MINISTERO DELL'AMBIENTE E DELLA SICUREZZA ENERGETICA

Procedura di Valutazione di Impatto Ambientale ex D. Lgs 152/2006

PROGETTO DEFINITIVO E STUDIO DI IMPATTO AMBIENTALE

HUB ENERGETICO **AGNES ROMAGNA 1&2** UBICATO NEL TRATTO DI MARE ANTISTANTE LA COSTA EMILIANO-ROMAGNOLA E NEL COMUNE DI RAVENNA

Titolo:

RELAZIONE DI PRODUCIBILITÀ DELL'HUB ENERGETICO

Codice identificativo:

AGNROM_EP-R_REL-PRODUZIONE

Proponente:

Autori del documento:

Qint'x S.r.l. P. IVA: 01445520396

SR International S.r.l. P. IVA: 13457211004

DETTAGLI DEL DOCUMENTO

Titolo documento	Relazione di producibilità dell'hub energetico
Codice documento	AGNROM_EP-R_REL-PRODUZIONE
Titolo progetto	Hub energetico Agnes Romagna 1&2
Codice progetto	AGNROM
Data	17/01/2023
Versione	1.0
Autore/i	L. Imperato; F. Tigli; F. Melandri; S. Casati; G. L. Vaglio; N. Lontani
Tipologia elaborato	Relazione
Cartella	VIA_2
Sezione	Elaborati di progetto
Formato	A4

VERSIONI

1.0	00	SR International; Qint'x	A. Bernabini	AGNES	Emissione finale
Ver.	Rev.	Redazione	Controllo	Emissione	Commenti

FIRME DIGITALI

Questo documento è di proprietà di Agnes S.r.l. Qualunque riproduzione, anche parziale, è vietata senza la sua preventiva autorizzazione. Ogni violazione sarà perseguita a termini di legge.

Sommario

Pł	REMESS	\	
1.	INTR	ODUZIONE	6
	1.1	SCOPO DEL DOCUMENTO	7
	1.2	UBICAZIONE E CARATTERISTICHE ESSENZIALI	7
	1.2.1	AREA MARINA	7
	1.2.2	Area terrestre	9
	1.3	GRUPPO DI LAVORO PER L'ELABORAZIONE DEL DOCUMENTO	10
2.	STIN	A DI PRODUZIONE DEGLI IMPIANTI EOLICI	11
	2.1	TECNOLOGIA E LAYOUT DELL'IMPIANTO	11
	2.2	DESCRIZIONE GENERALE DELLA METODOLOGIA	13
	2.2.1	MODELLO DIGITALE DEL TERRENO	13
	2.2.2	Simulazioni	14
	2.3	DESCRIZIONE DEI DATASET SATELLITARI – RIANALISI UTILIZZATI	15
	2.3.1	CLIMATOLOGIA OTTENUTA DAI DATI ERA-5	16
	2.3.2	Climatologia ottenuta dai dati AWS True Power	
	2.4	DESCRIZIONE DELLE PERDITE TECNICHE E DI SCIA	20
	2.5	SIMULAZIONI CON DATI SATELLITARI DI RIANALISI	25
	2.5.1	SIMULAZIONE CON DATI ERA-5	26
	2.5.2	SIMULAZIONE CON DATI AWS TRUE POWER	32
	2.6	CALCOLO DEL RANGE DI PRODUCIBILITÀ	
	2.7	ANALISI QUANTITATIVA E QUALITATIVA DEI RISULTATI	
	2.8	CAMPAGNA DI MISURAZIONE DEL VENTO IN SITO AVVIATA DAL PROPONENTE	39
3.	STIN	A DI PRODUZIONE DELL'IMPIANTO FOTOVOLTAICO	42
	3.1	TECNOLOGIA E LAYOUT DELL'IMPIANTO	42
	3.1.1	PANNELLI FOTOVOLTAICI	43
	3.1.2	INVERTER	44
	3.1.3	SCHEMA UNIFILARE	44
	3.2	DATI CLIMATICI E VALORI DIPENDENTI DALLA LOCALITÀ	44
	3.2.1	RADIAZIONE SOLARE	45
	3.2.2	Albedo	47
	3.2.3	Orizzonte	48
	3.3	CALCOLO DELLA PRODUCIBILITÀ	48
	3.3.1	PARAMETRI DI PROGETTO	48
	3.3.2	PARAMETRI DI ADEGUAMENTO DELLA PRODUCIBILITÀ PER IMPIANTI UBICATI OFFSHORE	50
	3.4	RISULTATI DELLA SIMULAZIONE CON PVSYST E RIEPILOGO DEI RISULTATI	55
	3.4.1	PRODUZIONE LORDA DI ENERGIA	55
	3.4.2	PERDITE DI TRASMISSIONE E TRASFORMAZIONE	57
	3.4.3	Produzione netta di energia	57
4.	STIN	A DELLA PRODUZIONE E STOCCAGGIO DI IDROGENO VERDE	
	4.1	TECNOLOGIA E LAYOUT	58

5. CON	ICLUSIONI	72
4.4.4	GESTIONE SISTEMI DI STOCCAGGIO	69
4.4.3	SODDISFAZIONE DELLA DOMANDA E CONTINUITÀ	69
4.4.2	2 Gestione dell'elettricità	68
4.4.1	Produzione di Idrogeno	67
4.4	RISULTATI DELLA SIMULAZIONE EFFETTUATA	67
4.3.3	B DATI DEL SISTEMA DI STOCCAGGIO	66
4.3.2	2 DATI DELL'ELETTROLIZZATORE	65
4.3.1	L DATI DI PRODUZIONE	63
4.3	DESCRIZIONE DEI DATI DI INPUT	63
4.2.2	2 STEP METODOLOGICI DEL MODELLO	62
4.2.1	L Assunzioni adottate nel modello	60
4.2	DESCRIZIONE DELLA METODOLOGIA UTILIZZATA	59

Indice delle figure

Figura 1: Inquadramento dell'area marina vasta	8
Figura 2: Inquadramento dell'area terrestre vasta	9
Figura 3: Layout degli impianti eolici di progetto	12
FIGURA 4: RISOLUZIONE ORIZZONTALE DELLA GRIGLIA (A SINISTRA) E VISTA SCHEMATICA DELLA RISOLUZIONE VERTICALE DELLA GRIGLIA (A DESTRA)	13
Figura 5: Inquadramento dati ERA-5	16
FIGURA 6: ROSA DEL VENTO (A SINISTRA) E DISTRIBUZIONE DELLA FREQUENZA CON RACCORDO WEIBULL (A DESTRA) PER TUTTI I SETTORI – DATI ERAS N.1	17
FIGURA 7: ROSA DEL VENTO (A SINISTRA) E DISTRIBUZIONE DELLA FREQUENZA CON RACCORDO WEIBULL (A DESTRA) PER TUTTI I SETTORI – DATI ERAS N.2	18
Figura 8: Inquadramento dataset AWS	19
FIGURA 9: ROSA DEL VENTO (A SINISTRA) E DISTRIBUZIONE DELLA FREQUENZA CON RACCORDO WEIBULL (A DESTRA) PER TUTTI I SETTORI – DATI AWS	20
FIGURA 10: UBICAZIONE DEI DEVICE LIDAR PER LA MISURAZIONE DEL VENTO NEL SITO DI PROGETTO	40
FIGURA 11: LAYOUT DELL'IMPIANTO FOTOVOLTAICO GALLEGGIANTE CONSIDERANDO LA TECNOLOGIA A STRUTTURA RIGIDA	43
FIGURA 12: DATI CLIMATICI RISULTANTI DALL'INTERROGAZIONE DI SOLARGIS	45
Figura 13: Procedura per il calcolo dell'irradianza	46
FIGURA 14: VALORI RISULTANTI DI RADIAZIONE SOLARE DA SOLARGIS PER LA LOCALITÀ DEL PROGETTO	47
FIGURA 15: COEFFICIENTE D'ALBEDO	47
Figura 16: Modello dell'orizzonte estratto da SolarGIS	48
FIGURA 17: ORIENTAMENTO E INCLINAZIONE DEI PANNELLI	49
FIGURA 18: SCENA 3D PER IL CALCOLO DELL'OMBREGGIAMENTO	50
FIGURA 19: VALORE DI U IN FUNZIONE DELLA TEMPERATURA DELL'ACQUA E DELLA VELOCITÀ DEL VENTO. TEMPERATURA COSTANTE DELL'ARIA PARI A 20°C. AF	RIA =
RAFFREDDAMENTO AD ARIA SUL FRONTE E SUL RETRO (IN BLU). ACQUA = RAFFREDDAMENTO AD ACQUA SUL RETRO, RAFFREDDAMENTO AD ARI	51
Figura 20: Boxplot valori di U con mediana	52
Figura 21: A sinistra: Temperatura della cella in funzione della velocità media del vento e della temperatura dell'acqua, considerando	
Ta=20°C. A destra: Valore di T_NOCT calcolato da PVsyst con U=40 W/(m^2 K)	53
FIGURA 22: IMMAGINE DI UN DEPOSITO SULLA SUPERFICIE DEL PANNELLO CATTURATA CON LA TERMOCAMERA (L.DOROBANTU, 2011)	53
Figura 23: Radiazione solare diretta e riflessa	55
Figura 24: Report dei risultati di calcolo del software PVsyst	56
Figura 25: L'area Agnes Ravenna Porto, raffigurata in giallo, ubicata tra la Pialassa dei Piomboni e Via Trieste	58
FIGURA 26: CONNESSIONI DEI SISTEMI ALL'INTERNO DEL MODELLO	60
Figura 27: Diagramma di flusso del modello	62
Figura 28: Produzione media mensile dei due impianti di generazione dell'hub	64
FIGURA 29: PRODUZIONE DALL'IMPIANTO FOTOVOLTAICO NEL CORSO DI UNA SETTIMANA TIPO	64
Figura 30: Produzione dagli impianti eolici nel corso di una settimana tipo	65
Figura 31: Modulo di elettrolizzatore (rendering)	65
Figura 32: Curva di frequenze della potenza oraria dell'elettrolizzatore	68
Figura 33: Distribuzione dell'elettricità negli scenari ERA-5 (a sinistra) e AWS (a destra)	68
Figura 34: Distribuzione della frequenza del SoC delle batterie	70
FIGURA 35: DISTRIBUZIONE DELLA FREQUENZA DEL LIVELLO DI RIEMPIMENTO DELLO STORAGE DI IDROGENO	71

Indice delle tabelle

PREMESSA

Il progetto **Agnes Romagna 1&2** è stato ideato nel 2017 dall'Ingegnere Alberto Bernabini, in un mondo assai diverso da quello di oggi, segnato profondamente dalla pandemia di covid-19 e la crisi geopolitica causata dalla guerra nell'Europa orientale.

L'obbiettivo del Progetto, oggi più che allora, risulta in linea con quelle che sono le priorità del nostro tempo: *sicurezza energetica, a basse emissioni*.

Agnes sarà il primo progetto in Italia a proporre la coesistenza di impianti eolici e fotovoltaici marini, con a terra sistemi sia per l'immagazzinamento dell'elettricità con batterie, che per la produzione e lo stoccaggio di idrogeno verde.

La **simbiosi industriale** proposta da Agnes ha come principio cardine l'integrazione di diversi sistemi di produzione e stoccaggio di energia, creando sinergie vincenti per aumentare il contributo che le energie rinnovabili offrono contro il **cambiamento climatico antropogenico**.

Soluzioni di questo genere consentiranno di **contrastare il pericolo del cambiamento climatico** con innovazioni tecnologiche e di processo, e contribuiranno in maniera sostanziale a ridurre le emissioni in atmosfera di gas a effetto serra. Nel caso specifico del progetto Agnes Romagna 1&2, sarà prodotta una quantità di **elettricità a basse emissioni superiore al fabbisogno energetico di mezzo milione di famiglie**.

La scelta dell'**area di Ravenna** non è casuale. Dagli anni 50 dello scorso secolo, la città e il suo porto hanno rivestito un ruolo fondamentale nello sviluppo energetico del Paese. Ravenna diventò così la **capitale italiana del gas metano** grazie alla costruzione e installazione di numerose piattaforme estrattive al largo delle sue coste. Le implicazioni sulla filiera produttiva furono profonde e si assistette alla nascita di numerose aziende che rivestirono e rivestono tutt'ora un **ruolo importante nel settore offshore ed energetico**, anche a livello internazionale.

Oggi, tuttavia, è sempre più **necessaria una transizione ecologica** che vede come protagonisti impianti energetici che producono elettricità a basse emissioni, in combinazione con sistemi innovativi di stoccaggio dell'energia. Il progetto proposto, quindi, ha una **visione olistica di trasformazione del distretto energetico ravennate**, che da anni ormai vede la propria economia in declino.

L'ambizione di questa iniziativa non può circoscriversi ad un caso isolato in questa area geografica bensì vuole proporre un modello vincente e applicabile in altri contesti, da realizzare in armonia con le specifiche sensibilità e caratteristiche dei diversi territori.

I notevoli sforzi di investimento e di progettazione hanno incontrato non pochi ostacoli dal punto di vista tecnico e normativo, data la peculiare articolazione dell'hub energetico nei suoi vari componenti e l'elevato grado di innovazione: Il **Progetto Definitivo e lo Studio di Impatto Ambientale** qui proposti, quindi, sono il risultato di **un ingente lavoro sul piano ingegneristico e ambientale**, coordinato in primis dalle aziende **Agnes S.r.I. e Qint'x S.r.I.** e arricchito dal contributo di aziende di consulenza di grande professionalità nelle rispettive discipline.

1. INTRODUZIONE

Il Progetto Romagna 1&2 è relativo alla installazione e messa in esercizio di un hub energetico localizzato in parte nel tratto di mare antistante la costa emiliano-romagnola e in parte nell'area del Comune di Ravenna. Agnes S.r.I. è la società ideatrice e proponente del progetto, con sede a Ravenna (RA).

L'hub presenta caratteristiche altamente innovative, in primis l'integrazione di impianti a mare di produzione di energia da fonte solare ed eolica, la cui elettricità viene trasmessa a terra per tre diverse finalità tra loro non mutualmente esclusive:

- 1. immissione nella Rete di Trasmissione Nazionale;
- 2. stoccaggio in sistemi di immagazzinamento con batterie agli ioni di litio;
- 3. produzione di idrogeno verde per mezzo del processo di elettrolisi.

Agnes S.r.l., nell'espletamento dei servizi sopra indicati, intende perseguire i seguenti obbiettivi generali:

- assicurare che il servizio sia erogato con carattere di sicurezza, affidabilità e continuità nel breve, medio e lungo periodo, nel rispetto degli atti di indirizzo emanati dal Ministero e delle direttive impartite dall'Autorità per l'Energia Elettrica e il Gas;
- concorrere a promuovere, nell'ambito delle sue competenze e responsabilità, la tutela dell'ambiente e la sicurezza degli impianti.

Le opere del Progetto sono nello specifico:

- un impianto eolico off-shore composto da 25 aerogeneratori da 8 MWp cadauno, per una capacità complessiva di 200 MWp ("Romagna 1");
- un impianto eolico off-shore composto da 50 aerogeneratori da 8 MWp cadauno, per una potenza complessiva di 400 MWp ("Romagna 2");
- un impianto fotovoltaico da 100 MWp di tipologia galleggiante;

ed opere di connessione costituite da:

- due stazioni elettriche di trasformazione 66/220 kV off-shore;
- una stazione elettrica di trasformazione 380/220/30/0,4 kV on-shore (SSE Agnes Ravenna Porto) con opere connesse tra cui un impianto di accumulo di energia di potenza 50 MWp ed un impianto di produzione idrogeno per mezzo di elettrolizzatori;
- elettrodotti marini di inter-array da 66 kV ed export da 220kV, una buca giunti terra-mare per cavi export da 220 kV, cavi export terrestri a 220 kV per la trasmissione dell'energia generata dagli impianti eolici e fotovoltaico alla SSE Agnes Ravenna Porto e da questa, mediante cavi export terrestri a 380 kV alla Stazione Elettrica Terna "La Canala", individuata come punto di connessione alla RTN.

La società proponente ha iniziato a svolgere analisi di fattibilità tecnico-economiche dal 2017 e da allora sono stati compiuti notevoli sforzi di progettazione per gestire le complessità dettate dalle innovazioni

tecnologiche proprie degli impianti e maturare le scelte tecniche in base alle esigenze e gli input degli stakeholder.

Nel gennaio del 2021 Agnes ha avviato ufficialmente l'iter di autorizzazione del Progetto, ai sensi dell'art. 12 del D.lgs 387/2003 e secondo quanto disposto dalla circolare n. 40/2012 del MIT (ora MIMS). È stato superato con esito positivo la prima fase del complesso iter, ovvero l'istruttoria di Concessione Demaniale Marittima ai sensi dell'art. 36 del Codice Della Navigazione, in cui hanno espresso parere circa 30 enti, nessuno dei quali è risultato negativo o ostativo.

La società ha quindi proceduto con l'avanzamento dell'istanza di Valutazione di Impatto Ambientale (D. Lgs 152/2006), basata sullo Studio d'Impatto Ambientale e del Progetto con livello di approfondimento Definitivo, dei quali questo documento risulta parte.

1.1 Scopo del documento

Il presente documento è redatto con lo scopo di fornire la **stima dell'elettricità e dell'idrogeno prodotti nell'ambito del Progetto**. Data la complessa articolazione dell'hub energetico, si è deciso di unire le analisi di producibilità dei singoli impianti in un'unica relazione, al fine di restituire un quadro completo delle potenzialità del Progetto per quanto riguarda l'elettricità prodotta da fonti rinnovabili, in parte immessa nella Rete di Trasmissione Nazionale e in parte utilizzata dall'impianto di elettrolizzatori per la generazione e lo stoccaggio di idrogeno verde.

Il documento è strutturato quindi nel modo seguente:

- nel capitolo 2 si illustra la stima del range di produzione degli impianti eolici Romagna 1 e Romagna
 2, prendendo in considerazione due data set di dati vento e tre diversi tipi di aerogeneratori
- nel capitolo 3 si stima la produzione dell'impianto fotovoltaico galleggiante
- nel capitolo 4 si stima la produzione di idrogeno dell'impianto di elettrolizzatori, utilizzando l'energia generata dagli impianti eolici e fotovoltaico galleggiante
- nel capitolo 5 si offre un riepilogo dei risultati esponendo alcune conclusioni.

1.2 Ubicazione e caratteristiche essenziali

L'hub energetico proposto è generalmente localizzato nell'Italia del Nord Est, in area sia marina che terrestre. Nei paragrafi successivi si propone una descrizione delle due aree con una sintesi delle opere destinate all'installazione.

1.2.1 Area marina

Il progetto a mare prevederà l'installazione di opere che insistono su due aree che, in continuità con quanto indicato dal Portale SID del MIMS, si definiscono come *specchi acquei*, suddivisi in Romagna 1 e Romagna 2.

Romagna 1 è lo specchio acqueo più a sud, con baricentro indicativo avente coordinate Lat. 323990
 Long. 4912671 (WGS84 UTM 33N). Ospiterà n. 25 aerogeneratori da 8-9 MW cada uno, n. 1

impianto fotovoltaico galleggiante da 100 MW e n. 1 sottostazione elettrica di trasformazione da 66/220 kV.

Romagna 2 è lo specchio acqueo più a nord, con baricentro indicativo avente coordinate Lat. 318158
 Long. 4935837 (WGS84 UTM 33N). Ospiterà n. 50 aerogeneratori da 8-9 MW cada uno e n. 1 sottostazione elettrica di trasformazione da 66/220 kV.

Dal punto di vista amministrativo, l'area marina coinvolta da tali specchi acquei è localizzata nel Mar Adriatico Settentrionale italiano, e giace tra il limite delle acque territoriali e la linea della piattaforma continentale che separa Italia e Croazia. Entrambi gli specchi acquei sono quindi interamente oltre le 12 miglia nautiche (circa 20 km) di distanza dal litorale emiliano-romagnolo, con le rispettive proiezioni sulla costa che si estendono da Casalborsetti (RA) a Cervia (RA).

Le aree SAR (Search And Rescue) interessate da Romagna 1 e Romagna 2 sono principalmente sotto la competenza della U.G.C. di Ravenna, e in minor misura sotto quelle di Cesenatico e Rimini.

Figura 1: Inquadramento dell'area marina vasta

Inoltre, saranno interessate anche le acque territoriali per l'installazione di n. 2 cavi elettrici da 220 kV che trasmetteranno l'energia dalla sottostazione elettrica di Romagna 2 all'area terrestre. L'intero tracciato della coppia di cavi sarà all'interno dell'area SAR di competenza della U.C.G. di Ravenna.

1.2.2 Area terrestre

L'area terrestre coinvolta dal Progetto riguarda l'installazione di una serie di impianti e opere di connessione che avverrà nella sua totalità entro i confini del Comune di Ravenna, nella regione Emilia-Romagna.

Il pozzetto di giunzione, identificato come "**Area di Approdo**", è previsto in un parcheggio a circa 250 metri della spiaggia di Punta Marina (RA) nei pressi di Viale delle Sirti. Da lì, una coppia di cavi terrestri 220 kV giungerà fino alla zona portuale, a sud della Pialassa del Piomboni.

La zona portuale, identificata come "**Agnes Ravenna Porto**", è ricompresa fra Via Trieste, Via Piomboni e Via Fiorenzi Francesco ed è destinata ad ospitare le tre seguenti opere:

- N. 1 sottostazione elettrica di trasformazione 220/380 kV
- N. 1 impianto di stoccaggio dell'elettricità tramite batteria da 50 MW/100MWh
- N. 1 impianto di produzione di idrogeno verde fino a 60 MW, con annessi sistemi per la compressione e stoccaggio del gas

Vi sarà una linea a 380 kV uscente dall'area Agnes Ravenna Porto che attraverserà la città di Ravenna nei lati NE e N, per giungere allo stallo disponibile presso la Stazione Elettrica di Terna "Ravenna Canala", in località di Piangipane (RA). Tale area è denominata "**Punto di Connessione alla RTN**".

Figura 2: Inquadramento dell'area terrestre vasta

1.3 Gruppo di lavoro per l'elaborazione del documento

Il documento è stato redatto da Qint'x e Studio Rinnovabili.

Studio Rinnovabili attraverso la società SR International Srl, è un'azienda di consulenza che dal 2005 fornisce servizi nel campo delle energie rinnovabili, e tra questi l'analisi di dati vento, studi di produzione energetica, asseverazioni tecniche e progettazione di impianti eolici. Studio Rinnovabili, in qualità di consulente tecnico, è stata incaricata dalla società proponente Agnes di effettuare lo studio di produzione per lo sviluppo del Progetto, limitatamente alla componente eolica.

Qint'x è una società con sede a Ravenna attiva dal 1998 nei settori dell'elettronica e della progettazione e installazione di impianti di energia rinnovabile. Nell'ambito del Progetto, svolge la funzione di coordinamento e supporto per le varie fasi di progettazione in diverse discipline. Per quanto riguarda il presente documento, Qint'x ha svolto l'analisi di producibilità dell'impianto fotovoltaico galleggiante e l'analisi di generazione dell'idrogeno verde.

2. STIMA DI PRODUZIONE DEGLI IMPIANTI EOLICI

Questo capitolo, frutto dell'analisi anemologica realizzata, ha i seguenti obiettivi:

- ottenimento di una climatologia rappresentativa delle condizioni a lungo termine;
- creazione di un modello fluidodinamico da utilizzare per la simulazione delle condizioni vento;
- caratterizzazione del campo fluidodinamico nell'area di interesse;
- determinazione delle perdite tecniche di impianto;
- stima di produzione energetica:
- valutazione tecnica finale del progetto dal punto di vista della risorsa eolica e del layout realizzabile.

Si fa presente che la società proponente, insieme al Gruppo Saipem, ha avviato nel maggio 2022 una campagna di misurazione in sito in seguito all'installazione di due device lidar. Al termine del primo ciclo di misurazione (durata minima di 12 mesi), sarà realizzato un *energy production assesment* che permetterà di approfondire la stima dell'elettricità prodotta rispetto a quanto riportato dal presente documento, il quale si base solo su dati satellitari. Per maggiori informazioni riguardanti la campagna di misurazione, si prega di consultare la sezione 2.8.

2.1 Tecnologia e layout dell'impianto

Il layout di impianto è stato fornito dal Committente e presenta la collocazione degli aerogeneratori secondo le posizioni rappresentate in Figura 3.

Il parco a sud, denominato "Romagna 1", ha un layout curvilineo disposto su due archi, il primo contenente 17 aerogeneratori mentre il secondo contenente 8 aerogeneratori.

Il parco a sud, denominato "Romagna 2", ha un layout a cluster, strutturato in 5 file da 10 aerogeneratori.

Figura 3: Layout degli impianti eolici di progetto

Sui modelli di aerogeneratori, invece, l'analisi di producibilità è stata volta con la Goldwind 230 da 8.5 MW, la Ming Yiang Energy Group 230 da 9 MW e la GH 260-8000 da 8 MW. Le specifiche di ogni aerogeneratore sono riportate in Tabella 1.

Produttore	Xinjiang Goldwind	Ming Yang Smart Energy	AGNES 260
Aerogeneratore	Technology Co	Group	(turbina ipotetica)
Modello	GW 8.5-230	MySE9.0-230	FD260-8000
Diametro rotore [m]	230	230	260
Altezza hub [m]	140	140	170
Altezza tip [m]	255	255	300
Cut-in speed [m/s]	2.5	3	2
Rated speed [m/s]	10	12	9
Cut off speed [m/s]	23	25	18
Potenza nominale [MW]	8.5	9	8.0
N° aerogeneratori	75	75	75
Potenza totale installata [MW]	637.5	675	600

Tabella 1: Tabella di comparazione degli aerogeneratori

La turbina nominale utilizzata in questo Progetto Definitivo è la GH 260-8000 (anche riferita come "AGNES 260"), i cui valori sono ipotetici. Si è deciso di espandere l'analisi alla GW 8.5-230 e MySE9.0-230 per "ancorare" e comparare i risultati a turbine presenti sul mercato.

Per maggiori informazioni sulla turbina di progetto GH260-8000 si rimanda al documento "Relazione tecnica sugli aerogeneratori" con codice AGNROM_EP-R_REL-OWT e agli elaborati in riferimento a tale documento.

2.2 Descrizione generale della metodologia

La creazione di un modello fluidodinamico capace di descrivere le condizioni di vento in sito ha previsto due passaggi: l'implementazione di un modello digitale del terreno che caratterizzi l'elevazione e rugosità del terreno; la risoluzione del modello di calcolo fluidodinamico. Tali fasi sono descritte di seguito con maggiore dettaglio.

2.2.1 Modello digitale del terreno

I dati di elevazione e rugosità dell'area vasta intorno all'area di progetto vengono utilizzati per definire il livello del suolo di un dominio tridimensionale diviso in celle con una risoluzione orizzontale e verticale variabile. La griglia è generata e ottimizzata dal modello di terreno digitale, e le sue caratteristiche sono mostrate in Figura 4 e Tabella 2.

