
REGIONE SARDEGNA

Città Metropolitana di Sassari (SS)

COMUNE DI ITTIRI

1	EMISSIONE PER ENTI ESTERNI	16/01/23	BAIARDO G.	SIGNORELLO A.	NASTASI A.
0	EMISSIONE PER COMMENTI	30/11/22	BAIARDO G.	SIGNORELLO A.	NASTASI A.
REV.	DESCRIZIONE	DATA	REDATTO	CONTROL.	APPROV.

Committente:

PV ITALY 1 S.r.I

AVAPA / ENERGY

Sede legale in Via Galliera, 28, 40121, Bologna Partita I.V.A. 03816011203 – PEC: avapaenergysrl@legalmail.it

Sede legale in Via dell'Annunciata, 23/4, 20121, Milano Partita I.V.A. 11515530969 – PEC: pv_italy1@pec.it

Società di Progettazione:

Via Jonica, 16 - Loc. Belvedere 96100 Siracusa (SR) Tel.: 0931.1663409

Web: www.antexgroup.it E-mail: info@antexgroup.it

elvedere .: 0931.1663409

Società di Sviluppo:

Via Don Luigi Sturzo, 6/c 74020 Roccaforzata (TA)

PEC: enecosrls@legal.mail.it Part. IVA 02987670730

Progetto:

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 kWp E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

Dott. Ing. Antonino Signorello Ordine degli Ingegneri della Provincia di Catania N° 6105 sez. A

Progettista/Resp. Tecnico:

Elaborato:

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

Scala: Nome DIS/FILE: Allegato: F.to: Livello:

N.A. C21036S05-PD-RT-22-01 1/1 A4 **DEFINITIVO**

Il presente documento è di proprietà della ANTEX GROUP srl.

vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

16/01/2023 REV: 1

: 1 Pag.2

INDICE

1.	PREMESSA	3
	SCOPO	
	NORMA DI RIFERIMENTO	
	DEFINIZIONI	
5.	VALUTAZIONE DEL RISCHIO DI ESPOSIZIONE AI CEM E DPA	
5	5.1. IDENTIFICAZIONE DELLE SORGENTI CEM	7
	5.2. OBBIETTIVI DI PROTEZIONE DELLA POPOLAZIONE DALL'ESPOSIZIONE AI CEM	
6.	VALUTAZIONE DEI CEI GENERATI DALLE SORGENTI INDIVIDUATE	9
6	5.1. CAMPO ELETTROMAGNETICO GENERATO DA LINEE INTERRATE	9
	6.1.1. CEM GENERATO DA TRINCEE CON UN CIRCUITO (1C)	
7.	CAMPO ELETTROMAGNETICO GENERATO DALLE CABINE DI SOTTOCAMPO	11
	7.1. CAMPO ELETTROMAGNETICO GENERATO DA CABINE ELETTRICHE	
8.	CONCLUSIONI	13

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

16/01/2023

REV: 1

Pag.3

1. PREMESSA

Per conto della società proponente, PV ITALY 1 S.r.l., la società Antex Group Srl ha redatto il progetto definitivo relativo alla realizzazione di un impianto di produzione di energia elettrica da fonte solare, da realizzarsi nel territorio del Comune di Ittiri nella Città Metropolitana di Sassari. Il progetto prevede l'installazione di n. 38.304 moduli fotovoltaici in silicio monocristallino da 670 Wp ciascuno, su strutture ad inseguimento monoassiale in acciaio zincato a caldo, con una potenza complessiva pari a 25.633,68 kWp. Tutta l'energia elettrica prodotta verrà ceduta alla rete tramite collegamento in antenna a 36 kV sul futuro ampliamento a 36 kV della stazione elettrica (SE) RTN 380 kV "Ittiri". Le attività di progettazione definitiva e di studio di impatto ambientale sono state sviluppate dalla società di ingegneria Antex Group Srl. Antex Group Srl è una società che fornisce servizi globali di consulenza e management ad Aziende private ed Enti pubblici che intendono realizzare opere ed investimenti su scala nazionale ed internazionale. È costituita da selezionati e qualificati professionisti uniti dalla comune esperienza professionale nell'ambito delle consulenze ingegneristiche, tecniche, ambientali, gestionali, legali e di finanza agevolata e pone a fondamento delle attività, quale elemento essenziale della propria esistenza come unità economica organizzata ed a garanzia di un futuro sviluppo, i principi della qualità, come espressi dalle norme ISO 9001, ISO 14001 e OHSAS 18001 nelle loro ultime edizioni. Antex Group in un'ottica di sviluppo sostenibile proprio e per i propri clienti, è in possesso di un proprio Sistema di Gestione Qualità certificato ISO 9001:2015 per attività di "Servizi tecnico-professionali di ingegneria multidisciplinare".

