

Regione Emilia Romagna Comune di Alfonsine (RA)

IMPIANTO AGRIVOLTAICO **E OPERE CONNESSE**

Potenza Impianto 38,339 MWp

lightsource bp (C

LIGHTSOURCE RENEWABLE ENERGY ITALY SPV 8 S.R.L.

VIA G. LEOPARDI, 7 - 20123 MILANO (MI) - P.IVA: 11015630962 - PEC: lightsourcespv_8@legalmail.it

PROGETTAZIONE

Ing. Alberto Rizzioli 🏙 incico spa

Via R. Zandonai, 4 - 44124 - FERRARA IT - P.IVA: 00522150382 - PEC: incico@pec.it Tel.: +39 0532 202613 - email: a.rizzioli@incico.com

COLLABORAZIONI

P.Ind. Michele Lambertini incico spa

Via R. Zandonai, 4 - 44124 - FERRARA IT - P.IVA: 00522150382 - PEC: incico@pec.it Tel.: +39 0532 202613 - email: m.lambertini@incico.com

COORDINAMENTO PROGETTUALE

SOLAR IT S.R.L.

VIA I. ALPI 4 - 46100 - MANTOVA IT - P.IVA: 02627240209 - PEC: solarit@lamiapec.it Tel.: +390425 072 257- email: info@solaritglobal.com

TITOLO ELABORATO

Calcoli preliminari di dimensionamento strutture

LIVELLO DI PROGETTAZIONE	CODICE ELABORATO	FILE NAME	D ATA
DEFINITIVO	PI-R02	LS15781-PI-R02_0	21/12/2022

REVIS	REVISIONI									
REV.	DATA	DESCRIZIONE	ESEGUITO	VERIFICATO	A PPROVATO					
0	21/12/2022	Emesso	MCA	MLA	ARI					

RELAZIONE TECNICA

CALCOLI PRELIMINARI DI DIMENSIONAMENTO STRUTTURE

INDICE

Contenuto del documento

1	OGGETTO	3
2	DESCRIZIONE GENERALE DELL'OPERA - BASAMENTI	4
3	NORMATIVA DI RIFERIMENTO	6
4	Storage - MODELLAZIONE DELLA STRUTTURA	9
5	Storage - MODELLAZIONE DELLE SEZIONI	11
6	Storage - MODELLAZIONE STRUTTURA: NODI	12
7	Storage - MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	13
8	Storage - MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO	16
9	Storage - MODELLAZIONE DELLE AZIONI	18
10	Storage - DEFINIZIONE DELLE COMBINAZIONI	21
11	Storage - RISULTATI OPERE DI FONDAZIONE	25
12	Storage - VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.	27
13	Storage - PROGETTAZIONE DELLE FONDAZIONI	27
14	Storage - STATI LIMITE D' ESERCIZIO	35
15	CABINATO INVERTER	39
16	Inverter - MODELLAZIONE DELLA STRUTTURA	
17	Inverter - MODELLAZIONE DELLE SEZIONI	41
18	Inverter - MODELLAZIONE STRUTTURA: NODI	
19	Inverter - MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	43
20	Inverter - MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO	
21	Inverter - MODELLAZIONE DELLE AZIONI	
22	Inverter -SCHEMATIZZAZIONE DEI CASI DI CARICO	
23	Inverter - DEFINIZIONE DELLE COMBINAZIONI	
24	Inverter - RISULTATI OPERE DI FONDAZIONE	
25	Inverter - VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A	
26	Inverter - PROGETTAZIONE DELLE FONDAZIONI	58
27	Inverter - STATI LIMITE D' ESERCIZIO	66
	TRACKER	
29	TRACKER - LE CARATTERISTICHE DEL SITO DI FABBRICA	72
30	TRACKER - CARATTERISTICHE DEI MATERIALI E TRATTAMENTI PROTETTIVI	74
31	TRACKER - CRITERI PER LA MISURA DELLA SICUREZZA	74
32	TRACKER - COEFFICIENTI PER LA VERIFICA DI SICUREZZA E DELLE PRESTAZIONI	75
33	TRACKER - CARICO SUI PALO	75

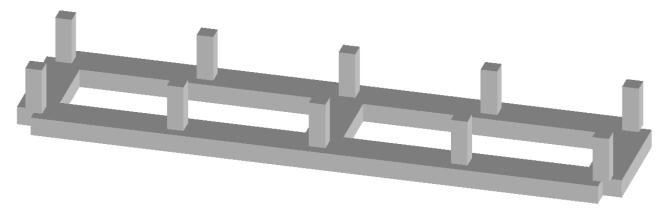
34	TRACKER -	RELAZIONE DI CALCOLO STRUTTURALE	76
35	TRACKER -	QUADRO NORMATIVO DI RIFERIMENTO ADOTTATO	76
36	TRACKER -	MODELLAZIONE DELLA STRUTTURA	78
37	TRACKER -	MODELLAZIONE DELLE SEZIONI	79
38	TRACKER -	MODELLAZIONE STRUTTURA: NODI	79
39	TRACKER -	MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	80
40	TRACKER -	MODELLAZIONE DELLE AZIONI	81
41	TRACKER -	SCHEMATIZZAZIONE DEI CASI DI CARICO	83
42	TRACKER -	DEFINIZIONE DELLE COMBINAZIONI	84
43	TRACKER -	VERIFICHE PER ELEMENTI IN ACCIAIO	86
44	TRACKER -	RISULTATI OPERE DI FONDAZIONE	88
45	TRACKER -	RELAZIONE SUI MATERIALI	98

1 OGGETTO

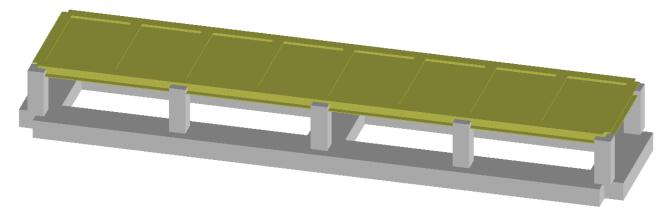
La società proponente nell'ambito del proprio piano di sviluppo delle fonti energetiche rinnovabili prevede di realizzare un impianto di produzione da fonte rinnovabile - fotovoltaica - nel Comune di Alfonsine (RA) (nel seguito "Impianto FV"). Gli impianti saranno realizzati su due aree denominate S. Anna e Campeggia e saranno conformi all'impiego come Agrivoltaico.

Il presente documento ha lo scopo di illustrare i criteri progettuali relativi ai calcoli strutturali in conformità al §10.1 del DM 17/01/18, è comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica.

Segue inoltre le indicazioni fornite al §10.2 del DM stesso per quanto concerne analisi e verifiche svolte con l'ausilio di codici di calcolo. Nella presente parte sono riportati i principali elementi di inquadramento del progetto esecutivo riguardante le strutture, in relazione agli strumenti urbanistici, al progetto architettonico, al progetto delle componenti tecnologiche in generale ed alle prestazioni attese dalla struttura.

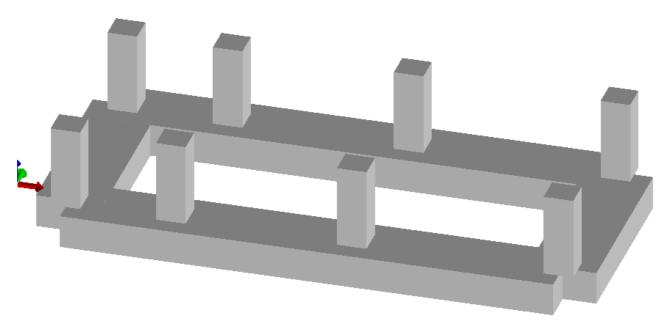

Origine e Caratteristiche dei Codici di Calcolo							
Codice di calcolo: PRO_SAP PROfessional Structural Analysis Program							
Versione:	PROFESSIONAL (build 2021-05-192)						
Produttore-	2S.I. Software e Servizi per l'Ingegneria s.r.l.						
Distributore:	Via Garibaldi, 90 44121 Ferrara FE (Italy)						
Tel. +39 0532 200091 www.2si.it							
Codice Licenza:	Licenza dsi3958						

In merito al punto 10.2 delle Norme Tecniche per le Costruzioni (*Affidabilità dei codici utilizzati*), si fa riferimento al **Documento di Affidabilità** "Test di validazione del software di calcolo PRO_SAP e dei moduli aggiuntivi PRO_SAP Modulo Geotecnico, PRO_CAD nodi acciaio e PRO_MST" disponibile per il download sul sito: https://www.2si.it/it/prodotti/affidabilita/

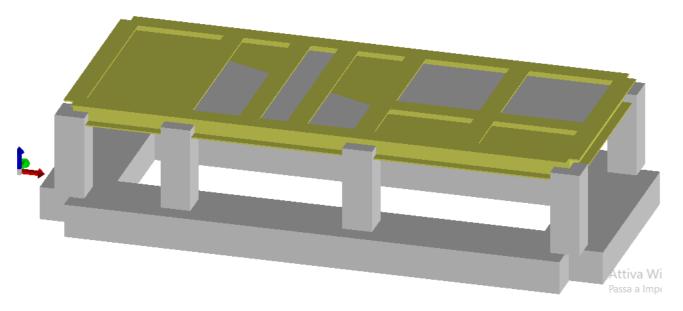


2 DESCRIZIONE GENERALE DELL'OPERA - BASAMENTI

Descrizione generale dell'opera							
Fabbricato ad uso	Opere di fondazioni per l'installazione di cabinato tecnico prefabbricato metallico trasportabile atto a contenere apparecchiature per lo Storage energetico. Tali opere sono realizzate in C.A. ed aventi le seguenti caratteristiche:						
	travi continue e pilastri in C.A. con quota di infissione impalcato (estradosso trave) pari a -40 cm rispetto al piano campagna e quota di appoggio cabinato +60 cm dal piano medesimo.						
	Comune di Alfonsine (RA) (Regione EMILIA-ROMAGNA)						
Ubicazione	Località Alfonsine						
Tipo di fondazione	Trave continua						



Nell'immagine successiva sono presenti gli elementi strutturali inseriti nella modellazione al solo scopo di applicare i carichi in modo corretto.



