COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

GENERAL CONTRACTOR

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO ESECUTIVO

ADEGUAMENTO NODO DI PONTEDECIMO VIADOTTO 1 Relazione di Calcolo Spalle

(Consorzio Cociv G. Guagnozzi								
I	GOMMESSA LOTTO		C	E TIPO C	DOC.	N V 0	7 0 X		A
Prog	gettazione :								
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGETTISTA	
A00	Prima emissione	Leonardo Strutture	17/09/2012	Ing. F. Colla	18/09/2012	E. Pagani	21/09/2012	Ing. E. Ghisland	i
								Sez. A Settori: a) civile e ambientale b) industrale c) dell'irrormazione	MINOHA
								n°A 16993	
		n. Elab.:				File: IG51-	01-E-CV-C	L-NV07-0X-005-A00	
						,		CUP: F81H92000000	8000

DIRETTORE DEI LAVORI

Foglio 3 di 54

INDICE

1	INTRODUZIONE	5
1.1	Generalità	5
1.2	Normative di riferimento	6
1.3	Caratteristiche dei materiali	7
1.3.1	Calcestruzzo	7
1.3.2	Armature per c.a.	7
1.3.3	Acciaio da carpenteria	7
1.4	Ipotesi di Calcolo	8
1.5	Coefficienti sismici	8
1.6	Parametri geotecnici	8
2	SPALLA A	10
2.1	Analisi dei carichi	10
2.1.1	Permanenti	10
2.1.2	Spinta del terreno e del sovraccarico	11
2.1.3	Accidentale sul rilevato	11
2.1.4	Accidentale sull'impalcato	11
2.1.5	Frenatura	12
2.1.6	Incremento dovuto a Pendenza longitudinale	12
2.1.7	Vento trasversale	13
2.1.8	Forza centrifuga	14
2.1.9	Sisma	14
2.1.10	·	14
2.2	Combinazioni di carico	15
2.2.1	Combinazioni alla base della Fondazione	15
2.3	Verifica palificata	17
2.3.1	Schema di calcolo	17
2.3.2	Dati Geometrici	17
2.3.3	Azioni sui micropali	18
2.3.4 2.4	Verifica micropali Verifica fondazione	19 21
2.4.1	Verifica soletta anteriore in condizioni di esercizio	21
2.4.1	Verifica soletta posteriore in condizioni di esercizio Verifica soletta posteriore in condizioni di esercizio	23
2.4.2	Verifica soletta in senso trasversale in condizioni di esercizio	23
2.5	Elevazione Spalla	25
2.5.1	Analisi dei Carichi	25
2.5.2	Combinazioni di Carico alla base del corpo spalla	26
2.5.3	Verifica alla base del corpo spalla	27
2.5.4	Verifica mensola trasversale spalla	29
3	SPALLA B	36
3.1	Analisi dei carichi	36
3.1.1	Permanenti	36
3.1.2	Spinta del terreno e del sovraccarico Accidentale sul rilevato	37
3.1.3 3.1.4	Accidentale sull'impalcato	37 37
3.1.5	Frenatura	38
3.1.6	Incremento dovuto a Pendenza longitudinale	38
3.1.7	Vento trasversale	39
3.1.8	Forza centrifuga	40
3.1.9	Sisma	40
3.1.10		40
3.2	Combinazioni di carico	41
3.2.1	Combinazioni alla base della Fondazione	41

IG51-01-E-CV-CL-NV07-0X-005-A00 Foglio 4 di 54

3.3	Verifica palificata	43
3.3.1	Schema di calcolo	43
3.3.2	Dati Geometrici	43
3.3.3	Azioni sui micropali	44
3.3.4	Verifica micropali	45
3.4	Verifica fondazione	47
3.4.1	Verifica soletta anteriore in condizioni di esercizio	47
3.4.2	Verifica soletta posteriore in condizioni di esercizio	49
3.5	Elevazione Spalla	50
3.5.1	Analisi dei Carichi	50
3.5.2	Combinazioni di Carico alla base del corpo spalla	51
3.5.3	Verifica alla base del corpo spalla	52

Foglio 5 di 54

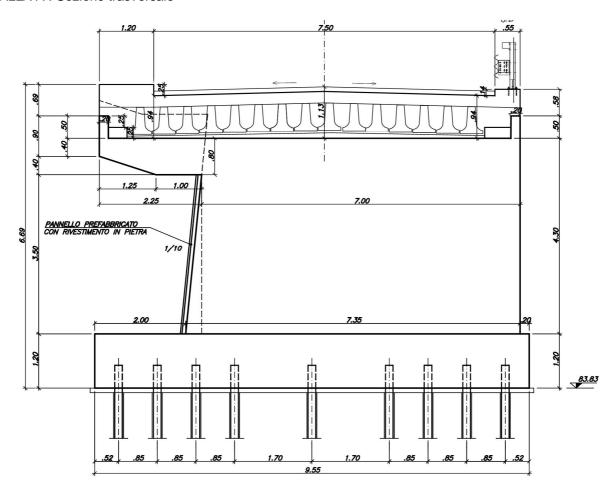
1 INTRODUZIONE

1.1 Generalità

La presente relazione si riferisce alla progettazione esecutiva delle spalle del Viadotto 1, nell'ambito degli interventi relativi alla nuova viabilità da realizzare in corrispondenza della frazione di Pontedecimo in sponda destra del torrente Verde e al collegamento della viabilità urbana con un nuovo ponte alla S.P. n.6 che corre in sinistra idraulica.

Tale intervento è inserito nell'ambito delle attività collaterali previste per la cantierizzazione della tratta Alta Velocità Milano – Genova, III Valico.

La zona dell'intervento è classificata sismica in zona 4, secondo l'ordinanza del Presidente del Consiglio dei Ministri n.3274 del 20.03.2003.


Il viadotto oggetto della presente relazione (denominato Viadotto 1) è previsto sulla rampa con pendenza pari a circa il 6% necessaria per il raggiungimento, dal piazzale antistante la scuola, della quota attuale del Ponte delle Piane e sarà costituito da tre campate di 12,50 di luce e due da 15,00, per una lunghezza complessiva di 67,50.

Tale viadotto è costituito da un impalcato con travi a T rovescio in cls precompresso prefabbricato affiancate di altezza h=60cm e soletta in c.a. di spessore s=25cm,

Le spalle sono in cemento armato con plinto di fondazione su micropali.

Si allegano di seguito schemi delle Spalle:

SPALLA A: Sezione trasversale

Foglio 6 di 54

1.2 Normative di riferimento

a)	D.M. LL.PP. +istruz. relative	16.01.1996	Norme tecniche relative ai «Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi».
b)	Circ.Min.LL.PP.	04.07.1996, n.156AA	Istruzioni relative ai «Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi» di cui al D.M. 16/01/96.
c)	Legge	05.11.1971, n.1086	Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica.
d)	D.M. LL.PP.	09.01.1996	Norme tecniche per l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche.
e)	D.M. LL.PP.	04.05.1990	Aggiornamento delle norme tecniche per la progettazione, l'esecuzione e il collaudo dei ponti stradali.
f)	D.M.LL.PP.	11.03.1988	Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione.
g)	D.M.LL.PP.	16.01.1996	Norme Tecniche per le costruzioni in Zone Sismiche.
h)	Circ.Min.LL.PP.	10.04.1997, n.65 AAGG	Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche di cui al decreto ministeriale 16 gennaio 1996".
i)	Circ.Min.LL.PP.	15.10.1996, n.252 AAGG	Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato, normale e precompresso e per le strutture metalliche".
j)	Circ.Min.LL.PP.	25.02.1991, n.34233	Istruzioni relative alla normativa tecnica dei ponti stradali.
k)	D.M.LL.PP.	03.12.1987	Norme tecniche per la progettazione esecuzione e collaudo delle costruzioni prefabbricate.
I)	Circ.Min.LL.PP.	16.03.1989	Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate.

Foglio 7 di 54

m) Norme CNR 10024/86 Analisi strutturale mediante elaboratore:

impostazione e redazione delle relazioni

di calcolo.

n) Ordinanza P.C.M. 20.03.2003 "Primi elementi in materia di criteri

generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona

sismica".

1.3 Caratteristiche dei materiali

1.3.1 Calcestruzzo

Magrone di pulizia e livellamento

Resistenza media : $R_m \ge 15 \text{ MPa}$ contenuto min. cemento : 150 kg/mc

Fondazioni Spallle

Classe di Resistenza : C25/30 (ex $R_{ck} = 300 \text{ kg/cm}^2$)

tensioni normali ammissibili: $\sigma_{f.amm} = 95,5 \text{ daN/cm}^2$ tensioni tangenziali ammissibili: $\tau_{co} = 6,00 \text{ daN/cm}^2$

Classe di Esposizione : XF1

Elevazione Spalle

Classe di Resistenza : C32/40 (ex $R_{ck} = 400 \text{ kg/cm}^2$)

tensioni normali ammissibili: $\sigma_{f.amm} = 122,5 \text{ daN/cm}^2$ tensioni tangenziali ammissibili: $\tau_{co} = 7,33 \text{ daN/cm}^2$

Classe di Esposizione : XF1

Copriferro : c = 40 mmClasse di consistenza slump : $S = 3 \div 5$ Diametro max aggregato : S = 32 mmClasse contenuto cloruri : S = 32 mm

1.3.2 Armature per c.a.

Acciaio per armature lente B450C

1.3.3 Acciaio da carpenteria

Acciaio utilizzato per i pali: S275 J2

tensione di snervamento f $_y \ge 2750 \ daNg/cm^2$ tensione ammissibile σ_{fa} = 1900 daN/cm²

Acciaio utilizzato per i tiranti: trefoli in acciaio armonico

 $f_{tpk} \ge =18000.00 \text{ daN/cm}^2$

Foglio 8 di 54

1.4 Ipotesi di Calcolo

Le azioni sulle strutture sono dovute essenzialmente alla spinta del terreno, ai carichi permanenti della struttura, ai carichi accidentali trasmessi dall'impalcato e dal rilevato, e al sisma.

Il calcolo viene condotto con i metodi della Scienza delle Costruzioni, basati sull'ipotesi dell'elasticità lineare dei materiali, con l'ausilio di fogli di calcolo (Excel) i cui risultati sono di seguito dettagliati. Le verifiche di resistenza sono state effettuate con il metodo delle tensioni ammissibili.

Le unità di misura sono essenzialmente kNewton [kN] ed il metro [m], tranne che per le verifiche delle sezioni in c.a. ove si adotta il [Kg] ed il [cm].

1.5 Coefficienti sismici

Nell'analisi in condizioni sismiche viene recepita la normativa attuale per quanto riguarda la classificazione sismica del territorio nazionale, mantenendo le modalità di verifica secondo la normativa ancora vigente nel periodo di transizione.

Per quanto sopra nella classificazione del territorio la struttura ricade in zona 4, che possiamo assimilare ad una zona a bassa sismicità. La classificazione suddivide il territorio in quattro diverse zone sismiche, mentre la pregressa normativa faceva riferimento ad una suddivisione di zone sismiche e non sismiche, ponendo poi nelle zone dichiarate sismiche tre diversi gradi di sismicità.

A favore di sicurezza le verifiche di seguito riportate terranno conto di una condizione sismica con sismicità S = 6

Per il calcolo sono stati assunti i seguenti coefficienti:

coeff. di protezione sismica	I = 1.0
coeff. di struttura	$\beta = 1.2$
coeff. di fondazione	$\varepsilon = 1.0$
coeff. di risposta	R = 1
coeff. di intensità sismica	c = 0.04

1.6 Parametri geotecnici

Si assumono i seguenti parametri relativi alle caratteristiche del terreno desunti dalla relazione geotecnica: Materiale di riporto

coesione	$c = 0.05 \text{ t/m}^2$
angolo d'attrito	$\varphi = 32^{\circ}$
peso specifico	$\gamma = 2.0 \text{ t/m}^3$
spessore strato	s = 2.5 m

Depositi alluvionali

 $\begin{array}{ll} \text{coesione} & \text{c} = 0.0 \text{ t/m}^2 \\ \text{angolo d'attrito} & \phi = 32^\circ \\ \text{peso specifico} & \gamma = 2.1 \text{ t/m}^3 \\ \text{spessore strato} & \text{s} = 6.0 \text{ m} \end{array}$

Substrato superficiale

coesione $c = 0.6 \text{ t/m}^2$ angolo d'attrito $\phi = 24^\circ$ peso specifico $\gamma = 2.5 \text{ t/m}^3$

Foglio 9 di 54

spessore strato

Substrato basale

 $\begin{array}{ll} \text{coesione} & \text{c} = 2.5 \text{ t/m}^2 \\ \text{angolo d'attrito} & \phi = 26^\circ \\ \text{peso specifico} & \gamma = 2.5 \text{ t/m}^3 \end{array}$

s = 2.5 m

Foglio 10 di 54

2 SPALLA A

2.1 Analisi dei carichi

2.1.1 Permanenti

Impalcato

				cnoccoro						dist.bar			
	p.u.	largh.	lungh	spessore	γ–p.p.		carico			. Y		mome	enti
soletta		9,25	1,00	0,25	25	=	57,813	kN/m	Х	0,00	=	0,00	kNm/m
cordoli	1	1,20	1,00	0,25	25	=	7,500	kN/m	Χ	4,03	=	30,23	kNm/m
1. 12		0.55	4.00	0.05	0.5		0.400	1.5.17		4.00		-	
cordoli	1	0,55	1,00	0,25	25	=	3,438	kN/m	Χ	-4,38	=	15,06	kNm/m
cordoli	0	0,00	1,00	0,25	25	=	0,000	kN/m	Χ	0,00	=	0,00	kNm/m
pavimentazione			1,00	7,50	3	=	22,500	kN/m	Χ	-0,32	=	-7,20	kNm/m
parapetti	1				1,5	=	1,500	kN/m	Х	4,53	=	6,80	kNm/m
guardiavia+barriera	ì											-	
fonoass.		1			4	=	4,000	kN/m	Χ	-4,53	=	18,12	kNm/m
trave	15	1,00	1,00	0,159	25,00	= _	59,625	kN/m	Χ	0,00	=	0,00	kNm/m
							156,375	kN/m				-3,36	kNm/m
traversi		1,00	1,50	5,50	25,00	=	206,250	kN					
Carias sulla sasila													

