COMMITTENTE:	
RFI RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO	
PROGETTAZIONE:	
GRUPE	ITALFERR PO FERROVIE DELLO STATO
U.O. INFRASTRUTTURE NORD	
PROGETTO DEFINITIVO	
LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-A	AVIGLIANA
REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NI DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAI	
IN01 – CANALE SCOLMATORE	
Relazione di calcolo tombino	
	SCALA:
	-
COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR.	REV.
NT01 04 D 26 CL IN0100 003	A
Rev. Descrizione Redatto Data Verificato Data Approvato Da	ta Autorizzato Data
A Emissione Esecutiva A. Ingletti Dic. 2018 A.Malcangi Dic. 2018 F. Perrone Dic. 2	P. Sacchi Dicembre 2018

n. Elab.:

File:NT0I04D26CLIN0100003A.doc

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

Relazione di calcolo tombino

COMMESSA NT0I

LOTTO 04 CODIFICA D26CL DOCUMENTO

REV.

FOGLIO

IN0100003 A 2 di 77

INDICE

1	PRE	MESSA	5
2	NOF	RMATIVE E DOCUMENTI DI RIFERIMENTO	6
3	ELA	BORATI DI RIFERIMENTO	7
4	UNI	TÀ DI MISURA E SIMBOLOGIA	8
5	CAR	RATTERISTICHE DEI MATERIALI	9
	5.1	CALCESTRUZZO	9
	5.2	ACCIAIO PER STRUTTURE IN CONGLOMERATO CEMENTIZIO	10
6	STR	ATIGRAFIA E PARAMETRI GEOTECNICI	11
7	ANA	ALISI DEI CARICHI	12
	7.1	PESI PROPRI	12
	7.2	PERMANENTI NON STRUTTURALI	12
	7.3	CARICHI MOBILI (TRAFFICO FERROVIARIO)	13
	7.4	AZIONE DI AVVIAMENTO / FRENATURA	15
	7.5	AZIONE DI SERPEGGIO	15
	7.6	AZIONE DEL SISMA	16
	7.7	RITIRO DEL CALCESTRUZZO	19
	7.8	VARIAZIONE TERMICA	19
	7.9	SPINTA STATICA DEL TERRENO	19
	7.10	SPINTA DOVUTA AL SOVRACCARICO PERMANENTE E ACCIDENTALE SUL RILEVATO	20
	7.11	SOVRASPINTA SISMICA	20
8	CON	MBINAZIONE DEI CARICHI	21
9	VER	RIFICHE STRUTTURALI	23

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

COMMESSA NT0I

LOTTO 04 CODIFICA D26CL DOCUMENTO IN0100003 REV.

Α

FOGLIO 3 di 77

Relazione di calcolo tombino

9.1 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE-PRESSOFLESSIONE	23
9.2 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO	23
9.3 VERIFICA AGLI STATI LIMITE D'ESERCIZIO	25
10 MODELLAZIONE STRUTTURALE	26
10.1 Analisi strutturale	26
10.2 Analisi dei carichi	27
10.3 SOLLECITAZIONI	33
10.4 VERIFICHE STRUTTURALI	38
10.4.1 Verifica piedritti	38
10.4.2 Verifica soletta superiore	44
10.4.3 Verifica soletta inferiore	50
11 DIMENSIONAMENTO DELL'APPARATO DI SPINTA	56
11.1 Fasi realizzative	56
11.2 CALCOLO DELLA SPINTA	57
11.2.1 Analisi dei carichi nella Fase 1 (spinta iniziale)	57
11.2.2 Analisi dei carichi nella Fase 2 (spinta massima)	58
11.3 CALCOLO DELLE AZIONI E VERIFICA GEOTECNICA	59
11.4 PLATEA DI VARO	64
11.4.1 Ipotesi di calcolo	64
11.4.2 Verifiche strutturali	65
11.5 MURO REGGISPINTA	66
11.5.1 Ipotesi di calcolo	66
11.5.2 Verifiche strutturali paramento verticale	69
11.5.3 Verifiche strutturali armatura orizzontale	

	LINEA MOI	DANE-TO	DRINO			
ITALFERR	ADEGUAM AVIGLIANA		LINEA STO	ORICA TRATT	A BUS	SSOLENO-
GRUPPO FERROVIE DELLO STATO		' DI	BORGONE-E	NZE A MODU BRUZOLO (BI		m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Delezione di cologia tembine	NT0I	04	D26CL	IN0100003	Α	4 di 77
Relazione di calcolo tombino						

12	INCIDENZE
13	CONCLUSIONI

ITALFERR GRUPPO FERROVIE DELLO STATO		ENTO A ZIONE D ' DI	LINEA STO	ORICA TRATI ENZE A MODU BRUZOLO (BI	LO 750	
IN01-CANALE SCOLMATORE	COMMESSA NT0I	LOTTO 04	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 5 di 77
Relazione di calcolo tombino						

1 PREMESSA

Nell'ambito del progetto di ammodernamento dell'attuale tratta Bussoleno Avigliana sulla linea Torini Modane, è richiesto l'adeguamento del modulo di linea a 750 m con l'inserimento di due PM sfalsati, uno pari ed uno dispari, nelle località di Bruzolo e di Condove e l'adeguamento a STI delle Stazioni di Bruzolo, Borgone e di Sant'Ambrogioscopo del documento

Nella seguente relazione, in particolare, vengono descritte le verifiche agli Stati Limite del monolite in cemento armato, varato a spinta (ed in parte gettati in opera), da realizzarsi in corrispondenza della linea ferroviaria Torino-Modane, nel Comune di Chiusa S. Michele (TO).

Si riportano, di seguito, la sezione longitudinale e trasversale tipica della struttura.

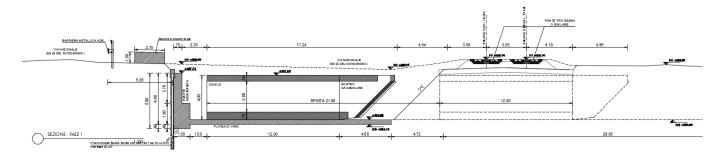


Fig. 1 – Sezione longitudinale

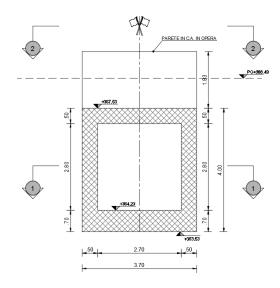


Fig. 2 – Sezione trasversale

TITALFERR	LINEA MO ADEGUAN AVIGLIAN	IENTO		ORICA TRATI	TA BUS	SSOLENO-
GRUPPO FERROVIE DELLO STATO		' DI	BORGONE-I	ENZE A MODU BRUZOLO (B		m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA NT0I	LOTTO 04	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 6 di 77
Relazione di calcolo tombino		J.				2 2

2 NORMATIVE E DOCUMENTI DI RIFERIMENTO

Si riporta nel seguito l'elenco delle leggi e dei decreti di carattere generale, assunti come riferimento.

- Legge 5-1-1971 n° 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- D.M. 14 gennaio 2008 Norme Tecniche per le Costruzioni
- D.M. 17 gennaio 2018 Aggiornamento delle Norme Tecniche per le Costruzioni
- Circolare 2 febbraio 2009,n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.
- UNI EN 1992-1 "Progettazione delle strutture di calcestruzzo Regole generali".
- UNI EN 1992-2 "Progettazione delle strutture di calcestruzzo Ponti".
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- UNI EN 206-1:2014: "Calcestruzzo Specificazione, prestazione, produzione e conformità".
- UNI 11104: "Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- "Linee guida sul calcestruzzo strutturale Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP.".

Si riporta, ora, l'elenco delle norme tecniche, delle circolari e delle istruzioni F.S. delle quali si è tenuto conto.

- RFI DTC SI MA IFS 001 A Parte I
- RFI DTC SI AG MA IFS 001 A Parte II sezione 1
- RFI DTC SI PS MA IFS 001 A Parte II sezione 2
- RFI DTC SI CS MA IFS 001 A Parte II sezione 3
- RFI DTC SI GA MA IFS 001 A Parte II sezione 4
- RFI DTC SI CS MA IFS 002 A Parte II sezione 5
- RFI DTC SI CS MA IFS 003 A Parte II sezione 6

	LINEA MOI	DANE-TO	DRINO			
ITALFERR	ADEGUAM AVIGLIANA		LINEA STO	ORICA TRATT	A BUS	SSOLENO-
GRUPPO FERROVIE DELLO STATO		' DI	BORGONE-E	NZE A MODU BRUZOLO (BI		m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NT0I	04	D26CL	IN0100003	Α	7 di 77
Relazione di calcolo tombino						

3 ELABORATI DI RIFERIMENTO

• Carpenteria tombino 1/2 - NT0I04D26BBIN0100001A

• Carpenteria tombino 2/2 - NT0I04D26BBIN0100002A

• Pianta prospetto e sezioni opere provvisionali – NT0I04D26PBIN0100001A

• Fasi realizzative - NT0I04D26PAIN0100001A

■ Relazione geotecnica − NT0I04D26GEGE0005001A

	LINEA MOI	LINEA MODANE-TORINO							
ITALFERR .	ADEGUAM AVIGLIANA	_	LINEA STO	ORICA TRATI	TA BUS	SSOLENO-			
GRUPPO FERROVIE DELLO STATO		' DI	BORGONE-E	NZE A MODU BRUZOLO (BI		m NELLE SPARI) E			
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
	NTOI	04	D26CL	IN0100003	Α	8 di 77			
Relazione di calcolo tombino									

4 UNITÀ DI MISURA E SIMBOLOGIA

Unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

Unità di misura derivate

kN (kiloNewton) 10^3 N

MN (megaNewton) 10⁶ N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

 \mathbf{cm} (centimetro) $10^{-2} \,\mathrm{m}$

mm (millimetro) 10^{-3} m

Pa (Pascal) 1 N/m^2

kPa (kiloPascal) 10^3 N/m^2

MPa (megaPascal) 10^6 N/m^2

N/m³ (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

Corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

 $1 \text{ MPa} \sim 10 \text{ kgf/cm}^2$

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

γ (gamma) peso dell'unità di volume (kN/m³)

 σ (sigma) tensione normale (N/mm²)

 τ (tau) tensione tangenziale (N/mm²)

 ϵ (epsilon) deformazione (m/m - adimensionale)

φ (fi) angolo di resistenza (° sessagesimali)

LINEA MODANE-TORI	INO	١
-------------------	-----	---

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

COMMESSA LOTTO
NT0I 04

CODIFICA D26CL DOCUMENTO

IN0100003

REV.

Α

FOGLIO 9 di 77

Relazione di calcolo tombino

CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo

MAGRONE					
Descrizione	Simbolo	Formula	Unità di misura	Valore	Note
Resistenza cubica a compressione	R _{ck}		N/mm²	15.00	
Contenuto minimo cemento			ka/m³	150.00	

CALCESTRUZZO SCATOLARE					
Descrizione	Simbolo	Formula	Unità di misura	Valore	Note
Resistenza cubica a compressione	R _{ck}		N/mm²	37.00	
Resistenza cilindrica a compressione	f _{ck}	0.83 * R _{ck}	N/mm²	30.71	
Resistenza cilindrica media a compressione	f _{cm}	f _{ck} +8	N/mm²	38.71	
Coefficiente per effetti a lungo termine e sfavorevoli	a _{cc} (t>28gg)		-	0.85	
Coefficiente parziale di sicurezza relativo al calcestruzzo	Υ _c		-	1.50	Viene ridotto a 1.40 per produzioni continuative di elementi o strutture soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valore medio della resistenza) non superiore al 10%)
Resistenza di calcolo a compressione	f _{cd}	$(a_{cc} * f_{ck}) / \Upsilon c$	N/mm²	17.40	
Resistenza cilindrica media a trazione	f _{ctm}	0.3 * (fck) ^{2/3}	N/mm²	2.94	Per classi ≤ C50/60
Resistenza cilindrica media a trazione	f _{ctk}	0.7 * f _{ctm}	N/mm²	2.06	
Resistenza di calcolo a trazione	f _{ctd}	f _{ctk} / Υ _c	N/mm²	1.37	
Resistenza media a trazione per flessione	f _{cfm}	1.2 * f _{ctm}	N/mm²	3.53	
Resistenza cilindrica caratteristica a trazione	f _{cfk}	0.7 * f _{ctm}	N/mm²	2.47	
Modulo elastico	E _{cm}	22000 * (f _{cm} /10) ^{0.3}	N/mm²	33019.43	
Peso proprio	Υ _c		N/m³	25000.00	
Coefficiente di Poisson	v		-	0.20	Secondo quanto prescritto al punto 11.2.10.4 della NTC208, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valoe compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).
Coefficiente di aderenza	η		-	1.00	Per barre di diametro ≤ 32mm
Resistenza tangenziale caratteristica di aderenza	f _{bk}	2.25 * η * f _{ctk}	N/mm²	4.63	
Resistenza tangenziale di aderenza di calcolo	f _{bd}	f _{bk} / Y _c	N/mm²	3.09	
Tensioni di progetto del cls allo S.L.E.					
Massima tensione di compressione in combinazione di carico RARA	σ_{c}	0.55 * f _{ck}	N/mm²	16.89	Nel caso di elementi piani (solette, pareti,) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.
Massima tensione di compressione in combinazione di carico PERMANENTE	σ_{C}	0.40 * f _{ck}	N/mm²	12.28	Nel caso di elementi piani (solette, pareti,) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.
					Calcestruzzo con mix design studiato in modo da eliminare fenomeni di ritiro

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-**AVIGLIANA**

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E **CONDOVE-VAIE (BIN. PARI)**

IN01-CANALE SCOLMATORE

LOTTO COMMESSA

04

NT0I

CODIFICA D26CL

DOCUMENTO IN0100003

REV.

FOGLIO Α 10 di 77

Relazione di calcolo tombino

CALCESTRUZZO MURO REGGISPINTA					
Descrizione	Simbolo	Formula	Unità di misura	Valore	Note
Resistenza cubica a compressione	R _{ck}		N/mm²	40.00	
Resistenza cilindrica a compressione	f _{ck}	0.83 * R _{ck}	N/mm²	33.20	
Resistenza cilindrica media a compressione	f _{cm}	f _{ck} +8	N/mm²	41.20	
Coefficiente per effetti a lungo termine e sfavorevoli	a _{cc} (t>28gg)		-	0.85	
Coefficiente parziale di sicurezza relativo al calcestruzzo	Υ _c			1.50	Viene ridotto a 1.40 per produzioni continuative di elementi o strutture soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valore medio della resistenza) non superiore al 10%)
Resistenza di calcolo a compressione	f _{cd}	(a _{cc} * f _{ck}) / Yc	N/mm²	18.81	
Resistenza cilindrica media a trazione	f _{ctm}	0.3 * (fck) ^{2/3}	N/mm²	3.10	Per classi ≤ C50/60
Resistenza cilindrica media a trazione	f _{ctk}	0.7 * f _{ctm}	N/mm²	2.17	
Resistenza di calcolo a trazione	f _{ctd}	f _{ctk} / Υ _c	N/mm²	1.45	
Resistenza media a trazione per flessione	f _{cfm}	1.2 * f _{ctm}	N/mm²	3.72	
Resistenza cilindrica caratteristica a trazione	f _{cfk}	0.7 * f _{ctm}	N/mm²	2.60	
Modulo elastico	E _{cm}	22000 * (f _{cm} /10) ^{0.3}	N/mm²	33642.78	
Peso proprio	Υ _c		N/m³	25000.00	
Coefficiente di Poisson	V		-	0.20	Secondo quanto prescritto al punto 11.2.10.4 della NTC208, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valoe compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).
Coefficiente di aderenza	η		-	1.00	Per barre di diametro ≤ 32mm
Resistenza tangenziale caratteristica di aderenza	f _{bk}	2.25 * η * f _{ctk}	N/mm²	4.88	
Resistenza tangenziale di aderenza di calcolo	f _{bd}	f _{bk} / Y _c	N/mm²	3.25	
Tensioni di progetto del cls allo S.L.E.					
Massima tensione di compressione in combinazione di carico RARA	σ _c	0.55 * f _{ck}	N/mm²	18.26	Nel caso di elementi piani (solette, pareti,) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.
Massima tensione di compressione in combinazione di carico PERMANENTE	σ _c	0.40 * f _{ck}	N/mm²	13.28	Nel caso di elementi piani (solette, pareti,) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.
					Calcestruzzo con mix design studiato in modo da eliminare fenomeni di ritiro

5.2 Acciaio per strutture in conglomerato cementizio

ACCIAIO DA C.A.					
Acciaio ad aderenza migliorata B450C					
Descrizione	Simbolo	Formula	Unità di misura	Valore	Note
Resistenza caratteristica di rottura	f _{t nom}		N/mm²	540.00	
Resistenza caratteristica a snervamento	f _{y nom}		N/mm²	450.00	
Coefficiente parziale di sicurezza relativo all'acciaio	Ϋ́s		-	1.15	
Resistenza di calcolo	f _{yd}	f _{yk} / Y _s	N/mm²	391.30	
Modulo elastico	Es		N/mm²	206000.00	
Tensioni di progetto del cls allo S.L.E.					
Tensione massima di esercizio per l'acciaio	σ_{s}	0.75 * f _{yk}	N/mm²	337.50	

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 11 di 77
Relazione di calcolo tombino	NIGHT 64 B200E INCHOOSES A THAIT

6 STRATIGRAFIA E PARAMETRI GEOTECNICI

Nel rispetto dell'elaborato contenente la definizione dei parametri geotecnici, lo scatolare oggetto della relazione presenta una stratigrafia di progetto come riportata nel seguito.

Tipologia	γ (kN/m3)	c' (kPa)	ф (°)	cu kPa)	Eu (MPa)	E' (MPa)	k (cm/s)
Rilevato ferroviario	20.0	0	38	-	-	-	-
Unità A – Sabbie e ghiaie	19.0-20.0	0	30-34 (da 0 a 5m dal p.c.) 35-37 (>5 m dal p.c.)	-	-	20-30 (da 0 a 5 m dal p.c.) 35-45 (>5 m dal p.c.)	1.08 10 ⁻³ (da 0 a 5m dal p.c.) 2.84 10 ⁻³ (>5 m dal p.c.)
Unità B – Limi sabbiosi	18.0-20.0	0-5	26-30	80-100	25-30	20-25	5.19 10 ⁻⁴

Per quanto riguarda la falda idrica, questa si considera coincidente con il piano di fondazione delle opere.

Le misure piezometriche a disposizione, indicano che durante i lavori è possibile, in particolare in alcuni periodi dell'anno, riscontrare la presenza di falda freatica a pochi metri dal piano campagna. Al fine di garantire l'abbattimento della falda e creare condizioni di lavoro ottimali, anche nel caso in cui il periodo dei lavori dovesse coincidere con il periodo di massimo innalzamento della falda, sarà predisposto un impianto provvisionale di emungimento attorno all'area di scavo.

TALFERR GRUPPO FERROVIE DELLO STATO		IENTO A ZIONE D ' DI	LINEA STO	ORICA TRATI NZE A MODU BRUZOLO (BI	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INUT-CANALE SCOLIVIATORE	NTOI	04	D26CL	IN0100003	Α	12 di 77

7 ANALISI DEI CARICHI

Si riporta nel seguito l'analisi dei carichi considerata nel calcolo delle sollecitazioni sulle strutture in oggetto.

7.1 Pesi propri

Il peso dei differenti elementi strutturali viene calcolato automaticamente dal programma di calcolo utilizzato.

- Soletta di fondazione;
- Piedritti;
- Soletta di copertura.

7.2 Permanenti non strutturali

Il peso dei carichi permanenti in copertura è stato calcolato considerando i differenti spessori di ballast e supercompattato, ciascuno per il suo peso dell'unità di volume:

$$q_{pp} = h_b \gamma_b + h_{sc} \gamma_{sc}$$

dove:

- h_b = spessore del ballast;
- γ_b = peso specifico del ballast;
- H_{sc} = spessore del supercompattato;
- γ_b = peso specifico del super compattato.

Viene aggiunto anche 1kN/m pari allo peso del massetto e dell'impermeabilizzazione.