Figura 4: Risoluzione orizzontale della griglia (a sinistra) e vista schematica della risoluzione verticale della griglia (a destra)

Tabella 2: Spaziatura griglia e numero di celle

	Est	Nord	Z	Totale
Spaziatura griglia (m)	60.0-828.9	60.0-828.9	Variabile	-
Numero di celle	416	504	15	3.144.960

La griglia si estende 1500 (m) sopra il punto nel terreno con la più alta elevazione, ed è affinata verso il suolo. Le colonne sinistra e destra visualizzano una vista schematica della distribuzione nella posizione

rispettivamente con quota altimetrica massima e minima (Tabella 3). I nodi, dove sono disponibili i risultati delle simulazioni, si trovano nei centri cellulari indicati dai punti (Figura 4, destra).

Tabella 3: Distribuzione dei primi 10 nodi in direzione z, rispetto al suolo, nella posizione con elevazione massima e minima

	1	2	3	4	5	6	7	8	9	10
z-dist. max (m)	9.1	33.1	68.8	116.2	175.3	246.1	328.6	422.7	528.6	646.1
z-dist. min (m)	9.1	33.3	69.2	116.8	176.1	247.3	330.1	424.7	531.0	649.1

2.2.2 Simulazioni

La convergenza delle simulazioni del campo eolico viene valutata dall'ispezione dei valori spot e residui per i componenti di velocità (U1, V1, W1), l'energia cinetica turbolenta (KE) e il suo tasso di dissipazione (EP). La simulazione si interrompe automaticamente quando la soluzione scende al di sotto di un determinato criterio di convergenza e quindi si dice che la soluzione sia convergente.

Il calcolo iterativo effettuato con WindSim ha richiesto tra le 180 e 300 iterazioni per arrivare a convergenza su ognuno dei 12 settori di direzione in cui la risorsa eolica è stata raggruppata. Si è utilizzato l'algoritmo GCV (General Colocated Velocity).

Tabella 4: Impostazioni del Risolutore

Altezza dello strato limite (m)	500.0
Velocità sopra il livello limite (m/s)	10.0
Condizione di contorno nella parte superiore	Pressione uniforme.
Temperatura potenziale	No
Modello di turbolenza	Standard
Solver	GCV
Numero massimo di iterazioni	500

Tabella 5: Tempo di simulazione, numero di iterazioni e stato di convergenza

Settori	Tempo di simulazione	Iterazioni	Stato	Settori	Tempo di simulazione	Iterazioni	Stato
000	04:53:37	251	С	180	05:10:10	260	С
030	03:43:19	190	С	210	04:42:23	240	С

060	03:36:11	182	С	240	03:46:02	191	С
090	04:31:35	231	С	270	04:52:07	245	С
120	04:56:39	251	С	300	05:02:17	256	С
150	04:33:39	234	С	330	04:35:11	235	С

2.3 Descrizione dei dataset satellitari – rianalisi utilizzati

Esistono diverse soluzioni per stimare le condizioni di vento attese in sito. Solitamente, si effettuano campagne di misurazione con stazioni meteorologiche o attraverso strumenti di remote sensing (sodar o lidar). Tuttavia, possono essere utilizzate delle alternative alle campagne anemometriche tradizionali, come l'impiego di modelli meteorologici mesoscala in grado di ricavare le condizioni di vento locali a partire da dati di rianalisi. In questo caso, sono stati utilizzati due tipologie differenti di dati di rianalisi, descritti di seguito.

- Dati ERA5: I dati ERA5 (fonte ECMWF, European Centre for Medium-Range Weather Forecasts) rappresentano una rianalisi di condizioni meteorologiche orarie che risalgono al 1979. Il set di dati combina un modello meteorologico con i dati osservazionali dei satelliti e dei sensori terrestri per costruire una registrazione coerente a lungo termine del nostro clima. La griglia dei dati ERA5 offre una risoluzione più elevata nello spazio e nel tempo e assimila più set di dati osservativi rispetto alle precedenti rianalisi, il che lo rende significativamente più accurato. Contiene stime di variabili atmosferiche come temperatura dell'aria, pressione e vento a diverse altitudini, nonché variabili di superficie come precipitazioni, contenuto di umidità del suolo e altezza dell'onda oceanica. Nel caso specifico sono stati scaricati e selezionati 20 anni di dati ERA5 nei due nodi più vicini alla posizione dell'area di impianto e ad una altezza di 100 m slm.
- Dati AWS: Fondata nel 1983, AWS Truepower è una delle principali società di consulenza per le energie rinnovabili al mondo che fornisce servizi di pianificazione e valutazione a sviluppatori di progetti, aziende elettriche, agenzie governative e istituzioni finanziarie. Il database delle condizioni meteorologiche AWS viene creato in due fasi. In primo luogo, il modello numerico MASS viene eseguito in una sequenza di simulazioni di due settimane dal 1997 ad oggi. Le simulazioni vengono inizializzate dai dati NNGR e i dati rawinsonde vengono assimilati ogni 12 ore per controllare la deriva del modello. Nella seconda fase, il modello WindMap viene applicato per correggere le influenze topografiche e di copertura del suolo locali e le velocità risultanti vengono ridimensionate in modo che la velocità media corrisponda alla mappa della risorsa eolica. Il risultato è una serie temporale di valori orari di velocità, direzione, temperatura e pressione del vento per una posizione selezionata e l'altezza dal suolo. Da questo VMM, vengono derivate le frequenze per velocità e direzione, insieme alle velocità medie per ora del giorno e periodo dell'anno. Vengono calcolate anche altre statistiche, come la variabilità interannuale, la densità di energia eolica e le velocità massime. Nel caso specifico

è stata elaborata, nella posizione centrale dell'area Romagna 2 del progetto AGNES, un serie temporale corrispondente ad un **"anno tipico"** di vento in quella posizione, all'altezza di 140 m slm, corrispondente all'altezza del mozzo dell'aerogeneratore.

Nelle seguenti sezioni vengono descritte le climatologie ottenute da queste due fonti di dati di rianalisi, che sono poi state utilizzate nelle simulazioni per il calcolo della produzione energetica dell'impianto.

2.3.1 Climatologia ottenuta dai dati ERA-5

La collocazione della climatologia ERA-5 è visibile nella Figura 5: il nodo n.1 possiede coordinate geografiche **12.50° Est** e **44.50° Nord**, mentre il nodo n.2 possiede coordinate geografiche **12.75° Est** e **44.50° Nord**. Sono entrambi situati in uno specchio di mare immediatamente a Sud dell''impianto Romagna 2 ed a Nord dell'impianto Romagna 1. Le acquisizioni presentano una quota di 100 m slm.

La climatologia ERA-5 rappresenta la statistica dei dati vento degli ultimi 20 anni in queste posizioni, elaborati sulla base della rianalisi di dati meteorologici ECMWF. La serie temporale origine della statistica climatologica è una serie temporale su base oraria (dati registrati ogni 60 minuti), che forniscono informazioni sulla velocità media e direzione del vento, sulla temperatura, pressione e densità dell'aria.

Figura 5: Inquadramento dati ERA-5

I dati e le statistiche climatologiche di fonte ERA-5 sono rappresentati nelle seguenti tabelle e figure.

Tabella 6: Caratteristiche climatologiche che includono la velocità media del vento (m/s) per tutti i settori, i parametri
della forma di Weibull (k) e della scala (A) per tutti i settori – dati ERA5 n.1

Nome file	ERA5_N44.500_E12.500		
Periodo, record di	01/01/2002 - 01/01/2022	382776	
Posizione UTM WGS84F33: est, nord, z (agl)	301254.4	4930449.5	100.0
Velocità media del vento, Weibull k, A	4.76	1.56	5.22

Figura 6: Rosa del vento (a sinistra) e distribuzione della frequenza con raccordo Weibull (a destra) per tutti i settori – dati ERA5 n.1

Tabella 7: Velocità media del vento, frequenza e forma di Weibull (k) e scala (A) rispetto ai settori – dati ERA5 n.1

	1	2	3	4	5	6	7	8	9	10	11	12
Velocità media del vento (m/s)	3.67	5.29	6.13	4.66	4.88	5	4.67	4.8	5.47	4.13	4.03	3.49
Frequenza (%)	6.3	9.4	11.9	9.7	11.6	8.8	5.6	5.3	6.9	7.1	10.1	7.3
Forma di Weibull, k	1.51	1.36	1.57	1.6	1.94	1.76	1.83	2	2.08	1.85	1.8	1.84
Scala weibull, A	4.03	5.55	6.73	5.08	5.5	5.59	5.33	5.54	6.37	4.67	4.5	3.93

Tabella 8: Caratteristiche climatologiche che includono la velocità media del vento (m/s) per tutti i settori, i parametri della forma di Weibull (k) e della scala (A) per tutti i settori – dati ERA5 n.2

Nome file	ERA5_N44.500_E12.750	

Relazione di producibilità dell'hub energetico

AGNROM_EP-R_REL-PRODUZIONE

Periodo, record di	01/07/2001 - 01/07/2020	166560	
Posizione UTM WGS84F33: est, nord, z (agl)	321129.2	4929871.5	100.0
Velocità media del vento, Weibull k, A	5.21	1.51	5.64

Figura 7: Rosa del vento (a sinistra) e distribuzione della frequenza con raccordo Weibull (a destra) per tutti i settori – dati ERA5 n.2

Tabella 9: Velocità media del vento, fr	frequenza e forma di Weibull (k) e scala	(A) rispetto ai settori – dati ERA5 n.2
---	--	---

	1	2	3	4	5	6	7	8	9	10	11	12
Velocità media del vento (m/s)	4.08	5.79	6.86	5.06	5.13	5.66	5.57	5.28	5.65	4.43	4.3	3.91
Frequenza (%)	6.9	9.9	12.3	8.9	11	10.2	6.4	5.4	6.1	6.3	9.1	7.6
Forma di Weibull, k	1.52	1.36	1.72	1.49	1.77	1.79	1.84	2.04	2	1.82	1.79	1.83
Scala weibull, A	4.45	6.08	7.74	5.41	5.72	6.34	6.34	6.13	6.54	5.01	4.8	4.38

2.3.2 Climatologia ottenuta dai dati AWS True Power

La climatologia AWS è ottenuta dai dati prelevati nel punto dello specchio d'acqua della zona di progetto corrispondente esattamente al centro geografico della parte di impianto Romagna 2, alla quota di 140 m slm (Figura 8).

La climatologia rappresenta la statistica di dati di vento di un anno "tipico" di vento degli ultimi 20 anni, elaborati sulla base della rianalisi di dati meteorologici AWS True Power, come descritto prima. I dati sono stati acquistati dalla AWS True Power direttamente.

I dati statistici dell'anno tipico hanno origine da una serie temporale su base oraria, che forniscono informazioni sulla velocità media, deviazione standard e direzione del vento, sulla temperatura, pressione e densità dell'aria a differenti altezze sul livello del mare, da 60 fino a 140 m slm.

Figura 8: Inquadramento dataset AWS

I dati e le statistiche climatologiche di fonte AWS sono rappresentati nelle seguenti tabelle e figure.

Tabella 10: Caratteristiche climatologiche che includono la velocità media del vento (m/s) per tutti i settori, i parametri della forma di Weibull (k) e della scala (A) per tutti i settori – dati AWS

Nome file	AWS_340068-Exported		
Periodo, record di	1 anno tipico	8784	
Posizione UTM WGS84F33: est, nord, z (agl)	317114.2	4934207.5	140.0
Velocità media del vento, Weibull k, A	6.68	1.58	7.35

HUB ENERGETICO AGNES ROMAGNA 1&2 PROGETTO DEFINITIVO E STUDIO DI IMPATTO AMBIENTALE

Relazione di producibilità dell'hub energetico

Figura 9: Rosa del vento (a sinistra) e distribuzione della frequenza con raccordo Weibull (a destra) per tutti i settori – dati AWS

Tahella 11: Velocità media del vento	frequenza e forma di Weibull (k) e s	cala (A) rispetto ai settori – dati AWS
	ji cquenza e joinna ai weiban (k) e s	culd (A) hspello un sellon dull ANS

	1	2	3	4	5	6	7	8	9	10	11	12
Average wind speed (m/s)	5.09	6.76	8.99	7.33	6.67	6.93	6.11	5.41	7.09	6.39	5.82	4.98
Frequency (%)	4.88	7.12	11.98	9.89	10.37	9.94	6.74	5.69	7.84	9.72	9.36	6.47
Weibull shape, k	1.50	1.56	2.03	1.51	1.89	1.58	1.56	1.68	1.86	1.86	1.56	1.73
Weibull scale, A	5.50	7.51	10.30	8.06	7.63	7.56	6.84	6.03	8.25	7.27	6.21	5.54

2.4 Descrizione delle perdite tecniche e di scia

La produzione lorda agli aerogeneratori non corrisponde all'energia effettivamente immessa in rete; infatti, occorre tenere in conto perdite tecniche generali legate a fattori impiantistici ed ambientali, e le perdite energetiche per effetto scia dovuta alle interferenze aerodinamiche tra i vari aerogeneratori di impianto. In questo paragrafo sono individuate e stimate queste perdite.

Perdite tecniche generali

Le perdite tecniche generali sono state calcolate e stimate in funzione delle caratteristiche dimensionali delle macchine previste a progetto, in funzione delle loro modalità di funzionamento ed in funzione degli aspetti climatologici ed ambientali del sito di installazione.

Sono inoltre legate, in modo rilevante, alle caratteristiche tecniche e dimensionali dei cavidotti che collegano gli aerogeneratori e che portano l'energia prodotta alla stazione di allaccio alla rete elettrica, prevista su terraferma, a distanza di oltre 20 km rispetto alla zona di ubicazione dell'impianto eolico.

Le perdite tecniche generali sono riassunte in Tabella 12.

Tipologia di perdita	#	Sottotipo	Definizione/Commenti	Valore di perdita del sottotipo	Valore di perdita per tipologia
	1a	Turbina	Include la perdita di energia dovuta alla manutenzione ordinaria e ai guasti non previsti dei componenti nel corso dell'esercizio	96.00%	
1. Disponibilità	1b BOP elettrico 1. onibilità		Perdite dovute a tempi di inattività nei componenti tra l'interruttore principale della turbina e il trasformatore di sottostazione del progetto, incluso la linea di trasmissione specifica del progetto.	99.8%	95.62%
	1cRete lato TERNAPerdite dovute a tempi di inattività della rete elettrica esterna all'impianto eolico.			99.8%	
	1d	Altro	Altre perdite di disponibilità non contabilizzate sopra o in altre categorie di seguito (ad esempio correlazione di disponibilità con eventi di vento forte).	100.0%	
Effetti di scia	2a	Effetti di riattivazione interni	Perdite all'interno dell'array di turbine	100.0%	
Nota: Sono valutati separatamente dal sw di calcolo della produzione energetica	2b	Effetti di riattivazione esterni	Perdite sulle turbine di impianto, per effetto di turbine di altri impianti, che già operano o che dovrebbero operare al momento della messa in funzione dell'impianto in esame.	100.0%	100.00%

Tabella 12: Descrizione perdite tecniche generali

	2c	Effetti di scia futuri	Perdite dovute ad un ulteriore sviluppo di impianti in prossimità delle turbine, ma che si verificherebbero dopo la messa in produzione delle turbine oggetto di studio.	100.0%	
	3a	Curva di potenza	Perdite dovute alla minor produzione della turbina rispetto alla sua curva di potenza di riferimento, dichiarata dal costruttore	100%	
3. Prestazioni della turbina	3b Flusso del vento		Perdite dovute a turbolenze, venti fuori dall'asse di imbardata, flusso inclinato, cut-off elevato, ecc. Queste rappresentano perdite dovute alle differenze tra le condizioni di prova della curva di potenza della turbina e le condizioni effettive nel sito.	99.96%	
	3c	Isteresi del vento forte	Perdite dovute allo spegnimento tra il cut-off per forte vento e il conseguente cut-in.	99.96%	
	3d	Altro	Altre perdite di prestazioni della turbina non considerate sopra.	100.00%	
	4a	Perdite elettriche	Perdite al punto di misurazione dell'energia prodotta, inclusi, a seconda dei casi, trasformatori, cablaggio di raccolta, sottostazione, trasmissione.	97.00%	
4. Elettrico	4b Consumo 4b parassita dell'impianto		Perdite dovute al consumo parassita (riscaldatori, trasformatori senza perdite di carico, ecc.) all'interno dell'impianto. Questo fattore non è destinato a coprire i costi di acquisto di energia dell'impianto, ma include la riduzione dell'energia venduta a causa del consumo "dietro il contatore".	100.00%	97.00%

	Riduzione delle prestazioni non dovuta a degradazione e sporcizia		Perdite dovute alla degradazione delle pale nel tempo (che in genere peggiora nel tempo, ma può essere riparata periodicamente) e sporcizia (che di tanto in tanto può essere mitigato dalle precipitazioni o pulizia).	99.20%		
5. Ambiente	5b	Riduzione delle prestazioni dovuta al ghiaccio	Perdite dovute all'accumulo temporaneo di ghiaccio sulle pale, riducendone le prestazioni aerodinamiche.	100.00%		
	5c	Arresto a causa di ghiaccio, fulmini, grandine, ecc.	Perdite dovute agli arresti delle turbine (sia da parte del controller della turbina locale, del sistema di controllo a livello di progetto o da parte di un operatore) a causa dell'accumulo di ghiaccio su pale, fulmini, grandine e altri eventi simili.	100.00%	98.41%	
	5d	Alta e bassa temperatura	Perdite dovute a temperature ambientali al di fuori dell'intervallo operativo della turbina.	99.20%		
	5e	Accesso al sito e altri eventi di forza maggiore	Perdite dovute a difficoltà di accesso al sito (ad esempio: neve, ghiaccio o posizione remota del progetto). Si noti che questa perdita ambientale e alcune altre perdite ambientali possono essere coperte dalla definizione di disponibilità di cui sopra. Tuttavia, queste perdite "ambientali" sono destinate a coprire fattori al di fuori del controllo dei produttori di turbine.	100.00%		
	5f	Crescita o abbattimento degli alberi	Perdite dovute alla crescita di alberi nelle vicinanze della struttura.	100.00%		
6. Limitazione <i>(curtailment)</i> della produzione	6a	Gestione del settore eolico	Perdite dovute allo spegnimento comandato di turbine strettamente distanziate per ridurre i carichi fisici sulle turbine.	99.50%	99.10%	

		8. FATTORE D	I PERDITA COMPLESSIVO		90.41%
	7c	Altro	Tutto ciò che non rientra nelle sei categorie di perdita di cui sopra.	100.00%	
7. Altre perdite	7b	Densità dell'aria	Correzione della densità dell'aria se trattata a valle del calcolo dell'energia lorda.	100.00%	100.00%
	7a	Velocità del vento - relazione energetica	Qualsiasi perdita dovuta alla relazione non lineare della velocità del vento con l'energia.	100.00%	
	6d	Ambiente (rumore, visivo, uccello/pipistrello)	Perdite dovute ad arresti o operazioni alterate per ridurre gli impatti di rumore e ombre e per la mitigazione di uccelli o pipistrelli. Ciò includerebbe l'uso di una curva di potenza a basso rumore.	100.00%	
	6c	Limitazione di dispacciamento	Perdite dovute al fatto che l'acquirente di energia elettrica decide di non prendere l'energia generata dall'impianto (dispacciamento)	100.00%	
	6b Rete e rampa		Perdite dovute a limitazioni della rete esterna all'impianto di energia eolica, sia a causa di limitazioni sulla quantità di energia erogata in un dato momento, sia di limitazioni sul tasso di variazione delle consegne di energia. Questo può essere dovuto il controllo in corso della produzione del parco eolico per tutta la durata del progetto o una riduzione temporanea fino a quando i rinforzi della rete non vengono eseguiti all'inizio del progetto.	99.60%	

Il fattore di perdite complessivo del 90.41 % corrisponde ad una perdita complessiva percentuale di energia pari al 9.59 %.

Pertanto, nelle stime di produzione energetica dell'impianto è stato applicato questo fattore complessivo di perdite tecniche, su base annua.

Perdite per effetto scia:

Le perdite per effetto scia, dovute cioè al difetto di velocità generato dalla scia di una o più turbine eoliche sulle turbine poste a valle, sono calcolate direttamente dal software utilizzato per la stima di produzione energetica dell'impianto, il WindSim basato sulla CFD (*Computational Fluid Dynamics*).

Nel Progetto, le perdite per effetto scia sono state calcolate con metodi analitici. I metodi analitici sono più semplici e meno impegnativi in termini di calcolo rispetto ai metodi basati su CFD. Sono tutti modelli a scia singola, che calcolano il deficit di velocità normalizzato; $\delta V = (U-V) / U$.

Tutti i modelli sono asimmetrici rotazionali lungo l'asse x, il che implica che le scie sono calcolate dall'altezza del mozzo.

Nel caso specifico di questo progetto, il modello analitico di scia utilizzato è il modello **di Ishihara, T.,** Yamaguchi, A., Fujino, Y. "Development of a New Wake Model Based on a Wind Tunnel Experiment." Global Wind Power 2004, che oltre a calcolare il deficit di velocità sulla base della teoria della riduzione della quantità di moto, introduce un fattore di espansione della scia che è funzione della turbolenza ambientale. È infatti noto che la lunghezza e l'espansione laterale della scia di una turbina ad asse orizzontale dipendano dalla turbolenza ambientale, che in qualche modo "aiuta" a dissipare la scia. In mare aperto, dove le condizioni di turbolenza ambientale sono generalmente molto ridotte, le scie a valle di una turbina eolica tipicamente si sviluppano molto più in lunghezza e meno in larghezza di quanto non avvenga nella terraferma, dove normalmente la turbolenza ambientale è più elevata.

2.5 Simulazioni con dati satellitari di rianalisi

Nelle seguenti sezioni e tabelle sono riportati i risultati delle simulazioni energetiche per le varie ipotesi prese in considerazione, che sono:

- Dati vento: ERA-5 a 100 slm / AWS a 140 m slm;
- Densità dell'area come da dati rilevati ERA5 nel lungo periodo;
- Perdite tecniche generali come da paragrafo precedente, stimate per tutti i layout al 9.59 %;
- I vari layout di impianto previsti, con caratteristiche tecniche delle turbine riassunte in Tabella 13.

Layout Impianto e caratteristiche tecniche aerogeneratori										
Layout	Modello	Potenza unit.	Diam.	Alt. Hub	Potenza imp.					
	Turbina	[MW]	[m]	[m]	[MW]					
75x MY9.0_230	MY9.0_230	9	230	140	675					
75x GH8.0_260	GH8.0-260	8	260	170	600					
75x GWH230_8.5	GWH230_8.5	8.5	230	140	637.5					

Tabella 13: Caratteristiche dei layout di impianto considerati

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

2.5.1 Simulazione con dati ERA-5

Tabella 14 - Dettaglio dati di produzione – layout MY9.0_230 – Dati ERA5

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG1-01	MY9.0_230	5.22	22076	21813	1.19	9.59	19721	2191
AG1-02	MY9.0_230	5.23	22215	21770	2	9.59	19682	2187
AG1-03	MY9.0_230	5.25	22356	21855	2.24	9.59	19759	2195
AG1-04	MY9.0_230	5.27	22496	21961	2.38	9.59	19855	2206
AG1-05	MY9.0_230	5.28	22615	22075	2.39	9.59	19958	2218
AG1-06	MY9.0_230	5.29	22711	22084	2.76	9.59	19966	2218
AG1-07	MY9.0_230	5.3	22789	22041	3.28	9.59	19927	2214
AG1-08	MY9.0_230	5.31	22872	22054	3.58	9.59	19939	2215
AG1-09	MY9.0_230	5.32	22958	22072	3.86	9.59	19956	2217
AG1-10	MY9.0_230	5.33	23040	22041	4.33	9.59	19928	2214
AG1-11	MY9.0_230	5.34	23105	22110	4.31	9.59	19990	2221
AG1-12	MY9.0_230	5.35	23203	22253	4.09	9.59	20119	2235
AG1-13	MY9.0_230	5.37	23307	22380	3.98	9.59	20234	2248
AG1-14	MY9.0_230	5.38	23406	22473	3.99	9.59	20318	2258
AG1-15	MY9.0_230	5.4	23525	22605	3.91	9.59	20437	2271
AG2-16	MY9.0_230	5.42	23668	22833	3.53	9.59	20643	2294
AG2-17	MY9.0_230	5.44	23825	23352	1.98	9.59	21113	2346
AG2-18	MY9.0_230	5.33	22985	22005	4.26	9.59	19895	2211
AG2-19	MY9.0_230	5.34	23085	21937	4.97	9.59	19833	2204
AG2-20	MY9.0_230	5.35	23176	21995	5.1	9.59	19886	2210
AG2-21	MY9.0_230	5.36	23252	22085	5.02	9.59	19967	2219
AG2-22	MY9.0_230	5.38	23372	22231	4.88	9.59	20099	2233
AG2-23	MY9.0_230	5.4	23504	22393	4.73	9.59	20245	2249
AG2-24	MY9.0_230	5.42	23651	22655	4.21	9.59	20482	2276
AG2-25	MY9.0_230	5.44	23797	23240	2.34	9.59	21011	2335
AG2-26	MY9.0_230	5.2	22005	21112	4.06	9.59	19087	2121
AG2-27	MY9.0_230	5.22	22167	21064	4.97	9.59	19044	2116
AG2-28	MY9.0_230	5.24	22334	21262	4.8	9.59	19223	2136
AG2-29	MY9.0_230	5.26	22517	21447	4.75	9.59	19390	2154
AG2-30	MY9.0_230	5.29	22681	21600	4.77	9.59	19528	2170
AG2-31	MY9.0_230	5.31	22825	21775	4.6	9.59	19686	2187
AG2-32	MY9.0_230	5.32	22933	21936	4.35	9.59	19832	2204
AG2-33	MY9.0_230	5.33	23028	22070	4.16	9.59	19953	2217
AG2-34	MY9.0_230	5.34	23092	22128	4.18	9.59	20006	2223
AG2-35	MY9.0_230	5.35	23151	22485	2.88	9.59	20329	2259
AG2-36	MY9.0_230	5.2	21965	20994	4.42	9.59	18980	2109
AG2-37	MY9.0_230	5.22	22197	20846	6.09	9.59	18847	2094

