

COMMITTENTE

PROGETTO

GRV WIND SARDEGNA 6 S.R.L. Via Durini, 9 Tel. +39.02.50043159 PEC: grvwindsardegna6@legalmail.it 20122 Milano

Progettazione e coordinamento: Ing. Giuseppe Frongia I.A.T. Consulenza e progetti S.r.l. Via Giua s.n.c. - Z.I. CACIP 09122 Cagliari (I)

Tel./Fax. +39.070.658297 Email: info@iatprogetti.it PEC: iat@pec.it

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO DENOMINATO "LUMINU" COMPOSTO DA 17 AEROGENERATORI DA 6.6 MW, PER UNA POTENZA COMPLESSIVA DI 112.2 MW SITO NEI COMUNI DI BARUMINI, ESCOLCA, GERGEI, LAS PLASSAS E VILLANOVAFRANCA (SU), CON OPERE DI CONNESSIONE NEI COMUNI DI BARUMINI, ESCOLCA, GENONI, GERGEI, GESTURI, LAS PLASSAS, NURAGUS E VILLANOVAFRANCA (SU)

АТО	Titolo:					Tav: / Doc:		
:LABOR	WGG-G2							
Codice	Codice elaborato: WGG_G2_Report MASW							
						-		
	0	Gennaio 2023	Prima emissione	IAT PROGETTI	IAT	PROGETTI	GRVALUE	
REV. DATA			DESCRIZIONE	ELABORAZIONE	~	/ERIFICA	APPROVAZIONE	

31/12/2022

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO DENOMINATO "LUMINU" COMPOSTO DA 17 AEROGENERATORI DA 6.6 MW, PER UNA POTENZA COMPLESSIVA DI 112.2 MW SITO NEI COMUNI DI BARUMINI, ESCOLCA, GERGEI, LAS PLASSAS E VILLANOVAFRANCA (SU), CON OPERE DI CONNESSIONE NEI COMUNI DI BARUMINI, ESCOLCA, GENONI, GERGEI, GESTURI, LAS PLASSAS, NURAGUS E VILLANOVAFRANCA (SU)

PROPONENTE:

GRV WIND SARDEGNA 6 S.R.L. – Via Durini,9 20122 Milano (MI) pec grvwindsardegna6@legalmail.it

ELABORATO N°G2

REPORT MASW

Progettazione

I.A.T. Consulenza e progetti S.r.l. www.iatprogetti.it Ing. Giuseppe Frongia / n. ordine 3453 CA

Codice elaborato

WGG_G2_Report MASW

PROGETTAZIONE:

I.A.T. Consulenza e progetti S.r.l. Ing. Giuseppe Frongia (Direttore tecnico)

Gruppo di progettazione:

Ing. Giuseppe Frongia (Coordinatore e responsabile) Ing. Marianna Barbarino Ing. Enrica Batzella Pian. Terr. Andrea Cappai Ing. Paolo Desogus Pian. Terr. Veronica Fais Ing. Gianluca Melis Ing. Andrea Onnis Pian. Terr. Eleonora Re Ing. Elisa Roych

Collaborazioni specialistiche:

Verifiche strutturali: Ing. Gianfranco Corda Aspetti geologici e geotecnici: Dott. Geol. Maria Francesca Lobina e Dott. Geol. Mauro Pompei Aspetti faunistici: Dott. Nat. Maurizio Medda Caratterizzazione pedologica: Agr. Dott. Nat. Nicola Manis Acustica: Ing. Antonio Dedoni Aspetti floristico-vegetazionali: Dott. Nat. Francesco Mascia Aspetti archeologici: NOSTOI S.r.l. Dott.ssa Maria Grazia Liseno

INDICE

1	PREMESSA	4
2	INQUADRAMENTO TOPOGRAFICO E TERRITORIALE	5
3	BASE GEOGNOSTICA INFORMATIVA	6
3.1	STUDI PREGRESSI	6
3.2	PROSPEZIONE SISMICA MASW	6
3.2.2	1 Principi teorici	8
3.2.2	2 Strumentazione utilizzata	9
3.2.3	3 Schema operativo acquisizioni MASW	
3.2.4	4Elaborazione dati	
4	CARATTERIZZAZIONE SISMICA	
4.1	SISMICITÀ LOCALE	
4.2	CLASSIFICAZIONE SISMICA	
4.3	Pericolosità sismica	
4.4	CATEGORIA DI SOTTOSUOLO	
4.5	Esito dell'indagine sismica	

1 PREMESSA

Il Gruppo GR Value, attraverso la sua controllata GRV Wind sardegna 6 S.r.l. ⁽¹⁾, ha in programma la costruzione di un impianto eolico costituito da n. 17 aerogeneratori nei comuni di Barumini, Escolca, Gergei, Las Plassas e Villanovafranca – Provincia del Sud Sardegna.

