

COMUNE DI PABILLONIS (SU)

Progettazione della Centrale Solare "Energia dell'olio sardo" da 52.557 kWp

Proponente:

Pacifico Lapislazzuli s.r.l.

Piazza Walther-von-der-Vogelweide,8 - 39100 (BZ)

Investitore agricolo

OXY CAPITAL

Largo Donegani, 2 - 20121 Milano - Italia

Partner:

Titolo: Scheda di sintesi del progetto

N° Elaborato: 92

Progettazione:

MARE RINNOVABILI Cod: AD 16

Scala:

Tipo di progetto:

- O RILIEVO
- O PRELIMINARE
- DEFINITIVO
- ESECUTIVO

Progetto dell'inserimento paesaggistico e mitigazione

Progettista:

Agr. Fabrizio Cembalo Sambiase Arch. Alessandro Visalli

Agr. Rosa Verde Urb. Daniela Marrone Arch. Anna Sirica

Collaboratori:

Progettazione elettrica e civile

Progettista:

Ing. Rolando Roberto Ing. Marco Balzano

Collaboratori:

Ing. Simone Bonacini Ing. Giselle Roberto

Progettazione oliveto superintensivo

Progettista:

Agr. Giuseppe Rutigliano

Consulenza geologia Geol. Gaetano Ciccarelli

Consulenza archeologia Archeol. Concetta Claudia Costa

Rev.	descrizione	data	formato	elaborato da	controllato da	approvato da
00	Rev.00	Dicembre 2022		Rolando Roberto	Giselle Roberto	Rolando Roberto

Sommario

1 DATI TECNICI CENTRALE FOTOVOLTAICA

2		
1.1.	Dati identificativi del proponente	2
1.2.	Inquadramento generale	2
1.3.	Linee Elettriche	11
1.4.	Parte agricola del progetto	11
1.5.	Calcolo volumi di scavo cavidotto BT ed MT impianto	13
1.6.	Calcolo volumi di scavo cavidotto MT principale	16
1.7.	Benefici ambientali	18

1.1. Dati identificativi del proponente

Pacifico Lapislazzuli S.r.I. con sede legale in Bolzano (BZ) piazza Walther Von Vogelweide 8 CAP 39100, C.F./P.IVA: 03158120216, *Indirizzo PEC* pacificolapislazzulisrl@legalmail.it, rappresentata dal Sig. Herberg Fabian Angel Paul, nato a Stoccarda Germania il 13/04/1981, domiciliato in Francoforte sul Meno (Germania), Fichardstrasse 52, in qualità di legale rappresentante.

1.2. Inquadramento generale

Dati amministrativi progetto:

- Nome: Centrale fotovoltaica "Energia dell'olio sardo" di potenza nominale di 52.557 kWp
- Località: Comune di Pabillonis, SU
- Coordinate geografiche: latitudine 39°36'32.04"N, longitudine 8°41'43.66"E
- Tecnologia: moduli monocristallini su inseguitori monoassiali N/S
- Costo complessivo: € 38.414.311,90 (IVA compresa)
- Superficie complessiva lotti: 80 ha
- Superficie impegnata lorda (entro la recinzione): 63,4 ha
- Area mitigazione: 16,6 ha
- Area agricola produttiva: 60,1 ha
- Area agricola + mitigazione: 76,8 ha
- Tipo di progetto: agrofotovoltaico, olivicoltura

Descrizione generale

Pacifico Lapislazzuli S.r.l. intende proporre la realizzazione di un impianto fotovoltaico da ubicarsi in Pabillonis (SU), localizzazione 39°36′32.04″N, 8°41′43.66″E, progetto in linea con gli obiettivi della Strategia Elettrica Nazionale e del Piano Nazionale integrato per l'Energia e il Clima.

L'obiettivo del presente progetto è la realizzazione di un impianto fotovoltaico di potenza di picco pari a 52.557 kWp costituito da 86.160 moduli fotovoltaici in silicio cristallino.