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG2-38	MY9.0_230	5.25	22399	21023	6.14	9.59	19007	2112
AG2-39	MY9.0_230	5.27	22604	21234	6.06	9.59	19197	2133
AG2-40	MY9.0_230	5.3	22796	21421	6.03	9.59	19367	2152
AG2-41	MY9.0_230	5.32	22949	21581	5.96	9.59	19511	2168
AG2-42	MY9.0_230	5.33	23055	21698	5.88	9.59	19617	2180
AG2-43	MY9.0_230	5.34	23118	21795	5.72	9.59	19705	2189
AG2-44	MY9.0_230	5.35	23172	21975	5.16	9.59	19868	2208
AG2-45	MY9.0_230	5.36	23242	22498	3.2	9.59	20340	2260
AG2-46	MY9.0_230	5.2	21967	20995	4.43	9.59	18981	2109
AG2-47	MY9.0_230	5.23	22271	20946	5.95	9.59	18937	2104
AG2-48	MY9.0_230	5.27	22556	21190	6.05	9.59	19158	2129
AG2-49	MY9.0_230	5.3	22821	21445	6.03	9.59	19388	2154
AG2-50	MY9.0_230	5.33	23027	21641	6.02	9.59	19566	2174
AG2-51	MY9.0_230	5.34	23149	21761	6	9.59	19674	2186
AG2-52	MY9.0_230	5.35	23202	21816	5.97	9.59	19724	2192
AG2-53	MY9.0_230	5.35	23227	21859	5.89	9.59	19763	2196
AG2-54	MY9.0_230	5.36	23262	21972	5.55	9.59	19865	2207
AG2-55	MY9.0_230	5.37	23313	22568	3.2	9.59	20403	2267
AG2-56	MY9.0_230	5.22	22122	21247	3.96	9.59	19209	2134
AG2-57	MY9.0_230	5.26	22446	21213	5.49	9.59	19178	2131
AG2-58	MY9.0_230	5.29	22749	21427	5.81	9.59	19372	2152
AG2-59	MY9.0_230	5.33	23036	21687	5.86	9.59	19607	2179
AG2-60	MY9.0_230	5.36	23266	21902	5.86	9.59	19802	2200
AG2-61	MY9.0_230	5.37	23372	21999	5.87	9.59	19889	2210
AG2-62	MY9.0_230	5.37	23384	22021	5.83	9.59	19909	2212
AG2-63	MY9.0_230	5.37	23355	22019	5.72	9.59	19907	2212
AG2-64	MY9.0_230	5.37	23343	22067	5.47	9.59	19951	2217
AG2-65	MY9.0_230	5.37	23360	22657	3.01	9.59	20484	2276
AG2-66	MY9.0_230	5.25	22347	21685	2.96	9.59	19605	2178
AG2-67	MY9.0_230	5.28	22651	21792	3.79	9.59	19702	2189
AG2-68	MY9.0_230	5.32	22940	22099	3.67	9.59	19979	2220
AG2-69	MY9.0_230	5.36	23264	22384	3.78	9.59	20237	2249
AG2-70	MY9.0_230	5.4	23599	22683	3.88	9.59	20508	2279
AG2-71	MY9.0_230	5.42	23754	22821	3.93	9.59	20633	2293
AG2-72	MY9.0_230	5.4	23623	22692	3.94	9.59	20516	2280
AG2-73	MY9.0_230	5.39	23517	22571	4.02	9.59	20407	2267
AG2-74	MY9.0_230	5.38	23433	22482	4.06	9.59	20326	2258
AG2-75	MY9.0_230	5.38	23390	22787	2.58	9.59	20602	2289
Progetto AR1 + A	R2	5.32	1722965	1646681	4.43	9 59	1488764	2206

Tahella 15 [.] Dettaalio dati di	nroduzione – lavou	t GH8 0-260 -	Dati FRA5
Tubellu 15. Dettugilo uuti ui	produzione – luyou	1 0110.0-200 -	DULILINAS

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG1-01	GH8.0-260	5.34	22215	21806	1.84	9.59	19715	2464
AG1-02	GH8.0-260	5.35	22341	21675	2.98	9.59	19596	2450
AG1-03	GH8.0-260	5.37	22477	21762	3.18	9.59	19675	2459
AG1-04	GH8.0-260	5.39	22614	21881	3.25	9.59	19782	2473
AG1-05	GH8.0-260	5.4	22732	21963	3.38	9.59	19857	2482
AG1-06	GH8.0-260	5.41	22823	21939	3.87	9.59	19835	2479
AG1-07	GH8.0-260	5.42	22899	21902	4.36	9.59	19801	2475
AG1-08	GH8.0-260	5.44	23013	21921	4.75	9.59	19819	2477
AG1-09	GH8.0-260	5.45	23098	21931	5.05	9.59	19828	2478
AG1-10	GH8.0-260	5.46	23172	21878	5.59	9.59	19780	2472
AG1-11	GH8.0-260	5.47	23227	21957	5.47	9.59	19852	2481
AG1-12	GH8.0-260	5.48	23313	22106	5.18	9.59	19986	2498
AG1-13	GH8.0-260	5.5	23401	22202	5.13	9.59	20072	2509
AG1-14	GH8.0-260	5.51	23419	22199	5.21	9.59	20070	2509
AG1-15	GH8.0-260	5.53	23519	22321	5.09	9.59	20181	2523
AG2-16	GH8.0-260	5.55	23637	22549	4.61	9.59	20386	2548
AG2-17	GH8.0-260	5.57	23767	23146	2.61	9.59	20927	2616
AG2-18	GH8.0-260	5.45	23121	21862	5.45	9.59	19765	2471
AG2-19	GH8.0-260	5.47	23215	21745	6.33	9.59	19660	2457
AG2-20	GH8.0-260	5.48	23298	21810	6.39	9.59	19718	2465
AG2-21	GH8.0-260	5.49	23361	21866	6.4	9.59	19769	2471
AG2-22	GH8.0-260	5.5	23451	21991	6.22	9.59	19882	2485
AG2-23	GH8.0-260	5.52	23559	22124	6.09	9.59	20002	2500
AG2-24	GH8.0-260	5.54	23682	22386	5.47	9.59	20239	2530
AG2-25	GH8.0-260	5.56	23734	23074	2.78	9.59	20861	2608
AG2-26	GH8.0-260	5.32	22229	21102	5.07	9.59	19078	2385
AG2-27	GH8.0-260	5.34	22371	20983	6.21	9.59	18970	2371
AG2-28	GH8.0-260	5.36	22535	21180	6.01	9.59	19149	2394
AG2-29	GH8.0-260	5.39	22697	21349	5.94	9.59	19302	2413
AG2-30	GH8.0-260	5.41	22800	21466	5.85	9.59	19408	2426
AG2-31	GH8.0-260	5.43	22917	21626	5.63	9.59	19552	2444
AG2-32	GH8.0-260	5.45	23033	21780	5.44	9.59	19691	2461
AG2-33	GH8.0-260	5.46	23129	21890	5.36	9.59	19790	2474
AG2-34	GH8.0-260	5.47	23195	21939	5.41	9.59	19835	2479
AG2-35	GH8.0-260	5.48	23246	22379	3.73	9.59	20233	2529
AG2-36	GH8.0-260	5.32	22186	20968	5.49	9.59	18957	2370
AG2-37	GH8.0-260	5.34	22397	20706	7.55	9.59	18720	2340
AG2-38	GH8.0-260	5.37	22592	20857	7.68	9.59	18857	2357

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG2-39	GH8.0-260	5.4	22774	21058	7.54	9.59	19038	2380
AG2-40	GH8.0-260	5.42	22949	21245	7.43	9.59	19207	2401
AG2-41	GH8.0-260	5.44	23092	21406	7.3	9.59	19353	2419
AG2-42	GH8.0-260	5.46	23191	21521	7.2	9.59	19457	2432
AG2-43	GH8.0-260	5.47	23219	21613	6.92	9.59	19540	2443
AG2-44	GH8.0-260	5.48	23268	21742	6.56	9.59	19656	2457
AG2-45	GH8.0-260	5.49	23316	22357	4.11	9.59	20213	2527
AG2-46	GH8.0-260	5.32	22172	20937	5.57	9.59	18929	2366
AG2-47	GH8.0-260	5.35	22447	20790	7.38	9.59	18796	2349
AG2-48	GH8.0-260	5.39	22714	21001	7.54	9.59	18987	2373
AG2-49	GH8.0-260	5.42	22971	21238	7.54	9.59	19201	2400
AG2-50	GH8.0-260	5.45	23171	21429	7.52	9.59	19374	2422
AG2-51	GH8.0-260	5.47	23280	21544	7.46	9.59	19478	2435
AG2-52	GH8.0-260	5.48	23337	21597	7.46	9.59	19526	2441
AG2-53	GH8.0-260	5.48	23363	21645	7.35	9.59	19569	2446
AG2-54	GH8.0-260	5.49	23388	21775	6.9	9.59	19687	2461
AG2-55	GH8.0-260	5.5	23424	22464	4.1	9.59	20310	2539
AG2-56	GH8.0-260	5.34	22309	21164	5.13	9.59	19134	2392
AG2-57	GH8.0-260	5.38	22604	21028	6.97	9.59	19012	2376
AG2-58	GH8.0-260	5.41	22892	21219	7.31	9.59	19184	2398
AG2-59	GH8.0-260	5.45	23163	21459	7.36	9.59	19401	2425
AG2-60	GH8.0-260	5.48	23383	21656	7.39	9.59	19579	2447
AG2-61	GH8.0-260	5.5	23486	21745	7.41	9.59	19659	2457
AG2-62	GH8.0-260	5.5	23503	21773	7.36	9.59	19685	2461
AG2-63	GH8.0-260	5.5	23477	21774	7.25	9.59	19686	2461
AG2-64	GH8.0-260	5.5	23458	21837	6.91	9.59	19743	2468
AG2-65	GH8.0-260	5.5	23469	22553	3.9	9.59	20390	2549
AG2-66	GH8.0-260	5.36	22505	21612	3.96	9.59	19540	2442
AG2-67	GH8.0-260	5.4	22796	21624	5.14	9.59	19550	2444
AG2-68	GH8.0-260	5.44	23074	21923	4.99	9.59	19821	2478
AG2-69	GH8.0-260	5.48	23378	22197	5.05	9.59	20068	2509
AG2-70	GH8.0-260	5.52	23690	22513	4.97	9.59	20354	2544
AG2-71	GH8.0-260	5.55	23837	22640	5.02	9,59	20469	2559
AG2-72	GH8.0-260	5.53	23721	22526	5.04	9 59	20366	2546
AG2-73	GH8.0-260	5.52	23621	22416	5.1	9,59	20267	2533
AG2-74	GH8.0-260	5.51	23535	22325	5.14	9,59	20184	2523
AG2-75	GH8.0-260	5.51	23493	22693	3.4	9,59	20517	2565
Progetto AR1 + A	R2	5.45	1731883	1634253	5.64	9.59	1477528	2463

Tabella 16: Dettaglio dati di produzione – layout GWH8.5_230 – Dati ERA5	5
--	---

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG1-01	GWH8.5_230	5.22	20870	20620	1.2	9.59	18642	2193
AG1-02	GWH8.5_230	5.23	20998	20576	2.01	9.59	18603	2189
AG1-03	GWH8.5_230	5.25	21131	20655	2.25	9.59	18674	2197
AG1-04	GWH8.5_230	5.27	21261	20755	2.38	9.59	18764	2208
AG1-05	GWH8.5_230	5.28	21372	20862	2.39	9.59	18861	2219
AG1-06	GWH8.5_230	5.29	21462	20871	2.76	9.59	18869	2220
AG1-07	GWH8.5_230	5.3	21538	20832	3.27	9.59	18835	2216
AG1-08	GWH8.5_230	5.31	21615	20844	3.57	9.59	18845	2217
AG1-09	GWH8.5_230	5.32	21698	20863	3.85	9.59	18862	2219
AG1-10	GWH8.5_230	5.33	21775	20833	4.33	9.59	18835	2216
AG1-11	GWH8.5_230	5.34	21837	20898	4.3	9.59	18894	2223
AG1-12	GWH8.5_230	5.35	21931	21032	4.1	9.59	19015	2237
AG1-13	GWH8.5_230	5.37	22030	21150	3.99	9.59	19122	2250
AG1-14	GWH8.5_230	5.38	22124	21239	4	9.59	19202	2259
AG1-15	GWH8.5_230	5.4	22238	21366	3.92	9.59	19317	2273
AG2-16	GWH8.5_230	5.42	22372	21577	3.55	9.59	19507	2295
AG2-17	GWH8.5_230	5.44	22522	22071	2	9.59	19954	2348
AG2-18	GWH8.5_230	5.33	21725	20798	4.26	9.59	18804	2212
AG2-19	GWH8.5_230	5.34	21820	20734	4.98	9.59	18745	2205
AG2-20	GWH8.5_230	5.35	21907	20790	5.1	9.59	18796	2211
AG2-21	GWH8.5_230	5.36	21979	20875	5.03	9.59	18873	2220
AG2-22	GWH8.5_230	5.38	22094	21014	4.89	9.59	18999	2235
AG2-23	GWH8.5_230	5.4	22220	21167	4.74	9.59	19137	2251
AG2-24	GWH8.5_230	5.42	22359	21414	4.23	9.59	19360	2278
AG2-25	GWH8.5_230	5.44	22499	21969	2.36	9.59	19862	2337
AG2-26	GWH8.5_230	5.2	20809	19967	4.04	9.59	18052	2124
AG2-27	GWH8.5_230	5.22	20960	19922	4.95	9.59	18011	2119
AG2-28	GWH8.5_230	5.24	21115	20106	4.78	9.59	18178	2139
AG2-29	GWH8.5_230	5.26	21285	20278	4.73	9.59	18334	2157
AG2-30	GWH8.5_230	5.29	21438	20421	4.74	9.59	18462	2172
AG2-31	GWH8.5_230	5.31	21573	20584	4.59	9.59	18610	2189
AG2-32	GWH8.5_230	5.32	21672	20732	4.34	9.59	18744	2205
AG2-33	GWH8.5_230	5.33	21762	20857	4.16	9.59	18857	2218
AG2-34	GWH8.5_230	5.34	21821	20911	4.17	9.59	18906	2224
AG2-35	GWH8.5_230	5.35	21876	21248	2.87	9.59	19210	2260
AG2-36	GWH8.5_230	5.2	20770	19853	4.42	9.59	17949	2112
AG2-37	GWH8.5_230	5.22	20987	19711	6.08	9.59	17820	2097
AG2-38	GWH8.5_230	5.25	21174	19876	6.13	9.59	17970	2114
AG2-39	GWH8.5_230	5.27	21365	20073	6.05	9.59	18148	2135

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG2-40	GWH8.5_230	5.3	21544	20247	6.02	9.59	18305	2154
AG2-41	GWH8.5_230	5.32	21688	20396	5.96	9.59	18440	2169
AG2-42	GWH8.5_230	5.33	21787	20505	5.88	9.59	18539	2181
AG2-43	GWH8.5_230	5.34	21846	20596	5.72	9.59	18621	2191
AG2-44	GWH8.5_230	5.35	21896	20765	5.17	9.59	18773	2209
AG2-45	GWH8.5_230	5.36	21963	21260	3.2	9.59	19221	2261
AG2-46	GWH8.5_230	5.2	20771	19853	4.42	9.59	17949	2112
AG2-47	GWH8.5_230	5.23	21054	19803	5.94	9.59	17904	2106
AG2-48	GWH8.5_230	5.27	21319	20030	6.04	9.59	18109	2131
AG2-49	GWH8.5_230	5.3	21567	20267	6.03	9.59	18324	2156
AG2-50	GWH8.5_230	5.33	21759	20450	6.01	9.59	18489	2175
AG2-51	GWH8.5_230	5.34	21874	20562	6	9.59	18590	2187
AG2-52	GWH8.5_230	5.35	21923	20614	5.97	9.59	18637	2193
AG2-53	GWH8.5_230	5.35	21946	20654	5.89	9.59	18673	2197
AG2-54	GWH8.5_230	5.36	21980	20761	5.55	9.59	18770	2208
AG2-55	GWH8.5_230	5.37	22029	21324	3.2	9.59	19279	2268
AG2-56	GWH8.5_230	5.22	20915	20086	3.96	9.59	18160	2136
AG2-57	GWH8.5_230	5.26	21215	20050	5.49	9.59	18127	2133
AG2-58	GWH8.5_230	5.29	21498	20249	5.81	9.59	18307	2154
AG2-59	GWH8.5_230	5.33	21766	20491	5.86	9.59	18526	2179
AG2-60	GWH8.5_230	5.36	21980	20692	5.86	9.59	18707	2201
AG2-61	GWH8.5_230	5.37	22079	20782	5.87	9.59	18789	2210
AG2-62	GWH8.5_230	5.37	22091	20803	5.83	9.59	18808	2213
AG2-63	GWH8.5_230	5.37	22065	20802	5.72	9.59	18807	2213
AG2-64	GWH8.5_230	5.37	22055	20849	5.47	9.59	18849	2218
AG2-65	GWH8.5_230	5.37	22072	21407	3.01	9.59	19354	2277
AG2-66	GWH8.5_230	5.25	21123	20493	2.98	9.59	18527	2180
AG2-67	GWH8.5_230	5.28	21405	20589	3.81	9.59	18615	2190
AG2-68	GWH8.5_230	5.32	21674	20876	3.68	9.59	18874	2220
AG2-69	GWH8.5_230	5.36	21976	21143	3.79	9.59	19115	2249
AG2-70	GWH8.5_230	5.4	22288	21422	3.89	9.59	19367	2279
AG2-71	GWH8.5_230	5.42	22433	21552	3.93	9.59	19485	2292
AG2-72	GWH8.5_230	5.4	22312	21433	3.94	9.59	19377	2280
AG2-73	GWH8.5_230	5.39	22214	21321	4.02	9.59	19276	2268
AG2-74	GWH8.5_230	5.38	22137	21238	4.06	9.59	19201	2259
AG2-75	GWH8.5_230	5.38	22099	21527	2.59	9.59	19463	2290
Progetto AR1 + A	AR2	5.32	1628320	1556230	4.43	9.59	1406988	2207

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

2.5.2 Simulazione con dati AWS True Power

Tabella 17: Dettaglio dati di produzione – layout MY9.0_230 – Dati AWS

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG1-01	MY9.0_230	6.69	32943	32612	1	9.59	29484	3276
AG1-02	MY9.0_230	6.69	32962	32338	1.89	9.59	29237	3249
AG1-03	MY9.0_230	6.69	32987	32287	2.12	9.59	29191	3243
AG1-04	MY9.0_230	6.69	33017	32281	2.23	9.59	29185	3243
AG1-05	MY9.0_230	6.7	33048	32321	2.2	9.59	29221	3247
AG1-06	MY9.0_230	6.7	33079	32316	2.31	9.59	29217	3246
AG1-07	MY9.0_230	6.7	33105	32255	2.57	9.59	29162	3240
AG1-08	MY9.0_230	6.71	33169	32266	2.72	9.59	29171	3241
AG1-09	MY9.0_230	6.73	33249	32284	2.9	9.59	29188	3243
AG1-10	MY9.0_230	6.75	33354	32290	3.19	9.59	29193	3244
AG1-11	MY9.0_230	6.76	33432	32343	3.26	9.59	29242	3249
AG1-12	MY9.0_230	6.79	33563	32527	3.09	9.59	29407	3267
AG1-13	MY9.0_230	6.81	33698	32700	2.96	9.59	29564	3285
AG1-14	MY9.0_230	6.83	33817	32807	2.99	9.59	29660	3296
AG1-15	MY9.0_230	6.86	33964	32965	2.94	9.59	29804	3230
AG2-16	MY9.0_230	6.89	34115	33191	2.71	9.59	30008	3334
AG2-10 AG2-17	MY9.0_230	6.92	34287	33731	1.62	9.59	30496	2288
AG2-17	MY9.0_230	6.75	33356	32354	3	9.59	29251	3350
AG2-18	MY9.0_230	6.77	33479	32277	3.59	9.59	29181	22/0
AG2-19	MY9.0_230	6.79	33597	32389	3.6	9.59	29283	2242
AG2-20	MY9.0_230	6.81	33695	32518	3.49	9.59	29400	2254
AG2-21	MY9.0_230	6.83	33827	32682	3.38	9.59	29548	2207
AG2-22	MY9.0_230	6.86	33965	32848	3.29	9.59	29698	2200
AG2-23	MY9.0_230	6.89	34116	33122	2.91	9.59	29946	2227
AG2-24	MY9.0_230	6.92	34293	33740	1.61	9.59	30504	2200
AG2-25	MY9.0 230	6.7	33069	32144	2.8	9.59	29062	2220
AG2-20	 MY9.0_230	6.69	33042	31919	3.4	9.59	28858	2206
AG2-27	 MY9.0_230	6.69	33051	31967	3.28	9.59	28902	2211
AG2-28	 MY9.0_230	6.7	33092	32025	3.22	9.59	28954	2211
AG2-29	_ MY9.0_230	6.71	33147	32076	3.23	9.59	29000	2222
AG2-30	_ MY9.0_230	6.72	33195	32148	3.16	9.59	29065	2220
AG2-31	_ MY9.0_230	6.73	33243	32214	3.09	9.59	29125	3229
AG2-32	MY9.0 230	6.74	33300	32239	3.19	9.59	29147	3230
AG2-33	MY9.0 230	6.74	33318	32227	3.28	9.59	29136	3239
AG2-34	MY9.0 230	6.75	33361	32599	2.28	9,59	29473	3237
AG2-35	MY9.0 230	6.7	33034	32071	2.92	9,59	28995	3275
AG2-36	MY9.0 230	6.69	33001	31632	4.15	9,59	28598	3222
AG2-37								31/8

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG2-38	MY9.0_230	6.68	32973	31546	4.33	9.59	28521	3169
AG2-39	MY9.0_230	6.69	32992	31568	4.32	9.59	28541	3171
AG2-40	MY9.0_230	6.69	33040	31625	4.28	9.59	28592	3177
AG2-41	MY9.0_230	6.7	33095	31698	4.22	9.59	28658	3184
AG2-42	MY9.0_230	6.71	33149	31769	4.16	9.59	28723	3191
AG2-43	MY9.0_230	6.72	33180	31850	4.01	9.59	28796	3200
AG2-44	MY9.0_230	6.73	33243	32002	3.73	9.59	28933	3215
AG2-45	MY9.0_230	6.75	33336	32528	2.42	9.59	29409	3268
AG2-46	MY9.0_230	6.69	32914	31945	2.95	9.59	28881	3209
AG2-47	MY9.0_230	6.68	32895	31548	4.09	9.59	28523	3169
AG2-48	MY9.0_230	6.68	32902	31489	4.29	9.59	28469	3163
AG2-49	MY9.0_230	6.68	32934	31516	4.31	9.59	28493	3166
AG2-50	MY9.0_230	6.68	32969	31548	4.31	9.59	28523	3169
AG2-51	MY9.0_230	6.69	33010	31591	4.3	9.59	28561	3173
AG2-52	MY9.0_230	6.7	33050	31639	4.27	9.59	28604	3178
AG2-53	MY9.0_230	6.71	33088	31696	4.2	9.59	28657	3184
AG2-54	MY9.0_230	6.72	33181	31873	3.94	9.59	28817	3202
AG2-55	MY9.0_230	6.74	33298	32491	2.43	9.59	29375	3264
AG2-56	MY9.0_230	6.68	32857	31966	2.71	9.59	28901	3211
AG2-57	MY9.0_230	6.67	32833	31532	3.96	9.59	28508	3168
AG2-58	MY9.0_230	6.66	32808	31437	4.18	9.59	28422	3158
AG2-59	MY9.0_230	6.66	32805	31422	4.22	9.59	28408	3156
AG2-60	MY9.0_230	6.66	32822	31431	4.24	9.59	28417	3157
AG2-61	MY9.0_230	6.67	32857	31455	4.27	9.59	28438	3160
AG2-62	MY9.0_230	6.68	32919	31541	4.19	9.59	28516	3168
AG2-63	MY9.0_230	6.7	33002	31619	4.19	9.59	28587	3176
AG2-64	MY9.0_230	6.71	33105	31790	3.97	9.59	28741	3193
AG2-65	MY9.0_230	6.74	33240	32465	2.33	9.59	29352	3261
AG2-66	MY9.0_230	6.67	32790	32072	2.19	9.59	28996	3222
AG2-67	MY9.0_230	6.66	32766	31727	3.17	9.59	28684	3187
AG2-68	MY9.0_230	6.65	32736	31740	3.04	9.59	28696	3188
AG2-69	MY9.0_230	6.65	32727	31762	2.95	9.59	28716	3191
AG2-70	MY9.0_230	6.65	32759	31811	2.89	9.59	28760	3196
AG2-71	MY9.0_230	6.66	32819	31866	2.9	9.59	28810	3201
AG2-72	MY9.0_230	6.68	32887	31934	2.9	9.59	28872	3208
AG2-73	MY9.0_230	6.7	32984	32016	2.94	9.59	28946	3216
AG2-74	MY9.0_230	6.71	33054	32077	2.96	9.59	29001	3222
AG2-75	MY9.0_230	6.73	33150	32473	2.04	9.59	29359	3262
$\frac{1}{2}$		6 73	2489137	2408759	2.98	9 59	2177759	3226

Relazione di producibilità dell'hub energetico

AGNROM_EP-R_REL-PRODUZIONE

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG1-01	GH8.0-260	6.84	31149	30685	1.49	9.59	27742	3468
AG1-02	GH8.0-260	6.84	31130	30341	2.53	9.59	27432	3429
AG1-03	GH8.0-260	6.85	31159	30307	2.73	9.59	27401	3425
AG1-04	GH8.0-260	6.85	31299	30427	2.79	9.59	27509	3439
AG1-05	GH8.0-260	6.85	31334	30475	2.74	9.59	27552	3444
AG1-06	GH8.0-260	6.85	31370	30400	3.09	9.59	27485	3436
AG1-07	GH8.0-260	6.86	31456	30419	3.3	9.59	27501	3438
AG1-08	GH8.0-260	6.87	31522	30405	3.54	9.59	27489	3436
AG1-09	GH8.0-260	6.89	31608	30392	3.85	9.59	27477	3435
AG1-10	GH8.0-260	6.91	31698	30367	4.2	9.59	27455	3432
AG1-11	GH8.0-260	6.93	31564	30303	4	9.59	27397	3425
AG1-12	GH8.0-260	6.95	31641	30420	3.86	9.59	27503	3438
AG1-13	GH8.0-260	6.97	31754	30546	3.8	9.59	27616	3452
AG1-14	GH8.0-260	7	31854	30611	3.9	9.59	27675	3459
AG1-15	GH8.0-260	7.02	31942	30748	3.74	9.59	27799	3475
AG2-16	GH8.0-260	7.05	32050	30908	3.56	9.59	27944	3493
AG2-17	GH8.0-260	7.08	32100	31434	2.07	9.59	28419	3552
AG2-18	GH8.0-260	6.91	31702	30430	4.01	9.59	27512	3439
AG2-19	GH8.0-260	6.93	31711	30303	4.44	9.59	27397	3425
AG2-20	GH8.0-260	6.95	31792	30433	4.27	9.59	27515	3439
AG2-21	GH8.0-260	6.97	31746	30463	4.04	9.59	27541	3443
AG2-22	GH8.0-260	6.99	31818	30572	3.92	9.59	27640	3455
AG2-23	GH8.0-260	7.02	31939	30708	3.86	9.59	27763	3470
AG2-24	GH8.0-260	7.04	32011	30953	3.31	9.59	27984	3498
AG2-25	GH8.0-260	7.07	32092	31550	1.69	9.59	28525	3566
AG2-26	GH8.0-260	6.85	31421	30358	3.38	9.59	27447	3431
AG2-27	GH8.0-260	6.85	31369	30155	3.87	9.59	27263	3408
AG2-28	GH8.0-260	6.85	31383	30232	3.67	9.59	27333	3417
AG2-29	GH8.0-260	6.86	31420	30289	3.6	9.59	27385	3423
AG2-30	GH8.0-260	6.87	31417	30274	3.64	9.59	27370	3421
AG2-31	GH8.0-260	6.87	31453	30335	3.56	9.59	27426	3428
AG2-32	GH8.0-260	6.88	31476	30289	3.77	9.59	27385	3423
AG2-33	GH8.0-260	6.89	31532	30305	3.89	9.59	27398	3425
AG2-34	GH8.0-260	6.9	31581	30241	4.24	9.59	27340	3418
AG2-35	GH8.0-260	6.91	31618	30726	2.82	9.59	27779	3472
AG2-36	GH8.0-260	6.85	31252	30249	3.21	9.59	27348	3419
AG2-37	GH8.0-260	6.84	31321	29850	4.7	9.59	26987	3373
AG2-38	GH8.0-260	6.84	31302	29740	4.99	9.59	26888	3361