	LINEA MODANE-TORINO						
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA						
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)						
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
	NT0I 04 D26CL IN0100003 A 13 di 77						
Relazione di calcolo tombino							

7.3 Carichi mobili (traffico ferroviario)

Per quanto attiene il sovraccarico ferroviario si applica il peggiore tra il carico verticale dovuto al treno SW/2 pari a 150 kN/m e il carico verticale dovuto al treno LM71 pari a 250 kN / 1.6 m = 156.25 kN/m uniformemente distribuito su una larghezza trasversale di calcolo fino a livello del piano d'asse della soletta di copertura.

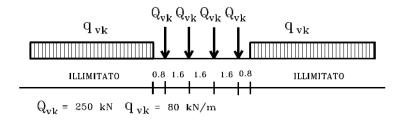
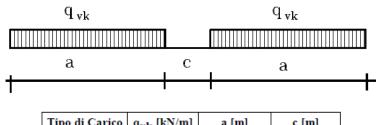



Fig. 3 - Treno di carico LM71

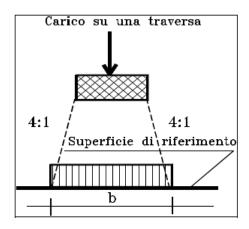
Tipo di Carico	$\mathbf{q}_{vk} \; [\mathbf{kN/m}]$	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

Fig. 4 – Treno di carico SW

Le azioni associate al solo treno di carico LM71 devono essere amplificate attraverso un coefficiente di adattamento "α". La tratta in esame è classificata come appartenente alla categoria P4 per il traffico passeggeri e F2 per il traffico merci, pertanto il coefficiente di adattamento presenta un valore unitario. Data la presente considerazione, si applicherà il carico dovuto al treno LM71 che risulta più sfavorevole rispetto l'SW.

Coefficiente di amplificazione dinamica φ:

Le sollecitazioni e gli spostamenti determinati sulle strutture dall'applicazione statica dei treni di carico debbono essere incrementati per tener conto della natura dinamica del transito dei convogli.


GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 14 di 77
Relazione di calcolo tombino	

Determinazione delle larghezze di diffusione dei carichi mobili:

La diffusione dei carichi attraverso ballast avviene con pendenza 4:1, attraverso il ricoprimento con angolo di attrito mentre, nella soletta in cls con pendenza 1:1.

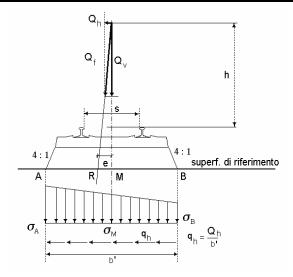
Gli spessori di ballast, ricoprimento e soletta sono i seguenti:

 $\begin{array}{ll} h_{Ballast+armamaneto} & = 0.80 \text{ m} \\ h_{rinterro} & = 0.60 \text{ m} \\ h_{soletta} & = 0.50 \text{ m} \end{array}$

Il carico equivalente si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla stessa norma EN 1991-2:2003/AC:2010.

Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente alla quota della piattaforma ferroviaria (convenzionalmente a 70 cm dal piano del ferro) risulta pari a:

$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \text{ kN/m}$$


$$156.25 \text{ kN/m}$$

$$80 \text{ kN/m}$$

$$80 \text{ kN/m}$$

$$156.4 \text{ ILLIMITATO}$$

GRUPPO FERROVIE DELLO STATO	AVIGLIANA REALIZZA	IENTO A ZIONE D ' DI	LINEA STO	ORICA TRATT ENZE A MODU BRUZOLO (B	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo tombino		3 4	22302		,,	.0 0.77

Tenendo conto della ripartizione del carico Qvk sulla propria superficie di influenza e della ripartizione trasversale fino al piano medio del traverso di copertura, il carico verticale a mq, uniformemente distribuito, da considerare sul traverso di copertura è pari a:

$$Q_{sf} = = 53,23 \text{ kN/mq}$$

$$q_{sf} = 27,26 \text{ kN/mq}$$

7.4 Azione di avviamento / frenatura

Si associano al convoglio di progetto le azioni di avviamento del carico LM71 in quanto maggiormente gravose per la struttura in esame. Visto che il treno sfavorevole è quello LM71, anche per il calcolo della frenatura si considera il carico LM71 in avviamento.

7.5 Azione di serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva. Il valore caratteristico di tale forza sarà assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per a, (se a>1), ma non per il coefficiente F. Questa forza laterale deve essere sempre combinata con i carichi verticali.

Tale azione viene trascurata in quanto con un modello piano non si possono considerare gli effetti trasversali.

	LINEA MODANE-TORINO
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
	NT0I 04 D26CL IN0100003 A 16 di 77
Relazione di calcolo tombino	

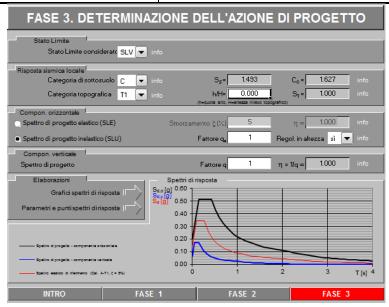
7.6 Azione del sisma

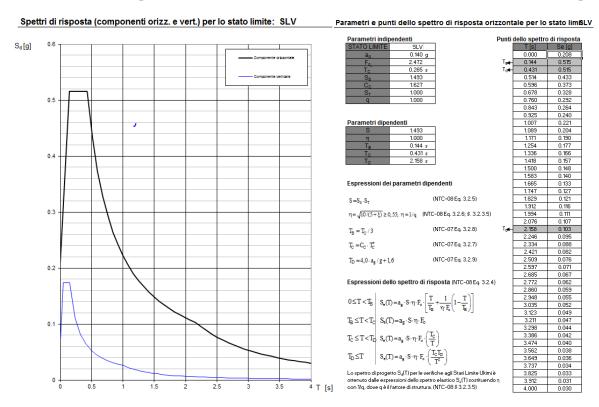

Si riporta il calcolo dell'azione sismica secondo le modalità previste dalle NTC 2018. I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

- Classe d'uso: III
- Coefficiente d'uso $C_U = 1.5$
- Vita nominale $V_N = 50$ anni
- Categoria di suolo: C
- Condizione topografica: T1
- Fattore di struttura q = 1

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 17 di 77
Relazione di calcolo tombino	


I parametri per la determinazione dei punti dello spettro di risposta orizzontale e verticale sono riportati :


Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica. Con tale azione sismica agente, le forze risultanti trasmesse dall'impalcato al piano appoggi della spalla in corrispondenza della sommità del muro di testata sono riportate al paragrafo successivo, sotto le voci **Ex**, **Ey** ed **Ez**.

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 18 di 77
Relazione di calcolo tombino	5- 2252 IN0100000 A 10 d177

Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLV** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.

ITALFERR GRUPPO FERROVIE DELLO STATO	ADEGUAM AVIGLIANA REALIZZA LOCALITA CONDOVE	ENTO A ZIONE D ' DI	LINEA STO	NZE A MODU	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA NTOI	LOTTO 04	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo tombino			302			

7.7 Ritiro del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati al punto 11.2.10.6 delle NTC2008. La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a 10°, ed un umidità relativa del 75% a 7 gg.

Il fenomeno del ritiro è stato applicato solo alla soletta di copertura.

7.8 Variazione termica

La variazione termica applicata sulla struttura è pari a ΔT = +15°C, con un variazione termica a aggiuntiva a farfalla pari a ΔT = +5°C applicata sulla soletta di copertura.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 \times 10^{-6} = 0.00001$$

7.9 Spinta statica del terreno

Le spinte del terreno a monte degli elementi verticali della spalla sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S=1/2\cdot k0\cdot \gamma\cdot H2$, applicata ad 1/3 dal basso.



Fig. 5 – Schema per il calcolo degli effetti della spinta statica del terreno

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 20 di 77
Relazione di calcolo tombino	14101 04 D200L 1140100003 A 20 di 77

7.10 Spinta dovuta al sovraccarico permanente e accidentale sul rilevato

Per considerare la presenza del sovraccarico permanente della sovrastruttura ferroviaria e del sovraccarico accidentale associato al traffico gravante a tergo, si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro è dunque pari a S=k0·q·H, con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste.

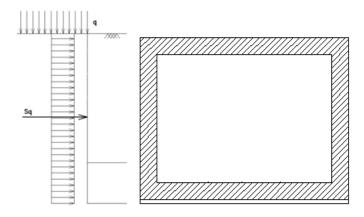


Fig. 6 – Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

7.11 Sovraspinta sismica

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

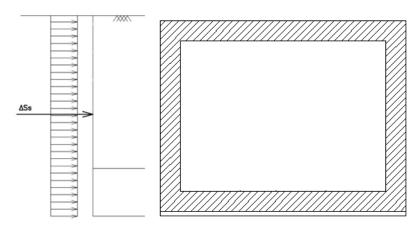


Fig. 7 – Schema per il calcolo degli effetti della sovraspinta sismica

	LINEA MODANE-TORINO
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
	NT0I 04 D26CL IN0100003 A 21 di 77
Relazione di calcolo tombino	

8 COMBINAZIONE DEI CARICHI

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot \boldsymbol{G}_{1} + \gamma_{\text{G2}} \cdot \boldsymbol{G}_{2} + \gamma_{\text{p}} \cdot \boldsymbol{P} + \gamma_{\text{Q1}} \cdot \boldsymbol{Q}_{\text{k1}} + \gamma_{\text{Q2}} \cdot \boldsymbol{\psi}_{02} \cdot \boldsymbol{Q}_{\text{k2}} + \gamma_{\text{Q3}} \cdot \boldsymbol{\psi}_{03} \cdot \boldsymbol{Q}_{\text{k3}} + \dots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

combinazione eccezionale:

$$\boldsymbol{G_{_{1}}} + \boldsymbol{G_{_{2}}} + \boldsymbol{P} + \boldsymbol{A_{_{d}}} + \boldsymbol{\psi_{_{21}}} \cdot \boldsymbol{Q_{_{k1}}} + \boldsymbol{\psi_{_{22}}} \cdot \boldsymbol{Q_{_{k2}}} + ...$$

combinazione Rara (SLE irreversibile):

$$G_{_{1}}+G_{_{2}}+P+Q_{_{k1}}+\psi_{_{02}}\cdot Q_{_{k2}}+\psi_{_{03}}\cdot Q_{_{k3}}+...$$

combinazione Frequente (SLE reversibile):

$$\boldsymbol{G_{1}} + \boldsymbol{G_{2}} + \boldsymbol{P} + \boldsymbol{\psi_{11}} \cdot \boldsymbol{Q_{k1}} + \boldsymbol{\psi_{22}} \cdot \boldsymbol{Q_{k2}} + \boldsymbol{\psi_{23}} \cdot \boldsymbol{Q_{k3}} + \dots$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella tabella seguente.

TIPO DI CARICO	Azioni verticali		A	Azioni orizzontali			
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	4	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	
Azione dominante (1) Includendo tutti i fattori ad essi relativi (0, tt, ecc.)							

Tab. 1 – Valutazione dei carichi da traffico

	LINEA MOI	DANE-TO	DRINO			
ITALFERR .	ADEGUAM AVIGLIANA		LINEA STO	ORICA TRATT	A BUS	SSOLENO-
GRUPPO FERROVIE DELLO STATO		' DI	BORGONE-E	NZE A MODU BRUZOLO (BI		m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NTOI	04	D26CL	IN0100003	Α	22 di 77
Relazione di calcolo tombino						

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione ψ delle tabelle seguenti.

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tab. 2 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, Eccezionali e Sismica

	vv ,			
Azioni		Ψο	ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80(1)	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80(1)	-
carico	gr ₃	0,80 ⁽²⁾	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 3 – Coefficienti di combinazione ψ delle azioni

di GEO.

(2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 23 di 77
Relazione di calcolo tombino	1101 07 B200E 1100100003 A 23 til 11

9 VERIFICHE STRUTTURALI

Le verifiche sono condotte nel rispetto di quanto dichiarato nell'istruttoria RFI DTC INC PO SP IFS 001 A § 1.8.3.

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

• coefficiente parziale di sicurezza per il calcestruzzo: 1.50;

• coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

9.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

9.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

	LINEA MODANE-TORINO
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
	NT0I 04 D26CL IN0100003 A 24 di 77
Relazione di calcolo tombino	

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

$$V_{\text{Rd,c}} = \text{max} \left\{ \begin{bmatrix} 0.18 \middle/ \gamma_c \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} + 0.15 \cdot \sigma_{cp} \end{bmatrix} \cdot b_w \cdot d; \left(v_{\text{min}} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \right\}, \text{ resistenza distance}, \text{ resistenza}, \text{ resistenza$$

calcolo dell'elemento privo di armatura a taglio

 $V_{Rd,s} = 0.9 \cdot \frac{A_{sw}}{s} \cdot z \cdot f_{ywd} \cdot (\cot \alpha + \cot \theta) \cdot sen\alpha$, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento

 $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} (\cot \alpha + \cot \theta) / (1 + \cot^2 \theta)$, valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse.

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2 \text{ con d in mm};$$

$$\rho_1 = \frac{A_{s1}}{b_w \cdot d} \le 0.02;$$

A_{s1} è l'area dell'armatura tesa;

 $\boldsymbol{b}_{\mathrm{w}}\,$ è la larghezza minima della sezione in zona tesa;

$$\sigma_{cp} = \frac{N_{Ed}}{A_{\odot}} < 0.2 \cdot f_{cd};$$

 N_{Ed} è la forza assiale nella sezione dovuta ai carichi;

A_c è l'area della sezione di calcestruzzo;

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$$

 $1 \le \cot \theta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

 A_{sw} è l'area della sezione trasversale dell'armatura a taglio;

S è il passo delle staffe;

 $f_{\ ywd}$ è la tensione di snervamento di progetto dell'armatura a taglio;

ITALFERR GRUPPO FERROVIE DELLO STATO	AVIGLIAN. REALIZZA	IENTO A ZIONE D ' DI	LINEA STO	ORICA TRATT ENZE A MODU BRUZOLO (B	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO 25 di 77
Relazione di calcolo tombino	1410.	J-1	22302			20 0/1/

 $f^{'}_{cd} = 0.5 \cdot f_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

 $\alpha_{_{CW}}=1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

9.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 $\sigma_c < 0.55 \, f_{ck}$ per combinazione di carico caratteristica (rara);

 $\sigma_c < 0.40 \, f_{ck}$ per combinazione di carico quasi permanente;

 $\sigma_s < 0.75 \, f_{vk}$ per combinazione di carico caratteristica (rara).

Nel secondo caso, si verifica che le aperture delle fessure siano inferiori al valore limite dell'aperutra delle fessure nella combinazione caratteristica Rara. I valori nominali di riferimento sono:

 $w_1=0.2\ mm$

 $w_2 = 0.3 \text{ mm}$

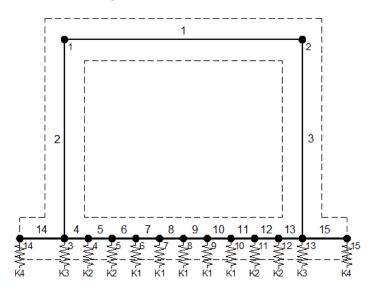
 $w_3 = 0.4 \text{ mm}$

ITALFERR GRUPPO FERROVIE DELLO STATO		ENTO A ZIONE D ' DI	LINEA ST DI PRECED BORGONE-	TORICA TRAT ENZE A MODU -BRUZOLO (B	LO 750	SSOLENO- m NELLE SPARI) E
	CONDOVE	-VAIE (D	IIN. FANI)			
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 26 di 77

10 MODELLAZIONE STRUTTURALE

Le analisi sono state condotte mediante l'ausilio del SAP2000, un Codice di calcolo F.E.M. (Finite Element Method) capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo. Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento. Dallo stesso modello sono state poi ricavate le sollecitazioni agenti all'intradosso della soletta di fondazione necessarie ai fini delle verifiche geotecniche del sistema terrenofondazione e delle verifiche strutturali.

Convenzione assi


 \mathbf{x} = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

10.1 Analisi strutturale

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio chiuso. Per simulare il comportamento del terreno di fondazione vengono inserite molle alla Winkler.

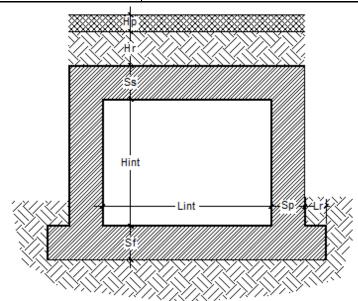
La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate, l'interazione terreno- struttura.

	LINEA MODANE-TORINO
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
	NT0I 04 D26CL IN0100003 A 27 di 77
Relazione di calcolo tombino	

Per la rigidezza delle molle, nell'opera in esame si considera un modulo di reazione verticale Kw pari a 5000 kN/m³. Con questo valore si ricavano i valori delle singole molle:

Rigidezze molle

9				
Interasse molle	i	(0.50/2 + 2.70 + 0.50/2) / 10 =	0.32	m
Molle centrali	K1	6000 · 0.32 =	1,920	kN/m
Molle intermedie	K2	1.5 · 6000 · 0.32 =	2,880	kN/m
Molle laterali	КЗ	2.0 · 6000 · (0.32/2 + 0.50/2) =	4,920	kN/m
Molle risvolto	K4	-	0	kN/m


In funzione dello stato di sollecitazione, si differenziano le rigidezze delle molle verso il piedritto.

10.2 Analisi dei carichi

Geometria

Caratteristiche materiali e terreno				
Calcestruzzo armato - Peso specifico			25	kN/m³
•	γ			KINJIII
Calcestruzzo armato - Tipo	_		C30/37	
Calcestruzzo armato - Res. caratt. cubica	R_{ck}		37	N/mm ²
Calcestruzzo armato - Res. caratt. cilindrica	f_{ck}	0.83 · 37 =	30.7	N/mm ²
Calcestruzzo armato - Modulo elastico	E		33000	N/mm ²
Ballast - Peso specifico	Υþ		18	kN/m³
Terreno del rilevato - Peso specifico	γ		20	kN/m³
Terreno del rilevato - Angolo di attrito	φ		32	0
Terreno di fondazione	Кw		6000	kN/m³
Condizioni ambientali per ver. a fessurazione	e ¹		ordinarie	
Ricoprimento				
Spessore ballast+armamento	Hb		0.80	m
Spessore medio traversina+binario	Ht		0.35	m
Spessore ballast sotto la traversina			0.45	m
Spessore del rinterro	Hr		0.60	m
Geometria				
Spessore soletta superiore	Ss		0.50	m
Spessore soletta di fondazione	Sf		0.70	m
Spessore piedritti	Sp		0.50	m
Altezza netta	Hint		2.80	m
Larghezza netta	Lint		2.70	m
Lunghezza risvolti sol. inf.	Lr		0.00	m

	LINEA MODANE-TORINO									
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO AVIGLIANA									
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)									
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO									
	NT0I 04 D26CL IN0100003 A 28 di 77									
Relazione di calcolo tombino										

Tab. 4: Geometria del modello

Azioni elementari applicate

Carichi permanenti (Condizione <i>PERM</i>)				
Soletta superiore Peso ballast	Ps	0.80 · 18 =	14.40	l/NI/m2
			14.40	kN/m²
Peso del rinterro	Pr	0.60 · 20 =	12.00	kN/m²
Totale			26.40	kN/ m²
Risvolti soletta inferiore				
Peso ballast	Ps	-	0.00	kN/m ²
Peso del rinterro	Pr	-	0.00	kN/m²
Totale			0.00	kN/m²
Carichi accidentali sulla copertura LM71 (Coefficiente dinamico		·	4.00	
Lunghezza caratteristica per coeff. din.	Lφ	$= 1.3 \cdot 1/3 \cdot (3.05 + 3.20 + 3.05)$	4.03	m
Coefficiente dinamico	Φ_3	= 1.35 se Lint \leq 8 m e Hint \leq 5 m	1.35	
Qvk				
Coefficiente di adattamento	α		1.00	
Larghezza traversa	Lt		2.30	m
Impronta di carico y	Ld1	$2.30 + 2 \times (0.45/4 + 0.60 \times TAN(32^{\circ}) + 0.50/2) =$	3.77	m
Impronta di carico x	Ld2	0.8+1.6+1.6+1.6+0.8=	6.40	m
Carico Qvk (totale)			1000	kN
Carico Qvk (ripartito)		1 · 1.35 · 1000 / (3.77 · 6.40) =	55.88	kN/m ²
qvk		,		
Carico qvk			80	kN/m
Carico qvk (ripartito)		1 · 1.35 · 80 / 3.77 =	28.61	kN/m ²

Per il calcolo della lunghezza caratteristica si fa riferimento a:

Caso 5.3 pag. 41 di 481 Manuale Parte II - Sezione II - Ponti

4	7
	ITALFERR
GRUPPO FE	ERROVIE DELLO STATO

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-**AVIGLIANA**

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E **CONDOVE-VAIE (BIN. PARI)**

REV.

