

Regione Emilia Romagna Comune di Alfonsine (RA)

IMPIANTO AGRIVOLTAICO **E OPERE CONNESSE**

Potenza Impianto 38,339 MWp

PROPONENTE

lightsource bp (O)

LIGHTSOURCE RENEWABLE ENERGY ITALY SPV 8 S.R.L.

VIA G. LEOPARDI, 7 - 20123 MILANO (MI) - P.IVA: 11015630962 - PEC: lightsourcespv 8@legalmail.it

PROGETTAZIONE

Ing. Alberto Rizzioli 🏙 incico spa

Via R. Zandonai, 4 – 44124 – FERRARA IT - P.IVA: 00522150382 – PEC: incico@pec.it Tel.: +39 0532 202613 - email: a.rizzioli@incico.com

COLLABORAZIONI

P.Ind. Michele Lambertini incico spa

Via R. Zandonai, 4 - 44124 - FERRARA IT - P.IVA: 00522150382 - PEC: incico@pec.it Tel.: +39 0532 202613 - email: m.lambertini@incico.com

COORDINAMENTO PROGETTUALE

SOLAR IT S.R.L.

VIA I. ALPI 4 - 46100 - MANTOVA IT - P.IVA: 02627240209 - PEC: solarit@lamiapec.it Tel.: +390425 072 257- email: info@solaritglobal.com

TITOLO ELABORATO

Relazione tecnica sistema di accumulo

LIVELLO DI PROGETTAZIONE	CODICE ELABORATO	FILE NAME	DATA
DEFINITIVO	PI-R01	LS15781-PI-R01_0	21/12/2022

REVIS	REVISIONI								
REV.	DATA	DESCRIZIONE	ESEGUITO	VERIFICATO	A PPROVATO				
0	21/12/2022	Emesso	MCA	MLA	ARI				

RELAZIONE TECNICA

SISTEMA DI ACCUMULO

INDICE

Contenuto del documento

1.	PREMESSA	. 4
	GENERALITA'	
3.	QUADRO NORMATIVO	. 4
4.	ASPETTI DI SICUREZZA E AMBIENTALI	. 5
5.	APPLICAZIONI AL CAMPO IN OGGETTO E CONCLUSIONI	. 9

1. PREMESSA

La società proponente nell'ambito del proprio piano di sviluppo delle fonti energetiche rinnovabili prevede di realizzare un impianto di produzione da fonte rinnovabile - fotovoltaica - nel Comune di Alfonsine (RA) (nel seguito "Impianto FV"). Gli impianti saranno realizzati su due aree denominate S. Anna e Campeggia e saranno conformi all'impiego come Agrivoltaico.

2. GENERALITA'

Un Sistema di accumulo è un insieme di dispositivi, apparecchiature e logiche di gestione e controllo, funzionale ad assorbire e rilasciare energia elettrica, previsto per funzionare in maniera continuativa in parallelo e in scambio con la rete elettrica (immissione e/o prelievo).

I sistemi di accumulo possono essere installati su:

- impianti solari fotovoltaici incentivati
- impianti solari termodinamici incentivati o che chiedono il riconoscimento degli incentivi;
- impianti alimentati da fonte rinnovabile diversi dai fotovoltaici incentivati o che chiedono il riconoscimento degli incentivi, anche in sostituzione al regime incentivante dei Certificati Verdi;
- impianti di produzione combinata di energia elettrica e calore costituiti da unità per le quali viene richiesto il riconoscimento del funzionamento come Cogenerazione ad Alto Rendimento e/o il riconoscimento dei Certificati Bianchi;
- impianti alimentati da fonte rinnovabile che accedono, nell'ambito del Ritiro Dedicato, ai prezzi minimi garantiti nel caso in cui l'energia elettrica è ritirata dal GSE o è commercializzata sul libero mercato;
- impianti di produzione che accedono allo Scambio sul Posto;
- impianti alimentati da fonte rinnovabile per i quali è richiesta l'emissione di Garanzie d'Origine

3. QUADRO NORMATIVO

L'Autorità per l'Energia con propri provvedimenti ha definito opportune disposizioni finalizzate a consentire l'integrazione del sistema di accumulo nel sistema elettrico nazionale:

- Delibera AEEGSI 574/2014/R/EEL
- Delibera AEEGSI 642/2014/R/EEL
- Delibera AEEGSI 360/2015/R/EEL
- Delibera AEEGSI 786/2016/R/EEL
- Il quadro regolatorio attuale definisce:
- le disposizioni per la connessione alla rete dei sistemi di accumulo;

- le condizioni per l'erogazione del servizio di trasmissione e distribuzione dell'energia elettrica prelevata dai sistemi di accumulo;
- le condizioni per l'erogazione del servizio di dispacciamento in presenza di sistemi di accumulo;
- le disposizioni inerenti all'erogazione del servizio di misura in presenza di sistemi di accumulo;
- le condizioni per la corretta erogazione degli incentivi o dei regimi commerciali speciali (ritiro dedicato e scambio sul posto), in caso di integrazione di sistemi di accumulo negli impianti di produzione che ne beneficiano;
- i servizi di rete che dovranno essere prestati dai sistemi di accumulo.
- I sistemi di accumulo, per essere costruiti ed eserciti, devono soddisfare i requisiti tecnici definiti dalle normetecniche.
- Il Comitato Elettrotecnico Italiano ha definito in ambito nazionale le prescrizioni tecniche per la connessione alle reti elettriche nazionali dei clienti attivi e passivi attraverso la Norma CEI 0-16 e la Norma CEI 0-21.
- Le norme CEI 0-16 e CEI 0-21, che definiscono in ambito nazionale le prescrizioni per la connessione degli utenti attivi e passivi alle reti delle imprese distributrici di energia elettrica in alta, media (CEI 0-16) e bassa (CEI 0-21) tensione, sono state recentemente aggiornate, per trattare anche gli aspetti relativi ai Sistemi di Accumulo (SdA) elettrico.

4. ASPETTI DI SICUREZZA E AMBIENTALI

Di seguito si evidenziano le caratteristiche chimiche, elettriche e tecnologiche per le diverse tipologie di batterie.

Accumulatori al piombo acido

La cella elementare di un accumulatore al piombo è costituita da un elettrodo negativo di piombo metallico e da un elettrodo positivo di biossido di piombo, mentre l'elettrolita è una soluzione acquosa di acido solforico con elevata conducibilità ionica.

Una cella elementare è costituita da un certo numero di elettrodi positivi connessi tra loro, alternati ad elettrodi negativi anch'essi connessi tra loro.

Interposto tra elettrodo positivo ed elettrodo negativo vi è un separatore.

Nelle applicazioni pratiche vengono installate in un unico contenitore diverse celle elementari, collegate elettricamente in serie, che realizzano monoblocchi con tensione nominale pari a 12 o 24Vdc.

Il progetto della cella elementare e la geometria della cella influenzano le prestazioni dell'accumulatore.

Gli elettrodi possono essere:

- a "piastre piane": la materia attiva è una piastra spugnosa spalmata su una griglia metallica realizzata generalmente in piombo addizionato di calcio o antimonio per ottenere maggiore resistenza meccanica (più raramente in piombo puro).
- a "tubo": il componente elementare è un tubo contenente la materia attiva, attraversato da un sottile strato di piombo per l'adduzione della corrente.

Batteria Litio/Ioni

In una batteria litio/ioni il catodo è solitamente costituito da un ossido litiato di un metallo di transizione (LiTMO2 con TM = Co, Ni, Mn) che garantisce una struttura a strati o a tunnel dove gli ioni di litio possono essere inseriti o estratti facilmente.

L'anodo è generalmente costituito da grafite allo stato litiato in cui ogni atomo è legato ad altri tre in un piano composto da anelli esagonali fusi assieme e che grazie alla delocalizzazione della nuvola elettronica conduce elettricità.

L'elettrolita è composto tipicamente da sali di litio come l'esafluorofosfato di litio (LiPF6) disciolti in una miscela di solventi organici (carbonato di dimetile o di etilene) e la membrana separatrice è costituita normalmente da polietilene o polipropilene.

I collettori di corrente sono generalmente costituiti da metalli che non devono reagire con l'elettrolita e sono solitamente il rame per il anodo e l'alluminio per il catodo.

Quando la cella è completamente scarica tutto il litio presente è contenuto nel catodo.