Oltre ai summenzionati comuni, le opere da realizzare riguardano i comuni di Gesturi e Nuragus, interessati da un tratto di cavidotto a 30 kV, nonché il comune di Genoni interessato dalla prevista Sottostazione Elettrica di Utenza per la trasformazione 150/30 kV e dalla linea AT di collegamento tra la stessa e la futura Stazione Elettrica della RTN a 150 kV in entra – esce alle linee RTN a 150 kV "Taloro – Villasor" e "Taloro – Tuili", anch'essa ipotizzata in comune di Genoni, come previsto dalla soluzione tecnica di connessione (STMG) rilasciata da Terna con Codice pratica 202200248.

In tale ambito, gli scriventi geologi *Dott.ssa MARIA FRANCESCA LOBINA* e *Dott. MAURO POMPEI* sono stati incaricati per la stesura della presente «**RELAZIONE GEOLOGICA E GEOTECNICA**» quale corredo obbligatorio degli elaborati progettuali ai fini del conseguimento del titolo autorizzativo.

In questa fase si è convenuto di realizzare alcune prospezioni sismiche con tecnica MASW (Multichannel Analysis of Surface Waves) in modo da ricostruire, attraverso la definizione del profilo di velocità delle onde di taglio verticali Vs, una sismostratigrafia atta alla definizione della categoria di suolo, mediante elaborazione delle velocità equivalenti (Vs_{eq}), in ossequio alla normativa antisismica vigente (Ordinanza n. 3274) e delle «*Norme tecniche per le Costruzioni*» (**D.M. 17.01.2018**), aggiornamento 2019».

⁽¹⁾ sede legale: Via Durini n.9 – 20122 Milano (MI)

2 INQUADRAMENTO TOPOGRAFICO E TERRITORIALE

L'areale che ospiterà il parco eolico ricade è ubicato nella Sardegna centro-meridionale e precisamente nelle subregioni della Marmilla e del Sarcidano entro le pertinenze dei comuni Barumini, Escolca, Gergei, Las Plassas e Villanovafranca.

Gli aerogeneratori saranno distribuiti lungo circa 8 km in longitudine e per circa 5 km in latitudine e comprenderanno, da ovest verso est le località Bruncu Margianis, Monte Miana, Bruncu sa Zeppara, Monte Atzili, S'enna de is Argiolas, Pranu Tuppe Menga, Planu Spandela. La principale arteria stradale è rappresentata dalla SP di Villanovafranca che delimita a sud l'area del parco.

I riferimenti cartografici sono rappresentati da:

•	Foglio 540 "MANDAS" dell'I.G.M.I.	[scala 1:50.000]
•	Sez. 540-III "Mandas" dell'I.G.M.I.	[scala 1:25.000]
•	Sez. 540090 "San Simone" della C.T.R.	[scala 1:10.000]

• Sez. 548100 "MANDAS" della C.T.R. [scala 1:10.000]

FIGURA 2.1 – Pertinenze amministrative dell'area del parco eolico

FIGURA 2.2 – Pertinenze amministrative dell'area del parco eolico su immagine satellitare (Google Earth).

3 BASE GEOGNOSTICA INFORMATIVA

3.1 STUDI PREGRESSI

Come accennato in premessa, la stesura del presente elaborato si è avvalsa di una base informativa e cognitiva diretta, confortata da descrizioni diverse e da dati in possesso degli scriventi: seppur relativi da lavori di differente natura ed in assenza di test geognostici diretti, hanno consentito una modellazione geologica confacente alla fase progettuale in essere ed una caratterizzazione indicativa geotecnica dei terreni interagenti con le opere in programma.

3.2 PROSPEZIONE SISMICA MASW

Per la classificazione dei terreni secondo la Nuova Normativa Antisismica (Ordinanza n. 3274) e l'aggiornamento delle Norme Tecniche per le Costruzioni (D.M. 17.01.2018), è stata eseguita una prospezione sismica mediante tecnica MASW (Multichannel Analysis of Surface Waves): trattasi di una tecnica non invasiva che, attraverso la definizione del profilo di velocità delle onde di taglio verticali Vs, è in grado di ricostruire una sismostratigrafia atta alla definizione della categoria di suolo, mediante elaborazione delle Vs_h, ai sensi del D.M. 17.01.2018.

Fermi restando gli obiettivo preposti, l'indagine si è articolata nelle seguenti fasi:

- valutazione della configurazione geometrica e della disposizione più consona dello stendimento;
- acquisizione dei dati in campo;
- elaborazione ed interpretazione dei dati.

Il principio teorico su cui si fondano le indagini sismiche "a rifrazione" è che consentono di ottenere informazioni di tipo geotecnico sul comportamento fisico-meccanico dei corpi geologici investigati, attraverso la determinazione dei relativi parametri, ed informazioni di tipo geologico sui caratteri strutturali e stratigrafici del volume indagato. Si tratta di uno dei metodi attualmente più utilizzati per l'esplorazione in profondità del sottosuolo e consiste nel creare delle onde artificiali nel terreno (energizzazione) battendo una piastra poggiata a terra con una mazza.