Α

FOGLIO

29 di 77

IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO
THE TOTAL COOLING TOTAL	NTOI	04	D26CL	IN0100003

Relazione di calcolo tombino

Avviamento e frenatura (Condizione AVV) Q1ak (= 33 / Ld1)33 / 3.77 = 8.74 kN/m²

Azione termica (Condizione TERM)		
Variazione termica uniforme	ΔT_U	15 °
Variazione termica a farfalla	ΔT_{F}	<u> </u>
Variazione termica uniforme di calcolo	ΔT_{U^*} 15 / 2 =	7.50 °
Variazione termica a farfalla di calcolo	ΔT_{E*} 5/2 =	2.50 °

Ritiro (Condizione RITIRO)

-10 ° Ritiro applicato alla sol. Superiore ΔT_R

Spinta del terreno (Condizioni SPTSX e S	PTDX)			
K0		1 - sen (32°) =	0.470	
Spinta alla quota di estradosso sol. sup.	p1	0.470 · 26.40 =	12.41	kN/m²
Spinta in asse sol. sup.	p2	$0.470 \cdot (26.40 + 20.0.50/2) =$	14.76	kN/ m ²
Spinta in asse sol. inf.	р3	$0.470 \cdot [26.40 + 20 \cdot (0.50/2 + 2.80 + 0.70/2)] =$	46.73	kN/ m²

N/ m² Spinta alla quota di intradosso sol. inf. p4 $0.470 \cdot [26.40 + 20 \cdot (0.50/2 + 2.80 + 0.70)] =$ 50.02 kN/m² (12.41+14.76)/2 · 0.50/2 kN/m Spinta semispessore sol. sup. F1 3.40 Spinta semispessore sol. inf. F2 (46.73+50.02)/2 · 0.70/2 16.93 kN/m

Spinta del carico accidentale (Condizioni SPACCSX e SPACCDX)

0.470 · 1 · 1000 / (3.77 · 6.40) = 21.40 kN/m² Spinta dovuta al q1

S

Sisma orizzontale (Condizione SISMAH)				
Stato limite		Salvaguardia della vita - SLU -	SLV	
Vita nominale	V_N		50	anni
Classe d'uso	*		III	
Coefficiente C _U	C_U		1.5	
Periodo di riferimento	V_R		75	anni
Accelerazione orizzontale	a _q /g		0.14	
Amplificazione spettrale	Fo		2.473	
Categoria sottosuolo		A, B, C, D, E	С	
Coeff. Amplificazione stratigrafica	Ss	A, B, C, D, L	1,492	
Coeff. Amplificazione topografica	St		1.492	
Coefficiente S	S	=Ss·St	1,492	
accellerazione orizzontale max	a _{max} /q	=ag/g · S	0.209	
Fattore di struttura	q	3.3	1.00	
Coeff. sismico orizzontale	k _h	=a _{max} /g	0.209	
Coeff. sismico verticale	k_{v}	$= \pm 0.5 \cdot k_h$	0.104	
Carico accidentale totale gravante sulla cop.		1.1:1000/(3.77:6.40):3.70 + 1.1:80/3.77:3.70 =	239.4	kN/m

Carico accidentale totale gravante sulla cop. $1.1 \cdot 1000/(3.77 \cdot 6.40) \cdot 3.70 + 1.1 \cdot 80/3.77 \cdot 3.70 =$

Forza orizz. sulla sol. di cop. FHs $0.209 \cdot (0.50.25 + 26.40 + 0.2.239.4/3.20) / 1.00 =$ 11.25 kN/m² Forza orizz. sui piedritti FHp 0.209 · (0.50 · 25) / 1.00 = 2.61 kN/m²

Sisma verticale (Condizione SISMA V)

FVs $0.104 \cdot (0.50.25 + 26.40 + 0.2.239.4/3.20) / 1.00 =$ 5.63 kN/ m² Forza vert. sulla sol. di cop.

Spinta del terreno in fase sismica (Condizione SPSDX)

Risultante della spinta sismica = $(amax/g) \cdot \gamma \cdot (Hint+Ss+Sf+Hb+Hr)^2 = 0.209 \cdot 20 \cdot 5.40^2$ 121.8 kN/m Pressione risultante $= \Delta SE / H = 121.8 / 3.40$ 35.84 kN/m²

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NT0I
 04
 D26CL
 IN0100003
 A
 30 di 77

Relazione di calcolo tombino

Combinazioni:

STRU	PERM	PERM-G2	ACC-M	ACC-T	AVV	SPTSX	SPTDX	SPACCSX	SPACCDX	TERM	RITIRO	SISM AH	SISMAV	SPSDX
01S1-11M	1.35	1.50	1.45	0	0.50	1.00	1.00	0	0	0.9	0	0	0	0
02S1-11T	1.35	1.50	0	1.45	0.50	1.00	1.00	0	0	0.9	0	0	0	0
03S1-12M	1.35	1.50	1.45	0	0.50	1.35	1.35	1.45	1.45	0.9	0	0	0	0
04S1-12T	1.35	1.50	0	1.45	0.50	1.35	1.35	1.45	1.45	0.9	0	0	0	0
05S1-13M	1.35	1.50	1.45	0	0.50	1.00	1.35	0	1.45	0.9	0	0	0	0
06S1-13T	1.35	1.50	0	1.45	0.50	1.00	1.35	0	1.45	0.9	0	0	0	0
0781-14-	1.35	1.50	0	0	0	1.35	1.35	1.45	1.45	0.9	0	0	0	0
08S1-15-	1.35	1.50	0	0	0	1.00	1.35	0	1.45	0.9	0	0	0	0
09S1-21M	1.35	1.50	1.45	0	0.50	1.00	1.00	0	0	-0.9	1.35	0	0	0
10S1-21T	1.35	1.50	0	1.45	0.50	1.00	1.00	0	0	-0.9	1.35	0	0	0
11S1-22M	1.35	1.50	1.45	0	0.50	1.35	1.35	1.45	1.45	-0.9	1.35	0	0	0
12S1-22T	1.35	1.50	0	1.45	0.50	1.35	1.35	1.45	1.45	-0.9	1.35	0	0	0
13S1-23M	1.35	1.50	1.45	0	0.50	1.00	1.35	0	1.45	-0.9	1.35	0	0	0
14S1-23T	1.35	1.50	0	1.45	0.50	1.00	1.35	0	1.45	-0.9	1.35	0	0	0
1581-24-	1.35	1.50	0	0	0	1.35	1.35	1.45	1.45	-0.9	1.35	0	0	0
1681-25-	1.35	1.50	0	0	0	1.00	1.35	0	1.45	-0.9	1.35	0	0	0
17S1T11M	1.35	1.50	1.16	0	1.16	1.00	1.00	0	0	1.5	0	0	0	0
18S1T11T	1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	1.5	0	0	0	0
19S1T12M	1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	1.5	0	0	0	0
20S1T12T	1.35	1.50	0	1.16	1.16	1.35	1.35	1.16	1.16	1.5	0	0	0	0
21S1T13M	1.35	1.50	1.16	0	1.16	1.00	1.35	0	1.16	1.5	0	0	0	0
22S1T13T	1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	1.5	0	0	0	0
23S1T14-	1.35	1.50	0	0	0	1.35	1.35	1.16	1.16	1.5	0	0	0	0
24S1T15-	1.35	1.50	0	0	0	1.00	1.35	0	1.16	1.5	0	0	0	0
25S1T21M	1.35	1.50	1.16	0	1.16	1.00	1.00	0	0	-1.5	1.35	0	0	0
26S1T21T	1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	-1.5	1.35	0	0	0
27S1T22M	1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	-1.5	1.35	0	0	0
28S1T22T	1.35	1.50	0	1.16	1.16	1.35	1.35	1.16	1.16	-1.5	1.35	0	0	0
29S1T23M	1.35	1.50	1.16	0	1.16	1.00	1.35	0	1.16	-1.5	1.35	0	0	0
30S1T23T	1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	-1.5	1.35	0	0	0
31S1T24-	1.35	1.50	0	0	0	1.35	1.35	1.16	1.16	-1.5	1.35	0	0	0
32S1T25-	1.35	1.50	0	0	0	1.00	1.35	0	1.16	-1.5	1.35	0	0	0

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

							COND	OVE-V	AIE (BI	N. PAR	l)				
IN01-CANAL	E 800	LNATO	NDE				COMME	SSA	LOTTO	CODIFIC	CA	DOCUN	MENTO	REV.	FOGLIO
INU I-CANAL	_E 300	LIVIATO	/KE				NTO	l	04	D26CL		IN010	00003	Α	31 di 77
Relazione di	calcolo	tombin	10												
33S3-11M	1.35	1.50	1.45	0	1.45	1.00	1.00	0	0	0.9	0	0	0	0	
34S3-11T	1.35	1.50	0	1.45	1.45	1.00	1.00	0	0	0.9	0	0	0	0	
35S3-12M	1.35	1.50	1.45	0	1.45	1.35	1.35	1.45	1.45	0.9	0	0	0	0	
36S3-12T	1.35	1.50	0	1.45	1.45	1.35	1.35	1.45	1.45	0.9	0	0	0	0	
37\$3-13M	1.35	1.50	1.45	0	1.45	1.00	1.35	0	1.45	0.9	0	0	0	0	
38S3-13T	1.35	1.50	0	1.45	1.45	1.00	1.35	0	1.45	0.9	0	0	0	0	
39S3-21M	1.35	1.50	1.45	0	1.45	1.00	1.00	0	0	-0.9	1.35	0	0	0	
40S3-21T	1.35	1.50	0	1.45	1.45	1.00	1.00	0	0	-0.9	1.35	0	0	0	
41S3-22M	1.35	1.50	1.45	0	1.45	1.35	1.35	1.16	1.16	-0.9	1.35	0	0	0	
42S3-22T	1.35	1.50	0	1.45	1.45	1.35	1.35	1.16	1.16	-0.9	1.35	0	0	0	
43S3-23M	1.35	1.50 1.50	1.45	0 1.45	1.45	1.00	1.35 1.35	0	1.16	-0.9 -0.9	1.35 1.35	0	0 0	0	
44S3-23T	1.35	1.50	0.2	0	1.45 0	0.6	1.35	0	0.2	0.5	0	1	0.3	1	
45SSS1 46SSS2	1	1	0.2	0	0	0.6	1	0	0.2	0.5	0	1	-0.3	1	
46SSS2 47SSS3	1	1	0.2	0	0	0.6	1	0	0.2	0.5	0	0.3	-0.3 1	0.3	
475553 48SSS4	1	1	0.2	0	0	0.6	1	0	0.2	0.5	0	0.3	-1	0.3	
49SSS5	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	1	0.3	1	
50SSS6	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	1	-0.3	1	
518887	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	0.3	1	0.3	
52SSS8	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	0.3	-1	0.3	
53R3-11M	1	1	0.8	0	0.8	0.6	0.6	0	0	0.6	0	0	0	0	
54R3-11T	1	1	0	0.8	0.8	0.6	0.6	0	0	0.6	0	0	0	0	
55R3-12M	1	1	0.8	0	0.8	1	1	0.8	0.8	0.6	0	0	0	0	
56R3-12T	1	1	0	0.8	0.8	1	1	0.8	0.8	0.6	0	0	0	0	
57R3-13M	1	1	0.8	0	0.8	0.6	1	0	0.8	0.6	0	0	0	0	
58R3-13T	1	1	0	0.8	0.8	0.6	1	0	0.8	0.6	0	0	0	0	
59R3-21M	1	1	0.8	0	0.8	0.6	0.6	0	0	-0.6	1	0	0	0	
60R3-21T	1	1	0	0.8	0.8	0.6	0.6	0	0	-0.6	1	0	0	0	
61R3-22M	1	1	0.8	0	0.8	1	1	0.8	0.8	-0.6	1	0	0	0	
62R3-22T	1	1	0	0.8	8.0	1	1	0.8	0.8	-0.6	1	0	0	0	
63R3-23M	1	1	0.8	0	0.8	0.6	1	0	0.8	-0.6	1	0	0	0	
64R3-23T	1	1	0	0.8	0.8	0.6	1	0	0.8	-0.6	1	0	0	0	
65R1T11M	1	1	0.8	0	0.8	0.6	0.6	0	0	1	0	0	0	0	
66R1T11T	1	1	0	0.8	0.8	0.6	0.6	0	0	1	0	0	0	0	
67R1T12M	1	1	0.8	0	0.8	1	1	0.8	0.8	1	0	0	0	0	
68R1T12T	1	1	0	0.8	0.8	1	1	0.8	0.8	1	0	0	0	0	
69R1T13M 70R1T13T	1	1	0.8	0	0.8	0.6	1 1	0	0.8	1 1	0	0	0 0	0	
	1	1	0.8	0.8	0.8	0.6	0.6	0	0.8	-1	1	0	0	0	
71R1T21M 72R1T21T	1	1	0.8	0.8	0.8	0.6	0.6	0	0	-1 -1	1	0	0	0	
72R1T21T 73R1T22M	1	1	0.8	0.8	0.8	1	1	0.8	0.8	-1 -1	1	0	0	0	
73R1T22M 74R1T22T	1	1	0.8	0.8	0.8	1	1	0.8	0.8	-1 -1	1	0	0	0	
74R11221 75R1T23M	1	1	0.8	0.0	0.8	0.6	1	0.0	0.8	-1 -1	1	0	0	0	
75R1T23M 76R1T23T	1	1	0.0	0.8	0.8	0.6	1	0	0.8	-1 -1	1	0	0	0	
, 01/11/2/1			Ŭ	0.0	0.0	0.0		Ü	0.0	•		Ü	•	Ü	

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-

AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E

CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO D26CL IN0100003 32 di 77 NT0I 04 Α

Relazione di calcolo tombino

Dove:

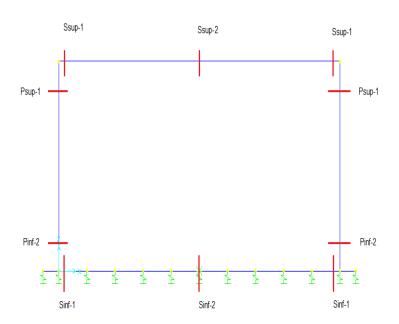
PERM \rightarrow permanenti

PERM-G2k permanenti non strutturali

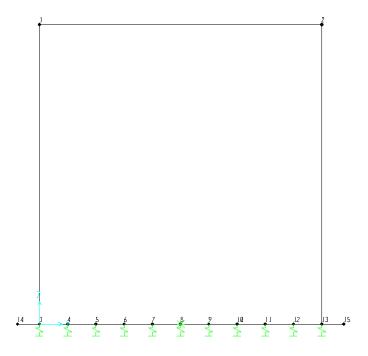
ACC-M caricvo accidentale (max momento) ACC-T caricvo accidentale (max taglio) \rightarrow

AVV avviamento

SPTSX Spinta del terreno sulla parete SX SPTDX Spinta del terreno sulla parete DX **SPACCSX** Spinta del carico acc. sulla parete SX Spinta del carico acc. sulla parete DX **SPACCDX** \rightarrow

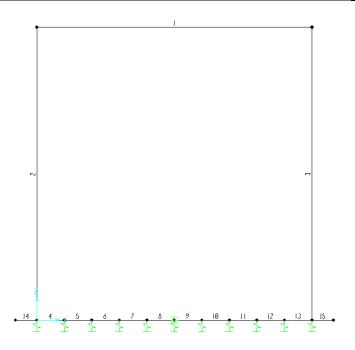

TERM Termica \rightarrow **RITIRO** Ritito

SISMAH Sisma orizzontale **SISMAV** Sisma verticale

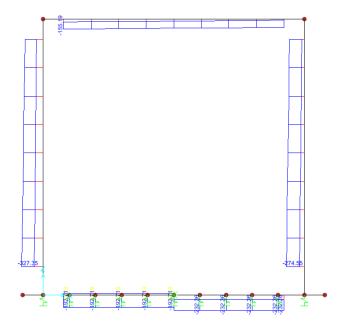

SPSDX Incremento sismico della spinta del terreno

ITALFERR GRUPPO FERROVIE DELLO STATO		ENTO A ZIONE D 'DI	LINEA STO	ORICA TRATT NZE A MODU BRUZOLO (B	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO 04	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO 33 di 77
	14101	04	DZUCL	1140100003	^	33 di 11

10.3 Sollecitazioni

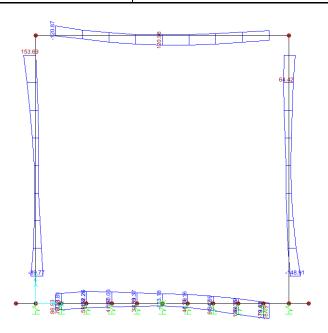


Tab. 5: Sezioni di verifica

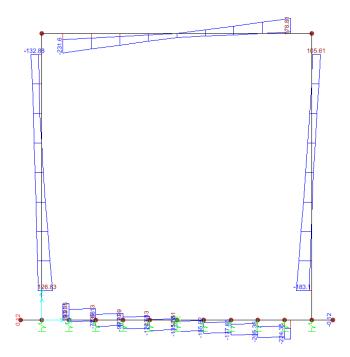


Tab. 6: Nomenclatura nodi

GRUPPO FERROVIE DELLO STATO	LINEA MO ADEGUAN AVIGLIAN REALIZZA LOCALITA CONDOVE	IENTO A ZIONE D ' DI	LINEA STO PRECEDE BORGONE-I	ENZE A MODU	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA NTOI	LOTTO 04	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 34 di 77
Relazione di calcolo tombino						

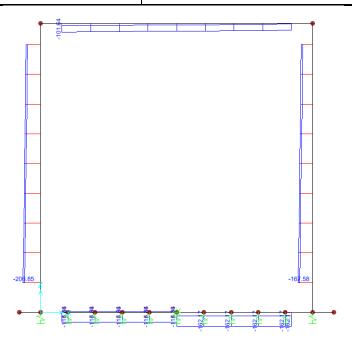


Tab. 7: Nomenclatura frame

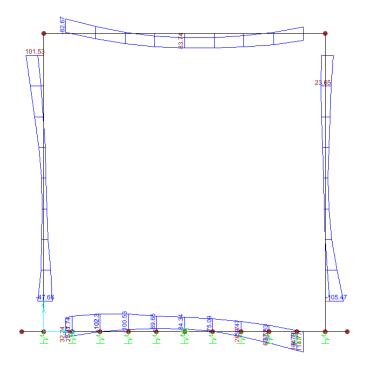


Tab. 8: Sforzo Normale – Inviluppo SLU

GRUPPO FERROVIE DELLO STATO	LINEA MOD ADEGUAMI AVIGLIANA REALIZZAZ LOCALITA' CONDOVE-	ENTO A ZIONE D	LINEA STO DI PRECEDE BORGONE-I	NZE A MODU	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA NT0I	LOTTO 04	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 35 di 77
Relazione di calcolo tombino						

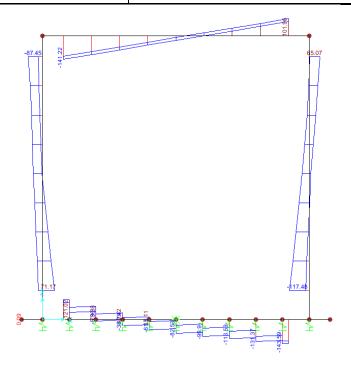


Tab. 9: Momento flettente – Inviluppo SLU



Tab. 10: Taglio – Inviluppo SLU

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 36 di 77
Relazione di calcolo tombino	



Tab. 11: Sforzo Normale – Inviluppo SLE

 $Tab.\ 12: Momento\ flettente-Inviluppo\ SLE$

TALFERR GRUPPO FERROVIE DELLO STATO	ADEGUAMEN AVIGLIANA REALIZZAZIO LOCALITA'	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE							
IN01-CANALE SCOLMATORE	COMMESSA L	.OTTO 04	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO 37 di 77			
Relazione di calcolo tombino					•				

Tab. 13: Taglio – Inviluppo SLE

10.4 Verifiche strutturali

10.4.1 Verifica piedritti

Sezione: 100 x 50 cm

Armatura a flessione:

• Sommità Psup-1

Armatura tesa

\$\phi 20/20 cm

Armatura compressa

\$\phi 20/20 cm

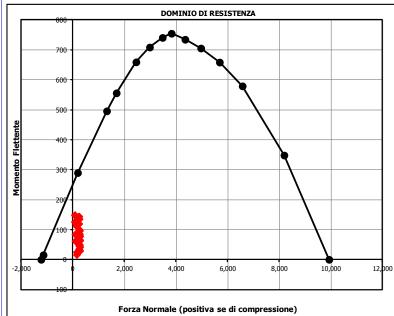
• Spiccato Pinf-2

Armatura tesa

\$\phi 20/20 cm

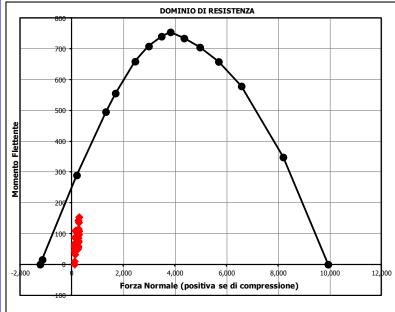
Armatura compressa

ф 20/20 cm


Armatura a taglio:

Spille \(\psi \) 12/40x40 cm.

