0.0	0.0
3	9	0.0	0.0	0.0	0.0	0.0	0.0
3 3	41	0.0	0.0	0.0	0.0	0.0	0.0
3	73	0.0	0.0	0.0	0.0	0.0	0.0
3	77	0.0	0.0	0.0	0.0	0.0	0.0
3	80	0.0	0.0	0.0	0.0	0.0	0.0
4	1	0.01	0.26	-0.01	-3.34e-03	1.87e-05	-4.10e-04
4	2	0.01	0.26	-0.01	-3.34e-03	2.19e-05	-4.10e-04
4	10	0.22	-0.02	-4.03e-03	2.03e-04	1.35e-03	-1.25e-05
4	15	-0.21	0.02	-4.03e-03	-2.83e-04	-1.34e-03	-1.27e-05
4	34	0.07	-0.07	-4.03e-03	9.45e-04	4.10e-04	4.23e-05
4	43	-0.08	7.50e-03	-4.03e-03	-9.79e-05	-5.39e-04	6.02e-06
4	46	0.09	-0.01	-4.03e-03	1.38e-04	5.50e-04	6.07e-06
4	66	0.03	-0.04	-4.03e-03	4.59e-04	1.69e-04	2.02e-05
4	73	8.27e-03	0.17	-8.44e-03	-2.23e-03	1.25e-05	-2.73e-04
4	74	9.68e-03	0.17	-9.87e-03	-2.23e-03	1.46e-05	-2.73e-04
4	77	4.80e-03	0.03	-4.91e-03	-4.45e-04	7.27e-06	-5.46e-05
4	80	3.94e-03	0.0	-4.03e-03	0.0	5.96e-06	0.0
5	1	-3.63e-03	0.22	-0.01	-2.86e-03	-4.80e-03	-4.81e-03
5	2	-4.25e-03	0.22	-0.01	-2.86e-03	-5.62e-03	-4.81e-03
5 5	11	-0.21	0.01	-3.49e-03	-1.75e-04	-2.68e-03	-2.53e-05
5	34	0.06	-0.05	-3.35e-03	5.85e-04	-1.18e-03	8.71e-05
5	43	-0.09	6.51e-03	-3.43e-03	-8.42e-05	-1.99e-03	-1.22e-05
5 5	66	0.02	-0.02	-3.37e-03	2.82e-04	-1.39e-03	4.20e-05
5	73	-2.43e-03	0.15	-7.07e-03	-1.91e-03	-3.21e-03	-3.21e-03
5	73 74	-2.84e-03	0.15	-8.28e-03	-1.91e-03	-3.76e-03	-3.21e-03
5 5	77 77	-1.41e-03	0.03	-4.12e-03	-3.82e-04	-1.87e-03	-6.42e-04
5	80	-1.16e-03	0.03	-3.38e-03	0.0	-1.53e-03	0.0
6	1	0.03	0.26	-0.01	-3.44e-03	-2.87e-04	-1.29e-03
6	2	0.03	0.26	-0.01	-3.44e-03	-3.36e-04	-1.29e-03
6	11	-0.21	0.20		-3.44e-03 -1.77e-04	-1.49e-03	
6	14	0.23	-0.02	-4.11e-03 -4.07e-03	3.22e-04		-3.31e-05 5.74e-05
	34					1.31e-03	
6	34 46	0.07	-0.08	-4.09e-03	1.07e-03	3.29e-04	1.91e-04
6		0.10	-0.01	-4.08e-03	1.57e-04	4.74e-04	2.39e-05
6	47	-0.08	0.01	-4.10e-03	-1.57e-04	-6.57e-04	-2.39e-05
6	66	0.04	-0.04	-4.09e-03	5.23e-04	7.81e-05	7.95e-05
66	80	0.0	0.0	0.0	0.0	0.0	0.0
Nodo		Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione Z
		-0.23	-0.16	-1.01	-3.44e-03	-8.38e-03	-4.94e-03
		0.23	0.58	0.66	1.07e-03	8.38e-03	4.94e-03
		3:20	2.00	2.00	2 00		

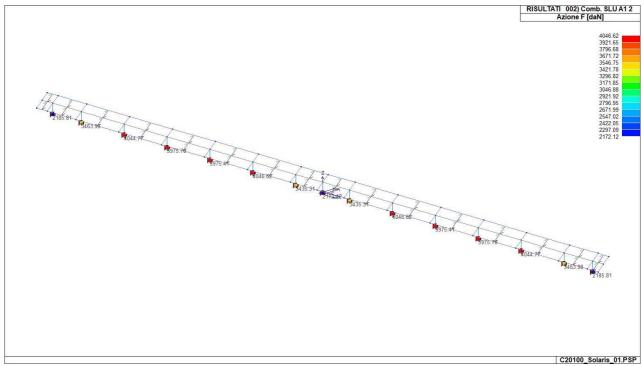

41_RIS_SPOSTAMENTI_002_Comb. SLU A1 2


41_RIS_SPOSTAMENTI_010_Comb. SLU A1 (SLV sism.) 10


41_RIS_SPOSTAMENTI_042_Comb. SLE (SLD Danno sism.) 42

41_RIS_SPOSTAMENTI_074_Comb. SLE(rara) 74

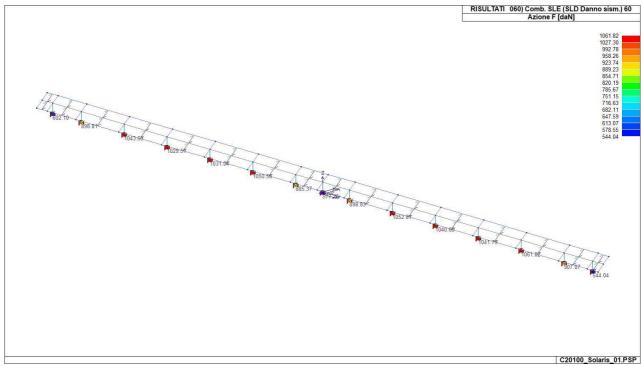
41_RIS_SPOSTAMENTI_077_Comb. SLE(freq.) 77

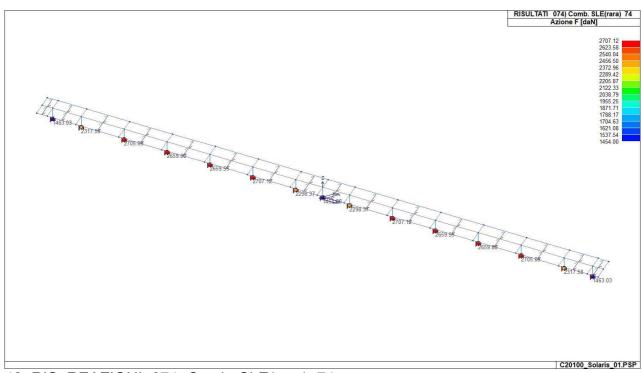


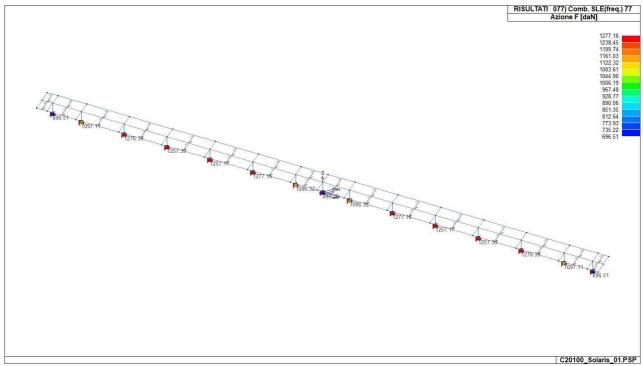
41_RIS_SPOSTAMENTI_080_Comb. SLE(perm.) 80

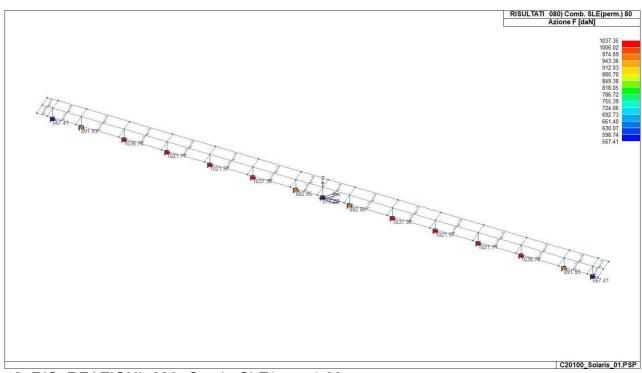
Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
1	1	27.21	1389.89	-3181.37	-1.599e+05	1614.44	-1.19
1	2	31.88	1389.89	-3724.39	-1.599e+05	1891.42	-1.19
1	7	15.63	833.93	-1830.43	-9.594e+04	927.28	-0.71
1	14	340.29	-118.64	-1021.33	1.361e+04	2.317e+04	0.04
1	15	-322.94	118.64	-1021.73	-1.361e+04	-2.214e+04	-0.04
1	34	108.16	-395.47	-1021.47	4.536e+04	7309.99	0.12
1	42	142.67	-40.77	-1021.45	4686.67	9666.98	-0.02
1	43	-125.32	40.77	-1021.61	-4686.67	-8637.59	0.02
1	66	48.87	-192.29	-1021.51	2.205e+04	3260.38	0.06

1	73	18.21	926.59	-2130.82	-1.066e+05	1080.50	-0.79
1	73 74	21.33	926.59	-2492.83	-1.066e+05	1265.15	-0.79
1	75	14.40	555.96	-1687.10	-6.396e+04	854.18	-0.47
1	77	10.58	185.32	-1243.39	-2.132e+04	627.86	-0.16
1	78	8.68	0.0	-1021.53	0.0	514.70	0.0
1	80	8.68	0.0	-1021.53	0.0	514.70	0.0
2	1	23.68	1389.53	-3181.84	-1.599e+05	1844.27	1.21
2	2	27.74	1389.53	-3724.95	-1.599e+05	2160.68	1.21
2 2 2	7	13.60	833.72	-1830.70	-9.592e+04	1059.29	0.72
2	9	341.35	76.59	-1022.41	-8796.99	2.338e+04	0.03
2	10	341.35	-76.59	-1022.41	8796.99	2.338e+04	-0.03
2 2	12	-326.25	-76.59	-1020.96	8796.99	-2.220e+04	-0.03
2	33	107.69	405.64	-1021.90	-4.664e+04	7424.76	0.22
2	41	142.38	36.94	-1021.98	-4242.95	9793.68	0.02
2	42	142.38	-36.94	-1021.98	4242.95	9793.68	-0.02
2	44	-127.29	-36.94	-1021.39	4242.95	-8617.74	-0.02
2	65	48.00	197.52	-1021.77	-2.271e+04	3349.68	0.10
2 2	73	15.85	926.36	-2131.13	-1.066e+05	1234.32	0.80
2 2	74	18.55	926.36	-2493.20	-1.066e+05	1445.25	0.80
2	75	12.53	555.81	-1687.35	-6.395e+04	975.78	0.48
2	77	9.21	185.27	-1243.57	-2.132e+04	717.24	0.16
2 2 2 3 3	78	7.55	0.0	-1021.68	0.0	587.97	0.0
2	80	7.55	0.0	-1021.68	0.0	587.97	0.0
3	1	656.55	1208.80	-2667.41	-1.381e+05	2.500e+04	-13.95
3	2	769.19	1208.80	-3122.26	-1.381e+05	2.929e+04	-13.95
3	7	377.10	725.28	-1535.23	-8.284e+04	1.436e+04	-8.37
3	10	557.05	-75.30	-830.12	8519.35	3.102e+04	0.07
3	11	-138.42	75.30	-885.23	-8519.35	-1.508e+04	-0.07
3	34	313.63	-252.29	-849.41	2.849e+04	1.488e+04	0.25
3	42	349.86	-36.23	-846.54	4098.66	1.729e+04	0.04
3	43	68.77	36.23	-868.81	-4098.66	-1345.09	-0.04
3	66	251.48	-121.52	-854.34	1.373e+04	1.076e+04	0.12
3	73	439.41	805.87	-1786.84	-9.205e+04	1.673e+04	-9.30
3	74	514.51	805.87	-2090.07	-9.205e+04	1.959e+04	-9.30
3	75	347.37	483.52	-1415.17	-5.523e+04	1.323e+04	-5.58
3	77	255.33	161.17	-1043.51	-1.841e+04	9722.60	-1.86
3	78	209.31	0.0	-857.68	0.0	7970.26	0.0
3	80	209.31	0.0	-857.68	0.0	7970.26	0.0
9	1	108.98	1439.00	-3227.11	-1.650e+05	5503.88	-3.75
 32	1 80	-19.86	0.0	-1037.16	0.0	-686.83	0.0
		-19.86 Azione X	0.0 Azione Y	-1037.16 Azione Z	0.0 Azione RX	-686.83 Azione RY	0.0 Azione RZ
 32		-19.86 Azione X -769.19	0.0 Azione Y -456.07	-1037.16 Azione Z -3781.83	0.0 Azione RX -1.650e+05	-686.83 Azione RY -3.102e+04	0.0 Azione RZ -14.31
 32		-19.86 Azione X	0.0 Azione Y	-1037.16 Azione Z	0.0 Azione RX	-686.83 Azione RY	0.0 Azione RZ
32 Nodo	80	-19.86 Azione X -769.19 769.19	0.0 Azione Y -456.07 1439.00	-1037.16 Azione Z -3781.83 -295.01	0.0 Azione RX -1.650e+05 5.193e+04	-686.83 Azione RY -3.102e+04 3.102e+04	0.0 Azione RZ -14.31 14.31
 32		-19.86 Azione X -769.19 769.19 Azione X	0.0 Azione Y -456.07 1439.00 Azione Y	-1037.16 Azione Z -3781.83 -295.01 Azione Z	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY	0.0 Azione RZ -14.31 14.31 Azione RZ
32 Nodo	80 Cmb	-19.86 Azione X -769.19 769.19 Azione X daN	0.0 Azione Y -456.07 1439.00 Azione Y daN	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm
32 Nodo	80 Cmb 2	-19.86 Azione X -769.19 769.19 Azione X daN 31.88	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19
32 Nodo	80 Cmb 2 14	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04
32 Nodo	80 Cmb 2 14 1	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19
32 Nodo	80 Cmb 2 14 1 34	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12
32 Nodo	80 Cmb 2 14 1 34 15	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04
32 Nodo Nodo	80 Cmb 2 14 1 34 15 14	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 1.361e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04
32 Nodo	2 14 1 34 15 14 2	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 1.361e+04 1.361e+04 -1.599e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21
32 Nodo Nodo	2 14 1 34 15 14 2 12	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 1.361e+04 -1.599e+05 8796.99	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03
32 Nodo Nodo	2 14 1 34 15 14 2 12 1	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21
32 Nodo Nodo	80 Cmb 2 14 1 34 15 14 2 12 1 36	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 -118.64 1389.53 -76.59 1389.53 -405.64	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 1.361e+04 1.361e+05 8796.99 -1.599e+05 4.664e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22
32 Nodo Nodo	80 Cmb 2 14 1 34 15 14 2 12 136 11	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.73 -1020.96 -3181.84 -1020.96	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 1.361e+04 1.369e+05 8796.99 -1.599e+05 4.664e+04 -8796.99	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 136 11 10	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03
32 Nodo Nodo	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 -1.381e+05 8519.35	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 -1.381e+05 8519.35 -1.381e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29 75.30	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29 75.30 -75.30	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 8519.35	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 1.508e+04 3.102e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29 75.30 1439.00	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 1.508e+04 3.102e+04 6448.13	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29 75.30 -75.30 1439.00 -136.82	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29 75.30 1439.00 -136.82 1439.00	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.495 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04 -1.650e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 4.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -75.30 1208.80 -75.30 1439.00 -136.82 1439.00 -456.07	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.96 -3181.84 -1020.96 -3181.84 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1034.91	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 51.358e+04 -1.650e+05 5.193e+04	-686.83 Azione RY -3.102e+04 3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88 8534.67	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.03 -1.29 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75 0.55
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34 11	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24 -293.59	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -75.30 1439.00 -136.82 1439.00 -456.07 75.32	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.96 -3181.84 -1020.96 -3181.84 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1034.91 -1040.14	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04 -1.650e+05 5.193e+04 -8572.67	-686.83 Azione RY -3.102e+04 3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88 8534.67 -2.085e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75 0.55 -0.10
32 Nodo Nodo 1 2	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34 11 10	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24 -293.59 363.08	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -75.30 1439.00 -136.82 1439.00 -456.07 75.32 -75.32	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.96 -3181.84 -1020.96 -3181.84 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1034.91 -1040.14 -1032.09	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04 -1.650e+05 5.193e+04 -8572.67 8572.67	-686.83 Azione RY -3.102e+04 3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88 8534.67 -2.085e+04 2.435e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75 0.17 -3.75 0.10 0.10
32 Nodo Nodo 1	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34 11 10 2	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24 -293.59 363.08 -644.09	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -75.30 1439.00 -136.82 1439.00 -456.07 75.32 -75.32 1202.13	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1034.91 -1040.14 -1032.09 -3184.21	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04 -1.650e+05 5.193e+04 -8572.67 8572.67 -1.375e+05	-686.83 Azione RY -3.102e+04 3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88 8534.67 -2.085e+04 2.435e+04 -2.255e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75 0.17 -3.75 0.17 -3.75 0.10 0.10 14.31
32 Nodo Nodo 1 2	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34 11 10 2 11	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24 -293.59 363.08 -644.09 -563.36	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 -118.64 -118.64 -1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -75.30 1439.00 -136.82 1439.00 -456.07 75.32 -75.32 1202.13 53.37	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1034.91 -1040.14 -1032.09 -3184.21 -810.58	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 8519.35 -1.650e+05 1.558e+04 -1.650e+05 5.193e+04 -8572.67 8572.67 -1.375e+05 -5997.68	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 1844.27 -6248.83 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 6.48.13 2.435e+04 5503.88 8534.67 -2.085e+04 -2.255e+04 -3.099e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75 0.55 -0.10 0.10 14.31 0.33
32 Nodo Nodo 1 2	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34 11 10 2 11 11 10 2	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24 -293.59 363.08 -644.09 -563.36 -549.77	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29 75.30 1439.00 -136.82 1439.00 -456.07 75.32 -75.32 1202.13 53.37 1202.13	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1032.09 -3227.11 -1032.09 -3184.21 -810.58 -2720.29	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04 -1.650e+05 5.193e+04 -8572.67 8572.67 -1.375e+05 -5997.68 -1.375e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88 8534.67 -2.085e+04 2.255e+04 -3.099e+04 -1.925e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75 0.17 -3.75 0.155 -0.10 0.10 14.31 0.33 14.31
32 Nodo Nodo 1 2	80 Cmb 2 14 1 34 15 14 2 12 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34 11 10 2 11 36	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24 -293.59 363.08 644.09 -563.36 -549.77 -291.70	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 1389.53 -76.59 1389.53 -76.59 1208.80 -75.30 1208.80 -75.30 1208.80 -252.29 75.30 1439.00 -136.82 1439.00 -136.82 1439.00 -456.07 75.32 -75.32 1202.13 53.37 1202.13 -345.12	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1034.91 -1040.14 -1032.09 -3184.21 -810.58 -2720.29 -855.35	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04 -1.650e+05 5.193e+04 -8572.67 8572.67 -1.375e+05 -5997.68 -1.375e+05 3.885e+04	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88 8534.67 -2.085e+04 2.435e+04 -2.255e+04 -3.099e+04 -1.925e+04 -1.359e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.07 -13.95 0.07 -3.75 0.17 -3.75 0.17 -3.75 0.17 -3.75 0.10 0.10 0.10 14.31 0.33 14.31 -2.07
32 Nodo Nodo 1 2	80 Cmb 2 14 1 34 15 14 2 12 1 36 11 10 2 10 1 34 11 10 2 14 1 34 11 10 2 11 11 10 2	-19.86 Azione X -769.19 769.19 Azione X daN 31.88 340.29 27.21 108.16 -322.94 340.29 27.74 -326.25 23.68 -92.59 -326.25 341.35 769.19 557.05 656.55 313.63 -138.42 557.05 127.68 363.08 108.98 133.24 -293.59 363.08 -644.09 -563.36 -549.77	0.0 Azione Y -456.07 1439.00 Azione Y daN 1389.89 -118.64 1389.89 -395.47 118.64 -118.64 -118.64 1389.53 -76.59 1389.53 -405.64 76.59 -76.59 1208.80 -75.30 1208.80 -252.29 75.30 1439.00 -136.82 1439.00 -456.07 75.32 -75.32 1202.13 53.37 1202.13	-1037.16 Azione Z -3781.83 -295.01 Azione Z daN -3724.39 -1021.33 -3181.37 -1021.47 -1021.73 -1021.33 -3724.95 -1020.96 -3181.84 -1021.46 -1020.96 -1022.41 -3122.26 -830.12 -2667.41 -849.41 -885.23 -830.12 -3777.98 -1032.09 -3227.11 -1032.09 -3227.11 -1032.09 -3184.21 -810.58 -2720.29	0.0 Azione RX -1.650e+05 5.193e+04 Azione RX daN cm -1.599e+05 1.361e+04 -1.599e+05 4.536e+04 -1.361e+04 -1.361e+04 -1.599e+05 8796.99 -1.599e+05 4.664e+04 -8796.99 8796.99 -1.381e+05 8519.35 -1.381e+05 2.849e+04 -8519.35 -1.650e+05 1.558e+04 -1.650e+05 5.193e+04 -8572.67 8572.67 -1.375e+05 -5997.68 -1.375e+05	-686.83 Azione RY -3.102e+04 3.102e+04 Azione RY daN cm 1891.42 2.317e+04 1614.44 7309.99 -2.214e+04 2.317e+04 2160.68 -2.220e+04 2.338e+04 2.929e+04 3.102e+04 2.500e+04 1.488e+04 -1.508e+04 3.102e+04 6448.13 2.435e+04 5503.88 8534.67 -2.085e+04 2.255e+04 -3.099e+04 -1.925e+04	0.0 Azione RZ -14.31 14.31 Azione RZ daN cm -1.19 0.04 -1.19 0.12 -0.04 0.04 1.21 -0.03 1.21 -0.22 0.03 -0.03 -13.95 0.07 -13.95 0.07 -13.95 0.25 -0.07 0.07 -3.75 0.17 -3.75 0.17 -3.75 0.155 -0.10 0.10 14.31 0.33 14.31


12	2	68.55	743.14	-2054.47	-8.659e+04	4721.61	-3.62
	14	277.73	-60.94	-295.01	6906.54	1.896e+04	2.08
	1	58.51	743.14	-1755.98	-8.659e+04	4030.19	-3.62
	34	96.38					
			-203.12	-485.48	2.302e+04	6588.46	6.92
	15	-240.42	60.94	-839.21	-6906.54	-1.639e+04	-2.08
	14	277.73	-60.94	-295.01	6906.54	1.896e+04	2.08
13	2	-31.88	1389.89	-3724.39	-1.599e+05	-1891.42	1.19
	11	-340.29	118.64	-1021.33	-1.361e+04	-2.317e+04	0.04
	1	-27.21	1389.89	-3181.37	-1.599e+05	-1614.44	1.19
		90.81					
	26		-395.47	-1021.59	4.536e+04	6280.60	-0.12
	11	-340.29	118.64	-1021.33	-1.361e+04	-2.317e+04	0.04
	10	322.94	-118.64	-1021.73	1.361e+04	2.214e+04	-0.04
14	2	-27.74	1389.53	-3724.95	-1.599e+05	-2160.68	-1.21
	9	326.25	121.69	-1020.96	-1.399e+04	2.220e+04	-0.06
	1	-23.68	1389.53	-3181.84	-1.599e+05	-1844.27	-1.21
	28	-107.69	-405.64	-1021.90	4.664e+04	-7424.76	0.22
	11	-341.35	121.69	-1022.41	-1.399e+04	-2.338e+04	-0.06
	10	326.25	-121.69	-1020.96	1.399e+04	2.220e+04	0.06
21	2	-127.68	1439.00	-3777.98	-1.650e+05	-6448.13	3.75
	11	-363.08	136.82	-1032.09	-1.558e+04	-2.435e+04	0.17
	1	-108.98	1439.00	-3227.11	-1.650e+05	-5503.88	3.75
	26	63.76	-456.07	-1037.32	5.193e+04	5025.32	-0.55
	11		136.82		-1.558e+04	-2.435e+04	
		-363.08		-1032.09			0.17
	10	293.59	-136.82	-1040.14	1.558e+04	2.085e+04	-0.17
23	2	644.09	1202.13	-3184.21	-1.375e+05	2.255e+04	-14.31
	10	563.36	-103.54	-810.58	1.165e+04	3.099e+04	0.62
	1	549.77	1202.13	-2720.29	-1.375e+05	1.925e+04	-14.31
	28	58.84	-345.12	-893.72	3.885e+04	-1319.79	2.07
	15	-212.82	53.37	-938.49	-5997.68	-1.872e+04	-0.33
0.4	14	563.36	-53.37	-810.58	5997.68	3.099e+04	0.33
24	2	-68.55	743.14	-2054.47	-8.659e+04	-4721.61	3.62
	11	-277.73	60.94	-295.01	-6906.54	-1.896e+04	2.08
	1	-58.51	743.14	-1755.98	-8.659e+04	-4030.19	3.62
	26	59.07	-203.12	-648.74	2.302e+04	4018.76	-6.92
	11	-277.73	60.94	-295.01	-6906.54	-1.896e+04	2.08
	10	240.42	-60.94	-839.21	6906.54	1.639e+04	-2.08
07							
27	2	0.0	664.72	-2067.91	-7.916e+04	0.0	0.0
	10	371.09	-46.18	-570.77	5341.10	2.390e+04	-0.02
	1	0.0	664.72	-1767.46	-7.916e+04	0.0	0.0
	36	-111.33	-153.93	-570.77	1.780e+04	-7169.04	0.06
	12	-371.09	-46.18	-570.77	5341.10	-2.390e+04	-0.02
	9	371.09	46.18	-570.77	-5341.10	2.390e+04	0.02
28	2	-769.19	1208.80	-3122.26	-1.381e+05	-2.929e+04	13.95
20	11	-557.05	75.69	-830.12	-8548.18	-3.102e+04	0.08
	1	-656.55	1208.80	-2667.41	-1.381e+05	-2.500e+04	13.95
	26	-104.99	-252.29	-865.94	2.849e+04	-1055.81	-0.25
	11	-557.05	75.69	-830.12	-8548.18	-3.102e+04	0.08
	14	138.42	-75.30	-885.23	8519.35	1.508e+04	-0.07
29	2	72.98	1437.91	-3781.83	-1.649e+05	2523.98	-3.65
	9	345.76	110.26	-1035.25	-1.255e+04	2.303e+04	0.07
	1		1437.91	-3230.39	-1.649e+05	2154.37	-3.65
		62.29					
	28	-77.91	-367.54	-1037.73	4.183e+04	-6015.51	-0.25
	11	-306.04	110.26	-1039.06	-1.255e+04	-2.165e+04	0.07
	10	345.76	-110.26	-1035.25	1.255e+04	2.303e+04	-0.07
32	2	-72.98	1437.91	-3781.83	-1.649e+05	-2523.98	3.65
	12	-345.76	-98.06	-1035.25	1.115e+04	-2.303e+04	-0.05
	1	-62.29	1437.91	-3230.39	-1.649e+05	-2154.37	3.65
	36	-117.63	-367.54	-1036.59	4.183e+04	-7389.17	0.25
	11	-345.76	98.06	-1035.25	-1.115e+04	-2.303e+04	0.05
	10	306.04	-98.06	-1039.06	1.115e+04	2.165e+04	-0.05


42_RIS_REAZIONI_002_Comb. SLU A1 2


42_RIS_REAZIONI_028_Comb. SLU A1 (SLV sism.) 28


42_RIS_REAZIONI_060_Comb. SLE (SLD Danno sism.) 60

42_RIS_REAZIONI_074_Comb. SLE(rara) 74

42_RIS_REAZIONI_077_Comb. SLE(freq.) 77

42_RIS_REAZIONI_080_Comb. SLE(perm.) 80

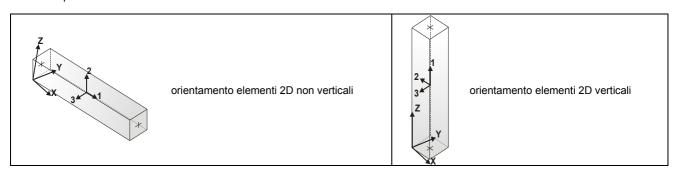
RISULTATI ELEMENTI TIPO TRAVE

LEGENDA RISULTATI ELEMENTI TIPO TRAVE

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo trave, è possibile in relazione alle tabelle sotto riportate.