Sfruttano le proprietà dei terreni di farsi attraversare dalle onde sismiche a diversa velocità; questa dipende da molti fattori, quali la natura mineralogica della roccia, il grado di cementazione e di fatturazione, la porosità, il contenuto in acqua o in gas, etc..

Nel caso specifico sono stati realizzati n. 3 stendimenti di lunghezza 46 m ed allineamento di n. 24 geofoni con interdistanza geofonica 2,00 m, rispettivamente con baricentro nel punto con le seguenti coordinate:

1.	4.391.879 NORD	1.508.826 EST pressi WTG17
2.	4.392.134 NORD	1.508.338 EST pressi WTG3
3.	4.392.457 NORD	1.507.596 EST pressi WTG5 – WGT6

L'ubicazione delle prospezioni è rappresentata nelle successive immagini fotografiche.

FIGURA 3.1 – Stendimento MASW1.

FIGURA 3.2 – Stendimento MASW2.

Figura 3.3 – Stendimento MASW3.

3.2.1 Principi teorici

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- **P** Longitudinale onda profonda di compressione
- S Trasversale onda profonda di taglio
- L Love onda di superficie, composta da onde P e S
- **R** Rayleigh onda di superficie composta da un movimento ellittico e retrogrado

Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (ACHENBACH J.D., 1999, AKI K. & RICHARDS P.G., 1980) o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione.

La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano negli strati più profondi e quindi interessano gli strati più profondi del suolo" (da *Caratterizzazione sismica dei suoli con il metodo MASW* (Multichannel Analysis of Surface Waves – V. Roma 2006).

3.2.2 Strumentazione utilizzata

Per l'esecuzione del cantiere in argomento, è stata impiegato un Sismografo DAQLink III (Seismic Source U.S.A.) con convertitore A/D a 24 bit, numero di canali da 3 a 24, ampio range dinamico 144db, output dei dati in SEG-Y, SEG-2 o ASCII, opzione per test dei geofoni ed accelerometri, lunghezza di registrazione fino a 4 mld di campioni, intervalli di campionamento: 0.0208, 0.0625, 0.125, 0.250, 0.500, 1.00, 2.00, 4.00, 8.00, 16.00 ms.

L'intero sistema di acquisizione è conforme alle specifiche ASTM D5777-00 (2006) (Standard Guide for Using the Seismic Refraction Method for Subsurface Investigation); l'energizzazione del terreno è stata effettuata mediante l'utilizzo di una massa battente (mazza di 10 kg con starter su piattello di battuta). Per la ricezione delle onde longitudinali (P), durante l'indagine sismica, sono stati usati geofoni verticali a lungo periodo (4.5 Hz).

Figura 3.5 – Sismografo DaqLinkIII.

Figura 3.6 – Operazioni di acquisizione del segnale sismico.

3.2.3 Schema operativo acquisizioni MASW

Sulla base delle caratteristiche morfologiche del sito, è stato posizionato lo stendimento sismico, in parte nell'area d'ingombro della struttura.

L'analisi è stata eseguita adottando la seguente configurazione:

- \Rightarrow Numero geofoni 4 con frequenza propria di risonanza 4,5 Hz
- \Rightarrow Distanza intergeofonica 2 m per complessivi 46 m di stendimento
- ⇒ Offset di battuta n. 1 battuta disposta a 4,00 m di distanza dal primo geofono

Per quanto riguarda l'acquisizione sono state utilizzate le seguenti impostazioni:

- \Rightarrow Tempo di acquisizione 1 s
- \Rightarrow Frequenza di campionamento 1000 Hz
- \Rightarrow Periodo di campionamento 1,00 ms.

	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24
₩	7	-7-		-7-	-7-	- <u></u>	-7-	-7-	- <u></u>				-------------	7	-7	-		- <u>-</u>	-------------	7	7	-------------	7	_

FIGURA 3.7 - Schema stendimento sismico utilizzato, in questo caso con energizzazione a 4 m dal G1

I dati acquisiti in campagna sono stati, quindi, elaborati ed è stato possibile ricostruire un modello attendibile Vs/profondità. Il metodo di investigazione MASW è detto "attivo" in quanto la generazione di onde sismiche si effettua artificialmente a mezzo di idonea massa battente, fucile sismico o altro. Il punto di energizzazione è posto lungo l'allineamento dei geofoni ad una certa distanza da un geofono esterno. Con questa procedura si ricostruisce l'assetto sismo-stratigrafico del sottosuolo che si basa sull'analisi delle onde di Raylegh che si propagano entro un semispazio stratificato.