Verifica a pressoflessione (Spiccato Pinf-2)



	che di solleci	
Comb.	Nsd	Msd
01S1-11M	275	30
02S1-11T	275	30
03S1-12M	275	43
04S1-12T	275	43
05S1-13M	248	100
06S1-13T	248	100
07S1-14-	152	25
08S1-15-	126	82
09S1-21M	275	65
10S1-21T	275	65
11S1-22M	275	78
12S1-22T	275	78
13S1-23M	248	135
14S1-23T	248	135
15S1-24-	152	60
16S1-25-	126	118
17S1T11M	240	35
18S1T11T	240	35
19S1T12M	240	46
20S1T12T	240	46
21S1T13M	218	95
22S1T13T	218	95
23S1T14-	152	16
24S1T15-	130	64
25S1T21M	240	84
26S1T21T	240	84
27S1T22M	240	95
28S1T22T	240	95
29S1T23M	218	143
30S1T23T	218	143
31S1T24-	152	65
32S1T25-	130	113
33S3-11M		49
	262	
34S3-11T	262	49
35S3-12M	262	63
36S3-12T	262	63
37S3-13M	235	120
38S3-13T	235	120
39S3-21M	262	85
40S3-21T	262	85
41S3-22M	262	96
42S3-22T	262	96
43S3-23M	240	144
44S3-23T	240	144
45SSS1	78	126
46SSS2	73	126
47SSS3	113	63
48SSS4	95	62
49SSS5	78	149
50SSS6	73	149
51SSS7	113	85
52SSS8	95	84

Verifica a pressoflessione (Sommità Psup-1)

Caratterictic	che di solleci	itazione
Comb.	Nsd	Msd
01S1-11M	241	94
02S1-11T	241	94
03S1-12M	241	98
04S1-12T	241	98
05S1-13M	267	136
06S1-13T	267	136
07S1-14-	104	49
08S1-15-	131	87
09S1-21M	241	55
10S1-21T	241	55
11S1-22M	241	60
12S1-22T	241	60
13S1-23M	267	98
14S1-23T	267	98
15S1-24-	104	10
16S1-25-	131	48
17S1T11M	224	107
18S1T11T	224	107
19S1T12M	224	111
20S1T12T	224	111
21S1T13M	246	143
22S1T13T	246	143
23S1T14-	104	58
24S1T15-	126	90
25S1T21M	224	50
26S1T21T	224	50
27S1T22M	224	54
28S1T22T	224	54
29S1T23M	246	86
30S1T23T	246	86
31S1T24-	104	0
32S1T25-	126	32
33S3-11M	254	111
34S3-11T	254	111
35S3-11M	254	116
36S3-12M	25 4 254	116
37S3-121	280	154
38S3-13M	280	154
	254	
39S3-21M		73
40S3-21T	254 254	73
41S3-22M		76
42S3-22T	254	76
43S3-23M	276	108
44S3-23T	276	108
45SSS1	142	111
46SSS2	136	109
47SSS3	120	70
48SSS4	102	64
49SSS5	142	87
50SSS6	136	86
51SSS7 52SSS8	120 102	46 41

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)						
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 41 di 77						
Relazione di calcolo tombino							

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

alcestru	IZZO		Sollecitazioni		Piedritto
ipo	C30/37		V_{Ed}	kN	
ck	37	N/mm²	N_{Ed}	kN	
ck	30.7	N/mm²			•
c	1.5		Armatura a taglio		
Icc	0.85		Diametro	mm	
cd	17.4	N/mm²	Numero barre		
		•	A_{sw}	cm ²	2
cciaio			Passo s	cm	
tk	540	N/mm²	Angolo α	0	
yk	450	N/mm²			
's	1.15		Armatura longitudinale	•	
y d	391	N/mm²	n_1		
			\varnothing_1	mm	
			n ₂		
			\varnothing_2	mm	
			Asl	cm ²	15
			Sezione		
			b_{w}	cm	
			Н	cm	
			C	cm	
			d	cm	4
			k	N/mm²	:
			v_{min}	N/mm²	(
			ρ		0.0
			σср	N/mm²	(
			α_{c}		
			Resistenza senza arma	tura a tagl	io
			V_{Rd}	kN	1
			Resistenza con armatui	a a taglio	
			Inclinazione puntone θ	° a tagilo	2
			•	kN	-
					1
]
			V _{RSd} V _{RCd} V _{Rd}	kn kn kn	

	LINEA MODANE-TORINO						
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA						
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)						
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
	NT0I 04 D26CL IN0100003 A 42 di 77						
Relazione di calcolo tombino							

• Verifica a fessurazione (Spiccato Pinf-2)

Sollecitazioni				
Momento flettente	М	105	kN m]
Sforzo normale	N	150	kN	
Materiali				
Res. caratteristica cls	R _{ck}	37	N/mm²]
Tensione ammissibile cls	$\sigma_{\text{C}_{amm}}$	11.5	N/mm²	
Res. media a trazione cls	f_{ctm}	3.0	N/mm²	
Res. caratteristica a trazione cls	f_{ctk}	2.1	N/mm²	
Tensione ammissibile acciaio	σs_{amm}	260	N/mm ²	
Coefficiente omog. acciaio-cls	n	15		
Caratteristiche geometriche				
Altezza sezione	Н	50	cm	
Larghezza sezione	В	100	cm	
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5 Ø 20 $c_{s1} = 7.2$ cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	$Ø$ $c_{s2} = cn$
Armatura tesa (2° strato)	As_2	0.00	cm ²	\emptyset $c_{i2} = cn$
Armatura tesa (1º strato)	As_1	15.71	cm ²	5 Ø 20 c _{i1} = 7.2 cm
Tensioni nei materiali				
Compressione max nel cls.	σς	4.2	N/mm²	< σc _{amm}
Trazione nell'acciaio (1º strato)	σs	127.6	N/mm²	< σa _{amm}
Eccentricità	e (M)	70.2	cm	> H/6 Sez. parzializzata
Lccend icita	u (M)	45.2	cm	> 11/0 Sez. parzializzata
Posizione asse neutro	y (M)	14.2	cm	
Area ideale (sez. int. reagente)	A _{id}	5440	cm ²	
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	1190974	cm ⁴	
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	299987	cm ⁴	
Varifica a faccionario na				
Verifica a fessurazione Momento di fessurazione (f _{ctk})	M _{fess} *	113	kN m	La sezione non è fessurata
momento di lessurazione (1 _{dk})	i*Ifess	113	KIN III	La Sezione non e ressurata

	LINEA MODANE-TORINO						
ITALFERR	ADEGUAMI AVIGLIANA		LINEA ST	ORICA TRAT	TA BUS	SSOLENO-	
GRUPPO FERROVIE DELLO STATO	REALIZZAZ LOCALITA' CONDOVE-	DI	BORGONE-	NZE A MODU BRUZOLO (B		m NELLE SPARI) E	
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	NT0I	04	D26CL	IN0100003	Α	43 di 77	
Relazione di calcolo tombino							

Verifica a fessurazione (Sommità Psup-1)

Sollecitazioni Momento flettente	М	102	kN m	٦
Sforzo normale	l™ N	172	kN	
510120 Hormale	11	1/2	NI	
Materiali				
Res. caratteristica cls	R _{ck}	37	N/mm²	
Tensione ammissibile cls	$\sigma_{\text{C}_{amm}}$	11.5	N/mm²	
Res. media a trazione cls	f_{ctm}	3.0	N/mm²	
Res. caratteristica a trazione cls	f_{ctk}	2.1	N/mm²	
Tensione ammissibile acciaio	σs_{amm}	260	N/mm ²	
Coefficiente omog. acciaio-cls	n	15		_
Caratteristiche geometriche				
Altezza sezione	Н	50	cm	
Larghezza sezione	В	100	cm	
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5 Ø 20 c _{s1} = 7.2 cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	\emptyset $c_{s2} = cm$
Armatura tesa (2º strato)	As_2	0.00	cm ²	\emptyset $c_{i2} = cm$
Armatura tesa (1º strato)	As ₁	15.71	cm ²	5.0 Ø 20 c _{i1} = 7.2 cm
Tensioni nei materiali				
Compressione max nel cls.	σς	4.1	N/mm²	< σc _{amm}
Trazione nell'acciaio (1º strato)	σs	114.7	N/mm²	< σa _{amm}
	(1.1)	F0.4		
Eccentricità	e (M)	59.1	cm	> H/6 Sez. parzializzata
Posizione asse neutro	u (M) y (M)	34.1 14.9	cm cm	
Area ideale (sez. int. reagente)	y (I⁴I) A _{id}	5440	cm ²	
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	1190974	cm ⁴	
Mom. di inerzia ideale (sez. inc. reag.)	J _{id*}	307229	cm ⁴	
inom. di incizia lucale (sez. paiz. N=0)	JId*	30/229	CIII	
Verifica a fessurazione				
Momento di fessurazione (f _{ctk})	M _{fess} *	115	kN m	La sezione non è fessurata

	LINEA MODANE-TORINO							
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA							
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)							
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO							
Delezione di cologie tembine	NT0I 04 D26CL IN0100003 A 44 di 77							
Relazione di calcolo tombino								

10.4.2 Verifica soletta superiore

Sezione: 100 x 50 cm

Armatura a flessione:

Appoggio Ssup-1

Armatura tesa

ф 20/20 cm

Armatura compressa

ф 20/20 cm

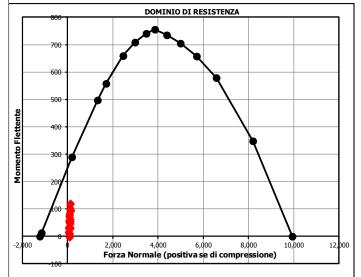
• Campata Ssup-2

Armatura tesa

ф 20/20 cm

Armatura compressa

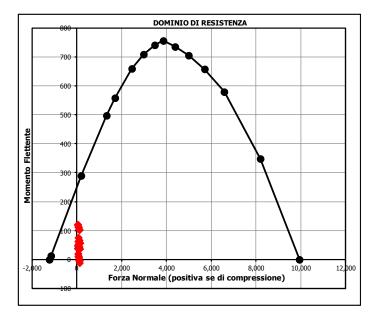
 ϕ 20/20 cm


Armatura a taglio:

Spille \(\psi \) 12/40x40 cm.

• Verifica a pressoflessione (Appoggio Ssup-1)

Acciaio					Calcestruz	ZO ZO						
Tensione car. di rottura	f _{tk}	=	540	N/mm²	Tipo	C30/37			copriferro	40	mm	
Tensione car. di snervamento	fyk	=	450	N/mm²	R_{ck}	37	N/mm²		staffe	10	mm	
Coeff. parziale di sicurezza	Ϋ́s	=	1.15		f_{ck}	30.71	N/mm²		armat. sec	12	mm	
Resistenza di calcolo	f_{yd}	=	391	N/mm²	Yc	1.5						
Modulo elastico	Es	=	205000	N/mm²	f_{cd}	20.5	N/mm²					
	ϵ_{yd}	=	0.00191		f_{cc}	17.4	N/mm²					
Geometria della sezione					Armatura	tesa			Armatura o	compressa		
Altezza geometrica della sezio	n∉h	=	50	cm	Nº ferri	Diametro	Area		Nº ferri	Diametro	Area	
Base della sezione	b	=	100	cm cm	5	20	15.71	cm ²	5	20	15.71	cm ²
Copriferro	ď'	=	7.2	cm			0.00	cm ²			0.00	cm ²
Altezza utile della sezione	d	=	42.8	cm			0.00	cm ²			0.00	cm ²
							15.71	cm ²			15.71	cm ²



Caratteristic		
Comb.	Nsd	Msd
01S1-11M	73	59
02S1-11T	73	59
03S1-12M	144	77
04S1-12T	144	77
05S1-13M	108	103
06S1-13T	108	103
07S1-14-	126	55
08S1-15-	91	81
09S1-21M	47	14
10S1-21T	47	14
11S1-22M	118	32
12S1-22T	118	32
13S1-23M	82	58
14S1-23T	82	58
	100	10
15S1-24- 16S1-25-	64	36
		79
17S1T11M	84	79 79
18S1T11T	84 144	79 95
19S1T12M		
20S1T12T	144	95
21S1T13M	114	117
22S1T13T	114	117
23S1T14-	121	63
24S1T15-	91	85
25S1T21M	46	12
26S1T21T	46	12
27S1T22M	106	28
28S1T22T	106	28
29S1T23M	76	50
30S1T23T	76	50
31S1T24-	83	-4
32S1T25-	53	18
33S3-11M	84	76
34S3-11T	84	76
35S3-12M	155	95
36S3-12T	155	95
37S3-13M	120	121
38S3-13T	120	121
39S3-21M	58	31
40S3-21T	58	31
41S3-22M	117	47
42S3-22T	117	47
43S3-23M	88	69
44S3-23T	88	69
45SSS1	91	102
46SSS2	90	101
47SSS3	61	59
48SSS4	59	57
49SSS5	74	74
50SSS6	74	74
	44	
51SSS7		31
52SSS8	43	29

• Verifica a pressoflessione (Campata Ssup-2)

Acciaio					Calcestruz	zo					_	
Tensione car. di rottura	f _{tk}	=	540	N/mm ²	Tipo	C30/37			copriferro	40	mm	
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²	R_{ck}	37	N/mm²		staffe	10	mm	
Coeff. parziale di sicurezza	Ϋ́s	=	1.15		f_{ck}	30.71	N/mm²		armat. sec.	12	mm	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²	Yc	1.5						
Modulo elastico	Es	=	205000	N/mm ²	f_{cd}	20.5	N/mm²					
	ϵ_{yd}	=	0.00191		f_{cc}	17.4	N/mm²					
Geometria della sezione					Armatura	tesa			Armatura co	mpressa		
Altezza geometrica della sezio	n∉h	=	50	cm	Nº ferri	Diametro	Area		Nº ferri	Diametro	Area	
Base della sezione	b	=	100	cm	5	20	15.71	cm ²	5	20	15.71	cm ²
Copriferro	ď'	=	7.2	cm			0.00	cm ²			0.00	cm ²
Altezza utile della sezione	d	=	42.8	cm			0.00	cm ²			0.00	cm ²
							15.71	cm ²			15.71	cm ²
							15.71	cm²			15.71	cm²

Caratteristic	che di sollec	itazione
Comb.	Nsd	Msd
01s1-11M	67	76
02S1-11T	67	76
03S1-12M	138	57
04S1-12T	138	57
05S1-13M	103	66
06S1-13T	103	66
07s1-14-	126	-3
08S1-15-	91	6
09S1-21M	41	121
10S1-21T	41	121
11S1-22M	112	102
12S1-22T	112	102
13S1-23M	76	112
14S1-23T	76	112
15S1-24-	100	42
	64	51
1681-25-	_	
17S1T11M	70	53
18S1T11T	70	53
19S1T12M	130	37
20S1T12T	130	37
21S1T13M	100	45
22S1T13T	100	45
23S1T14-	121	-12
24S1T15-	91	-4
25S1T21M	33	120
26S1T21T	33	120
27S1T22M	92	104
28S1T22T	92	104
29S1T23M	62	112
30S1T23T	62	112
31S1T24-	83	55
32S1T25-	53	63
33S3-11M	67	76
34S3-11T	67	76
35S3-12M	138	57
36S3-12T	138	57
3783-13M	103	66
38S3-13T	103	66
3983-21M	41	121
40s3-21m	41	121
41S3-22M	100	105
41S3-22M 42S3-22T	100	105
	70	113
43S3-23M		
44S3-23T	70	113
45SSS1	75	12
46SSS2	75	9
47sss3	56	20
48SSS4	55	12
49SSS5	59	39
50SSS6	58	37
518887	40	48
52888	38	39

TALFERR GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLE AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) CONDOVE-VAIE (BIN. PARI)					
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO RE NTOI 04 D26CL IN0100003 A	EV. FOGLIO A 47 di 77				
Relazione di calcolo tombino						

Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcest	ruzzo		Sollecitazioni		Soletta sup
Tipo	C30/37		V_{Ed}	kN	232
R _{ck}	37	N/mm²	N_{Ed}	¹ kN	
ck	30.7	N/mm²	-		-
'c	1.5		Armatura a tag	jlio	
lcc	0.85		Diametro	mm	12
d	17.4	N/mm²	Numero barre		2.!
		-	A_{sw}	cm ²	2.83
cciaio			Passo s	cm	4
(540	N/mm²	Angolo α	•	9
k	450	N/mm²			
5	1.15		Armatura longi	tudinale	
d	391	N/mm²	n_1		5.0
			\emptyset_1	mm	20
			n ₂		
			\emptyset_2	mm	
			Asl	cm ²	15.71
			Sezione		
			b _w	cm	10
			Н	cm	5
			С	cm	7.
			d	cm	42.
			k	N/mm²	1.6
			V_{min}	N/mm²	0.4
			ρ	N// O	0.003
			σср	N/mm²	0.0
			α_{c}		1.0
			Resistenza sen	za armatura a tagli	io
			V_{Rd}	kN	194
				armatura a taglio	
			Inclinazione punto		21.
			V_{RSd}	kN	26
			V_{RCd}	kN	1150
			V_{Rd}	kN	260

ITALFERR	LINEA MODANE-TO	LINEA MODANE-TORINO						
	ADEGUAMENTO AVIGLIANA	LINEA STORICA TRA	TTA BUSSOLENO-					
GRUPPO FERROVIE DELLO STATO	_		ULO 750 m NELLE BIN. DISPARI) E					
IN01-CANALE SCOLMATORE	COMMESSA LOTTO	CODIFICA DOCUMENTO	REV. FOGLIO					
	NT0I 04	D26CL IN0100003	A 48 di 77					
Relazione di calcolo tombino								

• Verifica a fessurazione (Appoggio Ssup-1)