Tabella 18: Dettaglio dati di produzione – layout GH8.0-260 – Dati AWS

HUB ENERGETICO AGNES ROMAGNA 1&2 PROGETTO DEFINITIVO E STUDIO DI IMPATTO AMBIENTALE

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG2-39	GH8.0-260	6.84	31323	29767	4.97	9.59	26913	3364
AG2-40	GH8.0-260	6.85	31363	29797	4.99	9.59	26940	3367
AG2-41	GH8.0-260	6.86	31418	29865	4.94	9.59	27001	3375
AG2-42	GH8.0-260	6.87	31471	29911	4.96	9.59	27042	3380
AG2-43	GH8.0-260	6.88	31528	29986	4.89	9.59	27110	3389
AG2-44	GH8.0-260	6.89	31538	30063	4.67	9.59	27180	3398
AG2-45	GH8.0-260	6.91	31423	30477	3.01	9.59	27554	3444
AG2-46	GH8.0-260	6.84	31135	30137	3.2	9.59	27247	3406
AG2-47	GH8.0-260	6.83	31215	29712	4.81	9.59	26863	3358
AG2-48	GH8.0-260	6.83	31225	29715	4.84	9.59	26865	3358
AG2-49	GH8.0-260	6.83	31254	29721	4.9	9.59	26870	3359
AG2-50	GH8.0-260	6.84	31290	29731	4.98	9.59	26880	3360
AG2-51	GH8.0-260	6.85	31332	29752	5.04	9.59	26899	3362
AG2-52	GH8.0-260	6.86	31391	29795	5.08	9.59	26938	3367
AG2-53	GH8.0-260	6.87	31447	29878	4.99	9.59	27012	3377
AG2-54	GH8.0-260	6.88	31457	29975	4.71	9.59	27100	3388
AG2-55	GH8.0-260	6.91	31440	30470	3.08	9.59	27548	3443
AG2-56	GH8.0-260	6.83	31044	30136	2.93	9.59	27246	3406
AG2-57	GH8.0-260	6.82	31031	29685	4.34	9.59	26838	3355
AG2-58	GH8.0-260	6.82	31132	29674	4.68	9.59	26828	3354
AG2-59	GH8.0-260	6.81	31137	29644	4.79	9.59	26801	3350
AG2-60	GH8.0-260	6.82	31171	29632	4.94	9.59	26790	3349
AG2-61	GH8.0-260	6.82	31223	29654	5.03	9.59	26810	3351
AG2-62	GH8.0-260	6.84	31296	29745	4.95	9.59	26893	3362
AG2-63	GH8.0-260	6.86	31373	29734	5.22	9.59	26883	3360
AG2-64	GH8.0-260	6.87	31256	29857	4.47	9.59	26994	3374
AG2-65	GH8.0-260	6.9	31376	30444	2.97	9.59	27524	3440
AG2-66	GH8.0-260	6.82	31025	30243	2.52	9.59	27343	3418
AG2-67	GH8.0-260	6.81	31134	29840	4.16	9.59	26978	3372
AG2-68	GH8.0-260	6.8	31108	29897	3.89	9.59	27030	3379
AG2-69	GH8.0-260	6.8	31097	29984	3.58	9.59	27108	3389
AG2-70	GH8.0-260	6.81	31124	30094	3.31	9.59	27208	3401
AG2-71	GH8.0-260	6.82	31178	30153	3.29	9.59	27261	3408
AG2-72	GH8.0-260	6.84	31252	30230	3.27	9.59	27331	3416
AG2-73	GH8.0-260	6.85	31319	30214	3.53	9.59	27316	3415
AG2-74	GH8.0-260	6.87	31216	30196	3.27	9.59	27300	3413
AG2-74	GH8.0-260	6.89	31298	30486	2.6	9.59	27562	3445
Progetto AR1 + A	R2	6.89	2357022	2265931	3.65	9.59	2048628	3414

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

Ore equiv.

[h]

3252

3225

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]
AG1-01	GWH8.5_230	6.69	30858	30575	0.92	9.59	27643
AG1-02	GWH8.5_230	6.69	30876	30319	1.81	9.59	27411
AG1-03	GWH8.5_230	6.69	30900	30278	2.01	9.59	27375
AG1-04	GWH8.5_230	6.69	30928	30255	2.17	9.59	27354
AG1-05	GWH8.5_230	6.7	30961	30291	2.17	9.59	27386
AG1-06	GWH8.5_230	6.7	30990	30275	2.31	9.59	27371
AG1-07	GWH8.5_230	6.7	31006	30219	2.54	9.59	27321
//01/0/	GW/H8 5 230	6 71	31065	30228	2 69	9 59	27329

Tabella 19: Dettaglio dati di produzione – layout GWH8.5_230 – Dati AWS

AG1-03	GWH8.5_230	6.69	30900	30278	2.01	9.59	27375	3221
AG1-04	GWH8.5_230	6.69	30928	30255	2.17	9.59	27354	3218
AG1-05	GWH8.5_230	6.7	30961	30291	2.17	9.59	27386	3222
AG1-06	GWH8.5_230	6.7	30990	30275	2.31	9.59	27371	3220
AG1-07	GWH8.5_230	6.7	31006	30219	2.54	9.59	27321	3214
AG1-08	GWH8.5_230	6.71	31065	30228	2.69	9.59	27329	3215
AG1-09	GWH8.5_230	6.73	31145	30247	2.88	9.59	27346	3217
AG1-10	GWH8.5_230	6.75	31237	30245	3.18	9.59	27345	3217
AG1-11	GWH8.5_230	6.76	31298	30292	3.21	9.59	27387	3222
AG1-12	GWH8.5_230	6.79	31419	30450	3.09	9.59	27529	3239
AG1-13	GWH8.5_230	6.81	31543	30610	2.96	9.59	27675	3256
AG1-14	GWH8.5_230	6.83	31659	30715	2.98	9.59	27769	3267
AG1-15	GWH8.5_230	6.86	31776	30843	2.94	9.59	27885	3281
AG2-16	GWH8.5_230	6.89	31918	31053	2.71	9.59	28075	3303
AG2-17	GWH8.5_230	6.92	32077	31553	1.63	9.59	28527	3356
AG2-18	GWH8.5_230	6.75	31235	30292	3.02	9.59	27387	3222
AG2-19	GWH8.5_230	6.77	31345	30226	3.57	9.59	27327	3215
AG2-20	GWH8.5_230	6.79	31454	30327	3.58	9.59	27419	3226
AG2-21	GWH8.5_230	6.81	31544	30447	3.48	9.59	27527	3238
AG2-22	GWH8.5_230	6.83	31664	30598	3.37	9.59	27664	3255
AG2-23	GWH8.5_230	6.86	31800	30758	3.28	9.59	27808	3272
AG2-24	GWH8.5_230	6.89	31947	31011	2.93	9.59	28037	3299
AG2-25	GWH8.5_230	6.92	32098	31581	1.61	9.59	28553	3359
AG2-26	GWH8.5_230	6.7	30987	30150	2.7	9.59	27259	3207
AG2-27	GWH8.5_230	6.69	30967	29945	3.3	9.59	27073	3185
AG2-28	GWH8.5_230	6.69	30970	29978	3.2	9.59	27103	3189
AG2-29	GWH8.5_230	6.7	31006	30029	3.15	9.59	27149	3194
AG2-30	GWH8.5_230	6.71	31057	30070	3.18	9.59	27186	3198
AG2-31	GWH8.5_230	6.72	31100	30129	3.12	9.59	27239	3205
AG2-32	GWH8.5_230	6.73	31143	30183	3.08	9.59	27289	3210
AG2-33	GWH8.5_230	6.74	31195	30206	3.17	9.59	27309	3213
AG2-34	GWH8.5_230	6.74	31211	30187	3.28	9.59	27292	3211
AG2-35	GWH8.5_230	6.75	31249	30537	2.28	9.59	27608	3248
AG2-36	GWH8.5_230	6.7	30953	30071	2.85	9.59	27187	3198
AG2-37	GWH8.5_230	6.69	30924	29658	4.09	9.59	26814	3155
AG2-38	GWH8.5_230	6.68	30903	29577	4.29	9.59	26740	3146
-		1						

WTG	Modello	V media	AEP Lorda	AEP Lorda-Scia	Perd. Scia	Perd. Tecniche	AEP Netta	Ore equiv.
Nr.	Turbina	[m/s]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[h]
AG2-39	GWH8.5_230	6.69	30914	29597	4.26	9.59	26758	3148
AG2-40	GWH8.5_230	6.69	30958	29638	4.26	9.59	26795	3152
AG2-41	GWH8.5_230	6.7	31008	29703	4.21	9.59	26854	3159
AG2-42	GWH8.5_230	6.71	31057	29767	4.15	9.59	26912	3166
AG2-43	GWH8.5_230	6.72	31100	29837	4.06	9.59	26976	3174
AG2-44	GWH8.5_230	6.73	31140	29974	3.74	9.59	27099	3188
AG2-45	GWH8.5_230	6.75	31224	30468	2.42	9.59	27546	3241
AG2-46	GWH8.5_230	6.69	30839	29950	2.88	9.59	27078	3186
AG2-47	GWH8.5_230	6.68	30823	29568	4.07	9.59	26732	3145
AG2-48	GWH8.5_230	6.68	30830	29519	4.25	9.59	26688	3140
AG2-49	GWH8.5_230	6.68	30861	29538	4.29	9.59	26705	3142
AG2-50	GWH8.5_230	6.68	30893	29567	4.29	9.59	26731	3145
AG2-51	GWH8.5_230	6.69	30929	29604	4.28	9.59	26765	3149
AG2-52	GWH8.5_230	6.7	30965	29646	4.26	9.59	26803	3153
AG2-53	GWH8.5_230	6.71	31003	29701	4.2	9.59	26853	3159
AG2-54	GWH8.5_230	6.72	31082	29857	3.94	9.59	26994	3176
AG2-55	GWH8.5_230	6.74	31189	30434	2.42	9.59	27515	3237
AG2-56	GWH8.5_230	6.68	30785	29952	2.71	9.59	27080	3186
AG2-57	GWH8.5_230	6.67	30758	29544	3.95	9.59	26710	3142
AG2-58	GWH8.5_230	6.66	30741	29463	4.16	9.59	26637	3134
AG2-59	GWH8.5_230	6.66	30739	29449	4.2	9.59	26625	3132
AG2-60	GWH8.5_230	6.66	30754	29456	4.22	9.59	26631	3133
AG2-61	GWH8.5_230	6.67	30785	29477	4.25	9.59	26650	3135
AG2-62	GWH8.5_230	6.68	30847	29554	4.19	9.59	26720	3144
AG2-63	GWH8.5_230	6.7	30917	29631	4.16	9.59	26789	3152
AG2-64	GWH8.5_230	6.71	31011	29781	3.97	9.59	26925	3168
AG2-65	GWH8.5_230	6.74	31134	30410	2.32	9.59	27494	3235
AG2-66	GWH8.5_230	6.67	30716	30069	2.1	9.59	27186	3198
AG2-67	GWH8.5_230	6.66	30694	29733	3.13	9.59	26882	3163
AG2-68	GWH8.5_230	6.65	30673	29750	3.01	9.59	26897	3164
AG2-69	GWH8.5_230	6.65	30665	29763	2.94	9.59	26909	3166
AG2-70	GWH8.5_230	6.65	30694	29809	2.88	9.59	26951	3171
AG2-71	GWH8.5_230	6.66	30749	29859	2.89	9.59	26996	3176
AG2-72	GWH8.5_230	6.68	30816	29927	2.89	9.59	27057	3183
AG2-73	GWH8.5_230	6.7	30900	30000	2.91	9.59	27123	3191
AG2-74	GWH8.5_230	6.71	30963	30049	2.95	9.59	27167	3196
AG2-75	GWH8.5_230	6.73	31050	30414	2.05	9.59	27497	3235
Progetto AR1 + A	AR2	6.72	2331615	2256862	3.21	9.59	2040429	3201

2.6 Calcolo del range di producibilità

Layout Impiar	I					
Layout	Potenza imp. [MW]	Altezza Hub [m]	V media H Hub [m/s]	Perd. Scia [%]	AEP Netta [MWh/y]	Ore equivalenti [h]
75x MY9.0_230	675	140	6.72	3.23	2177759	3226
75x GH8.0_260	600	170	6.88	3.86	2048628	3414
75x GWH230_8.5	637.5	140	6.72	3.21	2040429	3201
Layout Impiar						
Layout	Potenza imp. [MW]	Altezza Hub [m]	V media H Hub [m/s]	Perd. Scia [%]	AEP Netta [MWh/y]	Ore equivalenti [h]
75x MY9.0_230	675	140	5.32	4.43	1488764	2206
		470			1 177500	2462
75x GH8.0_260	600	170	5.45	5.64	1477528	2463

Come da Tabella 20, in generale si osserva che i dati AWS ridotti ad un anno tipico determinano una velocità media ad altezza Hub di 140m pari a 6.72 m/s, e di 6.88 m/s ad altezza hub di 170m. Con i dati ERA-5, rappresentativi di una statistica di 20 anni, si determinano una velocità media ad altezza Hub di 140m pari a 5.32 m/s e una velocità media di 5.45 m/s ottenuta ad altezza hub di 170m.

La differenza del livello di velocità media determina una ancora più marcata differenza di produzione energetica tra le due banche dati, compresa tra 28% e 32% in più con i dati AWS, a seconda del layout considerato.

Variazione % AWS rispetto ERA-5						
Layout	V media H Hub	Perd. Scia	AEP Netta			
	[m/s]	[%]	[MWh/y]			
75x MY9.0_230	21%	-37%	32%			
75x GH8.0_260	21%	-46%	28%			
75x GWH230_8.5	21%	-38%	31%			

Tabella 21: Variazione della produzione a seconda dei data set utilizzati

I risultati ottenuti rappresentano solamente una stima preliminare e dovranno essere confrontati da una campagna anemometrica con misurazioni sperimentali in mare aperto, peraltro già avviata dal proponete a maggio 2022 come descritto nel paragrafo 2.8. In questa fase preliminare di sviluppo del progetto è stato scelto un approccio conservativo, che ci suggerisce di considerare ipotizzabile, per ogni layout considerato, un range di produzione energetica compreso tra il minimo del dato ERA-5 ed il massimo del dato AWS, secondo la Tabella 22.

Layout	AEP Nett	a [MWh/y]	Ore Equivalenti		
	Minimo (ERA-5)	Massimo (AWS)	Minimo (ERA-5)	Massimo (AWS)	
75x MY9.0_230	1488764	2177759	2206	3226	
75x GH8.0_260	1477528	2048628	2463	3414	
75x GWH230_8.5	1406988	2040429	2207	3201	

Tabella 22: Tabella di sintesi della producibilità

2.7 Analisi quantitativa e qualitativa dei risultati

I risultati ottenuti e descritti nei precedenti paragrafi permettono di effettuare le seguenti considerazioni:

- nonostante le banche dati utilizzate restituiscono valori di intensità di vento differenti, la distribuzione della rosa dei venti, per settori di direzione, ottenuta dai database è analoga, ed evidenzia la presenza di venti proveniente dai settori Ovest-Nordovest ed Est-Sudest. Si nota, inoltre, la presenza di un picco di intensità di vento da Nord-Est (settore a 60°), legato alle particolari condizioni meteorologiche che si presentano nella zona, quando sono in atto perturbazioni molto intense di origine balcanica, tipiche della costa adriatica.
- I valori di intensità media del vento riscontrato, variabili in modo significativo a seconda della banca dati del vento considerata, indicano comunque una risorsa eolica che, specialmente con le future ed innovative tecnologie eoliche che saranno disponibili sul mercato entro pochi anni, permetterebbe di ottenere livelli di produzione energetica più che accettabili; in particolare, risulta chiaro che l'allargamento del rotore permette di raggiungere livelli di produzione maggiori a parità di potenza installata.
- La disposizione delle turbine in due layout distinti e l'inter-distanza degli aerogeneratori sulla medesima fila, e tra file parallele, è tale da minimizzare le interferenze aerodinamiche tra le varie turbine e, quindi, di ridurre le perdite per effetto scia a valori assolutamente accettabili in generale per un impianto eolico. I layout scelti permettono, inoltre, di minimizzare lo specchio acqueo utilizzato e la lunghezza dei cavi di collegamento elettrico tra le varie turbine.

2.8 Campagna di misurazione del vento in sito avviata dal Proponente

Per poter ottenere maggior informazioni qualitative e quantitative sulla risorsa eolica del Progetto, Agnes ha avviato una campagna di misurazione del vento in sito a maggio 2022. La banca dati anemologica comprenderà i rilevamenti di due stazioni di misurazione installate nelle aree di progetto Romagna 1 e Romagna 2, su ciascuna delle quali è stato disposto un lidar, strumento professionale per la misurazione del vento tramite tecnologia a laser ad effetto doppler. L'ubicazione dei Lidar è visibile in Figura 10.

Relazione di producibilità dell'hub energetico

AGNROM_EP-R_REL-PRODUZIONE

Figura 10: Ubicazione dei device lidar per la misurazione del vento nel sito di Progetto

Le caratteristiche tecniche dei due Lidar contenute nel report di installazione sono riportate nella Tabella 23.

Tabella 23: Caratteristiche tecniche dei device lidar installati

Item		Value			
		Lidar A	Lidar B		
RDS manufacturer		Leosphere	Leosphere		
RDS model		WINDCUBE 2.1	WINDCUBE 2.1		
RDS serial number		WLS866-0143	WLS866-0142		
Firmware version		2.2.2.	2.2.2.		
FCR activated (Yes/No)		No	No		
Last performance	Measurament start	03/03/2022	03/03/2022		
verification	Measurament end	21/04/2022	21/04/2022		
Laser aperture [°]		28	28		
Installation date		18/05/2022	19/05/2022		
Start data collection da	ate	18/05/2022	20/05/2022		
Power supply		230V grid mode	230V grid mode		
Coordinate system		UTM WGS84 Zone 33T	UTM WGS84 Zone 33T		

Relazione di producibilità dell'hub energetico

AGNROM_EP-R_REL-PRODUZIONE

Reference north		True	True	
PSD position	Easting [m]	313909	331772	
NSD position	Northing [m]	4919747	4936977	
Direction offset [°]		305.7	250	
Installation offset height [m ASL]		22	25	
Time zone		UTC	UTC	
Horizontal lovalling	Pitch angle [°]	0.1	-0.4	
nonzontarievening	Roll angle [°]	0.1	0.1	
Height settings [m ASL]		65/80/100/120/130/140/150/160/180/200/220/240/260/280/300		
Data averaging period		10 min	10 min	
Weather station	Serial Number	21792003	21791998	
	Height [m ASL]	23.5	26.5	

Per entrambi gli strumenti è stato eseguito un test di verifica delle performance al DNV Remote Testing Site in Amburgo.

I dati registrati dalla centralina per ogni canale di misura di velocità e direzione nell'intervallo di elaborazione, pari a 10 minuti, sono i seguenti:

- Valore medio
- Valore massimo
- Valore minino
- Deviazione standard

Al termine del 12esimo mese di misurazione, si procederà con l'elaborazione dei dati acquisiti, con lo scopo di verificare la validità delle misure per ognuno dei parametri misurati. In particolare, si prevede una procedura di filtraggio volta all'individuazione di possibili anomalie e malfunzionamenti dei sensori, sia di velocità che di direzione.

In caso di malfunzionamenti e anomalie di breve durata (inferiori a 4 ore), si procederà all'integrazione dei dati mancanti mediante un processo di sintesi basato su una matrice di transizione di Markov, ottenuta considerando i valori precedenti e successivi agli eventi in questione, i valori di eventuali altri sensori ad altre quote di misura, il pattern diurno di ventosità e la variabilità riscontrata tra campioni successivi. Malfunzionamenti e interruzioni di durata superiore conducono invece all'eliminazione dei record di misura stessi.

Lo scopo è quello di estrapolare una climatologia di lungo termine, attraverso la correlazione con dataset di rianalisi, che permette di ridurre l'impatto della variabilità annuale del vento a cui inevitabilmente è sottoposta una campagna di misurazione di durata limitata nel tempo. Per un corretto utilizzo dei dati di rianalisi è, tuttavia, indispensabile che sussista una buona correlazione tra i dati in sito e quelli di riferimento. In particolare, la robustezza di un modello statistico è valutata mediante il coefficiente di correlazione R ed il numero di misurazioni.

A seguito dell'ottenimento di una climatologia di lungo periodo, verrà effettuato nuovamente lo studio di produzione degli impianti eolici Romagna 1 e Romagna 2, riducendo fortemente le incertezze indotte dalla volatilità del vento.

3. STIMA DI PRODUZIONE DELL'IMPIANTO FOTOVOLTAICO

In questo capitolo si presenta il calcolo della producibilità dell'impianto fotovoltaico galleggiante ("OFPV") del Progetto Agnes Romagna 1&2 di potenza nominale 100 MWp, ubicato nel parco Romagna 1.

Il calcolo delle producibilità è stato eseguito con l'utilizzo di PVsyst, un software di ingegneria fotovoltaica che permette lo studio, il dimensionamento e l'analisi dei dati di un impianto solare.

Al fine di eseguire una simulazione precisa della producibilità, il software richiede in input i dati climatici dell'area di interesse, le tipologie di inverter e pannelli utilizzati e tutti i parametri che condizionano la producibilità. In PVsyst, però, non è implementata la simulazione per impianti fotovoltaici flottanti, ma considera soltanto sistemi onshore; per tale ragione, si sono modificate e adeguate le variabili che si differenziano rispetto ai sistemi terrestri, giustificando i valori considerati con assunzioni e dati di letteratura.

All'interno del presente capitolo, nella prima parte viene descritta la tecnologia utilizzata per l'analisi, i dati climatici, i valori di progetto inseriti nel software (ovvero tutti i parametri dipendenti dal layout) e i parametri di aumento/riduzione della producibilità per impianti offshore. Tra le due alternative tecnologiche proposte nell'elaborato "Relazione tecnica dell'impianto fotovoltaico galleggiante" con codice AGNROM_EP-R_REL-OFPV, si considera per la stima della producibilità l'alternativa tecnologica 1, ovvero la tecnologia a "struttura sopraelevata galleggiante" e in particolare una singola struttura esagonale da 7.7 MW.

Nella seconda parte dell'elaborato sono mostrati i risultati ottenuti con PVsyst, in particolare i valori di energia prodotta annua, le ore equivalenti di funzionamento dell'impianto e tutte le perdite del sistema.

Infine, i valori di energia prodotta e di produzione specifica sono elaborati e modificati per tenere conto di tutte le perdite di trasmissione e trasformazione dal sito di Romagna 1 fino al punto di consegna alla rete elettrica nazionale "Ravenna Canala".

3.1 Tecnologia e layout dell'impianto

L'area per il sito OFPV ha un'estensione compresa tra i 450 e 510 ha e si trova a 16.1 miglia nautiche dal litorale di Lido di Classe (Comune di Ravenna); dagli studi batimetrici condotti, la profondità del mare in quell'area varia tra i 33 e i 35 metri.

Ogni struttura esagonale produce una potenza pari a 7.7 MWp. Le strutture esagonali necessarie per arrivare a 100 MWp sono 13. Ogni piattaforma esagonale è composta da 96 piattaforme triangolari, di cui una accoglie il trasformatore da 0,8kV/66kV, da cui parte il cavo dinamico che collega la struttura esagonale alla successiva, mentre le restanti 95 ospitano i pannelli fotovoltaici bifacciali.

La disposizione scelta permette il collegamento in serie degli impianti; in particolare, si prevede di disporre le 13 strutture esagonali su due linee parallele, una da 6 strutture e l'altra da 7. Le due linee parallele sono connesse alla sottostazione di Romagna 1 da due cavi dinamici da 66 kV posati sul fondale, con sezioni che variano da 240-630 mm2, in quanto la potenza massima trasportata è pari a 54 MW su una linea e 46 MW sull'altra. Per informazioni più dettagliate si rimanda all'elaborato con codice AGNROM_EP-R_REL-OFPV.

Figura 11: Layout dell'impianto fotovoltaico galleggiante considerando la tecnologia a struttura rigida

3.1.1 Pannelli fotovoltaici

I pannelli fotovoltaici sono bifacciali in silicio monocristallino, con dimensioni di 2384x1303x35 mm. I moduli fotovoltaici scelti hanno potenza nominale frontale di 660 Watt, con rapporto di bifaccialità pari a 0.7. La disposizione dei pannelli solari segue la direzione est-ovest, con un angolo di inclinazione di dieci gradi: con questo layout i moduli non risentono dell'effetto di ombreggiamento dei pannelli solari adiacenti. L'angolo di inclinazione di dieci gradi consente, inoltre, ai pannelli solari di auto pulirsi in caso di pioggia.