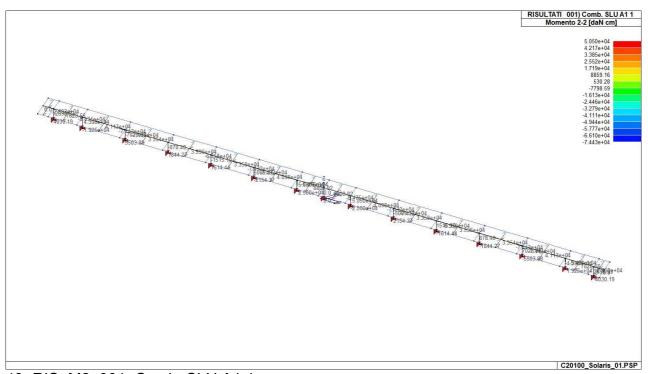
Gli elementi vengono suddivisi in relazione alle proprietà in elementi:

- tipo pilastro
- tipo trave in elevazione
- tipo trave in fondazione

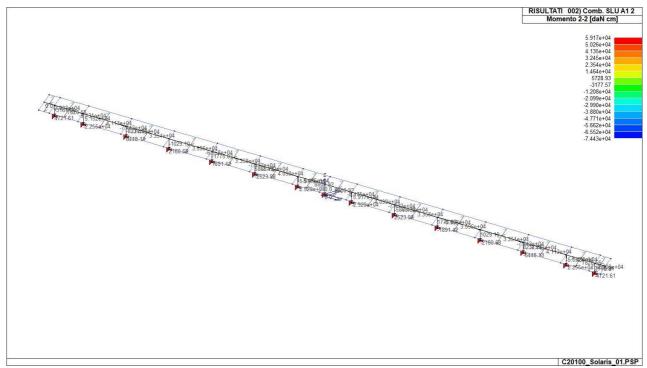

Per ogni elemento e per ogni combinazione (o caso di carico) vengono riportati i risultati più significativi.

Per gli elementi tipo pilastro sono riportati in tabella i seguenti valori:

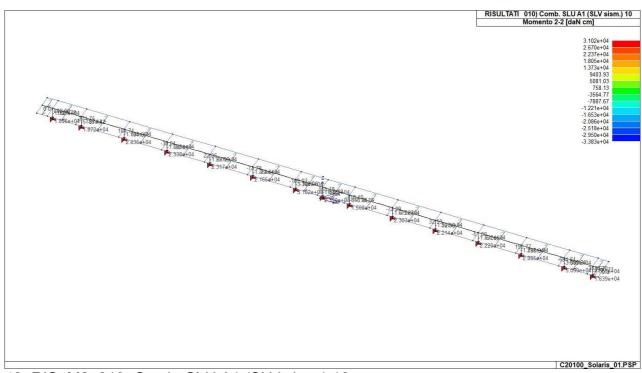
	proper dell'elemente rilecter
Pilas.	numero dell'elemento pilastro
Cmb	combinazione in cui si verificano i valori riportati
M3 mx/mn	momento flettente in campata M3 max (prima riga) / min (seconda riga)
M2 mx/mn	momento flettente in campata M2 max (prima riga) / min (seconda riga)
D2/D3	freccia massima in direzione 2 (prima riga) / direzione 3 (seconda riga)
Q2/Q3	carico totale in direzione 2 (prima riga) / direzione 3 (seconda riga)
Pos.	ascissa del punto iniziale e finale dell'elemento
N, V2, ecc	sei componenti di sollecitazione al piede ed in sommità dell'elemento

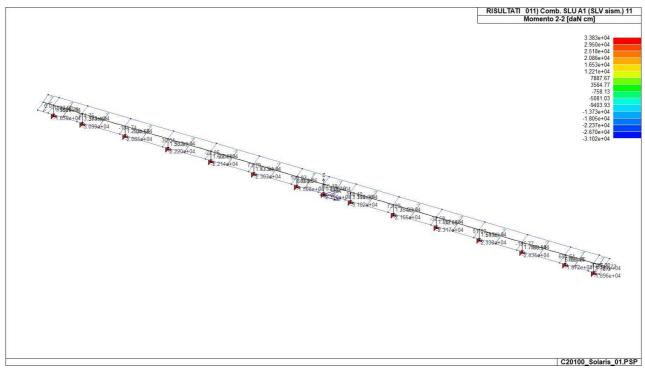

Per gli elementi tipo trave in elevazione sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri.

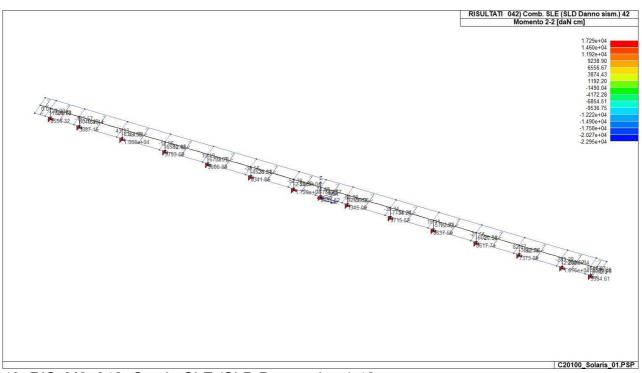
Per gli elementi tipo *trave in fondazione* (trave f.) sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri e la massima pressione sul terreno.

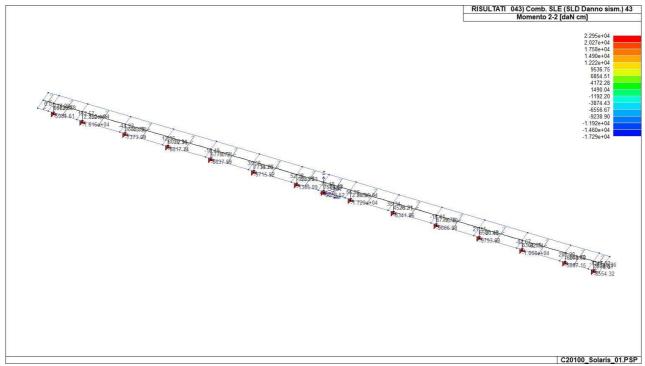


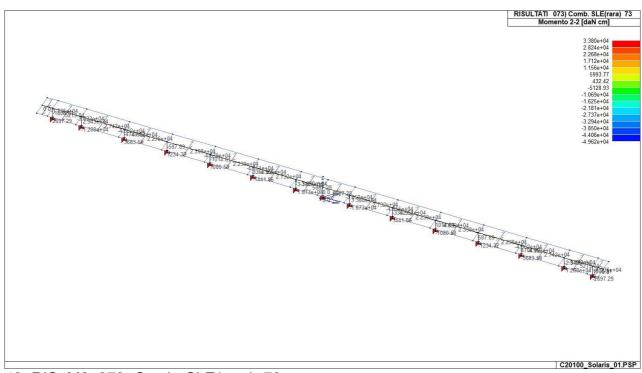
Pilas.	Cmb M3 mx/mn M2 mx/mn	D 2 / D 3	Q 2 / Q 3	Pos.	N	V 2	V 3	T M2 M3
1	daN cm daN cm 1 494.93 7028.88	cm -0.26	daN 0.0	cm 0.0	daN -3227.11	daN 1439.00	daN 108.98	daN cm daN cm daN cm 3.75 -5503.88 -1.650e+05
	-1.650e+05 -5503.88	-0.03	0.0	115.0	-3210.93	1439.00	108.98	3.75 7028.88 494.93
1	2 494.93 8234.76	-0.26	0.0	0.0	-3777.98	1439.00	127.68	3.75 -6448.13 -1.650e+05
1	-1.650e+05 -6448.13 7 296.96 4037.16	-0.04 -0.16	0.0 0.0	115.0 0.0	-3761.80 -1856.70	1439.00 863.40	127.68 62.59	3.75 8234.76 494.93 2.25 -3161.25 -9.899e+04
	-9.899e+04 -3161.25	-0.10	0.0	115.0	-1844.26	863.40	62.59	2.25 4037.16 296.96
1	10 1.558e+04 2.085e+04	0.02	0.0	0.0	-1040.14	-136.82	-293.59	-0.17 2.085e+04 1.558e+04
4	-224.52 -1.292e+04 11 224.52 1.740e+04	0.21 -0.02	0.0	115.0	-1027.70	-136.82	-293.59 363.08	-0.17 -1.292e+04 -224.52
1	11 224.52 1.740e+04 -1.558e+04-2.435e+04	-0.02	0.0 0.0	0.0 115.0	-1032.09 -1019.64	136.82 136.82	363.08	0.17 -2.435e+04 -1.558e+04 0.17 1.740e+04 224.52
1	26 5.193e+04 5025.32	0.08	0.0	0.0	-1037.32	-456.07	-63.76	-0.55 5025.32 5.193e+04
	-748.40 -2306.83	0.06	0.0	115.0	-1024.88	-456.07	-63.76	-0.55 -2306.83 -748.40
1	27 748.40 6788.54 -5.193e+04 -8534.67	-0.08 -0.07	0.0 0.0	0.0 115.0	-1034.91 -1022.46	456.07 456.07	133.24 133.24	0.55 -8534.67-5.193e+04 0.55 6788.54 748.40
1	42 7591.36 7373.09	0.01	0.0	0.0	-1022.40	-66.67	-97.88	-0.07 7373.09 7591.36
	-109.00 -3883.28	0.08	0.0	115.0	-1025.29	-66.67	-97.88	-0.07 -3883.28 -109.00
1	43 109.00 8364.99	-0.01	0.0	0.0	-1034.49	66.67	167.37	0.07 -1.088e+04 -7591.36
1	-7591.36-1.088e+04 58 2.530e+04 983.65	-0.10 0.04	0.0 0.0	115.0 0.0	-1022.04 -1036.60	66.67 -222.23	167.37 -5.04	0.07 8364.99 109.00 -0.23 983.65 2.530e+04
'	-363.35 403.61	0.04	0.0	115.0	-1024.16	-222.23	-5.0 4 -5.04	-0.23 403.61 -363.35
1	59 363.35 4078.10	-0.04	0.0	0.0	-1035.63	222.23	74.53	0.23 -4493.00 -2.530e+04
	-2.530e+04 -4493.00	-0.04	0.0	115.0	-1023.18	222.23	74.53	0.23 4078.10 363.35
1	73 329.95 4704.22 -1.100e+05 -3683.59	-0.18 -0.02	0.0 0.0	0.0 115.0	-2161.43 -2148.98	959.34 959.34	72.94 72.94	2.50 -3683.59-1.100e+05 2.50 4704.22 329.95
1	74 329.95 5508.14	-0.02	0.0	0.0	-2528.68	959.34	85.40	2.50 4704.22 329.93 2.50 -4313.08-1.100e+05
·	-1.100e+05 -4313.08	-0.02	0.0	115.0	-2516.23	959.34	85.40	2.50 5508.14 329.95
1	75 197.97 3718.87	-0.11	0.0	0.0	-1711.30	575.60	57.66	1.50 -2912.02-6.600e+04
1	-6.600e+04 -2912.02 77 65.99 2733.53	-0.02 -0.04	0.0 0.0	115.0 0.0	-1698.86 -1261.18	575.60 191.87	57.66 42.38	1.50 3718.87 197.97 0.50 -2140.46 -2.200e+04
ı	-2.200e+04 -2140.46	-0.04	0.0	115.0	-1248.73	191.87	42.38	0.50 2733.53 65.99
1	78 0.0 2240.86	0.0	0.0	0.0	-1036.11	0.0	34.74	0.0 -1754.68 0.0
	0.0 -1754.68	-9.74e-03	0.0	115.0	-1023.67	0.0	34.74	0.0 2240.86 0.0
1	80 0.0 2240.86 0.0 -1754.68	0.0 -9.74e-03	0.0 0.0	0.0 115.0	-1036.11 -1023.67	0.0 0.0	34.74 34.74	0.0 -1754.68 0.0 0.0 2240.86 0.0
2	1 705.74 1.925e+04	-0.22	0.0	0.0	-2720.29	1202.13	-549.77	-14.31 1.925e+04-1.375e+05
	-1.375e+05-4.398e+04	0.05	0.0	115.0	-2704.11	1202.13	-549.77	-14.31 -4.398e+04 705.74
2	2 705.74 2.255e+04	-0.22	0.0	0.0	-3184.21	1202.13	-644.09	-14.31 2.255e+04-1.375e+05
2	-1.375e+05-5.152e+04 7 423.44 1.106e+04	0.06 -0.13	0.0 0.0	115.0 0.0	-3168.03 -1565.60	1202.13 721.28	-644.09 -315.77	-14.31 -5.152e+04 705.74 -8.59 1.106e+04 -8.252e+04
_	-8.252e+04 -2.526e+04	0.03	0.0	115.0	-1553.16	721.28	-315.77	-8.59 -2.526e+04 423.44
2	10 1.165e+04 3.099e+04	0.02	0.0	0.0	-810.58	-103.54	-563.36	0.62 3.099e+04 1.165e+04
0	340.47 - 3.383e+04	0.20	0.0	115.0	-798.14	-103.54	-563.36	0.62 -3.383e+04 340.47
2	11 -340.47 5785.44 -1.165e+04-1.872e+04	-0.02 -0.23	0.0 0.0	0.0 115.0	-938.49 -926.04	103.54 103.54	212.82 212.82	-0.62 -1.872e+04 -1.165e+04 -0.62 5785.44 -340.47
2	14 5997.68 3.099e+04	9.49e-03	0.0	0.0	-810.58	-53.37	-563.36	0.33 3.099e+04 5997.68
	189.42-3.383e+04	0.20	0.0	115.0	-798.14	-53.37	-563.36	0.33 -3.383e+04 189.42
2	25 -1134.91 1.359e+04 -3.885e+04-1.996e+04	-0.06 0.06	0.0 0.0	0.0 115.0	-855.35 -842.90	345.12 345.12	-291.70 -291.70	-2.07 1.359e+04-3.885e+04 -2.07-1.996e+04 -1134.91
	-3.0030-04-1.9900-04	0.00	0.0	115.0	-042.90	343.12	-291.70	-2.07 -1.9900+04 -1134.91
31	80 0.0 -483.02	3.94e-03	0.0	115.0	-1009.09	0.0	-8.68	0.0 -483.02 0.0
Pilas.	M3 mx/mn M2 mx/mn -1.650e+05-5.917e+04	D 2 / D 3	Q 2 / Q 3		N 2704 92	V 2	V 3	T -14.31
	5.193e+04 5.917e+04	-0.26 0.23	0.0 0.0		-3781.83 -282.56	-456.07 1439.00	-769.19 769.19	14.31
_				_				
Trave	Cmb M3 mx/mn M2 mx/mn daN cm daN cm	D 2 / D 3	Q 2 / Q 3 daN	Pos.	N daN	V 2	V 3	T M2 M3 daN cm daN cm daN cm
4	1 2.518e+04 8800.92	cm -0.26	-1982.97	cm 0.0	daN 262.88	daN 875.64	daN 332.36	-1356.53 -1.506e+04 -4.790e+04
	-9.169e+04-5.475e+04	-0.09	-874.71	378.0	262.88	-1107.33	-542.34	-1356.53 -5.475e+04 -9.169e+04
4	2 2.950e+04 8800.92	-0.30	-2323.17	0.0	307.98	1025.86	332.36	-1356.53 -1.506e+04 -5.611e+04
4	-1.074e+05-5.475e+04 7 1.446e+04 5280.55	-0.09 -0.15	-874.71 -1138.96	378.0 0.0	307.98 150.99	-1297.31 502.94	-542.34 199.42	-1356.53 -5.475e+04 -1.074e+05 -813.92 -9038.01 -2.751e+04
7	-5.266e+04 -3.285e+04	-0.15	-524.82	378.0	150.99	-636.02	-325.41	-813.92 -3.285e+04 -5.266e+04
4	10 9633.38 155.18	-0.10	-632.19	0.0	157.54	227.98	-0.70	141.17 155.18 -5880.43
4	-3.919e+04 -118.40	4.98e-03	0.0	378.0	157.54	-404.21	-0.70	141.17 -118.40-3.919e+04
4	13 9633.38 109.06 -3.919e+04 -155.18	-0.10 -4.95e-03	-632.19 0.0	0.0 378.0	157.54 157.54	227.98 -404.21	0.67 0.67	-129.30 -155.18 -5880.43 -129.30 109.06-3.919e+04
4	16 7904.91 155.18	-0.09	-632.19	0.0	10.08	330.34	-0.67	129.30 109.00-3.9196+04 129.30 155.18-2.466e+04
	-2.466e+04 -109.06	4.95e-03	0.0	378.0	10.08	-301.85	-0.67	129.30 -109.06 -1.927e+04
4	25 8304.29 394.67	-0.08	-632.19	0.0	105.93	263.81	2.35	-470.58 -517.27-1.245e+04
4	-3.222e+04 -517.27 28 7749.20 517.27	-0.02 -0.08	0.0 -632.19	378.0 0.0	105.93 61.69	-368.38 294.51	2.35 -2.35	-470.58 394.67 -3.222e+04 470.58 517.27 -1.809e+04
·	-2.624e+04 -394.67	0.02	0.0	378.0	61.69	-337.67	-2.35	470.58 -394.67 -2.624e+04
4	41 8400.68 56.96	-0.09	-632.19	0.0	113.53	258.47	0.34	-67.86 -74.48 -1.147e+04

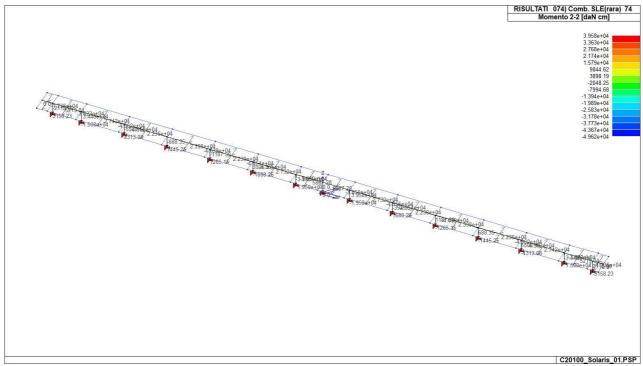

	-3.325e+04 -74.	48 -2.42e-03	0.0	378.0	113.53	-373.71	0.34	-67.86	56.96 -3.325e+04
4	42 8400.68 74.	48 -0.09	-632.19	0.0	113.53	258.47	-0.34	67.86	74.48 -1.147e+04
	-3.325e+04 -56.	96 2.42e-03	0.0	378.0	113.53	-373.71	-0.34	67.86	-56.96 -3.325e+04
4	48 7735.70 74.	48 -0.08	-632.19	0.0	54.09	299.85	-0.32	62.06	74.48 - 1.906e + 04
	-2.521e+04 -52.	39 2.40e-03	0.0	378.0	54.09	-332.34	-0.32	62.06	-52.39 -2.521e+04
4	57 8138.93 189.		-632.19	0.0	92.72	272.95	1.13	-226.20	-248.26 -1.413e+04
	-3.044e+04 -248.		0.0	378.0	92.72	-359.23	1.13	-226.20	189.87 -3.044e+04
4	60 7914.56 248.		-632.19	0.0	74.89	285.37	-1.13	226.20	248.26 -1.641e+04
	-2.802e+04 -189		0.0	378.0	74.89	-346.82	-1.13	226.20	-189.87 -2.802e+04
4	73 1.685e+04 5867.	28 -0.17	-1327.15	0.0	175.94	586.04	221.57	-904.35	1.004e+04 -3.206e+04
	-6.136e+04-3.650e+		-583.14	378.0	175.94	-741.11	-361.56		3.650e+04-6.136e+04
4	74 1.973e+04 5867.		-1553.95	0.0	206.00	686.19	221.57		1.004e+04-3.753e+04
	-7.185e+04-3.650e+		-583.14	378.0	206.00	-867.76	-361.56		3.650e+04-7.185e+04
4	75 1.332e+04 3520.		-1049.16	0.0	139.08	463.29	132.94	-542.61	-6025.34 -2.534e+04
	-4.851e+04-2.190e+		-349.88	378.0	139.08	-585.87	-216.94		2.190e+04-4.851e+04
4	77 9791.50 1173.		-771.18	0.0	102.23	340.54	44.31	-180.87	-2008.45 -1.863e+04
	-3.566e+04 -7300.		-116.63	378.0	102.23	-430.64	-72.31	-180.87	-7300.00 -3.566e+04
4		0.0	-632.19	0.0	83.81	279.16	0.0	0.0	0.0-1.527e+04
		0.0	0.0	378.0	83.81	-353.03	0.0	0.0	0.0 -2.923e+04
4		0.0	-632.19	0.0	83.81	279.16	0.0	0.0	0.0 -1.527e+04
		0.0	0.0	378.0	83.81	-353.03	0.0	0.0	0.0-2.923e+04
5).0 -0.54	-786.89	0.0	0.0	786.89	347.11		2.603e+04-5.902e+04
	-5.902e+04 -2.603e+		-347.11	150.0	0.0	-2.99e-06	-4.44e-06	0.0	0.0 1.98e-05
5		0.0 -0.63	-921.89	0.0	0.0	921.89	347.11		2.603e+04-6.914e+04
	-6.914e+04 -2.603e+		-347.11	150.0	0.0	-2.99e-06	-4.44e-06	0.0	0.0 1.98e-05
5		0.0 -0.42	-621.43	0.0	0.0	621.43	208.26		1.562e+04-4.661e+04
_	-4.661e+04-1.562e+		-208.26	150.0	0.0	3.38e-06	-2.66e-06	0.0	0.0 1.98e-05
5	10 1.185e+04 3340.		-250.87	0.0	45.53	51.76	-22.27	0.0	3340.77 1.105e+04
_		0.0 0.15	0.0	150.0	45.53	-199.11	-22.27	0.0	0.0 1.53e-05
5		0.66	-250.87	0.0	-45.53	449.97	22.27	0.0	-3340.77 -4.868e+04
	-4.868e+04 -3340	77 -0.15	0.0	150.0	-45.53	199.11	22.27	0.0	0.0 1.53e-05
27	80 -3.134e+04	0.0	0.0	403.0	18.65	-370.20	0.0	0.0	0.0-3.134e+04
Trave	M3 mx/mn M2 mx/r	nn D2/D3	Q 2 / Q 3		N	V 2	V 3	Т	
	-1.960e+05-7.443e+	04 -4.05	-3712.16		-575.53	-1904.56	-732.08	-1356.53	
	9.940e+04 4.113e+	04 1.01	0.0		307.98	1904.56	732.08	1356.53	