Gli elementi inseriti non alterano il comportamento degli elementi strutturali oggetto di progettazione, sono stati modellati con elementi di infinita rigidezza e peso nullo.

delle componenti tecnologiche in generale ed alle prestazioni attese dalla struttura.

Nell'immagine successiva sono presenti gli elementi strutturali inseriti nella modellazione al solo scopo di applicare i carichi in modo corretto.

Gli elementi inseriti non alterano il comportamento degli elementi strutturali oggetto di progettazione, sono stati modellati con elementi di infinita rigidezza e peso nullo.

3 NORMATIVA DI RIFERIMENTO

D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".

Circolare 21/01/19, n. 7 C.S.LL.PP "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni di cui al decreto ministeriale 17 gennaio 2018"

D.Min. Infrastrutture e trasporti 14 Settembre 2005 e allegate "Norme tecniche per le costruzioni".

D.M. LL.PP. 9 Gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".

D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche relative ai << Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>".

D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".

Circolare 4/07/96, n.156AA.GG./STC. istruzioni per l'applicazione delle "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>" di cui al D.M. 16/01/96.

Circolare 10/04/97, n.65AA.GG. istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/96.

D.M. LL.PP. 20 Novembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".

Circolare 4 Gennaio 1989 n. 30787 "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".

D.M. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

D.M. LL.PP. 3 Dicembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".

UNI 9502 - Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso - edizione maggio 2001

Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modificazioni e integrazioni.

UNI EN 1990:2006 13/04/2006 Eurocodice 0 - Criteri generali di progettazione strutturale.

UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 - Azioni sulle strutture - Parte 1-1: Azioni in generale - Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.

UNI EN 1991-2:2005 01/03/2005 Eurocodice 1 - Azioni sulle strutture - Parte 2: Carichi da traffico sui ponti.

UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 - Azioni sulle strutture - Parte 1-3: Azioni in generale - Carichi da neve.

UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 - Azioni sulle strutture - Parte 1-4: Azioni in generale - Azioni del vento.

UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 - Azioni sulle strutture - Parte 1-5: Azioni in generale - Azioni termiche.

UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 - Progettazione delle strutture di calcestruzzo - Parte 1-1: Regole generali e regole per gli edifici.

UNI EN 1992-1-2:2005 01/04/2005 Eurocodice 2 - Progettazione delle strutture di calcestruzzo - Parte 1-2: Regole generali - Progettazione strutturale contro l'incendio.

UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 - Progettazione delle strutture di acciaio - Parte 1-1: Regole generali e regole per gli edifici.

UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 - Progettazione delle strutture di acciaio - Parte 1-8: Progettazione dei collegamenti.

UNI EN 1994-1-1:2005 01/03/2005 Eurocodice 4 - Progettazione delle strutture composte acciaio-calcestruzzo - Parte 1-1: Regole generali e regole per gli edifici.

UNI EN 1994-2:2006 12/01/2006 Eurocodice 4 - Progettazione delle strutture composte acciaio-calcestruzzo - Parte 2: Regole generali e regole per i ponti.

UNI EN 1995-1-1:2005 01/02/2005 Eurocodice 5 - Progettazione delle strutture di legno - Parte 1-1: Regole generali – Regole comuni e regole per gli edifici.

UNI EN 1995-2:2005 01/01/2005 Eurocodice 5 - Progettazione delle strutture di legno - Parte 2: Ponti.

UNI EN 1996-1-1:2006 26/01/2006 Eurocodice 6 - Progettazione delle strutture di muratura - Parte 1-1: Regole generali per strutture di muratura armata e non armata.

UNI EN 1996-3:2006 09/03/2006 Eurocodice 6 - Progettazione delle strutture di muratura - Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata.

UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 - Progettazione geotecnica - Parte 1: Regole generali.

UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 - Progettazione delle strutture per la resistenza sismica - Parte 1: Regole generali, azioni sismiche e regole per gli edifici.

UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 - Progettazione delle strutture per la resistenza sismica - Parte 3: Valutazione e adeguamento degli edifici.

UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 - Progettazione delle strutture per la resistenza sismica - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

NOTA il capitolo "normativa di riferimento": riporta l' elenco delle normative implementate nel software. Le norme utilizzate per la struttura oggetto della presente relazione sono indicate nel precedente capitolo "RELAZIONE DI CALCOLO STRUTTURALE" "ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO". Laddove nei capitoli successivi vengano richiamate norme antecedenti al DM 17.01.18 è dovuto o a progettazione simulata di edifico esistente.

Quadro normativo di riferimento adottato

Le norme ed i documenti assunti quale riferimento per la progettazione strutturale vengono indicati di seguito.

Nel capitolo "normativa di riferimento" è comunque presente l'elenco completo delle normative disponibili.

Progetto-verifica degli elementi							
Progetto cemento armato	D.M. 17-01-2018						
Progetto acciaio	D.M. 17-01-2018						
Progetto legno	D.M. 17-01-2018						
Progetto muratura	D.M. 17-01-2018						
Azione sismica							
Norma applicata per l' azione sismica	D.M. 17-01-2018						

Azioni di progetto sulla costruzione

Nei capitoli "modellazione delle azioni" e "schematizzazione dei casi di carico" sono indicate le azioni sulla costruzioni.

Nel prosieguo si indicano tipo di analisi strutturale condotta (statico, dinamico, lineare o non lineare) e il metodo adottato per la risoluzione del problema strutturale nonché le metodologie seguite per la verifica o per il progetto-verifica delle sezioni. Si riportano le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti; le configurazioni studiate per la struttura in esame sono risultate effettivamente esaustive per la progettazione-verifica.

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

K * **u** = **F** dove **K** = matrice di rigidezza

u = vettore spostamenti nodali

F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

Elemento tipo *TRUSS* (biella-D2)
Elemento tipo *BEAM* (trave-D2)

Elemento tipo **MEMBRANE** (membrana-D3)

Elemento tipo *PLATE* (piastra-guscio-D3)

Elemento tipo **BOUNDARY** (molla)

Elemento tipo *STIFFNESS* (matrice di rigidezza)
Elemento tipo *BRICK* (elemento solido)

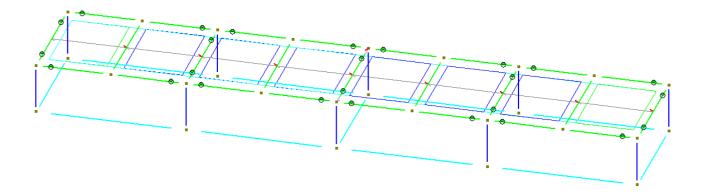
Elemento tipo **SOLAIO** (macro elemento composto da più membrane)

• Modello numerico

In questa parte viene descritto il modello numerico utilizzato (o i modelli numerici utilizzati) per l'analisi della struttura. La presentazione delle informazioni deve essere, coerentemente con le prescrizioni del paragrafo 10.2 e relativi sottoparagrafi delle NTC-18, tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità

Tipo di analisi strutturale	
Analisi lineare	SI

Un attento esame preliminare della documentazione a corredo del software *ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico*. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:


Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: https://www.2si.it/it/prodotti/affidabilita/

4 Storage - MODELLAZIONE DELLA STRUTTURA

Modellazione della geometria e proprietà meccaniche:							
nodi	28						
elementi D2 (per aste, travi, pilastri)	46						
elementi solaio	9						
Dimensione del modello strutturale [cm]:							
X min =	88.57						
Xmax =	1286.37						
Ymin =	878.46						
Ymax =	1113.46						
Zmin =	-40.00						
Zmax =	60.00						
Strutture verticali:							
Pilastri	SI						
Strutture non verticali:							
Travi	SI						
Orizzontamenti:							
Solai senza la proprietà piano rigido	SI						
Tipo di vincoli:	Tipo di vincoli:						
Fondazioni di tipo trave	SI						

Modellazione delle azioni

Si veda il capitolo "Schematizzazione dei casi di carico" per le informazioni necessarie alla comprensione ed alla ricostruzione delle azioni applicate al modello numerico, coerentemente con quanto indicato nella parte "2.6. Azioni di progetto sulla costruzione".

Combinazioni e/o percorsi di carico

Si veda il capitolo "Definizione delle combinazioni" in cui sono indicate le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti.