Il metodo prevede l'utilizzo di strumentazione classica per sismica a rifrazione ad elevata dinamica (24 bits di conversione A/D), con geofoni a bassa frequenza. Una volta acquisiti i dati son stati riversati direttamente su p.c. per la successiva elaborazione.

3.2.4 Elaborazione dati

L'elaborazione dei dati è stata fatta una volta definita la curva di dispersione. I dati sono stati processati attraverso il codice SeisImager (Pickwin v. 3.14 WaveEq v. 2.07).

La procedura di elaborazione consiste nell'intervenire e modificare il profilo delle velocità Vs fino al raggiungimento di un buon accordo fra la curva di dispersione rilevata in sito e la curva simulata numericamente.

L'analisi dei dati acquisiti dalla metodologia avviene attraverso le seguenti fasi:

- \Rightarrow acquisizione dei sismogrammi,
- \Rightarrow esportazione del file in formato SEG-2 idoneo all'elaborazione finale,
- \Rightarrow calcolo dello spettro di velocità,
- \Rightarrow individuazione del modo fondamentale e degli eventuali superiori,
- ⇒ calcolo della curva di dispersione mediante modellazione diretta, cioè attribuzione degli spessori e delle velocità relative, sulla base di dati riguardanti il sito acquisiti precedentemente tramite indagini dirette o bibliografia. in alternativa picking della curva di dispersione, cioè selezione dei punti che si ritengono appartenere ad un determinato modo,
- \Rightarrow inversione della curva di dispersione e conseguente individuazione del profilo di velocità Vs.

Gli spettri di velocità risultano dominati dal modo fondamentale delle onde di Rayleigh. I valori di dispersione appartenenti a disturbi a bassa frequenza e ai modi superiori sono stati esclusi dall'interpretazione del profilo di velocità

4 CARATTERIZZAZIONE SISMICA

4.1 SISMICITÀ LOCALE

Le caratteristiche di sismicità del blocco sardo-corso sono da porre in relazione, sostanzialmente, con l'evoluzione geodinamica del Mediterraneo occidentale e delle catene montuose che lo circondano: il basamento della Sardegna rappresenta infatti un segmento della catena ercinica sud-europea originatasi a partire dal Paleozoico e separatosi dalla stessa durante il Miocene inferiore.

Durante il Miocene superiore, il principale evento geodinamico dell'area è rappresentato dalla strutturazione dell'attuale margine orientale dell'Isola, che si protrae fino a parte del Quaternario. I principali eventi che hanno condizionato la tettonica distensiva della Sardegna sono rappresentati dalla migrazione dell'Arco Appenninico settentrionale sull'avanfossa del margine adriatico e, dall'apertura del Bacino Tirrenico meridionale.

Nonostante sia acclarata la bassa sismicità della Sardegna conseguente alla generale stabilità geologica del blocco sardo-corso (gli ultimi episodi vulcanici dell'isola vengono fatti risalire a circa 90.000 anni fa, nel Pleistocene superiore, con l'emissione di lave e formazione di coni di scorie nel settore dell'*Anglona*), si ha conoscenza di indizi di eventi sismici risalenti a 3.000-4.000 anni fa, testimoniati da importanti danneggiamenti rilevati in alcuni edifici nuragici. Negli ultimi secoli non pochi sono stati i terremoti di energia non trascurabile localizzati in Sardegna o nelle sue immediate vicinanze. In un recente lavoro, MELETTI et al. (2020) hanno revisionato tutte le informazioni disponibili relative ai terremoti fatti registrare in Sardegna dal 1616, data del primo terremoto di cui si abbia notizia, al 2019. Nelle Tabella 4.1 e Tabella 4.2 sono riportati i parametri analizzati in questa sede relativi a tutti i terremoti di interesse per la Sardegna.

Dai dati macrosismici provenienti da studi INGV e di altri enti utilizzati per la compilazione del catalogo parametrico CPTI15, consultabili dal sito web "DBMI15", per l'Isola non sono registrati eventi sismici significativi, al massimo del VI grado della scala Mercalli. Si porta ad esempio il terremoto del 04.06.1616 che determinò danneggiamenti vari a edifici della Cagliari di allora e ad alcune torri costiere attorno a Villasimius.

Alcuni terremoti segnalati (oltre ai primi registrati dall'Istituto Nazionale di Geofisica negli anni 1838 e 1870 rispettivamente del VI e V grado della scala Mercalli) risalgono al 1948 (epicentro nel Canale di Sardegna, verso la Tunisia, VI grado) e al 1960 (V grado), con epicentro i dintorni di Tempio Pausania). Degno di attenzione è sicuramente anche quello avvertito nel cagliaritano il 30.08.1977 provocato dal vulcano sottomarino Quirino mentre, più recentemente (03.03.2001), è stato registrato un sisma di magnitudo 3,3 Richter (IV grado scala Mercalli) nella costa di San Teodoro ed un sisma di analoga magnitudo il 09.11.2010, nella costa NW dell'Isola.