2. SCOPO

Scopo della presente relazione è valutare le emissioni elettromagnetiche e definire le DPA e APA dell'impianto di produzione di energia elettrica da fonte solare da 25.664 kWp, che *PV Italy 1 S.r.l.* intende realizzare nei terreni censiti nel NCT del Comune di Ittiri (SS), al fine di richiederne la connessione alla Rete elettrica di Trasmissione Nazionale (RTN).

3. NORMA DI RIFERIMENTO

Per la redazione della presente relazione, si è fatto riferimento alla seguente normativa:

- D. Lgs. 81/2008 "Attuazione dell'articolo 1 della legge 3 agosto 2007, n. 123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro" e ss. mm. e ii.;
- DIRETTIVA 2013/35/UE del Parlamento Europeo e del Consiglio del 26 giugno 2013 sulle disposizioni minime di sicurezza e di salute relative all'esposizione dei lavoratori ai rischi derivanti dagli agenti fisici

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

REV: 1

(campi elettromagnetici) (ventesima direttiva particolare ai sensi dell'articolo 16, paragrafo 1, della direttiva 89/391/CEE) e che abroga la direttiva 2004/40/CE;

- Decreto legislativo 1° agosto 2016, n. 159 Attuazione della direttiva 2013/35/UE sulle disposizioni minime di sicurezza e di salute relative all'esposizione dei lavoratori ai rischi derivanti dagli agenti fisici (campi elettromagnetici) e che abroga la direttiva 2004/40/CE;
- Guida non vincolante di buone prassi per l'attuazione della direttiva 2013/35/UE relativa ai campi elettromagnetici - Commissione Europea - Direzione Generale per l'Occupazione, gli Affari Sociali e l'Inclusione - Unità B3;
- Decreto del 29/05/08 "Approvazione delle procedure di misura e valutazione dell'induzione magnetica";
- DM del 29.5.2008 "Approvazione della metodologia di calcolo delle fasce di rispetto per gli elettrodotti";
- Decreto del Presidente del Consiglio dei ministri 08/07/2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni a campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti", G.U. 28 agosto 2003, n. 200;
- Legge quadro 22/02/2001, n. 36 "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", G.U. 7 marzo 2001, n.55;
- Norma CEI 106-11 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) – Parte 1: Linee elettriche aeree e in cavo";
- Norma CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche";
- Norma CEI 211-6 "Guida per la misura e la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz – 10 kHz, con riferimento all'esposizione umana";
- Norma CEI 11-17: Impianti di produzione, trasmissione e distribuzione di energia elettrica Linee in cavo.
- Linea Guida per l'applicazione del § 5.1.3 dell'Allegato al DM 29.05.08. Distanza di prima approssimazione (DPA) da linee e cabine elettriche. [Enel Distribuzione S.p.A. – Divisione Infrastrutture e Reti – QSA/IUN].

L'elenco normativo è riportato soltanto a titolo di promemoria informativo; esso non è esaustivo per cui eventuali leggi o norme applicabili, anche se non citate, verranno comunque applicate.

DEFINIZIONI

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

Ingegneria & Innovazione 16/01/2023 REV: 1 Pag.5

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

Nel seguito del documento si farà uso dei seguenti termini:

- Campi Elettromagnetici (CEM): campi magnetici statici e campi elettrici, magnetici ed elettromagnetici variabili nel tempo di frequenza inferiore o pari a 300 GHz.
- Corrente di contatto (Ic): la corrente di contatto tra una persona e un oggetto è espressa in Ampere (A). Un conduttore che si trova in un campo elettrico può essere caricato dal campo.
- Densità di corrente (J): è definita come la corrente che passa attraverso una sezione unitaria perpendicolare alla sua direzione in un volume conduttore quale il corpo umano o una sua parte. È espressa in Ampere a metro quadro (A/m2).
- Intensità di campo elettrico (E): è una grandezza vettoriale che corrisponde alla forza esercitata su una particella carica indipendentemente dal suo movimento nello spazio. È espressa in Volt al metro (V/m).
- Intensità di campo magnetico (H): è una grandezza vettoriale che, assieme all'induzione magnetica, specifica un campo magnetico in qualunque punto dello spazio. È espressa in Ampere al metro (A/m).
- Induzione magnetica (B): è una grandezza vettoriale che determina una forza agente sulle cariche in movimento. È espressa in Tesla (T). Nello spazio libero e nei materiali biologici l'induzione magnetica e l'intensità del campo magnetico sono legate dall'equazione 1 A m-1 = 4π 10-7 T.

Tra le grandezze sopra citate, possono essere misurate direttamente l'induzione magnetica, le intensità di campo elettrico e magnetico.

5. VALUTAZIONE DEL RISCHIO DI ESPOSIZIONE AI CEM E DPA

Un CEM si identifica con la propagazione nello spazio di campi elettrici e magnetici variabili nel tempo. Alcuni campi provocano la stimolazione degli organi sensoriali, dei nervi e dei muscoli, mentre altri causano riscaldamento. È importante notare che tutti questi effetti hanno una soglia al di sotto della quale non vi è alcun rischio e le esposizioni inferiori alla soglia non sono in alcun caso cumulative. Gli effetti causati dall'esposizione sono transitori, essendo limitati alla durata dell'esposizione, e cessano o diminuiscono quando finisce l'esposizione. Ciò significa che non vi sono ulteriori rischi per la salute una volta terminata l'esposizione. Il tipo di effetto che i CEM hanno sulle persone dipende sostanzialmente da:

- frequenza del CEM;
- intensità del CEM.

In funzione della frequenza, le radiazioni generate da un CEM si dividono in:

- Radiazioni Ionizzati (IR) con frequenze superiori a 300 GHz (raggi UV, raggi gamma e raggi X);
- Radiazioni Non Ionizzanti (NIR) con frequenza fino a 300 GHz (campi elettromagnetici a frequenze estremamente basse, radiofrequenze, microonde, infrarosso, luce visibile).

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

Ingegneria & Innovazione 16/01/2023 Pag.6

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

REV: 1

Nel caso in esame i CEM cui si può essere esposti sono riconducibili a campi a frequenze estremamente basse (Extremely Low Frequency, ELF); infatti, in Italia, linee elettriche, cabine di trasformazione, elettrodomestici funzionano a frequenza industriale costante, pari a 50 Hz. La Guida identifica gli effetti diretti e indiretti accertati che sono provocati dai CEM.

Gli effetti diretti sono i cambiamenti provocati in una persona dall'esposizione a un CEM. La Direttiva prende in considerazione solo gli effetti noti che si basano su meccanismi conosciuti, ma opera una distinzione fra effetti sensoriali ed effetti sulla salute, considerati più gravi. Gli effetti diretti sono i seguenti:

- vertigini e nausea provocati da CEM statici (associati di norma al movimento, ma possibili anche in assenza di movimento);
- effetti su organi sensoriali, nervi e muscoli provocati da campi a bassa frequenza (fino a 100 kHz);
- riscaldamento di tutto il corpo o di parti del corpo causato da campi ad alta frequenza (pari o superiore a 10 MHz); in presenza di valori superiori a qualche GHz il riscaldamento si limita in misura sempre maggiore alla superficie del corpo;
- effetti su nervi e muscoli e riscaldamento causato da frequenze intermedie (100 kHz-10 MHz)

Gli effetti diretti possono, quindi, suddivisi in:

- effetti non termici, come la stimolazione di nervi, muscoli ed organi sensoriali;
- effetti termici, come il riscaldamento dei tessuti.

Con riferimento agli effetti indiretti si ravvisa quanto segue. Possono essere provocati dalla presenza, nel campo elettromagnetico, di oggetti che possono determinare pericoli per la sicurezza o la salute (interferenze con apparecchiature e altri dispositivi medici elettronici, interferenze con apparecchiature o dispositivi medici impiantabili attivi, per esempio stimolatori cardiaci o defibrillatori, ecc.).