Carico sulla spalla

N= 1389,84 kN $M_{T}= -20,98 \text{ kNm}$

a = 0,30 (distanza tra l'asse appoggi e la parete anteriore del corpo spalla)

(larghezza zoccolo anteriore

d = 1,00 fondazione)

Spalla

Opalia	p.u.	largh.	altezza	lungh	γ–p.p.		carico			dist.bar . Y		momenti	
paraghiaia		9,25	1,05	0,30	25	=	72,844	kN	Х	-0,550	=	-40,06	kNm
corpo spalla		9,25	4,30	1,00	25	=	994,375	kN	Х	-0,200	=	-198,88	kNm
muri d'ala post	2	1,50	5,35	0,30	25	=	120,375	kN	Χ	-1,450	=	-174,54	kNm
sbalzo	-1	2,10	1,00	3,50	25	=	-183,750	kN	Χ	-0,200	=	36,75	kNm
	-1	1,27	0,40	0,50	25	=	-6,350	kN	Χ	-0,200	=	1,27	kNm
muri d'ala ant.	0	1,05	1,05	0,30	25		0,000	kN	Χ	0,925	=	0,00	kNm
fondazione		9,05	1,20	3,50	25	=	950,250	kN	Χ	-0,450	=	-427,61	kNm
terreno posteriore		8,65	5,35	1,50	18,00	=	1249,493	kN	Χ	-1,450	=	-1811,76	kNm
terreno anteriore		9,05	0,50	1,00	18,00	=	81,450	kN	Χ	0,800	=	65,16	kNm
							3278,686	kN				-2549,68	kNm

Totale permanenti alla base della fondazione

N = 1389,84 + 3278,69 = **4668,530** kN

Momento longitudinale all'asse appoggi

 $\mathbf{M_{L}=}$ -20,98 + 2549,68 = -2570,656 kNm $\mathbf{M_{T}=}$ 0,00 + -717,63 = -717,628 kNm

2.1.2 Spinta del terreno e del sovraccarico

Dati terreno

19 kN/m³ peso terreno = 0 kN/m^2 coesione terreno = 32 ° angolo di attrito coefficiente di spinta attiva 0,307 = numero impalcati su spalla 1 9,25 m larghezza impalcato $L_{imp} =$ larghezza carreggiata 7,50 m larghezza spalla 9,25 m altezza spalla + paraghiaia 5,35 m

sovraccarico su rilevato $q = 20,00 \text{ kN/m}^2$

2.1.3 Accidentale sul rilevato

carico accidentale $q = 20 \text{ kN/m}^2$ da normativa numero impalcati su spalla = 2 larghezza carreggiata $L_{carr} = 7,50 \text{ m}$ spessore paraghiaia = 0,30 m larghezza soletta post = 1,50 m lunghezza carico distribuito = 1,80 m

N = 540,00 kN $M_L = 702,00 \text{ kNm}$

1,300 m

2.1.4 Accidentale sull'impalcato

distanza carico da asse appoggio

La reazione per una stesa di carico si ottiene dividendo per il coefficiente di ripartizione; per una colonna di carico (condizione n. 3)

L = 12.50 m

 $\varphi = 1.4 - (L - 10)/150 = 1.387$

 $R = 1.387 / 12.05 \times (600 \times 10.70 + 3.0 \times 3.200 / 2) = 744,50 \text{ kN}$

eccentricit e1 = 2,325 m

Foglio 12 di 54

à

à

eccentricit

e2 = -1,175 m

una stesa di carico

eccentricità

N = 744,50 kN

Mt = 1730,96 kNm

 $M_L = 0.00 \text{ kNm}$ (alla base della fondazione)

due stese di carico

N = 1116,75 kN

Mt = 1293,57 kNm

 M_L = 0,00 kNm (alla base della fondazione)

2.1.5 Frenatura

descrizione trave in semplice appoggio con appoggi in neoprene

numero impalcati su spalla 1,0 altezza impalcato 0,85 m altezza appoggio 0,10 m

altezza spalla 4,30 m altezza fondazione 1,20 m

carico concentrato 200 kN da normativa carico distribuito 30,00 kN/m da normativa

coefficiente per colonna 1 1 da normativa coefficiente per colonna 2 0,50 da normativa

lunghezza carico distribuito 3,20 m

numero di apparecchi di appoggio 1

Si considera la condizione più gravosa tra le seguenti:

20% totale del carico Q_a H_{L1} 180,00 kN 10% colonna di carico più pesante H_{L2} 69,60 kN

a) alla base della fondazione

un impalcato carico H_L 180,00 kN x 6,45 = 1161,00 kNm = M_L due impalcati carichi H_L 180,00 kN x 6,45 = 1161,00 kNm = M_L

b) alla base della elevazione

 H_L 180,00 kN x 5,25 = 945,00 kNm = M_L

2.1.6 Incremento dovuto a Pendenza longitudinale

altezza appoggio 0,20 m altezza corpo spalla 4,30 m altezza fondazione 1,20 m

m

Foglio 13 di 54

Tgα=	0,05989					αα	0,05 3,4		rad grad
	$sin \alpha cos \alpha$	=	0,0	597		O.	٥, ١	•	grad
Permanenti			,						
a) impalcato									
b=	5,70 m	n							
N=	1389,84 k	N							
H _L =	N x sinαco	osα=	82,	94	kN				
$M_L =$	H _L x b=	=	472	,76	kN				
b) accidentali									
base fondazi									
b=	6,18 m	ſ							
una carreggia									
N= H L=	744,50 t N x sinαco	nsa-	44,	43	kN				
M _L =	H _L x b=		274		kN				
due carreggia	=			,00					
N=	1116,75 t								
H _L =	N x sinαco	osα=	66,	64	kN				
$M_L=$	H _∟ x b=	=	411	.52	kN				
base elevazio	_			•					
b=	4,98 m	า							
una carreggia									
N=	744,50 t								
H _L =	N x sinαco	osα=	44,	43	kN				
M _L =	H _L x b=	=	221	,03	kN				
due carreggia									
N=	1116,75 t								
H _L =	N x sinαco		66,		kN				
M _L =	H _L x b≡	=	331	,55	kN				
2.1.7 Vento	rasversale								
altezza proiez	ione vert impal	cato	0,85	m					
altezza accide	entale		3,00	m		da no	rmativ	/a	
scalino interno	marciapiede-								
nero			0,15	m		[va a	detrar	si da	all'altezza dell'accidentale]
altezza appog	gio		0,10	m					
altezza spalla			4,30	m					
altezza fondaz	zione		1,20	m					
carico distribu	ito vento	q	2,500	kN/ı	mq	da no	rmativ	/a	
lunghezza imp	alcato		12,50	m					
Alla base della			•						
a) impalcato		=	13,281	kN		x 6	,025	=	80,020 kNm
b) accidenta		=	44,531				,875	=	
<i>5,</i> 400,40116		 H _T =	57,813			^ '			430,703 kNm
		–	51,013	IXI N			1414	_	TOU, I OU KINIII

Foglio 14 di 54

Alla base dell'elevazione

a) impalcato = 13,281 kN x 4,825 = 64,082 kNm b) accidentale = 44,531 kN x 6,675 = 297,246 kNm

 $H_T = 57,813 \text{ kN}$

 $M_T = 361,328 \text{ kNm}$

2.1.8 Forza centrifuga

Il tratto di impalcato in corrispondenza della Spalla A risulta in Rettifilo. Risulta nulla dunque l'azione della forza centrifuga.

2.1.9 Sisma

permanenti impalcato N = 1389,84 kN permanenti spalla N = 3278,69 kN M_L = -2570,66 tm

SISMA VERTICALE

S = 6 c = 0.04 m = 1 $\beta = 1.2$

incremento percentuale carichi permanenti

 $\Delta N = 0,096$

 ΔN_{el} \pm 448,18 kN ΔM_{el} \pm -246,78 kNm

 \mathbf{c}_{s}

SISMA ORIZZONTALE

0,048 coefficiente sismico orizzontale

sisma sull'impalcato

impalcato 0,85 m appoggio 0,10 m spalla 4,30 m fondazione 1,20 m N.impalcati 1

 $H_L = H_T = 33,36 \text{ kN} \qquad 6,03 = 200,97 \text{ tm}$

sisma sulla spalla

Totale sisma

paraghiaia	0,048	Х	72,84	=	3,50 kN	X	6,03 =	21,07 kNm
corpo spalla	0,048	Х	994,38	=	47,73 kN	Х	3,35 =	159,90 kNm
muri d'ala post	0,048	Х	120,38	=	5,78 kN	Х	3,88 =	22,39 kNm
fondazione	0,048	Х	950,25	=	45,61 kN	Х	0,60 =	27,37 kNm
terreno posteriore	0,048	Х	1249,49	=	59,98 kN	Х	3,88 =	232,41 kNm
terreno anteriore	0,048	Χ	81,45	=	3,91 kN	Х	1,45 =	5,67_ kNm
			H_L	=	166,50 kN	Х	M _L =	468,79 kNm

 $H_L = H_T = 199,86 \text{ kN}$

 $M_L = M_T = 669,76 \text{ kNm}$

2.1.10 Incremento di spinta in condizioni sismiche

 $\lambda_a = 0.3073$ $\Theta = 2.29177$ °

Foglio 15 di 54

11,56 kN

$$\lambda_{as} = \quad 0.3305 \quad cos \ \Theta = \quad \ 0.9992$$

spinta terreno 772,82 kN altezza spalla 4,30 m altezza paraghiaia 1,05 m altezza fondazione 1,20 m

 $\Delta F = 57,73 \text{ kN}$

 $\Delta M = 57,73 \text{ kN } \text{x}$ 4,77 = 275,18 kNm

2.2 Combinazioni di carico

 H_{T}

2.2.1 Combinazioni alla base della Fondazione

2.2.1	COITID	illaziolii alia	Das	e della Folio	ıazı	OHE							
ΑΙ	Peri	manenti + V	entc'	+ Acc. su r	ilev	ato + Attrito							
N	=	4668,53	+	540,00	+		+		+		=	5208,53	kN
M_L	=	-2570,66	+	702,00	+	3261,05	+		+		=	1392,39	kNm
H_{L}	=		+		+	1019,39	+		+		=	1019,39	kN
M_{T}	=	430,70	+		+		+		+		=	430,70	kNm
H _T	=	57,81	+		+		+		+		=	57,81	kN
Alla	Peri	manenti + A	ccid	entali 1 colo	nna	a. + 0,6 x Ve	ento	+ Attrito					
N	=	4668,53	+	540,00	+		+	744,50	+		=	5953,03	kN
M_L	=	-2570,66	+	702,00	+	3261,05	+	0,00	+		=	1392,39	kNm
H_{L}	=		+		+	1019,39	+		+		=	1019,39	kN
M_{T}	=	0,6	Χ	430,70	+		+	1730,96	+		=	1989,38	kNm
H _T	=	0,6	Х	57,81	+		+		+		=	34,69	kN
Allb	Peri	manenti + A	ccid	entali 2 colo	nne	e + 0,6 x Ve	nto	+ Attrito					
N	=	4668,53	+	540,00	+		+	1116,75	+		=	6325,28	kN
M_L	=	-2570,66	+	702,00	+	3261,05	+	0,00	+		=	1392,39	kNm
H_{L}	=		+		+	1019,39	+		+		=	1019,39	kN
M_{T}	=	0,6	Χ	430,70	+		+	1293,57	+		=	1551,99	kNm
H _T	=	0,6	Х	57,81	+		+		+		=	34,69	kN
A III a	Peri	manenti + A	ccid	entali 1 colo	nna	a + Frenatur	a +	0,2 x Vent	o +	Attrito			
A III a N	Peri	manenti + A 4668,53		entali 1 colo 540,00		a + Frenatur	a + +	0,2 x Vent 744,50		Attrito	=	5953,03	kN
			+		+	a + Frenatur 3261,05	+		+	Attrito 1161,00		•	
N	=	4668,53	+	540,00	+		+	744,50	+		=	,	kNm