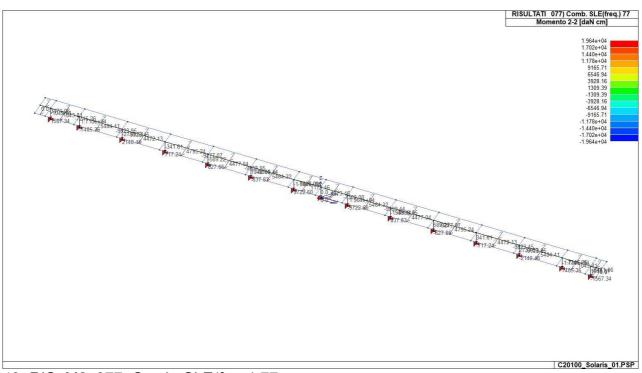

43_RIS_M2_001_Comb. SLU A1 1

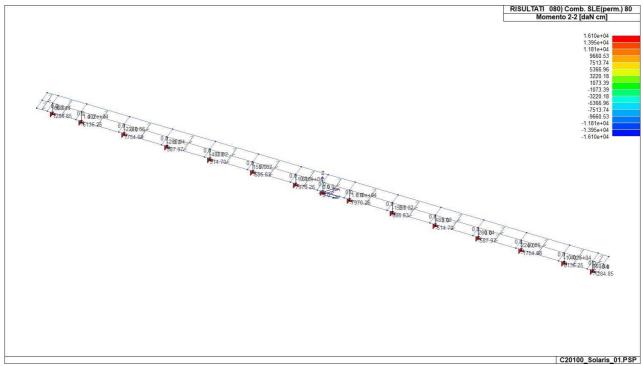

43_RIS_M2_002_Comb. SLU A1 2

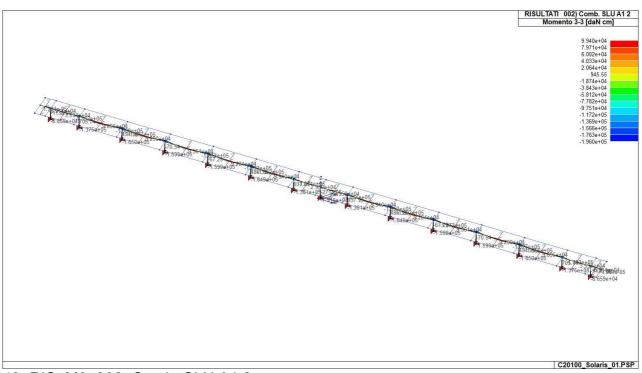

43_RIS_M2_010_Comb. SLU A1 (SLV sism.) 10

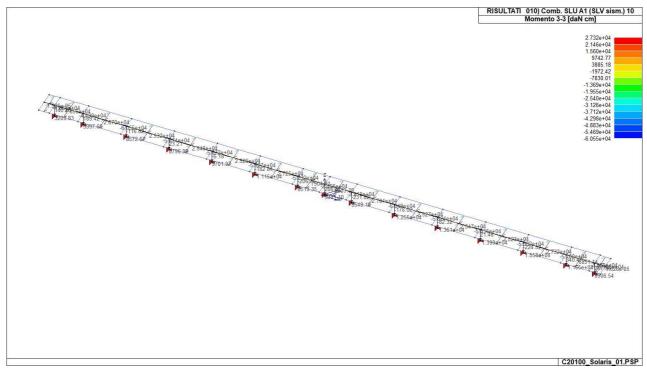

43_RIS_M2_011_Comb. SLU A1 (SLV sism.) 11

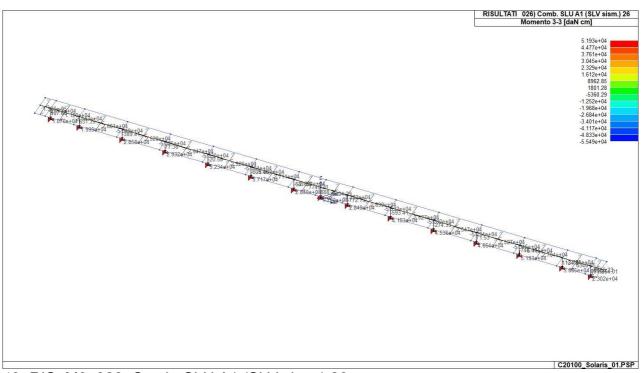

43_RIS_M2_042_Comb. SLE (SLD Danno sism.) 42

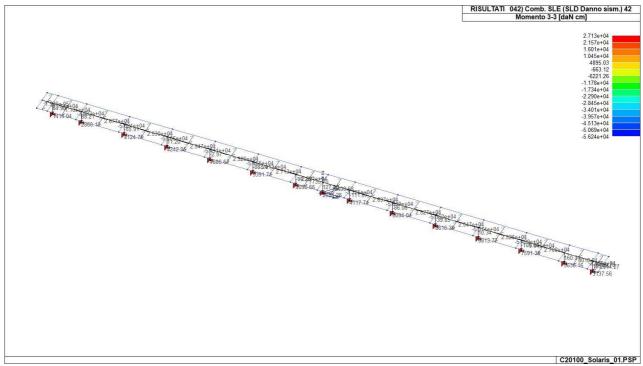

43_RIS_M2_043_Comb. SLE (SLD Danno sism.) 43

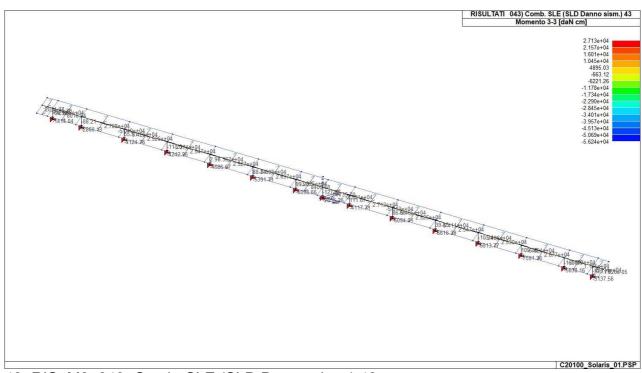

43_RIS_M2_073_Comb. SLE(rara) 73

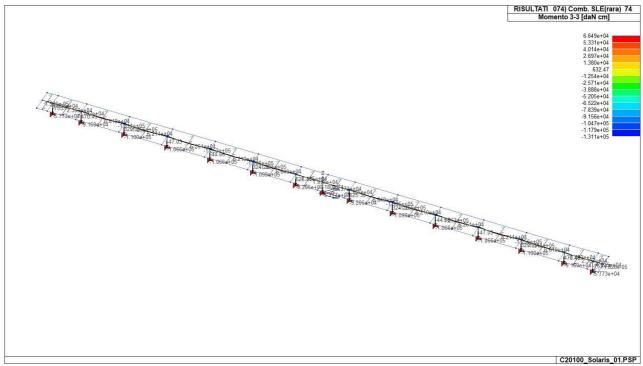

43_RIS_M2_074_Comb. SLE(rara) 74

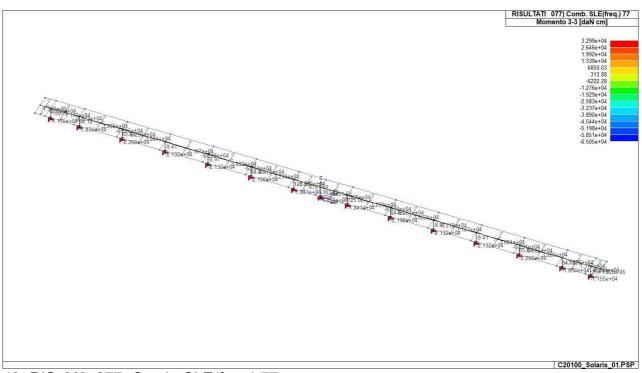

43_RIS_M2_077_Comb. SLE(freq.) 77

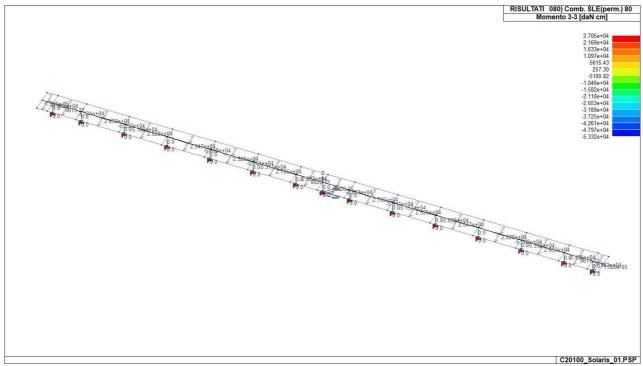

43_RIS_M2_080_Comb. SLE(perm.) 80

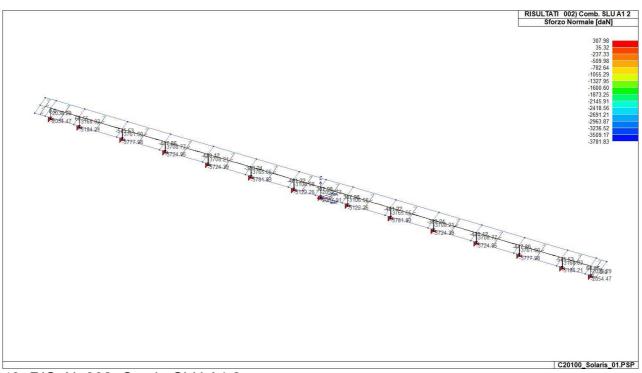

43_RIS_M3_002_Comb. SLU A1 2

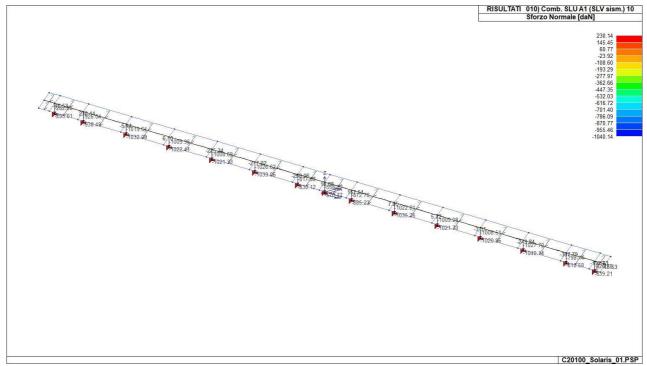

43_RIS_M3_010_Comb. SLU A1 (SLV sism.) 10

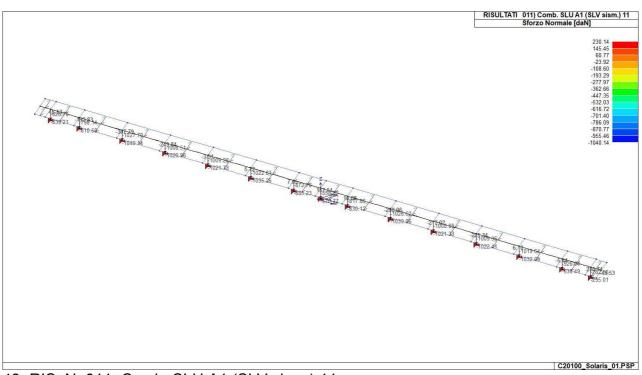

43_RIS_M3_026_Comb. SLU A1 (SLV sism.) 26

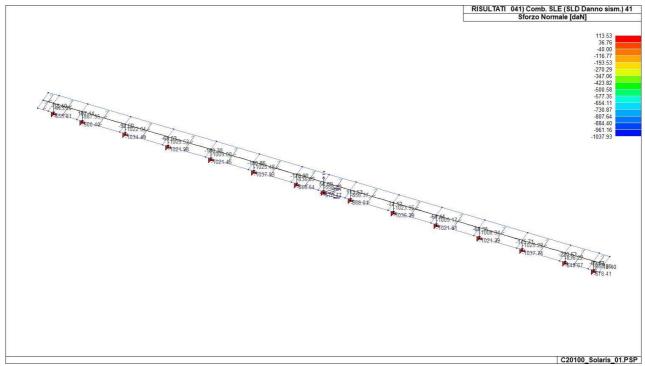

43_RIS_M3_042_Comb. SLE (SLD Danno sism.) 42

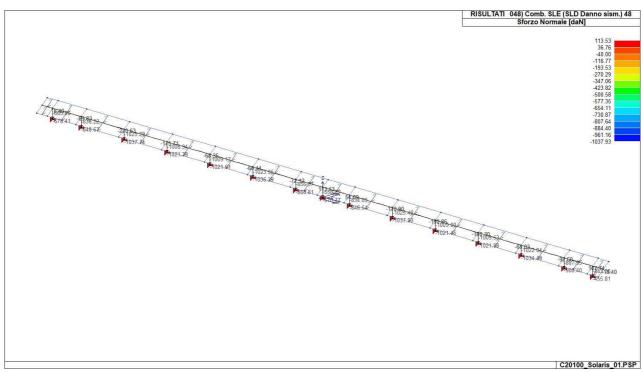

43_RIS_M3_043_Comb. SLE (SLD Danno sism.) 43

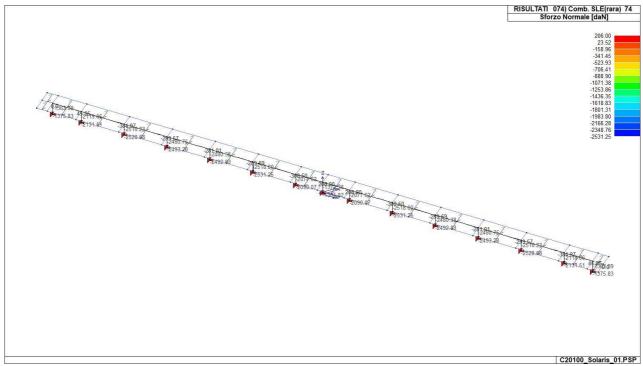

43_RIS_M3_074_Comb. SLE(rara) 74

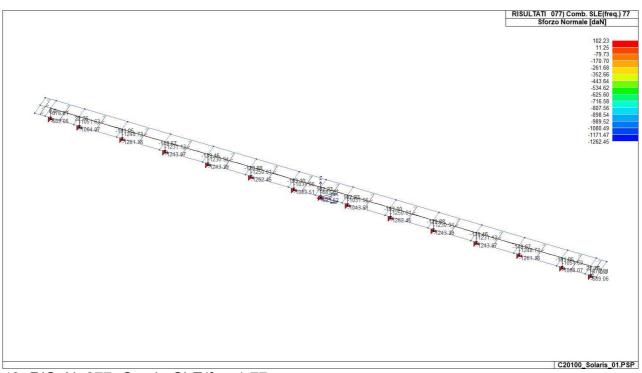

43_RIS_M3_077_Comb. SLE(freq.) 77

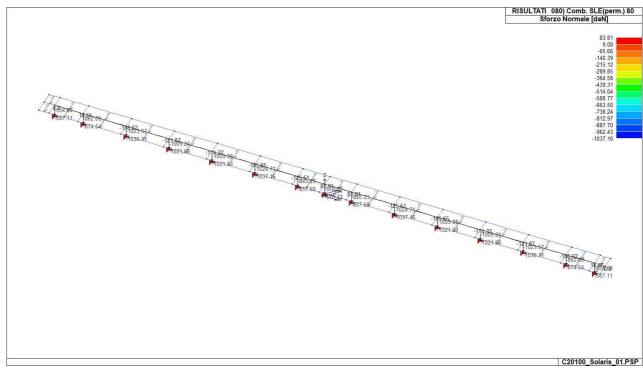

43_RIS_M3_080_Comb. SLE(perm.) 80


43_RIS_N_002_Comb. SLU A1 2


43_RIS_N_010_Comb. SLU A1 (SLV sism.) 10


43_RIS_N_011_Comb. SLU A1 (SLV sism.) 11


43_RIS_N_041_Comb. SLE (SLD Danno sism.) 41


43_RIS_N_048_Comb. SLE (SLD Danno sism.) 48

43_RIS_N_074_Comb. SLE(rara) 74

43_RIS_N_077_Comb. SLE(freq.) 77

43_RIS_N_080_Comb. SLE(perm.) 80

IMPIANTO FOTOVOLTAICO "EMERA" – Codice pratica G4KMY67 Tabulati di calcolo fondazioni 430x310

Relazione di calcolo strutturale impostata e redatta secondo le modalità previste nel D.M. 17 Gennaio 2018 cap. 10 "Redazione dei progetti strutturali esecutivi e delle relazioni di calcolo".

Origine e Caratteristiche dei Codici di Calcolo					
Codice di calcolo:	PRO_SAP PROfessional Structural Analysis Program				
Versione:	PROFESSIONAL (build 2020-09-190)				
Produttore-	2S.I. Software e Servizi per l'Ingegneria s.r.I.				
Distributore:	Via Garibaldi, 90 44121 Ferrara FE (Italy)				
	Tel. +39 0532 200091 www.2si.it				
Codice Licenza:	Licenza dsi4709				

Descrizione	
Progetto	
Ubicazione	Comune di SANTERAMO IN COLLE (BA) (Regione PUGLIA)
	Località SANTERAMO IN COLLE (BA)
	Longitudine 16.756, Latitudine 40.794
Progettista	

In merito al punto 10.2 delle Norme Tecniche per le Costruzioni (*Affidabilità dei codici utilizzati*), si fa riferimento al **Documento di Affidabilità** "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" - versione Agosto 2020, disponibile per il download sul sito: https://www.2si.it/it/prodotti/affidabilita/

giovedì, 4 febbraio 2021

INTESTAZIONE E CONTENUTI DELLA RELAZIONE	3
Progetto	3
CARATTERISTICHE MATERIALI UTILIZZATI	5
LEGENDA TABELLA DATI MATERIALI	5
MODELLAZIONE DELLE SEZIONI	8
LEGENDA TABELLA DATI SEZIONI	8
MODELLAZIONE STRUTTURA: NODI	10
LEGENDA TABELLA DATI NODI	10
TABELLA DATI NODI	10
MODELLAZIONE STRUTTURA: ELEMENTI SHELL	12
LEGENDA TABELLA DATI SHELL	12
MODELLAZIONE DELLE AZIONI	15
LEGENDA TABELLA DATI AZIONI	15
SCHEMATIZZAZIONE DEI CASI DI CARICO	17
LEGENDA TABELLA CASI DI CARICO	17
DEFINIZIONE DELLE COMBINAZIONI	23
LEGENDA TABELLA COMBINAZIONI DI CARICO	23
AZIONE SISMICA	27
VALUTAZIONE DELL' AZIONE SISMICA	27
Parametri della struttura	27
RISULTATI ANALISI SISMICHE	29
LEGENDA TABELLA ANALISI SISMICHE	29
RISULTATI NODALI	37
LEGENDA RISULTATI NODALI	37
RISULTATI OPERE DI FONDAZIONE	46
LEGENDA RISULTATI OPERE DI FONDAZIONE	46
RISULTATI ELEMENTI TIPO SHELL	52
LECENDA DISTUTATI ELEMENTI TIDO CHELL	E2

INTESTAZIONE E CONTENUTI DELLA RELAZIONE

rogetto	

Contenuti della relazione:

RELAZIONE DI CALCOLO STRUTTURALE

- Origine e Caratteristiche dei Codici di Calcolo
- Affidabilità dei codici utilizzati
- Validazione dei codici
- Tipo di analisi svolta
- Modalità di presentazione dei risultati
- Informazioni generali sull'elaborazione
- Giudizio motivato di accettabilità dei risultati

STAMPA DEI DATI DI INGRESSO

- Normative prese a riferimento
- Criteri adottati per le misure di sicurezza
- Criteri seguiti nella schematizzazione della struttura, dei vincoli e delle sconessioni
- Interazione tra terreno e struttura
- Legami costitutivi adottati per la modellazione dei materiali e dei terreni
- Schematizzazione delle azioni, condizioni e combinazioni di carico
- Metodologie numeriche utilizzate per l'analisi strutturale

-Metodologie numeriche utilizzate per la progettazione e la verifica degli elementi strutturali STAMPA DEI RISULTATI

Il Progettista:

CARATTERISTICHE MATERIALI UTILIZZATI

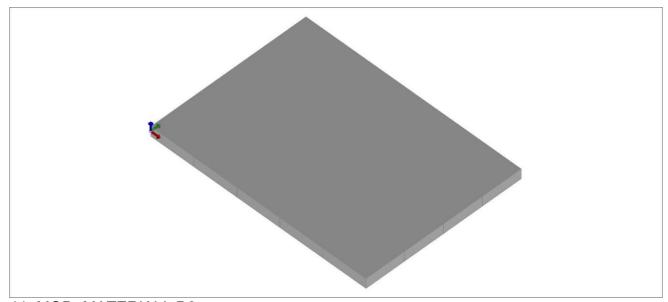
LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato	
2	materiale tipo acciaio	
3	materiale tipo muratura	
4	materiale tipo legno	
5	materiale tipo generico	

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

nopria acochizione). I ci ogni me	iteriale verigorio riportati in tabella i seguenti dati.
Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo
	se diverso da quello globale della struttura)
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo se diverso da quello globale della struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari
Massima compressione	Massima tensione di compressione per aste non lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio


I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	c.a.		
'	c.a.	Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress
			block
2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile(>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
3	muratura	Muratura consolidata	Museluse per le cuele si prevedene interventi di rinformell
			Muratura per la quale si prevedono interventi di rinforzo"
		Incremento resistenza	Incremento conseguito in termini di resistenza
		Incremento rigidezza Resistenza f	Incremento conseguito in termini di rigidezza
		Resistenza fv0	Valore della resistenza a compressione
		Resistenza fh	Valore della resistenza a taglio in assenza di tensioni normali Valore della resistenza a compressione orizzontale
		Resistenza fb	Valore della resistenza a compressione dei blocchi
		Resistenza fbh	Valore della resistenza a compressione dei blocchi in direzione orizzontale
		Resistenza fv0h	Valore della resistenza a taglio in assenza di tensioni normali per le travi
		Resistenza ft	Valore della resistenza a trazione per fessurazione diagonale
		Resistenza fvlim	Valore della massima resistenza a taglio
		Resistenza fbt	Valore della resistenza a trazione dei blocchi
		Coefficiente mu	Coefficiente d'attrito utilizzato per la resistenza a taglio (tipicamente 0.4)
		Coefficiente fi	Coefficiente d'ingranamento utilizzato per la resistenza a taglio
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress
			block
4	legno		
		E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
		Resistenza fc0	Valore della resistenza a compressione parallela
		Resistenza ft0	Valore della resistenza a trazione parallela
		Resistenza fm	Valore della resistenza a flessione
		Resistenza fv	Valore della resistenza a taglio
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
1	Calcestruzzo Classe C25/30			3.145e+05	0.20	1.310e+05	2.50e-03	1.00e-05	
	Resistenza Rc	300.0							
	Resistenza fctm		25.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

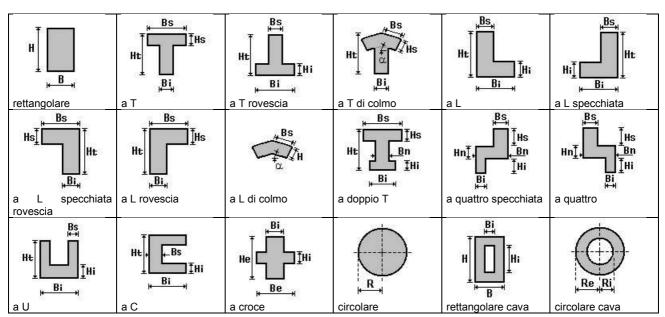
11_MOD_MATERIALI_D3

Gusci c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Armatura						
Inclinazione Ax [gradi]	0.0					
Angolo Ax-Ay [gradi]	90.00					
Minima tesa	0.20					
Massima tesa	0.78					
Maglia unica centrale	NO					
Copriferro [cm]	2.00					
Maglia x						
diametro	12					
passo	20					
diametro aggiuntivi	12					
Maglia y						
diametro	12					
passo	20					
diametro aggiuntivi	12					
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00					
Tipo acciaio	tipo C					
Coefficiente gamma s	1.15					
Coefficiente gamma c	1.50					
Verifiche con N costante	SI					
Applica SLU da DIN	NO					
Tensioni ammissibili						

Gusci c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Tensione amm. cls [daN/cm2]	97.50					
Tensione amm. acciaio [daN/cm2]	2600.00					
Rapporto omogeneizzazione N	15.00					
Massimo rapporto area compressa/tesa	1.00					
Resistenza al fuoco						
3- intradosso	NO					
3+ estradosso	NO					
Tempo di esposizione R	15					

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI


Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3

MODELLAZIONE STRUTTURA: NODI

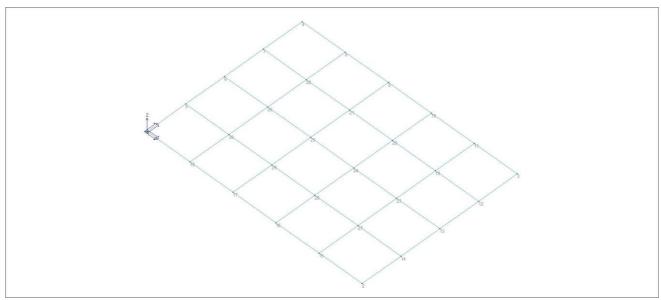
LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z


Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

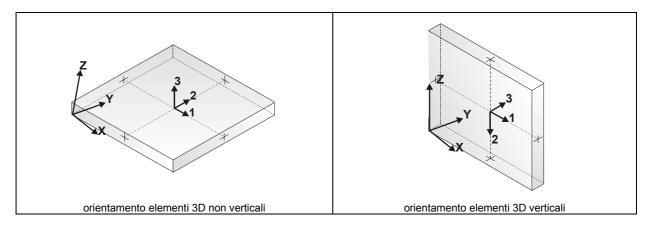
Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

Nodo	X	Υ	Z	Nodo	X	Υ	Z	Nodo	X	Υ	Z
	cm	cm	cm		cm	cm	cm		cm	cm	cm
1	0.0	0.0	0.0	2	430.0	0.0	0.0	3	430.0	310.0	0.0
4	0.0	310.0	0.0	5	0.0	77.5	0.0	6	0.0	155.0	0.0
7	0.0	232.5	0.0	8	86.0	310.0	0.0	9	172.0	310.0	0.0
10	258.0	310.0	0.0	11	344.0	310.0	0.0	12	430.0	232.5	0.0
13	430.0	155.0	0.0	14	430.0	77.5	0.0	15	344.0	0.0	0.0
16	258.0	0.0	0.0	17	172.0	0.0	0.0	18	86.0	0.0	0.0
19	344.0	232.5	0.0	20	258.0	232.5	0.0	21	172.0	232.5	0.0
22	86.0	232.5	0.0	23	344.0	155.0	0.0	24	258.0	155.0	0.0
25	172.0	155.0	0.0	26	86.0	155.0	0.0	27	344.0	77.5	0.0
28	258.0	77.5	0.0	29	172.0	77.5	0.0	30	86.0	77.5	0.0

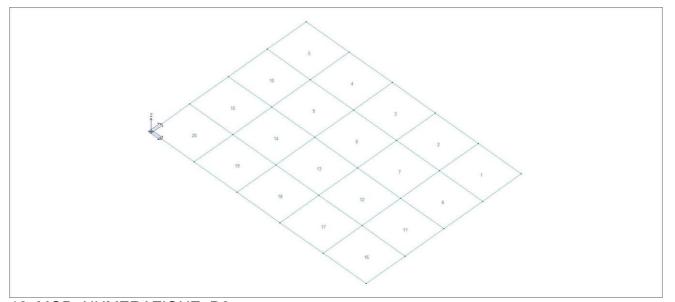
14_MOD_NUMERAZIONE_NODI

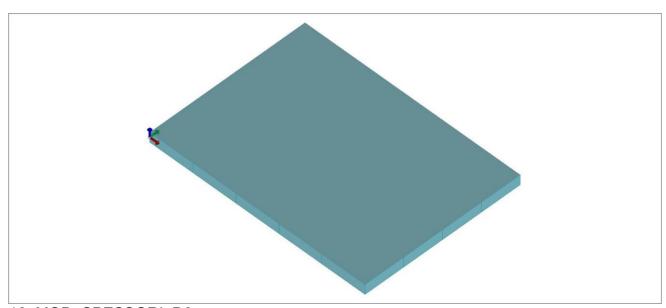

MODELLAZIONE STRUTTURA: ELEMENTI SHELL

LEGENDA TABELLA DATI SHELL

Il programma utilizza per la modellazione elementi a tre o quattro nodi denominati in generale shell.

Ogni elemento shell è individuato dai nodi I, J, K, L (L=I per gli elementi a tre nodi).

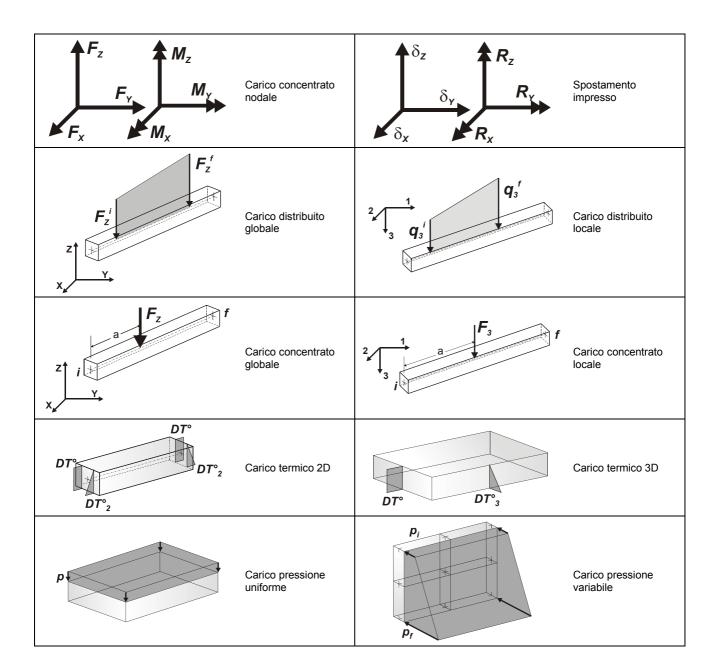

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.