Sollecitazioni				
Momento flettente	М	83	kN m]
Sforzo normale	N	78	kN	
Materiali				
Res. caratteristica cls	R _{ck}	37	N/mm²]
Tensione ammissibile cls	σc_{amm}	11.5	N/mm²	
Res. media a trazione cls	f_{ctm}	3.0	N/mm²	
Res. caratteristica a trazione cls	f_{ctk}	2.1	N/mm²	
Tensione ammissibile acciaio	σs_{amm}	260	N/mm ²	
Coefficiente omog. acciaio-cls	n	15]
Caratteristiche geometriche				
Altezza sezione	Н	50	cm	
Larghezza sezione	В	100	cm	
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5 Ø 20 c _{s1} = 7.2 cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	\emptyset $c_{s2} = cm$
Armatura tesa (2° strato)	As_2	0.00	cm ²	\emptyset $c_{i2} = cm$
Armatura tesa (1º strato)	As ₁	15.71	cm ²	5.0 Ø 20 c _{i1} = 7.2 cm
Tensioni nei materiali				
Compressione max nel cls.	σς	3.3	N/mm²	< σc _{amm}
Trazione nell'acciaio (1º strato)	σs	112.1	N/mm²	< σa _{amm}
Eccentricità	e (M)	106.4	cm	> H/6 Sez. parzializzata
Lecendicia	u (M)	81.4	cm	> 11/0 Sez. parzializzata
Posizione asse neutro	y (M)	13.2	cm	
Area ideale (sez. int. reagente)	A _{id}	5440	cm ²	
Mom. di inerzia ideale (sez. int. reaq.)	J _{id}	1190974	cm ⁴	
Mom. di inerzia ideale (sez. parz. N=0)		291345	cm ⁴	
Vorifica a foresserious				
Verifica a fessurazione Momento di fessurazione (f _{ctk})	M _{fess} *	107	kN m	La sezione non è fessurata
MOMENTO OF TESSON AZIONE (Tak)	1*Ifess	107	KIN III	La Sezione non e ressurata

	LINEA MODANE-TORINO								
ITALFERR		ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA							
GRUPPO FERROVIE DELLO STATO		' DI	BORGONE-I	ENZE A MODU BRUZOLO (B		m NELLE SPARI) E			
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
	NT0I	04	D26CL	IN0100003	Α	49 di 77			
Relazione di calcolo tombino									

• Verifica a fessurazione (Campata Ssup-2)

Sollecitazioni Momento flettente	M	84	kN m	٦
Sforzo normale	N	18	kN	
510120 Hormale	IN	10	NI	
Materiali				
Res. caratteristica cls	R_{ck}	37	N/mm²	
Tensione ammissibile cls	σc_{amm}	11.5	N/mm²	
Res. media a trazione cls	f_{ctm}	3.0	N/mm²	
Res. caratteristica a trazione cls	f_{ctk}	2.1	N/mm²	
Tensione ammissibile acciaio	σs_{amm}	260	N/mm ²	
Coefficiente omog. acciaio-cls	n	15		_
Caratteristiche geometriche				
Altezza sezione	Н	50	cm	
Larghezza sezione	В	100	cm	
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5 Ø 20 c _{s1} = 7.2 cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	\emptyset $c_{s2} = cm$
Armatura tesa (2º strato)	As_2	0.00	cm ²	\emptyset $c_{i2} = cm$
Armatura tesa (1º strato)	As ₁	15.71	cm ²	5.0 Ø 20 c _{i1} = 7.2 cm
Tensioni nei materiali				
Compressione max nel cls.	σς	3.3	N/mm²	< σc _{amm}
Trazione nell'acciaio (1º strato)	σs	132.4	N/mm²	< σa _{amm}
Eccentricità	e (M)	454.6	cm	> H/6 Sez. parzializzata
Posizione asse noutro	u (M)	429.6	cm	
Posizione asse neutro Area ideale (sez. int. reagente)	y (M) A _{id}	11.7 5440	cm cm²	
` ,		1190974	cm ⁴	
Mom. di inerzia ideale (sez. int. reag.)	J _{id}		cm ⁴	
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	286105	CIII	
Verifica a fessurazione				
Momento di fessurazione (f _{ctk})	M _{fess} *	102	kN m	La sezione non è fessurata

	LINEA MODANE-TORINO
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 50 di 77
Relazione di calcolo tombino	1101 04 B2001 INCIDENCE A 30 di 77

10.4.3 Verifica soletta inferiore

Sezione: 100 x 70 cm

Armatura a flessione:

• Appoggio Sinf-1

Armatura tesa

ф 20/20 cm

Armatura compressa

ф 20/20 cm

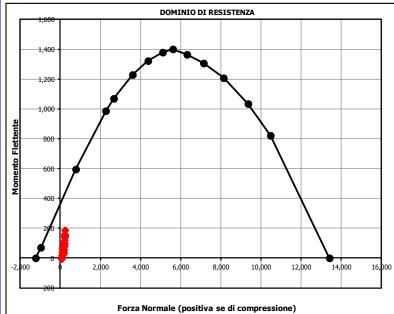
• Campata Sinf-2

Armatura tesa

ф 20/20 cm

Armatura compressa

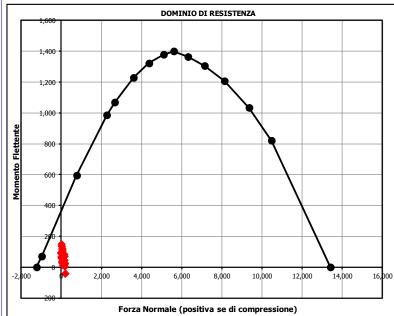
 ϕ 20/20 cm


Armatura a taglio:

Spille \(\psi \) 12/40x40 cm.

Verifica a pressoflessione (Appoggio Sinf-1)





Caratteristi	cho di collec i	itazione
	che di solleci	
Comb.	Nsd	Msd
01S1-11M	65	-5
02S1-11T	65	-5
03S1-12M	162	33
04S1-12T	162	33
05S1-13M	197	97
06S1-13T	197	97
07S1-14-	166	39
08S1-15-	202	103
09S1-21M	91	39
10S1-21T	91	39
11S1-22M	188	77
12S1-22T	188	77
13S1-23M	224	141
14S1-23T	224	141
15S1-24-	193	84
16S1-25-	228	148
17S1T11M	71	6
18S1T11T	71	6
19S1T12M	154	39
20S1T12T	154	39
21S1T13M	184	92
22S1T13T	184	92
23S1T14-	147	25
24S1T15-	177	79
25S1T21M	109	68
26S1T21T	109	68
27S1T22M	192	101
28S1T22T	192	101
29S1T23M	222	154
30S1T23T	222	154
31S1T24-	185	87
32S1T25-	215	141
33S3-11M	78	18
24C2 11T		
34S3-11T	78 175	18
35S3-12M	175	56
36S3-12T	175	56
37S3-13M 38S3-13T	210	120
2002 2444	210	120
39S3-21M	105	63
40S3-21T	105	63
41S3-22M	188	95
42S3-22T	188	95
43S3-23M	218	149
44S3-23T	218	149
45SSS1	215	159
46SSS2	216	160
47SSS3	130	71
48SSS4	132	73
49SSS5	232	187
50SSS6	232	188
51SSS7	147	99
52SSS8	148	102

• Verifica a pressoflessione (Campata Sinf-2)

Carattorieti	sho di collegi	itaziona
	che di solleci	
Comb.	Nsd	Msd
01S1-11M	51	109
02S1-11T	51	109
03S1-12M	148	71
04S1-12T	148	71
05S1-13M	15	136
06S1-13T	15	136
07S1-14-	166	6
08S1-15-	34	71
09S1-21M	77	64
10S1-21T	77	64
11S1-22M	174	26
12S1-22T	174	26
13S1-23M	42	92
14S1-23T	42	92
15S1-24-	193	-39
16S1-25-	60	27
17S1T11M	38	115
18S1T11T	38	115
19S1T12M	121	83
20S1T12T	121	83
21S1T13M	8	138
22S1T13T	8	138
23S1T14-	147	20
24S1T15-	34	75
25S1T21M	76	54
26S1T21T	76	54
27S1T22M	159	21
28S1T22T	159	21
29S1T23M	46	77
30S1T23T	46	77
31S1T24-	185	-42
32S1T25-	72	
33S3-11M		13
	38	123
34S3-11T	38	123
35S3-12M	134	85
36S3-12T	134	85
37S3-13M	2	150
38S3-13T	2	150
39S3-21M	64	78
40S3-21T	64	78
41S3-22M	147	46
42S3-22T	147	46
43S3-23M	34	101
44S3-23T	34	101
45SSS1	-27	95
46SSS2	-27	92
47SSS3	11	66
48SSS4	12	58
49SSS5	-11	67
50SSS6	-10	64
51SSS7	27	38
52SSS8	29	30

TALFERR GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE						
	CONDOVE		BORGONE-E IN. PARI)	BRUZOLO (BI	N. DIS	SPARI) E	
IN01-CANALE SCOLMATORE	COMMESSA NTOI	LOTTO 04	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 53 di 77	
Relazione di calcolo tombino							

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcest	ruzzo		Sollecitazioni	Soletta inf
ipo	C30/37		V_{Ed} kN	2:
:k	37	N/mm²	N _{Ed} kN	
:	30.7	N/mm²		1
	1.5		Armatura a taglio	
3	0.85		Diametro mm	1
l	17.4	N/mm²	Numero barre	
			A _{sw} cm	
cciaio			Passo s cm	
	540	N/mm²	Angolo α	
<	450	N/mm²		
	1.15		Armatura longitudinale	
i	391	N/mm²	n_1	
		-	\emptyset_1 mm	1
			n ₂	
			\emptyset_2 mm	n
			Asl cm	2 15.7
				_
			Sezione	
			b _w cm	1
			H cm	
			c cm	
			d cm	6.
			k N/n	nm² 1
			v _{min} N/n	nm² 0
			ρ	0.00
			'	nm² 0
			α_{c}	1
			Resistenza senza armatura a	taglio
			$\mathbf{V}_{\mathbf{Rd}}$ kN	23
			Resistenza con armatura a ta	alio
			Inclinazione puntone θ °	2
			V _{RSd} kN	3
				-
			V _{RCd} kN	16

ITALFERR GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO							
	ADEGUAN AVIGLIAN	_	LINEA ST	ORICA TRAT	TA BUS	SSOLENO-		
		' DI	BORGONE-I	ENZE A MODU BRUZOLO (B		m NELLE SPARI) E		
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	NTOI	04	D26CL	IN0100003	Α	54 di 77		
Relazione di calcolo tombino								

• Verifica a fessurazione (Appoggio Sinf-1)

Sollecitazioni									
Momento flettente	М	115	kN m]					
Sforzo normale	N	162	kN						
Materiali									
Res. caratteristica cls	R _{ck}	37	N/mm²	1					
Tensione ammissibile cls	σc_{amm}	11.5	N/mm ²						
Res. media a trazione cls	f_{ctm}	3.0	N/mm²						
Res. caratteristica a trazione cls	f_{ctk}	2.1	N/mm²						
Tensione ammissibile acciaio	σs_{amm}	260	N/mm ²						
Coefficiente omog. acciaio-cls	n	15							
Caratteristiche geometriche									
Altezza sezione	Н	70	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²		5	Ø	20	$c_{s1} = 7.2$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²			Ø		$c_{s2} =$	cm
Armatura tesa (2º strato)	As_2	0.00	cm ²			Ø		$c_{i2} = $	cm
Armatura tesa (1º strato)	As ₁	15.71	cm ²		5	Ø	20	c _{i1} = 7.2	cm
Tensioni nei materiali									
Compressione max nel cls.	σς	2.5	N/mm²	<	σca	mm			
Trazione nell'acciaio (1º strato)	σs	78.4	N/mm²	<	σa _a	mm			
	- (M)	70.0			11/6	C.		ia lia.t.a	
Eccentricità	e (M)	70.8 35.8	cm	>	H/6	56	ez. pa	arzializzata	
Posizione asse neutro	u (M) y (M)	20.1	cm cm						
Area ideale (sez. int. reagente)	y (M) A _{id}	7440	cm ²						
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	3222526	cm ⁴						
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	740168	cm ⁴						
inom. di inerzia lucale (sez. parz. 14–0)	JId↑	7-10100	GIII						
Verifica a fessurazione									_
Momento di fessurazione (f _{ctk})	M _{fess} *	213	kN m	La	ezior	ne n	on è	fessurata	

ITALFERR GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO							
	ADEGUAN AVIGLIAN	_	LINEA ST	ORICA TRATI	ΓA BUS	SSOLENO-		
		' DI	BORGONE-	ENZE A MODU BRUZOLO (B		m NELLE SPARI) E		
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	NT0I	04	D26CL	IN0100003	Α	55 di 77		
Relazione di calcolo tombino								

• Verifica a fessurazione (Campata Sinf-2)

Sollecitazioni									
Momento flettente	М	90	kN m]					
Sforzo normale	N	5	kN						
Materiali									
Res. caratteristica cls	R _{ck}	37	N/mm²						
Tensione ammissibile cls	σc_{amm}	11.5	N/mm ²						
Res. media a trazione cls	f_{ctm}	3.0	N/mm ²						
Res. caratteristica a trazione cls	f_{ctk}	2.1	N/mm ²						
Tensione ammissibile acciaio	σs_{amm}	260	N/mm ²						
Coefficiente omog. acciaio-cls	n	15]					
Caratteristiche geometriche									
Altezza sezione	Н	70	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²		5	Ø	20	$c_{s1} = 7.2$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²			Ø		$c_{s2} =$	cm
Armatura tesa (2° strato)	As_2	0.00	cm ²			Ø		$c_{i2} =$	cm
Armatura tesa (1º strato)	As ₁	15.71	cm ²		5.0	Ø	20	c _{i1} = 7.2	cm
Tensioni nei materiali									
Compressione max nel cls.	σς	1.9	N/mm²	<	σc _{ar}	nm			
Trazione nell'acciaio (1º strato)	σs	97.4	N/mm²	<	σa _{ar}	nm			
Eccentricità	e (M)	1975.0	cm	>	H/6	Sez	n:	arzializzata	
	u (M)	1940.0	cm	-	.,,	002	٠ ٢٠	ai LiaiiLLata	
Posizione asse neutro	y (M)	14.2	cm						
Area ideale (sez. int. reagente)	A _{id}	7440	cm ²						
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	3222526	cm ⁴						
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	663531	cm ⁴						
Verifica a fessurazione									
Momento di fessurazione (f _{ctk})	M _{fess} *	194	kN m	las	ezion	e no	n è	fessurata	1

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 56 di 77
Relazione di calcolo tombino	1101 07 B2502 IN0100003 A 30 ul //

11 DIMENSIONAMENTO DELL'APPARATO DI SPINTA

11.1 Fasi realizzative

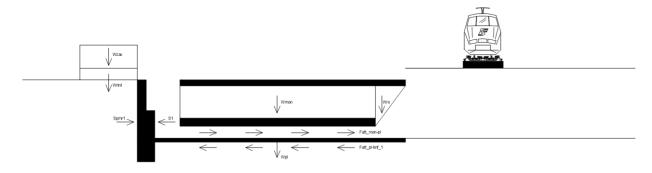
Il dispositivo di spinta è composto da una platea di varo e da un muro reggi-spinta che consentono l'infissione del monolite nel rispetto delle tolleranze plano-altimetriche richieste. La platea di varo costituisce la base di appoggio in sede provvisoria e il muro di spinta assicura il contrasto necessario per il varo del manufatto.

L'infissione avviene tramite martinetti che contrastano da un lato sulla struttura e dall'altro su una parete, detta muro reggispinta, che a sua volta scarica e ripartisce tale azione sul terreno retrostante.

La tecnica di spinta prevede l'utilizzo di lamiere da interporre tra il terreno di ricoprimento e la soletta superiore al fine di abbassare le aliquote di resistenza derivanti dall'attrito.

Il monolite viene messo in opera attraverso le seguenti fasi operative:

- realizzazione delle opere provvisionali;
- scavo per la realizzazione della platea reggi-spinta e del portale a sostegno del lamierino metallico;
- realizzazione della platea reggispinta;
- disposizione sulla platea di un doppio foglio di polietilene pesante per ottenere il distacco di getto tra manufatti e platea;
- realizzazione dei conci del sottopasso con il posizionamento del rostro con realizzazione del portale a sostegno del lamierino;
- avvio della fase di spinta dei conci;
- spinta del concio in posizione definitiva;
- rimozione del rostro demolendo il portale a sostegno del lamierino;
- rinterro:
- eventuale rimozione delle opere provvisionali.


TALFERR GRUPPO FERROVIE DELLO STATO	AVIGLIANA REALIZZA	IENTO A ZIONE D ' DI	LINEA STO	ORICA TRATI NZE A MODU BRUZOLO (B	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA NT0I	LOTTO 04	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 57 di 77
Relazione di calcolo tombino			-			

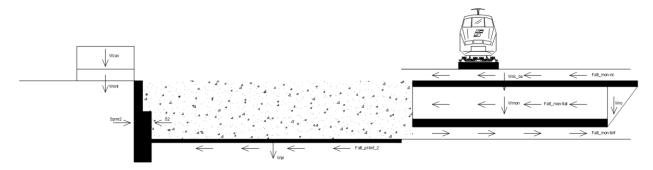
11.2 Calcolo della spinta

Per la verifica delle strutture di contrasto, necessarie ad assorbire le azione delle attrezzature di spinta, si individuano due configurazioni, relativamente una all'inizio e una alla fine delle operazioni di spinta.

11.2.1 Analisi dei carichi nella Fase 1 (spinta iniziale)

È la configurazione che si ha all'inizio delle operazioni di spinta.

In questa configurazione i martinetti di spinta devono vincere l'attrito fra l'intradosso della fondazione e la platea di varo. Il coefficiente di attrito di primo distacco può raggiungere valori di poco superiori all'unità. Essendo il monolite ancora all'esterno del terrapieno ferroviario, non è presente alcun attrito fra terreno e pareti laterali, fra terreno e soletta superiore e fra terreno e soletta inferiore.


Questa configurazione risulta significativa per il dimensionamento dell'armatura della platea di varo, soggetta a prevalenti azioni di sforzo normale di trazione. Tale sforzo normale ha valore nullo all'estremità libera ed aumenta gradualmente fino a raggiungere il valore massimo all'attacco col muro reggispinta. Tale sforzo è generato dalle azioni di attrito che nascono al contatto tra il monolite e la platea ed è parzialmente limitato dalle azioni di attrito tra la platea e il terreno sottostante.

In questa configurazione il muro reggispinta deve assorbire l'azione dei martinetti. A resistere alla spinta attiva generata dai martinetti idraulici si hanno i contributi della spinta passiva del terreno a monte del muro reggispinta e dell'attrito e della forza di attrito tra la platea e il terreno sottostante. La spinta attiva sul muro generata dai martinetti risulta inferiore a quella presente nella fase 2, che viene considerata per la valutazione della capacità resistente del muro. Infatti, la spinta che viene trasmessa al terreno retrostante va aumentando gradualmente man mano che il monolite avanza dalla fase 1 alla fase finale 2.

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 58 di 77
Relazione di calcolo tombino	3. 2232 INOTOCOCO // COCIATI

11.2.2 Analisi dei carichi nella Fase 2 (spinta massima)

Questa configurazione corrisponde alla fase in cui il monolite è uscito dalla platea di varo e la spinta è nella fasi finali.

In questa fase è massima la spinta che deve assorbire il terreno a monte del muro ed è minimo invece il contributo resistente fornito dalla platea di varo che si oppone alle azioni di martinetti di spinta soltanto con l'attrito sul terreno relativo al suo peso proprio. In questa fase si ha la massima spinta attiva sul muro reggispinta, che viene presa a riferimento per il dimensionamento del muro.