In campo saranno installati n. 155 inverter di stringa di potenza nominale 320 kW.

La centrale sarà collegata in antenna a 36 kV sulla sezione 36 kV di una nuova Stazione Elettrica (SE) di trasformazione della RTN a 220/150/36 kV, da inserire in entra – esce alla linea RTN 220 kV "Sulcis - Oristano" con una potenza massima in immissione pari a 49.600 kW. L'intera produzione sarà immessa in rete e venduta secondo le modalità previste dal mercato libero dell'energia.

Proprietà	Provincia	Comune	Foglio	Particella	Superficei (ha)
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	5	0,65
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	6	0,37
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	11	0,72
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	12	0,58
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	13	0,56
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	23	1,69
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	24	0,30
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	25	0,75
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	27	0,74
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	29	1,60
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	39	0,62
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	40	1,33
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	44	0,35
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	45	0,42
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	47	0,60
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	49	0,49
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	50	0,50
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	51	0,81
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	53	1,03
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	54	0,67
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	55	0,41
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	56	0,26
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	68	0,02
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	76	0,01
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	79	0,02
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	80	0,54

Frongia Gianluigi	Sud Sardegna	Pabillonis	9	82	1,16
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	86	0,46
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	111	1,03
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	120	0,08
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	121	0,09
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	123	1,12
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	125	0,94
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	127	0,03
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	133	0,16
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	135	0,32
Frongia Gianluigi	Sud Sardegna	Pabillonis	9	137	0,05
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	14	1,61
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	16	0,16
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	17	0,15
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	19	0,34
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	22	0,58
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	28	0,92
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	61	2,37
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	63	0,83
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	64	1,68
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	70	0,03
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	72	0,23
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	73	0,31
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	74	0,05
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	75	0,24
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	77	0,28
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	78	0,17
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	90	18,93
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	92	0,84
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	94	0,02
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	95	0,34
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	97	0,01
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	98	0,41
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	100	0,02
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	107	1,54
Honyisova Dagmar	Sud Sardegna	Pabillonis	9	131	1,31
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	6	0,91
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	9	0,09
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	61	0,20
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	64	0,65

Frongia Gianluigi	Sud Sardegna	Pabillonis	14	152	0,07
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	156	0,27
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	199	0,13
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	200	0,00
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	201	0,00
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	202	0,05
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	209	0,02
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	210	0,00
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	211	0,00
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	212	0,01
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	213	0,03
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	214	0,00
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	224	0,07
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	225	1,73
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	226	0,05
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	227	0,41
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	228	0,11
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	230	0,12
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	231	0,37
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	232	4,01
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	236	0,59
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	238	1,15
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	245	0,01
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	246	0,22
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	248	0,13
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	249	0,39
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	251	0,14
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	260	4,10
Frongia Gianluigi	Sud Sardegna	Pabillonis	14	262	0,02
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	1	0,20
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	2	0,01
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	196	2,50
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	208	8,24
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	215	1,80
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	216	0,82
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	217	1,03
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	218	0,18
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	264	0,02
Honyisova Dagmar	Sud Sardegna	Pabillonis	14	265	0,11
Frongia Gianluigi	Sud Sardegna	Pabillonis	16	46	0,27

Frongia Gianluigi	Sud Sardegna	Pabillonis	16	47	1,04
Frongia Gianluigi	Sud Sardegna	Pabillonis	16	157	0,15

Tabella 1 - Dati particellare

L'impianto è proposto nel comune di Pabillonis, in Sardegna in Provincia di Sud Sardegna. Si tratta di un territorio a forte vocazione agricola, confermata dal progetto che inserisce un'attività produttiva olivicola di grande impatto e valenza economica. Insieme alla produzione fotovoltaica, necessaria per adempiere agli obblighi del paese, verranno infatti inseriti circa 73.630 alberi di olivo in assetto 'superintensivo' i quali occuperanno il 55 % del terreno lordo recintato (pari a ca 44 ettari).