Year	Мо	Da	Но	Mi	Epicentral Area	Ref	com.	NOm	bx	Lat	Lon	М
1610	06	04			Sardegna merid.	MELAL020	ZZ	-	-	-	-	-
1616	06	04	14		Sardegna merid.	MELAL020		10	D	39.131	9.502	4.9
1619	06	24	16		Sardegna merid.	MELAL020	UNK	1	4-5	39.256	9.168	3.9
1771	08	17	13		Sardegna merid.	MELAL020		2	3	39.223	9.121	3.2
1771	08	17	18		Sardegna merid.	MELAL020		7	5	39.213	8.936	4.4
1835	03	06			Sardegna merid.	MELAL020	D	1	3	39.223	9.121	3.2
1838	02	02			Agro sassarese	MELAL020	ZZ	-	-	-	-	-
1855	06	11			Cagliari	MELAL020	ZD	-	-	-	-	-
1870	06	20	08	22	Ittireddu	MELAL020	ZZ	-	-	-	-	-
1870	07	04	17	45	Nuorese	MELAL020		4	5	40.477	9.383	4.2
1898	12	15			San Vito	MELAL020	ZZ	-	-	-	-	-
1901	01	18	16	30	Gergei	MELAL020	UNK	7	5	39.699	9.102	4.2
1901	01	18	17		Gergei	MELAL020		1	F	39.654	9.129	3.7
1901	03	22	13		Gergei	MELAL020		1	4-5	39.699	9.102	3.9
1906	04	<mark>0</mark> 3	16	20	Sardegna Settentrionale	MELAL020		6	3	41.048	9.599	3.2
1922	07	18	20	30	Nuorese	MELAL020		1	3	40.215	8.803	3.2
1922	07	18	22	30	Nuorese	MELAL020		1	3	40.215	8.803	3.2
1924	01	24	02	22	Sardegna Nord. Occ.	MELAL020	NM	-	-	-	-	-
1948	11	13	09	52	Mar di Sardegna	MELAL020		59	5-6	40.941	8.958	4.7
1948	11	13	12	00	Mar di Sardegna	MELAL020		2	F	40.913	9.302	3.7
1948	11	13	12	48	Mar di Sardegna	MELAL020		1	F	40.903	9.104	3.7
1948	11	13	22	45	Mar di Sardegna	MELAL020		1	3	40.914	8.713	3.2
1948	11	16	21	57	Mar di Sardegna	MELAL020		10	5	40.903	9.104	4.2
1948	11	17	00		Mar di Sardegna	MELAL020		2	3	40.903	9.104	3.2
1948	11	20	01		Mar di Sardegna	MELAL020		2	4-5	40.903	9.104	3.9
1948	11	20	02	07	Mar di Sardegna	MELAL020		1	F	40.929	9.065	3.7
1948	11	20	02	15	Mar di Sardegna	MELAL020		2	4-5	40.903	9.104	3.9
1948	11	20	13	45	Mar di Sardegna	MELAL020		1	4-5	40.903	9.104	3.9
1948	11	20	15	36	Mar di Sardegna	MELAL020		1	5-6	40.929	9.065	4.4
1948	11	21	21	50	Mar di Sardegna	MELAL020		4	5-6	40.948	8.938	4.4

Taballa 4.1 Taballa dai sismi ragistrati in Sardaana dal 1610 al 1948 Malatti at al	(2020	n
Tubella 4.1 Tubella del Sistili registradi ili Surdegna dal 1010 di 1940 Meletti et di.	(2020	J٠

Year	Mo	Da	Ho	Mi	Epicentral Area	Ref	com.	NOm	bx	Lat	Lon	м
1948	12	<mark>08</mark>	04	30	Sassarese	MELAL020		4	3	40.926	9.020	3.2
1948	12	08	13	15	Sassarese	MELAL020		4	3	40.926	9.020	3.2
1948	12	08	13	45	Sassarese	MELAL020		7	5-6	40.931	8.983	4.4
1948	12	08	23	00	Sassarese	MELAL020		3	3	40.944	9.009	3.2
1948	12	29	21	45	Mar di Sardegna	MELAL020		5	5	40.948	8.938	4.2
1949	01	06	17	30	Mar di Sardegna	MELAL020		4	5-6	40.948	8.938	4.4
1960	05	25	22		Calagianus	BSING		1	5	40.933	9.117	3.5
1970	06	18	09	03	Mare di Sardegna	ISC		13	4	40.950	7.420	4.8
1976	07	15	09	18	Medio Tirreno	BSING	NM			41.400	9.800	-
1977	05	29	16	19	Biancareddu	BSING	NM			40.783	8.183	2.7
1977	06	27	19	36	Valverde	BSING	NM			40.583	8.383	3.0
1977	08	28	09	45	Canale di Sardegna	ISC		20	5	38.235	8.187	5.4
2000	04	26	13	28	Tirreno centrale	ISC		-	-	40.929	10.077	4.3
2000	04	26	13	37	Tirreno centrale	ISC		46	5-6	40.955	10.097	4.8
2001	03	03	01	54	Tirreno centrale	ISC		1	3-4	40.884	9.990	4.0
2004	12	12	11	52	Tirreno centrale	ISC		19	3-4	41.015	9.967	4.1
2004	12	18	09	12	Tirreno centrale	ISC		13	4-5	40.958	10.050	4.6
2006	03	24	10	43	Capo Teulada	ISC		2	4-5	38.924	8.931	4.0
2011	07	02	14	43	Mare di Corsica	ISC		-	-	42.004	7.617	4.2
2011	07	07	19	21	Mare di Corsica	ISC		5	4	42.087	7.593	5.1
2012	03	04	03	47	Mare di Corsica	ISC		2	2-3	42.080	7.565	4.4