11.3 Calcolo delle azioni e verifica geotecnica

Relazione di calcolo tombino

Aprroccio di calcolo		A1+M1+R3		
1. Caratteristiche dei materiali				
1.1 Caratteristiche calcestruzzo muro reggispinta e platea di varo Classe di calcestruzzo				622/40
Resistenza a compressione cubica caratteristica	R _{ck}		[MPa]	C32/40 40.00
Resistenza a compressione cubica característica	f _{ck}		[MPa]	33.20
Resistenza a compressione cimiarica caratteristica	-	$f_{cm} = f_{ck} + 8 \text{ MPa}$	[MPa]	41.20
·	f _{cm}	I _{cm} = I _{ck} +8 IVIPa		
Resistenza media a trazione caratteristica	f _{ctm}		[MPa]	3.10
Coefficiente parziale di sicurezza per resistenza	Ϋ́c		[-]	1.50
Coefficiente riduttivo per resistenze di lunga durata	α _{cc}		[-]	0.85
Resistenza a compressione cilindrica di calcolo	f _{cd}	$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_c$	[MPa]	18.81
Peso specifico calcestruzzo	Ycls		[kN/m ³]	25.00
1.2 Caratteristiche acciaio muro reggispinta e platea di varo				
Classe acciaio barre di armatura	Classe		[-]	B450C
Tensione caratteristica di snervamento	f _{yk}		[MPa]	450.00
Tensione caratteristica di rottura	f _{tk}		[MPa]	540.00
Coefficiente parziale di sicurezza per resistenza	γ _s		[-]	1.15
Resistenza a snervamento di calcolo	f _{yd}		[MPa]	391.30
1.3 Caratteristiche del terreno di ricoprimento, del terreno ai lati del	monolite e del ter	reno sotto la platea		
1.3.1 Parametri geotecnici caratteristici		•		
Peso specifico del terreno di ricoprimento sopra al monolite	γ _{t_ric}		[kN/m³]	20.00
Peso specifico del terreno ai lati del monolite	γ_{t_tlat}		[kN/m³]	19.00
Peso specifico del terreno sotto la platea e il monolite	γ_{t_tinf}		[kN/m³]	19.00
Peso specifico del terreno a tergo del muro reggispinta	γ _{t_mr}		[kN/m³]	19.00
Peso specifico del terreno di rinterro a tergo del muro reggispinta	γ _{t_rint}		[kN/m³]	19.00
Angolo di attrito del terreno di ricoprimento sopra al monolite	Φ' _{ric}		[°]	38.00
Angolo di attrito del terreno ai lati del monolite	φ' _{tlat}		[°]	32.00
Angolo di attrito del terreno sotto la platea e il monolite	φ' _{tinf}		[°]	32.00
Angolo di attrito del terreno alla base del muro reggispinta	φ' _{mr_tinf}		[°]	32.00
Angolo di attrito del terreno a tergo del muro reggispinta	Ф'тг		[°]	32.00
Coesione efficace del terreno a tergo del muro reggispinta	c' _{mr}		[MPa]	0.00
Coesione non drenata del terreno a tergo del muro reggispinta	C _{u_mr}		[MPa]	0.00
1.3.2 Coefficienti paziali di sicurezza per i materiali				
Fipologia di metedo di calcolo	M		[-]	M1
Coefficiente per peso dell'unità di volume di terreno	Υν		[-]	1.00
Coefficiente tangente dell'angolo di attrito	γ _{φ'}		[-]	1.00
Coefficiente per coesione efficace	γ _{c'}		[-]	1.00
	T C			

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

COMMESSA NT0I

LOTTO COI

04

CODIFICA D26CL DOCUMENTO IN0100003 REV.

Α

FOGLIO 60 di 77

Relazione di calcolo tombino

1.3.3 Parametri geotecnici di calcolo				
Peso specifico del terreno di ricoprimento sopra al monolite	ν _{td_ric}		[kN/m ³]	20.00
Peso specifico del terreno ai lati del monolite	γ_{td_tlat}		[kN/m ³]	19.00
Peso specifico del terreno sotto la platea e il monolite	Y _{td_tinf}		[kN/m ³]	19.00
Peso specifico del terreno a tergo del muro reggispinta	Y _{td_mr}		[kN/m ³]	19.00
Peso specifico del terreno di rinterro a tergo del muro reggispinta	Y _{td_rint}		[kN/m ³]	19.00
Angolo di attrito del terreno di ricoprimento sopra al monolite	φ _d ' _{ric}		[°]	38.00
Angolo di attrito del terreno ai lati del monolite	Φ _d ' _{tlat}		[°]	32.00
Angolo di attrito del terreno sotto la platea e il monolite	Φ _d ' _{tinf}		[°]	32.00
Angolo di attrito del terreno alla base del muro reggispinta	φ' _{mr_tinf}		[°]	32.00
Angolo di attrito del terreno a tergo del muro reggispinta	φ _{d'mr}		[°]	32.00
Coesione efficace del terreno a tergo del muro reggispinta	C _d ' _{mr}		[MPa]	0.00
Coesione non drenata del terreno a tergo del muro reggispinta	C _{ud_mr}		[MPa]	0.00
1.4 Coefficienti di spinta e attrito di calcolo				
Grado di sovraconsolidazione del terreno ai lati del monolite	OCR		[-]	1.00
Coefficiente empirico	m		[-]	0.55
Coefficiente di spinta a riposo del terreno ai lati del monolite	k _{0_tlat}	$k_{0_{\text{tlat}}} = [1-\sin(\phi_{\text{d tlat}})]*OCR^{m}$	[-]	0.47
Coefficiente di spinta passiva del terreno a tergo del muro reggispinta	k _{p_mr}	$k_{p_{mr}} = [1+\sin(\phi_{d'mr})]/[(1-\sin(\phi_{d'mr})]$	[-]	3.25
Coefficiente di attrito monolite-terreno di ricoprimento	μ_{mon_ric}	$\mu_{\text{mon_ric}} = (2/3) * \text{tg} (\phi_{\text{d'ric}})$	[-]	0.52
Coefficiente di attrito monolite-terreno laterale	μ_{mon_tlat}	$\mu_{\text{mon_tlat}} = (2/3) * \text{tg} (\phi_{\text{d tlat}})$	[-]	0.42
Coefficiente di attrito platea/monolite con il terreno sottostante	μ _{pl/mon_tinf}	$\mu_{pl/mon_tinf} = tg (\phi_{d'tinf})$	[-]	0.62
Coefficiente di attrito muro-terreno sottostante	μ_{mr_tinf}	$\mu_{mr_tinf} = tg (\phi_{d'mr_tinf})$	[-]	0.62
Coefficiente di attrito monolite-platea di primo distacco	μ _{mon pl}		[-]	1.00

2. Geometria				
2.1 Geometria del monolite				
Dimensione longitudinale del monolite a meno del rostro	L _{long_mon-ro}	$L_{long_mon} = L_{long_mon-ro} + L_{long_ro}$	[m]	12.00
Spessore soletta superiore	S _s		[m]	0.50
Spessore soletta di fondazione	S _f		[m]	0.70
Spessore piedritti	Sp		[m]	0.50
Altezza netta del monolite	H _{int}		[m]	2.80
Larghezza netta del monolite	L _{int}		[m]	2.70
Larghezza ringrosso della soletta di fondazione	L _r		[m]	0.00
Altezza totale del monolite	H _{mon}	$H_{mon} = S_s + S_r + H_{int}$	[m]	4.00
Larghezza del monolite a meno del ringrosso	L _{trasv_mon}	$L_{trasv_mon} = 2*S_p + L_{int}$	[m]	3.70
Area della sezione piena del monolite	A _{mon}	$A_{mon} = (H_{mon} * L_{trasv_mon} - H_{int} * L_{int}) + 2 * L_r * S_f$	[m ²]	7.24
Dimensione longitudinale del rostro	L _{long_ro}		[m]	5.00
Spessore setti del rostro	S _{ro}	$S_{ro} = S_p$	[m]	0.50
Altezza del rostro	H _{ro}	H _{ro} = H _{mon}	[m]	4.00
Area laterale del rostro	A _{lat_ro}	$A_{lat_ro} = (L_{long_ro} * H_{ro})/2$	[m ²]	10.00
Larghezza trasversale del rostro	L _{trasv_ro}	L _{trasv_ro} = L _{trasv_mon}	[m]	3.70
Dimensione longitudinale del monolite	L _{long_mon}	$L_{long_mon} = L_{long_mon} + L_{long_ro}$	[m]	17.00
Area laterale del monolite	A _{lat_mon}	$A_{lat_mon} = H_{mon} * L_{long_mon-ro} + A_{lat_ro}$	[m ²]	58.00

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

Relazione di calcolo tombino

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO ${f NT01}$ 04 D26CL IN0100003 A 61 di 77

2.2 Geometria della platea di varo				
Dimensione londitudinale della platea	L _{long_pl}		[m]	18.20
Dimensione trasversale della platea	L _{trasv_pl}		[m]	5.50
Spessore della platea	S _{pl}		[m]	0.40
Area della sezione della platea	A _{pl}	$A_{pl} = L_{trasv_pl} * S_{pl}$	[m²]	2.20
2.3 Geometria del muro reggispinta				
Dimensione trasversale del muro	L _{trasv_mr}		[m]	5.50
Altezza del muro sopra al piano campagna	H _{mr_sup}		[m]	4.60
Altezza del dente sotto al piano campagna	H _{mr_inf}		[m]	0.40
Altezza del muro	H _{mr}	$H_{mr} = H_{mr_sup} + H_{mr_inf}$	[m]	5.00
Altezza del muro con spessore minimo sopra al piano campagna	H _{mr_smin}		[m]	2.70
Altezza del muro con spessore massimo sopra al piano campagna	H _{mr_smax}	$H_{mr_smax} = H_{mr_sup} - H_{mr_smin}$	[m]	1.90
Spessore minimo del muro	S _{mr_min}		[m]	0.75
Spessore massimo del muro	S _{mr_max}		[m]	1.50
Spessore del dente del muro	S _{mr_dente}	$S_{mr_dente} = S_{mr_max}$	[m]	1.50
Area della sezione del muro con spessore minore	A _{mr_min}	$A_{mr_min} = H_{mr_smin} * S_{mr_min}$	[m ²]	2.03
Area della sezione del muro con spessore maggiore	A _{mr_max}	$A_{mr_max} = H_{mr_smax} * S_{mr_max}$	[m ²]	2.85
Area della sezione del dente	A _{mr_dente}	$A_{mr_dente} = H_{mr_inf} * S_{mr_dente}$	[m ²]	0.60
Area della sezione del muro	A _{mr}	$A_{mr} = A_{mr_min} + A_{mr_max}$	[m ²]	5.48
Interasse martinetti idraulici	i _{mar}		[m]	1.00
2.4 Geometria della sovrastruttura sopra al monolite				
Altezza dello strato di ricoprimento sopra al monolite	H _r		[m]	0.60
Spessore del complesso ballast più armamento	H _{ba}		[m]	0.80
Dimensione longitudinale del complesso ballast più armamento	L _{long_ba}		[m]	8.00
Altezza dello strato di rinterro permanente a tergo del muro di spinta	H _{rint}		[m]	1.00
Altezza della zavorra di blocchi di calcestruzzo prefabbricati	H _{zav}		[m]	1.00

3. Coefficienti paziali di sicurezza per le verifi	iche geotecniche e strutturali		
3.1 Coefficienti parziali di sicurezza per le azioni con effe	tto sfavorevole		
Tipologia di metodo di calcolo	A	[-]	A1
Tipologia di coefficienti parziali per le azioni	S/F	[-]	Sfavorevol
Coefficiente per carichi permanenti strutturali	γ _{G1_s}	[-]	1.30
Coefficiente per carichi permanenti non strutturali	Y _{G2_s}	[-]	1.50
Coefficiente per carichi variabili	Yas	[-]	1.50
3.2 Coefficienti parziali di sicurezza per le azioni con effe	tto favorevole		
Tipologia di metodo di calcolo	A	[-]	A1
Tipologia di coefficienti parziali per le azioni	S/F	[-]	Favorevoli
Coefficiente per carichi permanenti strutturali	Y _{G1_f}	[-]	1.00
Coefficiente per carichi permanenti non strutturali	Y _{G2_f}	[-]	0.80
Coefficiente per carichi variabili	Ya_f	[-]	0.00
3.3 Coefficienti parziali di sicurezza per la resistenza			
Tipologia di metodo di calcolo	R	[-]	R3
Coefficiente scorrimento	Ϋ́R	[-]	1.10
Coefficiente per resistenza del terreno a valle	Υ _R	[-]	1.40

04

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-**AVIGLIANA**

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E **CONDOVE-VAIE (BIN. PARI)**

IN01-CANALE SCOLMATORE

LOTTO COMMESSA NT0I

CODIFICA D26CL

DOCUMENTO IN0100003

REV.

Α

FOGLIO 62 di 77

Relazione di calcolo tombino

4. Verifica geotecnica di resistenza del terreno a tergo	del muro i	reggispinta nella fase 1		
4.1 Analisi dei carichi nella fase 1 - spinta attiva sul muro reggispint				
4.1.1 Carichi permanenti strutturali per spinta attiva sul muro reggis	spinta			
Peso proprio del monolite	W _{mon}	$W_{mon} = \gamma_{cls} * (A_{mon} * L_{long_mon-ro} + 2 * A_{lat_ro} * S_{ro})$	[kN]	2422.00
Forza di attrito tra monolite e platea di varo	F _{att_mon-pl}	$F_{att_mon-pl} = W_{mon} * \mu_{mon_pl}$	[kN]	2422.00
Spinta sul muro reggispinta per carichi strutturali in fase 1	S _{1_G1}	$S_{1_G1} = F_{att_mon-pl}$	[kN]	2422.00
4.2 Analisi dei carichi nella fase 1 - azioni resistenti alla spinta sul n	nuro reggispint	za		
4.2.1 Carichi permanenti strutturali per spinta passiva del terreno				
Tensione verticale in testa al muro reggispinta	σ_{vmr_t}	$\sigma_{vmr_t} = \gamma_{cls} * H_{zav} + \gamma_{td_rint} * H_{rint}$	[kPa]	44.00
Tensione orizzontale passiva in testa al muro reggispinta	σ_{hpmr_t}	$\sigma_{hpmr_t} = k_{p_mr} * \sigma_{vmr_t} + 2* c_{d'mr} * Vk_{p_mr}$	[kPa]	143.20
Tensione verticale alla base del muro reggispinta	σ_{vmr_b}	$\sigma_{vmon_b_G1} = \sigma_{vmr_t} + \gamma_{td_mr} + H_{mr}$	[kPa]	139.00
Tensione orizzontale passiva alla base del muro reggispinta	σ_{hpmr_b}	$\sigma_{hpmr_b} = k_{p_mr} * \sigma_{vmr_b} + 2 * c_{d'mr} * V k_{p_mr}$	[kPa]	452.39
Primo contributo spinta passiva statica a tergo del muro reggispinta	S _{pmr_1}	$S_{pmr_1} = \sigma_{hpmr_t} * H_{mr} * L_{trasv_mr}$	[kN]	3938.05
Secondo contributo spinta passiva statica a tergo del muro reggispinta	S _{pmr_2}	$S_{pmr_2} = 0.50*(\sigma_{hpmr_b} - \sigma_{hpmr_t})*H_{mr}*L_{trasv_mr}$	[kN]	4251.31
Spinta passiva statica del terreno a tergo del muro reggispinta	S _{pmr}	$S_{pmr} = S_{pmr_1} + S_{pmr_2}$	[kN]	8189.36
4.2.2 Carichi permanenti strutturali per forze di attrito resistenti				
Peso proprio del muro reggispinta	W _{mr}	$W_{mr} = \gamma_{cls} *A_{mr} *L_{trav_mr}$	[kN]	752.81
Peso proprio della platea di varo	W _{pl}	$W_{pl} = \gamma_{cls} * A_{pl} * L_{long_pl}$	[kN]	1001.00
Forza di attrito caratteristica tra platea di varo e terreno sotto la platea in fase 1	F _{att_pl-tinf_1}	$F_{att_pl-tinf_1} = (W_{mon} + W_{pl}) * \mu_{pl/mon_tinf}$	[kN]	2138.93
Forza di attrito tra muro e terreno sottostante al muro in fase 1	F _{att_mr-tinf_1}	$F_{att_mr-tinf_1} = W_{mr} * \mu_{mr_tinf}$	[kN]	470.41
4.3 Spinta attiva di calcolo sul muro reggispinta indotta dai martinet	ti idraulici			
Spinta di calcolo sul muro reggispinta in fase 1 per carichi strutturali	S _{1d_G1}	$S_{1d_G1} = \gamma_{G1_s} * S_{1_G1}$	[kN]	3148.60
Spinta di calcolo sul muro reggispinta in fase 1	S _{1d}	$S_{1d} = S_{1d_G1}$	[kN]	3148.60
4.4 Azioni resistenti di calcolo alla spinta sul muro reggispinta indot	ta dai martinet	ti idraulici		
Spinta passiva di calcolo sul muro reggispinta per carichi strutturali	S _{pmrd}	$S_{pmrd} = (\gamma_{G1_f} * S_{pmr}) / \gamma_R$	[kN]	5849.54
Forza di attrito di calcolo tra platea di varo e terreno sotto la platea in fase 1	F _{attd_pl-tinf_1}	$F_{\text{attd_pl-tinf_1}} = (\gamma_{\text{G1_f}} * F_{\text{att_pl-tinf_1}}) / \gamma_{\text{R}}$	[kN]	1527.81
Forza di attrito di calcolo tra muro e terreno sottostante al muro in fase 1	F _{attd_mr-tinf_1}	$F_{attd_mr-tinf_1} = (\gamma_{G1_f} * F_{att_mr-tinf_1}) / \gamma_R$	[kN]	336.01
Azione resistente di calcolo alla spinta sul muro reggispinta in fase 1	R _{spd_1}	$R_{sp_1} = S_{pmrd} + F_{att_pl-tinf_1} + F_{att_mr-tinf_1}$	[kN]	7713.35
4.5 Verifica geotecnica di resistenza del terreno a tergo del muro re	ggispinta			
Spinta di calcolo sul muro reggispinta in fase 1	S _{1d}		[kN]	3148.60
Azione resistente di calcolo alla spinta sul muro reggispinta in fase 1	R _{spd_1}		[kN]	7713.35
Verifica geotecnica di resistenza del terreno a tergo del muro in fase 1	P _{Rmr 1}	$\rho_{Rmr_{-}1} = S_{1d}/R_{spd_{-}1}$	[-]	0.41

04

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-**AVIGLIANA**

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E **CONDOVE-VAIE (BIN. PARI)**