Combinazioni dei casi di carico						
APPROCCIO PROGETTUALE	Approccio 2					
Tensioni ammissibili	NO					
SLU	SI					
SLV (SLU con sisma)	NO					
SLC	NO					
SLD	NO					
SLO	NO					
SLU GEO A2 (per approccio 1)	NO					
SLU EQU	NO					
Combinazione caratteristica (rara)	SI					
Combinazione frequente	SI					
Combinazione quasi permanente (SLE)	SI					
SLA (accidentale quale incendio)	NO					

5 Storage - MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

sezione di tipo generico

profilati semplici

profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.):

i valori dimensionali con prefisso B sono riferiti all'asse 2

i valori dimensionali con prefisso H sono riferiti all'asse 3

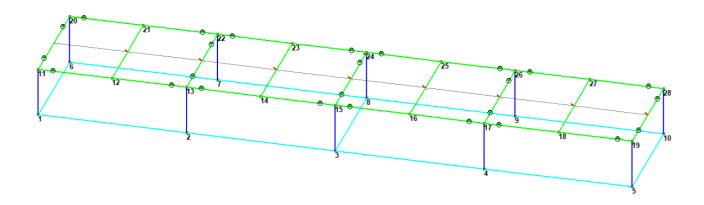
lo	Tipo		Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
			cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	35x35 PILASTRO		1225.00	1020.83	1020.83	2.109e+05	1.251e+05	1.251e+05	7145.83	7145.83	1.072e+04	1.072e+04
2	HEB elemento fittizio	240	106.00	0.0	0.0	102.70	3923.00	1.126e+04	326.90	938.30	498.40	1053.10
3	80x40 FONDAZION		3200.00	2666.67	2666.67	1.169e+06	1.707e+06	4.267e+05	4.267e+04	2.133e+04	6.400e+04	3.200e+04

6 Storage - MODELLAZIONE STRUTTURA: NODI

LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).


Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
х	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z

TABELLA DATI NODI

Nodo	x	Y	Z	Nodo	x	Y	z	Nodo	x	Y	Z
	cm	cm	cm		cm	cm	cm		cm	cm	cm
1	88.6	878.5	-40.0	2	387.5	878.5	-40.0	3	687.5	878.5	-40.0
4	987.5	878.5	-40.0	5	1286.4	878.5	-40.0	6	88.6	1113.5	-40.0
7	387.5	1113.5	-40.0	8	687.5	1113.5	-40.0	9	987.5	1113.5	-40.0
10	1286.4	1113.5	-40.0	11	88.6	878.5	60.0	12	237.5	878.5	60.0

Nodo	х	Y	Z	Nodo	x	Y	Z	Nodo	x	Y	z
13	387.5	878.5	60.0	14	537.5	878.5	60.0	15	687.5	878.5	60.0
16	837.5	878.5	60.0	17	987.5	878.5	60.0	18	1137.5	878.5	60.0
19	1286.4	878.5	60.0	20	88.6	1113.5	60.0	21	237.5	1113.5	60.0
22	387.5	1113.5	60.0	23	537.5	1113.5	60.0	24	687.5	1113.5	60.0
25	837.5	1113.5	60.0	26	987.5	1113.5	60.0	27	1137.5	1113.5	60.0
28	1286.4	1113.5	60.0								

7 Storage - MODELLAZIONE STRUTTURA: ELEMENTI TRAVE

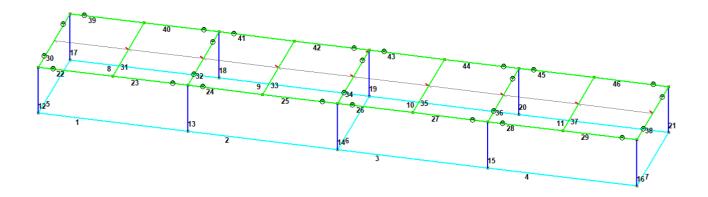
TABELLA DATI TRAVI

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.

Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:


Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)

Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Svincolo I	Svincolo J	Wink V	Wink O
									daN/cm3	daN/cm3
1	Trave f.	1	2	1	3	2			0.30	0.30
2	Trave f.	2	3	1	3	2			0.30	0.30
3	Trave f.	3	4	1	3	2			0.30	0.30
4	Trave f.	4	5	1	3	2			0.30	0.30
5	Trave f.	1	6	1	3	2			0.30	0.30
6	Trave f.	3	8	1	3	2			0.30	0.30
7	Trave f.	5	10	1	3	2			0.30	0.30
8	Trave f.	6	7	1	3	2			0.30	0.30
9	Trave f.	7	8	1	3	2			0.30	0.30
10	Trave f.	8	9	1	3	2			0.30	0.30
11	Trave f.	9	10	1	3	2			0.30	0.30
12	Pilas.	1	11	1	1	1				
13	Pilas.	2	13	1	1	1				
14	Pilas.	3	15	1	1	1				
15	Pilas.	4	17	1	1	1				
16	Pilas.	5	19	1	1	1				
17	Pilas.	6	20	1	1	1				

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Svincolo I	Svincolo J	Wink V	Wink O
18	Pilas.	7	22	1	1	1				
19	Pilas.	8	24	1	1	1				
20	Pilas.	9	26	1	1	1				
21	Pilas.	10	28	1	1	1				
22	Trave	11	12	157	2	1	000001			
23	Trave	12	13	157	2	1		000001		
24	Trave	13	14	157	2	1	000001			
25	Trave	14	15	157	2	1		000001		
26	Trave	15	16	157	2	1	000001			
27	Trave	16	17	157	2	1		000001		
28	Trave	17	18	157	2	1	000001			
29	Trave	18	19	157	2	1		000001		
30	Trave	11	20	157	2	1	000001	000001		
31	Trave	12	21	157	2	1				
32	Trave	13	22	157	2	1	000001	000001		
33	Trave	14	23	157	2	1				
34	Trave	15	24	157	2	1	000001	000001		
35	Trave	16	25	157	2	1				
36	Trave	17	26	157	2	1	000001	000001		
37	Trave	18	27	157	2	1				
38	Trave	19	28	157	2	1	000001	000001		
39	Trave	20	21	157	2	1	000001			
40	Trave	21	22	157	2	1		000001		
41	Trave	22	23	157	2	1	000001			
42	Trave	23	24	157	2	1		000001		
43	Trave	24	25	157	2	1	000001			
44	Trave	25	26	157	2	1		000001		

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Svincolo I	Svincolo J	Wink V	Wink O
45	Trave	26	27	157	2	1	000001			
46	Trave	27	28	157	2	1		000001		

8 Storage - MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello.

Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.

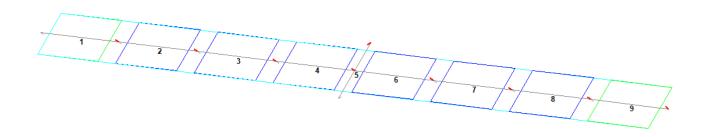
L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

Id.Arch.	Identificativo dell' archivio								
Tipo	Tipo di carico								
	Variab. Carico variabile generico								
	'ar. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)								
	<i>Neve</i> Carico di neve								
G1k	carico permanente (comprensivo del peso proprio)								
G2k	carico permanente non strutturale e non compiutamente definito								
Qk	carico variabile								

Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento")
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: <i>per la definizione delle masse sismiche</i>
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici


Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'elemento								
Tipo	codice di comportamento								
	S elemento utilizzato solo per scarico								
	c elemento utilizzato per scarico e per modellazione piano rigido								
	P elemento utilizzato come pannello								
	M scarico monodirezionale								
	B scarico bidirezionale								
Id.Arch.	Identificativo dell' archivio								
Mat	codice del materiale assegnato all'elemento								
Orditura	angolo (rispetto all'asse X) della direzione dei travetti principali								
Gk	carico permanente solaio (comprensivo del peso proprio)								
Qk	carico variabile solaio								
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)								

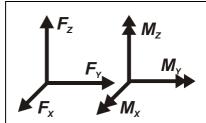
ID Arch	. Тіро	G1k	G2k	Qk	Fatt. A	s sis.	Psi 0	Psi 1	Psi 2	Psi S 2	Fatt. Fi
		daN/ m2	-	daN/ m2							

ID Arch.	Tipo			G1k	G2k	Qk	Fatt. A	s sis.	Psi 0	Psi 1	Psi 2	Psi S 2	Fatt. Fi
	CARICO DELLE CENTRALE	STRUTTURE	PORTATE	2200.00	10	10.00		1.00	0.70	0.50	0.30	0.30	1.00
2	CARICO DELLE LATERALE	STRUTTURE	PORTATE	1100.00	10	10.00		1.00	0.70	0.50	0.30	0.30	1.00
3	CARICO DI NEVE			10.00		80.00		1.00	0.50	0.20	0.0	0.0	1.00

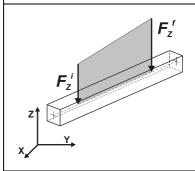
Elem.	Tipo	ID Arch.	Mat.	Spessore	Orditura	G1k	G2k	Qk	Nodo 1	Nodo 2	Nodo 3	Nodo 4
						daN/ m2	daN/ m2	daN/ m2				
1	SM	2	m=157	1.0	0.0	1100.00	10.00	10.00	11	12	21	20
2	SM	1	m=157	1.0	0.0	2200.00	10.00	10.00	21	12	13	22
3	SM	1	m=157	1.0	0.0	2200.00	10.00	10.00	13	14	23	22
4	SM	1	m=157	1.0	0.0	2200.00	10.00	10.00	14	15	24	23
5	SM	3	m=157	1.0	90.0	10.00		80.00	11	19	28	20
6	SM	1	m=157	1.0	0.0	2200.00	10.00	10.00	15	16	25	24
7	SM	1	m=157	1.0	0.0	2200.00	10.00	10.00	16	17	26	25
8	SM	1	m=157	1.0	0.0	2200.00	10.00	10.00	17	18	27	26
9	SM	2	m=157	1.0	0.0	1100.00	10.00	10.00	18	19	28	27