A III b Permanenti + Accidentali 2 colonne + Frenatura + 0,2 x Vento + Attrito

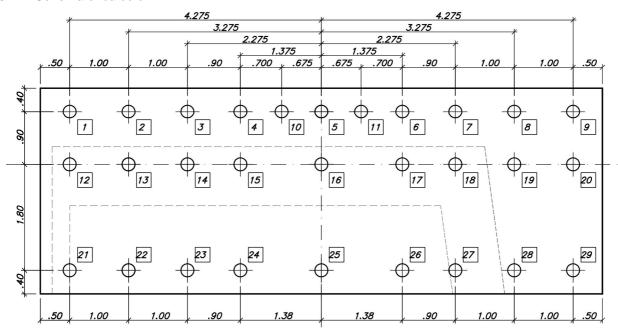
57,81 +

0,2 x

N = 4668,53 + 540,00 + + 1116,75 + = 6325,28 kN

Foglio 16 di 54

M_L	=	-2570,66	+	702,00	+	3261,05	+	0,00	+	1161,00	=	2553,39	kNm
H_L	=		+		+	1019,39	+		+	180,00	=	1199,39	kN
M_{T}	=	0,2	Х	430,70	+		+	1293,57	+		=	1379,71	kNm
H_T	=	0,2	Х	57,81	+		+		+		=	11,56	kN
A IV a	Per	manenti + A	ccid	entali 1 colo	nna	a + Forza ce	ntri	fuga + 0,2	x V	ento + Attr	ito		
N	=	4668,53	+	540,00	+		+	744,50	+		=	5953,03	kN
M_L	=	-2570,66	+	702,00	+	3261,05	+	0,00	+		=	1392,39	kNm
H_{L}	=		+		+	1019,39	+		+		=	1019,39	kN
M_T	=	0,2	Х	430,70	+		+	1730,96	+	0,00	=	1817,10	kNm
H_T	=	0,2	Х	57,81	+		+		+	0,00	=	11,56	kN
A IV b	Per Attr	manenti + A	ccid	entali 2 colo	nne	e. + Forza ce	entr	rifuga + 0,2	2 x \	/ento +			
N	=	4668,53	_	540.00	_		+	1116,75	_		_	6325,28	kΝ
ML	=	-2570,66		702,00				0,00			_	1392,39	
HL	_	-2370,00	+	702,00	+	1019,39		0,00	+		_	1019,39	
M _T	_	0,2		430,70		1019,39	+	1293,57		0,00		1379,71	
H _T	_	0,2		57,81			+	1290,01	+	0,00		11,56	
111	_	0,2	^	57,01	•		•		•	0,00	_	11,50	IXI V
AVa	Per	manenti + S	Sisma	a trasversale) + :	Sisma verso	il l	basso					
N	=	1,096	Х	4668,53	+		+		+		=	5116,71	kN
M_L	=	1,096	Х	-2570,66	+	2305,57	+	275,18	+		=	-236,69	kNm
H_L	=		+		+	772,82	+	57,73	+		=	830,55	kN
M_{T}	=		+	669,76	+		+		+		=	669,76	kNm
H_T	=		+	199,86	+		+		+		=	199,86	kN
AVb	Per	manenti + S	Sisma	a trasversale	+ 5	Sisma verso	l'a	lto					
N	=	0,904	Χ	4668,53	+		+		+		=	4220,35	kN
M_L	=	0,904	Χ	-2570,66	+	2305,57	+	275,18	+		=	256,88	kNm
H_{L}	=		+		+	772,82	+	57,73	+		=	830,55	kN
M_{T}	=		+	669,76	+		+		+		=	669,76	kNm
H_T	=		+	199,86	+		+		+		=	199,86	kN
AVc	Per	manenti + S		· ·		+ Sisma ver	so i	l basso					
N	=	1,096		4668,53			+		+			5116,71	
M _L	=	1,096	Χ	-2570,66				275,18		669,76		433,08	
HL	=		+		+	772,82		57,73		199,86		1030,41	
M _T	=		+		+		+		+		=		kNm
H_T	=		+		+		+		+		=	0,00	kN
A 3.7. d	Б.		·•	a Lamado ed	ء ا ۔	O Company		الملام					
AVd		manenti + S		_		+ Sisma ver		alto				4000.05	LAT
N	=	0,904	Х	4668,53	+		+		+		=	4220,35	KIN



Foglio 17 di 54

M_L	=	0,904 x	-2570,66 +	2305,57 +	275,18 +	669,76 =	926,64	kNm
H_{L}	=	+	+	772,82 +	57,73 +	199,86 =	1030,41	kN
M_{T}	=	+	+	+	+	=	0,00	kNm
H_{T}	=	+	+	+	+	=	0,00	kN

2.3 Verifica palificata

2.3.1 Schema di calcolo

2.3.2 Dati Geometrici

Coordinate pali

o o o . a.i. iaito paii						
n. palo	Χ	Υ	_	n. palo	Χ	Υ
1	-4,275	0,900	_	16	0,000	0,000
2	-3,275	0,900		17	1,375	0,000
3	-2,275	0,900		18	2,275	0,000
4	-1,375	0,900		19	3,275	0,000
5	0,000	0,900		20	4,275	0,000
6	1,375	0,900		21	-4,275	-1,800
7	2,275	0,900		22	-3,275	-1,800
8	3,275	0,900		23	-2,275	-1,800
9	4,275	0,900		24	-1,375	-1,800
10	-0,675	0,900		25	0,000	-1,800
11	0,675	0,900		26	1,375	-1,800
12	-4,275	0,000		27	2,275	-1,800
13	-3,275	0,000		28	3,275	-1,800
14	-2,275	0,000		29	4,275	-1,800
15	-1,375	0,000				

Baricentro

Foglio 18 di 54

Xg Yg 0,00 -0,09

Momento di inerzia

Jx Jy 0,83 6,81

2.3.3 Azioni sui micropali

Combinazione AZIONE NORMALE SUL PALO

	C.2.1	C.2.2	C.2.3	C.2.4	C.2.5
n. palo	N	N	N	N	N
1	260,32	260,51	284,58	307,75	331,82
2	262,31	269,68	291,74	316,12	338,18
3	264,29	278,85	298,89	324,50	344,54
4	266,08	287,11	305,33	332,04	350,27
5	268,81	299,72	315,17	343,56	359,01
6	271,54	312,33	325,01	355,08	367,76
7	273,33	320,58	331,45	362,62	373,48
8	275,31	329,75	338,60	371,00	379,84
9	277,30	338,93	345,76	379,37	386,21
10	179,48	174,92	196,62	182,43	204,13
11	181,46	184,09	203,78	190,80	210,49
12	183,45	193,27	210,93	199,18	216,85
13	185,24	201,52	217,37	206,72	222,58
14	187,97	214,13	227,21	218,24	231,32
15	190,70	226,74	237,05	229,76	240,07
16	192,48	235,00	243,49	237,30	245,79
17	194,47	244,17	250,65	245,68	252,15
18	196,46	253,34	257,80	254,05	258,52
19	53,72	41,79	59,80	-12,51	5,50
20	55,71	50,96	66,95	-4,13	11,86
21	57,70	60,13	74,11	4,24	18,22
22	59,48	68,39	80,55	11,78	23,95
23	62,21	81,00	90,39	23,30	32,69
24	64,94	93,61	100,23	34,82	41,44
25	66,73	101,86	106,67	42,36	47,16
26	68,72	111,03	113,82	50,74	53,52
27	70,70	120,21	120,98	59,11	59,89
28	277,30	338,93	345,76	379,37	386,21
29	53,72	41,79	59,80	-12,51	5,50

	C.2.8	C.2.9	C.2.10	C.2.11
n. palo	N	N	N	N
1	190,28	171,71	228,77	210,20
2	193,37	174,79	228,77	210,20
3	196,45	177,88	228,77	210,20
4	199,23	180,66	228,77	210,20

Foglio 19 di 54

	_		_	_
5	203,48	184,91	228,77	210,20
6	207,72	189,15	228,77	210,20
7	210,50	191,93	228,77	210,20
8	213,59	195,02	228,77	210,20
9	216,68	198,11	228,77	210,20
10	165,77	136,02	181,34	151,59
11	168,86	139,11	181,34	151,59
12	171,95	142,20	181,34	151,59
13	174,73	144,98	181,34	151,59
14	178,97	149,22	181,34	151,59
15	183,22	153,47	181,34	151,59
16	186,00	156,25	181,34	151,59
17	189,09	159,33	181,34	151,59
18	192,17	162,42	181,34	151,59
19	127,65	80,51	107,57	60,43
20	130,74	83,60	107,57	60,43
21	133,83	86,69	107,57	60,43
22	136,61	89,47	107,57	60,43
23	140,85	93,71	107,57	60,43
24	145,10	97,96	107,57	60,43
25	147,88	100,74	107,57	60,43
26	150,97	103,82	107,57	60,43
27	154,05	106,91	107,57	60,43
28	216,68	198,11	228,77	210,20
29	127,65	80,51	107,57	60,43

2.3.4 Verifica micropali

2.3.4.1 Verifica capacità portante

DATI PALO

lunghezza 14,00 m

di cui m iniziali 0,00 m (che trascuro) area sezione palo 0,038 mq diametro 220 mm area bulbo 0,096 mq diametro bulbo = 0,35 m

CARICO SUL PALO 386,20 kN sup lat utile Al = 9,68 mq

DATI TERRENO

coesione 0 t/mq p. specifico 23 KN/m³

 δ = 19 ° angolo di attrito terra muro

angolo attrito

 $\Phi = 32$ °

Nc = 40,0

Hp

Foglio 20 di 54

Nq = PORTATA LIMITE ALLA PUNTA

 $q = \sum \gamma i Hi = \gamma (H-I) = 322 kN$

Qp = A (c Nc + q Nq) = 775 kN

PER ATTRITO LATERALE

 $\sigma h = \gamma H/2 =$ 161 kN

 $\tan \delta = 0,344$

QI = $(c + \Sigma \sigma h x tg \delta) AI = 536 kN$

PESO PALO decurto il terreno Pp = 12,8 kN

25,0

Coefficiente di Sicurezza alla portanza dei Pali:

$$v = 775+536-12,8 = 1298,20 / 386,2 = 3,36 > 2,5$$

2.3.4.2 Verifica del Palo Alle Azioni Taglianti

Si considera il palo totalmente immerso nel terreno con la testa libera di spostarsi ma non di ruotare, soggetto ad un'azione orizzontale H.

La massima forza orizzontale agente alla testa dei pali risulta:

in condizioni di esercizio: H t max = 1199,4 kN (4° c.d.c)

Hp = 1199,4/29 = 41,35 kN

in condizioni sismiche : H t max = 1030,4 (10-11° c.d.c)

Hp 1030,4/29 = 35,53 t

Il momento flettente agente sulla testa del palo secondo le formule di Jamolkowsky-Marchetti è:

Bφ k

Considerando reagente la sola armatura metallica costituita da un tubo con diametro esterno 176mm sp 8mm:

Numericamente si ottiene:

J = $\Pi \times (16.3^{4}-14.3^{4}) = 1412 \text{ cm}^{4}$

64

E = 2100000 Kg/cm²

 $k = 10 \text{ Kg/cm}^3$

T = 50,03cm Lp = 1400 cm Z = L/T = 1400/51,56 = 27,00

 $A\phi = 1,623$ $B\phi = 1,749$

In condizioni di esercizio:

Momento di incastro alla testa del palo libera di spostarsi ma non di ruotare :

 $Mmax = 41,35 \times 1,623/1,749 \times 50,03 = 1919 \text{ kNcm}$

20,56 KN/cm²

Foglio 21 di 54

Carico massimo.

Nmax = 386,20 kN

Considerando agente la sola sezione in acciaio risulta:

$$\sigma \max = 386.2 + 1919 \times 8.4 =$$

42.22 1412

2.4 Verifica fondazione

Le condizioni sismiche risultano meno gravose rispetto a quelle di esercizio e per questo se ne omette la verifica

2.4.1 Verifica soletta anteriore in condizioni di esercizio

Si considera la condizione di carico maggiormente gravosa, costituita dalla c.d.c. n. 5.

P = 386,20kN A metro lineare

386,20/0,85 = 454,35 kN x 0.80 = 363,48 kNm

p.p. plinto $-1,20 \times 1.00 \times 25 = -30,0 \text{ kN} \times 0.70 = -21,0 \text{ kNm}$

p.p. terreno $-0.50 \times 1.00 \times 18 = -9.0 \text{ kN} \times 0.50 = -4.5 \text{ kNm}$

T = 415,35 kNt M = 337,98 kNm

Elemento: Mensola anteriore Fondazione

Dati

geometrici:Altezza sezione:H =120 cmLarghezza sezioneB =100 cmSpaziatura orizzontale barre:s =20,00 cmSpaziatura verticale barre:S =0,00 cm

Copertura ferro netta: S = 0,00 cm

Altezza utile: h' = 116,00 cm

Armature:

strato	posizione dello strato	Α	barre
arm.	(cm)	(cm2)	(n ødiam)
1	4	15,71	5 ¢ 20
2	0	0,00	ф
3	116	6,28	2
4	116	15,71	5 φ 20

Sollecitazioni: Sforzo normale: N = 0 daN

Momento flettente: M = 33798 daN m

T = 41535 daN

Verifica a Taglio: $\tau = 3,98 \text{ daN/cm2}$

Foglio 22 di 54

Asse	neutro:	Х
------	---------	---

Verifica a Flessione: = 22,91 cm

 $\sigma c = 23 \text{ daN/cm2}$ $\sigma s = 1413 \text{ daN/cm2}$

Materiale:	Acciaio FeB	44	k	ss amm = sc amm	2600	daN/cm 2 daN/cm
	Calcestruzzo Rbk	300	daN/cm2	=	97,5	2
	Modulo elastico acciaio=	2100000	daN/cm2			
	Resistenza a trazione del cls				F = Et /	
rif.2.1.2	fctm=	26,07	daN/cm2		Ec =	0,50
	Resistenza a trazione del cls					
rif.4.3.1.2	fcfk=	21,90	daN/cm2	x =	48,70	cm
	Coeff.di omogeneizzazione=	15				

Scelta del valore limite di apertura delle fessure:

frequent

rif. 4.3.1.3 Condizione di carico e

rif. 4.3.1.4 Condizioni ambientali mod. aggressive

rif. 4.3.1.5 Armature poco sensibili

rif. 4.3.1.6 Valore nominale di apertura: w 0,2 mm

Il momento è inferiore al valore di prima fessurazione: non è necessario il

calcolo dell'ampiezza delle fessure.

Verifiche: Calcolo della distanza media tra le fessure:

rif. B.6.6.3 Barre ad aderenza migliorata(Y/N)? y

Coeff. che caratterizza l'aderenza: k2 0,4

Coeff. che tiene conto del

diagramma delle tensioni: k3 0,217 100,00 cm Larghezza efficace: beff. Altezza efficace: deff. 19,00 cm Area efficace: Ac.eff. 1900,00 cm2 Area acciaio posta in Ac.eff.: As 21,99 cm2 Percentuale di armatura efficace: 0,0116 ρr Distanza media tra le fessure: Srm 26,98 cm

Calcolo della deformazione unitaria media dell'armatura:

		daN/cm	
Tensione dell'acciaio:	σs	1413,15 2	
Tensione dell'acciaio 1°		daN/cm	
fessurazione:	σ sr	1812,34 2	
Coeff. rappresentativo aderenza:	β1	1	
Carichi di lunga durata(Y/N)?	у		
Coeff. durata carichi:	β2	0,5	
Deformazione unitaria media:	εsm	0.0002692	

rif.4.3.1.7.1.2 Calcolo ampiezza delle fessure: wk 0,123 mm < 0,200 mm

Foglio 23 di 54

2.4.2 Verifica soletta posteriore in condizioni di esercizio

Si considera la condizione di carico maggiormente gravosa, costituita dalla c.d.c. n. 4.