Tabella 4.2	? Tabella dei	i sismi registrati	in Sardegna d	lal 1948 al 2021	Meletti et al.	(2020).

Altri ancora, con epicentro nel settore a mare poco a ovest della Corsica e della Sardegna, sono stati registrati nel 2011 con magnitudo compresa tra 2,1 e 5,3 ed ipocentro a profondità tra 11 km e 40 km di profondità.

Si segnalano altri terremoti tra il 2006 e il 2007 nel Medio Campidano seppure di magnitudo mai superiore e 2,7 (13.07.2006, magnitudo 2,7 a 10 km di profondità con epicentro Capoterra; 23.05.2007, magnitudo 1,4 a 10 km di profondità con epicentro Pabillonis; 02.10.2007, magnitudo 1,4 a 10 km di profondità con epicentro tra Pabillonis e Guspini.

Per quanto attiene il sito specifico, la sismicità storica è stata ricostruita previa consultazione dei seguenti database resi fruibili online dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV):

CPTI15 - Catalogo Parametrico dei terremoti Italiani 2015

Contiene i dati parametrici omogenei, sia macrosismici che strumentali, relativi ai terremoti con intensità massima \geq 5 o con magnitudo (Mw) \geq 4 relativi a tutto il territorio italiano.

DBMI15 - Database macrosismico dei terremoti italiani 2015.

Fornisce un set omogeneo di intensità macrosismiche provenienti da diverse fonti relativo ai terremoti con intensità massima \geq 5 e d'interesse per l'Italia nel periodo 1000-2020.

L'archivio non indica alcun evento con epicentro nei comuni ove ricadrà il parco eolico.

Dal database DISS relativo alle potenziali sorgenti sismogenetiche con magnitudo > 5.5, si evince che il settore di intervento non è direttamente gravato da potenziali faglie sismogenetiche.

Figura 4.1 – Localizzazione delle potenziali sorgenti di terremoti con M > 5,5 rispetto all'area di intervento (estratto da DISS Working group 2021, Database of Individual Seismogenic Sources ver. 3.3.0., https://diss.ingv.it/diss330/dissmap.html)

4.2 CLASSIFICAZIONE SISMICA

Il panorama legislativo in materia sismica è stato rivisitato dalle recenti normative nazionali, ovvero dall'Ordinanza P.C.M. n. 3274 del 20.03.2003 *«Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica»*, entrata in vigore dal 25.10.2005 in concomitanza con la pubblicazione della prima stesura delle *«Norme Tecniche per le Costruzioni»* e dalla successiva O.P.C.M. n. 3519/2006 che ha lasciato facoltà alle singole regioni di introdurre o meno l'obbligo della progettazione antisismica in zona 4.

In relazione alla pericolosità sismica - espressa in termini di accelerazione massima del suolo con probabilità di eccedenza del 10% in 50 anni riferita a suoli rigidi - il territorio nazionale è stato suddiviso in quattro zone con livelli decrescenti di pericolosità in funzione di altrettanti valori di accelerazione orizzontale massima al suolo (a_{g475}), ossia quella riferita al 50esimo percentile, ad una vita di riferimento di 50 anni e ad una probabilità di superamento del 10% attribuiti a suoli rigidi caratterizzati da Vs30 > 800 m/s.

L'appartenenza ad una delle quattro zone viene stabilita rispetto alla distribuzione sul territorio dei valori di a_{g475} , con una tolleranza 0,025g. A ciascuna zona o sottozona è attribuito un valore di pericolosità di base, espressa in termini di accelerazione massima su suolo rigido (ag), che deve essere considerato in sede di progettazione.