9 Storage - MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

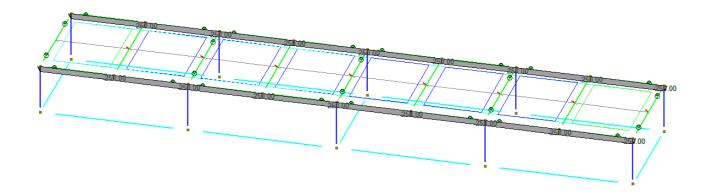

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

carico concentrato nodale6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)


3 carico distribuito globale su elemento tipo trave

7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)

7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)



Carico concentrato nodale

Carico distribuito globale

Tipo		carico distribuito globale su trave												
Id	Tipo	^T ipo		fx	fy	fz	mx	my	mz					
			m	daN/ m	daN/ m	daN/ m	daN	daN	daN					
3	PP CABINA	NTO 20'	0.0	0.0	0.0	-250.00	0.0	0.0	0.0					
			0.0	0.0	0.0	-250.00	0.0	0.0	0.0					

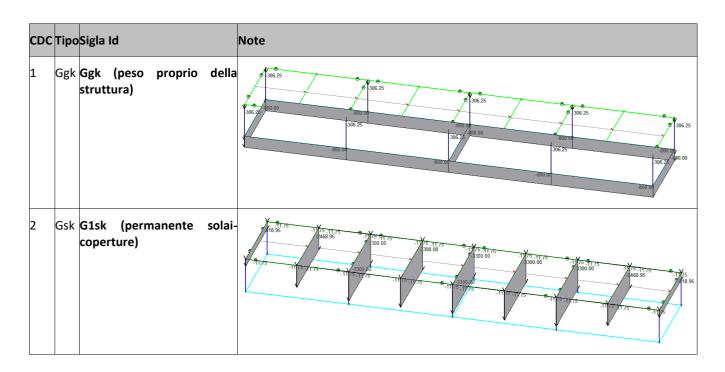
• Storage - SCHEMATIZZAZIONE DEI CASI DI CARICO

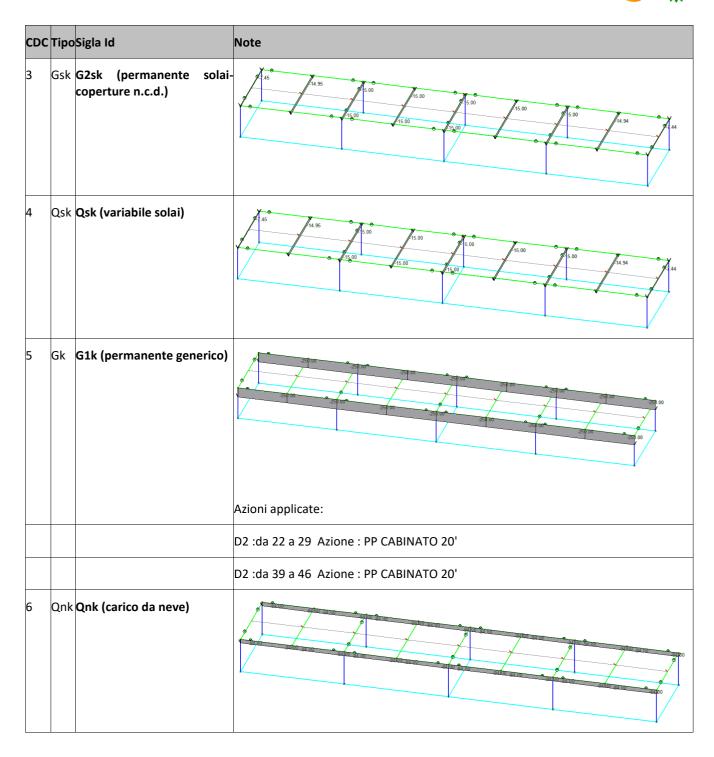
LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
_	OBIN		caso di carico comprensivo dei peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti
3	Qk	NA	caso di carico con azioni variabili
4	Gsk	А	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	А	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	А	caso di carico comprensivo dei carichi di neve sulle coperture


Sono di <u>tipo automatico A</u> (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.


Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso:

Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

10 Storage - DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente.

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla

identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $2 G 1 2 G 1 + 2 G 2 2 G 2 + 2 P 2 P + 2 Q 1 2 Q k 1 + 2 Q 2 2 2 0 2 2 Q k 2 + 2 Q 3 2 2 0 3 2 Q k 3 + \dots$

Combinazione caratteristica (rara) SLE

G1 + G2 + P + Qk1 + 2022Qk2 + 2032Qk3+ ...

Combinazione frequente SLE

G1 + G2 + P + ?11?Qk1 + ?22?Qk2 + ?23?Qk3 + ...

Combinazione quasi permanente SLE

G1 + G2 + P + 212Qk1 + 2222Qk2 + 2232Qk3 + ...

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

E + G1 + G2 + P + 2212Qk1 + 2222Qk2 + ...

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

G1 + G2+ Ad + P + 2212Qk1 + 2222Qk2 + ...

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	20	21	?2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A1	A2
Carichi permanenti	Favorevoli Sfavorevoli	@G1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	2G2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli		0,0 1,5	0,0 1,5	0,0

Cmb	Тіро	Sigla Id
1	SLU	Comb. SLU A1 1
2	SLU	Comb. SLU A1 2
3	SLU	Comb. SLU A1 3
4	SLU	Comb. SLU A1 4
5	SLU	Comb. SLU A1 5
6	SLU	Comb. SLU A1 6
7	SLU	Comb. SLU A1 7
8	SLU	Comb. SLU A1 8
9	SLU	Comb. SLU A1 9
10	SLU	Comb. SLU A1 10
11	SLU	Comb. SLU A1 11
12	SLU	Comb. SLU A1 12
13	SLU	Comb. SLU A1 13
14	SLU	Comb. SLU A1 14

Cmb	Тіро	Sigla Id
15	SLE(r)	Comb. SLE(rara) 15
16	SLE(r)	Comb. SLE(rara) 16
17	SLE(r)	Comb. SLE(rara) 17
18	SLE(r)	Comb. SLE(rara) 18
19	SLE(r)	Comb. SLE(rara) 19
20	SLE(r)	Comb. SLE(rara) 20
21	SLE(r)	Comb. SLE(rara) 21
22	SLE(f)	Comb. SLE(freq.) 22
23	SLE(f)	Comb. SLE(freq.) 23
24	SLE(f)	Comb. SLE(freq.) 24
25	SLE(f)	Comb. SLE(freq.) 25
26	SLE(f)	Comb. SLE(freq.) 26
27	SLE(p)	Comb. SLE(perm.) 27
28	SLE(p)	Comb. SLE(perm.) 28

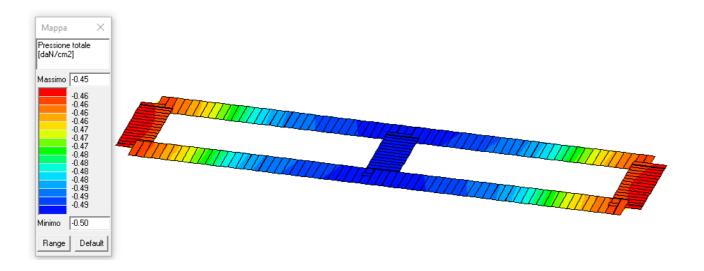
Cmb	CDC 1	CDC 2	CDC 3	CDC 4	CDC 5	CDC 6
1	1.30	1.30	1.50	0.0	1.30	0.0
2	1.30	1.30	1.50	0.0	1.30	0.75
3	1.30	1.30	1.50	1.50	1.30	0.0
4	1.30	1.30	1.50	1.50	1.30	0.75
5	1.00	1.00	0.80	0.0	1.00	0.0
6	1.00	1.00	0.80	0.0	1.00	0.75
7	1.00	1.00	0.80	1.50	1.00	0.0
8	1.00	1.00	0.80	1.50	1.00	0.75
9	1.30	1.30	1.50	0.0	1.30	1.50
10	1.30	1.30	1.50	1.05	1.30	0.0
11	1.30	1.30	1.50	1.05	1.30	1.50

Cmb	CDC 1	CDC 2	CDC 3	CDC 4	CDC 5	CDC 6
12	1.00	1.00	0.80	0.0	1.00	1.50
13	1.00	1.00	0.80	1.05	1.00	0.0
14	1.00	1.00	0.80	1.05	1.00	1.50
15	1.00	1.00	1.00	0.0	1.00	0.0
16	1.00	1.00	1.00	0.0	1.00	0.50
17	1.00	1.00	1.00	1.00	1.00	0.0
18	1.00	1.00	1.00	1.00	1.00	0.50
19	1.00	1.00	1.00	0.0	1.00	1.00
20	1.00	1.00	1.00	0.70	1.00	0.0
21	1.00	1.00	1.00	0.70	1.00	1.00
22	1.00	1.00	1.00	0.0	1.00	0.0
23	1.00	1.00	1.00	0.50	1.00	0.0
24	1.00	1.00	1.00	0.0	1.00	0.20
25	1.00	1.00	1.00	0.30	1.00	0.0
26	1.00	1.00	1.00	0.30	1.00	0.20
27	1.00	1.00	1.00	0.0	1.00	0.0
28	1.00	1.00	1.00	0.30	1.00	0.0

RISULTATI OPERE DI FONDAZIONE

11 Storage - RISULTATI OPERE DI FONDAZIONE

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sotto riportate.