Complessivamente solo un terzo del terreno sarà interessato dalla proiezione zenitale dei pannelli fotovoltaici (tipicamente a metà giornata), mentre il 96% sarà impegnato o dall'uliveto produttivo o da mitigazioni e fasce di continuità ecologica (rispettivamente per 44 e 16 ettari, 73.630 alberi e 5.000 arbusti). L'intera superficie sarà protetta da prato permanente e prato fiorito per apicoltura.

Il calcolo stabilito nella tabella è compiuto nel seguente modo:

- A- la "superficie complessiva del lotto" è la superficie catastale totale,
- B- la "superficie impegnata totale lorda" è la superficie definita dalla recinzione dell'impianto,
 - a. "superficie netta radiante impegnata" è la proiezione a terra dei pannelli nella loro massima estensione,
 - b. "Superficie minima proiezione tracker" è la superficie indisponibile allo spazio di coltivazione e relative lavorazioni (manovra scavalcatore per raccolte e potature),
- C- "Superficie agricola produttiva totale" (SAP) è la superficie utilizzata per aree agricole produttive, , ovvero per le siepi ulivicole, le aree di manovra delle macchine agricole alla minima estensione dell'impianto fotovoltaico, come da disciplinare allegato al progetto. A queste si aggiungono le aree nette impegnate per prato fiorito (le aree di servizio relative sono in comune con l'uliveto),
- D- "Superficie mitigazione" è la superficie delle aree di mitigazione esterne alla recinzione
- E- La "superficie agricola totale" è la superficie complessiva in termini di attività agricola multifunzionale che l'operatore agricolo gestisce, includendo la SAP e la mitigazione, la quale svolge indispensabili funzioni di protezione dell'ambiente, della biodiversità, del paesaggio e della stessa produzione agricola.

		Mq	Percentuale di utilizzo del terreno
A	Superficie complessiva lotto	800.000	100 %
В	Superficie impegnata totale lorda (entro la recinzione)	634.000	79 % (di A)
	- di cui superficie netta radiante impegnata	260.000	33 % (di A)
	 di cui superficie minima proiezione tracker 	161.000	20 % (di A)
C	Superficie agricola produttiva totale (SAP)	601.000	75 % (di A)
	- di cui uliveto superintensivo	440.000	55 % (di A) 69 % (di B)
	- di cui prato fiorito	161.000	20 % (di A)
D	Superficie mitigazione	166.000	21 % (di A)
Е	"Superficie agricola totale" (SAP) + mitigazione	768.000	96 % (di A)
F	Superficie viabilità interna	35.000	4,4 % (di A)

Tabella 2 - Dati di sintesi impiego del suolo

La centrale fotovoltaica in oggetto sarà composta sostanzialmente da tre componenti principali: il generatore fotovoltaico, i gruppi di conversione di energia elettrica e la stazione di elevazione MT/AT. Il generatore sarà costituito dai moduli fotovoltaici, connessi in serie/parallelo per ottenere livelli di tensione e corrente idonei all'accoppiamento con i gruppi di conversione.

È prevista l'installazione a terra di moduli fotovoltaici in silicio cristallino della potenza specifica di 610 Wp, su strutture ad inseguimento monoassiale (asse N/S).

Dati di sintesi impianto				
Potenza nominale impianto (kW)	52.557			
Moduli fotovoltaici 610 W (pcs)	86.160			
Struttura tracker monoassiale 2P (double-portraits) da 24 moduli (pcs)	210			
Struttura tracker monoassiale 2P (double-portraits) da 48 moduli (pcs)				
Inverter di stringa 320 kW (pcs)				
Cabina di trasformazione inverter MT/BT (pcs)	18			
Vani tecnici	0			
Cabina di raccolta (pcs)	1			

Tabella 3 - Dati sintesi impianto

In relazione alla morfologia del territorio si ritiene di dover suddividere l'impianto in n. 3 piastre come definito in Tabella 3.