In particolare per ogni elemento viene indicato in tabella:

i <u>colare per ogni element</u>	olare per ogni elemento viene indicato in tabella:				
Elem.	numero dell'elemento				
Note	codice di comportamento:				
	Guscio (elemento guscio in elevazione non verticale)				
	Guscio fond. (elemento guscio su suolo elastico)				
	Setto (elemento guscio in elevazione verticale)				
	Membrana (elemento guscio con comportamento membranale)				
Nodo I (J, K, L)	numero del nodo I (J, K, L)				
Mat.	codice del materiale assegnato all'elemento				
Spessore	spessore dell'elemento (costante)				
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico				
	verticale				
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico				
	orizzontale				

Elem.	Note	Nodo I	Nodo J	Nodo K	Nodo L	Mat.	Crit.	Spessore cm	Svincolo	Wink V daN/cm3	Wink O daN/cm3
1Gus	cio fond.	19	12	3	11	1	1	20.0		10.00	6.09
	cio fond.	20	19	11	10	1	1	20.0		10.00	6.09
	cio fond.	21	20	10	9	1	1	20.0		10.00	6.09
	cio fond.	22	21	9	8	1	1	20.0		10.00	6.09
	cio fond.	7	22	8	0	1	1	20.0		10.00	6.09
					4	1	1				
	cio fond.	23	13	12	19	1	1	20.0		10.00	6.09
	cio fond.	24	23	19	20	1	1	20.0		10.00	6.09
	cio fond.	25	24	20	21	1	1	20.0		10.00	6.09
	cio fond.	26	25	21	22	1	1	20.0		10.00	6.09
10Gus	cio fond.	6	26	22	7	1	1	20.0		10.00	6.09
11Gus	cio fond.	27	14	13	23	1	1	20.0		10.00	6.09
12Gus	cio fond.	28	27	23	24	1	1	20.0		10.00	6.09
13Gus	cio fond.	29	28	24	25	1	1	20.0		10.00	6.09
14Gus	cio fond.	30	29	25	26	1	1	20.0		10.00	6.09
15Gus	cio fond.	5	30	26	6	1	1	20.0		10.00	6.09
16Gus	cio fond.	15	2	14	27	1	1	20.0		10.00	6.09
17Gus	cio fond.	16	15	27	28	1	1	20.0		10.00	6.09
	cio fond.	17	16	28	29	1	1	20.0		10.00	6.09
	cio fond.	18	17	29	30	1	1	20.0		10.00	6.09
	cio fond.	1	18	30	5	1	1	20.0		10.00	6.09

16_MOD_NUMERAZIONE_D3


16_MOD_SPESSORI_D3

MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)
4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo iniziale e finale)
8	carico di pressione uniforme su elemento tipo piastra
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	1 dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico e la larghezza
	d'influenza per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione centrale del primo,
	dimensioni dell' impronta, interasse tra i carichi

T:	carios variabila generale	
Tipo	l carico variabile generale	

ld	Tipo	ascissa	valore	ascissa	valore
		m	daN/ m2	m	daN/ m2
1	Carico				
	Unif Qz Area I 2=0 0		-450 00		

SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

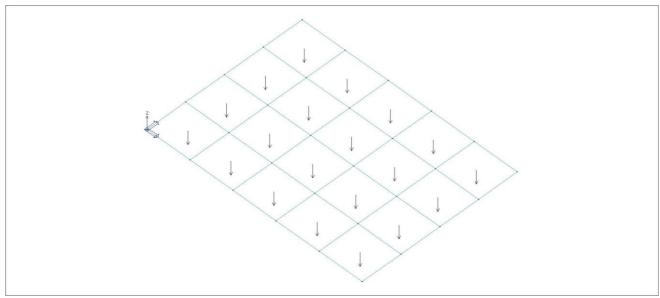
Sono previsti i sequenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione			
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura			
2	Gk	NA	caso di carico con azioni permanenti			
3	Qk	NA	caso di carico con azioni variabili			
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture			
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai			
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture			
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura			
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura			
9	Esk	SA	caso di carico sismico con analisi statica equivalente			
10	Edk	SA	caso di carico sismico con analisi dinamica			
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in condizione sismica			
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni			

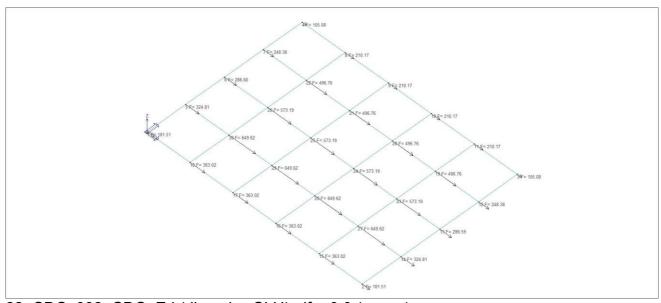
Sono di tipo automatico A (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Onk

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico: 7-Qtk, in quanto richiede solo il valore della variazione termica;

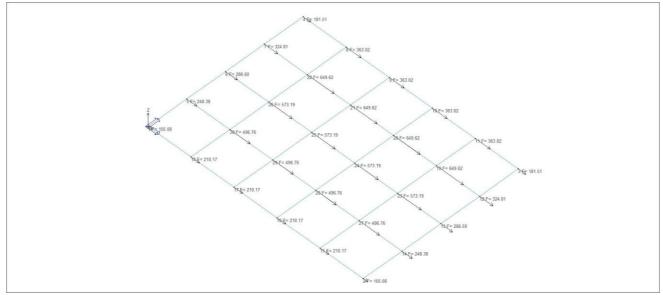
9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

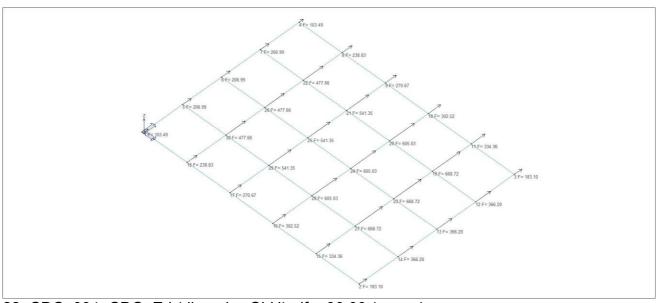

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

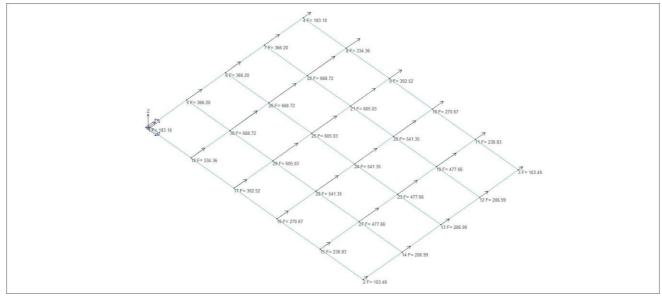
Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: *Numero Tipo* e *Sigla identificativa*, *Valore di riferimento* del caso di carico (se previsto).

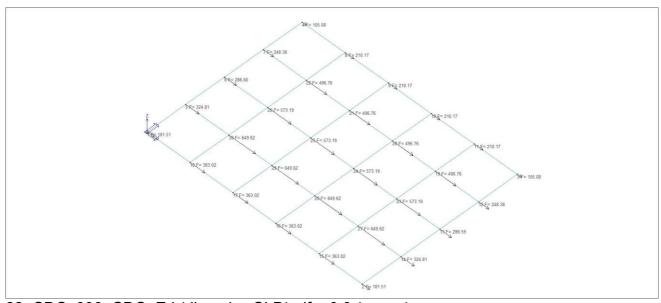

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

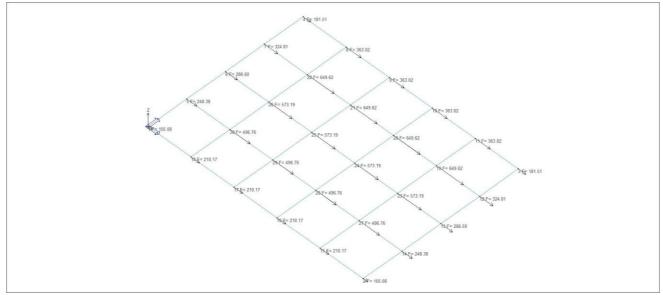
Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

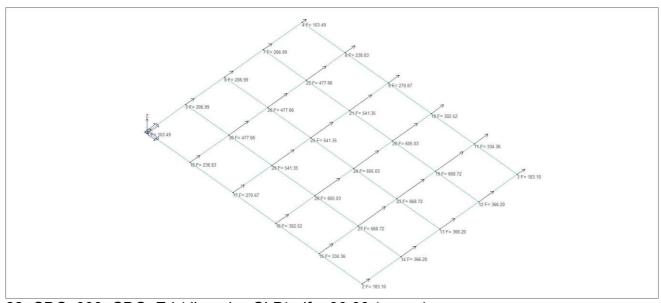

CDC	Tipo	Sigla Id	Note			
1	Ggk	CDC=Ggk (peso proprio della struttura)				
2	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)			
			partecipazione:0.80 per 10 CDC=Qk (variabile generico)			
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico			
4	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico			
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico			
6	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico			
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico			
8	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico			
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico			
10	Qk	CDC=Qk (variabile generico)	Azioni applicate:			
			D3 :da 1 a 20 Azione : Carico			

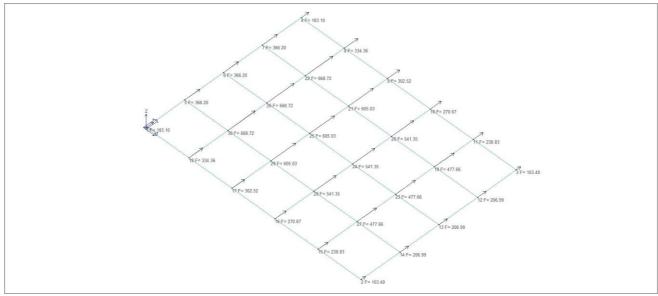

22_CDC_001_CDC=Ggk (peso proprio della struttura)

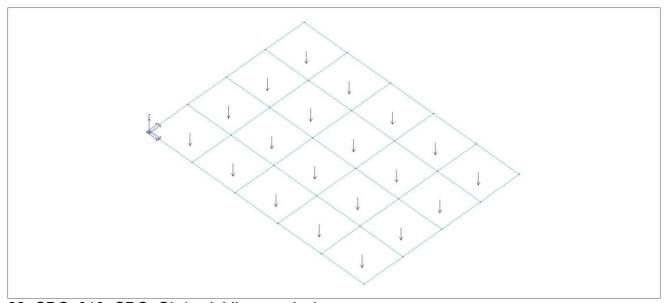

22_CDC_002_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)


22_CDC_003_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. -)


22_CDC_004_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)


22_CDC_005_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. -)


22_CDC_006_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)


22_CDC_007_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. -)

22_CDC_008_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)

22_CDC_009_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. -)

22_CDC_010_CDC=Qk (variabile generico)

DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Combinazione frequente SLE

 $G1 + G2 + P + \psi 11 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi_{21}Qk_1 + \psi_{22}Qk_2 + \psi_{23}Qk_3 + ...$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

 $G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$

Dove:

NTC 2018 Tabella 2.5.I

20.0 2.0					
Destinazione d'uso/azione	Ψ0	Ψ1	ψ2		
Categoria A residenziali	0,70	0,50	0,30		
Categoria B uffici	0,70	0,50	0,30		
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60		
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60		
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80		
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60		
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30		
Categoria H Coperture	0,00	0,00	0,00		
Vento	0,60	0,20	0,00		
Neve a quota <= 1000 m	0,50	0,20	0,00		
Neve a quota > 1000 m	0,70	0,50	0,20		
Variazioni Termiche	0,60	0,50	0,00		

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A1	A2
		γf			
Carichi permanenti	Favorevoli Sfavorevoli	γG1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	γG2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 1	
2	SLU	Comb. SLU A1 2	
3	SLU	Comb. SLU A1 3	
4	SLU	Comb. SLU A1 4	
5	SLU	Comb. SLU A1 (SLV sism.) 5	
6	SLU	Comb. SLU A1 (SLV sism.) 6	
7	SLU	Comb. SLU A1 (SLV sism.) 7	

Cmb	Tipo	Sigla Id	effetto P-delta
8	SLU	Comb. SLU A1 (SLV sism.) 8	enetto r-della
9	SLU	Comb. SLU A1 (SLV sism.) 9	
10	SLU	Comb. SLU A1 (SLV sism.) 10	
11	SLU	Comb. SLU A1 (SLV sism.) 11	
12	SLU	Comb. SLU A1 (SLV sism.) 12	
13	SLU	Comb. SLU A1 (SLV sism.) 13	
14	SLU	Comb. SLU A1 (SLV sism.) 14	
15	SLU	Comb. SLU A1 (SLV sism.) 15	
16	SLU	Comb. SLU A1 (SLV sism.) 16	
17	SLU	Comb. SLU A1 (SLV sism.) 17	
18	SLU	Comb. SLU A1 (SLV sism.) 18	
19	SLU	Comb. SLU A1 (SLV sism.) 19	
20	SLU	Comb. SLU A1 (SLV sism.) 20	
21	SLU	Comb. SLU A1 (SLV sism.) 21	
22	SLU	Comb. SLU A1 (SLV sism.) 22	
23	SLU	Comb. SLU A1 (SLV sism.) 23	
24	SLU	Comb. SLU A1 (SLV sism.) 24	
25	SLU	Comb. SLU A1 (SLV sism.) 25	
26	SLU	Comb. SLU A1 (SLV sism.) 26	
27	SLU	Comb. SLU A1 (SLV sism.) 27	
28	SLU	Comb. SLU A1 (SLV sism.) 28	
29	SLU	Comb. SLU A1 (SLV sism.) 29	
30	SLU	Comb. SLU A1 (SLV sism.) 30	
31	SLU	Comb. SLU A1 (SLV sism.) 31	
32	SLU	Comb. SLU A1 (SLV sism.) 32	
33	SLU	Comb. SLU A1 (SLV sism.) 33	
34	SLU	Comb. SLU A1 (SLV sism.) 34	
35	SLU	Comb. SLU A1 (SLV sism.) 35	
36	SLU	Comb. SLU A1 (SLV sism.) 36	
37	SLD(sis)	Comb. SLE (SLD Danno sism.) 37	
38	SLD(sis)	Comb. SLE (SLD Danno sism.) 38	
39	SLD(sis)	Comb. SLE (SLD Danno sism.) 39	
40	SLD(sis)	Comb. SLE (SLD Danno sism.) 40	
41	SLD(sis)	Comb. SLE (SLD Danno sism.) 41	
42	SLD(sis)	Comb. SLE (SLD Danno sism.) 42	
43	SLD(sis)	Comb. SLE (SLD Danno sism.) 43	
44	SLD(sis)	Comb. SLE (SLD Danno sism.) 44	
45 46	SLD(sis)	Comb. SLE (SLD Danno sism.) 45	
46 47	SLD(sis)	Comb. SLE (SLD Danno sism.) 46	
47 40	SLD(sis)	Comb. SLE (SLD Danno sism.) 47 Comb. SLE (SLD Danno sism.) 48	
48 49	SLD(sis) SLD(sis)	Comb. SLE (SLD Danno sism.) 49	
	SLD(sis)	Comb. SLE (SLD Danno sism.) 50	
50 51	SLD(sis)	Comb. SLE (SLD Danno sism.) 51	
52	SLD(sis)	Comb. SLE (SLD Danno sism.) 52	
53	SLD(sis)	Comb. SLE (SLD Danno sism.) 53	
54	SLD(sis)	Comb. SLE (SLD Danno sism.) 54	
55	SLD(sis)	Comb. SLE (SLD Danno sism.) 55	
56	SLD(sis)	Comb. SLE (SLD Danno sism.) 56	
57	SLD(sis)	Comb. SLE (SLD Danno sism.) 57	
58	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
59	SLD(sis)	Comb. SLE (SLD Danno sism.) 59	
60	SLD(sis)	Comb. SLE (SLD Danno sism.) 60	
61	SLD(sis)	Comb. SLE (SLD Danno sism.) 61	
62	SLD(sis)	Comb. SLE (SLD Danno sism.) 62	
63	SLD(sis)	Comb. SLE (SLD Danno sism.) 63	
64	SLD(sis)	Comb. SLE (SLD Danno sism.) 64	
65	SLD(sis)	Comb. SLE (SLD Danno sism.) 65	
66	SLD(sis)	Comb. SLE (SLD Danno sism.) 66	
67	SLD(sis)	Comb. SLE (SLD Danno sism.) 67	
68	SLD(sis)	Comb. SLE (SLD Danno sism.) 68	
69	SLE(r)	Comb. SLE(rara) 69	
70	SLE(r)	Comb. SLE(rara) 70	
71	SLE(f)	Comb. SLE(freq.) 71	
72	SLE(f)	Comb. SLE(freq.) 72	
73	SLE(p)	Comb. SLE(perm.) 73	
74	SLE(p)	Comb. SLE(perm.) 74	

Cmb	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
1	1.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
2	1.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50 0.0				
3 4	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50				
5	1.00	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.80				
6	1.00	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.80				
7	1.00	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.80				
8	1.00	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.80				
9	1.00	-1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	0.80				
10	1.00	-1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	0.80				
11	1.00	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	0.80	<u> </u>	<u> </u>		
12 13	1.00	1.00 0.0	0.0 -1.00	0.0 -0.30	0.30 0.0	0.0	0.0	0.0	0.0	0.80	 	 		1
14	1.00	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.80	 	 	+	
15	1.00	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0	0.80				
16	1.00	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.80				
17	1.00	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.80				
18	1.00	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.80				
19	1.00	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.80				
20	1.00	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.80			1	1
21	1.00	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.80	 	+	1	
22 23	1.00	-0.30 0.30	0.0	1.00 -1.00	0.0	0.0	0.0	0.0	0.0	0.80	1	1	1	
23 24	1.00	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.80	1	+	1	1
25	1.00	0.00	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.80				
26	1.00	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0	0.80		1		
27	1.00	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.80				
28	1.00	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0	0.80				
29	1.00	-0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	0.80				
30	1.00	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.80				
31	1.00	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	0.80				
32 33	1.00	0.30	0.0 -0.30	0.0	1.00 -1.00	0.0	0.0	0.0	0.0	0.80				
34	1.00	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.80				
35	1.00	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.80	1	1		
36	1.00	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.80				
37	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0	0.80				
38	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	0.80				
39	1.00	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0	0.80				
40	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0	0.80				
41	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30	0.80				
42 43	1.00	0.0	0.0	0.0	0.0	-1.00 1.00	0.0	0.0	-0.30	0.80	 	 		1
44	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30	0.80	 	 		
45	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.0	0.80				
46	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0	0.80				
47	1.00	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0	0.80				
48	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0	0.80				
49	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.80	ļ	ļ	1	1
50	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.80			-	<u> </u>
51 52	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.80			1	1
52 53	1.00	0.0	0.0	0.0	0.0	0.0 -0.30	1.00 0.0	0.0 -1.00	0.30	0.80	1	1	1	1
53 54	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0	0.80			1	1
55	1.00	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0	0.80				
56	1.00	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0	0.80				
57	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0	0.80				
58	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0	0.80				
59	1.00	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0	0.80				
60	1.00	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0	0.80	1	1	1	
61 62	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00	0.80	1	1	1	1
62 62	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00	0.80				
63 64	1.00	0.0	0.0	0.0	0.0	0.30 0.30	0.0	0.0	-1.00 1.00	0.80	1	1	1	1
65	1.00	0.0	0.0	0.0	0.0	0.30	-0.30	0.0	-1.00	0.80	 	 	1	
66	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.80	†	†	1	
100		0.0	10.0	J	J. U	5.5	0.00	0.0	1.00	5.00	1	1	1	

Cmb	CDC	CDC	CDC				CDC	CDC						CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
67	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.80				
68	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.80				
69	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
70	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00				
71	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
72	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90				
73	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
74	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.80				

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri	della struttı	ıra			
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica
I	50.0	0.7	35.0	В	T1

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_s e C_c valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_s e C_c vengono calcolati mediante le espressioni riportane nella sequente Tabella

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{\rm C}^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	2	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B}\right)\right] \\ T_B &\leq T < T_C & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

I valori di $S_{\text{S}},\,T_{\text{B}},\,T_{\text{C}}$ e $T_{\text{D}},\,$ sono riportati nella seguente Tabella

Categoria di sottosuolo	S _s	T _s	T _C	To
A. B. C. D. E	1.0	0.05 s	0.15 s	1.0 s

ld nodo	Longitudine		Latitudine		Distanza	
						Km
Loc.		16.756		40.794		
33238		16.726		40.789		2.577
33239		16.792		40.787		3.119
33017	_	16.795	•	40.837	•	5.780
33016	_	16.729	·	40.839		5.477

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	30.0	0.032	2.455	0.257
SLD	63.0	35.0	0.034	2.471	0.267
SLV	10.0	332.0	0.079	2.616	0.407
SLC	5.0	682.0	0.100	2.658	0.440

SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.032	1.200	2.455	0.590	0.124	0.371	1.727
SLD	0.034	1.200	2.471	0.613	0.127	0.382	1.735
SLV	0.079	1.200	2.616	0.993	0.179	0.536	1.916
SLC	0.100	1.200	2.658	1.132	0.190	0.570	1.998

RISULTATI ANALISI SISMICHE

LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i seguenti valori:

Angolo di ingresso	Angolo di ingresso dell'azione sismica orizzontale
Fattore di importanza	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
Zona sismica	Zona sismica
Accelerazione ag	Accelerazione orizzontale massima sul suolo
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di duttilità CD	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
Fattore riduz. SLD	Fattore di riduzione dello spettro elastico per lo stato limite di danno
Periodo proprio T1	Periodo proprio di vibrazione della struttura
Coefficiente Lambda	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Ordinata spettro Sd(T1)	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale (verticale Svd)
Ordinata spettro Se(T1)	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno,
	componente orizzontale (verticale Sve)
Ordinata spettro S (Tb-Tc)	Valore dell' ordinata dello spettro in uso nel tratto costante
numero di modi considerati	Numero di modi di vibrare della struttura considerati nell'analisi dinamica

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

- a) analisi sismica statica equivalente:
 - quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - azione sismica complessiva
- b) analisi sismica dinamica con spettro di risposta:
 - quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
 - massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo la circolare n.7/2019 del C.S.LL.PP nelle combinazioni in SLC come previsto dal DM 17-01-2018. Per ogni combinazione è riportato il codice di verifica ed i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell'elastomero e tensioni nell'acciaio.

Qualora si applichi l'Ordinanza 3274 e s.m.i. le verifiche sono eseguite in accordo con l'allegato 10.A. In particolare la tabella, per ogni combinazione di calcolo, riporta:

Nodo	Nodo di appoggio dell' isolatore
Cmb	Combinazione oggetto della verifica
Verif.	Codice di verifica ok – verifica positiva , NV – verifica negativa, ND – verifica non completata
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi) combinato con la regola del 30%
Ang fi	Angolo utilizzato per il calcolo dell' area ridotta Ar (per dispositivi circolari)
V	Azione verticale agente
Ar	Area ridotta efficace
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione
Sig s	Tensione nell' inserto in acciaio

Gam c(a,s,t)	Deformazioni di taglio dell' elestomero					
Vcr	Carico critico per instabilità					

Affinché la verifica sia positiva deve essere:

- 1) V > 0
 2) Sig s < fyk
 3) Gam t < 5
 4) Gam s < Gam * (caratteristica dell' elastomero)
 5) Gam s < 2
 6) V < 0.5 Vcr

Calcolo dei fattori di comportamento secondo il D.M. 17/01/2018

La costruzione, nuova, è caratterizzata da regolarità sia in pianta sia in altezza ed è progettata considerando un comportamento non dissipativo (ND).