PARAMETRI	VALORI
Potenza nominale	660 W
Potenza nominale posteriore	462 W
Tensione nominale a STC	38.09 V
Corrente nominale a STC	12.14 A
Tensione a vuoto	45.88 V
Corrente di cortocircuito	12.89 A
Efficienza del modulo	21.2%
Temperatura nominale operativa del modulo	43 <u>+</u> 2°C
Tensione massima	1500 V _{DC}
Numero di diodi	3

Tabella 24: Caratteristiche	e del	pannello	fotovoltaico
-----------------------------	-------	----------	--------------

3.1.2 Inverter

La funzione degli *inverter* è trasformare la corrente, prodotta dai moduli fotovoltaici, da continua in alternata. La stringa DC dei pannelli solari è di 1000 V o 1500 V in funzione del tipo di inverter: nel caso in esame, si è adottato l'inverter con stringhe da 1500 V, per ridurre le perdite di stringa e realizzare al contempo stringhe più grandi. Inoltre, gli inverter selezionati hanno una tensione di uscita di 800 V: l'elevata tensione di uscita dell'inverter in AC consente l'ottimizzazione del cablaggio di ciascun sottocampo, riducendo le sezioni dei cavi e le perdite. Ogni piattaforma è sufficientemente grande da coprire più stringhe. Gli inverter utilizzati sono inverter ad alta potenza da 200 kW, con 18 ingressi e 9 MPPT. Gli inverter di stringa, così come tutta la componentistica elettrica, sono supportati da un telaio collegato alla struttura dei pannelli fotovoltaici e sono coperti dalla luce solare diretta.

3.1.3 Schema unifilare

Per lo schema elettrico unifilare, si prega di far riferimento a AGNROM_EP-D_UNIF-OFPV-A1.

3.2 Dati climatici e valori dipendenti dalla località

I dati climatici presenti nel database di Solargis sono derivati da quattro modelli meteorologici numerici:

- ERA5, la quinta generazione di rianalisi atmosferiche ECMWF del clima globale;
- Sistema di previsione climatica (CFSv2);
- Sistema di previsione globale (GFSprod);
- GPCC Climatologia globale delle precipitazioni versione 2018.

I principali elementi identificativi dell'area utilizzati come input sono elencati di seguito:

- Latitudine 44°22'09" e Longitudine 12° 44' 01" (centro dell'impianto)
- Fuso orario: UTC+01, Europe/Rome [CET], Ora legale non considerata;
- Elevazione: -34m;
- Coperture del suolo: Bacini idrici;
- Azimut del terreno: piana;
- Pendenza del terreno: 0°.

Il software Solargis restituisce i valori climatici della località, in particolare la temperatura dell'aria, la velocità del vento, l'umidità relativa e le precipitazioni.

Relazione di producibilità dell'hub energetico

AGNROM_EP-R_REL-PRODUZIONE

Figura 12: Dati climatici risultanti dall'interrogazione di SolarGIS

I valori medi annui riportati in figura sono:

- 3. Temperatura media dell'aria annua: 16°C;
- 4. Velocità media del vento annua (10 metri s.l.m.): 4.6 *m/s*;
- 5. Umidità relativa media annua: 75%;
- 6. Precipitazioni globali annue: 691 mm.

3.2.1. Radiazione solare

Per i dati storici e recenti, Solargis utilizza un modello semi-empirico di radiazione solare: i dati provenienti dai satelliti sono rielaborati tramite algoritmi per l'identificazione delle proprietà delle nuvole. Vengono, inoltre, considerati la maggior parte dei processi fisici di attenuazione atmosferica della radiazione solare e vengono utilizzati anche alcuni parametri fisici in ingresso; pertanto, questo approccio è in grado di riprodurre situazioni reali. Per i dati di forecasting, invece, sono utilizzati gli output dei modelli meteorologici numerici operativi definiti precedentemente. Nella fase di post-elaborazione, le informazioni calcolate operativamente dal modello satellitare vengono utilizzate per migliorare dinamicamente l'accuratezza della previsione. Il recupero della radiazione solare nel modello Solargis satellite-irradianza è fondamentalmente suddiviso in quattro fasi:

- 1. l'irradianza a cielo sereno (l'irradianza che raggiunge il suolo con l'ipotesi di assenza di nuvole) viene calcolata utilizzando il modello a cielo sereno;
- 2. I dati satellitari (informazioni provenienti da diversi satelliti geostazionari) vengono utilizzati per quantificare l'effetto di attenuazione delle nuvole mediante il calcolo dell'indice di nuvolosità;
- 3. l'irradianza del cielo limpido viene accoppiata con l'indice delle nubi per recuperare l'irradianza di tutto il cielo. Il risultato della procedura è l'irradianza orizzontale diretta normale e globale;
- 4. la normale diretta e l'irradianza orizzontale globale vengono utilizzate per calcolare l'irradianza diffusa e l'irradianza globale inclinata (irradianza nel piano dell'array, su superfici inclinate o di

tracciamento) e/o l'irradianza corretta per gli effetti di ombreggiatura del terreno o degli oggetti circostanti.

Figura 13: Procedura per il calcolo dell'irradianza

I valori ottenuti per l'area di interesse sono:

- Radiazione orizzontale globale media annua GHI: 1465.4 kWh/m^2 ;
- Radiazione normale diretta globale media annua DNI: 1480.3 kWh/m^2 ;
- Radiazione orizzontale diffusa globale media annua DIF: 594.0 kWh/m^2 .

Relazione di producibilità dell'hub energetico

AGNROM_EP-R_REL-PRODUZIONE

Figura 14: Valori risultanti di radiazione solare da SolarGIS per la località del Progetto

3.2.2. Albedo

L'albedo è il coefficiente di riflessione delle superfici e assume valori compresi tra 0 e 1: più la superficie assume un valore elevato, più la radiazione solare riflessa è intensa. Il coefficiente di albedo è, pertanto, un parametro significativo per stimare l'aumento di efficienza dei moduli bifacciali rispetto ai pannelli mono facciali. Tale coefficiente è, però, fortemente influenzato dalle condizioni climatiche: per stimare il coefficiente di albedo è necessario determinare un valore medio, rappresentativo della superficie considerata durante le diverse ore del giorno e i diversi periodi dell'anno.

Figura 15: Coefficiente d'albedo

Generalmente, per uno studio onshore, il software PVsyst assegna un valore costante e pari a 0.2, riferito ad un terreno ricoperto da erba. Per le condizioni offshore tale valore è influenzato non soltanto dalla diversa ora del giorno e dell'anno, ma anche dal movimento costante del mare: come riportato da (Bell David Du Hong, 2021), durante le ore in cui il sole è massimo e dove la radiazione solare è perpendicolare al pelo libero dell'acqua, il coefficiente di albedo assume un valore pari a 0.05. Durante le ore di scarsa radiazione, con angolo incidente piccolo, il coefficiente di albedo si ipotizza assumere un valore pari a 0.4. Dal momento che su PVsyst è necessario inserire un valore costante, si considera il valore medio pari a 0.225.

3.2.3. Orizzonte

L'orizzonte è inteso come la serie di ombre causate dalla presenza di un ostacolo a significativa distanza rispetto la direzione d'irraggiamento. In Pvsyst è stato inserito, pertanto, il file estratto da Solargis dell'orizzonte (mostrato in figura); come è possibile osservare nella figura sotto riportata, essendo il progetto situato in mare aperto, non vi sono ostacoli naturali-artificiali, come la presenza di sistemi montuosi o edili, che creino ombreggiamento alla struttura esagonale.

Figura 16: Modello dell'orizzonte estratto da SolarGIS

3.3 Calcolo della producibilità

Come descritto precedentemente, il calcolo della producibilità su PVsyst è stato eseguito inserendo in input i parametri di progetto e i parametri di aumento/riduzione per le condizioni offshore.

3.3.1. Parametri di progetto

I parametri di progetto per l'analisi di producibilità sono tutti i dati di input dipendenti dalla tecnologia adottata e comprendono:

- Inclinazione e orientamento PV;
- Definizione delle stringhe e inverter;
- Ombreggiamento.

3.3.1.1 Inclinazione e orientamento PV

Nella tecnologia di Solar Duck, l'orientamento dei pannelli è di tipo est-ovest, con inclinazione dei pannelli solari di 10° (come in Figura 17). In Pvsyst vengono, pertanto, inserite tali informazioni, considerando che il pannello rivolto verso est ha azimut pari a -90°, mentre il pannello rivolto verso ovest ha azimut pari a 90°.

Figura 17: Orientamento e inclinazione dei pannelli

3.3.1.2 Definizione delle stringhe e inverter

La configurazione inserita su PVsyst per le stringhe e inverter è in accordo con lo schema unifilare della struttura esagonale da 7.7 MW e comprende 38 inverter. Per maggiori informazioni si rimanda all'elaborato AGNROM_EP-D_UNIF-OFPV-A1.

3.3.1.3 Ombreggiamento

L'ombreggiamento rappresenta la possibile presenza di ostruzioni alla luce incidente sul modulo a breve distanza. Per il calcolo dell'ombreggiamento, PVsyst richiede l'inserimento della scena 3D del progetto, ossia in questo caso della struttura esagonale da 7.7 MW. Come è apprezzabile nella figura successiva, una delle

piattaforme triangolari non presenta pannelli fotovoltaici: questo perché la piattaforma ospiterà la cabina di trasformazione 0.8/66kV.

Figura 18: Scena 3d per il calcolo dell'ombreggiamento

3.3.2. Parametri di adeguamento della producibilità per impianti ubicati offshore

Al fine di considerare le differenti condizioni tra un impianto onshore e offshore, è necessario modificare il valore di alcuni parametri in PVsyst, poiché come già specificato in precedenza i principali software di calcolo sono progettati per impianti solari ubicati unicamente a terra. È comunque necessario precisare che alcune variabili non possono essere direttamente implementate nel software, come ad esempio il moto ondulatorio del mare e l'incremento di producibilità dei pannelli bifacciali con configurazione est-ovest. I parametri considerati per l'analisi sono mostrati nella tabella:

Parametri di aumento/riduzione della producibilità	Valori
Fattore di sporcamento	5%
Mismatch	4%
Aumento di producibilità con sistema bifacciale	4%
Coefficiente di dispersione termica	$40 W/_{m^2K}$
Albedo	0.22

Tabella 25: Parametri di adeguamento alle condizioni offshore utilizzati

3.3.2.1 Coefficiente di dispersione termica

Il coefficiente di dispersione termica U è un parametro che indica la capacità del calore di attraversare e uscire dal pannello fotovoltaico. Il coefficiente U è, pertanto, correlato con la temperatura operativa del modulo: per le celle in silicio cristallino, l'aumento di efficienza della cella è di circa lo 0.4-0.5% per ogni

diminuzione di 1°C della temperatura operativa della cella stessa (Dubey S, 2013). La determinazione del valore del coefficiente U ha un peso significativo sulla producibilità dell'impianto fotovoltaico, in quanto influenza la temperatura operativa della cella e, quindi, l'efficienza. Per descrivere il legame tra le relazioni, si fa riferimento al bilancio termico stazionario per un pannello fotovoltaico:

$$(\tau \alpha - \eta_c)G_T = U(T_c - T_a)$$

- τα è il rapporto tra la trasmittanza del vetro del modulo (τ) e l'assorbimento solare (α). Tale valore solitamente è assunto pari a 0.9;
- η_c è l'efficienza elettrica del modulo fotovoltaico;
- *G_T* è l'irraggiamento solare incidente sulla superficie del modulo;
- *T_c* è la temperatura operativa della cella;
- *T_a* è la temperatura ambiente;
- U è il coefficiente di dispersione termica. Esso è composto da due termini ($U = U_0 + U_V$): il primo termine è costante, mentre il secondo termine è dipendente dalla velocità del vento.

Per il calcolo del coefficiente U, però, è possibile considerare soltanto il termine costante, purché esso descriva correttamente il bilancio termico. Nonostante la stima del coefficiente di dispersione termica per via analitica fornisca un valore accurato, la determinazione dei parametri presenti nel bilancio energetico non sono facilmente definibili, soprattutto la temperatura operativa. L'approccio condotto per questa analisi consiste nel rielaborare i risultati ottenuti dallo studio effettuato dal Dipartimento di elaborazione computazionale dei materiali, Istituto per la tecnologia energetica, Kjeller, Norvegia (Dag Lindholm, 2021); in particolare, lo studio ha permesso di relazionare il coefficiente di dispersione termica, la temperatura media dell'acqua e la velocità media del vento, considerando una temperatura media dell'aria pari a $T_a = 20^{\circ}C$.

Figura 19: Valore di U in funzione della temperatura dell'acqua e della velocità del vento. Temperatura costante dell'aria pari a 20°C. Aria = raffreddamento ad aria sul fronte e sul retro (in blu). Acqua = raffreddamento ad acqua sul retro, raffreddamento ad ari

Considerando la velocità del vento nel sito di Romagna 1 pari a 4.6 m/s e la temperatura media dell'acqua di circa 20°C, con raffreddamento aria-aria, il valore ottenuto di U dal grafico è pari a 47 W/m^2K . Il valore ricavato non risulta sovrastimato, considerando che la temperatura media dell'aria nell'area di Romagna 1 è di $T_a = 16°C$. Il valore del coefficiente di rimozione termica, però, non considera l'orientamento Est-Ovest dei pannelli: questa configurazione, infatti, consente di risparmiare superficie e di ridurre il carico del vento, ma allo stesso tempo ostacola la ventilazione dell'aria (Haohui Liu, 2018). Per tener conto della riduzione del coefficiente di di u per differenti sistemi di OFPV installati nelle Maldive; in particolare, nello studio sono state considerate le seguenti tecnologie:

- 1. "*free standing*", con moduli rialzati rispetto alla superficie dell'acqua (come la tecnologia adottata per il nostro studio di producibilità, ma con pannelli senza inclinazione est-ovest);
- 2. "ingombro ridotto", con moduli montati vicino alla superficie dell'acqua e un grado di copertura della superficie dell'acqua relativamente ridotto;
- 3. "grande impronta" simile all'1, ma con una maggiore copertura della superficie d'acqua;
- 4. "isolato", in cui la struttura galleggiante ha una grande impronta d'acqua, identica alla tecnologia 3, ma i moduli sono montati in un design compatto a due falde (una fila orientata a est e una fila orientata a ovest).

I test effettuati in loco hanno permesso di determinare i valori di U per le differenti tecnologie, rappresentate tramite blox plot:

Figura 20: Boxplot valori di U con mediana

Il grafico è utile per confrontare i layout 3 e 4, che presentano lo stesso design, ma con inclinazioni diverse dei pannelli; questo permette di valutare la quota di U che è funzione dell'orientamento dei moduli. Essendo il valore medio di U per il layout 3 pari a 30 $W/_{m^2K}$ e il valore medio di U del layout 4 pari a circa 23 $W/_{m^2K}$, si può concludere che l'orientamento est-ovest porta ad una riduzione del coefficiente di dispersione termica

pari a 7 $W/_{m^2K}$. Il valore scelto per questa analisi, considerando l'orientamento est-ovest, diventa pari a 40 $W/_{m^2K}$. Per convalidare il risultato ottenuto, il valore di T_{NOCT} (temperatura nominale operativa della cella) calcolato da PVsyst con $U = 40 W/_{m^2K}$, risulta pari a 38°C, in accordo con il grafico (Dag Lindholm, 2021) sotto riportato, che mette in relazione la temperatura della cella, la temperatura media dell'aria e la temperatura media dell'acqua.

Figura 21: A sinistra: Temperatura della cella in funzione della velocità media del vento e della temperatura dell'acqua, considerando Ta=20°C. A destra: Valore di T_NOCT calcolato da PVsyst con U=40 W/(m^2 K)

3.3.2.2 Fattore di sporcamento

I depositi lasciati da uccelli e la salinità dell'aria portano ad una riduzione dell'efficienza dei pannelli, in quanto provocano aumenti di temperatura localizzati sul modulo. La soluzione al problema è un'adeguata manutenzione e monitoraggio del sistema, con opportune attività di manutenzione ordinaria e straordinaria. È, però, necessario considerare che alcuni fattori predominanti negli impianti onshore, come le polveri e l'inquinamento, sono trascurabili nei sistemi offshore; inoltre, l'inclinazione di 10° dei pannelli garantisce un'azione autopulente. Per questi motivi, si è assunto un fattore di sporcamento pari al 5%.

Figura 22: Immagine di un deposito sulla superficie del pannello catturata con la termocamera (L.Dorobantu, 2011).

3.3.2.3 Mismatch

Le perdite di Mismatch si verificano a causa delle disuniformità delle prestazioni elettriche dei moduli che compongono ogni stringa fotovoltaica; in particolare, il moto ondoso e il continuo ondeggiamento delle piattaforme triangolari provoca una variazione dell'angolo della radiazione incidente tra i pannelli di una stringa, con conseguente diminuzione della producibilità. La tecnologia di Solar Duck considera un sistema multi-inverter, cioè i sottocampi sono ripartiti secondo gruppi di stringhe, ciascuno dotato di un proprio inverter: questa configurazione permette di gestire in maniera più efficiente le disuniformità di radiazione incidente sulle celle connesse. Dai risultati ottenuti (Maarten Dörenkämper, 2019), il range di perdite per mismatch legato ai movimenti indotti dalle onde è compreso tra il 3% e il 9%, a seconda dell'altezza media d'onda. Nel mar Adriatico, il valore medio d'onda è compreso tra 0.5-1 m (Andrea Farkas, 2016), il che porta ad un valore, secondo lo studio sopra citato (Maarten Dörenkämper, 2019), pari al 7% di perdite per mismatch. I valori forniti dallo studio, però, si riferiscono alla tecnologia a membrana, come quella adottata da Ocean Sun: la tecnologia di Solar Duck è sopraelevata a circa 10 m di altezza rispetto alla superficie del mare; questo diminuisce molto le oscillazioni della struttura, soprattutto per la maggioranza delle onde a bassa forza d'urto. Il valore, pertanto, delle perdite di mismatch è assunto pari al 4%.

3.3.2.4 Bifaccialità

I moduli fotovoltaici scelti sono bifacciali a doppio vetro con potenza nominale frontale di 660 W e potenza nominale della faccia posteriore pari a 462 W, con rapporto di bifaccialità di 0.7. La scelta di montare pannelli con sistema bifacciale consiste principalmente in una maggior resistenza del pannello alle condizioni di salinità ed alta umidità dell'area rispetto ad un pannello mono facciale. Avere il pannello vetro-vetro, infatti, diminuisce il degrado del pannello e aumenta, quindi, la vita utile del modulo. L'aumento di producibilità con il sistema bifacciale è esiguo, poiché il coefficiente di albedo assume valori molto bassi nel mare; inoltre, la struttura esagonale da 7.7 MW ha una superficie molto estesa e questo riduce la radiazione riflessa soltanto alle piattaforme triangolari esterne. Per stimare la percentuale di aumento di producibilità legato al pannello bifacciale, si sono simulati con PVsyst due sistemi analoghi, in cui nel primo si considera il pannello mono facciale, mentre nel secondo si considera il modello bifacciale, confrontando i risultati ottenuti per ottenere una percentuale di incremento di producibilità. Tale analisi è stata condotta poiché PVsyst non integra il calcolo del modello bifacciale per sistemi complessi con orientamenti differenti est-ovest: si è, perciò, ipotizzato un unico orientamento mantenendo, però, la stessa struttura esagonale. Il risultato ottenuto evidenzia un incremento del 4% rispetto a sistemi mono facciali. Da letteratura, l'aumento stimato dei pannelli bifacciali varia tra il 2.8% e l'11.9% (Ahmed Hasan, 2020): considerando la complessità e l'estensione della struttura di Solar Duck, il valore ottenuto rientra nel range ed è considerabile, pertanto, realistico.

Figura 23: Radiazione solare diretta e riflessa

3.4 Risultati della simulazione con PVsyst e riepilogo dei risultati

3.4.1 Produzione lorda di energia

La simulazione su PVsyst condotta, secondo i parametri e assunzioni discusse precedentemente, fornisce i seguenti risultati relativi ad una struttura esagonale da 7,7 MWp:

- Energia lorda prodotta: 9,27 *GWh/year*;
- Produzione specifica lorda (ore equivalenti): 1202 kWh/kWp/year;
- Rendimento lordo impianto fotovoltaico (PR): 82,47%.

Performance Ratio PR

Normalized productions (per installed kWp)

Relazione di producibilità dell'hub energetico

AGNROM_EP-R_REL-PRODUZIONE

Figura 24: Report dei risultati di calcolo del software PVsyst

In Appendice A è presente il report esportato dall'applicativo PVsyst.

Il valore ottenuto dalla simulazione dell'energia totale prodotta annua e la produzione specifica della struttura esagonale non comprende l'incremento di producibilità legato ai pannelli bifacciali. Il valore della produzione specifica con incremento del 4% dovuto ai pannelli bifacciali è di 9.65 *GWh/year* che equivale 1251 *kWh/kWp/year*.

Considerato il numero delle strutture galleggianti esagonali pari a 13, la produzione lorda totale dell'impianto fotovoltaico galleggiante è di 125,47 GWh/year.

3.4.2 Perdite di trasmissione e trasformazione

Le perdite di trasformazione e trasmissione considerate per il calcolo della producibilità sono riassunte nella seguente tabella, in linea con quanto descritto nella sezione 2.4 per le perdite elettriche e il consumo parassita dell'impianto.

Componente dell'impianto	Valore
Trasformatore 0.8/66 kV	1%
Trasformatore 66/220 kV 1%	
Trasformatore 220/380 kV	1%
Cavi Inter-Array 66 kV	0,10%
Cavi Export 220 kV	0,75%
Cavi Export 380 kV	0,40%

Tabella 26: Perdite assunte per il calcolo della producibilità

Le perdite di trasformazione e trasformazione assunte sono circa il 4,25% dell'energia lorda prodotta, cioè equivalgono a 5,33 *GWh/year*.

3.4.3 Produzione netta di energia

La produzione netta di energia è calcolata con la differenza fra la produzione lorda e le perdite di trasmissione e trasformazione.

Viene intesa quindi come l'immissione totale di energia (calcolata in GWh o MWh) nel punto di connessione alla RTN (Stazione Terna "La Canala") dopo 12 mesi dalla data di messa in esercizio dell'impianto fotovoltaico galleggiante da 100 MWp, al netto delle perdite totali d'impianto.

I dati conclusivi di produzione netta sono riportati in tabella sottostante per chiarezza:

Tabella 27: Produzione netta di energia dell'impianto fotovoltaico galleggiante al primo anno di esercizio

PARAMETRO	VALORE
Produzione netta di energia	120,13 GWh/year
Fattore di capacità netto	13,70%
Ore equivalenti nette	1201 h

4. STIMA DELLA PRODUZIONE E STOCCAGGIO DI IDROGENO VERDE

4.1 Tecnologia e layout

L'impianto di Power-to-Hydrogen è situato all'interno dell'area Agnes Ravenna. L'impianto condivide la stessa area di circa 10 ettari con la sottostazione elettrica a terra e con l'impianto BESS (Battery Elettrochemical Storage System), il sistema di batterie che regola ed ottimizza il flusso di elettricità in rete. L'ubicazione dell'area su ortofoto è mostrata in Figura 25.

Figura 25: L'area Agnes Ravenna Porto, raffigurata in giallo, ubicata tra la Pialassa dei Piomboni e Via Trieste

Il sistema di produzione e stoccaggio di idrogeno verde occupa un'area complessiva di circa 4 ha ed è situato nella parte più orientale dell'area denominata AGNES Ravenna-Porto. Gli impianti sono composti in 5 macrosistemi:

- L'elettrolizzatore, responsabile del fenomeno di elettrolisi all'interno delle sue celle;
- I sistemi ausiliari, che comprendono i sistemi elettrici, le tubature di collegamento e i sistemi di purificazione dei gas prodotti;
- Il sistema di compressori, per l'aumento di pressione dell'idrogeno e dell'ossigeno prodotti;
- il sistema di stoccaggio, diviso per idrogeno e ossigeno, dedito ad ospitare i gas in attesa del loro impiego.
- Le baie di carico e la stazione di rifornimento per la distribuzione dell'idrogeno e ossigeno.

Per maggior dettagli tecnici sugli impianti sopra elencati si rimanda al documento AGNROM_EP-R_REL-P2HY - "Relazione tecnica dell'impianto di produzione e stoccaggio di idrogeno verde".

Per il layout e la planimetria di dettaglio dell'impianto di produzione e stoccaggio di idrogeno si rimanda all'elaborato con codice AGNROM_EP-D_PLA-P2HY.

L'impianto di idrogeno sarà composto da 3 moduli dalla capacità nominale di 20 MW ciascuno, per una potenza totale installata di 60 MW. Gli elettrolizzatori saranno di tipologia alcalina, la tecnologia più diffusa ed affidabile al momento sul mercato per la produzione di idrogeno verde. L'idrogeno prodotto, in uscita da entrambi gli elettrolizzatori, sarà ad una pressione di 1,3 bar e verrà, poi, pressurizzato fino a 300 bar.

Il sistema di stoccaggio dell'idrogeno sarà in grado di ospitare circa 14.7 tonnellate di idrogeno in pressione. Il sistema di stoccaggio sarà composto da 14 rack composti da 24 cilindri disposti orizzontalmente, ognuno di capacità di 1 tonnellata circa. Di seguito si riportano i valori nominali del modulo di unità di elettrolisi preso in considerazione nel Progetto Definitivo e nel presente studio.

PARAMETRI	VALORI
Potenza nominale	20 MW
Tipologia elettrolizzatore	Alcalino
Efficienza della cella	66,6% to LHV _{H2}
Purezza idrogeno	>=99,90% (dry)
Pressione in uscita	1,3 bar
Tensione al trasformatore	33 kV
Tensione al modulo	400 V
Perdita di efficienza all'anno	1,1 %/a
Sostituzione del separatore	Ogni 8 anni
Range di lavoro	10-100%
Consumo di acqua per idrogeno prodotto	10 l/kg

Tabella 28: Parametri dell'elettrolizzatore

4.2 Descrizione della metodologia utilizzata

Per poter valutare la producibilità dell'idrogeno verde si è creato un modello *ad hoc*. La produzione di idrogeno verde non dipende esclusivamente dalla taglia del sistema ma è anche funzione della disponibilità elettrica, non sempre costante per via delle caratteristiche aleatorie delle tecnologie di produzione da fonti rinnovabili. Si è resa, perciò, necessaria un'analisi oraria per valutare la capacità di produzione variabile del sistema eolico e fotovoltaico.

Il modello di simulazione descrive quindi il funzionamento di un impianto Power-to-Hydrogen ora per ora, per il primo anno di funzionamento dell'hub energetico. Il modello riceve diversi input, li elabora e restituisce in output la produzione di idrogeno, le ore equivalenti di funzionamento e il capacity factor.

Il modello considerato non è predittivo, cioè non è in grado di prevedere i valori di input futuri, ma si basa unicamente sui dati storici inseriti nel modello. I valori di input per l'analisi sono: i parametri tecnici dell'elettrolizzatore, del BESS, dell'impianto di stoccaggio e degli impianti di produzione di energia. È, inoltre, importante considerare l'energia elettrica e la quantità di idrogeno residua stoccata nel BESS e nel sistema di stoccaggio dell'idrogeno, nell'intervallo precedente all'ora considerata. Il collegamento tra i sistemi è mostrato in Figura 26.