Allo stato attuale delle conoscenze, attraverso l'applicazione WebGIS, è possibile consultare in maniera interattiva le mappe di pericolosità sismica. Il sito di specifico intervento, così come tutto il territorio regionale ricade in **Zona 4**, contraddistinto da «pericolosità sismica BASSA» a cui corrisponde la normativa antisismica meno severa. Al parametro **ag** è assegnato un valore di accelerazione al suolo da adottare nella progettazione compreso tra **0,025÷0,05 g** (con probabilità di eccedenza del 10% in 50 anni). Tuttavia, con la ratifica delle Norme Tecniche per le Costruzioni avvenuta con l'aggiornamento del 17.01.2018, anche in questo ambito per le verifiche geotecniche è obbligatorio l'utilizzo del metodo delle tensioni limite.

4.3 PERICOLOSITÀ SISMICA

L'entrata in vigore delle NTC 2008 ha reso obbligatoria, anche per le zone a bassa sismicità come la Sardegna, la stima della pericolosità sismica basata su una griglia, estesa per tutto il territorio nazionale, di 10751 punti, in cui vengono forniti per ogni nodo situato ai vertici di ciascuna maglia elementare, i valori di:

- ag accelerazione orizzontale massima del terreno,
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale,
- Tc* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale),

per nove periodi di ritorno T_r, in condizioni ideali di sito di riferimento rigido (di categoria

A nelle NTC) con superficie topografica orizzontale.

Solo per alcune aree insulari con bassa sismicità (tra cui la Sardegna), tali valori sono unici e sono quelli indicati nella Tabella 2 dell'Allegato B alle N.T.C. 2008, ancora valide per le N.T.C. del 2018.

Per un periodo di ritorno Tr = 475 anni, detti parametri valgono:

- $a_{g} = 0,500$
- $F_0 = 2,88$

– Tc* = 0,34

Per quanto riguarda la massima intensità macrosismica I_{max} (che rappresenta una misura degli effetti che il terremoto ha prodotto sull'uomo, sugli edifici e sull'ambiente) si fa riferimento alla classificazione del Gruppo Nazionale per la Difesa dei Terremoti (G.N.D.T.).

Per i comuni della Sardegna, così come per quelli ove si segnalano intensità massime molto basse o non esiste alcun dato osservato, è stato assegnato un valore "ponderato" di intensità (**Imax/pon**), stimato per estrapolazione dai valori osservati nei comuni limitrofi oppure calcolando un risentimento massimo a partire dal catalogo NT.3 mediante opportune leggi di attenuazione.

Dei 375 comuni della Sardegna, meno del 5% ha comunicato al G.N.D.T. i dati relativi all'intensità macrosismica MCS: in ogni caso, nella totalità delle rilevazioni, i valori sono risultati minori di 6.

Il *database* del progetto ITHACA (*ITaly HAzard from CApable faults*) ha consentito di escludere la presenza di "faglie capaci", ovvero di lineamenti tettonici attivi che possono potenzialmente creare deformazioni in superficie e produrre fenomeni dagli effetti distruttivi per le opere antropiche.

4.4 CATEGORIA DI SOTTOSUOLO

Per la valutazione delle azioni sismiche di progetto, ai sensi del D.M. del 1701.2018, deve essere valutata l'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto nel suolo superficiale. Per tale motivo si esegue una classificazione dei terreni compresi fra il piano di campagna ed il "bedrock" attraverso la stima delle velocità medie delle onde di taglio (Vs).

Con l'approccio semplificato, la classificazione del sottosuolo si effettua in base alla configurazione stratigrafica ed i valori della velocità equivalente di propagazione delle onde di taglio, VS_{eq} (in m/s), definita dall'espressione:

$$Vs, eq = \frac{H}{\sum_{i=1}^{N} \frac{hi}{Vs}}$$

essendo:

hi = spessore dello stato i-esimo,

Vs,i = velocità delle onde di taglio nell'i-esimo strato,

N = numero di strati,

H = profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/sec.

Per le fondazioni superficiali, la profondità del substrato viene riferita al piano di imposta delle stesse, mentre per le fondazioni su pali alla testa dei pali. Per depositi con profondità del substrato > 30 m, la velocità equivalente delle onde di taglio VS_{eq} è definita dal parametro VS_{30} ottenuto ponendo H = 30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Ai fini della definizione delle azioni sismiche secondo le «*Norme Tecniche per il progetto sismico di opere di fondazione e di sostegno dei terreni*», un sito può essere classificato attraverso il valore delle VS_{eq} con l'appartenenza alle differenti categorie sismiche; ovvero:

A] ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m;

- **B]** rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s;
- **C]** depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s;
- **D]** depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fine scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s;
- **E]** terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

4.5 ESITO DELL'INDAGINE SISMICA

Per ricostruire la sequenza stratigrafica sulla base delle caratteristiche legate alla velocità delle onde di taglio e quindi addivenire alla classificazione secondo le categorie di suolo previste dalle NTC 2018 e ss.ii., sono stati realizzati n. 3 stendimenti di sismica a rifrazione con metodo MASW in prossimità dei siti di imposta di aereogeneratori e nello specifico WTG03, WTG05, WTG06 e WTG17.