P = -12,50kN A metro lineare

T = 106,14 kNt M = 105,69 kNm

Dati

geometrici: Altezza sezione: H =120 cm Larghezza sezione B =100 cm Spaziatura orizzontale barre: 20,00 cm s = Spaziatura verticale barre: 0,00 cm S = Copertura ferro netta: 4,00 cm c =Altezza utile: h' =116,00 cm

Armature:

posizione dello strato Α strato barre arm. (cm) (cm2) (n \psi diam) 4 5 20 1 15,71 0 2 0,00 3 116 0,00 0 20 4 116 15,71 20

Sollecitazioni: Sforzo normale: N = 0 daN

Momento flettente: M = 10569 daN mT = 10614 daN

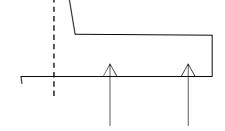
daN/cm

Verifica a Taglio: $\tau = 1,02 2$

Asse neutro: x

Verifica a Flessione: = 19,53 cm

daN/cm


 $\sigma c = 8 2$

daN/cm

 $\sigma s = 613 \ 2$

2.4.3 Verifica soletta in senso trasversale in condizioni di esercizio

Si considera la condizione di carico maggiormente gravosa (massimo valore della sommatoria della reazione delle terne di pali), costituita dalla c.d.c. n. 4.

Foglio 24 di 54

Σ (P9-P20-P29) = (345,76+257,80+120,90) =	724,46 kN	x 1,60 =	1159,14 kNm
$\Sigma(P8-P19-P28) = (338,60+250,65+113,82) =$	703,07 kN	x 0,75 =	527,30 kNm

p.p. plinto $-3,50 \times 1,20 \times 2,1 \times 25 =$ $-220,50 \text{ kN} \times 1.05 =$ -231,53 kNm p.p. terreno $-3,50 \times 0,50 \times 1,80 \times 19 =$ $-59,85 \text{ kN} \times 1.20 =$ -71,82 kNm

T = 1147,18 kN M = 1383,09 kNm

Dati

Altezza sezione: 120 cm geometrici: H =Larghezza sezione B = 350 cm Spaziatura orizzontale barre: s = 20,59 cm Spaziatura verticale barre: S = 0,00 cm Copertura ferro netta: 4,00 cm c =

Altezza utile: h' = 116,00 cm

Armature:

strato	posizione dello strato	Α	barre
arm.	(cm)	(cm2)	(n ødiam)
1	4	34,18	17 ¢ 16
2	0	0,00	ф
3	116	25,13	8 φ 20
4	116	53,41	17 φ 20

Sollecitazioni: Sforzo normale: N = 0 daN

Momento flettente: M = 138309 daN mT = 114718 daN

Verifica a Taglio: $\tau = 3,14 2$

Asse neutro:

Verifica a Flessione: x = 23,73 cm

daN/cm

daN/cm

 $\sigma c = 28 2$

 $\sigma s = \frac{daN/cm}{ds}$

daN/cm Materiale: Acciaio FeB 44 k 2600 2 $\sigma_{s \text{ amm}} =$ daN/cm Calcestruzzo Rbk 300 daN/cm2 97,5 2 $\sigma_{c \text{ amm}} =$ Modulo elastico acciaio= 2100000 daN/cm2 Resistenza a trazione del cls 26,07 daN/cm2 $\Phi = \text{Et / Ec} = 0.50$ fctm= rif.2.1.2 Resistenza a trazione del cls fcfk= 21,90 daN/cm2 **X** = 49,11 cm rif.4.3.1.2

Coeff.di omogeneizzazione= 15

Foglio 25 di 54

Scelta del valore limite di apertura delle

fessure:

rif. 4.3.1.3	Condizione di carico	frequente	
rif. 4.3.1.4	Condizioni ambientali	mod.	aggressive
rif. 4.3.1.5	Armature poco sensibili		
rif. 4.3.1.6	Valore nominale di apertura:	W	0,2 mm

Occorre eseguire il calcolo dell'ampiezza delle fessure.

Verifiche:	Calcolo della	distanza media	a tra le fessure:
------------	---------------	----------------	-------------------

Barre ad aderenza

rif. B.6.6.3 migliorata(Y/N)?

Coeff. che caratterizza

l'aderenza: k2 0,4 Coeff. che tiene conto del diagramma delle tensioni: k3 0,216 Larghezza efficace: beff. 350,00 cm 19,00 cm Altezza efficace: deff. Area efficace: Ac.eff. 6650,00 cm2 Area acciaio posta in Ac.eff.: As 78,54 cm2 Percentuale di armatura efficace: 0,0118 ρr Distanza media tra le fessure: Srm **26,78** cm

Calcolo della deformazione unitaria media dell'armatura:

		(daN/cm
Tensione dell'acciaio:	σs	1625,95	2
Tensione dell'acciaio 1°			daN/cm
fessurazione:	σ sr	1768,63	2
Coeff. rappresentativo aderenza:	β1	1	
Carichi di lunga durata(Y/N)?	У		
Coeff. durata carichi:	β2	0,5	
Deformazione unitaria media:	ε sm	0,0003162	

Calcolo ampiezza delle

rif.4.3.1.7.1.2 **fessure:** wk 0,144 mm < 0,200 mm

2.5 Elevazione Spalla

2.5.1 Analisi dei Carichi

Si analizza un metro lineare di corpo spalla

<u>Permanenti</u>		N	ML
Impalcato	1389,84 /	9,25 = 150,25 kN/m x	0,20 = 30,05 kNm/m
paraghiaia	72,84 /	9,25 = 7,88 kN/m x	-0.35 = -2.76 kNm/m
corpo spalla	994,38 /	9,25 = 107,50 kNm x	0.00 = 0.00 kNm/m
		265 63 kN/m	27 29 kNm/m

Foglio 26 di 54

	Spinta to	erreno	77	72,82	/	9,25	=	83,55	kN/m	X	1,78	=	148,99	kNm/m		
<u>Accide</u>	ntali Acciden	tali da						N					ML	kNm/m		
1 col.	imp.		74	44,50	/	7,50	=	99,27	kN/m	x	0,20	=	19,85			
2 col.	Acciden imp.	tali da	11	16,75	/	7,50	=	148,90	kN/m	x	0,20	=	29,78	kNm/m		
	0-:		0	40 F7	,	7.50		HL	L-NI/		0.00		ML 07.05	kNm/m		
	Spinta s Frenatu			46,57 80,00		7,50 7,50		32,88 24,00			2,68 5.25		87,95 126,00	kNm/m		
				,,,,,	•	.,		,00			0,20		0,00			
<u>Sism</u> <u>a</u>								HL					ML			
_	Impalca	to	(0,048	х	150,25	=		kN/m	Х	4,83	=	34,80	kNm/m		
	paraghia	aia	(0,048	X	7,88	=	0,38	kN/m	Х	4,83	=	1,82	kNm/m		
	corpo sp	oalla	(0,048	X	107,50	=		kN/m	Х	2,15	=		kNm/m		
								12,75	kN/m				47,72	kNm/m		
	Increme	ento di sp	<u>ointa</u>					6,24	kN/m	x	3,57	=	22,26	kNm/m		
2.5.2	Combina	azioni di	Carico	alla ba	ase	del cor	po s	spalla								
C.4.1	АΙ	Permar	nenti +	Spinta	ı ter	reno e	sov	raccaric)							
	N	= 2	265,63	+		+	-		+		+	ŀ		=	265,63	
	M_L	=	27,29	+	8	37,95 +	-	148,9	9 +		4	F		=	264,23	kN m
	H_{L}	=		+	3	32,88 +	+	83,5	5 +		+	ŀ		=	116,42	kN
C.4.2	A III	Permar	nenti +	Spinta	ı ter	reno e	sov	r. + Acci	dentali	i su in	np. 1 (colo	nna + F	renatura		
	N	= 2	265,63	+		+	-		+	99	9,27 +	F		=	364,90	
	M_L	=	27,29	+	8	37,95 +	-	148,9	9 +	19	9,85 +	F	126,00) =	410,09	kN m
	H_{L}	=		+	3	32,88 +	-	83,5	5 +		4	ŀ	24,00	=	140,42	kN
C.4.3	A III	Permar	nenti +	Spinta	ı ter	reno e	sov	r. + Acci	dentali	i su in	np. 2 (colo	nne + F	renatura		
	N		265,63	-		4			+		3,90 +			=	414,53	
	M_L	=	27,29	+	8	37,95 - 1	-	148,9	9 +	29	9,78 +	٠	126,00) =	420,01	kN m
	H_{L}	=		+	3	32,88 +	+	83,5	5 +			۲	24,00	=	140,42	kN
C.4.4	ΑVa	Permar	nenti +	Spinta	ı ter	reno +	Sisı	ma longi	tudinal	le + S	Sisma '	ver	so il bass	SO		
	N	=	1,096	-		65,63 +		-	+			 F		=	291,13	
	M_L	=	1,096	Х	2	27,29 +	-	148,9	9 +	22	2,26 +	F	47,72	: =	248,88	kN m
	HL	=		+		, +		83,5			, 6,24 +		12,75		102,54	

Foglio 27 di 54

C.4.5 A V b Permanenti + Spinta terreno + Sisma longitudina	le + Sisma verso l'alto
---	-------------------------

N	=	0,904 x	265,63 +	+	+	=	240,13 kN kN
M_L	=	0,904 x	27,29 +	148,99 +	22,26 +	47,72 =	243,64 m
H.	=	+	+	83.55 +	6 24 +	12 75 =	102 54 kN

2.5.3 Verifica alla base del corpo spalla

2.5.3.1 In condizioni di esercizio (C.d.C. n. 3):

Duu			
geometrici:	Altezza sezione:	H =	100 cm
	Larghezza sezione	B =	100 cm
	Spaziatura orizzontale barre:	s =	20,00 cm
	Spaziatura verticale barre:	S =	0,00 cm
	Copertura ferro netta:	c =	4,00 cm
	Altezza utile:	h' =	96,00 cm

Armature:

strato	posizione dello strato	Α	barre
arm.	(cm)	(cm2)	(n ødiam)
1	4	10,05	5 ¢ 16
2	0	0,00	ф
3	96	0,00	0 φ 20
4	96	15,71	5 φ 20

Sollecitazioni

:	Sforzo normale:	N =	41453 daN
	Momento flettente:	M =	42001 daN m
		T =	14042 daN

daN/cm

Verifica a Taglio: $\tau = 1,35 2$

Asse Esterno alla sezione

Verifica a Flessione:

neutro: x = resistente cm
daN/cm

Coeff.di omogeneizzazione=

 $\sigma c = 0$ 2 daN/cm

σs = 2051 2

daN/cm Materiale: Acciaio FeB 44 2600 2 $\sigma_{\text{s amm}}$ = daN/cm Calcestruzzo Rbk 300 daN/cm2 97,5 2 $\sigma_{c \; amm} =$ Modulo elastico acciaio= daN/cm2 2100000 Resistenza a trazione del cls $\Phi = \mathsf{Et} /$ rif.2.1.2 fctm= 26,07 daN/cm2 Ec = 0,50 Resistenza a trazione del cls fcfk= 21,90 daN/cm2 40,86 cm rif.4.3.1.2 x =

15

Foglio 28 di 54

Scelta del valore limite di apertura delle

fessure:

Condizione di carico frequente rif. 4.3.1.3

rif. 4.3.1.4 Condizioni ambientali mod. aggressive

Armature poco sensibili rif. 4.3.1.5

Valore nominale di apertura: 0,2 mm rif. 4.3.1.6 W

Occorre eseguire il calcolo dell'ampiezza delle fessure.