IN01-CANALE SCOLMATORE

LOTTO COMMESSA NT0I

CODIFICA D26CL

DOCUMENTO IN0100003

REV. FOGLIO

63 di 77

Α

Relazione di calcolo tombino

5. Verifica geotecnica di resistenza del terreno a tergo		reggispinta nella fase 2		
5.1 Analisi dei carichi nella fase 2 - spinta attiva sul muro reggispint 5.1.1 Carichi permanenti strutturali per spinta attiva sul muro reggis				
5.1.1 Carichi permanenti strutturali per spinta attiva sui muro reggis Peso proprio del monolite	•	\\\ _\\ *\\ \ \\	[kN]	2422.00
Forza di attrito tra monolite e terreno sotto il monolite per G1	W _{mon}	$W_{mon} = \gamma_{cls} * (A_{mon} * L_{long_mon-ro} + 2 * A_{lat_ro} * S_{ro})$	[kN]	1513.43
Spinta sul muro reggispinta per carichi strutturali in fase 2	F _{att_mon-tinf_G1}	F _{att_pl-tinf_G1} = W _{mon} *μ _{pl/mon_tinf}	[kN]	1513.43
pinta sui muro reggispinta per cancin strutturan m rase 2	S _{2_G1}	$S_{2_G1} = F_{att_mon-tinf_G1}$	[KIN]	1313.43
5.1.2 Carichi permanenti non strutturali per spinta attiva sul muro re	eggispinta			
Peso specifico del complesso ballast più armamento	γ _{ba}		[kN/m³]	18.00
Tensione verticale in testa al monolite	σ_{vmon_t}	$\sigma_{vmon_t} = \gamma_{ba} * H_{ba} * (L_{long_ba} / L_{long_mon}) + \gamma_{td_{ric}} * H_r$	[kPa]	18.78
Tensione orizzontale in testa al monolite	σ_{hmon_t}	$\sigma_{hmon_t} = k_{0_{tlat}} \sigma_{vmon_t}$	[kPa]	8.83
Tensione verticale alla base del monolite	σ_{vmon_b}	$\sigma_{vmon_b} = \sigma_{vmon_t} + \gamma_{td_tlat} + H_{mon}$	[kPa]	94.78
ensione orizzontale alla base del monolite	σ_{hmon_b}	$\sigma_{\text{hmon_b}} = k_{0_\text{tlat}} * \sigma_{\text{vmon_b}}$	[kPa]	44.55
ensione orizzontale media all'interfaccia monolite-terreno laterale	σ_{hmon_tlat}	$\sigma_{hmon_tlat} = (\sigma_{hmon_t} + \sigma_{hmon_b})/2$	[kPa]	26.69
ensione tangenziale media all'interfaccia monolite-terreno laterale	τ_{mon_tlat}	$\tau_{mon_tlat} = \sigma_{hmon_tlat} * \mu_{mon_tlat}$	[kPa]	11.12
ensione tangenziale all'interfaccia monolite-terreno di ricoprimento	τ_{mon_ric}	$\tau_{mon_ric} = \sigma_{vmon_t}^* \mu_{mon_ric}$	[kPa]	9.78
orza di attrito tra monolite e terreno di ricoprimento	F _{att_mon-ric}	$F_{att_mon_ric} = \tau_{mon_ric} * L_{long_mon} * L_{trasv_mon}$	[kN]	615.15
orza di attrito tra monolite e terreno laterale	F _{att_mon-tlat}	$F_{att_mon-tlat} = \tau_{mon_tlat} * A_{lat_mon}$	[kN]	644.86
Forza di attrito tra monolite e terreno sotto il monolite per G2	F _{att_mon-tinf_G2}	$F_{att_mon-tinf_G2} = \sigma_{vmon_t} * L_{long_mon} * L_{trasv_mon} * \mu_{pl/mon_tinf}$	[kN]	738.00
Spinta sul muro reggispinta per carichi non strutturali in fase 2	S _{2_G2}	$S_{2_G2} = F_{att_mon-ric} + 2*F_{att_mon-tlat} + F_{att_mon-tinf_G2}$	[kN]	2642.87
E 2 Augliei dei equiebi unlla face 2 quieni registenti alla quinta qui		-t		
5.2 Analisi dei carichi nella fase 2 - azioni resistenti alla spinta sul n 5.2.1 Carichi permanenti strutturali per spinta passiva del terreno	iuro reggispii	иа		
ensione verticale in testa al muro reggispinta	σ_{vmr_t}	$\sigma_{vmr,t} = \gamma_{cls} + H_{zav} + \gamma_{td,rint} + H_{rint}$	[kPa]	44.00
ensione orizzontale passiva in testa al muro reggispinta	σ _{hpmr_t}	$\sigma_{hpmr} t = k_{p mr} + \sigma_{vmr} t + 2 c_{d'mr} + v_{k_{p mr}}$	[kPa]	143.20
ensione verticale alla base del muro reggispinta	σ _{vmr b}	$\sigma_{\text{vmon b G1}} = \sigma_{\text{vmr}} t + V_{\text{td mr}} * H_{\text{mr}}$	[kPa]	139.00
ensione verticale and base der maio reggispinta ensione orizzontale passiva alla base del muro reggispinta	σ _{hpmr_b}	$\sigma_{\text{hpmr,b}} = k_{\text{p.mr}} * \sigma_{\text{vmr,b}} + 2 * c_{\text{d.mr}} * \text{vk}_{\text{p.mr}}$	[kPa]	452.39
Primo contributo spinta passiva una base del muro reggispinta	S _{pmr_1}	$S_{pmr_1} = \sigma_{hpmr_t} * H_{mr} * L_{trasv_mr}$	[kN]	3938.05
Secondo contributo spinta passiva statica a tergo del muro reggispinta	S _{pmr_2}	$S_{pmr_2} = 0.50*(\sigma_{hpmr_b} - \sigma_{hpmr_t})*H_{mr}*L_{trasv_mr}$	[kN]	4251.31
Spinta passiva statica del terreno a tergo del muro reggispinta	S _{pmr_2}	$S_{\text{pmr}} = S_{\text{pmr}} + S_{$	[kN]	8189.36
	·	· - · -		
5.2.2 Carichi permanenti strutturali per forze di attrito resistenti				
Peso proprio del muro reggispinta	W _{mr}	$W_{mr} = \gamma_{cls} * A_{mr} * L_{trav_mr}$	[kN]	752.81
Peso proprio della platea di varo	W _{pl}	$W_{pl} = \gamma_{cls} * A_{pl} * L_{long_pl}$	[kN]	1001.00
Forza di attrito caratteristica tra platea di varo e terreno sotto la platea in fase 2	F _{att_pl-tinf_2}	$F_{att_pl-tinf_2} = W_{pl} * \mu_{pl/mon_tinf}$	[kN]	625.49
Forza di attrito tra muro e terreno sottostante al muro in fase 2	F _{att_mr-tinf_2}	$F_{att_mr-tinf_2} = W_{mr} * \mu_{mr_tinf}$	[kN]	470.41
	411			
5.3 Spinta di calcolo sul muro reggispinta indotta dai martinetti idra		C *C	[LAI]	1067.46
Spinta di calcolo sul muro reggispinta in fase 2 per carichi strutturali	S _{2d_G1}	$S_{2d_{G1}} = \gamma_{G1_{S}} * S_{2_{G1}}$	[kN]	1967.46 3964.31
Spinta di calcolo sul muro reggispinta in fase 2 per carichi non strutturali Spinta di calcolo sul muro reggispinta in fase 2	S _{2d_G2}	$S_{2d_{G2}} = \gamma_{G2_{-s}} * S_{2_{G2}}$ $S_{2d} = S_{2d_{G1}} + S_{2d_{G2}}$	[kN] [kN]	5931.77
spirita di Calcolo sui muro reggispirita in rase 2	3 _{2d}	3 _{2d} = 3 _{2d_G1} +3 _{2d_G2}	[KIN]	3931.77
5.4 Azioni resistenti di calcolo alla spinta sul muro reggispinta indoti	ta dai martine	etti idraulici		
Spinta passiva di calcolo sul muro reggispinta per carichi strutturali	S _{pmrd}	$S_{pmrd} = (\gamma_{G1 f} * S_{pmr}) / \gamma_{R}$	[kN]	5849.54
orza di attrito di calcolo tra platea di varo e terreno sotto la platea in fase 2	F _{attd_pl-tinf_2}	$F_{\text{attd pl-tinf }2} = (\gamma_{\text{G1 f}} * F_{\text{att pl-tinf }2}) / \gamma_{\text{R}}$	[kN]	568.63
orza di attrito di calcolo tra muro e terreno sottostante al muro in fase 2	F _{attd mr-tinf 2}	$F_{\text{attd mr-tinf }2} = (\gamma_{\text{G1 }f} * F_{\text{att pl-tinf }2})/\gamma_{\text{R}}$	[kN]	336.01
Azione resistente di calcolo alla spinta sul muro reggispinta in fase 2	R _{spd_2}	$R_{sp_2} = S_{pmrd} + F_{att_pl-tinf_2}$	[kN]	6754.18
5.5 Verifica geotecnica di resistenza del terreno a tergo del muro reg			[].617	F024 ==
Spinta di calcolo sul muro reggispinta in fase 2	S _{2d}		[kN]	5931.77
Azione resistente di calcolo alla spinta sul muro reggispinta in fase 2	R _{spd_2}		[kN]	6754.18

LINEA MODANE-TORINO							
		LINEA STO	ORICA TRATI	ΓA BUS	SSOLENO-		
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
NTOI	04	D26CL	IN0100003	Α	64 di 77		
	ADEGUAM AVIGLIANA REALIZZA LOCALITA CONDOVE	ADEGUAMENTO AVIGLIANA REALIZZAZIONE D LOCALITA' DI CONDOVE-VAIE (B	ADEGUAMENTO LINEA STO AVIGLIANA REALIZZAZIONE DI PRECEDE LOCALITA' DI BORGONE-E CONDOVE-VAIE (BIN. PARI) COMMESSA LOTTO CODIFICA	ADEGUAMENTO LINEA STORICA TRATTAVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODU LOCALITA' DI BORGONE-BRUZOLO (B CONDOVE-VAIE (BIN. PARI) COMMESSA LOTTO CODIFICA DOCUMENTO	ADEGUAMENTO LINEA STORICA TRATTA BUSAVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 LOCALITA' DI BORGONE-BRUZOLO (BIN. DIS CONDOVE-VAIE (BIN. PARI)		

11.4 PLATEA DI VARO

11.4.1 Ipotesi di calcolo

La platea è soggetta a prevalenti azioni di sforzo normale di trazione. Tale sforzo normale ha valore nullo all'estremità libera ed aumenta gradualmente fino a raggiungere il valore massimo all'attacco col muro reggispinta.

La forza di trazione agente sulla platea è la massima tra quella che si ha in fase 1 e fase 2. In fase 1 tale forza è pari alla differenza tra la forza di attrito che nasce al contatto tra la il monolite e la platea (corrisponde alla spinta attiva sul muro reggispinta in fase 1) e la forza di attrito tra la platea e il terreno sottostante. In fase 2 tale forza è pari alla sola forza di attrito tra la platea e il terreno sottostante.

L'armatura a trazione progettata deve garantire l'assorbimento dello sforzo normale di trazione. Come minimo di armatura longitudinale da disporre inferiormente e superiormente si considerano le prescrizioni riportate al paragrafo 7.2.5 delle NTC 2018. Tali valori minimi si considerano anche per l'armatura trasversale, a cui si aggiunge un ulteriore minimo pari al 20% dell'armatura disposta in direzione longitudinale.

Nelle tabelle a seguire si riportano i calcoli di dimensionamento dell'armatura in direzione longitudinale e trasversale.

6. Progetto e verifica della platea di varo				
6.1 Dimensionamento armatura longitudinale della platea di varo				
Forza di trazione sulla platea di varo nella fase 1	F _{td_1}	$F_{td_{-1}} = S_{1d} - F_{attd_{-}pl - tinf_{-1}}$	[kN]	1620.79
Forza di trazione sulla platea di varo nella fase 2	F _{td_2}	$F_{td_2} = \gamma_{G1_s} * F_{att_pl-tinf_2}$	[kN]	813.14
Forza massima di trazione sulla platea di varo	F _{td}	$F_{td} = max(F_{td_1}; F_{td_2})$	[kN]	1620.79
Larghezza media della zona tesa	b _t	$b_t = L_{trasv_pl}$	[m]	5.50
Distanza lembo esterno sezione asse armatura	С		[cm]	5.00
Altezza utile della sezione	d	$d = S_{pl} - c$	[cm]	35.00
Minimo d'armatura inferiore per NTC	A _{s, min_inf_NTC}	$A_{s, min_inf_NTC} = 0.001*b_t*S_{pl}$	[cm ²]	22.00
Minimo d'armatura superiore per NTC	A _{s, min_sup_NTC}	$A_{s, min_sup_NTC} = 0.001*b_t*S_{pl}$	[cm ²]	22.00
Minimo d'armatura longitudinale per NTC	A _{s, min_NTC}	$A_{s, min_NTC} = A_{s, min_inf_NTC} + A_{s, min_sup_NTC}$	[cm ²]	44.00
Minimo d'armatura per massima azione di trazione sulla platea	A _{s, min_Ftd}	$A_{s, min_Ftd} = F_{td} / f_{yd}$	[cm ²]	41.42
Minimo d'armatura in zona tesa	A _{s, min}	$A_{s, min} = max(A_{s, min_NTC}; A_{s, min_Ftd})$	[cm ²]	44.00
Minimo d'armatura in zona tesa a metro lineare	A _{s, min_ml}	$A_{s, min_ml} = A_{s, min} / L_{trasv_pl}$	[cm ² /m]	8.00
Diametro barra di armatura	ф		[mm]	20
Area della barra di armatura	A _s	$A_s = \pi^* \Phi^2 / 4$	[mm²]	314.16
Numero di ferri a metro lineare superiormente o inferiormente	n		[-]	5.00
Numero di ferri a metro lineare totale	n _{tot}	$n_{tot} = n*2$	[-]	10.00
Area totale delle barre di armatura a metro lineare	A _{s_tot}	$A_{s_tot} = n_{tot} * A_s$	[cm ²]	31.42
Interasse barre di armatura superiori e inferiori	S	s = 100/n	[cm]	20.00

	LINEA MODANE-TORINO
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO AVIGLIANA
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELL LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
	NT0I 04 D26CL IN0100003 A 65 di 77
Relazione di calcolo tombino	

6.2 Dimensionamento armatura trasversale della platea di varo				
Larghezza media della zona tesa	b _t	$b_t = L_{trasv_pl}$	[m]	5.50
Minimo d'armatura inferiore per NTC	A _{s, min_inf_NTC}	$A_{s, min_inf_NTC} = 0.001*b_t*S_{pl}$	[cm ²]	22.00
Minimo d'armatura superiore per NTC	A _{s, min_sup_NTC}	$A_{s, min_sup_NTC} = 0.001*b_t*S_{pl}$	[cm ²]	22.00
Minimo d'armatura trasversale per NTC	A _{s, min_NTC}	$A_{s, min_NTC} = A_{s, min_inf_NTC} + A_{s, min_sup_NTC}$	[cm ²]	44.00
Minimo d'armatura trasversale a metro lineare per NTC	A _{s, min_ml_NTC}	$A_{s, min_ml_NTC} = A_{s, min_NTC} / L_{long_pl}$	[cm ² /m]	2.42
Armatura minima trasverale pari al 20% di quella longitudinale	A _{s, min_perc}	$A_{s, min_perc} = 0.20*A_{s, min_ml}$	[cm ² /m]	1.60
Armatura minima trasverale	A _{s, min_trasv_ml}	$A_{s, min_trasv_ml} = max(A_{s, min_ml_NTC}; A_{s, min_perc})$	[cm ² /m]	2.42
Diametro barra di armatura	ф		[mm]	14
Area della barra di armatura	A _s	$A_s = \pi^* \Phi^2 / 4$	[mm ²]	153.94
Numero di ferri a metro lineare superiormente o inferiormente	n		[-]	5.00
Numero di ferri a metro lineare totale	n _{tot}	$n_{tot} = n*2$	[-]	10.00
Area totale delle barre di armatura a metro lineare	A _{s_tot}	$A_{s_tot} = n_{tot} * A_s$	[cm ²]	15.39
Interasse barre di armatura superiori e inferiori	S	s = 100/n	[cm]	20.00

11.4.2 Verifiche strutturali

La platea di varo è armata con:

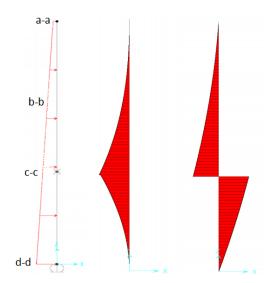
- ϕ 20/20 cm sup. e inf. in direzione longitudinale
- \$\phi\$ 14/20 cm sup. e inf. in direzione trasversale

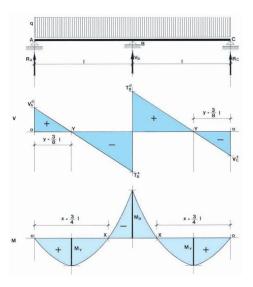
La verifica strutturale della platea di varo è una verifica a sforzo normale. Nello specifico l'armatura longitudinale progettata deve essere in grado di sopportare lo sforzo normale di trazione agente.

6.3 Verifica strutturale della platea di varo in direzione longitudinale				
Forza massima di trazione sulla platea di varo a metro lineare	F _{td_ml}	$F_{td_ml} = F_{td}/L_{trasv_pl}$	[kN/m]	294.69
Resistenza di calcolo a trazione della platea di varo a metro lineare	F _{tRd_ml}	$F_{tRd_ml} = A_{s_tot} * f_{yd}$	[kN/m]	1229.32
Verifica a trazione della platea di varo	ρ_{t}	$\rho_t = F_{td_ml} / F_{tRd_ml}$	[-]	0.24

	LINEA MODANE-TORINO
ITALFERR	ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO AVIGLIANA
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELL LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
	NTOI 04 D26CL IN0100003 A 66 di 77
Relazione di calcolo tombino	

11.5 MURO REGGISPINTA


11.5.1 Ipotesi di calcolo


Il calcolo dell'armatura del muro riguarda l'armatura verticale e l'armatura orizzontale.

Per quanto riguarda il calcolo dell'armatura verticale, il muro reggispinta si modella considerando un vincolo di carrello alla base del dente e vincolo di appoggio con rotazione impedita attorno all'asse longitudinale del muro in corrispondenza della platea. Il muro si considera soggetto ad un carico trapezoidale dato dalla spinta passiva fornita dal terreno a monte del muro. Tale spinta si esprime come somma di un contributo costante ed uno triangolare. Si definiscono delle sezioni di verifica: a-a testa muro; b-b cambio spessore muro; c-c base muro quota platea; d-d base inferiore muro.

Per quanto riguarda il calcolo dell'armatura orizzontale, si modella il muro come una trave orizzontale su più appoggi (sono i martinetti idraulici). Per massimizzare le sollecitazioni si considera una trave continua su tre appoggi. La trave equivalente presa a riferimento riguarda la sola parte di muro reggispinta con spessore maggiore. Il carico distribuito a cui è soggetta la trave corrisponde al prodotto tra la tensione orizzontal edi spinta passiva nella sezione c-c moltiplicata per l'altezza della parte di muro con spessore maggiore.

Nell'immagine che segue si riportano il diagramma della spinta passiva del terreno ed il diagramma di momento flettente e taglio (nelle figure a sinistra per l'armatura verticale; nella figura a destra per l'armatura orizzontale).

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

COMMESSA LOTTO
NT0I 04

CODIFICA D26CL DOCUMENTO IN0100003 REV.

Α

FOGLIO 67 di 77

Relazione di calcolo tombino

Nelle tabelle a seguire si riportano i calcoli di dimensionamento dell'armatura in direzione verticale e orizzontale.