Alla luce delle considerazioni effettuate, atteso che la frequenza dei CEM è di 50 Hz, andranno presi in considerazione:

- effetti diretti non termici;
- effetti indiretti connessi direttamente con la salute e la sicurezza.

Per la valutazione del rischio di esposizione ai CEM bisogna effettuare una identificazione delle sorgenti. In seguito, è necessario fissare gli obbiettivi per la protezione della popolazione all'esposizioni da questi.

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

Ingegneria & Innovazione

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

16/01/2023 REV: 1 Pag.7

5.1. IDENTIFICAZIONE DELLE SORGENTI CEM

La valutazione del rischio di esposizione ai CEM parte da un censimento iniziale di sorgenti:

- Tutte le linee elettriche a servizio del parco fotovoltaico:
 - Elettrodotti AT per la interconnessione tra le cabine di sottocampo e la cabina di centrale.
- Le cabine elettriche, come le cabine di sottocampo e la cabina di centrale.

Le rimanenti componenti dell'impianto (sezione BT, apparecchiature del sistema di controllo, etc) sono state giudicate non significative dal punto di vista delle emissioni elettromagnetiche; pertanto, non verranno trattate ai fini della valutazione. Nei successivi paragrafi verrà data una caratterizzazione delle sorgenti appena individuate.

5.2. OBBIETTIVI DI PROTEZIONE DELLA POPOLAZIONE DALL'ESPOSIZIONE AI CEM

Ai fini della protezione della popolazione dall'esposizione ai campi elettrici e magnetici alla frequenza di rete (50Hz) generati da linee e cabine elettriche, il DPCM 8 luglio 2003 (artt. 3 e 4) fissa, in conformità alla Legge 36/2001 (art. 4, c. 2):

- i limiti di esposizione del campo elettrico (5 kV/m) e del campo magnetico (100 μT) come valori efficaci, per la protezione da possibili effetti a breve termine;
- il valore di attenzione (10 μT) e *l'obiettivo di qualità* (3 μT) del campo magnetico da intendersi come mediana nelle 24 ore in normali condizioni di esercizio, per la protezione da possibili effetti a lungo termine connessi all'esposizione nelle aree di gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenza non inferiore a 4 ore giornaliere (luoghi tutelati).

Il valore di attenzione si riferisce ai luoghi tutelati esistenti nei pressi di elettrodotti esistenti; l'obiettivo di qualità si riferisce, invece, alla progettazione di nuovi elettrodotti in prossimità di luoghi tutelati esistenti o alla progettazione di nuovi luoghi tutelati nei pressi di elettrodotti esistenti. Il DPCM 8 luglio 2003, all'art. 6, in attuazione della Legge 36/01 (art. 4 c. 1 lettera h), introduce la metodologia di calcolo delle fasce di rispetto, definita nell'allegato al Decreto 29 maggio 2008 (Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti). Detta fascia comprende tutti i punti nei quali, in normali condizioni di esercizio, il valore di induzione magnetica può essere maggiore o uguale all'obiettivo di qualità. "La metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti" prevede una procedura semplificata di valutazione con l'introduzione della Distanza di Prima Approssimazione (DPA). Detta DPA, nel rispetto dell'obiettivo di qualità di 3 μT del campo magnetico (art. 4 del DPCM 8 luglio 2003), si applica nel caso di:

- realizzazione di nuovi elettrodotti (inclusi potenziamenti) in prossimità di luoghi tutelati;
- progettazione di nuovi luoghi tutelati in prossimità di elettrodotti esistenti.

In particolare, al fine di agevolare/semplificare:

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

Ingegneria & Innovazione

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

- l'iter autorizzativo relativo alla costruzione ed esercizio degli elettrodotti (linee e cabine elettriche);
- le attività di gestione territoriale relative a progettazioni di nuovi luoghi tutelati e a richieste di redazione dei piani di gestione territoriale, inoltrate dalle amministrazioni locali.