Parametri fattore in direzione x e y

Sistema costruttivo: calcestruzzo

Tipologia strutturale: strutture a telaio, a pareti accoppiate, miste

 $\label{eq:composition} \mbox{Definizione rapporto $\alpha_{\mbox{$u$}}/\alpha_1$:} \qquad \mbox{valore come da normativa} \\ \mbox{Riferimento normativo $\alpha_{\mbox{$u$}}/\alpha_1$:} \qquad \mbox{strutture a telaio di un piano}$

Valore rapporto $\alpha_u/\alpha_1 =$ 1.100 Valore base fattore $q_0 = 3.000 \alpha_u/\alpha_1 = 3.300$ k_w = K_R = 1.000 Fattore pareti Fattore di regolarità 1.0 $q_D = q_0 \cdot k_w \cdot K_R =$ 3.300 Fattore dissipativo Fattore non dissipativo $q_{ND} = 2/3 \cdot q_D =$ Fattori di comportamento utilizzati
Dissipativi Non di 1.500 (≤1.5)

Non dissipativi 1.500 q SLU x 3.300 q SLU y q SLU z 3.300 1.500 1.500 1.500

CDC	Tipo	Sigla Id	Note
2	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.025 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	0.0	-0.15	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Ζxg			v
	Hz	sec	g	daN		daN		daN			
1	40.060	0.025	0.105	6293.05	54.9	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	0.0	0.0	1.146e+04	100.0	0.0	0.0	0.0	0.0
3	44.143	0.023	0.104	5170.68	45.1	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	297.930	0.003	0.096	0.06	5.37e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	406.718	0.002	0.096	4.58e-03	3.99e-05	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.025 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND
			numero di modi considerati: 6

CDC	Tipo	Sigla Id	Note
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	0.0	0.15	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	_		Spettrale	Ххg		Υxg		Zxg		_	v
	Hz	sec	g	daN		daN		daN			
1	40.060	0.025	0.105	6293.05	54.9	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	0.0	0.0	1.146e+04	100.0	0.0	0.0	0.0	0.0
3	44.143	0.023	0.104	5170.68	45.1	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	297.930	0.003	0.096	0.06	5.37e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	406.718	0.002	0.096	4.58e-03	3.99e-05	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
4	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.025 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	0.21	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg		_	V
	Hz	sec	g	daN		daN		daN			
1	39.392	0.025	0.105	0.0	0.0	6496.83	56.7	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	1.146e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	45.085	0.022	0.104	0.0	0.0	4966.92	43.3	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	240.227	0.004	0.097	0.0	0.0	3.12e-03	2.72e-05	0.0	0.0	0.0	0.0
6	304.968	0.003	0.096	0.0	0.0	0.04	3.21e-04	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.025 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND

CDC	Tipo	Sigla Id	Note
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	-0.21	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	_		Spettrale	Ххg		Υxg		Ζxg		•	v
	Hz	sec	g	daN		daN		daN			
1	39.392	0.025	0.105	0.0	0.0	6496.83	56.7	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	1.146e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	45.085	0.022	0.104	0.0	0.0	4966.92	43.3	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	240.227	0.004	0.097	0.0	0.0	3.12e-03	2.72e-05	0.0	0.0	0.0	0.0
6	304.968	0.003	0.096	0.0	0.0	0.04	3.21e-04	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
6	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.025 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	0.0	-0.15	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									

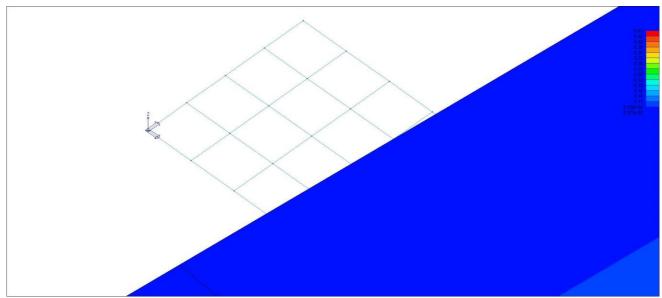
Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	40.060	0.025	0.052	6293.05	54.9	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	0.0	0.0	1.146e+04	100.0	0.0	0.0	0.0	0.0
3	44.143	0.023	0.051	5170.68	45.1	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	297.930	0.003	0.042	0.06	5.37e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	406.718	0.002	0.042	4.58e-03	3.99e-05	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.025 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC

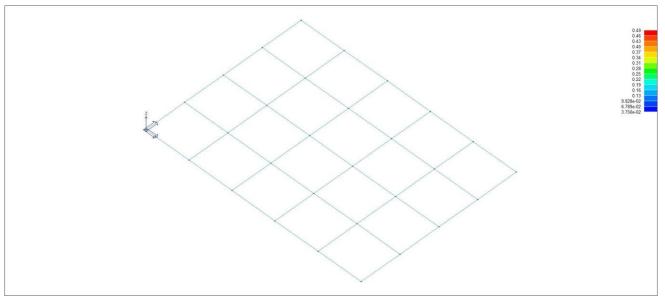
Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	0.0	0.15	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	40.060	0.025	0.052	6293.05	54.9	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	0.0	0.0	1.146e+04	100.0	0.0	0.0	0.0	0.0
3	44.143	0.023	0.051	5170.68	45.1	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	297.930	0.003	0.042	0.06	5.37e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	406.718	0.002	0.042	4.58e-03	3.99e-05	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			

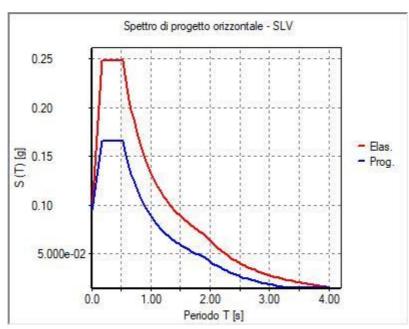
CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.025 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC


Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	0.21	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	_		Spettrale	Ххg		Υxg		Ζxg			v
	Hz	sec	g	daN		daN		daN			
1	39.392	0.025	0.052	0.0	0.0	6496.83	56.7	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	1.146e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	45.085	0.022	0.051	0.0	0.0	4966.92	43.3	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	240.227	0.004	0.043	0.0	0.0	3.12e-03	2.72e-05	0.0	0.0	0.0	0.0
6	304.968	0.003	0.042	0.0	0.0	0.04	3.21e-04	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			


CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.025 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	1.146e+04	2.15	1.55	-0.21	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	1.146e+04									


Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	39.392	0.025	0.052	0.0	0.0	6496.83	56.7	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	1.146e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	45.085	0.022	0.051	0.0	0.0	4966.92	43.3	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	1.146e+04	100.0	0.0	0.0
5	240.227	0.004	0.043	0.0	0.0	3.12e-03	2.72e-05	0.0	0.0	0.0	0.0
6	304.968	0.003	0.042	0.0	0.0	0.04	3.21e-04	0.0	0.0	0.0	0.0
Risulta				1.146e+04		1.146e+04		1.146e+04			
In percentuale				100.00		100.00		100.00			

31_RIS_MODOX_001_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)

31_RIS_MODOY_001_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)

31_RIS_SPETTRI_PROGETTO_

SLV_O

RISULTATI NODALI

LEGENDA RISULTATI NODALI

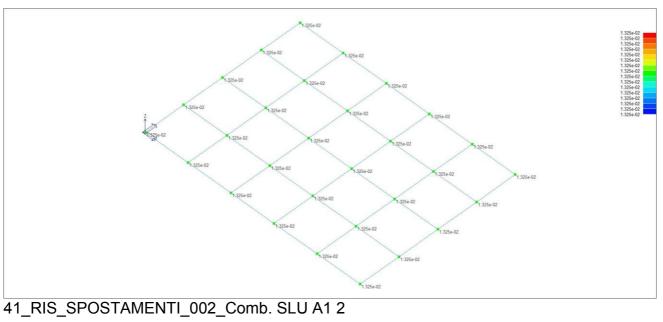
Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

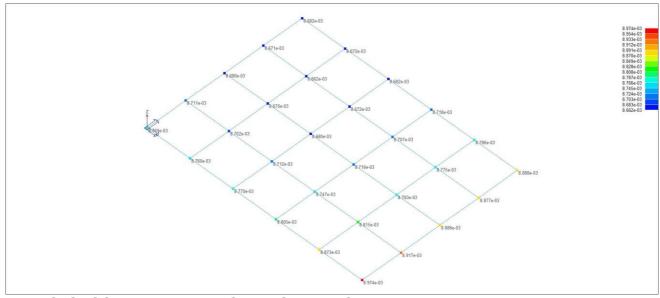
Una prima tabella riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.

Una <u>seconda tabella</u> riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

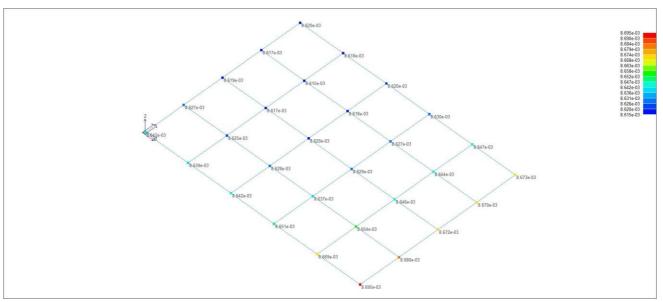
Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.

Nodo	Cmb	Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione Z
1	1	cm 0.0	cm 0.0	cm -6.50e-03	0.0	0.0	0.0
1	2	0.0	0.0	-0.50e-03	0.0	0.0	0.0
1	5	1.86e-03	-5.69e-04	-8.60e-03	0.0	0.0	0.0
1	10	1.86e-03	-1.56e-03	-8.60e-03	0.0	0.0	0.0
1	30	1.31e-03	-2.20e-03	-8.60e-03	0.0	0.0	0.0
i 1	37	9.27e-04	-2.86e-04	-8.60e-03	0.0	0.0	0.0
1	42	9.28e-04	-7.79e-04	-8.60e-03	0.0	0.0	0.0
1	62	6.55e-04	-1.10e-03	-8.60e-03	0.0	0.0	0.0
1	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
1	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
1	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
1	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
1	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
1	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
2	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
2	2	0.0	0.0	-0.01	0.0	0.0	0.0
2	5	1.86e-03	1.56e-03	-8.60e-03	0.0	0.0	0.0
2 2 2 2	21	1.31e-03	2.20e-03	-8.60e-03	0.0	0.0	0.0
2	37	9.28e-04	7.79e-04	-8.60e-03	0.0	0.0	0.0
2	53	6.55e-04	1.10e-03	-8.60e-03	0.0	0.0	0.0
2	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
2 2 2	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
2	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
2	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
2 2 3	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
2	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
3	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
3	2	0.0	0.0	-0.01	0.0	0.0	0.0
3	5	1.06e-03	1.56e-03	-8.60e-03	0.0	0.0	0.0
3	14	1.86e-03	-1.56e-03	-8.60e-03	0.0	0.0	0.0
3 3	26	1.31e-03	-2.20e-03	-8.60e-03	0.0	0.0	0.0
	37 46	5.23e-04	7.78e-04	-8.60e-03	0.0	0.0	0.0
3 3	58	9.28e-04 6.55e-04	-7.79e-04 -1.10e-03	-8.60e-03 -8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0
3	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
3	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
3	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
3	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
3	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
3	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
4	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
4	2	0.0	0.0	-0.01	0.0	0.0	0.0
4	5	1.06e-03	-5.67e-04	-8.60e-03	0.0	0.0	0.0
4	17	1.86e-03	1.56e-03	-8.60e-03	0.0	0.0	0.0
4	33	1.31e-03	2.20e-03	-8.60e-03	0.0	0.0	0.0
4	37	5.24e-04	-2.85e-04	-8.60e-03	0.0	0.0	0.0
4	49	9.28e-04	7.79e-04	-8.60e-03	0.0	0.0	0.0
4	65	6.55e-04	1.10e-03	-8.60e-03	0.0	0.0	0.0
4	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
4	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
4	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
4	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
4	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
4	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
5	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0

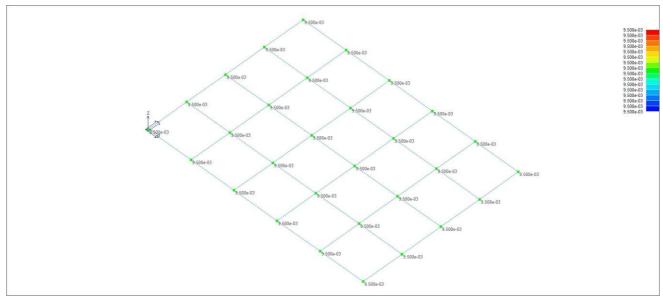

_					• •		
5 5 5 5 5 5	2	0.0	0.0	-0.01	0.0	0.0	0.0
5 5	5 10	1.54e-03 1.54e-03	-5.69e-04 -1.56e-03	-8.60e-03 -8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0
5	30	8.38e-04	-2.20e-03	-8.60e-03	0.0	0.0	0.0
5	37	7.65e-04	-2.85e-04	-8.60e-03	0.0	0.0	0.0
5	42	7.65e-04	-7.79e-04	-8.60e-03	0.0	0.0	0.0
5	62	4.17e-04	-1.10e-03	-8.60e-03	0.0	0.0	0.0
5	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
5 5	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
5 5 5 5	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
5	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
5	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
6	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
6	2 5	0.0	0.0	-0.01	0.0	0.0	0.0
6		1.28e-03	-5.68e-04	-8.60e-03	0.0	0.0	0.0
6 6	18	1.28e-03	4.18e-04	-8.60e-03	0.0	0.0	0.0
6	30	3.85e-04	-2.20e-03	-8.60e-03	0.0	0.0	0.0
6 6	37 50	6.37e-04 6.37e-04	-2.85e-04 2.06e-04	-8.60e-03 -8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0
6	62	1.91e-04	-1.10e-03	-8.60e-03	0.0	0.0	0.0
6	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
6	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
6	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
6	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
6	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
6	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
7	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
7	2	0.0	0.0	-0.01	0.0	0.0	0.0
7	5	1.12e-03	-5.68e-04	-8.60e-03	0.0	0.0	0.0
7	17	1.54e-03	1.56e-03	-8.60e-03	0.0	0.0	0.0
7	33	8.38e-04	2.20e-03	-8.60e-03	0.0	0.0	0.0
7	37	5.55e-04	-2.85e-04	-8.60e-03	0.0	0.0	0.0
7	49	7.65e-04	7.79e-04	-8.60e-03	0.0	0.0	0.0
7 7	65 69	4.17e-04 0.0	1.10e-03 0.0	-8.60e-03 -5.00e-03	0.0 0.0	0.0 0.0	0.0 0.0
7	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
7	70 71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
7	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
7	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
7	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
8 8 8 8	2	0.0	0.0	-0.01	0.0	0.0	0.0
8	5	1.07e-03	-2.31e-04	-8.60e-03	0.0	0.0	0.0
8	17	1.86e-03	1.06e-03	-8.60e-03	0.0	0.0	0.0
8	33	1.31e-03	1.74e-03	-8.60e-03	0.0	0.0	0.0
	37	5.24e-04	-1.16e-04	-8.60e-03	0.0	0.0	0.0
8	49	9.28e-04	5.30e-04	-8.60e-03	0.0	0.0	0.0
Ö Q	65 69	6.54e-04 0.0	8.71e-04 0.0	-8.60e-03 -5.00e-03	0.0 0.0	0.0 0.0	0.0 0.0
8	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
8	70 71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
8	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
8	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
8	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
9	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
9	2 5	0.0	0.0	-0.01	0.0	0.0	0.0
9	5	1.07e-03	1.53e-04	-8.60e-03	0.0	0.0	0.0
9	17	1.86e-03	5.89e-04	-8.60e-03	0.0	0.0	0.0
9	30	-4.34e-04	-1.36e-03	-8.60e-03	0.0	0.0	0.0
9	37	5.24e-04	7.55e-05	-8.60e-03	0.0	0.0	0.0
9	49	9.27e-04	2.93e-04	-8.60e-03	0.0	0.0	0.0
9	62	-2.18e-04	-6.79e-04	-8.60e-03	0.0	0.0	0.0
9	69 70	0.0 0.0	0.0 0.0	-5.00e-03 -9.50e-03	0.0 0.0	0.0	0.0 0.0
g Q	70 71	0.0	0.0	-5.00e-03	0.0	0.0 0.0	0.0
9	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
888888999999999999999	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
9	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
10	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
10	2 5	0.0	0.0	-0.01	0.0	0.0	0.0
10		1.06e-03	5.89e-04	-8.60e-03	0.0	0.0	0.0
10	14	1.86e-03	-5.89e-04	-8.60e-03	0.0	0.0	0.0
10	21	-4.34e-04	1.36e-03	-8.60e-03	0.0	0.0	0.0
10			2.93e-04	-8.60e-03	0.0	0.0	0.0
40	37	5.24e-04					
10 10	37 46 53	5.24e-04 9.27e-04 -2.18e-04	-2.93e-04 -2.93e-04 6.79e-04	-8.60e-03 -8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0 0.0

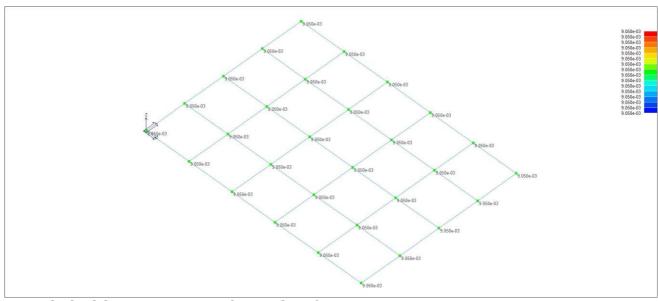

10	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
10	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
10	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
10	72	0.0	0.0	-9.05e-03	0.0	0.0	
10	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
10	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
11	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
11	2		0.0	-0.01	0.0	0.0	0.0
11	5	1.06e-03	1.06e-03	-8.60e-03	0.0	0.0	0.0
11	14	1.86e-03	-1.06e-03	-8.60e-03	0.0	0.0	0.0
11	26	1.31e-03	-1.74e-03	-8.60e-03	0.0	0.0	0.0
11	37	5.23e-04	5.30e-04	-8.60e-03	0.0	0.0	0.0
11	46	9.28e-04	-5.30e-04	-8.60e-03	0.0	0.0	0.0
11	58	6.54e-04	-8.71e-04	-8.60e-03	0.0	0.0	0.0
11	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
11	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
11	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
11	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
11	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
11	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
12	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
12	2		0.0	-0.01	0.0	0.0	0.0
12	5	1.12e-03	1.56e-03	-8.60e-03	0.0	0.0	0.0
12	14	1.54e-03	-1.56e-03	-8.60e-03	0.0	0.0	0.0
12	26	8.38e-04	-2.20e-03	-8.60e-03	0.0	0.0	0.0
12	37	5.55e-04	7.78e-04	-8.60e-03	0.0	0.0	0.0
12	46	7.65e-04	-7.79e-04	-8.60e-03	0.0	0.0	0.0
12	58	4.17e-04	-1.10e-03	-8.60e-03	0.0	0.0	0.0
12	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
12	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
12	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
12	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
12	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
12	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
13	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
13	2		0.0	-0.01	0.0	0.0	0.0
13	5	1.28e-03	1.56e-03	-8.60e-03	0.0	0.0	0.0
13	18	1.28e-03	-1.41e-03	-8.60e-03	0.0	0.0	0.0
13	26	3.85e-04	-2.20e-03	-8.60e-03	0.0	0.0	0.0
13	37	6.37e-04	7.78e-04	-8.60e-03	0.0	0.0	0.0
13	50	6.37e-04	-6.99e-04	-8.60e-03	0.0	0.0	0.0
13	58	1.91e-04	-1.10e-03	-8.60e-03	0.0	0.0	0.0
13	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
13 13	70 71	0.0 0.0 0.0	0.0 0.0 0.0	-9.50e-03 -5.00e-03	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
13 13	71 72 73	0.0 0.0 0.0	0.0 0.0 0.0	-9.05e-03 -5.00e-03	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
13	74	0.0	0.0	-8.60e-03	0.0 0.0 0.0	0.0	0.0
14 14 14	1 2 5	0.0 0.0 1.54e-03	0.0 0.0 1.56e-03	-6.50e-03 -0.01 -8.60e-03	0.0	0.0 0.0	0.0 0.0
14 14 14	21 37	8.38e-04 7.65e-04	2.20e-03 7.79e-04	-8.60e-03 -8.60e-03	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
14 14 14	53 69	4.17e-04 0.0	1.10e-03 0.0	-8.60e-03 -5.00e-03	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
14 14	70 71	0.0 0.0	0.0 0.0	-9.50e-03 -5.00e-03	0.0 0.0 0.0	0.0 0.0	0.0 0.0
14	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
14	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
14	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
15	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
15	2	0.0	0.0	-0.01	0.0	0.0	0.0
15	5	1.86e-03	1.06e-03	-8.60e-03	0.0	0.0	0.0
15	21	1.31e-03	1.74e-03	-8.60e-03	0.0	0.0	0.0
15	37	9.28e-04	5.30e-04	-8.60e-03	0.0	0.0	0.0
15	53	6.54e-04	8.71e-04	-8.60e-03	0.0	0.0	0.0
15	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
15	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
15	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
15	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
15	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
15	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
16	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
16	2	0.0	0.0	-0.01	0.0	0.0	0.0
16	5	1.86e-03	5.89e-04	-8.60e-03	0.0	0.0	0.0
16	26	-4.34e-04	-1.36e-03	-8.60e-03	0.0	0.0	0.0
16	37	9.27e-04	2.93e-04	-8.60e-03	0.0	0.0	0.0

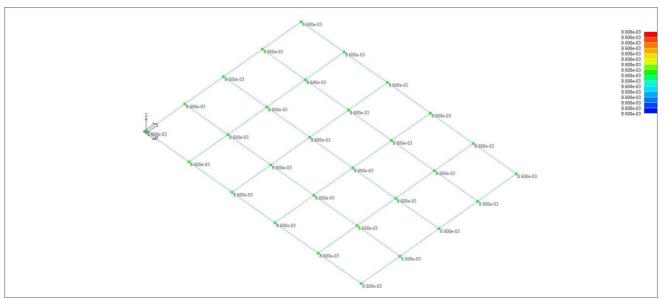
16	58	-2.18e-04	-6.79e-04	-8.60e-03	0.0	0.0	0.0
16	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
16	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
16	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
16	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
16	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
16 17	74	0.0 0.0	0.0	-8.60e-03	0.0	0.0	0.0
17	1 2	0.0	0.0 0.0	-6.50e-03 -0.01	0.0 0.0	0.0 0.0	0.0 0.0
17	5	1.86e-03	1.53e-04	-8.60e-03	0.0	0.0	0.0
17	10	1.86e-03	-5.89e-04	-8.60e-03	0.0	0.0	0.0
17	33	-4.34e-04	1.36e-03	-8.60e-03	0.0	0.0	0.0
17	37	9.27e-04	7.56e-05	-8.60e-03	0.0	0.0	0.0
17	42	9.27e-04	-2.93e-04	-8.60e-03	0.0	0.0	0.0
17 17	65 69	-2.18e-04 0.0	6.79e-04 0.0	-8.60e-03 -5.00e-03	0.0 0.0	0.0 0.0	0.0 0.0
17	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
17	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
17	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
17	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
17	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
18 18	1 2	0.0 0.0	0.0 0.0	-6.50e-03 -0.01	0.0 0.0	0.0 0.0	0.0 0.0
18	5	1.86e-03	-2.31e-04	-8.60e-03	0.0	0.0	0.0
18	10	1.86e-03	-1.06e-03	-8.60e-03	0.0	0.0	0.0
18	30	1.31e-03	-1.74e-03	-8.60e-03	0.0	0.0	0.0
18	37	9.27e-04	-1.17e-04	-8.60e-03	0.0	0.0	0.0
18	42	9.28e-04	-5.30e-04	-8.60e-03	0.0	0.0	0.0
18	62	6.54e-04	-8.71e-04	-8.60e-03	0.0	0.0	0.0
18 18	69 70	0.0 0.0	0.0 0.0	-5.00e-03 -9.50e-03	0.0 0.0	0.0 0.0	0.0 0.0
18	70 71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
18	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
18	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
18	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
19	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
19 19	2	0.0 1.12e-03	0.0 1.06e-03	-0.01 -8.60e-03	0.0	0.0	0.0
19	5 14	1.12e-03 1.54e-03	-1.06e-03	-8.60e-03 -8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0
19	26	8.38e-04	-1.74e-03	-8.60e-03	0.0	0.0	0.0
19	37	5.55e-04	5.30e-04	-8.60e-03	0.0	0.0	0.0
19	46	7.65e-04	-5.30e-04	-8.60e-03	0.0	0.0	0.0
19	58	4.17e-04	-8.71e-04	-8.60e-03	0.0	0.0	0.0
19	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
19 19	70 71	0.0 0.0	0.0 0.0	-9.50e-03 -5.00e-03	0.0 0.0	0.0 0.0	0.0 0.0
19	71 72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
19	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
19	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
20	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
20	2	0.0	0.0	-0.01	0.0	0.0	0.0
20 20	5 14	1.12e-03	5.89e-04 -5.89e-04	-8.60e-03 -8.60e-03	0.0 0.0	0.0 0.0	0.0
20	21	1.54e-03 -3.95e-05	1.36e-03	-8.60e-03	0.0	0.0	0.0 0.0
20	37	5.55e-04	2.93e-04	-8.60e-03	0.0	0.0	0.0
20	46	7.65e-04	-2.93e-04	-8.60e-03	0.0	0.0	0.0
20	53	-2.08e-05	6.79e-04	-8.60e-03	0.0	0.0	0.0
20	69 70	0.0	0.0	-5.00e-03	0.0	0.0	0.0
20	70 71	0.0	0.0	-9.50e-03	0.0	0.0	0.0
20 20	71 72	0.0 0.0	0.0 0.0	-5.00e-03 -9.05e-03	0.0 0.0	0.0 0.0	0.0 0.0
20	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
20	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
21	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
21	2	0.0	0.0	-0.01	0.0	0.0	0.0
21	5	1.12e-03	1.53e-04	-8.60e-03	0.0	0.0	0.0
21 21	17 30	1.54e-03	5.89e-04	-8.60e-03 -8.60e-03	0.0	0.0	0.0
21	30 37	-3.95e-05 5.55e-04	-1.36e-03 7.55e-05	-8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0
21	49	7.65e-04	2.93e-04	-8.60e-03	0.0	0.0	0.0
21	62	-2.08e-05	-6.79e-04	-8.60e-03	0.0	0.0	0.0
21	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
21	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
21	71 72	0.0	0.0	-5.00e-03	0.0	0.0	0.0
21 21	72 73	0.0 0.0	0.0 0.0	-9.05e-03 -5.00e-03	0.0 0.0	0.0 0.0	0.0 0.0
21	73 74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
		0.0	5.0	2.000 00	0.0	0.0	0.0


00	4	0.0	0.0	0.5000	0.0	0.0	0.0
22 22	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
22	2 5	0.0 1.12e-03	0.0 -2.31e-04	-0.01 -8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0
22	17	1.54e-03	1.06e-03	-8.60e-03	0.0	0.0	0.0
22	33	8.38e-04	1.74e-03	-8.60e-03	0.0	0.0	0.0
22	37	5.55e-04	-1.16e-04	-8.60e-03	0.0	0.0	0.0
22	49	7.65e-04	5.30e-04	-8.60e-03	0.0	0.0	0.0
22	65	4.17e-04	8.71e-04	-8.60e-03	0.0	0.0	0.0
22	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
22	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
22	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
22	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
22	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
22	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
23	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
23	2	0.0	0.0	-0.01	0.0	0.0	0.0
23	5	1.28e-03	1.06e-03	-8.60e-03	0.0	0.0	0.0
23	18	1.28e-03	-9.56e-04	-8.60e-03	0.0	0.0	0.0
23	26	3.85e-04	-1.74e-03	-8.60e-03	0.0	0.0	0.0
23	37	6.37e-04	5.30e-04	-8.60e-03	0.0	0.0	0.0
23	50	6.37e-04	-4.74e-04	-8.60e-03	0.0	0.0	0.0
23	58	1.91e-04	-8.71e-04	-8.60e-03	0.0	0.0	0.0
23	69 70	0.0	0.0	-5.00e-03	0.0	0.0	0.0
23 23	70 71	0.0 0.0	0.0 0.0	-9.50e-03 -5.00e-03	0.0 0.0	0.0 0.0	0.0 0.0
23	71 72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
23	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
23	73 74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
24	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
24	2	0.0	0.0	-0.01	0.0	0.0	0.0
24	5	1.28e-03	5.89e-04	-8.60e-03	0.0	0.0	0.0
24	18	1.28e-03	-5.49e-04	-8.60e-03	0.0	0.0	0.0
24	26	3.85e-04	-1.36e-03	-8.60e-03	0.0	0.0	0.0
24	37	6.37e-04	2.93e-04	-8.60e-03	0.0	0.0	0.0
24	50	6.37e-04	-2.72e-04	-8.60e-03	0.0	0.0	0.0
24	58	1.91e-04	-6.79e-04	-8.60e-03	0.0	0.0	0.0
24	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
24	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
24	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
24	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
24	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
24	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
25	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
25	2	0.0	0.0	-0.01	0.0	0.0	0.0
25 25	5 18	1.28e-03 1.28e-03	1.53e-04 -1.93e-04	-8.60e-03 -8.60e-03	0.0 0.0	0.0 0.0	0.0 0.0
25	30	3.85e-04	-1.36e-03	-8.60e-03	0.0	0.0	0.0
25	37	6.37e-04	7.56e-05	-8.60e-03	0.0	0.0	0.0
25	50	6.37e-04	-9.64e-05	-8.60e-03	0.0	0.0	0.0
25	62	1.91e-04	-6.79e-04	-8.60e-03	0.0	0.0	0.0
25	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
25	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
25	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
25	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
25	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
25	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
26	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
26	2	0.0	0.0	-0.01	0.0	0.0	0.0
26	5	1.28e-03	-2.31e-04	-8.60e-03	0.0	0.0	0.0
26	18	1.28e-03	1.24e-04	-8.60e-03	0.0	0.0	0.0
26	30	3.85e-04	-1.74e-03	-8.60e-03	0.0	0.0	0.0
26	37	6.37e-04	-1.17e-04	-8.60e-03	0.0	0.0	0.0
26 26	50	6.37e-04	6.03e-05 -8.71e-04	-8.60e-03	0.0	0.0 0.0	0.0 0.0
26 26	62 69	1.91e-04 0.0	-6.7 Te-04 0.0	-8.60e-03 -5.00e-03	0.0 0.0	0.0	0.0
26	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
26	70 71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
26	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
26	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
26	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
27	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
27	2	0.0	0.0	-0.01	0.0	0.0	0.0
27	5	1.54e-03	1.06e-03	-8.60e-03	0.0	0.0	0.0
27	21	8.38e-04	1.74e-03	-8.60e-03	0.0	0.0	0.0
27	37	7.65e-04	5.30e-04	-8.60e-03	0.0	0.0	0.0
27	53	4.17e-04	8.71e-04	-8.60e-03	0.0	0.0	0.0
27	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0