Durante il processo di carica lo ione di litio viene estratto dall'ossido metallico costituente il catodo e trasferito all'anodo, mentre gli elettroni migrano dal catodo all'anodo attraverso il circuito esterno ed il metallo del catodo viene quindi ossidato.

All'anodo, il processo di carica determina l'intrappolamento dello ione di litio, che si riduce a litio nella matrice di grafite che si ossida acquisendo gli elettro- ni provenienti dal circuito esterno.

Durante la scarica il litio intercalato nella matrice di grafite si ossida rilasciando all'esterno gli elettroni, mentre gli ioni di litio migrano dall'elettrolita al catodo, che viene ridotto.

Durante il primo ciclo di carica, oltre al trasferimento degli ioni di litio nella grafite, si forma anche uno strato passivante tra elettrolita ed elettrodo negativo, denominato SEI (Solid-Electrolyte Interface).

Questo strato è importante per le prestazioni delle batterie poiché ne influenza il numero di cicli, la capacità e la sicurezza.

Le celle con elettrolita liquido possono essere realizzate con struttura cilindrica, prismatica, a bottone, mentre le celle polimeriche sono piatte.

Le batterie litio/ioni sono una famiglia di accumulatori elettrochimici che si differenziano tra loro oltre che per la tecnologia dell'elettrolita (liquido o polimerico) anche per quella dei materiali catodici ed anodici. Il materiale catodico più utilizzato ed il primo ad esse- re usato è l'ossido litiato di cobalto (LiCoO2) il quale presenta una buona capacità di immagazzinare ioni di litio, ma critico quando si veri ca la sovraccarica della cella, che può determinare il collasso della struttura del materiale con conseguente rilascio di grande quantità di calore. Inoltre la lieve tossicità e l'elevato costo del cobalto ha determinato recenti sforzi per cercare alternative migliori.

Batteria Sodio/ Cloruro di Nichel

La batteria sodio/cloruro di nichel appartiene alla famiglia di batterie ad alta temperatura, in cui i due elettrodi si trovano allo stato fuso ed isolati fisicamente ed elettricamente tra loro da un separatore ceramico, che permette il passaggio ionico e svolge le funzioni di elettrolita.

Il separatore ceramico, costituito da β "-allumina, permette il passaggio ionico solo per temperature interne alla batteria prossime ai 260°C, per questo la cella opera ad alta temperatura con elettrodi fusi. All'interno della cella il catodo è costituito da un cloruro di un metallo di transizione (nichel o ferro) allo sta- to liquido, l'anodo è costituito da sodio allo stato fuso, mentre il separatore ceramico è costituito da β "-allumina drogata con ossidi che le conferiscono una struttura caratteristica in cui si muovono gli ioni sodio.

Batteria Sodio/Zolfo

Come le batterie sodio /cloruro di nichel, la batteria sodio/zolfo appartiene alla famiglia delle batterie ad alta temperatura, in cui i due elettrodi di trovano allo stato fuso, isolati fisicamente ed elettricamente tra loro da un separatore ceramico, che permette il pas- saggio ionico e svolge le funzioni di elettrolita. In una cella sodio/zolfo, il catodo è costituito da zolfo liquido, l'anodo è costituito da sodio allo stato liquido, mentre il separatore ceramico è costituito da β "-allumina, un composto costituito da β "-allumina drogata con ossidi che le conferiscono una struttura caratteristica in cui si muovono gli ioni sodio.

Durante la scarica, in corrispondenza della superficie di contatto sodio-elettrolita il sodio viene ossidato liberando gli elettroni.

Batteria Nichel / Cadmio

Una batteria nichel/cadmio è composta da coppie di elettrodi isolati elettricamente mediante un separato- re e immerse in un elettrolita d tipo alcalino, costituito da idrossido di potassio in soluzione acquosa. Spesso questo elettrolita è addizionato con piccole quantità di idrossido di litio e idrossido di sodio per aumentarne la vita utile e l'intervallo di temperatura.

Durante la scarica, all'anodo il cadmio metallico viene ossidato dalla reazione con gli ioni OHdell'elettrolita originando idrossido di cadmio e liberando elettroni.

Al catodo invece l'ossido idrato di nichel viene ridotto in idrossido di nichel dalla reazione con la molecola di acqua. Durante la carica le due reazioni avvengono nel verso opposto.

Sia durante la scarica che durante la ricarica, la concentrazione dell'elettrolita resta praticamente costante (non viene consumato).