Le DPA permettono, nella maggior parte delle situazioni, una valutazione esaustiva dell'esposizione ai campi magnetici. Si precisa, inoltre, che secondo quanto previsto dal Decreto 29 maggio 2008 sopra citato (§ 3.2), la tutela in merito alle fasce di rispetto di cui all'art. 6 del DPCM 8 luglio 2003 si applica alle linee elettriche aeree ed interrate, esistenti ed in progetto **ad esclusione di:**

- linee esercite a frequenza diversa da quella di rete di 50 Hz (ad esempio linee di alimentazione dei mezzi di trasporto);
- linee di classe zero ai sensi del DM 21 marzo 1988, n. 449 (come le linee di telecomunicazione);
- linee di prima classe ai sensi del DM 21 marzo 1988, n. 449 (quali le linee di bassa tensione);
- linee di Media Tensione in cavo cordato ad elica (interrate o aeree Figura 1);

in quanto le relative fasce di rispetto hanno un'ampiezza ridotta, inferiore alle distanze previste dal DM 21 marzo 1988, n. 449 e s.m.i.

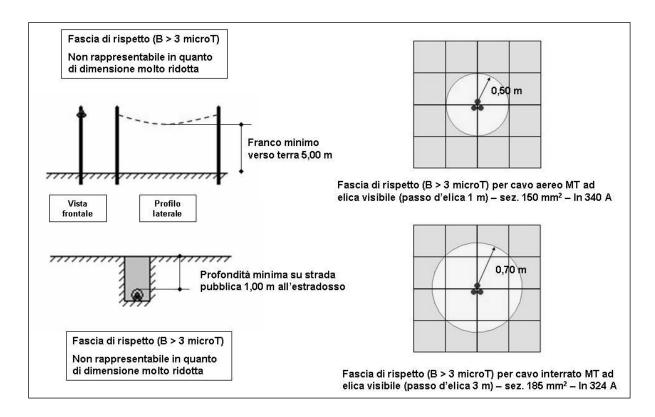


Figura 1 - Curve di livello dell'induzione magnetica generata da cavi cordati ad elica

Si evidenzia infine che le fasce di rispetto (comprese le correlate DPA) non sono applicabili ai luoghi tutelati esistenti in vicinanza di elettrodotti esistenti. In tali casi, l'unico vincolo legale è quello del non superamento del

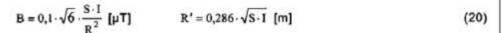
IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

16/01/2023 REV: 1 Pag.9

valore di attenzione del campo magnetico (10 μT da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio); solo ove tale valore risulti superato, si applicheranno le disposizioni dell'art. 9 della Legge 36/2001.

6. VALUTAZIONE DEI CEI GENERATI DALLE SORGENTI INDIVIDUATE


6.1. CAMPO ELETTROMAGNETICO GENERATO DA LINEE INTERRATE

L'intensità del campo elettrico generato da linee interrate è insignificante già al di sopra delle linee stesse grazie all'effetto schermante del rivestimento del cavo e del terreno.

Per quanto riguarda l'intensità del campo magnetico, poiché le linee elettriche interrate MT e AT relative all'impianto fotovoltaico in oggetto, *saranno realizzati mediante la posa di cavi unipolari posati a trifoglio; quindi*, si valuta l'impatto elettromagnetico generato dai cavidotti interrati MT adottando la metodologia di calcolo illustrata nella Norma CEI 106-11, che si riporta di seguito:

b) Cavi unipolari posati a trifoglio

Lo schema di posa in questo caso è illustrato nella Figura 12. Si può quindi ricorrere alle relazioni approssimate viste per e linee aeree con conduttori a triangolo

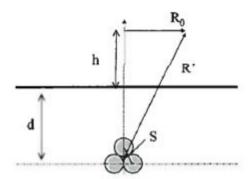


Figura 12 – Schema di principio per il calcolo delle distanze da terne di cavi Interrati con posa a trifoglio oltre le quali l'induzione magnetica è inferiore all'obiettivo di qualità (d è la profondità del centro del conduttore)

I valori di DPA dipendono solo dalla geometria dei conduttori e dai valori di corrente che le attraversano.