Piastra	Cabine	Cabina Raccolta	Tipologia struttura	n. Strutture	n. moduli	Potenza DC (kWp)	
1 14 X 4 MW			TR_2P_24X610	141	3.384	44.345	
1	1 14 X 4 IVIVV		TR_2P_48X610	1.444	69.312	44.343	
2	1 x 3 MW	R1	TR_2P_24X610	11	264	2.035	
2	2 1 X 3 IVIVV		TR_2P_48X610	64	3.072	2.033	
3	22.0.004		TR_2P_24X610	58	1.392	6.178	
3	3 x 3 MW		TR_2P_48X610	182	8.736	0.178	
тот	18			1.900	86.160	52.557	

Tabella 4 - Dati piastre impianto

I moduli del generatore erogheranno corrente continua (DC) che, prima di essere immessa in rete, sarà trasformata in corrente alternata (AC) da gruppi di conversione DC/AC (inverter) ed infine elevata dalla bassa tensione (BT) alla media tensione (MT 30 kV) della rete di raccolta interna per il convogliamento alla stazione di trasformazione AT/MT per l'elevazione al livello di tensione della connessione alla rete nazionale.

La Soluzione Tecnica Minima Generale prevede che la centrale venga collegata in antenna a 36 kV sulla sezione 36 kV di una nuova Stazione Elettrica (SE) di trasformazione della RTN a 220/150/36 kV, da inserire in entra – esce alla linea RTN 220 kV "Sulcis - Oristano". La rete di raccolta dell'impianto sarà costituita da n.18 cabine inverter/trasformatore collegate in media tensione alla Cabina di Raccolta centrali collegata alla stazione di elevazione AT/MT.

Piastra	N.Cabine	Nome Cabina	Pot.Cabine	(MW)	n. Invei	rter	n. Cabine Raccolta
		A1	4		9		
		A2	4		9		
		А3	4		9		
		A4	4		9		
		A5	4		9		1
		A6	4		9	131	
1	14	A7	4	56	9		
_		A8	4		10		
		A9	4		9		
		A10	4		10		
		A11	4		10		
		A12	4		10		
		A13	4		10		
		A14	4		9		
2	1	B1	3	3	6	6	
3	3	C1	3		6		
		C2	3	9	6	18	
		C3	3		6		
TOTALE	18		68		155		1

Tabella 5 – Suddivisione piastre-cabine

Nella tabella n.6 viene specificato il calcolo superfici e volumi delle cabine.

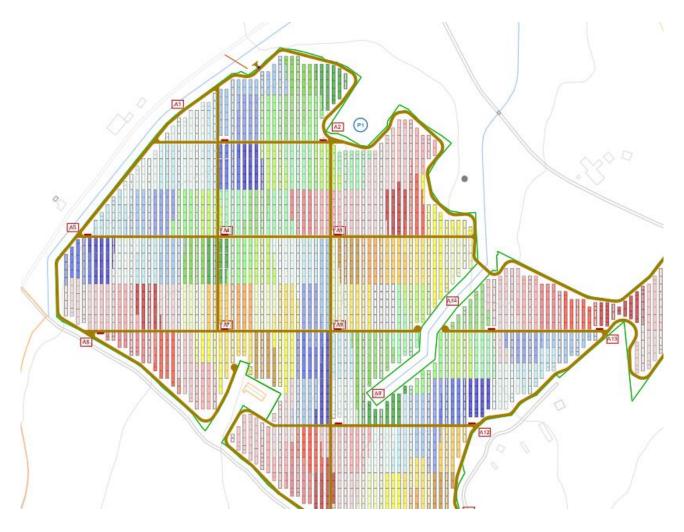


Fig. 2- Particolare schema di suddivisione sottocampi

Piastre	Cabine MT/BT	Cabina di raccolta	
1	14		
2	1	1	
3	3		
TOTALE	18	1	
CA	LCOLO VOLUME TOTAL	E	
L (m)	12	24	
P (m)	3	3	
H (m)	2,5	2,5	
VOL (cad.) [mc]	90	180	
VOL (TOT) [m -1	1.620	180	
VOL (TOT.) [mc]	1.800		