Calcolo della distanza media tra le

Verifiche: fessure:

Barre ad aderenza

migliorata(Y/N)? rif. B.6.6.3 У

Coeff. che caratterizza

l'aderenza: k2 0,4

Coeff. che tiene conto del

diagramma delle tensioni: k3 0,210 Larghezza efficace: beff. 100,00 cm

Altezza efficace: 19,00 cm deff. Area efficace: Ac.eff. 1900,00 cm2 Area acciaio posta in Ac.eff.: 15,71 cm2 As

Percentuale di armatura

efficace: ρr 0,0083

Distanza media tra le

fessure: Srm 32,31 cm

Calcolo della deformazione unitaria media dell'armatura:

daN/cm Tensione dell'acciaio: 2050,90 2 σs

Tensione dell'acciaio 1° daN/cm 2085,53 2

 σ sr

fessurazione: Coeff. rappresentativo

1 aderenza: β1

Carichi di lunga durata(Y/N)? У

Coeff. durata carichi: β2 0,5

Deformazione unitaria

media: 0,0001418 εsm

Calcolo ampiezza delle

0,200 mm fessure: wk 0,078 mm < rif.4.3.1.7.1.2

2.5.3.2 In condizioni sismiche:

Dati

geometrici: Altezza sezione: H =100 cm

> Larghezza sezione B =100 cm Spaziatura orizzontale barre: 20,00 cm s = S = Spaziatura verticale barre: 0,00 cm Copertura ferro netta: 4,00 cm C =Altezza utile: 96,00 cm h' =

Foglio 29 di 54

Armature:

strato	posizione dello strato	barre	
arm.	(cm)	(cm2)	(n þdiam)
1	4	10,05	5 φ 16
2	0	0,00	ф
3	96	0,00	0 φ 20
4	96	15,71	5 φ 20

Sollecitazioni

Sforzo normale: N = 24013 daN Momento flettente: M =24364 daN m T =10254 daN

daN/cm Verifica a Taglio: 1,19 2 $\tau =$

> Asse neutro: Esterno alla sezione

Verifica a Flessione: resistente cm x =

daN/cm

0 2 $\sigma c =$ daN/cm

2051 2 $\sigma s =$

Verifica mensola trasversale spalla

2.5.4.1 Analisi dei carichi

<u>Permanente</u>

3,91 kN/m (al rilascio dei trefoli) p.p. trave $0.1562 \times 25 =$

p.p. soletta $9.25 \times 0.25 \times 25 =$ 57,81 kN/m 57,81/15 = 3,85 kN/msu una trave

Permanente portato

 $3,00 \times 7.50 =$ 22,50 kN/m pavimentazione $0.25 \times (0.30 + 0.25) \times 2 \times 2.5 =$ cordoli 6,88 kN/m barriere + parapetto $0.200 \times 2 =$ 4,00 kN/m

33,38 kN/m

Carico su una trave: $P_2 = 33,38 / 15 = 2,23 \text{ kN/m}$

Reazione Permanente +Permanente Portato su una Trave

RP = (3,91+3,85+2,23)x12,50/2= 62,4 kN

Sovraccarico Accidentale

luce di calcolo $L_c = 12.05 \text{ m}$

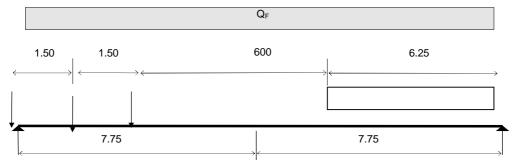
 $\varphi = 1.4 - (L_c - 10) / 150 =$ 1.386 incremento dinamico

Si individuano i carichi sulla trave di bordo secondo la ripartizione di Courbon

Foglio 30 di 54

Coefficienti di Courbon R = 1 / n + e / w

dove n = 15 travi


Si analizzano le prime tre travi di bordo che sollecitano la mensola trasversale della spalla

per Q_1 ($e_1 = 1.75 \text{ m}$) per Q_2 (e₂ = -175 m) per $Q_f (e_3 = 4.00 \text{ m})$ 0.154 $R_1 =$ -0.021 $R_1 =$ 0.266 $R_1 =$ 0.141 -0.008 $R_{2} =$ 0.238 0.129 $R_3 =$ 0.0042 $R_3 =$ 0.210 $R_3 =$

Carichi sulle travi n.1-2-3:

kN Q_{1a} = asse da 200kN $= 200 \times 0.154 \times 1.386 =$ 42,6 Q_{2a} = asse da 200kN $= 200 \times 0.141 \times 1.386 =$ 39,0 kΝ Q_{2a} = asse da 200kN $= 200 \times 0.129 \times 1.386 =$ 35,6 kΝ $q_{1a} = distr. 30 \text{ kN/m}$ kN/m $= 30 \times 0.154 \times 1.386$ 6.4 $q_{2a} = distr. 30 \text{ kN/m}$ $= 30 \times 0.141 \times 1.386$ 5,9 kN/m $q_{3a} = distr. 30 \text{ kN/m}$ $= 30 \times 0.129 \times 1.386$ 5,4 kN/m $Q_{f1} = folla 0,400 t/m$ $= 0,400 \times 0.266 \times 1.386$ 1,47 kN/m $Q_{f2} = folla 0,400 t/m$ kN/m $= 0,400 \times 0.238 \times 1.386$ 1,32 kN/m $Q_{f3} = \text{folla } 0,400 \text{ t/m}$ $= 0,400 \times 0.210 \times 1.386$ 1,16

2.5.4.2 Stesa di carico

Reazioni Travi sulla Spalla:

R1A = 1/12,05 (3x 42,6 x 10.70 + 6,4 x3,20²/2) + 1,47 x 12,05/2 = **125,06 kN** R2A = 1/12,05 (3x 39,0 x 10.70 + 5,9 x3,20²/2) + 1,32 x 12,05/2 = **114,35 kN** R3A = 1/12,05 (3x 35,6 x 10.70 + 5,4 x3,20²/2) + 1,16 x 12,05/2 = **104,12 kN**

2.5.4.3 Verifica a Flessione e Taglio in condizioni di esercizio

Sollecitazioni

Sez.A	Perm 1,25 x 1,00 x 0	,40 x 25 = 12,5 kN	Х	1,25/2	=	7,81 kNm
	1,25 x 1,00 x 0,40/2 x 2	= 6,25 kN	Х	1,25/3	=	2,60 kNm
	0,20 x 1,00 x 0,50 x 25	= 2,5 kN	Х	1,153	=	2,88 kNm
	RTperm	= 62,40 KN	Х	0,25	=	15,60 kNm
	T pA	= 83,65 kN		MpA		28,89 kNm

Foglio 31 di 54

	RT acc	.	= 125,06			=	31,27 knm
		TA p+a	= 208,71 kN		Map+a	a =	60,16 kNm
<u>Sez.B</u>	Perm T pA	0,80 x 1,00 x 0,50 x 25	5 = 10,0 kN = 83,65 kN	x x	0,25 0,50	= =	2,5 kNm 41,83 kNm
		RTperm T pA	= <u>62,40 KN</u> = 156,05 kN	x	MpA / MpA	=	28,89 kNm / kNm 73,22 kNm
	RT acc	.	= 114,35	x	0,50	=	57,17 kNm
			= <u>125,06</u>				31,27 knm
	TA p+a	а	= 395,46 kN		Map+a	a =	161,67 kNm
<u>Sez.C</u>	Perm T pA	0,80 x 1,00 x 0,75 x 25	5 = 15,0 kN = 156,05 kN	x x	0,375 0,75	= =	5,625 kNm 117,04 kNm
					МрА		73,22 kNm
	RTperi	m T pA	= <u>62,40 KN</u> = 233,45 kN	X	/ MpA	=	<u>/ kNm</u> 195,89 kNm
	RT acc	.	= 239,41	_x	0,75	=	179,55 kNm
			= <u>104,12</u>	x	0,25	=	26,03 kNm
		TA p+a	= 576,98 kN		Map+a	a =	88,44 knm 4 89,91 kNm

Verifica a Flessione e Fessurazione Sez B B

Dati

geometrici:	Altezza sezione:	H =	80 cm
	Larghezza sezione	B =	100 cm
	Spaziatura orizzontale barre:	s =	20,00 cm
	Spaziatura verticale barre:	S =	0,00 cm
	Copertura ferro netta:	c =	4,00 cm
	Altezza utile:	h' =	76,00 cm

Armature:

strato	posizione dello strato	Α	barre
arm.	(cm)	(cm2)	(n ødiam)
1	4	10,05	5 φ 16
2	0	0,00	ф
3	76	0,00	ф 20
4	76	15,71	5 5 20

Foglio 32 di 54

Sollecitazioni: Sforzo normale: N =0 daN

Momento flettente: M = 16167 daN m T= 39546 daN

daN/cm

Verifica a Taglio: 5,78 2 $\tau =$

Asse neutro:

Verifica a Flessione: 15,76 cm x =

daN/cm

25 2 $\sigma c =$ daN/cm

1454 2 $\sigma s =$

daN/cm Materiale: Acciaio FeB 44 k 2600 $\sigma_{s \text{ amm}} =$ 2 daN/cm Calcestruzzo Rbk 300 daN/cm2 97.5 $\sigma_{c \text{ amm}} =$ Modulo elastico acciaio= 2100000 daN/cm2 Resistenza a trazione del cls $\Phi = \text{Et / Ec} =$ fctm= 26,07 daN/cm2 0,50 rif.2.1.2 Resistenza a trazione del cls fcfk= 21,90 daN/cm2 32,58 cm rif.4.3.1.2 X =Coeff.di omogeneizzazione= 15

Scelta del valore limite di apertura delle

f	
tessu	ro

rif. 4.3.1.3	Condizione di carico	frequente	
rif. 4.3.1.4	Condizioni ambientali	mod.	aggressive
rif. 4.3.1.5	Armature poco sensibili		
rif. 4.3.1.6	Valore nominale di apertura:	W	0,2 mm

Occorre eseguire il calcolo dell'ampiezza delle fessure.

Verifiche: Calcolo della distanza media tra le fessure:

Barre ad aderenza

rif. B.6.6.3 migliorata(Y/N)? У

Coeff. che caratterizza l'aderenza: k2 0,4

Coeff. che tiene conto del

diagramma delle tensioni: k3 0,200 Larghezza efficace: beff. 100,00 cm Altezza efficace: deff. 19,00 cm Area efficace: Ac.eff. 1900,00 cm2 Area acciaio posta in Ac.eff.: As 15,71 cm2 Percentuale di armatura efficace: ρr 0,0083 Distanza media tra le fessure: Srm **31,35** cm

Calcolo della deformazione unitaria media dell'armatura:

daN/cm Tensione dell'acciaio: 1453,52 2 σs Tensione dell'acciaio 1° 1728,42 daN/cm σsr

Foglio 33 di 54

fessurazione: 2

Coeff. rappresentativo aderenza: β1 1

Carichi di lunga durata(Y/N)?

Coeff. durata carichi: $\beta 2$ 0,5 Deformazione unitaria media: ϵsm 0,0002769

Calcolo ampiezza delle

rif.4.3.1.7.1.2 **fessure:** wk 0,148 mm < 0,200 mm

Verifica a Flessione e Fessurazione SEZ. C-C

Elemento: Mensola Elevazione

Dati

geometrici: Altezza sezione: H = 80 cm

Larghezza sezione $B = 100 \, \text{ cm}$ Spaziatura orizzontale barre: $s = 10,00 \, \text{ cm}$ Spaziatura verticale barre: $S = 0,00 \, \text{ cm}$ Copertura ferro netta: $c = 4,00 \, \text{ cm}$ Altezza utile: $h' = 76,00 \, \text{ cm}$

Armature:

strato	posizione dello strato	barre	
arm.	(cm)	(cm2)	(n þdiam)
1	4	10,05	5 ¢ 16
2	0	0,00	ф
3	76	15,71	5 φ 20
4	76	31,42	10 φ 20

Sollecitazioni: Sforzo normale: N = 0 daN

Momento flettente: M = 48991 daN mT = 57698 daN

daN/cm Verifica a Taglio: $\tau = 8,44$ 2

Asse neutro:

Verifica a Flessione: x = 25,48 cm

daN/cm

 $\sigma c = 52 2$

daN/cm

 $\sigma s = 1534 \ 2$

Materiale:	Acciaio FeB	44	k	$\sigma_{s \text{ amm}} =$	2600	daN/cm 2 daN/cm
	Calcestruzzo Rbk	300	daN/cm2	$\sigma_{c \text{ amm}} =$	97,5	2
	Modulo elastico acciaio=	2100000	daN/cm2			
	Resistenza a trazione del cls				$\Phi = Et /$	
rif.2.1.2	fctm=	26,07	daN/cm2		Ec =	0,50
	Resistenza a trazione del cls					
rif.4.3.1.2	fcfk=	21,90	daN/cm2	x =	34,26	cm
	Coeff.di omogeneizzazione=	15				

Foglio 34 di 54

Scelta del valore limite di apertura delle

_	
fessure.	
i cooui c	

Condizione di carico frequente rif. 4.3.1.3

rif. 4.3.1.4 Condizioni ambientali mod. aggressive

Armature poco sensibili rif. 4.3.1.5

Valore nominale di apertura: 0,2 mm rif. 4.3.1.6 W

Occorre eseguire il calcolo dell'ampiezza delle fessure.

Calcolo della distanza media tra le fessure: Verifiche:

Barre ad aderenza

migliorata(Y/N)? rif. B.6.6.3 У

Coeff. che caratterizza

l'aderenza: k2 0,4

Coeff. che tiene conto del

diagramma delle tensioni: k3 0,198 Larghezza efficace: beff. 100,00 cm

Altezza efficace: deff. 19,00 cm Area efficace: Ac.eff. 1900,00 cm2 47,12 cm2 Area acciaio posta in Ac.eff.: As

Percentuale di armatura efficace: ρr 0,0248 Distanza media tra le fessure: **16,39** cm Srm

Calcolo della deformazione unitaria media dell'armatura:

daN/cm Tensione dell'acciaio: 1534,34 2 σs

Tensione dell'acciaio 1° daN/cm

fessurazione: 768,35 2 σsr 1

Coeff. rappresentativo aderenza: β1 Carichi di lunga durata(Y/N)? У

Coeff. durata carichi: β2 0,5

Deformazione unitaria media: 0,000639 ϵ sm

Calcolo ampiezza delle

fessure: 0,200 mm wk 0,178 mm rif.4.3.1.7.1.2

Verifica a Taglio

Sez.A Tb = 208,71 kN

= 20871 $= 3,05 \text{ daN/cm}^2$ A taglio: τ

0,9 x 100 x 76

Sez.B Tb = 395,46 kN

A taglio: τ = 34546 $= 5.8 \text{ daN/cm}^2$

0,9 x 100 x 76

Sez.C Tb = 576,98 kN

A taglio: τ = 8,43 Kg/cm² = <u>57698</u>

Foglio 35 di 54

0,9 x 100 x 76

$$\theta$$
 b-c = $\frac{5.8 + 8.4}{2}$ x 75 x 100 = 53250 daN

Staffe Φ 14/10 an.4 braccia

$$\theta$$
 st = 7 x 4 x1,54 x 2200

= 94864 daN

 θ st > θ b-c

2.5.4.4 Verifica a Flessione e Taglio in condizioni sismiche

Permanente Incrementato sullo Sbalzo del 40%

Sez.A	TA =	83,65	•	117,11	kN
		МрА	28,89 x 1,40	=	40,45 kNm
Sez.B		ТВ		=	218,47kN
		MB	73,22 x 1,40	=	102,50kNm
Sez.C		TC	233,45 x 1,40		326,83 kN
		MC	195,89 x 1,40	=	274,25 kNm

Si omettono le verifiche a taglio e flessione in quanto le sollecitazioni sono sempre inferiori a quelle di esercizio.