La tabella è riferita alle fondazioni tipo trave su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

Elem.	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm2	daN/cm2
1	11	-0.46	-0.49	-0.49	21	-0.35	-0.37	-0.37	26	-0.34	-0.37	-0.37
	28	-0.34	-0.36	-0.36								
2	11	-0.49	-0.50	-0.50	21	-0.37	-0.38	-0.38	26	-0.37	-0.37	-0.37
	28	-0.36	-0.37	-0.37								
3	11	-0.50	-0.49	-0.50	21	-0.38	-0.37	-0.38	26	-0.37	-0.37	-0.37
	28	-0.37	-0.36	-0.37								
4	11	-0.49	-0.46	-0.49	21	-0.37	-0.35	-0.37	26	-0.37	-0.34	-0.37
	28	-0.36	-0.34	-0.36								
5	11	-0.46	-0.46	-0.46	21	-0.35	-0.35	-0.35	26	-0.34	-0.34	-0.34
	28	-0.34	-0.34	-0.34								
6	11	-0.50	-0.50	-0.50	21	-0.38	-0.38	-0.38	26	-0.37	-0.37	-0.37
	28	-0.37	-0.37	-0.37								
7	11	-0.46	-0.46	-0.46	21	-0.35	-0.35	-0.35	26	-0.34	-0.34	-0.34
	28	-0.34	-0.34	-0.34								
8	11	-0.46	-0.49	-0.49	21	-0.35	-0.37	-0.37	26	-0.34	-0.37	-0.37
	28	-0.34	-0.36	-0.36								
9	11	-0.49	-0.50	-0.50	21	-0.37	-0.38	-0.38	26	-0.37	-0.37	-0.37
	28	-0.36	-0.37	-0.37								
10	11	-0.50	-0.49	-0.50	21	-0.38	-0.37	-0.38	26	-0.37	-0.37	-0.37
	28	-0.37	-0.36	-0.37								
11	11	-0.49	-0.46	-0.49	21	-0.37	-0.35	-0.37	26	-0.37	-0.34	-0.37
	28	-0.36	-0.34	-0.36								

Pressione massima sul terreno

12 Storage - VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle Ok o NV.

Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (S.L.) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (**T.A.**) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

13 Storage - PROGETTAZIONE DELLE FONDAZIONI

II D.M.17/01/2018 - par: 7.2.5 prevede:

"Sia per CD"A" sia per CD"B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azione in fondazione, trasmessa dagli elementi soprastanti, una tra le seguenti:

quella derivante dall'analisi strutturale eseguita ipotizzando comportamento strutturale non dissipativo;

[...];

quella trasferita dagli elementi soprastanti nell'ipotesi di comportamento strutturale dissipativo, amplificata di un coefficiente pari a 1,30 in CD"A" e 1,10 in CD"B";

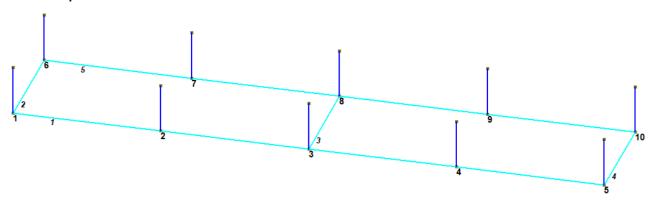
Nel contesto visualizzazione risultati e nella stampa della relazione sulle fondazioni PRO_SAP mostra le sollecitazioni che

derivano dall'analisi non incrementate sia in termini di pressioni sul terreno che in termini di sollecitazioni.

La progettazione degli elementi strutturali con proprietà fondazione è effettuata da PRO_SAP (per travi e platee) o da PRO_CAD Plinti (per plinti e pali di fondazione) incrementando le sollecitazioni delle combinazioni con sisma di un coefficiente pari 1.1 in CDB e 1.3 in CDA per pali, plinti, travi e platee.

Simbologia adottata nelle tabelle di verifica

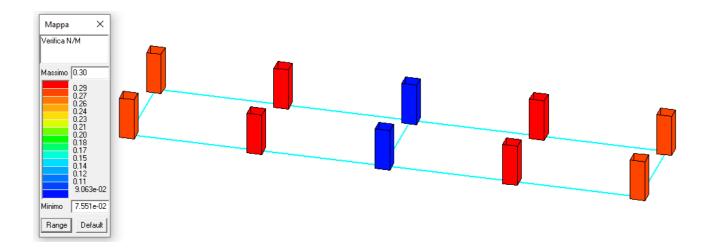
Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:

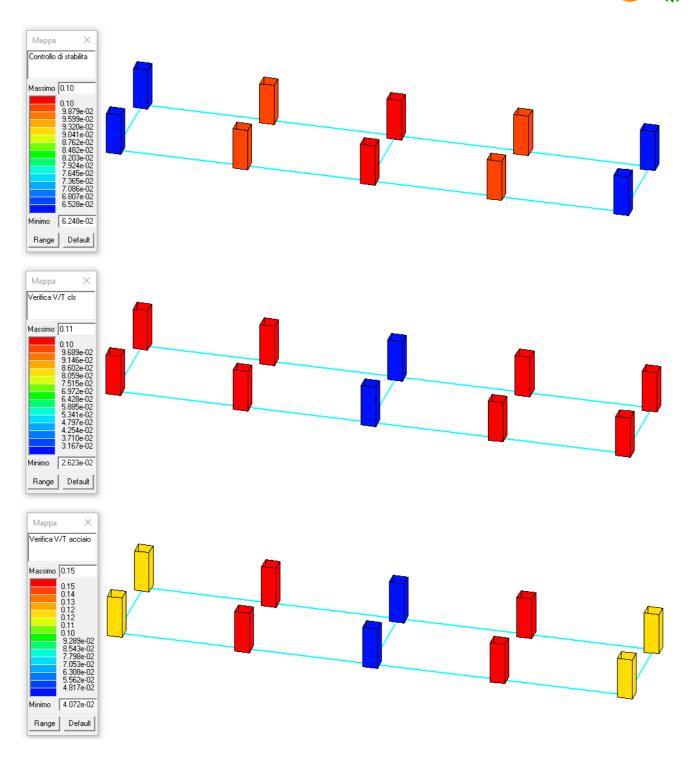

M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)
Pilas.	numero identificativo dell'elemento D2
Note	Codici identificativi delle sezione (s) e materiale (m) pilastro
Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte
Quota	Quota sezione di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
r. snell.	Rapporto di snellezza λ su λ^* : valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la verifica con il metodo diretto dello stato di equilibrio
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle posizioni nL1 e nL2, come da schemi in figura precedente
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto 7.4.4.2.1: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro

Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:

M_TZPP	Numero della travata (T), quota media (Z), n° pilastrata iniziale (P) e finale (P) (nodo in assenza di pilastrata)
Trave	numero identificativo dell'elemento D2
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle verifiche effettuate appresso descritte
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Af inf.	Area di armatura longitudinale posta all'intradosso

Af sup	Area di armatura longitudinale posta all'estradosso
Af long.	Area complessiva armatura longitudinale
x/d	rapporto tra posizione dell'asse neutro e altezza utile
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave

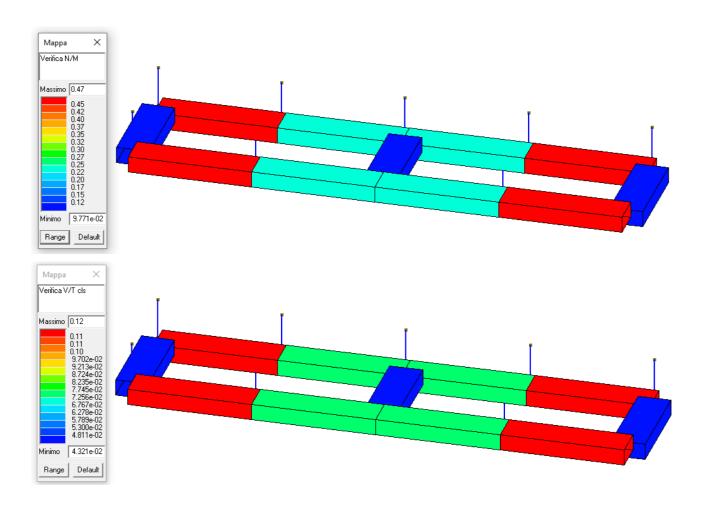

Verifica dei pilastri in c.a.