Tabella 6 – Calcolo superfici e volumi

I moduli fotovoltaici che saranno presi in considerazione per l'impianto saranno composti da celle in silicio cristallino ad alta efficienza. I moduli saranno collegati in serie, in modo tale che il livello di tensione raggiunto in uscita rientri nel range di tensione ammissibile dagli inverter considerati nel progetto (max 1500 V).

1.3. Linee Elettriche

Le condutture sono di tipo a vista o interrate.

Il cablaggio elettrico avverrà per mezzo di cavi con conduttori isolati in rame (o alluminio) con le seguenti prescrizioni:

- tipo FG16, ARG7, ARG16 se in esterno o in cavidotti su percorsi interrati;
- tipo FS17 se all'interno di cavidotti interni a cabine.

Si dovrà porre particolare attenzione alle tensioni di isolamento. In particolare, le tratte di potenza in corrente alternata distribuite in bassa tensione saranno a 800V nominali (tensione di uscita degli inverter). Per queste tratte la tensione minima di isolamento dovrà essere 0,6/1 kV.

Le sezioni dei cavi per energia sono scelte in modo da:

- contenere le cadute di tensione in servizio ordinario entro il 4% (valore imposto dalla normativa vigente). Il valore deve intendersi riferito tra i morsetti di bassa tensione del punto di fornitura o del trasformatore, ed il punto di alimentazione di ciascuna utenza;
- rispettare le tabelle CEI-UNEL relative alla portata dai cavi, tenendo conto dei coefficienti correttivi in ragione delle condizioni di posa;
- le sezioni delle singole linee sono come da schema elettrico allegato e comunque mai inferiori a 1,5 mm².

1.4. Parte agricola del progetto

La componente agricola del progetto prevedrà un **uliveto superintensivo coltivato a siepe** e tenuto all'altezza standard per una raccolta meccanizzata (tra 2,2 e 2,5 mt). Per ottenere un elevato rendimento per ettaro gli uliveti superintensivi sono ottimali per l'associazione con la produzione elettrica, infatti:

- massimizzano la produzione agricola a parità di superficie utilizzabile;
- hanno un andamento Nord-Sud analogo a quello dell'impianto ad inseguimento;
- per altezza e larghezza sono compatibili con le distanze che possono essere lasciate tra i filari fotovoltaici senza penalizzare eccessivamente la produzione elettrica (che, in termini degli obiettivi del paese è quella prioritaria) né quella olivicola;
- la lavorazione interamente meccanizzata minimizza le interazioni tra uomini e impianto elettrico in esercizio;
- *si prestano a sistemi di irrigazione a goccia e monitoraggio avanzato* che sono idonei a favorire il pieno controllo delle operazioni di manutenzione e gestione.

L'impianto produttivo olivicolo prevede l'impianto di 73.630 ulivi su 13 ettari netti utilizzati (area del fogliame, 16 % della superficie utilizzabile, mentre la superficie radiante fotovoltaica è il 33 % alla massima estensione, 20% alla minima).

Ai fini del calcolo del parametro "agrivoltaico" bisogna considerare, per l'uliveto, la Superficie Agricola Produttiva, che è l'insieme della superficie biologicamente dedicata all'uliveto (405.000 mq) più le aree di viabilità (35.000 mq), a questa va aggiunta la superficie della mitigazione di bordo, che è comunque agricola e funzionale alle coltivazioni (166.000 mq), e, infine, l'area del prato fiorito per apicoltura (161.000 mq), e si arriva a 768.000 mq, pari al 96% della superficie totale.