Foglio 36 di 54

3 SPALLA B

3.1 Analisi dei carichi

3.1.1 Permanenti

Impalcato

										dist.bar			
	p.u.	largh.	lungh	spessore	γ–p.p.		carico			. Y		moment	i
aalatta		0.25	1.00	0.25	25		E7 010	lcN1/m	.,	0.00		0.00	lcNlm /m
soletta		9,25	1,00	0,25	25	=	57,813		Х	0,00	=	0,00	kNm/m
cordoli	1	1,20	1,00	0,25	25	=	7,500	kN/m	Χ	4,03	=	30,23	kNm/m
cordoli	1	0,55	1,00	0,25	25	=	3,438	kN/m	Х	-4,38	=	-15,06	kNm/m
cordoli	0	0,00	1,00	0,25	25	=	0,000	kN/m	Х	0,00	=	0,00	kNm/m
pavimentazione			1,00	7,50	3	=	22,500	kN/m	Х	-0,32	=	-7,20	kNm/m
parapetti	1				1,5	=	1,500	kN/m	Х	4,53	=	6,80	kNm/m
guardiavia+barriera	a												
fonoass.		1			4	=	4,000	kN/m	Х	-4,53	=	-18,12	kNm/m
trave	15	1,00	1,00	0,159	25,00	=	59,625	kN/m	Х	0,00	=	0,00	kNm/m
						_	156,375	kN/m			-	-3,36	kNm/m
traversi		1,00	1,50	5,50	25,00	=	206,250	kN					
Carico sulla spalla		•	-	•	ŕ		ŕ						

Carico sulla spalla

N= 1389,84 kN

 $M_{T} = -20,98 \text{ kNm}$

a = 0,30 (distanza tra l'asse appoggi e la parete anteriore del corpo spalla)

d = 1,00 (larghezza zoccolo anteriore fondazione)

Spalla

Эрапа		dist.bar											
	p.u.	largh.	altezza	lungh	γ–p.p.		carico			. Y		momenti	
paraghiaia		9,25	1,05	0,30	25	=	72,844	kN	Х	-0,550	=	-40,06 k	Nm
corpo spalla		9,25	3,00	1,00	25	=	693,750	kN	Х	-0,200	=	-138,75 k	.Nm
muri d'ala post	2	1,50	4,05	0,30	25	=	91,125	kN	Х	-1,450	=	-132,13 k	.Nm
muri d'ala ant.	0	1,05	1,05	0,30	25		0,000	kN	Х	0,925	=	0,00 k	.Nm
fondazione		10,00	1,20	3,50	25	=	1050,000	kN	Х	-0,450	=	-472,50 k	.Nm
												-	
terreno posteriore		8,65	4,05	1,50	18	=	945,878	kN	Х	-1,450	=	1371,52 k	.Nm
terreno anteriore		10,00	0,50	1,00	18	=	90,000	kN	Х	0,800	=	72,00 k	:Nm
						_						-	
							2943,596	kN				2082,97 k	:Nm

Totale permanenti alla base della fondazione

N = 1389,84 + 2943,60 = 4333,440 kN

Momento longitudinale all'asse appoggi

 $M_L = -20.98 + 2082.97 = 2103.944 \text{ kNm}$

3.1.2 Spinta del terreno e del sovraccarico

Dati terreno

19 kN/m³ peso terreno γ 0 kN/m^2 coesione terreno C = 32 ° angolo di attrito coefficiente di spinta attiva 0,307 numero impalcati su spalla 1 = larghezza impalcato 9,25 m Limp larghezza carreggiata 7,50 m larghezza spalla 9,25 m altezza spalla + paraghiaia 4,05 m

20,00 kN/m² sovraccarico su rilevato

moment spinta terreno 442,87 kN 2,55 1129,33 kN H_{l} $= M_1 =$ accidentali 186,66 kN $= M_L$ 601,98 kN 3,23 629,53 kN H_{L} **1731,30** kN

3.1.3 Accidentale sul rilevato

carico accidentale 20 kN/m² da normativa q

numero impalcati su spalla 2

larghezza

carreggiata 7,50 m

spessore paraghiaia 0,30 m larghezza soletta post 1,50 m lunghezza carico distribuito 1,80 m distanza carico da asse appoggio 1,300 m

> 540,00 kN 702,00 kNm

3.1.4 Accidentale sull'impalcato

La reazione per una stesa di carico si ottiene dividendo per il coefficiente di ripartizione; per una colonna di carico (condizione n. 3)

L = 12.50 m

 $\varphi = 1.4 - (L - 10)/150 = 1.387$

744,50 kN R = 1.387 / 12.05 x (600 x 10.70 + 3.0 x 3.200 / 2) =

eccentricit

e1 2,325 m à

Foglio 38 di 54

eccentricit -1,175 m e2 à

una stesa di carico

eccentricità

Ν 744,50 kN Mt 1730,96 kNm

 M_{L} 0,00 kNm (alla base della fondazione)

due stese di carico

Ν 1116,75 kN Mt 1293,57 kNm

 M_L 0,00 kNm (alla base della fondazione)

3.1.5 Frenatura

descrizione

trave in semplice appoggio con appoggi in neoprene

numero impalcati su spalla 1,0 altezza impalcato 0,85 m 0,10 m altezza appoggio altezza spalla 3,00 m altezza fondazione 1,20 m

200 kN carico concentrato da normativa carico distribuito 30,00 kN/m da normativa coefficiente per colonna 1 1 da normativa coefficiente per colonna 2 0,50 da normativa

lunghezza carico distribuito 3,20 m 1 numero di apparecchi di appoggio

Si considera la condizione più gravosa tra le seguenti:

totale del

20% 180,00 kN carico Qa H_{L1} colonna di carico più

10% 69,60 kN pesante H_{12}

a) alla base della fondazione

un impalcato

5,15 = **927,00** kNm carico H_{L} 180,00 kN x due impalcati kNm

carichi H_{L} 180,00 kN x 5,15 = 927,00

b) alla base della elevazione

 H_{L} 180,00 kN x 3,95 = **711,00** kNm

3.1.6 Incremento dovuto a Pendenza longitudinale

altezza appoggio	0,20	m
altezza corpo spalla	3,00	m
altezza fondazione	1,20	m
		m

Foglio 39 di 54

Tgα=	0,05989				αα	0,0598 3,43		ad rad		
sir	ηαςοςα =	(0,0597		u	5,45	9	iau		
Permanenti	10.000		,,000.							
a) impalcato										
b=	4,40 m									
N=	1389,84 kN									
$H_L=$	N x $sin\alpha cos\alpha =$		82,94	kN						
M_L =	$H_1 \times b=$	3	364,94	kN						
b) accidentali	-		,							
base fondazio										
b=	4,88 m									
una carreggia	ata carica									
N=	744,50 t									
H _L =	N x $sin\alpha cos\alpha =$		44,43	kN						
$M_L=$	$H_L \times b=$	2	216,59	kN						
due carreggia	ata carica									
N=	1116,75 t									
$H_L=$	N x $sin\alpha cos\alpha =$		66,64	kN						
$M_L=$	$H_L \times b=$	3	324,89	kN						
base elevazio	one									
b=	3,68 m									
una carreggia										
N=	744,50 t									
H _L =	N x $\sin\alpha\cos\alpha=$		44,43	kN						
$M_L=$	$H_L \times b=$	1	163,28	kN						
due carreggia										
N=	1116,75 t									
H _L =	N x $sin\alpha cos\alpha =$		66,64	kN						
$M_L=$	$H_L x b=$	2	244,91	kN						
3.1.7 Vento	trasversale									
altezza proiez	zione vert impalcato		0,85	m						
altezza accid	entale		3,00	m	da	normativ	∕a			
scalino intern	o marciapiede-									
nero			0,15		[va	a detrai	rsi d	all'altezza (dell'accidenta	ale]
altezza appo	ggio		0,10	m						
altezza spalla	ì		3,00	m						
altezza fonda	zione		1,20	m						
carico distribu	uito vento	q :	2,500	kN/mq	da	normativ	∕a			
lunghezza im	palcato		12,50	m						
Alla base dell	•		,							
a) impalcat		= 1	3,281	kN	х	4,725	_	62,754	kNm	
b) accident			4,531		X	•		292,793		
b) accident					۸					
	Н _Т :	= 5	7,813	KIN		M _T	=	355,547	KINM	
Alla base dell										
a) impalcat	0 =	= 1	3,281	kN	Х	3,525	=	46,816	kNm	

Foglio 40 di 54

b) accidentale

$$x = 5,375 = 239,355 \text{ kNm}$$

$$H_T = 57,813 \text{ kN}$$

$$M_T = 286,172 \text{ kNm}$$

3.1.8 Forza centrifuga

Il tratto di impalcato in corrispondenza della Spalla B risulta in Rettifilo. Risulta nulla dunque l'azione della forza centrifuga.

3.1.9 Sisma

permanenti impalcato $N = 1389,84 \, kN$ permanenti spalla $N = 2943,60 \, kN$ $M_L = -2103,94 \, tm$

SISMA VERTICALE

S = 6

c = 0.04

m = 2

 \mathbf{C}_{S}

I = 1

 $\beta = 1.2$

incremento percentuale carichi permanenti

 $\Delta N = 0,096$

 ΔN_{el} ± 416,01 kN ΔM_{el} ± -201,98 kNm

SISMA ORIZZONTALE

0,048 coefficiente sismico orizzontale

sisma sull'impalcato

altezza impalcato 0,85 m
altezza appoggio 0,10 m
altezza spalla 3,00 m
altezza fondazione 1,20 m
Numero impalcati 1

 $H_L = H_T = 33,36 \text{ kN}$ 4,73 = 157,61 tm

sisma sulla spalla

paraghiaia 0,048 72,84 3,50 kN x 4,73 =16,52 kNm Χ corpo spalla 0,048 693,75 33,30 kN x 2.70 =89,91 kNm Х 0,048 muri d'ala post Х 91,13 4,37 kN Х 3,23 =14,11 kNm fondazione 0,048 1050,00 50,40 kN x 0,60 =30,24 kNm Х 45,40 kN x 3,23 = 146,42 kNmterreno posteriore 0,048 Х 945,88 terreno anteriore 0,048 x90,00 4,32 kN 6,26 kNm 1,45 = Х H_{l} 141,29 kN x $M_{L} = 303,46 \text{ kNm}$

Totale sisma

 $H_L = H_T = 174,65 \text{ kN}$

 $M_L = M_T = 461,07 \text{ kNm}$

3.1.10 Incremento di spinta in condizioni sismiche

 λ_a = 0,3073 Θ = 2,29177 $^{\circ}$

 $\lambda_{as} = 0.3305 \cos \Theta = 0.9992$

spinta terreno 442,87 kN altezza spalla 3,00 m altezza paraghiaia 1,05 m

Foglio 41 di 54

altezza fondazione 1,20 m

 $\Delta F = 33,08 \text{ kN}$

 $\Delta M = 33,08 \text{ kN } \text{x}$ 3,90 = 129,02 kNm

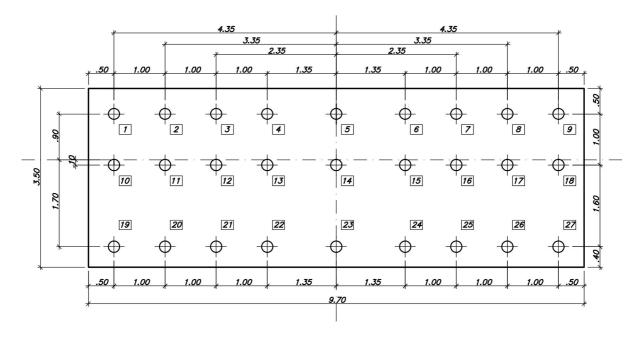
3.2 Combinazioni di carico

3.2.1 Combinazioni alla base della Fondazione

ΑI	Peri	manenti + V	ento	+ Acc. su r	ilev	ato + Attrito							
N	=	4333,44	+	540,00	+		+		+		=	4873,44	kN
M_L	=	-2103,94	+	702,00	+	1731,30	+		+		=	329,36	kNm
H_{L}	=		+		+	629,53	+		+		=	629,53	kN
M_{T}	=	355,55	+		+		+		+		=	355,55	kNm
H_T	=	57,81	+		+		+		+		=	57,81	kN
Alla	Peri	manenti + A	ccid	lentali 1 colo	nna	ı. + 0,6 x Ve	ento	+ Attrito					
N	=	4333,44	+	540,00	+		+	744,50	+		=	5617,94	kN
M_L	=	-2103,94	+	702,00	+	1731,30	+	0,00	+		=	329,36	kNm
H_L	=		+		+	629,53	+		+		=	629,53	kN
M_{T}	=	0,6	Χ	355,55	+		+	1730,96	+		=	1944,29	kNm
H_T	=	0,6	Х	57,81	+		+		+		=	34,69	kN
A II b Permanenti + Accidentali 2 colonne + 0,6 x Vento + Attrito													
N	=	4333,44	+	540,00	+		+	1116,75	+		=	5990,19	kN
M_L	=	-2103,94	+	702,00	+	1731,30	+	0,00	+		=	329,36	kNm
H_{L}	=		+		+	629,53	+		+		=	629,53	kN
M_{T}	=	0,6	Х	355,55	+		+	1293,57	+		=	1506,90	kNm
H_T	=	0,6	Х	57,81	+		+		+		=	34,69	kN
A III a	Peri	manenti + A	ccid	lentali 1 colo	nna	+ Frenatur	a +	0,2 x Vent	0 +	Attrito			
N	=	4333,44	+	540,00	+		+	744,50	+		=	5617,94	kN
M_L	=	-2103,94	+	702,00	+	1731,30	+	0,00	+	927,00	=	1256,36	kNm
H_{L}	=		+		+	629,53	+		+	180,00	=	809,53	kN
M_{T}	=	0,2	Х	355,55	+		+	1730,96	+		=	1802,07	kNm
H_T	=	0,2	Х	57,81	+		+		+		=	11,56	kN
A III b	Peri	manenti + A	ccid	lentali 2 colo	nne	+ Frenatur	a +	0,2 x Vent	0 +	Attrito			
N	=	4333,44	+	540,00	+		+	1116,75	+		=	5990,19	kN
M_L	=	-2103,94	+	702,00	+	1731,30	+	0,00	+	927,00	=	1256,36	kNm
H_{L}	=		+		+	629,53	+		+	180,00	=	809,53	kN
M_T	=	0,2	Х	355,55	+		+	1293,57	+		=	1364,68	kNm
H_T	=	0,2	Х	57,81	+		+		+		=	11,56	kN