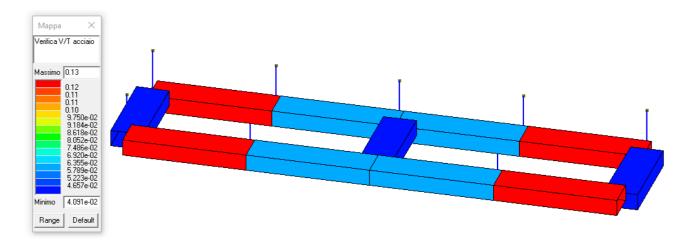


					M_P= 1	X=88.6	Y=878.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
			cm						L=cm			
12	s=1,m=1	ok,ok	-40.0	1.01	0.06	4d14 2+2 d14	0.27	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
			10.0	1.01	0.06	4d14 2+2 d14	0.14	0.0	2+2d8/17 L=10	0.11	0.12	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.06	4d14 2+2 d14	0.03	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
					M_P= 2	X=387.5	Y=878.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
13	s=1,m=1	ok,ok	-40.0	1.01	0.10	4d14 2+2 d14	0.30	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
			10.0	1.01	0.10	4d14 2+2 d14	0.15	0.0	2+2d8/17 L=10	0.11	0.15	11,0,11,11

	[b=1.0;1.0]		60.0	1.01	0.10	4d14 2+2 d14	0.05	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
					M_P= 3	X=687.5	Y=878.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
14	s=1,m=1	ok,ok	-40.0	1.01	0.10	4d14 2+2 d14	0.08	0.0	2+2d8/15 L=45	0.03	0.04	11,0,11,11
			10.0	1.01	0.10	4d14 2+2 d14	0.04	0.0	2+2d8/17 L=10	0.03	0.04	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.10	4d14 2+2 d14	0.04	0.0	2+2d8/15 L=45	0.03	0.04	11,0,11,11
					M_P= 4	X=987.5	Y=878.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
15	s=1,m=1	ok,ok	-40.0	1.01	0.10	4d14 2+2 d14	0.30	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
			10.0	1.01	0.10	4d14 2+2 d14	0.15	0.0	2+2d8/17 L=10	0.11	0.15	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.10	4d14 2+2 d14	0.05	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
					M_P= 5	X=1286.4	Y=878.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
16	s=1,m=1	ok,ok	-40.0	1.01	0.06	4d14 2+2 d14	0.27	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
			10.0	1.01	0.06	4d14 2+2 d14	0.14	0.0	2+2d8/17 L=10	0.11	0.12	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.06	4d14 2+2 d14	0.03	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
					M_P= 6	X=88.6	Y=1113.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
17	s=1,m=1	ok,ok	-40.0	1.01	0.06	4d14 2+2 d14	0.27	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
			10.0	1.01	0.06	4d14 2+2 d14	0.14	0.0	2+2d8/17 L=10	0.11	0.12	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.06	4d14 2+2 d14	0.03	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
					M_P= 7	X=387.5	Y=1113.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
18	s=1,m=1	ok,ok	-40.0	1.01	0.10	4d14 2+2 d14	0.30	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
			10.0	1.01	0.10	4d14 2+2 d14	0.15	0.0	2+2d8/17 L=10	0.11	0.15	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.10	4d14 2+2 d14	0.05	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
					M_P= 8	X=687.5	Y=1113.5					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb

										in .	
s=1,m=1	ok,ok	-40.0	1.01	0.10	4d14 2+2 d14	0.08	0.0	2+2d8/15 L=45	0.03	0.04	11,0,11,11
		10.0	1.01	0.10	4d14 2+2 d14	0.04	0.0	2+2d8/17 L=10	0.03	0.04	11,0,11,11
[b=1.0;1.0]		60.0	1.01	0.10	4d14 2+2 d14	0.04	0.0	2+2d8/15 L=45	0.03	0.04	11,0,11,11
				M_P= 9	X=987.5	Y=1113.5					
Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
s=1,m=1	ok,ok	-40.0	1.01	0.10	4d14 2+2 d14	0.30	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
		10.0	1.01	0.10	4d14 2+2 d14	0.15	0.0	2+2d8/17 L=10	0.11	0.15	11,0,11,11
[b=1.0;1.0]		60.0	1.01	0.10	4d14 2+2 d14	0.05	0.0	2+2d8/15 L=45	0.11	0.14	11,0,11,11
				M_P= 10	X=1286.4	Y=1113.5					
Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
s=1,m=1	ok,ok	-40.0	1.01	0.06	4d14 2+2 d14	0.27	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
		10.0	1.01	0.06	4d14 2+2 d14	0.14	0.0	2+2d8/17 L=10	0.11	0.12	11,0,11,11
[b=1.0;1.0]		60.0	1.01	0.06	4d14 2+2 d14	0.03	0.0	2+2d8/15 L=45	0.11	0.11	11,0,11,11
	Note s=1,m=1 [b=1.0;1.0] Note s=1,m=1	[b=1.0;1.0] Note Stato s=1,m=1 ok,ok [b=1.0;1.0] Note Stato s=1,m=1 ok,ok	10.0 [b=1.0;1.0] 60.0 Note Stato Quota s=1,m=1 ok,ok-40.0 10.0 [b=1.0;1.0] 60.0 Note Stato Quota s=1,m=1 ok,ok-40.0 10.0	10.0 1.01	10.0 1.01 0.10	10.0 1.01 0.10 4d14 2+2 d14	10.0 1.01 0.10 4d14 2+2 d14 0.04	10.0 1.01 0.10 4d14 2+2 d14 0.04 0.0 (b=1.0;1.0] 60.0 1.01 0.10 4d14 2+2 d14 0.04 0.0 M_P=9 X=987.5 Y=1113.5 Note Stato Quota %Af r. snell. Armat. long. V N/M V N sis s=1,m=1 ok,ok -40.0 1.01 0.10 4d14 2+2 d14 0.30 0.0 (b=1.0;1.0] 60.0 1.01 0.10 4d14 2+2 d14 0.05 0.0 M_P=10 X=1286.4 Y=1113.5 Note Stato Quota %Af r. snell. Armat. long. V N/M V N sis s=1,m=1 ok,ok -40.0 1.01 0.06 4d14 2+2 d14 0.27 0.0 10.0 1.01 0.06 4d14 2+2 d14 0.14 0.0 0.0 1.01 0.06 4d14 2+2 d14 0.14 0.0 0.0 1.01 0.06 4d14 2+2 d14 0.14 0.0 0.0 1.01 0.06 4d14 2+2 d14 0.14 0.0 0.0 1.01 0.06 4d14 2+2 d14 0.14 0.0 0.0 0.06 4d14 2+2 d14 0.14 0.0 0.0 0.06 4d14 2+2 d14 0.14 0.0 0.0 0.06	10.0 1.01 0.10 4d14 2+2 d14 0.04 0.0 2+2d8/17 L=10	10.0 1.01 0.10 4d14 2+2 d14 0.04 0.0 2+2d8/17 L=10 0.03	10.0 1.01 0.10 4d14 2+2 d14 0.04 0.0 2+2d8/17 L=10 0.03 0.04





							M_T= 1	Z=-40.0	P=1	P=5		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
		cm									L=cm	
1	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.24	0.02	0.01	4d10/15 L=50	11,11,11
	s=3,m=1	149.4	0.25	8.0	8.0	0.0	0.13	0.11	0.06	0.07	4d10/25 L=165	11,11,11

		298.9	0.25	8.0	8.0	0.0	0.13	0.47	0.12	0.10	4d10/15 L=50	11,11,11
2	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.24	0.08	0.06	4d10/15 L=50	11,11,11
	s=3,m=1	150.0	0.25	8.0	8.0	0.0	0.13	0.02	0.01	2.35e-03	4d10/25 L=165	11,11,11
		300.0	0.25	8.0	8.0	0.0	0.13	0.22	0.07	0.06	4d10/15 L=50	11,11,11
3	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.22	0.07	0.06	4d10/15 L=50	11,11,11
	s=3,m=1	150.0	0.25	8.0	8.0	0.0	0.13	0.02	0.01	2.35e-03	4d10/25 L=165	11,11,11
		300.0	0.25	8.0	8.0	0.0	0.13	0.24	0.08	0.06	4d10/15 L=50	11,11,11
4	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.47	0.12	0.10	4d10/15 L=50	11,11,11
	s=3,m=1	149.4	0.25	8.0	8.0	0.0	0.13	0.11	0.06	0.07	4d10/25 L=165	11,11,11
		298.9	0.25	8.0	8.0	0.0	0.13	0.24	0.02	0.01	4d10/15 L=50	11,11,11
							M_T= 2	Z=-40.0	P=1	P=6		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
5	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.02	0.04	0.04	4d10/15 L=50	11,11,11
	s=3,m=1	117.5	0.25	8.0	8.0	0.0	0.13	0.10	0.0	0.0	4d10/25 L=100	11,11,11
		235.0	0.25	8.0	8.0	0.0	0.13	0.02	0.04	0.04	4d10/15 L=50	11,11,11
							M_T= 3	Z=-40.0	P=3	P=8		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
6	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.03	0.05	0.05	4d10/15 L=50	11,11,11
	s=3,m=1	117.5	0.25	8.0	8.0	0.0	0.13	0.10	0.0	0.0	4d10/25 L=100	11,9,9
		235.0	0.25	8.0	8.0	0.0	0.13	0.03	0.05	0.05	4d10/15 L=50	11,11,11
							M_T= 4	Z=-40.0	P=5	P=10		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
7	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.02	0.04	0.04	4d10/15 L=50	11,11,11
	s=3,m=1	117.5	0.25	8.0	8.0	0.0	0.13	0.10	0.0	0.0	4d10/25 L=100	11,1,1
		235.0	0.25	8.0	8.0	0.0	0.13	0.02	0.04	0.04	4d10/15 L=50	11,11,11
							M_T= 5	Z=-40.0	P=6	P=10		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
8	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.24	0.02	0.01	4d10/15 L=50	11,11,11
	1	1	1		1	1	_1	1	1	1		