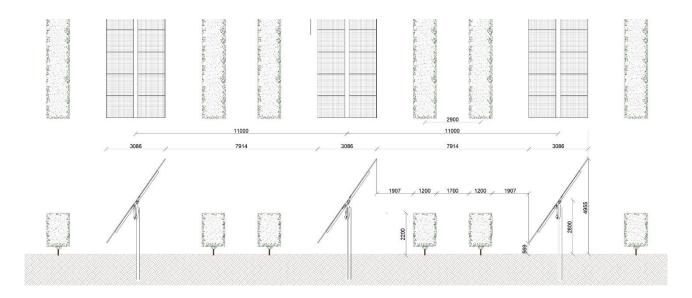


Figura 1- Sezione tipo

Il principale elemento caratterizzante il progetto è dato dall'innovativo modello di interazione tra due investitori professionali e di livello internazionale:

- il primo, Pacifico Lapislazzuli, uno che rileva il suolo, realizza l'investimento fotovoltaico e lo gestisce, richiedendo le prescritte autorizzazioni;
- il secondo, di pari livello se non superiore, Oxy Capital, che realizza interamente l'investimento agricolo, incluso opere accessorie, garantisce la produzione e la commercializzazione attraverso la sua controllata Olio Dante. Oxy Capital gestisce in Portogallo oltre 2.000 ettari di oliveti superintensivi integrati in una completa filiera produttiva.

La cosa più importante è che entrambi gli investimenti sono ottimizzati per produrre il massimo risultato a parità di superficie impiegata, senza compromessi. In conseguenza entrambe le unità di business sono redditive secondo standard internazionali e reciprocamente autosufficienti.

1.5. Calcolo volumi di scavo cavidotto BT ed MT impianto

I conduttori interrati saranno posati su letto di sabbia secondo le Norme CEI 11-17. Sono state previste diverse tipologie di sezioni di scavo, di cui si riportano di seguito solo le più significative (vedere elaborati tecnici):

- singola polifora BT per il collegamento degli inverter di stringa alle cabine di trasformazione
 BT/MT in area interna impianto;
- doppia polifora BT per il collegamento degli inverter di stringa alle cabine di trasformazione
 BT/MT in area interna impianto;
- tripla polifora BT per il collegamento degli inverter di stringa alle cabine di trasformazione BT/MT
 in area interna impianto;
- singola polifora MT per il collegamento della linea interna ed il convogliamento alla cabina di raccolta;
- doppia polifora MT per il collegamento della linea interna ed il convogliamento alla cabina di

raccolta;

- tripla polifora MT per il collegamento della linea interna ed il convogliamento alla cabina di raccolta;
- quadrupla polifora MT per il collegamento della linea interna ed il convogliamento alla cabina di raccolta;
- singola polifora MT per il collegamento della cabina di raccolta alla stazione di elevazione;
- doppia polifora MT per il collegamento della cabina di raccolta alla stazione di elevazione.

Nelle tabelle successive è riportato il dettaglio delle sezioni di scavo e dei relativi volumi.

CABINA - PIASTRA	L scavo BT (m)	L scavo MT (m)
A1 - P1	356	191
A2 - P1	583	190
A3 - P1	340	188
A4 - P1	120	250
A5 - P1	254	180
A6 - P1	346	180
A7 - P1	30	213
A8 - P1	99	229
A9 - P1	108	268
A10 - P1	209	94
A11 - P1	415	504
A12 - P1	62	378
A13- P1	762	294
A14 - P1	492	27
B1 - P2	438	454
C1 - P3	496	158
C2 - P3	54	258
C3 - P3	385	42
TOTALE	5.550	4.094