Nodo		Traslazione X -4.34e-04 1.86e-03	Traslazione Y -2.20e-03 2.20e-03	Traslazione Z -0.01 -5.00e-03	Rotazione X 0.0 0.0	Rotazione Y 0.0 0.0	Rotazione Z 0.0 0.0
	74		0.0	-8.60e-03	0.0		
30 30	73 74	0.0 0.0	0.0	-5.00e-03	0.0	0.0 0.0	0.0 0.0
30	72 72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
30	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
30	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
30	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
30	62	4.17e-04	-8.71e-04	-8.60e-03	0.0	0.0	0.0
30	42	7.65e-04	-5.30e-04	-8.60e-03	0.0	0.0	0.0
30	37	7.65e-04	-1.17e-04	-8.60e-03	0.0	0.0	0.0
30	30	8.38e-04	-1.74e-03	-8.60e-03	0.0	0.0	0.0
30	10	1.54e-03	-1.06e-03	-8.60e-03	0.0	0.0	0.0
30	5	1.54e-03	-2.31e-04	-8.60e-03	0.0	0.0	0.0
30	2	0.0	0.0	-0.01	0.0	0.0	0.0
30	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
29	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
29	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
29	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
29	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
29	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
29	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
29	65	-2.08e-05	6.79e-04	-8.60e-03	0.0	0.0	0.0
29	42	7.65e-04	-2.93e-04	-8.60e-03	0.0	0.0	0.0
29	37	7.65e-04	7.56e-05	-8.60e-03	0.0	0.0	0.0
29	33	-3.95e-05	1.36e-03	-8.60e-03	0.0	0.0	0.0
29	10	1.54e-03	-5.89e-04	-8.60e-03	0.0	0.0	0.0
29	5	1.54e-03	1.53e-04	-8.60e-03	0.0	0.0	0.0
29	2	0.0	0.0	-0.01	0.0	0.0	0.0
29	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
28	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
28	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
28	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
28	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
28	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
28	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
28	58	-2.08e-05	-6.79e-04	-8.60e-03	0.0	0.0	0.0
28	37	7.65e-04	2.93e-04	-8.60e-03	0.0	0.0	0.0
28	26	-3.95e-05	-1.36e-03	-8.60e-03	0.0	0.0	0.0
28	5	1.54e-03	5.89e-04	-8.60e-03	0.0	0.0	0.0
28	2	0.0	0.0	-0.01	0.0	0.0	0.0
28	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
27	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
27	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
27	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
27	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
27	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0




41_RIS_SPOSTAMENTI_021_Comb. SLU A1 (SLV sism.) 21


41_RIS_SPOSTAMENTI_053_Comb. SLE (SLD Danno sism.) 53

41_RIS_SPOSTAMENTI_070_Comb. SLE(rara) 70

41_RIS_SPOSTAMENTI_072_Comb. SLE(freq.) 72

41_RIS_SPOSTAMENTI_074_Comb. SLE(perm.) 74

Nodo	Cmb	Azione X daN	Azione Y daN	Azione Z daN	Azione RX daN cm	Azione RY daN cm	Azione RZ daN cm
Nodo		Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
Nodo	Cmb	Azione X daN	Azione Y daN	Azione Z daN	Azione RX daN cm	Azione RY daN cm	Azione RZ daN cm

RISULTATI OPERE DI FONDAZIONE

LEGENDA RISULTATI OPERE DI FONDAZIONE

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sotto riportate.

La <u>prima tabella</u> è riferita alle fondazioni tipo palo e plinto su pali.

Per questo tipo di fondazione vengono riportate le sei componenti di sollecitazione (espresse nel riferimento globale della struttura) per ogni palo componente l'opera.

In particolare viene riportato:

Nodo	numero del nodo a cui è applicato il plinto
Tipo	codice corrispondente al nome assegnato al tipo di plinto di fondazione:
	3) palo singolo (<i>PALO</i>)
	4) plinto su palo
	5) plinto su due pali (<i>PL.2P</i>)
	6) plinto su tre pali (<i>PL.3P</i>)
	7) plinto su quattro pali (<i>PL.4P</i>)
	8) plinto rettangolare su cinque pali (<i>PL.5P.R</i>)
	9) plinto pentagonale su cinque pali (<i>PL.5P</i>)
	10) plinto su sei pali (<i>PL.6P</i>)
Palo	numero del palo
Comb.	combinazione di carico in cui si verificano le sei componenti di sollecitazione.
Quota	quota assoluta della sezione del palo per cui si riportano le sei componenti di sollecitazione.

L'azione Fz (corrispondente allo sforzo normale nel palo) è costante poiché il peso del palo stesso non è considerato nella modellazione.

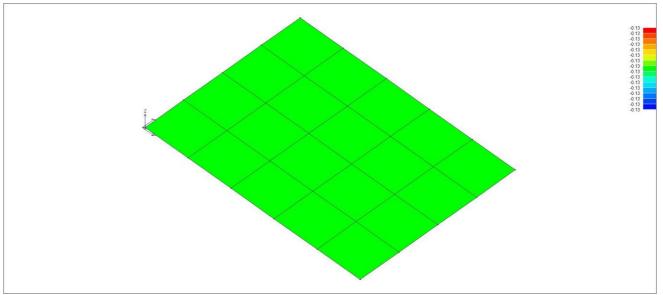
La seconda tabella è riferita alle fondazioni tipo plinto su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni nei quattro vertici dell'impronta sul terreno. In particolare viene riportato:

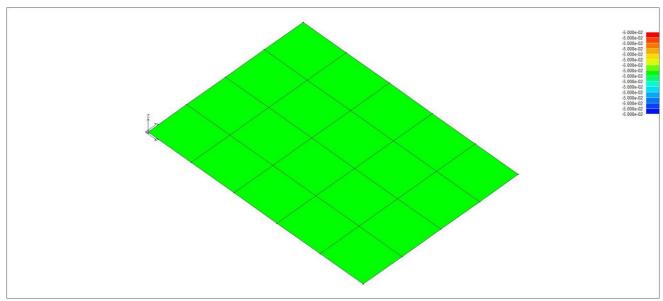
Nodo		numero del nodo a cui è applicato il plinto	
Tipo		Codice identificativo del nome assegnato al plinto	
area		area dell'impronta del plinto	
Wink O	Wink V	coefficienti di Winkler (orizzontale e verticale) adottati	
Comb		Combinazione di carico in cui si verificano i valori riportati	
Pt (P1 P2 P	3 P4)	valori di pressione nei vertici	

La <u>terza tabella</u> è riferita alle fondazioni tipo platea su suolo elastico.

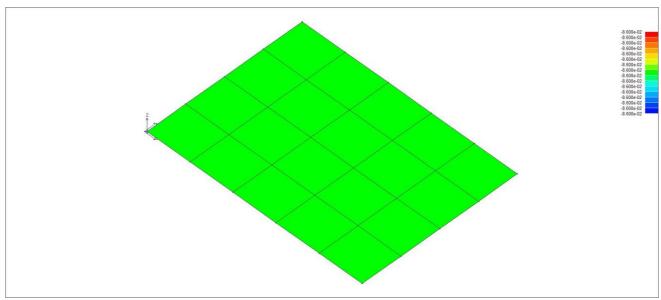
Per questo tipo di fondazione vengono riportate le pressioni in ogni vertice (nodo) degli elementi costituenti la platea.

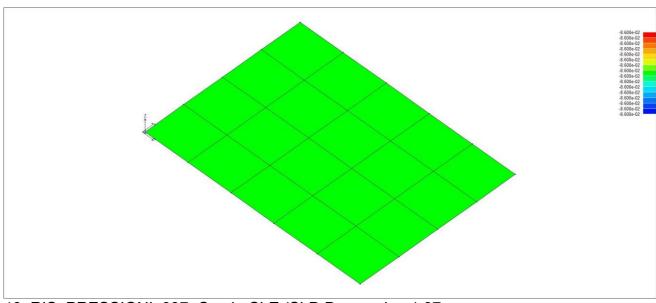

La <u>quarta tabella</u> è riferita alle fondazioni tipo trave su suolo elastico.

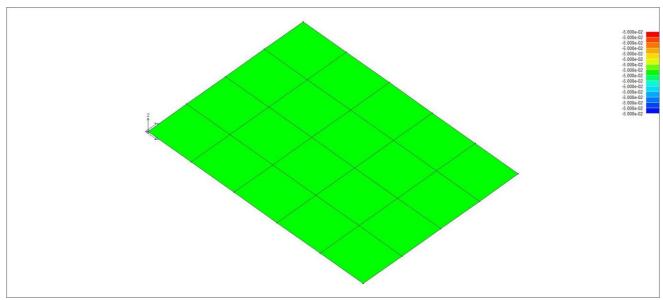
Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

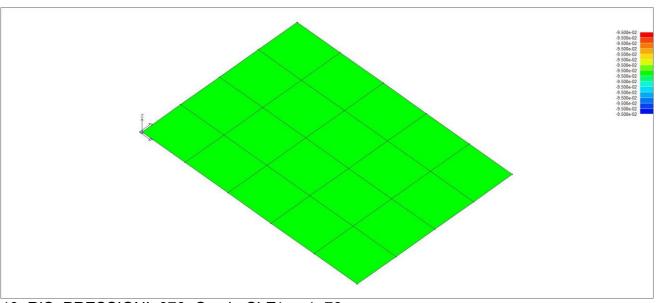

Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

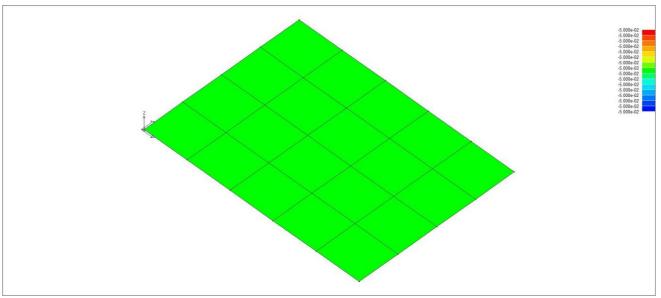
Nodo (G)	Pt 1/12	Pt 2/13	Pt 3	Pt 4							
	daN/cm2										
1	-0.13	-0.09	-0.09	-0.09	-0.09	-0.09					
2	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
3	-0.13	-0.09	-0.09	-0.09	-0.09	-0.09					
4	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
5	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
6	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
7	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
8	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
9	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
10	-0.13	-0.09	-0.09	-0.09	-0.09	-0.09					
11	-0.13	-0.09	-0.09	-0.09	-0.09	-0.09					
12	-0.13	-0.09	-0.09	-0.09	-0.09	-0.09					
13	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
14	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
15	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
16	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
17	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
18	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
19	-0.13	-0.09	-0.09	-0.09	-0.09	-0.09					
20	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
21	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					
22	-0.13	-0.09	-0.09	-0.10	-0.09	-0.09					

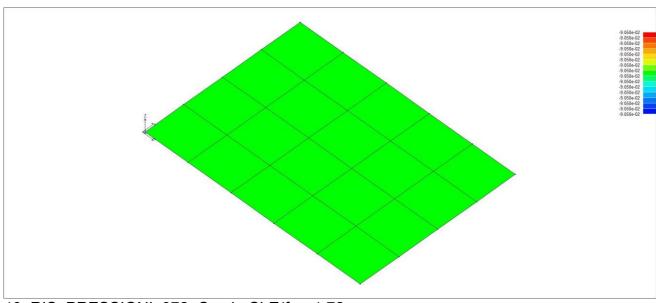

23 24 25	-0.13 -0.13 -0.13	-0.09 -0.09 -0.09	-0.09 -0.09 -0.09	-0.10 -0.10 -0.10	-0.09 -0.09 -0.09	-0.09 -0.09 -0.09
26 27	-0.13 -0.13 -0.13	-0.09 -0.09	-0.09 -0.09	-0.10 -0.10 -0.10	-0.09 -0.09	-0.09 -0.09
28 29	-0.13 -0.13 -0.13	-0.09 -0.09 -0.09	-0.09 -0.09	-0.10 -0.10 -0.10	-0.09 -0.09 -0.09	-0.09 -0.09
30	-0.13 -0.13	-0.09	-0.09	-0.10	-0.09	-0.09
Nodo (G)	Pt 1/12 -0.13 -0.09	Pt 2/13	Pt 3	Pt 4		

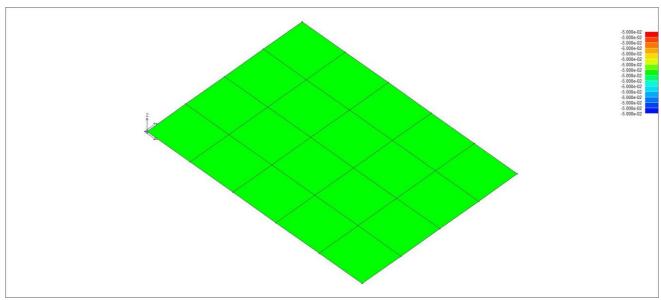

46_RIS_PRESSIONI_002_Comb. SLU A1 2

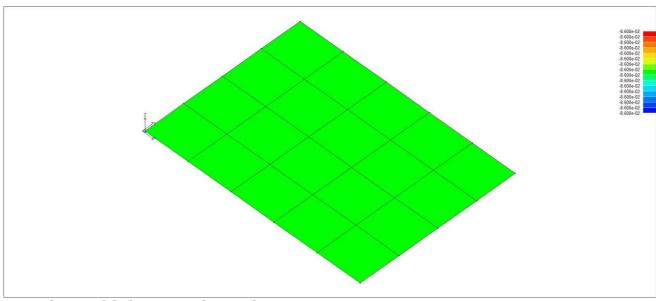

46_RIS_PRESSIONI_003_Comb. SLU A1 3


46_RIS_PRESSIONI_005_Comb. SLU A1 (SLV sism.) 5


46_RIS_PRESSIONI_037_Comb. SLE (SLD Danno sism.) 37

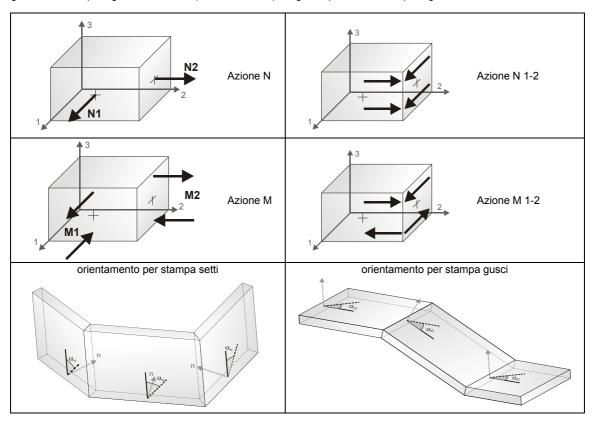

46_RIS_PRESSIONI_069_Comb. SLE(rara) 69


46_RIS_PRESSIONI_070_Comb. SLE(rara) 70


46_RIS_PRESSIONI_071_Comb. SLE(freq.) 71

46_RIS_PRESSIONI_072_Comb. SLE(freq.) 72

46_RIS_PRESSIONI_073_Comb. SLE(perm.) 73



46_RIS_PRESSIONI_074_Comb. SLE(perm.) 74

RISULTATI ELEMENTI TIPO SHELL

LEGENDA RISULTATI ELEMENTI TIPO SHELL

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo shell, è possibile in relazione alle tabelle sottoriportate. Per ogni elemento, e per ogni combinazione(o caso di carico) vengono riportati i risultati più significativi.

In particolare vengono riportati in ogni nodo di un elemento per ogni combinazione:

tensione di V	on Mises	(valore riassuntivo del complessivo stato di sollecitazione)
N max		sforzo membranale principale massimo
N min		sforzo membranale principale minimo
M max		sforzo flessionale principale massimo
M min		sforzo flessionale principale minimo
N1	N2	sforzi membranali e flessionali in direzione locale 1 e 2 dell'elemento (lo sforzo 2-1 è
N1-2	M1	uguale allo sforzo 1-2 per la reciprocità delle tensioni tangenziali)
M2	M1-2	

I suddetti risultati possono a scelta del progettista essere preceduti o sostituiti da valori di sollecitazione non più riferiti al sistema locale dell'elemento ma al sistema globale.

In questo caso gli elementi vengono raggruppati in gruppi (M_S: macro gusci o macro setti, raggruppati per materiale, spessore, e posizione fisica) per la valutazione dei valori mediati ai nodi appartenenti agli elementi dei gruppi stessi.

I valori di sollecitazione sono, in questo caso, riferiti ad una terna specifica del gruppo ruotata di α_0 attorno all'asse Z per i gusci e ruotata di α_0 attorno alla normale (che per definizione è orizzontale) al piano del setto.

Per i setti, in particolare, se α_V è zero, l'asse '1-1 rappresenta la verticale e l'asse '2-2 l'orizzontale contenuta nel setto.

Le azioni sui setti possono essere espresse anche con formato macro, cioè riferite all'intero macroelemento.

In particolare vengono riportati per ogni quota Z dei nodi e per ogni combinazione i seguenti valori:

N memb.	Azione membranale complessiva agente sulla parete in direzione Z
V memb.	Azione complessiva di taglio agente nel piano del macroelemento
V orto	Azione complessiva di taglio agente in direzione perpendicolare al macroelemento
M memb.	Azione flessionale complessiva agente nel piano del macroelemento
M orto	Azione flessionale complessiva agente in direzione perpendicolare al macroelemento
Т	Azione torsionale complessiva agente nel piano orizzontale

1		0.0
Macro	Tipo	Angolo 1-X (gradi)

			Guscio	ı	0.0)					
M_G	Cmb	Nodo	N max daN/cm	N min daN/cm	N 1 daN/cm	N 2 daN/cm	N 1-2 daN/cm	M max daN	M min daN	M 1 daN	M 2 daN	M 1-2 daN
1	2	1										
1 1	2 2	2 3										
1	2	4										
1	2	5										
1	2	6										
1	2	7										
1 1	2 2	8 9										
1	2	10										
1	2	11										
1	2	12										
1 1	2 2	13 14										
1	2	15										
1	2	16										
1	2	17										
1 1	2 2	18 19										
1	2	20										
1	2	21										
1	2	22										
1 1	2 2	23 24										
1	2	25										
1	2	26										
1	2	27										
1 1	2 2	28 29										
1	2	30										
1	5	1	-5.09e-03	-4.73e-02								
1	5	2	4.71e-02	5.20e-03	2.57e-02		-2.10e-02					
1 1	5 5	3 4	-5.68e-03 4.69e-02	-4.67e-02 5.56e-03	-2.54e-02 2.54e-02		-2.05e-02 -2.06e-02					
1	5	5		-5.83e-02	-5.36e-03	-4.09e-02						
1	5	6	3.95e-02	-3.92e-02	4.35e-05	2.13e-04	-3.94e-02					
1	5	7		-1.15e-02	5.46e-03		-2.99e-02					
1 1	5 5	8 9	4.82e-02	-2.79e-02 -4.08e-02	1.76e-02 3.66e-02	2.73e-03 5.67e-03	-3.73e-02 -6.00e-02					
1	5	10	4.08e-02	-8.30e-02	-3.65e-02	-5.67e-03	-5.99e-02					
1	5	11	2.77e-02	-4.80e-02	-1.76e-02	-2.73e-03	-3.71e-02					
1	5	12		-5.80e-02	-5.46e-03		-2.97e-02					
1 1	5 5	13 14		-3.92e-02 -1.18e-02	-4.35e-05 5.37e-03	-2.13e-04 4.08e-02	-3.91e-02 -3.01e-02					
i 1	5				1.80e-02		-3.78e-02					
1	5	16		-4.14e-02	3.68e-02		-6.07e-02					
1	5	17		-8.40e-02 -4.91e-02								
1 1	5 5	18 19		-4.91e-02 -5.01e-02								
1	5	20		-8.08e-02		6.42e-04						
1	5	21		-8.44e-02								
1 1	5 5	22 23		-5.35e-02 -6.64e-02								
1	5	24	0.036-02	-0.046-02	-1.106-00	1.62e-05	-0.046-02					
1	5	25	0.11	-0.11		-1.62e-05	-0.11					
1	5	26		-6.66e-02		2.33e-05						
1 1	5 5	27 28		-5.39e-02 -8.50e-02		7.43e-04						
1	5	29		-8.16e-02		6.19e-04						
1	5	30		-5.08e-02	4.02e-03							
1	37			-2.36e-02								
1 1	37 37	2		2.50e-03 -2.30e-02	1.29e-02 -1.26e-02	1.30e-02 -1.35e-02						
1	37	4		2.83e-03	1.25e-02	1.36e-02						
1	37	5	6.16e-03	-2.90e-02	-2.61e-03	-2.02e-02	-1.52e-02					
1	37 27	6		-1.95e-02	4.98e-05							
1 1	37 37	7 8		-5.63e-03 -1.38e-02	2.73e-03 8.55e-03	2.06e-02 1.36e-03	-1.486-02 -1.84e-02					
1	37	9		-2.01e-02		2.79e-03						
1	37	10	2.00e-02	-4.09e-02	-1.81e-02	-2.81e-03	-2.95e-02					
1	37 37	11		-2.36e-02								
1	37	12	5.426-03	-2.87e-02	-2.700-03	-2.056-02	-1.400-02					

```
1.91e-02 -1.94e-02 -4.98e-05 -2.49e-04 -1.93e-02
                    2.87e-02 -5.94e-03
                                         2.64e-03
                                                    2.01e-02 -1.50e-02
1
      37
               14
                                                    1.35e-03 -1.88e-02
      37
                   2.45e-02 -1.40e-02
                                         9.12e-03
1
              15
                                                    2.86e-03 -3.03e-02
      37
                    4.19e-02 -2.07e-02
                                        1.84e-02
      37
               17
                    2.08e-02 -4.19e-02
                                        -1.83e-02
                                                   -2.84e-03 -3.04e-02
      37
              18
                   1.43e-02 -2.46e-02
                                        -8.98e-03 -1.33e-03 -1.90e-02
1
      37
                   2.62e-02 -2.47e-02
                                         1.96e-03 -4.11e-04 -2.54e-02
1
               19
      37
               20
                   4.16e-02 -3.99e-02
                                         1.40e-03
                                                    3.19e-04 -4.07e-02
      37
              21
                    4.00e-02 -4.18e-02 -1.41e-03 -3.22e-04 -4.09e-02
              22
                   2.49e-02 -2.65e-02 -1.98e-03 4.09e-04 -2.57e-02
      37
1
      37
               23
                    3.28e-02 -3.28e-02
                                                   -2.54e-05 -3.28e-02
      37
               24
                    5.23e-02 -5.23e-02
                                                    1.09e-05 -5.23e-02
      37
               25
                   5.25e-02 -5.25e-02
                                                   -1.09e-05 -5.25e-02
1
                   3.32e-02 -3.32e-02
                                                    2.54e-05 -3.32e-02
      37
              26
1
      37
               27
                   2.51e-02 -2.68e-02
                                        -1.99e-03
                                                   3.54e-04 -2.59e-02
1
      37
               28
                   4.06e-02 -4.23e-02
                                        -1.43e-03
                                                   -3.04e-04 -4.14e-02
      37
              29
                   4.25e-02 -4.07e-02
                                        1.45e-03
                                                   3.07e-04 -4.16e-02
1
      37
               30
                   2.71e-02 -2.54e-02 2.02e-03 -3.51e-04 -2.62e-02
1
      70
      70
                2
1
                3
      70
1
                4
1
      70
      70
                5
1
                6
      70
1
                7
      70
1
      70
                8
1
      70
                9
      70
               10
1
1
      70
               11
      70
               12
1
      70
               13
1
      70
1
               14
1
      70
               15
      70
1
               16
      70
1
               17
      70
               18
      70
               19
      70
               20
1
      70
               21
1
1
      70
               22
      70
               23
1
      70
               24
1
      70
               25
               26
      70
      70
               27
1
               28
      70
1
      70
1
               29
      70
               30
      72
1
                1
      72
                2
1
      72
      72
                4
1
      72
                5
1
      72
                6
1
      72
                7
      72
                8
1
      72
                9
1
      72
               10
      72
               11
1
      72
1
               12
      72
1
               13
      72
               14
      72
72
1
               15
               16
1
      72
               17
1
      72
               18
      72
1
               19
1
      72
               20
      72
               21
      72
               22
1
      72
               23
1
      72
               24
1
      72
               25
      72
               26
1
      72
               27
1
      72
               28
```

			0.11		0.04	0.04	0.0	0.0		0.0	0.0	0.0
IVI_G				-0.11	-0.04	-0.04	-0.11		0.0	0.0	0.0	0.0
M_G			N max	N min	N 1	N 2	N 1-2	M max	M min	М 1	M 2	M 1-2
1	74	29 30										
1	74	29										
1	74	28										
1	74 74	27										
1	74 74	20 21 22 23 24 25 26										
1	74 74	25										
1	74 74	23										
1	74 74	22										
1	74 74	21										
1	74 74	20										
1	74 74	19										
1	74 74	10										
1	74 74	17 18										
1 1	74 74	16										
1	74	15										
1	74	14										
1	74	13										
1	74	12										
1	74	11										
1	74	10										
1	74	9										
1	74	8										
1	74	7										
1	74	6										
1	74	5										
1	74	4										
1	74	1 2 3 4 5 6 7 8										
1	74	2										
1	74											
1	72	30										

IMPIANTO FOTOVOLTAICO "EMERA" – Codice pratica G4KMY67 Tabulati di calcolo fondazioni 750x400

Relazione di calcolo strutturale impostata e redatta secondo le modalità previste nel D.M. 17 Gennaio 2018 cap. 10 "Redazione dei progetti strutturali esecutivi e delle relazioni di calcolo".