s=3,m=1	149.4	0.25	8.0	8.0	0.0	0.13	0.11	0.06	0.07	4d10/25 L=165	11,11,11
	298.9	0.25	8.0	8.0	0.0	0.13	0.47	0.12	0.10	4d10/15 L=50	11,11,11
ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.24	0.08	0.06	4d10/15 L=50	11,11,11
s=3,m=1	150.0	0.25	8.0	8.0	0.0	0.13	0.02	0.01	2.35e-03	4d10/25 L=165	11,11,11
	300.0	0.25	8.0	8.0	0.0	0.13	0.22	0.07	0.06	4d10/15 L=50	11,11,11
ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.22	0.07	0.06	4d10/15 L=50	11,11,11
s=3,m=1	150.0	0.25	8.0	8.0	0.0	0.13	0.02	0.01	2.35e-03	4d10/25 L=165	11,11,11
	300.0	0.25	8.0	8.0	0.0	0.13	0.24	0.08	0.06	4d10/15 L=50	11,11,11
ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.47	0.12	0.10	4d10/15 L=50	11,11,11
s=3,m=1	149.4	0.25	8.0	8.0	0.0	0.13	0.11	0.06	0.07	4d10/25 L=165	11,11,11
	298.9	0.25	8.0	8.0	0.0	0.13	0.24	0.02	0.01	4d10/15 L=50	11,11,11
	ok,ok s=3,m=1 ok,ok s=3,m=1	298.9 ok,ok 0.0 s=3,m=1 150.0 ok,ok 0.0 s=3,m=1 150.0 300.0 ok,ok 0.0 s=3,m=1 149.4	298.9 0.25 ok,ok 0.0 0.25 s=3,m=1 150.0 0.25 ok,ok 0.0 0.25 ok,ok 0.0 0.25 s=3,m=1 150.0 0.25 dk,ok 0.0 0.25 ok,ok 0.0 0.25 s=3,m=1 149.4 0.25	298.9 0.25 8.0 ok,ok 0.0 0.25 8.0 s=3,m=1 150.0 0.25 8.0 300.0 0.25 8.0 ok,ok 0.0 0.25 8.0 s=3,m=1 150.0 0.25 8.0 300.0 0.25 8.0 ok,ok 0.0 0.25 8.0 s=3,m=1 149.4 0.25 8.0	298.9 0.25 8.0 8.0 ok,ok 0.0 0.25 8.0 8.0 s=3,m=1 150.0 0.25 8.0 8.0 ok,ok 0.0 0.25 8.0 8.0 ok,ok 0.0 0.25 8.0 8.0 s=3,m=1 150.0 0.25 8.0 8.0 300.0 0.25 8.0 8.0 ok,ok 0.0 0.25 8.0 8.0 s=3,m=1 149.4 0.25 8.0 8.0 s=3,m=1 149.4 0.25 8.0 8.0	298.9 0.25 8.0 8.0 0.0 ok,ok 0.0 0.25 8.0 8.0 0.0 s=3,m=1 150.0 0.25 8.0 8.0 0.0 300.0 0.25 8.0 8.0 0.0 ok,ok 0.0 0.25 8.0 8.0 0.0 s=3,m=1 150.0 0.25 8.0 8.0 0.0 300.0 0.25 8.0 8.0 0.0 s=3,m=1 149.4 0.25 8.0 8.0 0.0	298.9 0.25 8.0 8.0 0.0 0.13 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 300.0 0.25 8.0 8.0 0.0 0.13 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13	298.9 0.25 8.0 8.0 0.0 0.13 0.47 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.02 300.0 0.25 8.0 8.0 0.0 0.13 0.22 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.22 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.02 300.0 0.25 8.0 8.0 0.0 0.13 0.22 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.47 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13 0.11	298.9 0.25 8.0 8.0 0.0 0.13 0.47 0.12 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.02 0.01 300.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.22 0.01 300.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13 0.47 0.12 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13 0.11 0.06	298.9 0.25 8.0 8.0 0.0 0.13 0.47 0.12 0.10 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 0.06 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.02 0.01 2.35e-03 300.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 0.06 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 0.06 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 0.06 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.02 0.01 2.35e-03 300.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 0.06 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.47 0.12 0.10 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13 0.11 0.06 0.07	298.9 0.25 8.0 8.0 0.0 0.13 0.47 0.12 0.10 4d10/15 L=50 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 0.06 4d10/15 L=50 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.02 0.01 2.35e-03 4d10/25 L=165 300.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 0.06 4d10/15 L=50 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 0.06 4d10/15 L=50 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.22 0.07 0.06 4d10/15 L=50 s=3,m=1 150.0 0.25 8.0 8.0 0.0 0.13 0.02 0.01 2.35e-03 4d10/25 L=165 300.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 0.06 4d10/15 L=50 ok,ok 0.0 0.25 8.0 8.0 0.0 0.13 0.24 0.08 0.06 4d10/15 L=50 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13 0.47 0.12 0.10 4d10/15 L=50 s=3,m=1 149.4 0.25 8.0 8.0 0.0 0.13 0.11 0.06 0.07 4d10/25 L=165

14 Storage - STATI LIMITE D' ESERCIZIO

LEGENDA TABELLA STATI LIMITE D' ESERCIZIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, in relazione al tipo di elemento strutturale, i risultati relativi alle tre categorie di combinazione considerate:

Combinazioni rare

Combinazioni frequenti

Combinazioni quasi permanenti.

I valori di interesse sono i seguenti:

rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare [normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti[mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]
dR	massima deformazione in combinazioni rare
dF	massima deformazione in combinazioni frequenti
dP	massima deformazione in combinazioni quasi permanenti

Per ognuno dei nove valori soprariportati viene indicata (Rif.cmb) la combinazione in cui si è verificato.

In relazione al tipo di elemento strutturale i valori sono selezionati nel modo seguente:

pilastri	rRfck	rRfyk	rPfck	per sezioni significative
travi	rRfck	rRfyk	rPfck	per sezioni significative
	wR	wF	wP	per sezioni significative
	dR	dF	dP	massimi in campata

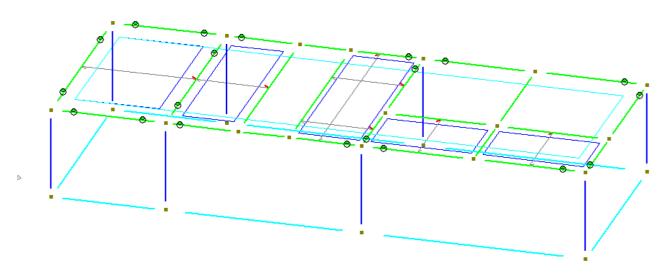
Si precisa che i valori di massima deformazione per travi sono riferiti al piano verticale (piano locale 1-2 con momenti flettenti 3-3).

Pilas.	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	Pos.	rRfck	rRfyk	rPfck	Rif. cmb
	cm					cm				
12	0.0	0.29	0.25	0.37	21,21,28	50.0	0.13	0.09	0.17	21,15,28
	100.0	0.03	0.02	0.04	21,21,28					
13	0.0	0.28	0.18	0.37	21,21,28	50.0	0.13	0.06	0.17	21,21,28
	100.0	0.06	0.03	0.08	21,21,28					
14	0.0	0.08	0.04	0.10	21,21,28	50.0	0.06	0.03	0.07	21,21,28
	100.0	0.04	0.03	0.06	21,21,28					
15	0.0	0.28	0.18	0.37	21,21,28	50.0	0.13	0.06	0.17	21,21,28
	100.0	0.06	0.03	0.08	21,21,28					
16	0.0	0.29	0.25	0.37	21,21,28	50.0	0.13	0.09	0.17	21,15,28
	100.0	0.03	0.02	0.04	21,21,28					
17	0.0	0.29	0.25	0.37	21,21,28	50.0	0.13	0.09	0.17	21,15,28
	100.0	0.03	0.02	0.04	21,21,28					
18	0.0	0.28	0.18	0.37	21,21,28	50.0	0.13	0.06	0.17	21,21,28
	100.0	0.06	0.03	0.08	21,21,28					
19	0.0	0.08	0.04	0.10	21,21,28	50.0	0.06	0.03	0.07	21,21,28
	100.0	0.04	0.03	0.06	21,21,28					
20	0.0	0.28	0.18	0.37	21,21,28	50.0	0.13	0.06	0.17	21,21,28
	100.0	0.06	0.03	0.08	21,21,28					
21	0.0	0.29	0.25	0.37	21,21,28	50.0	0.13	0.09	0.17	21,15,28

Pilas.	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	Pos.	rRfck	rRfyk	rPfck	Rif. cmb
	100.0	0.03	0.02	0.04	21,21,28					

Trave	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb	dR	dF	dP	Rif. cmb
	cm					mm	mm	mm		cm	cm	cm	
1	0.0	0.08	0.24	0.11	21,21,28	0.0	0.0	0.0	0,0,0	0.25	0.24	0.24	21,26,28
	149.4	0.04	0.12	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	298.9	0.16	0.44	0.21	21,21,28	0.0	0.0	0.0	0,0,0				
2	0.0	0.08	0.27	0.10	21,21,28	0.0	0.0	0.0	0,0,0	0.07	0.07	0.07	21,26,28
	150.0	0.0	0.08	0.0	0,21,0	0.0	0.0	0.0	0,0,0				
	300.0	0.07	0.25	0.09	21,21,28	0.0	0.0	0.0	0,0,0				
3	0.0	0.07	0.25	0.09	21,21,28	0.0	0.0	0.0	0,0,0	0.07	0.07	0.07	21,26,28
	150.0	0.0	0.08	0.0	0,21,0	0.0	0.0	0.0	0,0,0				
	300.0	0.08	0.27	0.10	21,21,28	0.0	0.0	0.0	0,0,0				
4	0.0	0.16	0.44	0.21	21,21,28	0.0	0.0	0.0	0,0,0	-0.25	-0.24	-0.24	21,26,28
	149.4	0.04	0.12	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	298.9	0.08	0.24	0.11	21,21,28	0.0	0.0	0.0	0,0,0				
5	0.0	8.89e-03	0.01	0.01	21,21,28	0.0	0.0	0.0	0,0,0	9.58e-03	9.30e-03	9.23e-03	21,26,28
	117.5	0.04	0.08	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	235.0	8.89e-03	0.01	0.01	21,21,28	0.0	0.0	0.0	0,0,0				
6	0.0	0.01	0.02	0.01	21,21,28	0.0	0.0	0.0	0,0,0	0.01	9.80e-03	9.73e-03	21,26,28
	117.5	0.04	0.09	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	235.0	0.01	0.02	0.01	21,21,28	0.0	0.0	0.0	0,0,0				
7	0.0	8.89e-03	0.01	0.01	21,21,28	0.0	0.0	0.0	0,0,0	9.58e-03	9.30e-03	9.23e-03	21,26,28
	117.5	0.04	0.08	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	235.0	8.89e-03	0.01	0.01	21,21,28	0.0	0.0	0.0	0,0,0				
8	0.0	0.08	0.24	0.11	21,21,28	0.0	0.0	0.0	0,0,0	0.25	0.24	0.24	21,26,28
	149.4	0.04	0.12	0.05	21,21,28	0.0	0.0	0.0	0,0,0				