Foglio 42 di 54

A IV a	Perr	manenti + A	cci	dentali 1 colo	nna	a + Forza ce	ntri	ifuga + 0,2	x \	/ento + Attri	ito		
N	=	4333,44	+	540,00	+		+	744,50	+		=	5617,94	kN
M_L	=	-2103,94	+	702,00	+	1731,30	+	0,00	+		=	329,36	kNm
H_{L}	=		+		+	629,53	+		+		=	629,53	kN
M_{T}	=	0,2	х	355,55	+		+	1730,96	+	0,00	=	1802,07	kNm
H_{T}	=	0,2	X	57,81	+		+		+	0,00	=	11,56	kN
A IV b	Perr	manenti + A	cci	dentali 2 colo	nne	e. + Forza c	enti	rifuga + 0,2	2 x '	Vento + Attı	rito		
N	=	4333,44		540,00			+	1116,75			=	5990,19	kN
M_L	=	-2103,94	+	702,00	+	1731,30	+	0,00	+		=	329,36	kNm
HL	=		+		+	629,53			+		=	629,53	
M_{T}	=	0,2	х	355,55	+		+	1293,57	+	0,00	=	1364,68	kNm
H _T	=	0,2	X	57,81	+		+		+	0,00	=	11,56	kN
AVa	Perr	manenti + S	Sism	na trasversale	+	Sisma verso	il l	basso					
N	=	1,096	х	4333,44	+		+		+		=	4749,45	kN
M_L	=	1,096	х	-2103,94	+	1129,33	+	129,02	+		=	-1047,57	kNm
H_{L}	=		+		+	442,87	+	33,08	+		=	475,96	kN
M_{T}	=		+	461,07	+		+		+		=	461,07	kNm
H _T	=		+	174,65	+		+		+		=	174,65	kN
AVb	A V b Permanenti + Sisma trasversale + Sisma verso l'alto												
Ν	=	0,904	х	4333,44	+		+		+		=	3917,43	kN
M_L	=	0,904	х	-2103,94	+	1129,33	+	129,02	+		=	-643,62	kNm
H_L	=		+		+	442,87	+	33,08	+		=	475,96	kN
M_{T}	=		+	461,07	+		+		+		=	461,07	kNm
H _T	=		+	174,65	+		+		+		=	174,65	kN
AVc	Perr	manenti + S	Sism	na longitudina	ale ·	+ Sisma ver	so i	il basso					
N	=	1,096	х	4333,44	+		+		+		=	4749,45	kN
M_L	=	1,096	х	-2103,94	+	1129,33	+	129,02	+	461,07	=	-586,50	kNm
H_L	=		+		+	442,87	+	33,08	+	174,65	=	650,60	kN
M_{T}	=		+		+		+		+		=	0,00	kNm
H _T	=		+		+		+		+		=	0,00	kN
AVd	Perr	manenti + S	Sism	na longitudina	ale ·	+ Sisma ver	so l	l'alto					
N	=	0,904	Χ	4333,44	+		+		+		=	3917,43	kN
M_L	=	0,904	Х	-2103,94	+	1129,33	+	129,02	+	461,07	=	-182,54	kNm
H_L	=		+		+	442,87	+	33,08	+	174,65	=	650,60	kN
M_{T}	=		+		+		+		+		=	0.00	kNm
												,	



Foglio 43 di 54

3.3 Verifica palificata

3.3.1 Schema di calcolo

3.3.2 Dati Geometrici

n. palo	Χ	Υ	 n. palo	Χ	Υ
1	-4,350	0,900	15	1,350	-0,100
2	-3,350	0,900	16	2,350	-0,100
3	-2,350	0,900	17	3,350	-0,100
4	-1,350	0,900	18	4,350	-0,100
5	0,000	0,900	19	-4,350	-1,700
6	1,350	0,900	20	-3,350	-1,700
7	2,350	0,900	21	-2,350	-1,700
8	3,350	0,900	22	-1,350	-1,700
9	4,350	0,900	23	0,000	-1,700
10	-4,350	-0,100	24	1,350	-1,700
11	-3,350	-0,100	25	2,350	-1,700
12	-2,350	-0,100	26	3,350	-1,700
13	-1,350	-0,100	27	4,350	-1,700
14	0,000	-0,100			

Baricentro

Foglio 44 di 54

Xg Yg 0,00 -0,30

Momento di inerzia

Jx Jy 7,06

3.3.3 Azioni sui micropali

Combinazione

AZIONE NORMALE SUL PALO

	C.2.1	C.2.2	C.2.3	C.2.4	C.2.5	C.2.6
n. palo	N	N	N	N	N	N
1	299,72	313,89	344,79	352,57	383,47	316,64
2	301,30	322,53	351,49	360,58	389,54	324,65
3	302,88	331,18	358,19	368,59	395,60	332,66
4	304,47	339,82	364,89	376,60	401,67	340,67
5	306,60	351,49	373,93	387,42	409,86	351,49
6	308,73	363,16	382,98	398,23	418,05	362,30
7	310,31	371,80	389,67	406,24	424,12	370,31
8	311,89	380,44	396,37	414,26	430,19	378,33
9	313,48	389,09	403,07	422,27	436,25	386,34
10	194,64	194,37	218,06	203,11	226,80	197,13
11	196,22	203,02	224,76	211,12	232,87	205,14
12	197,80	211,66	231,46	219,14	238,94	213,15
13	199,38	220,31	238,16	227,15	245,00	221,16
14	201,51	231,97	247,20	237,96	253,19	231,97
15	203,65	243,64	256,25	248,78	261,38	242,79
16	205,23	252,29	262,95	256,79	267,45	250,80
17	206,81	260,93	269,65	264,80	273,52	258,81
18	208,39	269,57	276,35	272,81	279,58	266,82
19	26,50	3,15	15,30	-36,01	-23,87	5,90
20	28,08	11,80	22,00	-28,00	-17,80	13,92
21	29,66	20,44	28,70	-19,99	-11,73	21,93
22	31,25	29,08	35,40	-11,98	-5,67	29,94
23	33,38	40,75	44,44	-1,16	2,52	40,75
24	35,51	52,42	53,48	9,65	10,71	51,57
25	37,09	61,07	60,18	17,66	16,78	59,58
26	38,67	69,71	66,88	25,67	22,85	67,59
27	40,25	78,35	73,58	33,68	28,91	75,60
MAX	313,48	389,09	403,07	422,27	436,25	386,34
MIN	26,50	3,15	15,30	-36,01	-23,87	5,90

	C.2.7	C.2.8	C.2.9	C.2.10	C.2.11
n. palo	N	N	N	N	N
1	347,54	236,84	202,33	263,63	229,12
2	353,61	238,89	204,38	263,63	229,12
3	359,67	240,94	206,43	263,63	229,12
4	365,74	242,99	208,48	263,63	229,12
5	373,93	245,75	211,25	263,63	229,12

Foglio 45 di 54

		ā.	_	<u>-</u>	_
6	382,12	248,52	214,01	263,63	229,12
7	388,19	250,57	216,06	263,63	229,12
8	394,26	252,62	218,11	263,63	229,12
9	400,32	254,67	220,16	263,63	229,12
10	220,81	178,63	147,20	190,53	159,09
11	226,88	180,68	149,25	190,53	159,09
12	232,95	182,73	151,30	190,53	159,09
13	239,01	184,78	153,35	190,53	159,09
14	247,20	187,55	156,12	190,53	159,09
15	255,39	190,31	158,88	190,53	159,09
16	261,46	192,36	160,93	190,53	159,09
17	267,53	194,41	162,98	190,53	159,09
18	273,60	196,46	165,03	190,53	159,09
19	18,05	85,50	58,99	73,57	47,06
20	24,12	87,55	61,04	73,57	47,06
21	30,18	89,60	63,09	73,57	47,06
22	36,25	91,65	65,14	73,57	47,06
23	44,44	94,42	67,91	73,57	47,06
24	52,63	97,18	70,67	73,57	47,06
25	58,70	99,23	72,72	73,57	47,06
26	64,76	101,28	74,77	73,57	47,06
27	70,83	103,33	76,82	73,57	47,06
MAX	400,32	254,67	220,16	263,63	229,12
MIN	18,05	85,50	58,99	73,57	47,06

3.3.4 Verifica micropali

3.3.4.1 Verifica capacità portante

DATI PALO

lunghezza 14,00 m

di cui m iniziali 0,00 m (che trascuro) area sezione palo 0,038 mq diametro 220 mm area bulbo 0,096 mq diametro bulbo = 0,35 m

CARICO SUL PALO 426,25 kN sup lat utile Al = 9,68 mq

DATI TERRENO

 $\begin{array}{cccc} \text{coesione} & 0 & \text{t/mq} \\ \text{p. specifico} & 23 & \text{KN/m}^3 \end{array}$

 δ = 19 ° angolo di attrito terra muro

angolo attrito

 $\Phi = 32$ °

Nc = 40,0Nq = 25,0

PORTATA LIMITE ALLA PUNTA

 $q = \Sigma \gamma i Hi = \gamma (H-I) = 322 kN$

Qp = A (c Nc + q Nq) = 775 kN

Hp

Foglio 46 di 54

PER ATTRITO LATERALE

$$σh = γ H/2 =$$
 161 kN tan δ = 0.344

QI = $(c + \Sigma \sigma h \times tg \delta) AI = 536$ kN

PESO PALO decurto il terreno Pp = 12,8 kN

Coefficiente di Sicurezza alla portanza dei Pali:

$$v = 775+536-12,8 = 1298,20 / 436,25 = 2,98 > 2,5$$

3.3.4.2 Verifica del palo alle azioni taglianti

Si considera il palo totalmente immerso nel terreno con la testa libera di spostarsi ma non di ruotare, soggetto ad un'azione orizzontale H.

La massima forza orizzontale agente alla testa dei pali risulta:

in condizioni di esercizio: H t max = 809,61 kN (4° c.d.c)

Hp = 809,61/27 = 29,99 kN

in condizioni sismiche : H t max = 650,604 (10-11° c.d.c)

Hp 650,604/27 = 24,09 t

Il momento flettente agente sulla testa del palo secondo le formule di Jamolkowsky-Marchetti è:

$$M = Hp x A\phi x T$$
 dove $T = [(E x J)]^1/5$

B\$ k

Considerando reagente la sola armatura metallica costituita da un tubo con diametro esterno 176mm sp 8mm:

Numericamente si ottiene:

J =
$$\Pi \times (16,3^{4}-14,3^{4}) = 1412 \text{ cm}^{4}$$

64

E = 2100000 Kg/cm²

 $k = 10 \text{ Kg/cm}^3$

$$T = 50,03$$
cm $Lp = 1400$ cm $Z = L/T = 1400/51,56 = 27,00$

$$A\phi = 1,623$$
 $B\phi = 1,749$

In condizioni di esercizio:

Momento di incastro alla testa del palo libera di spostarsi ma non di ruotare :

 $Mmax = 29,99 \times 1,623/1,749 \times 50,03 = 1392 \text{ kNcm}$

Carico massimo.

Nmax = 436,25 kN

Considerando resistente la sola sezione in acciaio risulta:

$$\sigma$$
 max = $436,25$ + 1392×8.4 = 11,31 KN/cm²

Foglio 47 di 54

42.22

1412

3.4 Verifica fondazione

Le condizioni sismiche risultano meno gravose rispetto a quelle di esercizio e per questo se ne omette la verifica

3.4.1 Verifica soletta anteriore in condizioni di esercizio

Si considera la condizione di carico maggiormente gravosa, costituita dalla c.d.c. n. 5.

P = 436,25kN

A metro lineare

349,00 kNm 436,25/1,00 436,25 kN x 0.80 =- 1,20 x 1.00 x 25 - 30,0 kN x 0.70 =- 21,0 kNm p.p. plinto - 0,50 x 1.00 x 18 x 0.50 =p.p. terreno <u>- 9,0 kN</u> <u>- 4,5 kNm</u> 397,25 kNt 323,50 kNm

Fondazione anteriore Spalla B

Dati

Elemento:

120 cm geometrici: Altezza sezione: H = Larghezza sezione B = 100 cm Spaziatura orizzontale barre: s = 20,00 cm Spaziatura verticale barre: S = 0,00 cm Copertura ferro netta: 4,00 cm c =Altezza utile: h' = 116,00 cm

Armature:

strato arm.	posizione dello strato (cm)	A (cm2)	barre (n փdiam)
1	4	15,71	5 ф 20
2	0	0,00	ф
3	116	0,00	0 φ 20
4	116	15.71	5 φ 20

Sollecitazioni: Sforzo normale: N = 0 daN

Momento flettente: M = 32350 daN mT = 39725 daN

daN/cm

Verifica a Taglio: $\tau = 3.81 2$

Foglio 48 di 54

Asse neutro:

Verifica a Flessione: x = 19,53 cm

daN/cm

 $\sigma c = 25 2$ daN/cm

 $\sigma s = 1876 \ 2$

Materiale:	Acciaio FeB	44	k	$\sigma_{s \text{ amm}} =$	2600	daN/cm 2 daN/cm
	Calcestruzzo Rbk	300	daN/cm2	$\sigma_{c \text{ amm}} =$	97,5	2
	Modulo elastico acciaio=	2100000	daN/cm2			
	Resistenza a trazione del cls				$\Phi = Et /$	
rif.2.1.2	fctm=	26,07	daN/cm2		Ec=	0,50
	Resistenza a trazione del cls					
rif.4.3.1.2	fcfk=	21,90	daN/cm2	x =	48,70	cm
	Coeff.di omogeneizzazione=	15				

Scelta del valore limite di apertura delle fessure:

rif. 4.3.1.3	Condizione di carico	frequente	
rif. 4.3.1.4	Condizioni ambientali	mod.	aggressive
rif. 4.3.1.5	Armature poco sensibili		
rif. 4.3.1.6	Valore nominale di apertura:	W	0,2 mm

Il momento è inferiore al valore di prima fessurazione: non è necessario il calcolo dell'ampiezza delle fessure.