L'analisi è stata condotta utilizzando un modello composto da 9 sismostrati, di seguito rappresentati in tabella con delle indicazioni di massima della stratigrafia riscontrata.

	MASW 01 (WTG17)										
Strati	Profondità (m)	Spessore (m)	Descrizione	γ2 (kN/m³)	Vs (m/s)	R (kPa)	F (Hz)	T (s)			
1	1,7	1,7	Basamento lapideo	17,0	247	4.211	105	0,028			
2	3,7	2,1	alterato	17,5	275	4.815	144	0,031			
3	6,3	2,5		19,5	422	8.224	264	0,024			
4	9,2	2,9		21,3	604	12.876	438	0,019			
5	12,5	3,3	Basamento lapideo	21,4	610	13.036	503	0,022			
6	16,2	3,7		21,2	594	12.610	549	0,025			
7	20,4	4,2		21,5	629	13.545	660	0,027			
8	25	4,6	Basamento lapideo	22,6	758	17.102	872	0,024			
9	-	-	massivo	24,3	1017	24.696	-	-			

	MASW 02 (WTG03)										
Strati	Profondità (m)	Spessore (m)	Descrizione	γ (kN/m³)	Vs (m/s)	R (kPa)	F (Hz)	T (s)			
1	1,7	1,7	De seus su te leui de s	15,5	169	2.620	72	0,040			
2	3,7	2,1	Basamento lapideo	16,1	196	3.153	103	0,043			
3	6,3	2,5	allerato	17,3	264	4.576	165	0,038			
4	9,2	2,9		17,7	288	5.102	209	0,040			
5	12,5	3,3		18,7	355	6.626	293	0,037			
6	16,2	3,7	Pagamanta lanidaa	19,9	463	9.235	428	0,032			
7	20,4	4,2	basamento iapideo	20,7	541	11.219	568	0,031			
8	25	4,6		21,1	581	12.266	668	0,032			
9	-	-		21,4	613	13.116	-	-			

	MASW 03 (WTG05 - WTG06)										
Strati	Profondità (m)	Spessore (m)	Descrizione	γ (kN/m³)	Vs (m/s)	R (kPa)	F (Hz)	T (s)			
1	1,7	1,7		22,1	698	15.427	297	0,010			
2	3,7	2,1	-	22,0	689	15.179	362	0,012			
3	6,3	2,5	Pagamanta lanidaa	21,3	606	12.929	379	0,017			
4	9,2	2,9	basamento iapideo	21,0	567	11.897	411	0,020			
5	12,5	3,3		20,9	559	11.688	461	0,024			
6	16,2	3,7		21,9	673	14.740	623	0,022			
7	20,4	4,2	Decemente levidee	23,2	851	19.764	894	0,020			
8	25	4,6	Basamento lapideo	24,3	1.020	24.787	1.173	0,018			
9	-	-	massivo	24,7	1.095	27.085	-	-			

² Keceli (2012) $\gamma = 4,3 \cdot Vs^{0,25}$

In nessuno degli stendimenti è stato individuato il substrato rigido con Vs > 800 m/s entro i primi 30 m di profondità: la velocità della Vs equivalente è stata calcolata utilizzando le Vs misurate fino alla profondità di 30 m, coerentemente alle prescrizioni delle NTC 2018.

DENOMINAZIONE	CORRISPONDENZA	Vs EQUIVALENTE	CATEGORIA SUOLO
MASW 01	WTG17	504 m/s	В
MASW 02	WTG03	368 m/s	В
MASW 03	WTG05 – WTG06	620 m/s	В

Resta sempre in capo al progettista l'utilizzo della categoria di sottosuolo di riferimento da utilizzare in funzione delle scelte progettuali.

Figura 4.2 – Sismogramma MASW1 in prossimità del sito WTG17.

Figura 4.5 – Spettro di dispersione per la MASW1 in prossimità del sito WTG17.

Dispersion curve : MASW_2.sg2

Figura 4.6 – Spettro di dispersione per la MASW1 in prossimità del sito WTG3.

Dispersion curve : MASW_3.sg2 Figura 4.7 – Spettro di dispersione per la MASW1 in prossimità del sito WTG5 – WTG6.

Nei successivi profili MASW viene rappresentata la variazione della velocità delle Vs alle diverse profondità d'indagine.

La successione di pallini verdi indica la velocità delle Vs nella distribuzione spettrale, nonché l'effettiva profondità di investigazione raggiunta.

Non sono state riscontrate evidenze di presenza di falda.

Figura 4.8 – Profilo MASW1.

Figura 4.10 – Profilo MASW3.