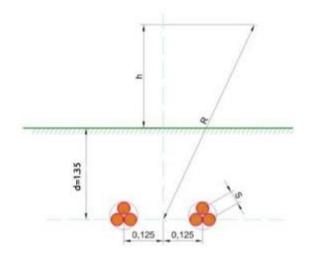
Invece, per tener conto della presenza di due o più terne nella stessa sezione di scavo si è fatto ricorso ad un modello matematico che tenesse conto del campo magnetico generato da ogni singola terna. Il modello costituito, secondo quanto previsto e suggerito dalla norma CEI 211-4 cap. 4.3., tiene conto delle componenti spaziali dell'induzione magnetica, calcolate come somma del contributo delle correnti nei diversi conduttori. È possibile a

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

16/01/2023

REV: 1

Pag.10


RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

questo punto effettuare una semplificazione del modello, che consideri il contributo non del singolo conduttore ma dell'intera terna, della quale sono note le caratteristiche geometriche. Si terrà conto nel seguito per il modello del sistema di cavi unipolari posati a trifoglio: in questo modo viene introdotto un grado di protezione maggiore nel sistema. Come infatti suggerito dalla norma CEI 106-11 al cap. 6.2.3, per i cavi unipolari posati a trifoglio è possibile ricorrere ad una espressione approssimata del campo magnetico, come di seguito riportato.

$$B = \frac{\mu_0}{2\pi} * \frac{S * I}{R^2}$$

dove B $[\mu T]$ è l'induzione magnetica in un generico punto distante R [m] dal conduttore centrale, S [m] è la distanza fra i conduttori adiacenti, percorsi da correnti simmetriche ed equilibrate di ampiezza pari a I [A]. Considerata la natura vettoriale del campo magnetico, è possibile sommare i contributi dovuti alle singole terne e calcolare, attraverso il modello semplificato di cui prima, il valore del campo magnetico nello spazio circostante l'elettrodotto. Considerata, per esempio la disposizione spaziale delle due terne, e fissando l'asse centrale del sistema come riportato in figura, si può calcolare il campo magnetico generato dall'elettrodotto attraverso la seguente formula:

$$B = \frac{\mu_0}{2\pi} * \frac{S_1 * I_1}{(x - x_1)^2 + (y - d)^2} + \frac{\mu_0}{2\pi} * \frac{S_2 * I_2}{(x - x_2)^2 + (y - d)^2}$$

dove B $[\mu T]$ è l'induzione magnetica in un generico punto distante R [m] dal centro del sistema (baricentro delle due terne di cavi), Si [m] è la distanza fra i conduttori adiacenti della terna i-esima, percorsi da correnti simmetriche ed equilibrate di ampiezza pari a Ii [A] (specifica della terna i-esima), x la distanza dall'asse y e viceversa.

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

Ingegneria & Innovazione

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

16/01/2023 REV: 1 Pag.11

6.1.1. CEM GENERATO DA TRINCEE CON UN CIRCUITO (1C)

Il progetto prevede linee AT a 1 circuito (1C) a singola terna di conduttori unipolari (con posa di tipo interrata a trifoglio) che collegano le cabine di sottocampo alla cabina centrale e quest'ultima alla stazione elettrica. Di seguito vengono riportati i calcoli effettuati:

Linea AT 1 - in cavo unipolare posato a trifoglio (Impianto Utente)					
Pn [kVA]	TRATTA	In [A]	Sez. cavo [mm ²]	S [m]	R [m]
5250	CS1_A1>>CS2_A1	93,55	240	0,0428	0,5722881
10750	CS2_A1>>CC	191,56	240	0,0428	0,818916
Linea AT 2 - in cavo unipolare posato a trifoglio (Impianto Utente)					
Pn [kVA]	TRATTA	In [A]	Sez. cavo [mm ²]	S [m]	R [m]
6250	CS2_A2>>CS1_A2	111,37	240	0,0428	0,6244176
12500	CS1_A2>>CC	222,74	240	0,0428	0,8830598

Linea AT 3 - in cavo unipolare posato a trifoglio (Impianto Utente)						
Pn [kVA]	TRATTA	In [A]	Sez. cavo [mm ²]	S [m]	R [m]	
23250	CC>>SE	414,30	500	0,0517	1,3236402	

Poiché la profondità di posa delle linee AT all'interno dell'impianto è pari a 1,1 m, il valore di induzione magnetica emesso da queste terne sono minori di 3 μ T già al livello del suolo. Analogamente la linea AT esterna all'impianto si troverà ad una profondità di posa pari a circa 1,5 m; quindi, il valore di induzione magnetica emesso da queste terne sono minori di 3 μ T già al livello del suolo.