Le batterie nichel/cadmio presentano normalmente un contenitore rivestito in polipropilene e dotato di una valvola di sfogo per i gas eventualmente prodotti durante l'operazione di ricarica. Gli elettrodi positivi e negativi sono isolati da un separatore (generalmente costituito da nylon) che deve permettere la libera cir- colazione dell'elettrolita.

Batteria Redox a circolazione di elettrolita di vanadio (VRB)

Le batterie Redox a circolazione di elettrolita sono in grado di accumulare energia elettrica in soluzioni elettrolitiche contenenti differenti coppie Redox, utilizzando reazioni accoppiate di ossido- riduzione in cui sia i reagenti sia i prodotti di reazione, in forma ionica, sono completamente disciolti in soluzione acquosa.

Nel caso specifico della batteria Redox al Vanadio (VRB) la coppia Redox è costituita da Vanadio in differenti stati di ossidazione, V3+/V2+ all'elettro- do positivo e V5+/V4+ al negativo, disciolti in una soluzione di acido solforico.

La cella elementare è costituita dalla membrana di scambio ionico, dagli elettrodi e dalle piastre bipolari. La membrana permette il passaggio degli ioni H+ e separa l'elettrolita positivo dal negativo.

La molecola di acido solforico H2SO4 si scinde negli ioni H+ ed SO4-. Lo ione H+ sostituisce quello della pellicola di scambio ionico e viene quindi immesso nell'altro elettrolita (positivo). La forza elettromotrice di una cella elementare è 1,25V.

La batteria di flusso elettrolita è molto diversa da un punto di vista costruttivo rispetto ad un accumulato- re tradizionale.

Le soluzioni dell'elettrolita positivo e negativo sono immagazzinati in serbatoi, messe in circolazione da pompe attraverso un circuito idraulico e si interfacciano nella cella elementare attraverso la membrana. Il cuore della batteria è costituito dallo stack, costituito da un determinato numero di celle elementari

collegate elettricamente in serie.

La batteria è integrata in un sistema che comprende anche un convertitore elettronico DC/AC, un sistema di controllo e un sistema di raffreddamento.

In commercio non si trovano batterie singole, ma integrate in un sistema completo, per cui risulta molto difficile analizzare le prestazioni della tecnologia prescindendo da quelle del sistema in cui è integrata.

Considerazioni di impatto ambientale relative all'installazione di Sistemi 6.4 di Accumulo (SdA) connessi in rete

I requisiti generali di impatto ambientale riguardano, su scala globale, argomenti relativi alla progettazione, produzione dei componenti, installazione, funzionamento, manutenzione ed aspetti relativi al riciclo dei materiali, con particolare attenzione al rispetto dell'ambiente e del territorio ed allo sviluppo di prodotti non inquinanti.

I requisiti ambientali di un SdA sono influenzati dalle condizioni di installazione (residenziale, industriale, Utility, SdA associato a generazione elettrica da fonte rinnovabili), dal tipo di tecnologia elettrochimica utilizzata e dalle tipologie di rischio tecnico introdotte nell'installazione.

I SdA sono influenzati dalle condizioni ambientali in cui vengono installati; a loro volta possono avere degli effetti rispetto all'ambiente circostante in caso di un evento non controllato.

In tal senso, i SdA andrebbero considerati durante le condizioni di funzionamento usuali e non usuali.

Il principio generale definisce che in condizioni di funzionamento "usuali" i SdA non dovrebbero essere in influenzati dalle condizioni ambientali che caratterizzano l'installazione.

Lo Standard IEEE più significativo è il recente 1679- 2010, che definisce quali obblighi informativi debba avere il costruttore quando si appresta a fornire una data tecnologia di accumulo.

5. APPLICAZIONI AL CAMPO IN OGGETTO E CONCLUSIONI

Il presente progetto contempla l'utilizzo di 3 inverter centrali bidirezionali (PCS) i quali avranno la gestione dell'energia su 4 container di batterie aventi una potenza pari a 2.600KWh/cad. con una capacità di gruppo pari a 10,4MWh e complessiva di 31,2MWh (7,8MW).

Il sistema BESS sarà installato c/o la sottostazione utente, al fine di diminuire le perdite di sistema, utilizzando un'area dedicata.