Figura 26: Connessioni dei sistemi all'interno del modello

4.2.1 Assunzioni adottate nel modello

Le assunzioni adottate nel modello sono:

- Si privilegia la produzione di idrogeno rispetto allo stoccaggio/immissione in rete dell'energia elettrica;
- Domanda fissa di idrogeno pari a 1000 kg/h.

Il modello descritto privilegia la produzione di idrogeno rispetto all'immissione di elettricità in rete. Questa assunzione può essere ritenuta valida nel presente caso, poiché per poter garantire un adeguato ritorno

economico, l'elettrolizzatore deve poter lavorare il maggior numero di ore equivalenti possibili e che quindi questa modalità di lavoro verrà applicata anche operativamente.

La domanda di idrogeno richiesta dal cliente è un fattore importante per la produzione di idrogeno. Per questa analisi si è deciso arbitrariamente di fissare la richiesta di H2 a 1.000 kg/h, numero ritenuto ragionevole a fronte delle notevoli applicazioni industriali possibili nel distretto portuale di Ravenna.

La società proponente sta instaurando relazioni con aziende che operano nell'area ravennate, al fine di assicurare lo sbocco commerciale per l'idrogeno prodotto. In questa fase si sono delineati e discussi con le aziende interessate almeno tre possibili soluzioni di utilizzo dell'idrogeno:

- 1. Miscelazione nella rete metano gestita da SNAM, in considerazione anche della grande vicinanza (circa 800 metri) del nuovo gasdotto previsto dal progetto FRSU (rigassificatore).
- 2. Rifornimento di 10-14 autobus ad idrogeno di Start Romagna, la compagnia responsabile del trasporto pubblico locale.
- 3. Distribuzione all'industria pesante ed ai settori *hard-to-abate*, con interlocuzioni avviate ad esempio con la società Alma Petroli.

A queste opzioni si aggiungono le importanti possibilità commerciali dettate dalla presenza del porto di Ravenna. Resta inteso che le opzioni sopra elencate non sono da considerarsi mutualmente esclusive.

4.2.2 Step metodologici del modello

Figura 27: Diagramma di flusso del modello

L'analisi, come detto, viene eseguita su scala oraria: l'energia elettrica disponibile per la produzione di idrogeno nell'ora considerata, è il risultato della somma dell'elettricità prodotta dagli impianti eolici e fotovoltaici presentati nei capitoli 2 e 3 e dell'elettricità massima erogabile dal BESS, a seconda del suo stato di carica nell'ora precedente. Il valore di energia elettrica ottenuto permette di determinare se l'elettricità disponibile è sufficiente per alimentare l'elettrolizzatore. In caso affermativo, è inoltre necessario considerare se l'assorbimento di energia elettrica da parte dei sistemi ausiliari garantisca una disponibilità di

energia elettrica residua sufficiente per il funzionamento dell'impianto ad idrogeno. Per fare ciò, si sommano i consumi dei sistemi ausiliari con l'assorbimento minimo di elettricità degli elettrolizzatori consentito prima del valore di *turndown* di funzionamento; se il consumo ottenuto è superiore dell'elettricità disponibile, l'impianto di idrogeno si spegne e l'energia elettrica viene accumulata nel BESS, altrimenti si può procedere con la valutazione dello scenario produttivo di idrogeno.

Il modello valuta quanto idrogeno viene prodotto dagli elettrolizzatori in base al carico di funzionamento stimato per quell'ora. A seconda del carico degli elettrolizzatori, l'efficienza di produzione di idrogeno varia. L'idrogeno prodotto viene sommato all'idrogeno già disponibile nel sistema di stoccaggio (dell'intervallo precedente) e la quantità risultante è poi utilizzata per soddisfare, in tutto o in parte, la richiesta oraria di idrogeno da parte del cliente; se è presente dell'idrogeno in eccesso rispetto alla domanda oraria, questo viene considerato come la nuova quantità presente all'interno dello stoccaggio di idrogeno per l'intervallo successivo. La portata nominale di produzione di idrogeno dell'impianto è pari a 1200 kg/h, maggiore rispetto alla richiesta ipotizzata di 1000 kg/h. Nel caso in cui lo stoccaggio dell'idrogeno fosse completo, l'elettricità in eccesso ha due possibili destinazioni: la prima è quella di alimentare il BESS, fino al limite della sua capacità. Durante questo passaggio, vengono valutate le perdite di elettricità verificatesi all'interno del BESS. Se dopo il processo di carica del BESS è ancora presente dell'elettricità in eccesso, questa viene indirizzata alla rete nazionale e venduta sul mercato dell'elettricità. Resta inteso che l'effettiva produzione di idrogeno, una volta raggiunta la fase di esercizio, sarà gestita in linea con quelle che sono le richieste di mercato e dei clienti finali, pertanto i risultati esposti nei successivi capitoli sono da ritenersi indicativi e teorici.

4.3 Descrizione dei dati di input

4.3.1 Dati di produzione

I dati riguardanti la produzione elettrica sono già stati presentati e discussi ampiamente nei capitoli precedenti.

Per la produzione di energia elettrica da fonte eolica, si è utilizzato il dataset risultante dall'analisi svolta nel capitolo 2. In particolare, sono stati presi in considerazione i due scenari (con dataset AWS e ERA5) per la turbina ipotetica da 8 MW da 260 metri.

Per la produzione di elettricità da fonte solare, sono inseriti in input al modello i risultati ottenuti dall'analisi svolta nel capitolo 3.

Nel seguente paragrafo si discute inoltre la scelta di valutare la produzione di idrogeno su scala oraria.

La produzione elettrica prodotta non è costante durante tutto l'anno. Nell'hub energetico Agnes Romagna 1&2, la stagionalità delle due tecnologie è bilanciata dalla loro complementarità: la produzione elettrica solare è maggiore durante i mesi estivi e minore durante i mesi invernali, come osservato nel paragrafo 3.4.1, mentre l'impianto eolico ha una producibilità maggiore nei mesi freddi; nonostante ciò, la differenza di taglia e di ore equivalenti delle due tecnologie nel progetto riducono tale beneficio, con una riduzione di produzione media di energia elettrica nei periodi estivi, come visibile in Figura 28.

HUB ENERGETICO AGNES ROMAGNA 1&2 PROGETTO DEFINITIVO E STUDIO DI IMPATTO AMBIENTALE

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

Figura 28: Produzione media mensile dei due impianti di generazione dell'hub

La produzione di energia elettrica è, inoltre, soggetta a variabilità anche su scala giornaliera: in Figura 29 e Figura 30 è mostrato l'andamento della produzione elettrica per due settimane tipo, una estiva ed una invernale per le due tecnologie. Le settimane tipo selezionate hanno valori di radiazione globale incidente e velocità del vento che ben rappresentano le differenti caratteristiche climatiche tipiche delle due stagioni. Le stagioni scelte sono quelle di massima produzione di energia elettrica delle due tecnologie, rispettivamente la settimana estiva per il solare e la settimana invernale per l'eolico. L'impianto fotovoltaico, come visibile in Figura 29, ha una produzione che segue il ciclo del giorno e della notte, con ore di mancata produzione notturna e una produzione diurna proporzionale alla radiazione incidente sui pannelli. La produzione eolica è invece meno prevedibile, sia in estate che in inverno, come raffigurato in Figura 30.

Figura 29: Produzione dall'impianto fotovoltaico nel corso di una settimana tipo

Figura 30: Produzione dagli impianti eolici nel corso di una settimana tipo

L'alta aleatorietà dei due sistemi incide direttamente sulla produzione di idrogeno verde; pertanto, lo studio di producibilità per l'impianto di produzione dell'idrogeno è eseguito su scala orario.

4.3.2 Dati dell'elettrolizzatore

I dati tecnici degli elettrolizzatori utilizzati per la simulazione si riferiscono ai moduli che verranno impiegati nel sistema. L'impianto sarà composto da 3 moduli di potenza nominale di 20 MW ciascuno, per una potenza complessiva di 60 MW. La tecnologia degli elettrolizzatori sarà quella alcalina, la più affidabile e consolidata nel mercato. La portata nominale di idrogeno prodotto dell'impianto è, come detto, di 1200 kg/h.

Figura 31: Modulo di elettrolizzatore (rendering)

I parametri tecnici degli elettrolizzatori utilizzati ai fini della relazione di producibilità sono riportati in Tabella 29.

Tabella 29: Dati dell'impianto di produzion	e H2	utilizzati nel modello
---	------	------------------------

PARAMETRI	VALORI
Potenza nominale del modulo	20 MW
Numero di moduli	3
Potenza totale installata	60 MW
Perdite legate agli ausiliari	7,5% della potenza istantanea
Potenza di turndown	12 MW
Ore di fermo successive ad un'interruzione	3 h

La Tabella 30 evidenzia la relazione tra il consumo elettrico specifico e il carico percentuale di funzionamento degli elettrolizzatori. Come si può osservare, il consumo elettrico specifico aumenta all'aumentare del carico parziale di funzionamento.

Partial load	Specific electric consumption [kWh/kg]	
100%	51.7	
90%	50.7	
80%	49.7	
70%	48.8	
60%	48.0	
50%	47.1	
40%	46.4	
30%	48.0	
20%	46.4	
10%	-	

Tabella 30: Consumo elettrico specifico dell'elettrolizzatore

4.3.3 Dati del sistema di stoccaggio

Al fine di poter regolamentare il flusso di elettricità che alimenta l'impianto di idrogeno ed il flusso di idrogeno in uscita, sono previsti all'interno dell'hub due sistemi di stoccaggio, uno a batterie ed uno per l'idrogeno prodotto in eccesso.

Lo scopo è quello di poter soddisfare una domanda continua di 1000 kg/h, che è minore della portata in condizioni di lavoro nominale degli elettrolizzatori, pari a 1200 kg/h. Questa domanda continua simulata non può riprodurre una reale curva di consegna dell'idrogeno, per via della irregolarità e fluttuazioni all'interno dei singoli mesi/settimane/giorni. È però una stima accettabile, che può fornire un ordine di grandezza della capacità prodotta.

All'interno dei dati inseriti in input al modello è, inoltre, presente la round-trip efficiency del sistema di batterie, valore percentuale che indica la quantità di elettricità utile al sistema, al netto delle perdite interne

che si andranno a verificare e che il modello simulerà. Inoltre, si considera nel modello una capacità del BESS minore rispetto a quella nominale di progetto, per evitare di far lavorare il sistema in zone a bassa efficienza e a maggior degradazione. Verrà, pertanto, intesa come la capacità utile per la carica.

PARAMETRI	VALORI	
Capacità del BESS	150 MWh	
Potenza del BESS	50 MW	
Round-trip efficiency del BESS	85%	
Capacità massima dell'accumulo di idrogeno	16.737 kg	
Capacità iniziale simulata	8.368,5 kg	
Domanda oraria di idrogeno	1.000 kg/h	

Tabella 31: Dati di input dei sistemi di stoccaggio

4.4 Risultati della simulazione effettuata

4.4.1 Produzione di idrogeno

I risultati ottenuti dalla simulazione del modello e relativi alla produzione di idrogeno ed all'utilizzo degli elettrolizzatori per i due scenari, sono riportati in Tabella 32. I due scenari sono quelli descritti nel capitolo 2 (partendo rispettivamente dai dataset di vento ERA-5 e AWS), prendendo in considerazione l'aerogeneratore nominale di Progetto, ovvero la macchina da 8 MW e 260 metri di diametro.

PARAMETRI	SCENARIO ERA-5	SCENARIO AWS
Produzione di idrogeno [kg/a]	8.105.257	8.334.777
Produzione di idrogeno [Nm ³ /a]	90.114.699	92.666.517
Ore equivalenti per l'elettrolizzatore [h]	6892	7078
Capacity factor dell'elettrolizzatore [%]	78,68%	80,80%

Tabella 32: Produzione di idrogeno al primo dall'entrata in esercizio

Come si evince dalla Tabella 32, la produzione di idrogeno è molto simile per entrambi le casistiche analizzate. Sono superate in entrambi i casi le 8000 tonnellate annue di idrogeno verde prodotto, con *capacity factor*

degli elettrolizzatori intorno all'80%; quest'ultimo aspetto è fondamentale per poter garantire una buona distribuzione dei costi fissi e poter ottenere un costo di produzione dell'idrogeno competitivo.

In Figura 32 è possibile osservare la curva di distribuzione delle potenze di funzionamento degli elettrolizzatori nelle due simulazioni effettuate.

Figura 32: Curva di frequenze della potenza oraria dell'elettrolizzatore

4.4.2 Gestione dell'elettricità

In Figura 33 sono mostrati i dati riguardanti la distribuzione dell'elettricità prodotta e quella destinata in rete, l'energia elettrica assorbita dagli elettrolizzatori e dai componenti ausiliari del sistema di Power-to-Hydrogen, per i due scenari considerati.

Figura 33: Distribuzione dell'elettricità negli scenari ERA-5 (a sinistra) e AWS (a destra)

Si può osservare come la distribuzione di energia elettrica sia differente. Dai risultati mostrati in Tabella 32, la produzione annua di idrogeno nei due scenari è molto simile; questo significa conseguenzialmente che la quantità di elettricità consumata dagli elettrolizzatori e dai sistemi ausiliari è paragonabile. Di conseguenza, l'aumento percentuale dell'energia immessa in rete è strettamente legato alla quantità totale di elettricità prodotta. In entrambi i casi, l'elettricità immessa in rete è sempre superiore al 70%, garantendo un'immissione adeguata.

4.4.3 Soddisfazione della domanda e continuità

L'obbiettivo principale per la produzione di idrogeno è di garantire maggiore continuità possibile di funzionamento degli elettrolizzatori. Per via della natura delle fonti energetiche, non sempre questo è possibile, nonostante l'utilizzo di diversi sistemi di stoccaggio. La Tabella 33 mostra i diversi indici riguardanti la soddisfazione della domanda teorica prevista e sui periodi di disservizio.

PARAMETRI	SCENARIO ERA-5	SCENARIO AWS
Domanda soddisfatta rispetto alla richiesta totale [%]	92,46%	95,05%
Ore di domanda interamente soddisfatta [%]	88,81%	92,33%
Ore di domanda interamente soddisfatta [h/h]	7780/8760	8088/8760
Massime ore consecutive senza consegna di idrogeno [h]	14	14
Massime ore consecutive senza domanda oraria	66	39
interamente soddisfatta [h]		

Tabella 33: Parametri di soddisfazione della domanda di idrogeno

Come si può osservare, in entrambi gli scenari il soddisfacimento della domanda è di circa il 90% sulla richiesta totale. I valori ottenuti sono elevati e permettono di coprire una richiesta di idrogeno per oltre 7800 ore all'anno in entrambi i casi analizzati. Tutti i risultati si riferiscono ad una richiesta di 1000 kg/h di idrogeno durante tutto l'anno. Altro risultato interessante è il massimo numero di ore consecutive di mancato servizio totale o della domanda completa. Nonostante i sistemi di accumulo, questi valori sono relativamente ridotti in funzione delle ore di funzionamento complessive dell'impianto; infatti, le ore consecutive di totale mancata consegna sono inferiori alla giornata ed i periodi di mancata consegna nominale inferiori ai 3 se non 2 giorni, in base allo scenario, in cui comunque è garantita una fornitura quantomeno parziale. Questi periodi di minor produzione possono essere fatti coincidere con periodi di manutenzione programmata in cui fermare a prescindere i macchinari.

4.4.4 Gestione sistemi di stoccaggio

La gestione dei sistemi di stoccaggio può dare anch'essa informazioni riguardo alla producibilità ottenuta, anche se indirettamente.

Il sistema di batterie ha dimostrato in quest'analisi il suo carattere di stoccaggio giornaliero o quasi, caricandosi e scaricandosi molto frequentemente per limitare al massimo le fluttuazioni interne al sistema. I dati relativi al suo comportamento sono presenti in Tabella 34 e in Figura 34.

PARAMETRI	SCENARIO ERA-5	SCENARIO AWS
Elettricità fluita nel sistema di batterie [MWh]	41.654	42.440
Elettricità persa nel sistema di batterie [MWh]	6.248	6.366
Cicli equivalenti effettuati [-]	235	240

Tabella 34: Proprietà del sistema di batterie

Figura 34: Distribuzione della frequenza del SoC delle batterie

Il sistema di stoccaggio fisico dell'idrogeno, invece, ha meno fluttuazioni durante l'anno, avendo dei flussi meno intensi e più regolari che gli permettono di lavorare invece su periodi più lunghi. I dati relativi al suo comportamento sono nella seguente tabella e nel seguente grafico.

Tabella 35:	Proprietà	del sistema	di stoccaggio	di idrogeno
-------------	-----------	-------------	---------------	-------------

PARAMETRI	SCENARIO ERA-5	SCENARIO AWS
Idrogeno fluito all'interno del sistema [Nm ³]	9.869.834	9.995.720
Cicli equivalenti effettuati [-]	53	54

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

Figura 35: Distribuzione della frequenza del livello di riempimento dello storage di idrogeno

In questo caso, seppure la quantità di idrogeno nello stoccaggio sia simile per i due scenari, i grafici della distribuzione delle frequenze mostrano una diversificazione di stoccaggio: nello scenario con dati AWS il sistema di stoccaggio ha una distribuzione più uniforme nei livelli di riempimento rispetto ad ERA-5, riuscendo a rimanere anche per lunghi periodi a disponibilità piena.

5. CONCLUSIONI

Questa relazione ha permesso al lettore di consultare in un unico documento i livelli di produzione attesi dalle varie componenti dell'hub energetico Agnes dopo il primo anno dalla data di entrata in esercizio.

Per la componente eolica, si è stimato un range di producibilità partendo da due dataset che forniscono un profilo anemologico diverso, per tre aerogeneratori: un aerogeneratore nominale di progetto e due aerogeneratori di noti produttori nel mercato internazionale. Tale scelta è stata effettuata poiché l'aerogeneratore considerato in Progetto ha valori ipotetici e perciò si è voluto ancorare i risultati della produzione ad aerogeneratori che presentano caratteristiche assimilabili.

Per la componente solare, si è utilizzato il software di riferimento del settore (PVsyst), compiendo alcune assunzioni giustificate per adattare i risultati alla peculiarità della tipologia di impianto, ovvero sia galleggiante che offshore.

Infine, per la componente di produzione e stoccaggio di idrogeno, si è creato un modello *ex novo*, seguendo le principali indicazioni da letteratura.

Nella tabella seguente si propone un riassunto dei risultati principali.

Componente	Unità di misura	Best scenario (AWS)	Worst scenario (ERA-5)
Impianti aglici	GWh/anno	2.049	1.478
	hh	3.414	2.463
	GWh/anno	120	120
implanto fotovoltarco galleggiante	hh	1.201	1.201
Produzione di elettricità complessiva	GWh/anno	2.169	1.598
	ton/anno	8.335	8.105
Impianto di produzione idrogeno verde	nm3/anno	92.666.517	90.114.699
	hh	6.832	7.078

Tabella 36: Riepilogo dei risultati di produzione dell'hub energetico ad un anno dalla entrata in esercizio

Di seguito, si propongono alcune osservazioni in merito ai risultati ottenuti:

- La relazione è da intendersi come idonea per l'attuale fase di progettazione, essendo in grado di indicare con buona confidenza un range di producibilità attendibile sul quale è possibile compiere valutazioni di natura tecnica, strategica, ecc.; tuttavia, la relazione sarà soggetta nel futuro a miglioramenti, man mano che gli impianti entreranno in fase di progettazione esecutiva.
- 2. In merito al punto 1, il range di producibilità calcolato per la componente eolica verrà ristretto grazie alla campagna di misurazione in sito avviata a maggio 2022 a seguito dell'installazione di due lidar device in prossimità dei parchi Romagna 1 e 2. Al termine di un periodo di 12 mesi di misurazione verrà realizzato un *energy production assesment report* da parte del fornitore DNV.

- 3. La tecnologia di fotovoltaico galleggiante qui presentata è quella relativa a strutture galleggianti sopraelevate rispetto al livello del mare. Nel Progetto Definitivo e nello Studio d'Impatto Ambientale è comunque stata presentata anche un'alternativa tecnologica, ovvero a membrana galleggiante. Si è deciso arbitrariamente di svolgere una sola analisi in quanto si ritiene che le due tecnologie, seppur diverse, abbiano livello di producibilità assimilabili.
- 4. Per l'idrogeno è stata compiuta l'assunzione di 1.000 kg/ora richiesti da un cliente tipo, poiché il profilo di richiesta è caratterizzato da una contesto in divenire del mercato dell'idrogeno, influenzato da un contesto normativo, tariffario e tecnico incerti; ad ogni modo, l'assunzione sulla domanda oraria di idrogeno si è basata su esperienze e dati che la società proponente ha raccolto negli ultimi 3 anni di progettazione, impegnata in prima linea sulla creazione di una hydrogen valley a Ravenna con altre aziende locali. È lecito quindi aspettarsi un cambiamento a livello impiantistico man mano che verranno declinate le scelte commerciali, avendo queste anche un impatto sulla produzione attesa di idrogeno.

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

BIBLIOGRAFIA

- Bell David Du Hong, H. T. (2021). Improving Efficiency in Power Production and Transmission for Offshore Solar Farms using Bifacial Panel Design and HVDC. Pomona: Department of Electrical and Computer Engineering.
- *Dubey S, S. J. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world— a review. Energy Proc.*
- Dag Lindholm, T. K. (2021). Heat Loss Coefficients computed for floating PV modules. PROGRESS IN PHOTOVOLTAICS, 12.
- Haohui Liu, V. K. (2018). Field experience and performance analysis of floating PV technologies in the tropics. PROGRESS IN PHOTOVOLTAICS, 11.
- Maarten Dörenkämper, D. v. (2019). INFLUENCE OF WAVE INDUCED MOVEMENTS ON THE PERFORMANCE OF FLOATING PV SYSTEMS. Eindhoven: High Tech Campus.
- Andrea Farkas, J. P. (2016). Wave Statistics for the Middle Adriatic Sea. Zagabria: Università di Zagabria, Facoltà di Ingegneria Meccanica e Architettura Navale.
- Ahmed Hasan, I. D. (2020). A new performance assessment methodology of bifacial photovoltaic solar panels for offshore applications. ELSEVIER, 9.

Relazione di producibilità dell'hub energetico AGNROM_EP-R_REL-PRODUZIONE

APPENDICE A: PVSyst Simulation Report

PVsyst - Simulation report

Grid-Connected System

Project: Impianto fotovoltaico galleggiante - Romagna 1

Variant: Progetto Definitivo Tables on a building System power: 7712 kWp Mare Adriatico - Italia

> Author Qint'x srl (Italy)

Variant: Progetto Definitivo

Qint'x srl (Italy)

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

		Project s	ummary ——		
Geographical S	Site	Situation		Project settings	
Mare Adriatico		Latitude	44.37 °N	Albedo	0.22
Italia		Longitude	12.73 °E		
		Altitude	-34 m		
		Time zone	UTC+1		
Meteo data					
mare Adriatico					
SolarGIS Monthly	/ aver. , period not spec S	Sintetico			
		System s	ummary ——		
Grid-Connecte	ed System	Tables on a building	ng		
PV Field Orien	tation	Near Shadings		User's needs	
Fixed planes	2 orientations	Linear shadings		Unlimited load (grid)
Tilts/azimuths	10 / -90 °				
	10 / 90 °				
System inform	ation				
PV Array			Inverters		
Nb. of modules		11685 units	Nb. of units		38 units
Pnom total		7712 kWp	Pnom total		7600 kWac
			Pnom ratio		1.015
		Results s	ummary ——		
	9 27 GWb/year	Specific production	1202 kWh/kWp/vear	Perf. Ratio PR	82 47 %