Origine e Caratteristiche dei Codici di Calcolo					
Codice di calcolo: PRO_SAP PROfessional Structural Analysis Program					
Versione: PROFESSIONAL (build 2020-09-190)					
Produttore-	2S.I. Software e Servizi per l'Ingegneria s.r.I.				
Distributore:	Via Garibaldi, 90 44121 Ferrara FE (Italy)				
Tel. +39 0532 200091 www.2si.it					
Codice Licenza:	Licenza dsi4709				

Descrizione	
Progetto	
Ubicazione	Comune di SANTERAMO IN COLLE (BA) (Regione PUGLIA)
	Località SANTERAMO IN COLLE (BA)
	Longitudine 16.756, Latitudine 40.794
Progettista	

In merito al punto 10.2 delle Norme Tecniche per le Costruzioni (*Affidabilità dei codici utilizzati*), si fa riferimento al **Documento di Affidabilità** "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" - versione Agosto 2020, disponibile per il download sul sito: https://www.2si.it/it/prodotti/affidabilita/

giovedì, 4 febbraio 2021

INTESTAZIONE E CONTENUTI DELLA RELAZIONE	3
Progetto	3
CARATTERISTICHE MATERIALI UTILIZZATI	5
LEGENDA TABELLA DATI MATERIALI	5
MODELLAZIONE DELLE SEZIONI	8
LEGENDA TABELLA DATI SEZIONI	8
MODELLAZIONE STRUTTURA: NODI	10
LEGENDA TABELLA DATI NODI	10
TABELLA DATI NODI	10
MODELLAZIONE STRUTTURA: ELEMENTI SHELL	12
LEGENDA TABELLA DATI SHELL	12
MODELLAZIONE DELLE AZIONI	15
LEGENDA TABELLA DATI AZIONI	15
SCHEMATIZZAZIONE DEI CASI DI CARICO	17
LEGENDA TABELLA CASI DI CARICO	17
DEFINIZIONE DELLE COMBINAZIONI	23
LEGENDA TABELLA COMBINAZIONI DI CARICO	23
AZIONE SISMICA	27
VALUTAZIONE DELL' AZIONE SISMICA	27
Parametri della struttura	27
RISULTATI ANALISI SISMICHE	29
LEGENDA TABELLA ANALISI SISMICHE	29
RISULTATI NODALI	37
LEGENDA RISULTATI NODALI	37
RISULTATI OPERE DI FONDAZIONE	41
LEGENDA RISULTATI OPERE DI FONDAZIONE	41
RISULTATI ELEMENTI TIPO SHELL	48
LECENDA DICHITATI ELEMENTI TIDO CHELL	40

INTESTAZIONE E CONTENUTI DELLA RELAZIONE

rogetto	

Contenuti della relazione:

RELAZIONE DI CALCOLO STRUTTURALE

- Origine e Caratteristiche dei Codici di Calcolo
- Affidabilità dei codici utilizzati
- Validazione dei codici
- Tipo di analisi svolta
- Modalità di presentazione dei risultati
- Informazioni generali sull'elaborazione
- Giudizio motivato di accettabilità dei risultati

STAMPA DEI DATI DI INGRESSO

- Normative prese a riferimento
- Criteri adottati per le misure di sicurezza
- Criteri seguiti nella schematizzazione della struttura, dei vincoli e delle sconessioni
- Interazione tra terreno e struttura
- Legami costitutivi adottati per la modellazione dei materiali e dei terreni
- Schematizzazione delle azioni, condizioni e combinazioni di carico
- Metodologie numeriche utilizzate per l'analisi strutturale

-Metodologie numeriche utilizzate per la progettazione e la verifica degli elementi strutturali STAMPA DEI RISULTATI

Il Progettista:

CARATTERISTICHE MATERIALI UTILIZZATI

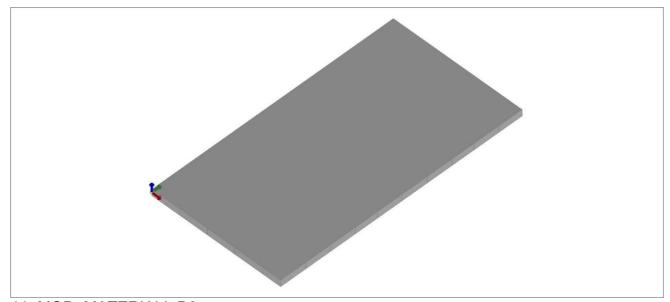
LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato	
2	materiale tipo acciaio	
3	materiale tipo muratura	
4	materiale tipo legno	
5	materiale tipo generico	

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

nopria acochizione). I ci ogni me	iteriale verigorio riportati in tabella i seguenti dati.
Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo
	se diverso da quello globale della struttura)
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo se diverso da quello globale della struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari
Massima compressione	Massima tensione di compressione per aste non lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio


I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	c.a.		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress
			block
2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile(>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
3	muratura		
		Muratura consolidata	Muratura per la quale si prevedono interventi di rinforzo"
		Incremento resistenza	Incremento conseguito in termini di resistenza
		Incremento rigidezza	Incremento conseguito in termini di rigidezza
		Resistenza f	Valore della resistenza a compressione
		Resistenza fv0	Valore della resistenza a taglio in assenza di tensioni normali
		Resistenza fh	Valore della resistenza a compressione orizzontale
		Resistenza fb	Valore della resistenza a compressione dei blocchi
		Resistenza fbh	Valore della resistenza a compressione dei blocchi in direzione orizzontale
		Resistenza fv0h	Valore della resistenza a taglio in assenza di tensioni normali per le travi
		Resistenza ft	Valore della resistenza a trazione per fessurazione diagonale
		Resistenza fvlim	Valore della massima resistenza a taglio
		Resistenza fbt	Valore della resistenza a trazione dei blocchi
		Coefficiente mu	Coefficiente d'attrito utilizzato per la resistenza a taglio (tipicamente 0.4)
		Coefficiente fi	Coefficiente d'ingranamento utilizzato per la resistenza a taglio
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress
			block
4	legno		
		E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
		Resistenza fc0	Valore della resistenza a compressione parallela
		Resistenza ft0	Valore della resistenza a trazione parallela
		Resistenza fm	Valore della resistenza a flessione
		Resistenza fv	Valore della resistenza a taglio
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
1	Calcestruzzo Classe C25/30			3.145e+05	0.20	1.310e+05	2.50e-03	1.00e-05	
	Resistenza Rc	300.0							
	Resistenza fctm		25.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

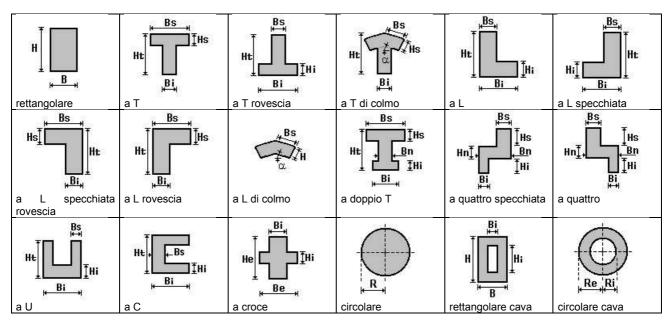
11_MOD_MATERIALI_D3

Oursi e s	4/7/	0/0/	2/0/	4/40/	F/4.4.1	6/12/
Gusci c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Armatura						
Inclinazione Ax [gradi]	0.0					
Angolo Ax-Ay [gradi]	90.00					
Minima tesa	0.20					
Massima tesa	0.78					
Maglia unica centrale	NO					
Copriferro [cm]	2.00					
Maglia x						
diametro	12					
passo	20					
diametro aggiuntivi	12					
Maglia y						
diametro	12					
passo	20					
diametro aggiuntivi	12					
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00					
Tipo acciaio	tipo C					
Coefficiente gamma s	1.15					
Coefficiente gamma c	1.50					
Verifiche con N costante	SI					
Applica SLU da DIN	NO					
Tensioni ammissibili						

Gusci c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Tensione amm. cls [daN/cm2]	97.50					
Tensione amm. acciaio [daN/cm2]	2600.00					
Rapporto omogeneizzazione N	15.00					
Massimo rapporto area compressa/tesa	1.00					
Resistenza al fuoco						
3- intradosso	NO					
3+ estradosso	NO					
Tempo di esposizione R	15					

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI


Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3

MODELLAZIONE STRUTTURA: NODI

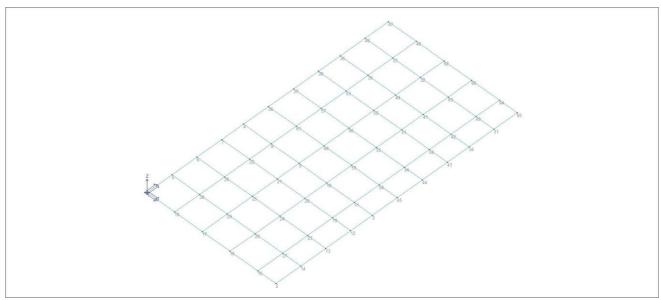
LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z


Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

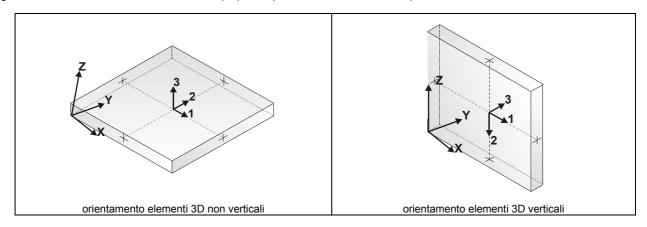
Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

Nodo	X	Υ	Z	Nodo	X	Υ	Z	Nodo	X	Υ	Z
	cm	cm	cm		cm	cm	cm		cm	cm	cm
1	0.0	0.0	0.0	2	400.0	0.0	0.0	3	400.0	300.0	0.0
4	0.0	300.0	0.0	5	0.0	77.5	0.0	6	0.0	155.0	0.0
7	0.0	232.5	0.0	8	86.0	300.0	0.0	9	172.0	300.0	0.0
10	258.0	300.0	0.0	11	344.0	300.0	0.0	12	400.0	232.5	0.0
13	400.0	155.0	0.0	14	400.0	77.5	0.0	15	344.0	0.0	0.0
16	258.0	0.0	0.0	17	172.0	0.0	0.0	18	86.0	0.0	0.0
19	344.0	232.5	0.0	20	258.0	232.5	0.0	21	172.0	232.5	0.0
22	86.0	232.5	0.0	23	344.0	155.0	0.0	24	258.0	155.0	0.0
25	172.0	155.0	0.0	26	86.0	155.0	0.0	27	344.0	77.5	0.0
28	258.0	77.5	0.0	29	172.0	77.5	0.0	30	86.0	77.5	0.0
31	400.0	677.5	0.0	32	172.0	677.5	0.0	33	86.0	677.5	0.0
34	400.0	600.0	0.0	35	0.0	600.0	0.0	36	0.0	377.5	0.0
37	0.0	455.0	0.0	38	0.0	532.5	0.0	39	86.0	600.0	0.0
40	172.0	600.0	0.0	41	258.0	600.0	0.0	42	344.0	600.0	0.0
43	400.0	532.5	0.0	44	400.0	455.0	0.0	45	400.0	377.5	0.0
46	0.0	677.5	0.0	47	0.0	750.0	0.0	48	86.0	750.0	0.0
49	344.0	677.5	0.0	50	344.0	532.5	0.0	51	258.0	532.5	0.0
52	172.0	532.5	0.0	53	86.0	532.5	0.0	54	344.0	455.0	0.0
55	258.0	455.0	0.0	56	172.0	455.0	0.0	57	86.0	455.0	0.0
58	344.0	377.5	0.0	59	258.0	377.5	0.0	60	172.0	377.5	0.0
61	86.0	377.5	0.0	62	172.0	750.0	0.0	63	258.0	677.5	0.0
64	344.0	750.0	0.0	65	400.0	750.0	0.0	66	258.0	750.0	0.0

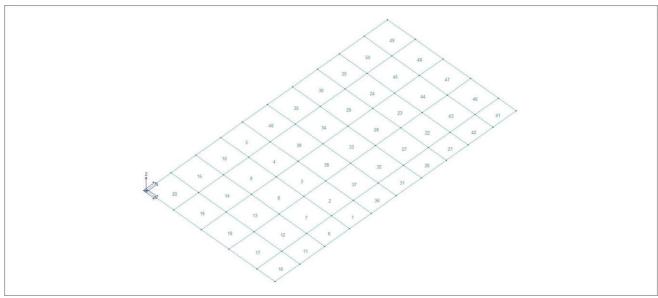
14_MOD_NUMERAZIONE_NODI

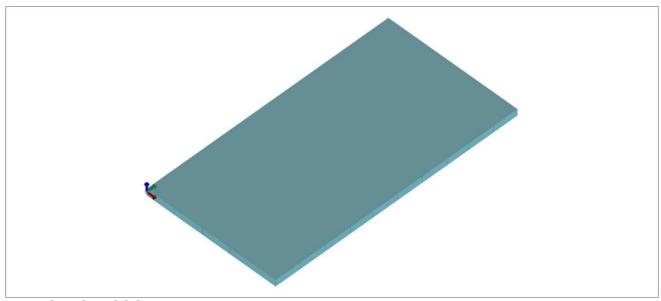

MODELLAZIONE STRUTTURA: ELEMENTI SHELL

LEGENDA TABELLA DATI SHELL

Il programma utilizza per la modellazione elementi a tre o quattro nodi denominati in generale shell.

Ogni elemento shell è individuato dai nodi I, J, K, L (L=I per gli elementi a tre nodi).

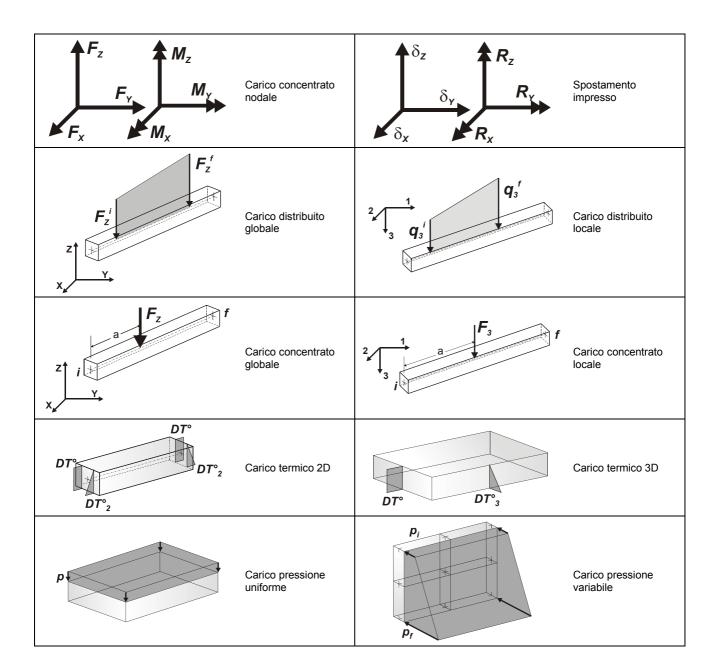

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.


In particolare per ogni elemento viene indicato in tabella:

colare per ogni element	o viene indicato in tabella:						
Elem.	numero dell'elemento						
Note	codice di comportamento:						
	Guscio (elemento guscio in elevazione non verticale)						
	Guscio fond. (elemento guscio su suolo elastico)						
	Setto (elemento guscio in elevazione verticale)						
	Membrana (elemento guscio con comportamento membranale)						
Nodo I (J, K, L)	numero del nodo I (J, K, L)						
Mat.	codice del materiale assegnato all'elemento						
Spessore	spessore dell'elemento (costante)						
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico						
	verticale						
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale						

Elem.	Note	Nodo I	Nodo J	Nodo K	Nodo L	Mat.	Crit.	Spessore	Svincolo	Wink V daN/cm3	Wink O daN/cm3
1Gus	cio fond.	19	12	3	11	1	1	20.0		10.00	6.09
	cio fond.	20	19	11	10	1	1	20.0		10.00	6.09
	cio fond.	21	20	10	9	1	1	20.0		10.00	6.09
	cio fond.	22	21	9	8	1	1	20.0		10.00	6.09
	cio fond.	7	22	8	4	1	1	20.0		10.00	6.09
	cio fond.	23	13	12	19	1	1	20.0		10.00	6.09
						1	-				
	cio fond.	24 25	23 24	19 20	20 21	1	1 1	20.0		10.00	6.09
	cio fond.		24 25			1	1	20.0		10.00	6.09
	cio fond.	26 6	25 26	21	22 7	1	1	20.0		10.00	6.09
	cio fond.			22		1	-	20.0		10.00	6.09
	cio fond.	27	14	13	23	•	1	20.0		10.00	6.09
	cio fond.	28	27	23	24	1	1	20.0		10.00	6.09
	cio fond.	29	28	24	25	1	1	20.0		10.00	6.09
	cio fond.	30	29	25	26	1	1	20.0		10.00	6.09
	cio fond.	5	30	26	6	1	1	20.0		10.00	6.09
	cio fond.	15	. 2	14	27	1	1	20.0		10.00	6.09
	cio fond.	16	15	27	28	1	1	20.0		10.00	6.09
	cio fond.	17	16	28	29	1	1	20.0		10.00	6.09
	cio fond.	18	17	29	30	1	1	20.0		10.00	6.09
	cio fond.	1	18	30	5	1	1	20.0		10.00	6.09
	cio fond.	50	43	34	42	1	1	20.0		10.00	6.09
	cio fond.	51	50	42	41	1	1	20.0		10.00	6.09
23Gus	cio fond.	52	51	41	40	1	1	20.0		10.00	6.09
	cio fond.	53	52	40	39	1	1	20.0		10.00	6.09
25Gus	cio fond.	38	53	39	35	1	1	20.0		10.00	6.09
26Gus	cio fond.	54	44	43	50	1	1	20.0		10.00	6.09
	cio fond.	55	54	50	51	1	1	20.0		10.00	6.09
28Gus	cio fond.	56	55	51	52	1	1	20.0		10.00	6.09
29Gus	cio fond.	57	56	52	53	1	1	20.0		10.00	6.09
30Gus	cio fond.	37	57	53	38	1	1	20.0		10.00	6.09
31Gus	cio fond.	58	45	44	54	1	1	20.0		10.00	6.09
32Gus	cio fond.	59	58	54	55	1	1	20.0		10.00	6.09
33Gus	cio fond.	60	59	55	56	1	1	20.0		10.00	6.09
34Gus	cio fond.	61	60	56	57	1	1	20.0		10.00	6.09
35Gus	cio fond.	36	61	57	37	1	1	20.0		10.00	6.09
36Gus	cio fond.	11	3	45	58	1	1	20.0		10.00	6.09
37Gus	cio fond.	10	11	58	59	1	1	20.0		10.00	6.09
38Gus	cio fond.	9	10	59	60	1	1	20.0		10.00	6.09
39Gus	cio fond.	8	9	60	61	1	1	20.0		10.00	6.09
40Gus	cio fond.	4	8	61	36	1	1	20.0		10.00	6.09
41Gus	cio fond.	49	31	65	64	1	1	20.0		10.00	6.09
42Gus	cio fond.	42	34	31	49	1	1	20.0		10.00	6.09
43Gus	cio fond.	41	42	49	63	1	1	20.0		10.00	6.09
	cio fond.	40	41	63	32	1	1	20.0		10.00	6.09
45Gus	cio fond.	39	40	32	33	1	1	20.0		10.00	6.09
	cio fond.	63	49	64	66	1	1	20.0		10.00	6.09
	cio fond.	32	63	66	62	1	1	20.0		10.00	6.09
	cio fond.	33	32	62	48	1	1	20.0		10.00	6.09
	cio fond.	46	33	48	47	i 1	1	20.0		10.00	6.09
	cio fond.	35	39	33	46	1	1	20.0		10.00	6.09
22 340		33		30		•		_0.0		. 5.56	0.00

16_MOD_NUMERAZIONE_D3


16_MOD_SPESSORI_D3

MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)
4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo iniziale e finale)
8	carico di pressione uniforme su elemento tipo piastra
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	1 dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico e la larghezza
	d'influenza per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione centrale del primo,
	dimensioni dell' impronta, interasse tra i carichi

T:	carios variabila generale	
Tipo	l carico variabile generale	

ld	Tipo	ascissa	valore	ascissa	valore
		m	daN/ m2	m	daN/ m2
1	Carico				
	Unif Qz Area I 2=0 0		-450 00		

SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

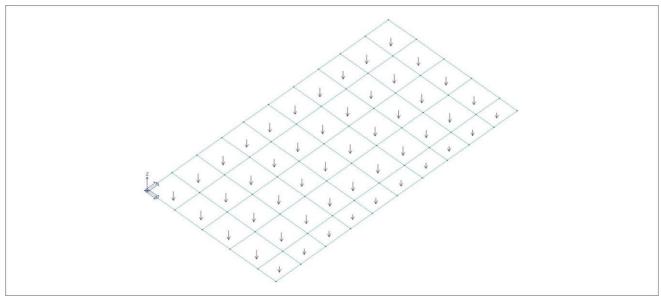
Sono previsti i sequenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione	
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura	
2	Gk	NA	caso di carico con azioni permanenti	
3	Qk	NA	caso di carico con azioni variabili	
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture	
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai	
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture	
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura	
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura	
9	Esk	SA	caso di carico sismico con analisi statica equivalente	
10	Edk	SA	caso di carico sismico con analisi dinamica	
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in condizione sismica	
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni	

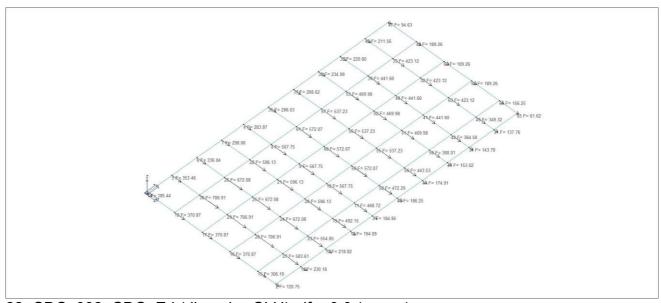
Sono di tipo automatico A (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Onk

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico: 7-Qtk, in quanto richiede solo il valore della variazione termica;

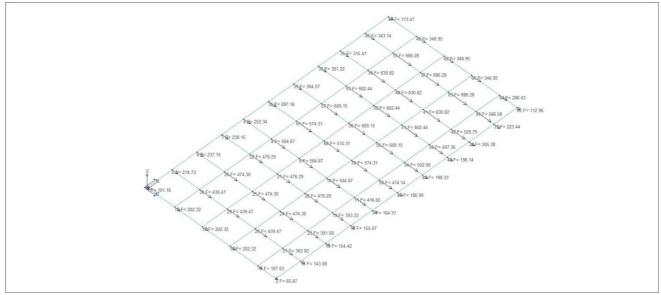
9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

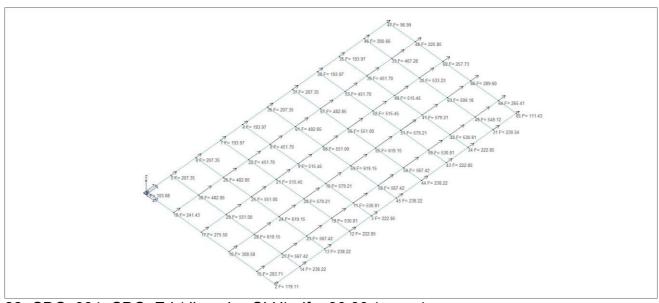

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

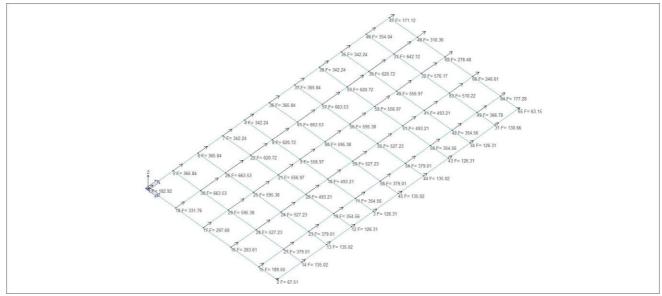
Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: *Numero Tipo* e *Sigla identificativa*, *Valore di riferimento* del caso di carico (se previsto).