7. CAMPO ELETTROMAGNETICO GENERATO DALLE CABINE DI SOTTOCAMPO

Relativamente alle cabine di sottocampo, assimilabili a cabine secondarie di trasformazione, sono state individuate le distanze di prima approssimazione secondo quanto indicato dalle linee guida ENEL già citate, ed in particolare all'allegato B10 della guida e alle formule di calcolo contenute nel par. 5.2.1 dell'allegato al DM 29/05/2008 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti". In particolare, la DPA è intesa come la distanza da ciascuna delle pareti della cabina secondaria, calcolata simulando una linea trifase, con cavi paralleli, percorsa dalla corrente nominale BT in uscita dal trasformatore (I) e con distanza tra le fasi pari al diametro reale de cavo (x), ossia conduttore più isolante. La relazione da applicare è la seguente:

$$DPA = 0.40942 * x^{0.5241} * \sqrt{I}$$

Considerando il trasformatore di taglia massima in progetto, pari a 6750 KVA alimentato da 25 inverter, il valore di I massima da prendere in considerazione è pari a 4512,5 A alla tensione di 800 V (tensione in uscita dall'inverter). Supponendo per i cavi in uscita dal trasformatore la sezione 240 mm², con più conduttori in parallelo, tipologia cavi ARE4H5E 20,8/36 kV, il valore del diametro esterno x risulta essere pari a 42,8 mm. Utilizzando tali valori per il calcolo,

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

16/01/2023 REV: 1 Pag.12

la DPA risulta essere pari a circa 5,27 m. Pertanto, relativamente alle cabine di sottocampo, viene individuata intorno ad esse una fascia di rispetto pari a 5,5 m (arrotondata al mezzo metro superiore) al di fuori della quale è garantito il rispetto dell'obiettivo di qualità richiesto.

Si tenga conto che l'ubicazione delle cabine di sottocampo è in aree interne al parco fotovoltaico, distanti dai confini dello stesso; pertanto, è già esclusa a monte l'interferenza con obiettivi sensibili, come individuato dalla normativa.

8. CAMPO ELETTROMAGNETICO GENERATO DA CABINE ELETTRICHE

Così come indicato nel documento "Linea Guida per l'applicazione del § 5.1.3 dell'Allegato al DM 29.05.08. Distanza di prima approssimazione (DPA) da linee e cabine elettriche [Enel Distribuzione S.p.A. – Divisione Infrastrutture e Reti – QSA/IUN]", può essere presa in considerazione una DPA per le cabine elettriche a seconda della potenza del trasformatore installata al suo interno, come rappresentato in figura.



IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

16/01/2023 REV: 1 Pag.13

CONCLUSIONI

Nella presente relazione è stato condotto uno studio analitico volto a valutare l'impatto elettromagnetico delle opere da realizzare, e, sulla base delle risultanze, individuare eventuali fasce di rispetto da apporre al fine di garantire il raggiungimento degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici, secondo il vigente quadro normativo. Una volta individuate le possibili sorgenti dei campi elettromagnetici, per ciascuna di esse è stata condotta una valutazione di tipo analitico, volta a determinare la consistenza dei campi generati dalle sorgenti e l'eventuale distanza di prima approssimazione (DPA). Di seguito i principali risultati:

IMPIANTO AGRI-VOLTAICO DI POTENZA NOMINALE 25.633,68 KWP E RELATIVE OPERE DI CONNESSIONE ALLA RTN DA REALIZZARSI IN COMUNE DI ITTIRI (SS)

16/01/2023

REV: 1

Pag.14

RELAZIONE TECNICA VALUTAZIONE DI IMPATTO ELETTROMEGNETICO

- Elettrodotti: Relativamente alle tratte di elettrodotto interne al parco fotovoltaico, l'entità delle DPA è tale da ricadere all'interno del parco stesso, senza interferenze con luoghi da tutelare. Per quanto riguarda gli elettrodotti esterni al parco, si rileva che l'entità dei campi generati è inferiore gli obiettivi di qualità già al di sotto del livello del suolo; pertanto, non è necessario prendere in considerazione fasce di rispetto.
- Cabine di sottocampo: Relativamente ai campi elettromagnetici legati alla presenza delle cabine di sottocampo, l'entità delle DPA è tale da ricadere all'interno dell'area di parco FV, senza interferenze con luoghi da tutelare.

A conclusione del presente studio, è possibile affermare che per tutte le sorgenti di campi elettromagnetici individuate, le emissioni risultano essere al di sotto dei limiti imposti dalla vigente normativa.