 Project and results summary
 2

 General parameters, PV Array Characteristics, System losses
 3

 Near shading definition - Iso-shadings diagram
 17

 Main results
 19

 Loss diagram
 20

 Special graphs
 21

 CO2 Emission Balance
 22

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

Oricle Connected System Tables on a building PV Field Orientation Sheds configuration Model's used Fixed planes 2 orientations Nb. of sheds 851 units Transposition Perz. Titlanzamuths 10 / 90 ° Several orientations 851 units 10 / 80 ° Perz. Horizon Near Shadings User's needs User's needs User's needs Horizon PV Array Characteristics PV module SUN2000-215KTL-H0 (Custom parameters definition) (Custom parameters definition) (Custom parameters definition) Uniter PV modules 860 Wp Unit Number of Inverters 38 units Normal (STC) 7712 kWp Total power 7600 kWac Number of PV modules 30 units Number of Inverters 9 ° MPPT 11% f unit Normal (STC) 10 / 90 ° Operating voltage 500-1500 V Phom alue (STC) 13 Strings x 20 in series At operating voltage 500-1500 V Phomp 181 kWp Macu (pC-AC) 215 kWac U impp 282 A 7 ° MPPT 12% 0.9 unit Number of Inverters 7 ° MPPT 12% 0.9 unit Number of Inverters 7 ° MPPT 12% 0.9 unit Number of Inverters 10 / 90 ° Number of Inverters		General na	rameters —	
PV Field Orientation Orientation Sheds configuration Number of PV and Values Models used Transposition Perez Diffuse Perez Perez, Meteororm Circumsolar Diffuse Perez, Meteororm Circumsolar Horizon Near Shadings Linear shadings User's needs Unlimited load (grid) User's needs Unlimited load (grid) PV module Near Shadings Linear shadings User's needs Unlimited load (grid) Model CHSM68M(DGyF-B4 Steries (210) (Custom parameters definition) Model Unit Nom, Power 660 Wp Model SUV2000-216KTL-H0 Unit Nom, Power 660 Wp Unit Nom, Power 200 KWac Number of PV modules 11685 units Number of inverters 33 units Norminal (STC) 7712 kWp Total power 200 kWac Array #1 - GHE-1 Operating voltage 500-1500 V Pmp 18 kWp Total power 200 kWac Array #2 - GHO-2 Operating voltage 500-1500 V Pmp 18 kWp Total power 7* MPPT 11% t unit Number of Inverters 11 kWp Max, power (=>25°) 215 kWac U mpp 690 V Pnom ratio (DC-AC) 0.98 U mpp <td< th=""><th>Grid-Connected System</th><th>Tables on a buildin</th><th>a</th><th></th></td<>	Grid-Connected System	Tables on a buildin	a	
Provenie Orientation Fixed planes 2 orientations Sheds configuration Nb. of sheds 951 units Models used Transposition Percz Fixed planes 2 orientations Nb. of sheds 951 units Diffuse Percz Horizon Title Azimuths 10 / 90 ° Near Shadings User's needs Unimited load (grid) PV module Near Shadings User's needs Unimited load (grid) Manufacturer Atonery Model acquire Huwei Technologies Manufacturer Atonery Model SUN2000-215KTL-H0 (Custom parameters definition) Unit Non. Power 200 KWac Number of PV modules 10680 Wp Unit Non. Power 200 KWac Number of PV modules 10690 ° Number of inverters 30 units Number of PV modules 10600 ° Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 10 / 90 ° Porating voltage 500-1500 V Number of PV modules 10 / 90 ° Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 10 / 90 ° Porating voltage 500-1500 V Pmp 680 V Ponor rate (DC-AC) 0.99	DV Field Orientation		5	
Private planes 2 orientations Nu of shoes 951 units Transposition Perez Title zamuths 10 / 90 ° Several orientations 951 units Transposition Perez Horizon Near Shadings User's needs Unimate load (grid) Free Horizon Near Shadings User's needs PV module PV Array Charactoristics Invertor Manufacturer Astonerry Model SUN2000-215KTL-H0 (Custon parameters definition) (Custom parameters definition) (Custom parameters definition) Unit Nom. Power 660 Wp Unit Nom. Power 200 kWac Number of PV modules 11685 units Number of inverters 38 units Nominal (STC) 7712 KWp Total power 600 kWac Array #1 -GHE-1 Operating voltage 500-1500 V Orientation #1 TitleAstronery Max, power (=>25°C) 215 KWac Modules 15 Strings x 20 in series Operating voltage 500-1500 V At operating cond. (59°C) Prip 181 kWp Max, power (=>25°C) 215 KWac Momination #2 TitleAstronery Max power (=>25°C) 215 KWac Moring SC1C) 182 A Number of inverters 7 * MPPT 12% 0.9 unit	PV Field Orientation	Shada configuration		Modele used
Procession Description Description Description Description Horizon Near Shadings User's needs User's needs Horizon Near Shadings User's needs Free Horizon Prevaluation User's needs PY module Prevaluation User's needs Morizon Astronergy Manufacturer Huawei Technologies Model CHSM66M(DG)(F-BH Series (210) Model SUN2000-215KTL-H0 Clustom parameters definition (Custom parameters definition) Unit Non. Power 200 KWac Number of PV modules 1165 sunts Number of Inverters 39 units Nominal (STC) 7712 kWp Total power 200 kWac Modules 105 Strings x 20 in series 4 4 Modules 15 Strings x 20 in series 9 " MPPT 11% 1 unit 1 Nominal (STC) 198 kWp Total power 200 kWac 0 Modules 15 Strings x 20 in series 7 * MPPT 11% 0 unit 1 Number of PV modules 11 Strings x 25 in series 7 * MPPT 11% 0 0.9 unit 1 Number of PV modules 11 Strings x 25 in s	Fixed planes 2 orientations	Nb. of sheds	951 unite	Transposition Perez
Intraction 10 / 90 * Corrundoir Circumotor separate Horizon Free Horizon Near Shadings Linear shadings User's needs User's needs Unlimited load (grid) PV module PV Array Characteristics Invertor Manufacturer Astronergy Moude Manufacturer Humes Technologies SUN2000-215KTL+H0 (Custom parameters definition) Unit Non, Power 660 Wp Unit Non, Power 200 KWac Nominal (STC) 7712 KWp Total power 7600 kWac Array #1 - GitE-1 Ool (ustom parameters definition) Unit Non, Power 7600 kWac Mondel filt Transition 9 * MPPT 11% 1 unit Number of PV modules 300 units Number of inverters 9 * MPPT 11% 1 unit Orientation #1 Titkzimuth 10/400 * Number of Inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 KWp Total power 200 kWac Array #2 - GitO-2 Operating voltage 500-1500 V Orientation #2 Titk/Zimuth 10/490 * Number of Inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 108 kWp Total power 175 kWac Or	Tilts/azimuths 10 / -90 °	2 Several orientations	351 units	Diffuse Perez Meteonorm
Horizon Free Horizon Near shadings Linear shadings User's needs Unlimited load (grid) PV module PV Array Charseteristics PV module Inverter Manufacturer Astronergy Manufacturer Manufacturer Huawell Technologies Model Outstom parameters definition) Ucustom parameters definition) Model SUN2000-215KTL-H0 Orientation 011 Non. Power 660 Wp Unit Non. Power 200 KWac Nominal (STC) 7712 KWp Total power 7600 KWac Array #1 - GitE-1 Orientation #1 Titikazimuth 10/400 ° Number of PV modules 300 units Number of Inverters 9 * MPPT 11% 1 unit Norinal (STC) 198 KWp Total power 200 KWac Array #2 - GitG-2 15 Strings x 20 In series Propp 680 V Pnom ratio (DCAC) 0.99 Impp 282 A Propp 184 KWp Total power 7 * MPPT 12% 0.9 unit Number of PV modules 175 kms Number of inverters 7 * MPPT 12% 0.9 unit Number of PV modules 182 KWp Pnom ratio (DCAC)	10 / 90 °			Circumsolar separate
PV Array Characteristics PV module Inverter Manufacturer Huawel Technologies Model CHSM66M(DG)/F-BH Series (210) Model SUN2000-215KTL-H0 (Custom parameters definition) (Custom parameters definition) Unit Nom. Power 200 kWac Number of PV modules 11885 units Number of PV modules 38 units Nominal (STC) 7712 kWp Total power 200 kWac Array #1 - G1E-1 Orientation #1 Tilk/amuth 10:90 * Number of Inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Act operating cond. (50°C) Operating voltage 500-1500 V Pmpp 680 V Pnom ratio (DC.AC) 0.99 Impp 262 A Array #2 - Gi10-2 0.99 Orientation #2 Tiltik/amuth 10/90 * Number of PV modules 275 units Number of inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac Orientation #2 115 tritiga	Horizon Free Horizon	Near Shadings Linear shadings		User's needs Unlimited load (grid)
PV module Inverter Huawii Technologies Manufacturer Astronergy Manufacturer Huawii Technologies Model Clustom parameters definition) (Custom parameters definition) (Custom parameters definition) Unit Nom. Power 660 Wp Number of PV modules 11685 units Number of PV modules 38 units Nominal (STC) 7712 kWp Total power 38 units Orientation #1 TitikAzimuth 10/-90 * Number of PV modules 300 units Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Nominal (STC) 198 kWp Operating voltage 500-1500 V Pmpp 690 V Pnom ratio (DC:AC) 0.99 Impp 690 V Pnom ratio (DC:AC) 0.99 Impp 215 kWac 19 175 kWac Umpp 690 V Pnom ratio (DC:AC) 0.99 Impp 102 kWp Total power 175 kWac Umpp 182 kWp Number of inverters 7 * MPPT 12%		PV Array Cha	racteristics —	
ManufacturerAstronergy ManufacturerManufacturerHuawei Technologies SUN2002-15XTL-H0ManufacturerCHSM66M/DG)/F-BH Series (210) (Custom parameters definition)ModelSUN2002-15XTL-H0Unit Nom. Power660 WpUnit Nom. Power200 kWacNumber of PV modules11685 unitsNumber of inverters38 unitsNominal (STC)7712 kWpTotal power200 kWacArray #1 - GitE-1Total power200 kWacOrientation#110-60 °100 kWacNumber of PV modules300 unitsNumber of inverters9 * MPPT 11% 1 unitNominal (STC)198 kWpTotal power200 kWacAt operating cond. (50°C)Operating voltage500-1500 VPmpp181 kWpMax, power (\approx 25°C)215 kWacU mpp690 VProm ratio (DC-AC)0.99I mpp262 AProm ratio (DC-AC)0.99At operating cond. (50°C)128 kWpTotal power175 kWacOrientation#2Total power175 kWacModules113 strings x 25 In seriesOperating voltage500-1500 VAt operating cond. (50°C)128 kWpTotal power175 kWacMoninal (STC)182 kWpTotal power125 kWacU mpp862 VProm ratio (DC-AC)1.04I mpp192 AProm ratio (DC-AC)1.04Modules11 strings x 25 In series2* MPPT 6% 0.1 unitAt operating cond. (50°C)26 k0 kWpTotal power2* MPPT 6% 0.1 unit <td>PV module</td> <td></td> <td>Inverter</td> <td></td>	PV module		Inverter	
Model CHSM66M(DG)(F-BH Series (210) (Custom parameters definition) Model SUN2000-215KTL-H0 Unit Nom. Power 660 Wp Unit Nom. Power 200 kWac Number of PV modules 11685 units Number of inverters 38 units Nominal (STC) 7712 kWp Total power 7600 kWac Array #1 - Gi1E-1 Orientation #1 Tilk/azimuth 10/-90 ° Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Modules 15 Strings x 20 In series Operating voltage 500-1500 V At operating cond. (50°C) 215 kWac 0.99 1 Impp 680 V Pnom ratio (DC:AC) 0.99 1 Impp 680 V Pnom ratio (DC:AC) 0.99 1 Impp 680 V Pnom ratio (DC:AC) 0.99 1 Impp 262 A A A A A Array 2: - Gi1O-2 Total power 175 kWac 0.90 1 Number of PV modules 11 strings x 25 I	Manufacturer	Astronergy	Manufacturer	Huawei Technologies
(Custom parameters definition)(Custom parameters definition)Unit Nom. Power660 WpUnit Nom. Power200 kWacNumber of V modules11665 unitsNumber of inverters38 unitsNominal (STC)7712 kWpTotal power7600 kWacArray #1 - GHE-1#1Titl/Azimuth10/-90 °Orientation#111Number of PV modules300 unitsNumber of inverters9 * MPPT 11% 1 unitNominal (STC)198 kWpTotal power200 kWacNumber of PV modules300 unitsNumber of inverters9 * MPPT 11% 1 unitNominal (STC)198 kWpTotal power200 kWacAt operating cond. (50°C)Operating voltage500-1500 VPmpp181 kWpMax. power (=>25°C)215 kWacU mpp660 VPnom ratio (DC:AC)0.99I mpp262 AAArray #2 - Gi1O-2#2Orientation#2Orientation#2Number of Inverters7 * MPPT 12% 0.9 unitNominal (STC)182 kWpTotal powerNumber of PV modules275 unitsNumber of invertersAt operating cond. (50°C)Operating voltage500-1500 VPmpp166 kWpMax. power (=>25°C)215 kWacU mpp862 VPnom ratio (DC:AC)1.04Pmpp192 AAArray #3 - GitE-2C2* MPPT 6% 0.1 unitOrientation#111Number of Inverters2 * MPPT 6% 0.1 unitNominal (STC) <td>Model CHSN</td> <td>M66M(DG)/F-BH Series (210)</td> <td>Model</td> <td>SUN2000-215KTL-H0</td>	Model CHSN	M66M(DG)/F-BH Series (210)	Model	SUN2000-215KTL-H0
Unit Nom. Power 660 Wp Unit Nom. Power 200 kWac Number of PV modules 11685 units Number of inverters 38 units Nominal (STC) 7712 kWp Total power 7600 kWac Array 41 - GitE-1	(Custom parameters definition)	(Custom parameter	s definition)
Number of PV modules 11685 units Number of inverters 38 units Nominal (STC) 7712 kWp Total power 7600 kWac Orientation #1 Titl/Azimuth 10/-90 ° Number of PV modules 300 units Number of inverters 9 ° MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Modules 15 Strings x 20 In series	Unit Nom. Power	660 Wp	Unit Nom. Power	200 kWac
Nominal (STC) 7712 kWp Total power 7600 kWac Array #1 - GitE-1 Orientation #1 Titl/Azimuth 10/-90 * Number of PV modules 300 units Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Modules 15 Strings x 20 In series 0 200 kWac At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 181 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC.AC) 0.99 I mpp 262 A 0 9 * MPPT 11% 0.9 unit Number of PV modules 275 units Number of inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac Modules 11 Strings x 25 In series 0 175 kWac U mpp 666 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC.AC) 1.04 I mpp	Number of PV modules	11685 units	Number of inverters	38 units
Array #1 - GitE-1 Orientation #1 1111/Azimuth 10/-90 ° Number of P Modules 300 units Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Modules 15 Strings x 20 In series 0 200 kWac At operating cond. (50°C) Phyp Operating voltage 500-1500 V Pmpp 690 V Pnom ratio (DC:AC) 0.99 I mpp 690 V Pnom ratio (DC:AC) 0.99 I mpp 262 A Press 7 * MPPT 12% 0.9 unit Orientation #2 TitI/Azimuth 10/90 ° 175 kWac Nominal (STC) 182 kWp Total power 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac Modules 11 Strings x 25 In series 11 Strings x 25 In series 175 kWac Modules 11 Strings x 25 In series 11 Strings x 25 In series 100 Mop 862 V Pnom ratio (DC:AC) 1.04 I mpp 192 A 2 * MPPT 6% 0.1 unit Numbe	Nominal (STC)	7712 kWp	Total power	7600 kWac
Array #1-Gite-1 Orientation #1 Titl/Azimuth 10/-90 ° Number of PV modules 300 units Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Modules 15 Strings x 20 In series 0 500-1500 V Pmpp 181 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC.AC) 0.99 I mpp 262 A 0 9 Array #2 - GitO-2 0 0.99 0 Orientation #2 11 10/90 ° 0 Number of PV modules 275 units Number of inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac Modules 11 Strings x 25 In series 41 10/90 ° Ar arg #3 - GitE-2 Operating voltage 500-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC.AC) 1.04 I mpp				
Distance m Till/Azimuth 10/-90 ° Number of PV modules 300 units Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWaa Modules 15 Strings x 20 In series 0 200 kWaa Modules 15 Strings x 20 In series 0 200 kWaa Modules 15 Strings x 20 In series 0 215 kWac U mpp 690 V Pnom ratio (DC.AC) 0.99 I mpp 10/90 ° Number of inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac Modules 11 Strings x 25 In series 10 175 kWac A toperating cond. (50°C) Operating voltage 500-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac I mpp 192 A 10	Orientation	#1		
Number of PV modules 300 units Number of inverters 9 * MPPT 11% 1 unit Nominal (STC) 198 kWp Total power 200 kWac Mdules 15 Strings x 20 In series	Tilt/Azimuth	10/-90 °		
Nominal (STC) 198 kWp Total power 200 kWac Modules 15 Strings x 20 In series Operating voltage 500-1500 V Pmpp 181 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 0.99 I mpp 262 A 0.99 0.99 Array #2 - Gi10-2 Orientation #2 1 Orientation #2 1 10/90 ° Number of Inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac 0.90 unit Nominal (STC) 182 kWp Total power 175 kWac Modules 211 strings x 25 In series 7 * MPPT 12% 0.9 unit 175 kWac Modules 11 strings x 25 In series 0 104 104 I mpp 1862 V Pnom ratio (DC:AC) 1.04 1.04 I mpp 192 A 1.04 1.04 1.04 1.04 I mpp 192 A 2 * MPPT 6% 0.1 unit Number of inverters 2 * MPPT 6% 0.1 unit Nominal	Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit
Modules 15 Strings x 20 In series Operating voltage 500-1500 V Pmpp 181 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 0.99 I mpp 262 A A Array #2 - Gi10-2 Orientation #2 Orientation #2 Titt/Azimuth 10/90 ° Number of PV modules 275 units Number of inverters 7 * MPPT 12% 0.9 unit Nodules 11 Strings x 25 In series Total power 175 kWac Modules 11 Strings x 25 In series S00-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC:AC) 1.04 I mpp 192 A A 1.04 I mpp 192 A 2* MPPT 6% 0.1 unit 1.04 I mpp 192 A 2* MPPT 6% 0.1 unit 2* MPPT 6% 0.1 unit Nominal (STC) 264.0 kWp Total power 2* MPPT 6% 0.1 unit Nominal (STC) 264.0 kWp Total power 25.4 kWac <	Nominal (STC)	198 kWp	Total power	200 kWac
At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 181 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 0.99 I mpp 262 A	Modules	15 Strings x 20 In series		
Print 181 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 0.99 Impp 262 A A Array #2 - Gi10-2 Crientation #2 Orientation #2 Fill/Azimuth 10/90 ° Number of PV modules 275 units Number of inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac Modules 11 Strings x 25 In series V Propp At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 182 A Pnom ratio (DC:AC) 1.04 Impp 192 A A Array #3 - Gi1E-2 Crientation Orientation #1 Tit/Azimuth 10/-90 ° Number of inverters 2 * MPPT 6% 0.1 unit Nominal (STC) 26.40 kWp Total power 25.4 kWac Modules 2 Strings x 20 In series At operating cond. (50°C) Operating voltage 500-1500 V	At operating cond. (50°C)	C C	Operating voltage	500-1500 V
U mpp 690 V Pnom ratio (DC:AC) 0.99 I mpp 262 A	Pmpp	181 kWp	Max. power (=>25°C)	215 kWac
Imp 262 Å Array #2 - Gi10-2 Vite of Give Cite Orientation #2 Tilt/Azimuth 10/90 ° Number of PV modules 275 units Number of PV modules 275 units Number of PV modules 275 units Number of PV modules 182 kWp Titt/Azimuth 10/90 ° Nominal (STC) 182 kWp At operating cond. (50°C) Operating voltage Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V I mpp 192 A Atray #3 - GitE-2 Vite Prom ratio (DC:AC) Orientation #1 Titt/Azimuth 10/-90 ° Number of PV modules 40 units Number of PV modules 40 units Number of PV modules 2 strings x 20 in series At operating cond. (50°C) 2 for exting voltage Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac Pmpp 690 V Pmpp 690 V	Umpp	690 V	Pnom ratio (DC:AC)	0.99
Array #2 - Gi10-2 """ Orientation #2 Tilt/Azimuth 10/90 ° Number of PV modules 275 units Number of PV modules 275 units Number of PV modules 275 units Number of PV modules 182 kWp Total power 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp At operating cond. (50°C) Operating voltage Pmpp 166 kWp U mpp 862 V I mpp 192 A Array #3 - Gi1E-2 """"""""""""""""""""""""""""""""""""	l mpp	262 A		
Array #3 - Gi1E-2#2Orientation#2Tilt/Azimuth10/90 °Number of PV modules275 unitsNumber of PV modules275 unitsNominal (STC)182 kWpTotal power175 kWacModules11 Strings x 25 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmpp166 kWpMax. power (=>25°C)215 kWacU mpp862 VPnom ratio (DC:AC)1.04Impp192 AArray #3 - Gi1E-2Orientation#1Tilt/Azimuth10/-90 °Number of PV modules40 unitsNumber of Inverters2 * MPPT 6% 0.1 unitNominal (STC)26.40 kWpTotal power25.4 kWacModules2 Strings x 20 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmppPmpp24.09 kWpMax. power (=>25°C)215 kWacU mpp690 VPnom ratio (DC:AC)1.04Impp35 A	Array #2 - Gi10-2			
Tilt/Azimuth10/90 °Number of PV modules275 unitsNumber of inverters7 * MPPT 12% 0.9 unitNominal (STC)182 kWpTotal power175 kWacModules11 Strings x 25 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmpp166 kWpMax. power (=>25°C)215 kWacU mpp862 VPnom ratio (DC:AC)1.04I mpp192 AArray #3 - Gi1E-2Orientation#1Tilt/Azimuth10/-90 °Number of PV modules40 unitsNumber of inverters2 * MPPT 6% 0.1 unitNominal (STC)26.40 kWpTotal power25.4 kWacModules2 Strings x 20 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmpp24.09 kWpMax. power (=>25°C)215 kWacU mpp690 VPnom ratio (DC:AC)1.04I mpp35 A100 cm	Orientation	#2		
Number of PV modules 275 units Number of inverters 7 * MPPT 12% 0.9 unit Nominal (STC) 182 kWp Total power 175 kWac Modules 11 Strings x 25 In series At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC:AC) 1.04 I mpp 192 A 102 1.04 Array #3 - Gi1E-2 Orientation #1 Orientation #1 10/-90 ° Number of PV modules 40 units Number of inverters 2 * MPPT 6% 0.1 unit Nominal (STC) 26.40 kWp Total power 25.4 kWac Modules 2 Strings x 20 In series Uperating voltage 500-1500 V Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A Nominatio (DC:AC) 1.04	Tilt/Azimuth	10/90 °		
Nominal (STC) 182 kWp Total power 175 kWac Modules 11 Strings x 25 In series Operating voltage 500-1500 V At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC:AC) 1.04 I mpp 192 A Array #3 - Gi1E-2 V Pnom ratio (DC:AC) 1.04 Mumber of PV modules 40 units Number of inverters 2 * MPPT 6% 0.1 unit Nominal (STC) 26.40 kWp Total power 25 kWac Modules 2 Strings x 20 In series Operating voltage 500-1500 V Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A Pnom ratio (DC:AC) 1.04	Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Modules 11 Strings x 25 ln series At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC:AC) 1.04 I mpp 192 A Pnom ratio (DC:AC) 1.04 Array #3 - Gi1E-2 V Pnom ratio (DC:AC) 1.04 Orientation #1 V Program Strings x 20 ln series Number of PV modules 40 units Number of inverters 2 * MPPT 6% 0.1 unit Nominal (STC) 26.40 kWp Total power 25.4 kWac Modules 2 Strings x 20 ln series Operating voltage 500-1500 V Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A Pnom ratio (DC:AC) 1.04	Nominal (STC)	182 kWp	Total power	175 kWac
At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC:AC) 1.04 I mpp 192 A	Modules	11 Strings x 25 In series		
Pmpp 166 kWp Max. power (=>25°C) 215 kWac U mpp 862 V Pnom ratio (DC:AC) 1.04 I mpp 192 A Impp 104 Array #3 - Gi1E-2 Orientation #1 Orientation #1 10/-90 ° Number of PV modules 40 units Number of inverters 2 * MPPT 6% 0.1 unit Nominal (STC) 26.40 kWp Total power 25.4 kWac Modules 2 Strings x 20 In series 2 500-1500 V Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A 50 1.04	At operating cond. (50°C)		Operating voltage	500-1500 V
U mpp862 VPnom ratio (DC:AC)1.04I mpp192 A192 AArray #3 - Gi1E-2Vertical Contentation#1Orientation#1Tilt/Azimuth10/-90 °Number of PV modules40 unitsNominal (STC)26.40 kWpTotal power25.4 kWacModules2 Strings x 20 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmpp24.09 kWpMax. power (=>25°C)215 kWacU mpp690 VPnom ratio (DC:AC)1.04I mpp35 A	Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
l mpp 192 A Array #3 - Gi1E-2 Orientation #1 Tilt/Azimuth 10/-90 ° Number of PV modules 40 units Number of inverters 2 * MPPT 6% 0.1 unit Nominal (STC) 26.40 kWp Total power 25.4 kWac Modules 2 Strings x 20 In series At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04	U mpp	862 V	Pnom ratio (DC:AC)	1.04
Array #3 - Gi1E-2#1Orientation#1Tilt/Azimuth10/-90 °Number of PV modules40 unitsNominal (STC)26.40 kWpTotal power25.4 kWacModules2 Strings x 20 In seriesAt operating cond. (50°C)Operating voltagePmpp24.09 kWpMax. power (=>25°C)215 kWacU mpp690 VPnom ratio (DC:AC)1.04I mpp35 A	l mpp	192 A		
Orientation#1Tilt/Azimuth10/-90 °Number of PV modules40 unitsNumber of inverters2 * MPPT 6% 0.1 unitNominal (STC)26.40 kWpTotal power25.4 kWacModules2 Strings x 20 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmpp24.09 kWpMax. power (=>25°C)215 kWacU mpp690 VPnom ratio (DC:AC)1.04I mpp35 A	Arrav #3 - Gi1E-2			
Tilt/Azimuth10/-90 °Number of PV modules40 unitsNumber of inverters2 * MPPT 6% 0.1 unitNominal (STC)26.40 kWpTotal power25.4 kWacModules2 Strings x 20 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmpp24.09 kWpMax. power (=>25°C)215 kWacU mpp690 VPnom ratio (DC:AC)1.04I mpp35 A	Orientation	#1		
Number of PV modules40 unitsNumber of inverters2 * MPPT 6% 0.1 unitNominal (STC)26.40 kWpTotal power25.4 kWacModules2 Strings x 20 In seriesAt operating cond. (50°C)Operating voltage500-1500 VPmpp24.09 kWpMax. power (=>25°C)215 kWacU mpp690 VPnom ratio (DC:AC)1.04I mpp35 A	Tilt/Azimuth	10/-90 °		
Nominal (STC) 26.40 kWp Total power 25.4 kWac Modules 2 Strings x 20 ln series At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A	Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit
Modules 2 Strings x 20 In series Operating voltage 500-1500 V At operating cond. (50°C) 24.09 kWp Max. power (=>25°C) 215 kWac Pmpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A Strings A	Nominal (STC)	26.40 kWp	Total power	25.4 kWac
At operating cond. (50°C) Operating voltage 500-1500 V Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A State State	Modules	2 Strings x 20 In series		
Pmpp 24.09 kWp Max. power (=>25°C) 215 kWac U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A 1.04 1.04	At operating cond. (50°C)		Operating voltage	500-1500 V
U mpp 690 V Pnom ratio (DC:AC) 1.04 I mpp 35 A	Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac
I mpp 35 A	U mpp	690 V	Pnom ratio (DC:AC)	1.04
	l mpp	35 A		

Qint'x srl (Italy)

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

PV Array Characteristics

Array #4 - Gi2E-3			
Orientation	#1		
Tilt/Azimuth	10/-90 °		
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit
Nominal (STC)	198 kWp	Total power	200 kWac
Modules	15 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac
Umpp	690 V	Pnom ratio (DC:AC)	0.99
l mpp	262 A		
Array #5 - Gi2O-4			
Mixed orient.			
#1/2: 1/10 strings			
Tilt/Azimuth	10/-90 °		
	10/90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWp	Total power	175 kWac
Modules	11 Strings x 25 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
U mpp	862 V	Pnom ratio (DC:AC)	1.04
l mpp	192 A		
Array #6 - Gi2E-4			
Orientation	#1		
Tilt/Azimuth	10/-90 °		
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit
Nominal (STC)	26.40 kWp	Total power	25.4 kWac
Modules	2 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	1.04
l mpp	35 A		
Array #7 - Gi3E-5			
Orientation	#1		
Tilt/Azimuth	10/-90 °		
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit
Nominal (STC)	198 kWp	Total power	200 kWac
Modules	15 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	0.99
l mpp	262 A		
Array #8 - Gi3O-6			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWp	Total power	175 kWac
Modules	11 Strings x 25 In series	·	
At operating cond. (50°C)	-	Operating voltage	500-1500 V
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
U mpp	862 V	Pnom ratio (DC:AC)	1.04
l mpp	192 A		