Verifiche:	Calcolo della distanza media tra le	e fessure:		
rif. B.6.6.3	Barre ad aderenzamigliorata(Y/N)	У		
	Coeff. che caratterizza 'aderenza:	k2	0,4	
	Coeff. che tiene conto del			
	diagramma delle tensioni:	k3	0,217	
	Larghezza efficace:	beff.	100,00	cm
	Altezza efficace:	deff.	19,00	cm
	Area efficace:	Ac.eff.	1900,00	cm2
	Area acciaio posta in Ac.eff.:	As	15,71	cm2
	Percentuale di armatura efficace:	ρ r	0,0083	
	Distanza media tra le fessure:	Srm	32,97	cm

Calcolo della deformazione unitaria media dell'armatura:

			daN/cm
Tensione dell'acciaio:	σs	1875,96	2
Tensione dell'acciaio 1°			daN/cm
fessurazione:	σ sr	2423,08	2
Coeff. rappresentativo aderenza:	β1	1	
Carichi di lunga durata(Y/N)?	У		
Coeff. durata carichi:	β2	0,5	
Deformazione unitaria media:	εsm	0,0003573	

Calcolo ampiezza delle

rif.4.3.1.7.1.2	fessure:	wk	0.200 mm	_	0,200 mm
rir.4.3.1.7.1.2	iessuie.	VVN	0,200 111111	<	0,200 111111

Foglio 49 di 54

3.4.2 Verifica soletta posteriore in condizioni di esercizio

Si considera la condizione di carico maggiormente gravosa, costituita dalla c.d.c. n. 4.

P = -35,01kN A metro lineare

-12,50/1,00 -12,50 kN x 1.30 =-16,25 kNm p.p. plinto - 1,20 x 1.50 x 25 - 45,00 kN x 0.95 =- 42,75 kNm p.p. terreno - 1,50 x 3,00 x 18 - 81,00 kN x 0.95 =- 76,95 kNm Т 138,50 kNt M 135,95 kNm

Elemento: Fondazione posteriore Spalla B

Dati

geometrici: H= Altezza sezione: 120 cm Larghezza sezione B= 100 cm Spaziatura orizzontale barre: 20,00 cm s = Spaziatura verticale barre: S = 0,00 cm Copertura ferro netta: c =4,00 cm Altezza utile: h' = 116,00 cm

Armature:

strato	strato posizione dello strato		barre
arm.	(cm)	(cm2)	(n ødiam)
1	4	15,71	5 φ 20
2	0	0,00	ф
3	116	0,00	0 φ 20
4	116	15,71	5 φ 20

Sollecitazioni: Sforzo normale: N = 0 daN

Momento flettente: M = 13595 daN mT = 13850 daN

daN/cm

Verifica a Taglio: $\tau = 1,33 2$

Asse neutro:

Verifica a Flessione: x = 19,53 cm

 $\sigma c = \frac{\text{daN/cm}}{\text{11 2}}$

 $\sigma s = 788 \ 2$

daN/cm Materiale: Acciaio FeB k 44 $\sigma_{s \text{ amm}} =$ 2600 2 daN/cm Calcestruzzo Rbk 300 daN/cm2 97,5 2 $\sigma_{c \text{ amm}} =$ Modulo elastico acciaio= 2100000 daN/cm2 Resistenza a trazione del cls $\Phi = Et /$ 26,07 daN/cm2 fctm= Ec = 0,50 rif.2.1.2 48,70 cm Resistenza a trazione del cls 21,90 daN/cm2 X =rif.4.3.1.2

Foglio 50 di 54

fcfk=

Coeff.di omogeneizzazione= 15

Scelta del valore limite di apertura delle

fessure:

rif. 4.3.1.3	Condizione di carico	frequente	
rif. 4.3.1.4	Condizioni ambientali	mod.	aggressive
rif. 4.3.1.5	Armature poco sensibili		

rif. 4.3.1.6 Valore nominale di apertura: w 0,2 mm

Il momento è inferiore al valore di prima fessurazione: non è necessario il

calcolo dell'ampiezza delle fessure.

Verifiche: Calcolo della distanza media tra le fessure:

rif. B.6.6.3 Barre ad aderenza migliorata(Y/N y Coeff. che caratterizza

l'aderenza: k2 0,4

Coeff. che tiene conto del

diagramma delle tensioni: k3 0,217

Larghezza efficace: beff. 100,00 cm

Altezza efficace: deff. 19,00 cm

Area efficace: Ac.eff. 1900,00 cm2

Area acciaio posta in Ac.eff.: As 15,71 cm2

Percentuale di armatura efficace:

Distanza media tra le fessure:

As

15,71 cm.

0,0083

32,97 cm

Calcolo della deformazione unitaria media dell'armatura:

Coeff. durata carichi: $\beta 2$ 0,5 Deformazione unitaria media: ϵsm 0,0001502

Calcolo ampiezza delle

rif.4.3.1.7.1.2 **fessure:** wk 0,084 mm < 0,200 mm

3.5 Elevazione Spalla

3.5.1 Analisi dei Carichi

Si effettua il calcolo per una striscia unitaria.

<u>Permanenti</u>		N			M∟
Impalcato	1389,84 /	9,25 = 150,25	kN/m x	0,20 =	30,05 kNm/m
paraghiaia	72,84 /	9,25 = 7,88	kN/m x	-0,35 =	-2,76 kNm/m
corpo spalla	693,75 /	9,25 = 75,00	kN/m x	0,00 =	0,00 kNm/m
		233.13	kN/m		27.29 kNm/m

Foglio 51 di 54

								HL					ML			
	Spinta t	erreno	4	442,87	/	9,25	i =	47,88	kN/m	X	1,35	=	64,64	kNm/m		
<u>Accide</u>	<u>entali</u>							N					ML			
1 col.	Acciden		•	744,50		7,50		•	kN/m		0,20			kNm/m		
2 col.	Acciden	ıtali da i	mp. 1	116,75	/	7,50) =	148,90	kN/m	Χ	0,20	=		kNm/m		
					,			HL					ML			
	Spinta s			186,66		7,50		•	kN/m		2,03		-	kNm/m		
	Frenatu	ra	·	180,00	/	7,50) =	24,00	kN/m	Х	3,95	=	94,80	kNm/m		
<u>Sism</u>																
<u>a</u>								HL					ML			
	Impalca	ito		0,048	Х	150,25	=		kN/m		3,53	=	25,42	kNm/m		
	paraghi	aia		0,048	X	7,88	3 =	0,38	kN/m	Χ	3,53	=	1,33	kNm/m		
	corpo s	palla		0,048	Х	75,00) =		kN/m	Χ	1,50	= .	· · · · · · · · · · · · · · · · · · ·	kNm/m		
								11,19	kN/m				32,16	kNm/m		
									,							
	Increme	ento di s	pinta					3,58	kN/m	X	2,70	=	9,66	kNm/m		
3.5.2	Combina															
C.4.1	АΙ			•	terr	eno e s	sovr	accarico								
	N	=	233,13		_		F		+		+		=		233,13	
	M∟	=	27,29			0,40 -		64,64			+				142,33	
	H_L	=		+	2	4,89 -	F	47,88	+		+		=	=	72,77	kN
C.4.2	A III	Perma	nenti ±	Sninta	torr	eno e s	sovr	. + Accid	lentali (sıı imn	1 colo	าททะ	a + Fren	atura		
0.4.2	N		233,13		ton) -	. 1 710010	+	99,27		,,,,,			332,40	kN
	ML	=	27,29		5	0,40 -		64,64		19,85		9	94,80 =		256,98	
	HL	=	,_0	+		4,89 -		47,88		. 0,00	+		24,00 =		96,77	
	_					,		,					,		,	
C.4.3	A III	Perma	nenti +	Spinta	terr	eno e s	sovr	. + Accid	dentali	su imp.	2 cold	onne	e + Frer	natura		
	Ν	=	233,13	+		-	F		+	148,90	+		-	= 3	382,03	kN
	M_L	=	27,29	+	5	0,40 -	٠	64,64	+	29,78	+	(94,80 =	= 2	266,91	kNm
	H_{L}	=		+	2	4,89 -	۲	47,88	+		+	2	24,00 =	=	96,77	kN
C.4.4		Perma		•				na longit	udinale	+ Sism	a ver	so i	l basso			
	N	=	1,096			3,13 -			+		+				255,51	
	M_L	=	1,096	Χ	2			64,64		9,66			32,16 =		136,36	
	H_L	=		+		-	ŀ	47,88	+	3,58	+	•	11,19 =	=	62,64	kN
C 4 5	۸ ۱/ ۱۰	Dormo	nonti I	Spinto	torr	one i s	2ic~	na lanait	udinala	. L Siam		co I	'alta			
C.4.5								na longit		; + OISIT		ა∪ I			210 75	LNI
	N	=	0,904	^	۷3	3,13 -	٢		+		+		=	= 2	210,75	I/I N

Foglio 52 di 54

M_L	=	0,904 x	27,29 +	64,64 +	9,66 +	32,16 =	131,12 kNm
Hı	=	+	+	47.88 +	3.58 +	11.19 =	62,64 kN

3.5.3 Verifica alla base del corpo spalla

3.5.3.1 In condizioni di esercizio (C.d.C. n. 3):

Duu			
geometrici:	Altezza sezione:	H =	100 cm
	Larghezza sezione	B =	100 cm
	Spaziatura orizzontale barre:	s =	20,00 cm
	Spaziatura verticale barre:	S =	0,00 cm
	Copertura ferro netta:	c =	4,00 cm
	Altezza utile:	h' =	96.00 cm

Armature:

strato	posizione dello strato	Α	barre
arm.	(cm)	(cm2)	(n ødiam)
1	4	10,05	5 φ 16
2	0	0,00	ф
3	96	0,00	0 φ 20
4	96	15,71	5 φ 20

Sollecitazioni

:	Sforzo normale:	N =	38203 daN
	Momento flettente:	M =	26691 daN m
		T =	9677 daN

daN/cm

Verifica a Taglio: $\tau = 1,12 2$

Asse Esterno alla sezione

Verifica a Flessione: neutro: x = resistente cm

daN/cm

 $\sigma c = 0$ 2

daN/cm

 $\sigma s = 2051 \ 2$

Materiale:	Acciaio FeB	44	k	$\sigma_{\text{s amm}}$ =	2600	daN/cm 2 daN/cm
	Calcestruzzo Rbk	300	daN/cm2	$\sigma_{c \text{ amm}} =$	97,5	2
	Modulo elastico acciaio=	2100000	daN/cm2			
	Resistenza a trazione del cls				$\Phi = Et /$	
rif.2.1.2	fctm=	26,07	daN/cm2		Ec =	0,50
	Resistenza a trazione del cls					
rif.4.3.1.2	fcfk=	21,90	daN/cm2	X =	40,86	cm
	Coeff.di omogeneizzazione=	15				

Scelta del valore limite di apertura delle fessure:

Foglio 53 di 54

frequente

rif. 4.3.1.4 Condizioni ambientali mod. aggressive

rif. 4.3.1.5 Armature poco sensibili

rif. 4.3.1.6 Valore nominale di apertura: w 0,2 mm

Occorre eseguire il calcolo dell'ampiezza delle fessure.

Calcolo della distanza media tra le

Verifiche: fessure:

Barre ad aderenza

rif. B.6.6.3 migliorata(Y/N)?

Coeff. che caratterizza

l'aderenza: k2 0,4

Coeff. che tiene conto del

diagramma delle tensioni: k3 0,210
Larghezza efficace: beff. 100,00 cm
Altezza efficace: deff. 19,00 cm
Area efficace: Ac.eff. 1900,00 cm2
Area acciaio posta in Ac.eff.: As 15,71 cm2

Percentuale di armatura

efficace: ρr 0,0083

Distanza media tra le

fessure: Srm 32,31 cm

Calcolo della deformazione unitaria media dell'armatura:

Tensione dell'acciaio 1° 2555,56 2

daN/cm

fessurazione: σ sr 2085,53 2

Coeff. rappresentativo

aderenza: $\beta 1$ 1

Carichi di lunga durata(Y/N)? y

Coeff. durata carichi: $\beta 2$ 0,5

Deformazione unitaria

media: ϵ sm 0,0001418

Calcolo ampiezza delle

rif.4.3.1.7.1.2 **fessure:** wk 0,078 mm < 0,200 mm

3.5.3.2 In condizioni sismiche:

Elemento: Elevazione

Armature:

strato	posizione dello strato	Α	barre
arm.	(cm)	(cm2)	(n ødiam)
1	4	10,05	5 φ 16
2	0	0,00	ф
3	96	0,00	0 φ 20
4	96	15,71	5 φ 20

Foglio 54 di 54

Sollecitazioni

Sforzo normale: N = 25551 daN

Momento flettente: M = 13636 daN m

T = 6264 daN

daN/cm

Verifica a Taglio: $\tau = 0.73 2$

Asse Esterno alla sezione

Verifica a Flessione: neutro: x = resistente cm

daN/cm

 $\sigma c = 0$ 2

daN/cm

 $\sigma s = 2051 \ 2$