Tabella 7 – Lunghezza scavi per passaggio linee BT ed MT interne

CALCOLO VOLUME DI SCAVO LINEE BT E MT INTERNE IMPIANTO						
SEZIONI	LUNG (m)	LARG (m)	H (m)	VOL (mc)		
А	793	0,6	1,2	547		
В	245	0,8	1,2	226		
С	71	1,1	1,2	90		
AS	4.054	0,6	1,2	2.797		
BS	317	0,8	1,2	292		
CS	69	1,1	1,2	88		
15	1.252	0,6	1,6	1.201		
25	625	0,8	1,6	799		
A1S	1.289	0,8	1,6	1.649		
A2S	696	0,8	1,6	891		
A4S	174	1,4	1,6	391		
1	59	0,6	1,6	57		
тот.	9.028					

Tabella 8 – Tipologia tracciati e volumi di scavo

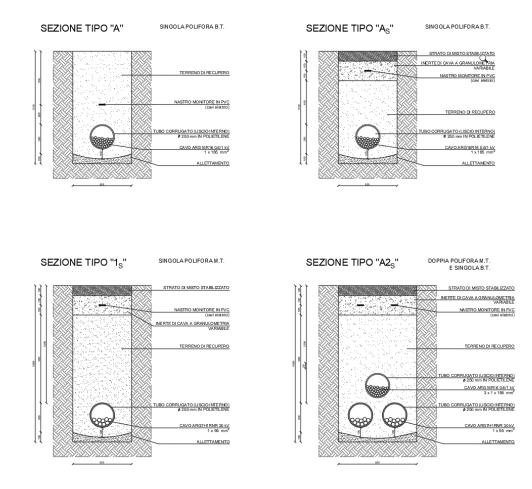


Fig. 3– Sezioni tipo cavidotti interni BT ed MT

1.6. Calcolo volumi di scavo cavidotto MT principale

I conduttori interrati in MT saranno posati su letto di sabbia secondo le Norme CEI 11-17. Sono state previste tre tipologie di sezioni di scavo:

- X) tripla terna di cavo per il collegamento della cabina di raccolta R1 dell'impianto fotovoltaico alla stazione utente MT/AT su strada non asfaltata;
- Y) tripla terna di cavo per il collegamento della cabina di raccolta R1 dell'impianto fotovoltaico alla stazione utente MT/AT su strade non asfaltate;
- Z) tripla terna di cavo terna di cavo per il collegamento della cabina di raccolta R1 dell'impianto fotovoltaico alla stazione utente MT/AT su strade asfaltate.

CALCOLO VOLUME DI SCAVO ELETTRODOTTO VERSO S.E.							
SEZIONI	LUNG (m)	LARG (m)	H (m)	VOL (m³)			
SEZ X	2.391	0,7	1,6	2.678			
SEZ Y	7.856	0,7	1,6	8.799			
SEZ Z	28	0,9	1,6	40			
	11.517						

Tabella 9 – Tipologia tracciati e volumi di scavo cavidotto esterno MT verso SE AT

Fig 4– Sezione tipo X cavidotto esterno MT verso SE

Fig. 5- Tracciato cavidotto MT verso SE

1.7. Benefici ambientali

Ad oggi gran parte della produzione di energia elettrica proviene da impianti termoelettrici che utilizzano combustibili di origine fossile. Quindi, considerando l'energia stimata come produzione del primo anno, **92.831.429 kWh**, e la perdita di efficienza annuale, 0.40 %, le considerazioni successive valgono per il tempo di vita dell'impianto pari a 30 anni.

Un utile indicatore per definire il risparmio di combustibile derivante dall'utilizzo di fonti energetiche rinnovabili è il fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh].

Questo coefficiente individua le T.E.P. (Tonnellate Equivalenti di Petrolio) necessarie per la realizzazione di 1 MWh di energia, ovvero le TEP risparmiate con l'adozione di tecnologie fotovoltaiche per la produzione di energia elettrica.

Risparmio di combustibile

Risparmio di combustibile in	TEP
Fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh]	0.187
TEP risparmiate al primo anno	17.359
TEP risparmiate in 30 anni	491.676

Fonte dati: Delibera EEN 3/08, art. 2

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

Fonte dati: Delibera EEN 3/08, art. 2

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.