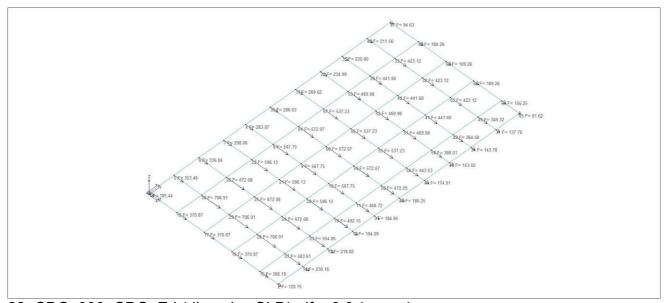

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

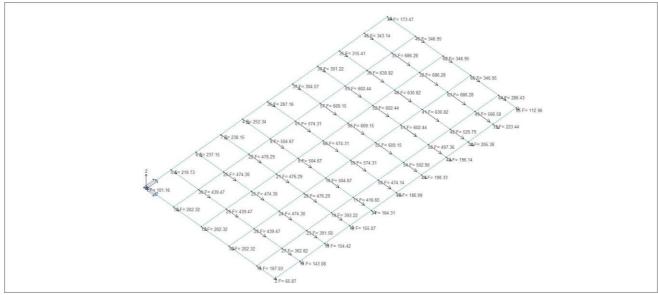
Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

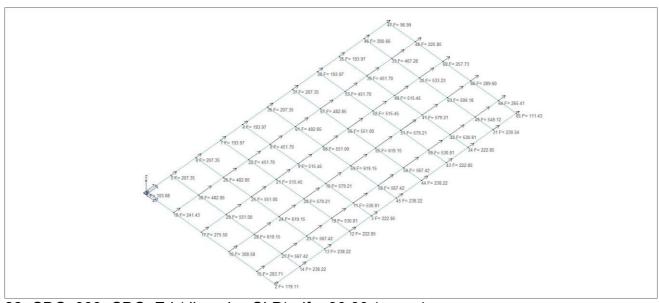

CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:0.80 per 10 CDC=Qk (variabile generico)
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
4	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
6	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico
10	Qk	CDC=Qk (variabile generico)	Azioni applicate:
			D3 :da 1 a 50 Azione : Carico

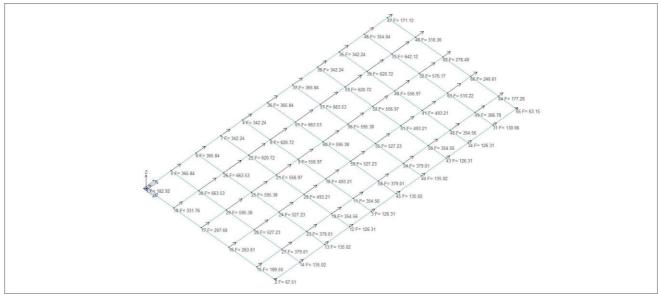

22_CDC_001_CDC=Ggk (peso proprio della struttura)

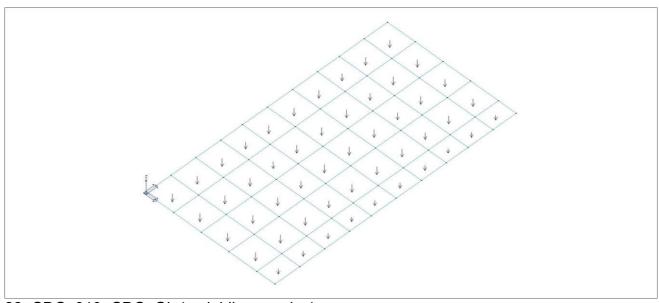

22_CDC_002_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)


22_CDC_003_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. -)


22_CDC_004_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)


22_CDC_005_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. -)


22_CDC_006_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)


22_CDC_007_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. -)

22_CDC_008_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)

22_CDC_009_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. -)

22_CDC_010_CDC=Qk (variabile generico)

DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 γ G1·G1 + γ G2·G2 + γ P·P + γ Q1·Qk1 + γ Q2· ψ 02·Qk2 + γ Q3· ψ 03·Qk3 + ...

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Combinazione frequente SLE

 $G1 + G2 + P + \psi 11 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi_{21}Qk_1 + \psi_{22}Qk_2 + \psi_{23}Qk_3 + ...$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

 $G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$

Dove:

NTC 2018 Tabella 2.5.I

1110 2010 1400114 2:0:1			
Destinazione d'uso/azione	Ψ0	Ψ1	ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A1	A2
		γf			
Carichi permanenti	Favorevoli Sfavorevoli	γG1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	γG2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 1	
2	SLU	Comb. SLU A1 2	
3	SLU	Comb. SLU A1 3	
4	SLU	Comb. SLU A1 4	
5	SLU	Comb. SLU A1 (SLV sism.) 5	
6	SLU	Comb. SLU A1 (SLV sism.) 6	_
7	SLU	Comb. SLU A1 (SLV sism.) 7	

Cmb	Tipo	Sigla Id	effetto P-delta
8	SLU	Comb. SLU A1 (SLV sism.) 8	enetto r-della
9	SLU	Comb. SLU A1 (SLV sism.) 9	
10	SLU	Comb. SLU A1 (SLV sism.) 10	
11	SLU	Comb. SLU A1 (SLV sism.) 11	
12	SLU	Comb. SLU A1 (SLV sism.) 12	
13	SLU	Comb. SLU A1 (SLV sism.) 13	
14	SLU	Comb. SLU A1 (SLV sism.) 14	
15	SLU	Comb. SLU A1 (SLV sism.) 15	
16	SLU	Comb. SLU A1 (SLV sism.) 16	
17	SLU	Comb. SLU A1 (SLV sism.) 17	
18	SLU	Comb. SLU A1 (SLV sism.) 18	
19	SLU	Comb. SLU A1 (SLV sism.) 19	
20	SLU	Comb. SLU A1 (SLV sism.) 20	
21	SLU	Comb. SLU A1 (SLV sism.) 21	
22	SLU	Comb. SLU A1 (SLV sism.) 22	
23	SLU	Comb. SLU A1 (SLV sism.) 23	
24	SLU	Comb. SLU A1 (SLV sism.) 24	
25	SLU	Comb. SLU A1 (SLV sism.) 25	
26	SLU	Comb. SLU A1 (SLV sism.) 26	
27	SLU	Comb. SLU A1 (SLV sism.) 27	
28	SLU	Comb. SLU A1 (SLV sism.) 28	
29	SLU	Comb. SLU A1 (SLV sism.) 29	
30	SLU	Comb. SLU A1 (SLV sism.) 30	
31	SLU	Comb. SLU A1 (SLV sism.) 31	
32	SLU	Comb. SLU A1 (SLV sism.) 32	
33	SLU	Comb. SLU A1 (SLV sism.) 33	
34	SLU	Comb. SLU A1 (SLV sism.) 34	
35	SLU	Comb. SLU A1 (SLV sism.) 35	
36	SLU	Comb. SLU A1 (SLV sism.) 36	
37	SLD(sis)	Comb. SLE (SLD Danno sism.) 37	
38	SLD(sis)	Comb. SLE (SLD Danno sism.) 38	
39	SLD(sis)	Comb. SLE (SLD Danno sism.) 39	
40	SLD(sis)	Comb. SLE (SLD Danno sism.) 40	
41	SLD(sis)	Comb. SLE (SLD Danno sism.) 41	
42	SLD(sis)	Comb. SLE (SLD Danno sism.) 42	
43	SLD(sis)	Comb. SLE (SLD Danno sism.) 43	
44	SLD(sis)	Comb. SLE (SLD Danno sism.) 44	
45 46	SLD(sis)	Comb. SLE (SLD Danno sism.) 45	
46 47	SLD(sis)	Comb. SLE (SLD Danno sism.) 46	
47 40	SLD(sis)	Comb. SLE (SLD Danno sism.) 47 Comb. SLE (SLD Danno sism.) 48	
48 49	SLD(sis) SLD(sis)	Comb. SLE (SLD Danno sism.) 49	
	SLD(sis)	Comb. SLE (SLD Danno sism.) 50	
50 51	SLD(sis)	Comb. SLE (SLD Danno sism.) 51	
52	SLD(sis)	Comb. SLE (SLD Danno sism.) 52	
53	SLD(sis)	Comb. SLE (SLD Danno sism.) 53	
54	SLD(sis)	Comb. SLE (SLD Danno sism.) 54	
55	SLD(sis)	Comb. SLE (SLD Danno sism.) 55	
56	SLD(sis)	Comb. SLE (SLD Danno sism.) 56	
57	SLD(sis)	Comb. SLE (SLD Danno sism.) 57	
58	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
59	SLD(sis)	Comb. SLE (SLD Danno sism.) 59	
60	SLD(sis)	Comb. SLE (SLD Danno sism.) 60	
61	SLD(sis)	Comb. SLE (SLD Danno sism.) 61	
62	SLD(sis)	Comb. SLE (SLD Danno sism.) 62	
63	SLD(sis)	Comb. SLE (SLD Danno sism.) 63	
64	SLD(sis)	Comb. SLE (SLD Danno sism.) 64	
65	SLD(sis)	Comb. SLE (SLD Danno sism.) 65	
66	SLD(sis)	Comb. SLE (SLD Danno sism.) 66	
67	SLD(sis)	Comb. SLE (SLD Danno sism.) 67	
68	SLD(sis)	Comb. SLE (SLD Danno sism.) 68	
69	SLE(r)	Comb. SLE(rara) 69	
70	SLE(r)	Comb. SLE(rara) 70	
71	SLE(f)	Comb. SLE(freq.) 71	
72	SLE(f)	Comb. SLE(freq.) 72	
73	SLE(p)	Comb. SLE(perm.) 73	
74	SLE(p)	Comb. SLE(perm.) 74	

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
1	1.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11/25	12/20	13/27	14/20
2	1.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50			1	
3	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
4	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50				
5	1.00	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.80				
6	1.00	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.80				
7	1.00	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.80				
8	1.00	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.80				
9	1.00 1.00	-1.00	0.0	0.0	-0.30 0.30	0.0	0.0	0.0	0.0	0.80 0.80				
10 11	1.00	-1.00 1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	0.80				
12	1.00	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	0.80				
13	1.00	0.0	-1.00	-0.30	0.0	0.0	0.0	0.0	0.0	0.80			 	
14	1.00	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.80				
15	1.00	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0	0.80				
16	1.00	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.80				
17	1.00	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.80				
18	1.00	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.80				
19	1.00	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.80				
20	1.00	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.80				
21	1.00	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.80				
22	1.00	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.80				
23	1.00	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.80	ļ	ļ	<u> </u>	1
24	1.00	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.80	ļ	ļ	1	
25	1.00	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.80				
26	1.00	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0	0.80			<u> </u>	
27	1.00	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.80				
28 29	1.00 1.00	0.0 -0.30	0.30	1.00 0.0	0.0 -1.00	0.0	0.0 0.0	0.0	0.0	0.80			 	
29 30	1.00	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.80			+	
31	1.00	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	0.80				
32	1.00	0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.80				
33	1.00	0.00	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.80				
34	1.00	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.80				
35	1.00	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.80				
36	1.00	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.80				
37	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0	0.80				
38	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	0.80				
39	1.00	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0	0.80				
40	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0	0.80				
41	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30	0.80				
42	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30	0.80				
43	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30	0.80				
44	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30	0.80				
45 46	1.00 1.00	0.0	0.0	0.0	0.0 0.0	0.0	-1.00 -1.00	-0.30 0.30	0.0	0.80 0.80			1	-
46 47	1.00	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0	0.80	 	 	+	+
47 48	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0	0.80			1	+
49	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.80			1	1
50	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.80			1	
51	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.80	1	1	t	
52	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.80				
53	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0	0.80			Ī	
54	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0	0.80				
55	1.00	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0	0.80				
56	1.00	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0	0.80				
57	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0	0.80				
58	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0	0.80				
59	1.00	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0	0.80	ļ	ļ	ļ	ļ
60	1.00	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0	0.80	ļ	ļ	1	ļ
61	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00	0.80		-	1	ļ
62	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00	0.80	<u> </u>	<u> </u>	 	-
63	1.00	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00	0.80	<u> </u>	<u> </u>	 	1
64 65	1.00	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00	0.80	-	-	1	
65 66	1.00	0.0	0.0 0.0	0.0	0.0 0.0	0.0	-0.30	0.0	-1.00	0.80 0.80	1	1	+	-
66	1.00	0.0	U.U	U.U	U.U	U.U	-0.30	0.0	1.00	U.0U		<u> </u>		

Cmb	CDC	CDC	CDC				CDC	CDC						CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
67	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.80				
68	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.80				
69	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
70	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00				
71	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
72	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90				
73	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
74	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.80				

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri	della struttı	ıra			
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica
I	50.0	0.7	35.0	В	T1

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_s e C_c valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_s e C_c vengono calcolati mediante le espressioni riportane nella sequente Tabella

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{\rm C}^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	2	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B}\right)\right] \\ T_B &\leq T < T_C & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

I valori di $S_{\text{S}},\,T_{\text{B}},\,T_{\text{C}}$ e $T_{\text{D}},\,$ sono riportati nella seguente Tabella

Categoria di sottosuolo	S _s	T _s	T _C	To
A. B. C. D. E	1.0	0.05 s	0.15 s	1.0 s

ld nodo	Longitudine		Latitudine		Distanza	
						Km
Loc.		16.756		40.794		
33238		16.726		40.789		2.577
33239		16.792		40.787		3.119
33017	_	16.795	•	40.837	•	5.780
33016	_	16.729	·	40.839		5.477

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	30.0	0.032	2.455	0.257
SLD	63.0	35.0	0.034	2.471	0.267
SLV	10.0	332.0	0.079	2.616	0.407
SLC	5.0	682.0	0.100	2.658	0.440

SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.032	1.200	2.455	0.590	0.124	0.371	1.727
SLD	0.034	1.200	2.471	0.613	0.127	0.382	1.735
SLV	0.079	1.200	2.616	0.993	0.179	0.536	1.916
SLC	0.100	1.200	2.658	1.132	0.190	0.570	1.998

RISULTATI ANALISI SISMICHE

LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i seguenti valori:

Angolo di ingresso	Angolo di ingresso dell'azione sismica orizzontale
Fattore di importanza	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
Zona sismica	Zona sismica
Accelerazione ag	Accelerazione orizzontale massima sul suolo
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di duttilità CD	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
Fattore riduz. SLD	Fattore di riduzione dello spettro elastico per lo stato limite di danno
Periodo proprio T1	Periodo proprio di vibrazione della struttura
Coefficiente Lambda	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Ordinata spettro Sd(T1)	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale (verticale Svd)
Ordinata spettro Se(T1)	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno, componente orizzontale (verticale Sve)
Ordinata spettro S (Tb-Tc)	Valore dell' ordinata dello spettro in uso nel tratto costante
numero di modi considerati	Numero di modi di vibrare della struttura considerati nell'analisi dinamica

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

- a) analisi sismica statica equivalente:
 - quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - azione sismica complessiva
- b) analisi sismica dinamica con spettro di risposta:
 - quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
 - massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo la circolare n.7/2019 del C.S.LL.PP nelle combinazioni in SLC come previsto dal DM 17-01-2018. Per ogni combinazione è riportato il codice di verifica ed i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell'elastomero e tensioni nell'acciaio.

Qualora si applichi l'Ordinanza 3274 e s.m.i. le verifiche sono eseguite in accordo con l'allegato 10.A. In particolare la tabella, per ogni combinazione di calcolo, riporta:

Nodo	Nodo di appoggio dell' isolatore
Cmb	Combinazione oggetto della verifica
Verif.	Codice di verifica ok – verifica positiva , NV – verifica negativa, ND – verifica non completata
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi) combinato con la regola del 30%
Ang fi	Angolo utilizzato per il calcolo dell' area ridotta Ar (per dispositivi circolari)
V	Azione verticale agente
Ar	Area ridotta efficace
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione
Sig s	Tensione nell' inserto in acciaio

Gam c(a,s,t)	Deformazioni di taglio dell' elestomero
Vcr	Carico critico per instabilità

Affinché la verifica sia positiva deve essere:

- 1) V > 0
 2) Sig s < fyk
 3) Gam t < 5
 4) Gam s < Gam * (caratteristica dell' elastomero)
 5) Gam s < 2
 6) V < 0.5 Vcr

Calcolo dei fattori di comportamento secondo il D.M. 17/01/2018

La costruzione, nuova, è caratterizzata da regolarità sia in pianta sia in altezza ed è progettata considerando un comportamento non dissipativo (ND).

Parametri fattore in direzione x e y

Sistema costruttivo: calcestruzzo

Tipologia strutturale: strutture a telaio, a pareti accoppiate, miste

Definizione rapporto α_u/α_1 : valore come da normativa Definizione rapporto $\alpha_{\text{u}}/\alpha_1$: valore come da normativa Riferimento normativo $\alpha_{\text{u}}/\alpha_1$: strutture a telaio di un piano

Valore rapporto $\alpha_u/\alpha_1 =$ 1.100 $q_0 = 3.000 \alpha_u/\alpha_1 =$ Valore base fattore 3.300 k_w = K_R = 1.000 Fattore pareti Fattore di regolarità 1.0 $q_D = q_0 \cdot k_w \cdot K_R =$ 3.300 Fattore dissipativo Fattore non dissipativo $q_{ND} = 2/3 \cdot q_D =$ Fattori di comportamento utilizzati
Dissipativi Non di 1.500 (≤1.5)

Non dissipativi 1.500 q SLU x 3.300 q SLU y q SLU z 3.300 1.500 1.500 1.500

CDC	Tipo	Sigla Id	Note
2	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.026 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	0.0	-0.38	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									

Modo	Frequenza	Periodo	Acc. Spettrale	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Yxg		Zxg			V
	Hz	sec	g	daN		daN		daN			
1	39.106	0.026	0.105	1.477e+04	57.3	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	0.0	0.0	2.580e+04	100.0	0.0	0.0	0.0	0.0
3	45.484	0.022	0.104	1.103e+04	42.7	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	126.292	800.0	0.098	0.14	5.25e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	204.278	0.005	0.097	0.27	1.06e-03	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.026 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND
			numero di modi considerati: 6

CDC	Tipo	Sigla Id	Note
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	0.0	0.38	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	39.110	0.026	0.105	1.479e+04	57.3	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	0.0	0.0	2.580e+04	100.0	0.0	0.0	0.0	0.0
3	45.490	0.022	0.104	1.101e+04	42.7	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	126.385	0.008	0.098	0.13	5.22e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	204.315	0.005	0.097	0.27	1.06e-03	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
4	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.025 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	0.20	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	_		Spettrale	Ххg		Υxg		Ζxg		•	v
	Hz	sec	g	daN		daN		daN			
1	40.374	0.025	0.105	0.0	0.0	1.408e+04	54.6	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	2.580e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	43.749	0.023	0.104	0.0	0.0	1.172e+04	45.4	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	197.922	0.005	0.097	0.0	0.0	0.73	2.82e-03	0.0	0.0	0.0	0.0
6	284.323	0.004	0.096	0.0	0.0	0.10	4.06e-04	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.166 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.025 sec.
			fattore q: 1.500
			fattore per spost. mu d: 3.500
			classe di duttilità CD: ND

CDC	Tipo	Sigla Id	Note
			numero di modi considerati: 6
			combinaz, modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	-0.20	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	_		Spettrale	Ххg		Υxg		Ζxg			v
	Hz	sec	g	daN		daN		daN			
1	40.353	0.025	0.105	0.0	0.0	1.390e+04	53.9	0.0	0.0	0.0	0.0
2	41.958	0.024	0.104	2.580e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	43.723	0.023	0.104	0.0	0.0	1.190e+04	46.1	0.0	0.0	0.0	0.0
4	53.753	0.019	0.102	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	197.492	0.005	0.097	0.0	0.0	0.72	2.80e-03	0.0	0.0	0.0	0.0
6	282.436	0.004	0.096	0.0	0.0	0.11	4.26e-04	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
6	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.026 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	0.0	-0.38	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									

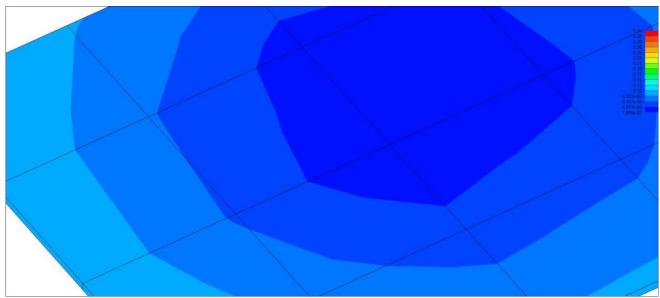
Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	39.106	0.026	0.053	1.477e+04	57.3	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	0.0	0.0	2.580e+04	100.0	0.0	0.0	0.0	0.0
3	45.484	0.022	0.051	1.103e+04	42.7	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	126.292	0.008	0.044	0.14	5.25e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	204.278	0.005	0.043	0.27	1.06e-03	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.026 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC

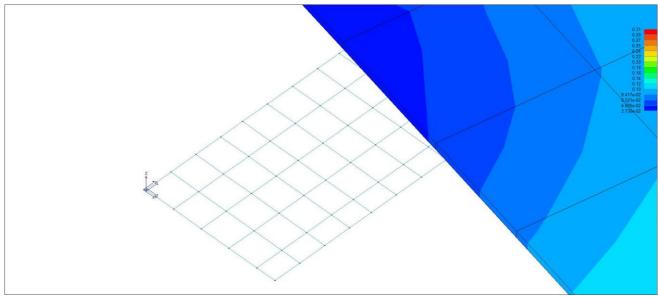
Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	0.0	0.38	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
			Spettrale	Ххg		Υxg		Zxg			v
	Hz	sec	g	daN		daN		daN			
1	39.110	0.026	0.053	1.479e+04	57.3	0.0	0.0	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	0.0	0.0	2.580e+04	100.0	0.0	0.0	0.0	0.0
3	45.490	0.022	0.051	1.101e+04	42.7	0.0	0.0	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	126.385	0.008	0.044	0.13	5.22e-04	0.0	0.0	0.0	0.0	0.0	0.0
6	204.315	0.005	0.043	0.27	1.06e-03	0.0	0.0	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			

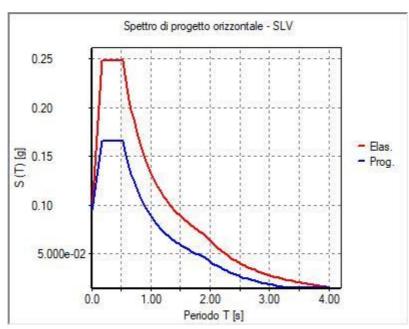
CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.025 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC


Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	0.20	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	_		Spettrale	Ххg		Υxg		Ζxg		•	v
	Hz	sec	g	daN		daN		daN			
1	40.374	0.025	0.052	0.0	0.0	1.408e+04	54.6	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	2.580e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	43.749	0.023	0.051	0.0	0.0	1.172e+04	45.4	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	197.922	0.005	0.043	0.0	0.0	0.73	2.82e-03	0.0	0.0	0.0	0.0
6	284.323	0.004	0.042	0.0	0.0	0.10	4.06e-04	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			


CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.100 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.025 sec.
			numero di modi considerati: 6
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
m	daN	m	m	m	m	m	m			
0.0	2.580e+04	2.00	3.75	-0.20	0.0	0.0	0.0	0.0	0.0	0.0
Risulta	2.580e+04									


Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	%	Energia	Energia x
	_		Spettrale	Ххg		Υxg		Zxg		_	v
	Hz	sec	g	daN		daN		daN			
1	40.353	0.025	0.052	0.0	0.0	1.390e+04	53.9	0.0	0.0	0.0	0.0
2	41.958	0.024	0.052	2.580e+04	100.0	0.0	0.0	0.0	0.0	0.0	0.0
3	43.723	0.023	0.051	0.0	0.0	1.190e+04	46.1	0.0	0.0	0.0	0.0
4	53.753	0.019	0.049	0.0	0.0	0.0	0.0	2.580e+04	100.0	0.0	0.0
5	197.492	0.005	0.043	0.0	0.0	0.72	2.80e-03	0.0	0.0	0.0	0.0
6	282.436	0.004	0.042	0.0	0.0	0.11	4.26e-04	0.0	0.0	0.0	0.0
Risulta				2.580e+04		2.580e+04		2.580e+04			
In percentuale				100.00		100.00		100.00			

31_RIS_MODOX_001_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)

31_RIS_MODOY_001_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)

31_RIS_SPETTRI_PROGETTO_

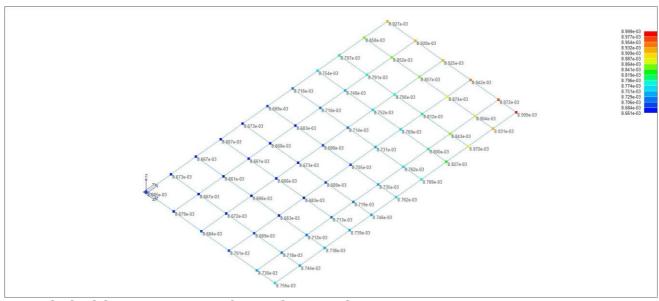
SLV_O

RISULTATI NODALI

LEGENDA RISULTATI NODALI


Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

Una prima tabella riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.


Una <u>seconda tabella</u> riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.

Nodo	Cmb	Traslazione X cm	Traslazione Y cm	Traslazione Z	Rotazione X	Rotazione Y	Rotazione Z
1	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
1	2	0.0	0.0	-0.01	0.0	0.0	0.0
i	5	2.37e-03	-3.36e-04	-8.60e-03	0.0	0.0	0.0
1	10	2.37e-03	-1.19e-03	-8.60e-03	0.0	0.0	0.0
i	30	1.62e-03	-1.75e-03	-8.60e-03	0.0	0.0	0.0
1	37	1.19e-03	-1.69e-04	-8.60e-03	0.0	0.0	0.0
1	42	1.19e-03	-5.91e-04	-8.60e-03	0.0	0.0	0.0
1	62	8.06e-04	-8.73e-04	-8.60e-03	0.0	0.0	0.0
1	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
1	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
1	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
1	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
1	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
1	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
2	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
2	2	0.0	0.0	-0.01	0.0	0.0	0.0
2	5	2.37e-03	1.19e-03	-8.60e-03	0.0	0.0	0.0
2	21	1.62e-03	1.76e-03	-8.60e-03	0.0	0.0	0.0
2	37	1.19e-03	5.92e-04	-8.60e-03	0.0	0.0	0.0
2	53	8.06e-04	8.74e-04	-8.60e-03	0.0	0.0	0.0
2	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
2	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
2	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
2	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
2	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
2	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
3	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
3	2	0.0	0.0	-0.01	0.0	0.0	0.0
3	5	1.36e-03	1.18e-03	-8.60e-03	0.0	0.0	0.0
3	10	1.36e-03	3.24e-04	-8.60e-03	0.0	0.0	0.0
3	21	5.90e-04	1.75e-03	-8.60e-03	0.0	0.0	0.0
3	37	6.80e-04	5.86e-04	-8.60e-03	0.0	0.0	0.0
3	42	6.80e-04	1.63e-04	-8.60e-03	0.0	0.0	0.0
3	53	2.94e-04	8.70e-04	-8.60e-03	0.0	0.0	0.0
3	69	0.0	0.0	-5.00e-03	0.0	0.0	0.0
3	70	0.0	0.0	-9.50e-03	0.0	0.0	0.0
3	71	0.0	0.0	-5.00e-03	0.0	0.0	0.0
3	72	0.0	0.0	-9.05e-03	0.0	0.0	0.0
3	73	0.0	0.0	-5.00e-03	0.0	0.0	0.0
3	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
4	1	0.0	0.0	-6.50e-03	0.0	0.0	0.0
4	2	0.0	0.0	-0.01	0.0	0.0	0.0
4	10	1.36e-03	-1.18e-03	-8.60e-03	0.0	0.0	0.0
4	21	5.90e-04	1.09e-03	-8.60e-03	0.0	0.0	0.0
4 4	30 37	5.90e-04	-1.74e-03	-8.60e-03	0.0	0.0	0.0
4		6.80e-04	-1.63e-04	-8.60e-03	0.0	0.0	0.0
	42	6.80e-04	-5.86e-04	-8.60e-03	0.0	0.0	0.0
4 	62	2.94e-04	-8.69e-04	-8.60e-03	0.0	0.0	0.0
66	74	0.0	0.0	-8.60e-03	0.0	0.0	0.0
Nodo		Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione Z
		-5.54e-04	-1.76e-03	-0.01	0.0	0.0	0.0
		2.37e-03	1.76e-03	-5.00e-03	0.0	0.0	0.0

41_RIS_SPOSTAMENTI_002_Comb. SLU A1 2

41_RIS_SPOSTAMENTI_014_Comb. SLU A1 (SLV sism.) 14