Variant: Progetto Definitivo

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

PV Array Characteristics				
	-			
Array #9 - GI3E-6	#1			
	#1			
Hill/Azimuth	10/-90	Number of incontents		
Number of PV modules		Number of Inverters	2 * MPP1 6% 0.1 Unit	
Nominal (STC)	26.40 kWp	l otal power	25.4 KVVac	
Modules	2 Strings x 20 in series	On the second se	500 4500 1/	
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	24.09 kWp	Max. power (=> 25° C)	215 KWac	
U mpp	690 V	Phom ratio (DC:AC)	1.04	
I mpp	35 A			
Array #10 - Gi4E-7				
Orientation	#1			
Tilt/Azimuth	10/-90 °			
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit	
Nominal (STC)	198 kWp	Total power	200 kWac	
Modules	15 Strings x 20 In series			
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	0.99	
l mpp	262 A			
A				
Array #11 - GI4O-8	#2			
	#2 10/00 °			
Number of BV modules	275 unite	Number of invertore	7 * MDDT 12% 0.0 upit	
Nominal (STC)				
Modulos	102 KVVP	Total power	175 KWac	
	11 Sungs x 25 m series	Operating voltage	500 1500 V	
At operating cond. (50°C)	166 1000		300-1300 V	
Phipp		(-25 C)	215 KWac	
	802 V	Phom ratio (DC:AC)	1.04	
ттрр	192 A			
Array #12 - Gi4E-8				
Orientation	#1			
Tilt/Azimuth	10/-90 °			
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit	
Nominal (STC)	26.40 kWp	Total power	25.4 kWac	
Modules	2 Strings x 20 In series			
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	1.04	
l mpp	35 A			
Array #13 - Gi5E-9				
Orientation	#1			
Tilt/Azimuth	10/-90 °			
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit	
Nominal (STC)	198 kWp	Total power	200 kWac	
Modules	15 Strings x 20 In series			
At operating cond. (50°C)	0	Operating voltage	500-1500 V	
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	0.99	
l mpp	262 A			

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

PV Array Characteristics				
A	2			
Array #14 - GI5O-10	#2			
	#2 10/00 °			
Number of DV meedules	10/90 235 units	Number of investors		
Number of PV modules				
Nominai (STC)	162 KWP	Total power	175 KWAC	
	11 Strings x 25 in series	One section such as a		
At operating cond. (50°C)	100 100/2	Operating voltage	500-1500 V	
Pmpp	166 KVVP	Max. power $(=>25^{\circ}C)$	215 KWac	
U mpp	862 V	Phom ratio (DC:AC)	1.04	
Ттрр	192 A			
Array #15 - Gi5E-10				
Orientation	#1			
Tilt/Azimuth	10/-90 °			
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit	
Nominal (STC)	26.40 kWp	Total power	25.4 kWac	
Modules	2 Strings x 20 In series			
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	1.04	
l mpp	35 A			
Array #16 - GIGE-11	#1			
	#1 10/ 00 °			
Number of PV modules	300 units	Number of invertors	0 * MDDT 11% 1 upit	
Naminal (STC)				
Modulos	15 Strings x 20 In sorios	Total power		
At an arother a and (50%C)	15 Strings x 20 In series	Operating voltage	500 1500 V	
At operating cond. (50°C)	181 4/0/2		215 kWoo	
Filipp	181 KWP	P_{Response}		
U mpp		Filom fatio (DC.AC)	0.99	
Тіңрр	202 A			
Array #17 - Gi6O-12				
Orientation	#2			
Tilt/Azimuth	10/90 °			
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit	
Nominal (STC)	182 kWp	Total power	175 kWac	
Modules	11 Strings x 25 In series			
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac	
U mpp	862 V	Pnom ratio (DC:AC)	1.04	
l mpp	192 A			
Array #18 - Gi6E-12				
Orientation	#1			
Tilt/Azimuth	10/-90 °			
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit	
Nominal (STC)	26.40 kWp	Total power	25.4 kWac	
Modules	2 Strings x 20 In series			
At operating cond. (50°C)	5	Operating voltage	500-1500 V	
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	1.04	
Impp	35 A			

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

	PV Array	Characteristics —	
A	2		
Array #19 - GI/E-13	-41		
	#1 10/ 00 °		
Number of D) (modules	10/-90	Number of invertors	0 * MDDT 110/ 1 unit
Number of PV modules			
Nominal (STC)	190 KVVP	Total power	200 KWac
	15 Strings x 20 in series		
At operating cond. (50°C)	191 4/0/2		300-1300 V
Pmpp		Max. power (=>25 C)	
Ump	690 V	Phom ratio (DC:AC)	0.99
ттрр	202 A		
Array #20 - Gi7O-14			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWp	Total power	175 kWac
Modules	11 Strings x 25 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
U mpp	862 V	Pnom ratio (DC:AC)	1.04
l mpp	192 A		
A			
Array #21 - GI/E-14	#1		
	#1 10/ 00 °		
Number of DV modules	10/-90	Number of invertore	2 * MDDT 6% 0.1 unit
Naminal (STC)	26 40 kWp		
Modulos	20.40 KWp 2 Strings x 20 In series	Total power	20.4 KWac
At an arother a and (50%C)	2 Stilligs x 20 III series	Operating voltage	500 1500 V
At operating cond. (50°C)	24.00 KWp		300-1300 V
Phipp	24.09 KWp	P_{23}	215 KWac
U mpp		Phom ratio (DC.AC)	1.04
тпрр	55 A		
Array #22 - Gi8E-15			
Orientation	#1		
Tilt/Azimuth	10/-90 °		
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit
Nominal (STC)	198 kWp	Total power	200 kWac
Modules	15 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	0.99
l mpp	262 A		
Array #23 - Gi80-16			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWn	Total power	175 kWac
Modules	11 Strings x 25 In series		
At operating cond (50°C)		Operating voltage	500-1500 V
	166 kWp	Max. power (=>25°C)	215 kWac
Umpp	862 V	Pnom ratio (DC:AC)	1 04
	192 A		1.07
· · · · P P			

Variant: Progetto Definitivo

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

PV Array Characteristics				
	-			
Array #24 - GI8E-16	#1			
	#1 10/ 00 °			
Number of D) (modules	10/-90	Number of invertors	2 * MODT 6% 0.1 unit	
Number of PV modules				
Nominai (STC)	26.40 KVVp	Total power	25.4 KVVac	
Modules	2 Strings x 20 in series		500 (500)/	
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	24.09 kWp	Max. power (=> 25° C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	1.04	
l mpp	35 A			
Array #25 - Gi9E-17				
Orientation	#1			
Tilt/Azimuth	10/-90 °			
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit	
Nominal (STC)	198 kWp	Total power	200 kWac	
Modules	15 Strings x 20 In series			
At operating cond. (50°C)	-	Operating voltage	500-1500 V	
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac	
Umpp	690 V	Pnom ratio (DC:AC)	0.99	
Impp	262 A			
Array #26 - Gi9O-18				
Orientation	#2			
l lit/Azimuth	10/90			
Number of PV modules	275 units		7 ^ MPPT 12% 0.9 unit	
Nominal (STC)	182 kWp	l otal power	175 kWac	
Modules	11 Strings x 25 In series			
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac	
U mpp	862 V	Pnom ratio (DC:AC)	1.04	
I mpp	192 A			
Array #27 - Gi9E-18				
Orientation	#1			
Tilt/Azimuth	10/-90 °			
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit	
Nominal (STC)	26.40 kWp	Total power	25.4 kWac	
Modules	2 Strings x 20 In series			
At operating cond. (50°C)	-	Operating voltage	500-1500 V	
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac	
Umpp	690 V	Pnom ratio (DC:AC)	1.04	
Impp	35 A			
Array #28 - GI10E-19	44			
	#1			
Hit/Azimuth	10/-90 ·	Number of incodence		
Number of PV modules		Number of Inverters		
Nominal (STC)	182 kWp	l otal power	1/5 kWac	
Modules	TT Strings x 25 In series	On exection of the		
At operating cond. (50°C)	100 1111	Operating voltage	500-1500 V	
Ртпрр	166 KVVp	Max. power (=>25°C)	215 KWac	
U mpp	862 V	Phom ratio (DC:AC)	1.04	
і трр	192 A			

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

	PV Array	Characteristics —	
Array #29 - Gi10O-19	#0		
	#2		
Number of DV modules	10/90	Number of invertors	$2 \star MDDT 60/ 0.1 unit$
Number of PV modules			
Nominai (STC)	26.40 KWP	Total power	25.4 KWac
	2 Strings x 20 in series	Operating veltage	E00 1E00 V
At operating cond. (50°C)	24.00 1/10/2		300-1300 V
Pmpp	24.09 kvvp	Max. power (=>25 C)	
Umpp	690 V	Phom ratio (DC:AC)	1.04
ттрр	35 A		
Array #30 - Gi10O-20			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit
Nominal (STC)	198 kWp	Total power	200 kWac
Modules	15 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	0.99
l mpp	262 A		
Array #31 - GI11E-21	#1		
	#1		
Number of DV modules	10/-90 235 units	Numero en efimientene	
Number of PV modules			
Nominai (STC)	182 KVVP	i otai power	
	11 Strings x 25 in series		
At operating cond. (50°C)	100 100/2		500-1500 V
Pmpp	166 KVVP	Max. power $(=>25^{\circ}C)$	215 KVVac
Umpp	862 V	Phom ratio (DC:AC)	1.04
Ттрр	192 A		
Array #32 - Gi11O-21			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit
Nominal (STC)	26.40 kWp	Total power	25.4 kWac
Modules	2 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	1.04
l mpp	35 A		
Arrow #33 Gi110 22			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	300 unite	Number of inverters	9 * MPPT 11% 1 unit
Nominal (STC)	198 k\Mn	Total nower	200 kWac
Modules	15 Strings x 20 In series		
At operating cond (50°C)		Operating voltage	500-1500 V
	181 k\Mn	Max nower (=>25°C)	215 kWan
		Pnom ratio $(DC \cdot AC)$	0 QQ
	262 4		0.33
·			

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

	PV Array	Characteristics —	
	-		
Array #34 - GI12E-23	-#4		
	#1 40/ 00 °		
Number of D) (modules	10/-90	Number of investors	
Number of PV modules			7 * MPP1 12% 0.9 unit
	182 KVVp	lotal power	175 KVVac
Modules	11 Strings x 25 In series		500 (500)/
At operating cond. (50°C)	100 1111	Operating voltage	500-1500 V
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
U mpp	862 V	Pnom ratio (DC:AC)	1.04
І трр	192 A		
Array #35 - Gi12O-23			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit
Nominal (STC)	26.40 kWp	Total power	25.4 kWac
Modules	2 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	1.04
Impp	35 A		
Array #36 - Gi12O-24	#2		
	#2 10/00 °		
Number of D) (modules	10/90 200 units	Number of investors	
Number of PV modules			
Nominai (STC)	198 KVVP	Total power	200 KVVac
Modules	15 Strings x 20 in series		
At operating cond. (50°C)	101 111		500-1500 V
Pmpp	181 KVVp	Max. power $(=>25^{\circ}C)$	215 KWac
U mpp	690 V	Phom ratio (DC:AC)	0.99
Ттрр	262 A		
Array #37 - Gi13E-25			
Orientation	#1		
Tilt/Azimuth	10/-90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWp	Total power	175 kWac
Modules	11 Strings x 25 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
U mpp	862 V	Pnom ratio (DC:AC)	1.04
l mpp	192 A		
A may #29 0:420 25			
Orientation	#2		
Tilt/Azimuth	<i>#∠</i> 10/90 °		
Number of PV modules	10/90	Number of invertors	2 * MPPT 6% 0.1 upit
Nominal (STC)	26 40 kWp		
Modules	20.70 NVP 2 Strings x 20 In series		20.4 NVat
At operating cond $(50^{\circ}C)$	2 0011193 x 20 111 301103	Operating voltage	500-1500 V
Pmpp	24 00 KM/n	Max nower (->25°C)	215 k/Mac
	600 V	Phom ratio ($DC \cdot AC$)	1 0 <i>/</i>
l mpp	35 Δ		1.04
нирр	55 A		

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

	PV Array	Characteristics —	
A			
Array #39 - GI130-26	# 2		
	#2 10/00 °		
Number of D) (modules	10/90 200 unite	Number of invertors	0 * MDDT 110/ 1 unit
Number of PV modules			
Nominal (STC)	190 KVVP	i otal powel	
	15 Strings x 20 in series		
At operating cond. (50°C)	101 100-		500-1500 V
Pmpp		Max. power (=>25 C)	
Umpp	690 V	Phom ratio (DC:AC)	0.99
ттрр	262 A		
Array #40 - Gi14E-27			
Orientation	#1		
Tilt/Azimuth	10/-90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWp	Total power	175 kWac
Modules	11 Strings x 25 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
U mpp	862 V	Pnom ratio (DC:AC)	1.04
l mpp	192 A		
A			
Array #41 - GI140-27	# 2		
	#2 10/00 °		
Number of D) (modules	10/90	Number of invertors	2 * MDDT 60/ 0.1 unit
Number of PV modules			
Modulos	20.40 KVVP	Total power	20.4 KVVaC
	2 Strings x 20 In series	Operating voltage	500 1500 V
At operating cond. (50°C)	24.00 1/14/-		300-1300 V
Pmpp	24.09 KWP	Max. power (=>25 C)	215 KWac
U mpp	690 V	Phom ratio (DC:AC)	1.04
ттрр	35 A		
Array #42 - Gi14O-28			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit
Nominal (STC)	198 kWp	Total power	200 kWac
Modules	15 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	0.99
l mpp	262 A		
Arroy #42 Gi4EE 20			
Array #43 - GI15E-29 Orientation	#1		
	πι 10/-90 °		
Number of PV modules	275 unite	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)			175 k/M/aa
Modules	102 NVVP		I/J KWAC
At operating cand (EAPC)		Operating voltage	500-1500 \/
Pmpp	166 1/1/2	Max power (->25°C)	215 kMaa
קיווי י עקווי י	262 V	P_{nom} ratio (DC-AC)	
l mpp	102 V		1.04
i ilihh	132 A		

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

PV Array Characteristics				
A				
Array #44 - GI150-29	#2			
	#2 10/00 °			
Number of D) (modules	10/90	Number of invertors	2 * MDDT 60/ 0.1 unit	
Number of PV modules				
Nominal (STC)	20.40 kWp	Total power	25.4 KVVac	
	2 Strings x 20 in series			
At operating cond. (50°C)	24.00 1/14/-		500-1500 V	
Phipp	24.09 KWP	(-25 C)	215 KVVac	
Ump	690 V	Phom ratio (DC:AC)	1.04	
ттрр	35 A			
Array #45 - Gi15O-30				
Orientation	#2			
Tilt/Azimuth	10/90 °			
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit	
Nominal (STC)	198 kWp	Total power	200 kWac	
Modules	15 Strings x 20 In series			
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	0.99	
l mpp	262 A			
A				
Array #46 - GI16E-31	#1			
	#1 10/ 00 °			
Number of D) (modules	10/-90 275 unite	Number of invertors	7 * MODT 120/ 0.0 unit	
Number of PV modules				
Norminal (STC)	102 KVVP	Total power	175 KWac	
	11 Sungs x 25 m series	Operating veltage	E00 1E00 V	
At operating cond. (50°C)	166 1000		300-1300 V	
Phipp		Max. power (=>25 C)		
Ump	862 V	Phom ratio (DC:AC)	1.04	
Тпрр	192 A			
Array #47 - Gi16O-31				
Orientation	#2			
Tilt/Azimuth	10/90 °			
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit	
Nominal (STC)	26.40 kWp	Total power	25.4 kWac	
Modules	2 Strings x 20 In series			
At operating cond. (50°C)		Operating voltage	500-1500 V	
Pmpp	24.09 kWp	Max. power (=>25°C)	215 kWac	
U mpp	690 V	Pnom ratio (DC:AC)	1.04	
l mpp	35 A			
Array #48 - Gi160-32				
Orientation	#2			
Tilt/Azimuth	10/90 °			
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit	
Nominal (STC)	198 kWn	Total power	200 kWac	
Modules	15 Strings x 20 In series			
At operating cond (50°C)		Operating voltage	500-1500 V	
Pmpp	181 kWn	Max. power (=>25°C)	215 kWac	
Umpp	690 V	Pnom ratio (DC:AC)	0.99	
	262 A		0.00	
· · · · P P				

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

	PV Array	Characteristics ——	
Array #49 - Gi17E-33			
Orientation	#1		
Tilt/Azimuth	۳۲ 10/-90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWp	Total power	175 kWac
Modules	11 Strings x 25 In series		
At operating cond (50°C)		Operating voltage	500-1500 V
Pmpp	166 kWp	Max_power (=>25°C)	215 kWac
	862 V	Pnom ratio (DC:AC)	1 04
l mpp	192 A		1.04
A			
Array #50 - GI1/O-33	#2		
	#2 10/00 °		
Number of DV meedules	10/90	Number of investors	
Number of PV modules			
Nominai (STC)		Total power	25.4 KVVac
	2 Strings x 20 in series	Operation veltage	
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	24.09 kVVp	Max. power $(=>25^{\circ}C)$	215 KVVac
U mpp	690 V	Phom ratio (DC:AC)	1.04
ттрр	35 A		
Array #51 - Gi17O-34			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	300 units	Number of inverters	9 * MPPT 11% 1 unit
Nominal (STC)	198 kWp	Total power	200 kWac
Modules	15 Strings x 20 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	181 kWp	Max. power (=>25°C)	215 kWac
U mpp	690 V	Pnom ratio (DC:AC)	0.99
l mpp	262 A		
Arrav #52 - Gi18E-35			
Orientation	#1		
Tilt/Azimuth	10/-90 °		
Number of PV modules	275 units	Number of inverters	7 * MPPT 12% 0.9 unit
Nominal (STC)	182 kWp	Total power	175 kWac
Modules	11 Strings x 25 In series	·	
At operating cond. (50°C)	C C	Operating voltage	500-1500 V
Pmpp	166 kWp	Max. power (=>25°C)	215 kWac
U mpp	862 V	Pnom ratio (DC:AC)	1.04
l mpp	192 A		
Array #53 Gi180 35			
Orientation	#2		
Tilt/Azimuth	10/90 °		
Number of PV modules	40 units	Number of inverters	2 * MPPT 6% 0.1 unit
Nominal (STC)	26 40 kWp	Total power	2 1 1 1 1 0 % 0.1 4 mm
Modules	2 Strings x 20 In series		20.7 KWao
At operating cond (50°C)		Operating voltage	500-1500 V
	24 09 kWp	Max power (=>25°C)	215 kWac
	690 V	Pnom ratio (DC:AC)	1 04
	35 A		1.07
·			

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

			PV Arr	ay Charact	eristics –				
Arrow #EA Cit	490.36			2					
Array #54 - Gr	100-30		#2						
Tilt/Azimuth		1	#2 0/00 °						
Number of PV m	odules		300 unite	Nu	umber of inverters	٥	* MDDT 11% 1	unit	
Nominal (STC)	odules		108 k\Mp	То	tal power	5	200	k\Mac	
Modulos		15 Strings	190 KVVP				200	KWAC	
At operating a	and (EO°C)	15 Sungs	x 20 in series	0	orating voltage		500 1500	V	
At operating c	:ona. (50 C)		181 KM/p	U, M			215	v k\\//ac	
Filipp				IVIC Dr	ax. power (-23 C)		213	NVAC	
U mpp			262 4	FI			0.99		
ттрр			202 A						
Array #55 - Gi	19E-37								
Orientation			#1						
Tilt/Azimuth		10)/-90 °						
Number of PV m	odules		315 units	Nu	umber of inverters	9	* MPPT 11% 1	unit	
Nominal (STC)			208 kWp	To	tal power		200	kWac	
Modules		15 Strings	x 21 In series						
At operating c	ond. (50°C)			Op	perating voltage		500-1500	V	
Pmpp			190 kWp	Ma	ax. power (=>25°C)		215	kWac	
U mpp			724 V	Pr	om ratio (DC:AC)		1.04		
l mpp			262 A						
Arrow #EG Cit	100 20								
Orientation	190-30		#2						
Tilt/Azimuth		1	n/90 °						
Number of PV m	odules	· ·	300 units	Ni	umber of inverters	q	* MPPT 11% 1	unit	
Nominal (STC)	oddioo		198 kWn	To	tal nower	0	kWac		
Modules		12 Strings	x 25 In series	10			200	NV4C	
At operating of	and (E0°C)		x 20 m 66n66	Or	perating voltage		500-1500	V	
	,onu. (50 C)		181 k\Wn	С _Г М:	ax nower $(=>25^{\circ}C)$		215	kWac	
llmpp			862 V	Pr	$(DC:\Delta C)$		0.99	NV4C	
lmnn			210 Δ				0.99		
ттрр			210 A						
Total PV powe	er			Тс	otal inverter powe	er			
Nominal (STC)		7	712 kWp	Та	tal power		7600	kWac	
Total		11	685 modules	Nt	o. of inverters		38	units	
Module area		36	6298 m²				0.0	unused	
				Pr	iom ratio		1.01		
				Array losse	s —				
Array Soiling			Thermal I o	ss factor		Module (Juality Loss		
Loss Fraction	LU3363 5	0%	Module temp	erature accord	ing to irradiance	Loss Fraction -0.9 %			
Loss i rusion	0	0 /0			40.0 W/m²k	2000 1100		0.0 /0	
			Llv (wind)		0.0 W/m²K/m/s				
					0.0 10/11/10/18/0				
Module misma	atch losses		Strings Mis	match loss					
Loss Fraction	4	.0 % at MPP	Loss Fraction	1	0.1 %				
IAM lose facto	r								
Incidence effect ((IAM): Fresnel	smooth class in	= 1.526						
0°	30°	50°	60°	70°	75°	80°	85°	90°	
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000	
L		1		1			1		

Variant: Progetto Definitivo

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

Qint'x srl (Italy)

DC wiring losses

Global wiring resistance	1.3 mΩ		
Loss Fraction	1.5 % at STC		
Array #1 - Gi1E-1		Array #2 - Gi10-2	
Global arrav res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #3 - Gi1E-2		Array #4 - Gi2E-3	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Arrav #5 - Gi2O-4		Arrav #6 - Gi2E-4	
Global array res.	74 mΩ	Global array res.	325 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Arrav #7 - Gi3E-5		Arrav #8 - Gi3O-6	
Global array res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #9 - Gi3E-6		Array #10 - Gi4E-7	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #11 - Gi4O-8		Array #12 - Gi4E-8	
Global array res.	74 mΩ	Global array res.	325 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #13 - Gi5E-9		Array #14 - Gi5O-10	
Global array res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #15 - Gi5E-10		Array #16 - Gi6E-11	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #17 - Gi6O-12		Array #18 - Gi6E-12	
Global array res.	74 mΩ	Global array res.	325 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #19 - Gi7E-13		Array #20 - Gi7O-14	
Global array res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #21 - Gi7E-14		Array #22 - Gi8E-15	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #23 - Gi8O-16		Array #24 - Gi8E-16	
Global array res.	74 mΩ	Global array res.	325 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #25 - Gi9E-17		Array #26 - Gi9O-18	
Global array res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #27 - Gi9E-18		Array #28 - Gi10E-19	
Global array res.	325 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #29 - Gi10O-19		Array #30 - Gi10O-20	
Global array res.	325 mΩ	Global array res.	43 mΩ
	1.5 % at STC		1.5 % at STC
Array #31 - Gi11E-21	74 0	Array #32 - Gi110-21	005 0
Global array res.	/4 mΩ	Global array res.	325 mΩ
	1.5 % at STC		1.5 % at STC
Array #33 - Gi110-22	10 0	Array #34 - Gi12E-23	
Global array res.	43 mΩ	Global array res.	/4 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC

Variant: Progetto Definitivo

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

Qint'x srl (Italy)

DC wiring losses

Array #35 - Gi12O-23		Array #36 - Gi12O-24	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #37 - Gi13E-25		Array #38 - Gi13O-25	
Global array res.	74 mΩ	Global array res.	325 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #39 - Gi13O-26		Array #40 - Gi14E-27	
Global array res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #41 - Gi14O-27		Array #42 - Gi14O-28	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #43 - Gi15E-29		Array #44 - Gi15O-29	
Global array res.	74 mΩ	Global array res.	325 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #45 - Gi15O-30		Array #46 - Gi16E-31	
Global array res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #47 - Gi16O-31		Array #48 - Gi16O-32	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #49 - Gi17E-33		Array #50 - Gi17O-33	
Global array res.	74 mΩ	Global array res.	325 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #51 - Gi17O-34		Array #52 - Gi18E-35	
Global array res.	43 mΩ	Global array res.	74 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #53 - Gi18O-35		Array #54 - Gi18O-36	
Global array res.	325 mΩ	Global array res.	43 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #55 - Gi19E-37		Array #56 - Gi19O-38	
Global array res.	46 mΩ	Global array res.	68 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC

PVsyst V7.2.21

Variant: Progetto Definitivo

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21 Variant: Progetto Definitivo

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

Qint'x srl (Italy)

Main results

System Production Produced Energy

9.27 GWh/year

Specific production Performance Ratio PR

1202 kWh/kWp/year 82.47 %

Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	GWh	GWh	ratio
January	41.6	22.80	7.60	41.3	35.3	0.262	0.254	0.798
February	63.7	30.90	7.90	63.2	55.6	0.416	0.406	0.833
March	117.1	49.50	10.20	116.5	104.9	0.780	0.764	0.850
April	146.7	62.20	13.60	145.9	133.1	0.977	0.957	0.851
Мау	190.1	75.70	18.40	189.1	173.3	1.245	1.220	0.837
June	209.2	75.60	22.90	208.0	191.4	1.352	1.325	0.826
July	219.2	72.90	25.40	218.0	200.3	1.400	1.371	0.816
August	186.1	65.10	25.30	185.3	169.8	1.190	1.166	0.816
September	131.0	53.50	21.40	130.5	117.7	0.841	0.823	0.818
October	82.8	41.80	17.10	82.3	73.0	0.530	0.518	0.816
November	43.0	24.80	12.80	42.6	36.6	0.267	0.258	0.787
December	35.0	19.20	8.89	34.8	29.1	0.214	0.207	0.773
Year	1465.5	594.00	16.01	1457.6	1320.0	9.475	9.271	0.825

Legends

GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobInc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

Qint'x srl (Italy)

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

Variant: Progetto Definitivo

Qint'x srl (Italy)

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

PVsyst V7.2.21 VC7, Simulation date: 20/12/22 18:20 with v7.2.21

Γotal:		-14619.2 tCO₂							
Generated emis	ssions			Saved	CO ₂ Er	nission v	/s. Time	1	
Total:		14619.17 tCO₂							
Source: Detai	iled calculation f	om table below:							
Replaced Emis	sions		-14618.0						
Fotal:		0.0 tCO ₂	-						
System production	1:	9270.75 MWh/yr	-14618.2 —						
Grid Lifecycle Emi	ssions:	0 gCO₂/kWh	ŀ						
Source:	Custom value	supplied by user	14618.4 —						
_ifetime:		30 years	- <u>5</u>						
Annual degradation:	1.0 %								
		-14618.8 –							
			-14619.0 —						
									
			-14619.2 0	5	10	15	20	25	
						Year			
		System Lifecy	cle Emissions Deta	ails					
Item		LCE	Quantity	Quantity		Subtotal			
							[kgCO₂]		
Modules	17	13 kgCO2/kWp	8535 kWp				1461827	1	
Supports	0	.01 kgCO2/kg	129320 kg				863		
luci i contro un		0.66 kgCO2/	53.0				35.0		