7. Dimensionamento dell'armatura verticale di base		ggispinta		
7.1 Calcolo sollecitazioni di progetto per metro di lunghezza del n Si modella il muro con vincolo di carrello alla base del dente e vincolo di appoggio		dita attorno all'assa longitudinale del muro in corri	icnondonza	dalla plata
si modella il maro con vincolo di carrello dila base dei dente e vincolo di appoggio Si schematizza il carico trapezoidale della spinta passiva come somma di un conti	•		sponuenza (iena piate
Si definiscono delle sezioni di verifica: a-a testa muro; b-b cambio spessore muro,		· · ·		
Luce di calcolo del muro con spessore minimo sopra al piano campagna	L _{mr smin}	L _{mr smin} = H _{mr smin}	[m]	2.70
Luce di calcolo del muro sopra al piano campagna	L _{mr_sup}	$L_{mr_sup} = H_{mr_sup} - S_p / 2$	[m]	4.40
Luce di calcolo del dente sotto al piano campagna	L _{mr inf}	$L_{mr, inf} = H_{mr, inf} + S_{pl}/2$	[m]	0.60
Tensione orizzontale passiva in testa al muro reggispinta	σ_{hpmr_t}	·	[kPa]	143.20
Tensione orizzontale passiva alla base del muro reggispinta	σ _{hpmr b}		[kPa]	452.39
Fensione orizzontale passiva nella sezione a-a del muro	σ _{hpmr_aa}	$\sigma_{hpmr \ aa} = \sigma_{hpmr \ t}$	[kPa]	143.20
Tensione orizzontale passiva nella sezione b-b del muro	σ _{hpmr_bb}	$\sigma_{\text{hpmr_bb}} = \sigma_{\text{hpmr_t}} + (\sigma_{\text{hpmr_b}} - \sigma_{\text{hpmr_t}}) + L_{\text{mr_smin}} / H_{\text{mr}}$	[kPa]	310.16
Fensione orizzontale passiva nella sezione c-c del muro	σ _{hpmr cc}	$\sigma_{\text{hpmr cc}} = \sigma_{\text{hpmr t}} + (\sigma_{\text{hpmr b}} - \sigma_{\text{hpmr t}}) + L_{\text{mr sup}} / H_{\text{mr}}$	[kPa]	415.29
Tensione orizzontale passiva nella sezione d-d del muro	σ _{hpmr_dd}	σ_{hpmr} dd = σ_{hpmr} b	[kPa]	452.39
Carico distribuito uniforme sul muro	q _{uni}	q _{uni} = γ _{G1 s} *1*σ _{hpmr t}	[kN/m]	186.16
Carico distribuito triangolare massimo nella sezione a-a del muro	q _{tr aa}	-tutil 101_S - Cnpmr_t	[kN/m]	0.00
Carico distribuito triangolare massimo nella sezione b-b del muro	qtr_aa q _{tr_bb}	$q_{tr_bb} = \gamma_{G1_s} * 1*(\sigma_{hpmr_bb} - \sigma_{hpmr_t})$	[kN/m]	217.05
Carico distribuito triangolare massimo nella sezione c-c del muro	q _{tr_cc}	$q_{tr_ob} = r_{G1_s} = r_{G1pmr_ob} = r_{pmr_o}$ $q_{tr_cc} = r_{G1_s} * 1 * (\sigma_{ppmr_cc} - \sigma_{ppmr_t})$	[kN/m]	353.71
Carico distribuito triangolare massimo nella sezione d-d del muro	q _{tr_dd}	$q_{tr dd} = \gamma_{G1} + \gamma_{G1} $	[kN/m]	401.94
Momento flettente di calcolo nella sezione a-a del muro	M _{Ed aa}	Att_ad rGi_s = tonpmr_ad onpmr_t/	[kNm]	0.00
Momento flettente di calcolo nella sezione b-b del muro	M _{Ed bb}	$M_{Ed\ bb} = L_{mr\ smin}^{2} * (q_{uni}/2 + q_{tr\ bb}/6)$	[kNm]	942.28
Momento flettente di calcolo nella sezione c-c del muro superiore	M _{Ed_cc_sup}	$M_{Ed_cc_sup} = L_{mr_sup}^{2*}(q_{uni}/2+q_{tr_cc}/6)$	[kNm]	2943.3
Nomento flettente di calcolo nella sezione c-c del muro inferiore	M _{Ed cc inf}	$M_{Ed_cc_inf} = L_{mr_inf}^{2*} [q_{uni}/2 + (2*q_{tr_dd} + q_{tr_cc})/6]$	[kNm]	102.96
Momento flettente di calcolo nella sezione d-d del muro	M _{Ed_cc_inf}	™Ed_cc_inf =mr_inf [quni/2-1(2 qtr_ad+qtr_cc//⊙]	[kNm]	0.00
Taglio di calcolo nella sezione a-a del muro	V _{Ed_aa}		[kN]	0.00
Taglio di calcolo nella sezione b-b del muro	V _{Ed_bb}	$V_{Ed\ bb} = L_{mr\ smin}^*(q_{uni}+q_{tr\ bb}/2)$	[kN]	795.65
Taglio di calcolo nella sezione c-c del muro superiore	V _{Ed_cc_sup}	$V_{Ed_cc_sup} = L_{mr_sup} * (q_{uni} + q_{tr_cc}/2)$	[kN]	1597.2
Taglio di calcolo nella sezione c-c del muro inferiore		$V_{Ed_cc_sup} = L_{mr_sup} (V_{uni} + V_{tr_cc} / 2)$ $V_{Ed_cc_inf} = L_{mr_inf} * [q_{uni} + (q_{tr_dc} + q_{tr_cc}) / 2]$	[kN]	338.39
Ť	V _{Ed_cc_inf}	$V_{Ed_cc_inf} = L_{mr_inf} \cdot [Q_{uni} + (Q_{tr_dd} + Q_{tr_cc})/2]$	[kN]	0.00
Taglio di calcolo nella sezione d-d del muro	V _{Ed_dd}		[KIN]	0.00
7.2 Dimensionamento armatura verticale minima				
Armatura verticale - Sezione b-b				
Numero di ferri lato paramento compresso	n _{c_vert}		[-]	5.00
Diametro barra di armatura lato paramento compresso	ϕ_{c_vert}		[mm]	20
Passo tra le barre di armatura lato paramento compresso	S _{c_vert}		[cm]	20.00
Numero di ferri lato paramento teso	n _{t_vert}		[-]	10.00
Diametro barra di armatura lato paramento teso	φ _{t_vert}		[mm]	20.00
Passo tra le barre di armatura lato paramento teso	S _{t_vert}		[cm]	10.00
Armatura verticale - Sezione c-c				
Numero di ferri lato paramento compresso	n _{c_vert}		[-]	5.00
Diametro barra di armatura lato paramento compresso	Φ_{c_vert}		[mm]	20
Passo tra le barre di armatura lato paramento compresso	S _{c_vert}		[cm]	20.00
Numero di ferri lato paramento teso	n _{t_vert}		[-]	15.00
Diametro barra di armatura lato paramento teso	φ_{t_vert}		[mm]	20.00
Passo tra le barre di armatura lato paramento teso	S _{t_vert}		[cm]	10.00

ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO-AVIGLIANA

REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)

IN01-CANALE SCOLMATORE

COMMESSA LOTTO
NT0I 04

CODIFICA D26CL DOCUMENTO IN0100003 REV.

Α

FOGLIO 68 di 77

Relazione di calcolo tombino

8. Dimensionamento dell'armatura orizzontale del n	nuro reggisp	ointa					
Si modella il muro come una trave orizzontale su più appoggi (sono i martinetti idraulici). Per massimizzare le sollecitazioni si considera una trave continua su tre appoggi							
te di calcolo del muro di verifica $L_{mr} = 2*i_{mar}$							
Luce singola campata del muro di verifica	L _{mr_camp}	$L_{mr_camp} = i_{mar}$	[m]	1.00			
Tensione orizzontale passiva nella sezione c-c del muro	σ_{hpmr_cc}		[kPa]	415.29			
Carico distribuito sulla parte di muro su cui insistono i martinetti idraulici	q _{mar}	$q = \gamma_{G1_s} * \sigma_{hpmr_cc} * H_{mr_smax}$	[kN/m]	1025.76			
Momento flettente di calcolo	M _{Ed}	$M_{Ed} = (q*L_{mr_camp}^{2})/8$	[kNm]	128.22			
Taglio di calcolo	V _{Ed}	$V_{Ed} = 0.625*q*L_{mr_camp}$	[kN]	641.10			
Larghezza media della zona tesa	b _t	$b_t = H_{mr_smax}$	[m]	1.90			
Distanza lembo esterno sezione asse armatura	С		[cm]	5.00			
Altezza utile della sezione	d	$d = S_{mr_max} - c$	[cm]	145.00			
Diametro barra di armatura	ф		[mm]	16			
Area della barra di armatura	A _s	$A_s = \pi^* \Phi^2 / 4$	[mm ²]	201.06			
Numero di ferri lato monte e lato valle	n		[-]	10.00			
Area totale delle barre di armatura in zona tesa	A_{s_tesa}		[cm ²]	20.11			
Numero di ferri totali nella sezione	n _{tot}	n _{tot} = n*2	[-]	20.00			
Area totale delle barre di armatura	A _{s_tot}	$A_{s_tot} = n_{tot} * A_s$	[cm ²]	40.21			
Minimo d'armatura per NTC	A _{s, min_NTC}	$A_{s, min_NTC} = max(0.26*f_{ctm}*b_t*d/f_{yk}; 0.0013*b_t*d)$	[cm ²]	49.33			
Minimo d'armatura in zona tesa	A _{s, min}	$A_{s, min} = A_{s, min_NTC}$	[cm ²]	49.33			
Massimo d'armatura nella sezione del muro reggispinta	A _{s,max}	$A_{s,max} = 0.04*A_{mr_max}$	[cm ²]	1140.00			

11.5.2 Verifiche strutturali paramento verticale

Sezione c-c:

Armatura a flessione:

Armatura tesa

 ϕ 24/10 + ϕ 20/20cm

Armatura compressa

\$\phi 20/20 cm

Armatura a taglio:

Spille \(\psi \) 12/20x40 cm.

Sezione b-b:

Armatura a flessione:

Armatura tesa

φ 24/10 cm

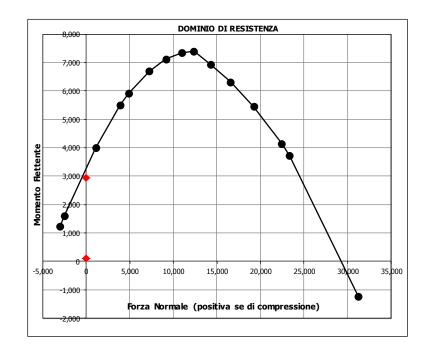
Armatura compressa

\$\phi\$ 20/20 cm

Armatura a taglio:

Spille \(\psi \) 12/20x40 cm.

• Verifica a pressoflessione (sezione c-c)


Acciaio				
Tensione car. di rottura	f_{tk}	=	540.00	N/mm²
Tensione car. di snervamento	f_{yk}	=	450.00	N/mm²
Coeff. parziale di sicurezza	γs	=	1.15	
Resistenza di calcolo	f_{yd}	=	391.30	N/mm²
Modulo elastico	Es	=	205000.00	N/mm²
	ϵ_{yd}	=	0.00191	

Geometria della sezione					
Altezza geometrica della sezi	on(h	= "	150.00	cm	
Base della sezione	b	=	100.00	cm	
Copriferro	ď'	=	5.00	cm	
Altezza utile della sezione	d	=	145.00	cm	

Calcestruz	ZO .	
D	40.00	N/mm²
R_{ck}		•
f_{ck}	33.20	N/mm²
Yc	1.50	
f_{cd}	22.13	N/mm²
f_{cc}	18.81	N/mm²

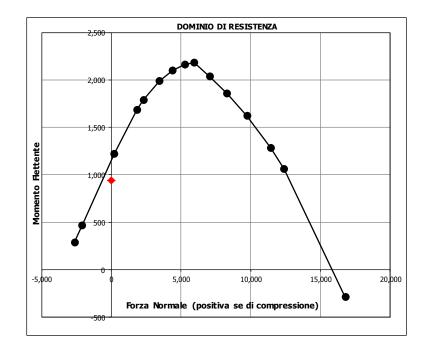
		60.95	cm ²
		0.00	cm ²
5	20	15.71	cm ²
10	24	45.24	cm ²
Nº ferri	Diametro	Area	
Armatura 1	tesa		

Armatura co	ompressa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15.71	cm ²

Caratteristi	che di sollec	itazione
Comb.	Nsd	Msd
1	0	2943.35
2	0	102.96
-		
-		
<u> </u>		
	l	

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)
IN01-CANALE SCOLMATORE	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NTOI 04 D26CL IN0100003 A 71 di 77
Relazione di calcolo tombino	34 <u>32352</u> INO10000 A 71 dr.77

• Verifica a pressoflessione (sezione b-b)


Acciaio				
Tensione car. di rottura	f_{tk}	=	540.00	N/mm²
Tensione car. di snervamento	f_{yk}	=	450.00	N/mm²
Coeff. parziale di sicurezza	γs	=	1.15	
Resistenza di calcolo	f_{yd}	=	391.30	N/mm²
Modulo elastico	E_s	=	205000.00	N/mm²
	ϵ_{yd}	=	0.00191	

Geometria della sezione				
Altezza geometrica della sezio	on∈h	= "	75.00	cm
Base della sezione	b	=	100.00	cm
Copriferro	ď'	=	5.00	cm
Altezza utile della sezione	d	=	70.00	cm

Calcestruzz	.0	
R_{ck}	40.00	N/mm²
f _{ck}	33.20	N/mm²
Yc	1.50	
f_{cd}	22.13	N/mm²
f_{cc}	18.81	N/mm²

		45.24	cm ²
		0.00	cm ²
		0.00	cm ²
10	24	45.24	cm ²
Nº ferri	Diametro	Area	
Armatura 1	tesa		

Armatura co	ompressa			
Nº ferri	Diametro	Area		
5	24	22.62	cm ²	
		0.00	cm ²	
		0.00	cm ²	
		22.62	cm ²	_

Caratteristi	che di sollec	itazione
Comb.	Nsd	Msd
1	0	942.28
	1	1

TALFERR GRUPPO FERROVIE DELLO STATO	LINEA MO ADEGUAM AVIGLIAM REALIZZA LOCALITA CONDOVE	ENTO A ZIONE D ' DI	LINEA STO	ORICA TRATI NZE A MODU BRUZOLO (B	LO 750	SSOLENO- m NELLE SPARI) E
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo tombino	14101	04	DZUCE	1140100003	^	12 0111

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

Sollecitazioni

- 3. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 4. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Sez c-c

Sez b-b

Calcestruzzo				
R _{ck}	40.00	N/mm²		
R _{ck} f _{ck} Y _c α _{cc} f _{cd}	33.20	N/mm²		
Y c	1.50			
α_{cc}	0.85			
f_{cd}	18.81	N/mm²		

Acciaio		
f _{tk}	540.00	N/mm²
f _{yk}	450.00	N/mm²
Υs	1.15	
f_{yd}	391	N/mm²

Soliecitazioni		Jez C-C	Jez D D
V_{Ed}	kN	1597.27	795.65
N_{Ed}	kN	0.00	0.00
Armatura a taglio			
Diametro	mm	12	12
Numero barre		2.5	2.5
A _{sw}	cm²	2.83	2.83
Passo s	cm	20.00	20.00
Angolo α	•	90.00	90.00
Armatura longitudir	nale [*]		
n_1		15	10
\emptyset_1	mm	24	24
n ₂			
Ø ₂	mm		
Asl	cm ²	67.86	45.24
Sezione			
b_w	cm	100.00	100.00
Н	cm	150.00	75.00
С	cm	5.00	5.00
d	cm	145.00	70.00
k	N/mm²	1.37	1.53
V _{min}	N/mm²	0.32	0.38
ρ		0.0047	0.0065
σср	N/mm²	0.00	0.00
α_{c}		1.00	1.00
Resistenza senza a	rmatura a taolio	,	
V _{Rd}	kN	595.44	358.18
- Ku			555.20

Resistenza con armatura a taglio

Inclinazione puntone θ	٥	21.80	21.80
V_{RSd}	kN	1804.92	871.34
V_{RCd}	kN	4232.78	2043.41
V_{Rd}	kN	1804.92	871.34

Elementi senza armatura a taglio

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \ / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \ (v_{min} \ + \ 0.15 \cdot \ \sigma_{cp}) \ \cdot b_w d$$

Elementi con armature trasversali resistenti al taglio

$$V_{\text{Rsd}} = 0, 9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha$$

$$V_{\text{Rcd}} = 0, 9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

	LINEA MOI	DANE-TO	DRINO			
GRUPPO FERROVIE DELLO STATO IN01-CANALE SCOLMATORE	ADEGUAM AVIGLIANA		LINEA ST	ORICA TRATI	TA BUS	SSOLENO-
GRUPPO FERROVIE DELLO STATO	REALIZZAZIONE DI PRECEDENZE A MODULO 750 I				m NELLE SPARI) E	
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NT0I	04	D26CL	IN0100003	Α	73 di 77
Relazione di calcolo tombino						

11.5.3 Verifiche strutturali armatura orizzontale

Armatura a flessione:

Armatura tesa

ф 16/20 cm

Armatura compressa

ф 16/20 cm

Armatura a taglio:

Spille ϕ 12/20x40 cm.

• Verifica a pressoflessione (sezione b-b)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540.00	N/mm²
Tensione car. di snervamento	f_{yk}	=	450.00	N/mm²
Coeff. parziale di sicurezza	γs	=	1.15	
Resistenza di calcolo	f_{yd}	=	391.30	N/mm²
Modulo elastico	E_s	=	205000.00	N/mm²
	ϵ_{yd}	=	0.00191	

Geometria della sezione					
Altezza geometrica della sezio	n(h	= [150.00	cm	
Base della sezione	b	= "	190.00	cm	
Copriferro	ď'	= "	5.00	cm	
Altezza utile della sezione	d	=	145.00	cm	

Calcestruz	ZO .	
R_{ck}	40.00	N/mm²
f_{ck}	33.20	N/mm²
Yc	1.50	
f_{cd}	22.13	N/mm²
f_{cc}	18.81	N/mm²

		20.11	cm ²
		0.00	cm ²
		0.00	cm ²
10	16	20.11	cm ²
Nº ferri	Diametro	Area	
Armatura t	tesa		

		20 11	cm ²
-		0.00	cm ²
		0.00	cm ²
10	16	20.11	cm ²
_ Nº ferri	Diametro	Area	
10 16 20.11 cm ²			

	12,000		DO	MINIO DI RES	SISTENZA	I		7
	10,000 -							
a	8,000		•			•		
nto Rettente	6,000							
Momento	4,000							
	2,000							
		Forz	a Normale	(positiva se	di compres	ssione)		
-10,000	_ (0 10,	000 20	,000 30,	000 40,	.000 50	,000 60	0,00

Caratteristic	che di sollec	itazione
Comb.	Nsd	Msd
1	0	128.22
-		
-		
-		

ITALFERR GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)						
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo tombino		٠.	22002			. o a	

Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 5. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 6. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcestruzzo R_{ck} 40.00 N/mm² 33.20 N/mm² Υc 1.50 0.85 18.81 N/mm²

Acciaio		
f _{tk}	540.00	N/mm²
f _{yk}	450.00	N/mm²
Υs	1.15	
f_{yd}	391	N/mm²

Sollecitazioni	Cordolo				
V _{Ed}	kN	641.10			
N_{Ed}	kN	0.00			
Armatura a taglio					
Diametro	mm	12			
Numero barre		2			
A _{sw}	cm ²	2.26			
Passo s	cm	20.00			
Angolo α	• 0	90.00			
Angolo u		30.00			
Armatura longitudi	inale				
n ₁		10			
\emptyset_1	mm	16			
n ₂					
Q_2	mm				
Asl	cm²	20.11			
Sezione					
b _w	cm	190.00			
Н	cm	150.00			
С	cm	5.00			
d	cm	145.00			
k	N/mm²	1.37			
V _{min}	N/mm²	0.32			
ρ		0.0007			
σср	N/mm²	0.00			
α_{c}		1.00			

Resistenza sen	za armatura a taglio)
V_{Rd}	kN	892.28
-		

kΝ

Resistenza con armatura a taglio Inclinazione puntone θ 1443.94 V_{RCd} kΝ 8042.28

Elementi senza armatura a taglio

$$V_{Rd} = \left\{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot \mathbf{f}_{ck}\right)^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}\right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \ + \ 0.15 \cdot \ \sigma_{cp}\right) \cdot b_w d$$

 V_{Rd}

Elementi con armature trasversali resistenti al taglio

$$V_{\text{Rsd}} = 0,9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha$$

$$V_{\text{Rcd}} = 0,9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta)/(1 + \text{ctg}^2\theta)$$

$$V_{\text{Rcd}} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f^{\, \prime}_{\, cd} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

1443.94

ITALFERR GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)						
IN01-CANALE SCOLMATORE	COMMESSA NT0I	LOTTO 04	CODIFICA D26CL	DOCUMENTO IN0100003	REV.	FOGLIO 76 di 77	
Relazione di calcolo tombino							

12 INCIDENZE

I valori delle incidenze di armatura lenta sono indicati nella seguente tabella:

Canale scolmatore

Piedritti 90 kg/mc
Soletta superiore 90 kg/mc
Soletta inferiore 70 kg/mc

Apparato di spinta

Muro reggispinta sp=75cm 110 kg/mc

Muro reggispinta sp=150cm 70 kg/mc

Platea di varo 120 kg/mc

GRUPPO FERROVIE DELLO STATO	LINEA MODANE-TORINO ADEGUAMENTO LINEA STORICA TRATTA BUSSOLENO- AVIGLIANA REALIZZAZIONE DI PRECEDENZE A MODULO 750 m NELLE LOCALITA' DI BORGONE-BRUZOLO (BIN. DISPARI) E CONDOVE-VAIE (BIN. PARI)						
IN01-CANALE SCOLMATORE	COMMESSA	LOTTO	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo tombino		04	22302				

13 CONCLUSIONI

Con la presente relazione si è proceduto al progetto e alla verifica del sottopasso scatolare allo stato limite ultimo e allo stato limite di esercizio.

Le verifiche strutturali rispettano le indicazioni delle Normative tecniche di riferimento.