Trave	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb	dR	dF	dP	Rif. cmb
	298.9	0.16	0.44	0.21	21,21,28	0.0	0.0	0.0	0,0,0				
9	0.0	0.08	0.27	0.10	21,21,28	0.0	0.0	0.0	0,0,0	0.07	0.07	0.07	21,26,28
	150.0	0.0	0.08	0.0	0,21,0	0.0	0.0	0.0	0,0,0				
	300.0	0.07	0.25	0.09	21,21,28	0.0	0.0	0.0	0,0,0				
10	0.0	0.07	0.25	0.09	21,21,28	0.0	0.0	0.0	0,0,0	0.07	0.07	0.07	21,26,28
	150.0	0.0	0.08	0.0	0,21,0	0.0	0.0	0.0	0,0,0				
	300.0	0.08	0.27	0.10	21,21,28	0.0	0.0	0.0	0,0,0				
11	0.0	0.16	0.44	0.21	21,21,28	0.0	0.0	0.0	0,0,0	0.25	0.24	0.24	21,26,28
	149.4	0.04	0.12	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	298.9	0.08	0.24	0.11	21,21,28	0.0	0.0	0.0	0,0,0				


15 CABINATO INVERTER

Descrizione generale dell'opera					
Fabbricato ad uso					
	Comune di Alfonsine (RA) (Regione EMILIA-ROMAGNA)				
Ubicazione	Località Alfonsine (S. Anna – Campeggia)				
Tipo di fondazione	Trave continua				

16 Inverter - MODELLAZIONE DELLA STRUTTURA

Modellazione della geometria e proprietà meccanic	Modellazione della geometria e proprietà meccaniche:					
nodi	25					
elementi D2 (per aste, travi, pilastri)	40					
elementi D3 (per pareti, platee, gusci)	0					
elementi solaio	6					
elementi solidi	0					
Dimensione del modello strutturale [cm]:	Dimensione del modello strutturale [cm]:					
X min =	50.00					
Xmax =	634.40					
Ymin =	50.00					
Ymax =	285.00					
Zmin =	-40.00					
Zmax =	60.00					
Strutture verticali:						
Pilastri	SI					
Strutture non verticali:						

Travi	SI
Orizzontamenti:	
Solai con la proprietà piano rigido	SI
Solai senza la proprietà piano rigido	SI
Tipo di vincoli:	
Fondazioni di tipo trave	SI

Modellazione delle azioni

Si veda il capitolo **"Schematizzazione dei casi di carico"** per le informazioni necessarie alla comprensione ed alla ricostruzione delle azioni applicate al modello numerico, coerentemente con quanto indicato nella parte "2.6. Azioni di progetto sulla costruzione".

Combinazioni e/o percorsi di carico

Si veda il capitolo "Definizione delle combinazioni" in cui sono indicate le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti.

Combinazioni dei casi di carico					
APPROCCIO PROGETTUALE	Approccio 2				
Tensioni ammissibili	NO				
SLU	SI				
SLV (SLU con sisma)	NO				
SLC	NO				
SLD	NO				

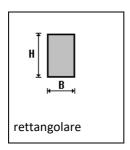
SLO	NO
SLU GEO A2 (per approccio 1)	NO
SLU EQU	NO
Combinazione caratteristica (rara)	SI
Combinazione frequente	SI
Combinazione quasi permanente (SLE)	SI
SLA (accidentale quale incendio)	NO

17 Inverter - MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

sezione di tipo generico


profilati semplici

profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.):

i valori dimensionali con prefisso B sono riferiti all'asse 2

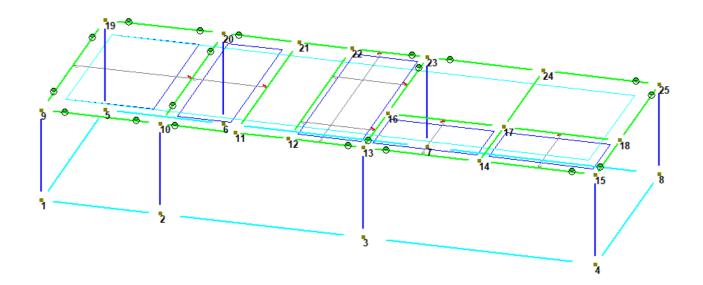
i valori dimensionali con prefisso H sono riferiti all'asse 3

lo	lTipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	35x35 PILASTRO	1225.00	1020.83	1020.83	2.109e+05	1.251e+05	1.251e+05	7145.83	7145.83	1.072e+04	1.072e+04
2	HEB 240 elemento fittizio	106.00	0.0	0.0	102.70	3923.00	1.126e+04	326.90	938.30	498.40	1053.10
3	80x40 FONDAZIONE	3200.00	2666.67	2666.67	1.169e+06	1.707e+06	4.267e+05	4.267e+04	2.133e+04	6.400e+04	3.200e+04

18 Inverter - MODELLAZIONE STRUTTURA: NODI

LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.


Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
х	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z

TABELLA DATI NODI

Nodo	x	Υ	z	Nodo	х	Y	z	Nodo	x	Y	z
	cm	cm	cm		cm	cm	cm		cm	cm	cm
1	50.0	50.0	-40.0	2	175.0	50.0	-40.0	3	389.4	50.0	-40.0
4	634.4	50.0	-40.0	5	50.0	285.0	-40.0	6	175.0	285.0	-40.0
7	389.4	285.0	-40.0	8	634.4	285.0	-40.0	9	50.0	50.0	60.0
10	175.0	50.0	60.0	11	254.2	50.0	60.0	12	310.2	50.0	60.0
13	389.4	50.0	60.0	14	511.9	50.0	60.0	15	634.4	50.0	60.0
16	389.4	139.0	60.0	17	511.9	139.0	60.0	18	634.4	139.0	60.0
19	50.0	285.0	60.0	20	175.0	285.0	60.0	21	254.2	285.0	60.0
22	310.2	285.0	60.0	23	389.4	285.0	60.0	24	511.9	285.0	60.0
25	634.4	285.0	60.0								

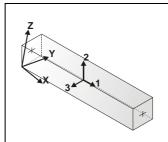

19 Inverter - MODELLAZIONE STRUTTURA: ELEMENTI TRAVE

TABELLA DATI TRAVI

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.

Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

orientamento elementi 2D non verticali

orientamento elementi 2D verticali

In particolare per ogni elemento viene indicato in tabella:

Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Wink V	Wink O
							daN/cm3	daN/cm3
1	Trave f.	1	2	1	3	2	0.30	0.30
2	Trave f.	2	3	1	3	2	0.30	0.30
3	Trave f.	3	4	1	3	2	0.30	0.30
4	Trave f.	1	5	1	3	2	0.30	0.30
5	Trave f.	4	8	1	3	2	0.30	0.30
6	Trave f.	5	6	1	3	2	0.30	0.30
7	Trave f.	6	7	1	3	2	0.30	0.30
8	Trave f.	7	8	1	3	2	0.30	0.30

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Wink V	Wink O
9	Pilas.	1	9	1	1	1		
10	Pilas.	2	10	1	1	1		
11	Pilas.	3	13	1	1	1		
12	Pilas.	4	15	1	1	1		
13	Pilas.	5	19	1	1	1		
14	Pilas.	6	20	1	1	1		
15	Pilas.	7	23	1	1	1		
16	Pilas.	8	25	1	1	1		
17	Trave	9	10	157	2	1		
18	Trave	10	11	157	2	1		
19	Trave	11	12	157	2	1		
20	Trave	12	13	157	2	1		
21	Trave	13	14	157	2	1		
22	Trave	14	15	157	2	1		
23	Trave	13	16	157	2	1		
24	Trave	14	17	157	2	1		
25	Trave	15	18	157	2	1		
26	Trave	16	17	157	2	1		
27	Trave	17	18	157	2	1		
28	Trave	9	19	157	2	1		
29	Trave	10	20	157	2	1		
30	Trave	11	21	157	2	1		
31	Trave	12	22	157	2	1		
32	Trave	16	23	157	2	1		
33	Trave	17	24	157	2	1		
34	Trave	18	25	157	2	1		
35	Trave	19	20	157	2	1		

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Wink V	Wink O
36	Trave	20	21	157	2	1		
37	Trave	21	22	157	2	1		
38	Trave	22	23	157	2	1		
39	Trave	23	24	157	2	1		
40	Trave	24	25	157	2	1		

20 Inverter - MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello.

Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.

L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per

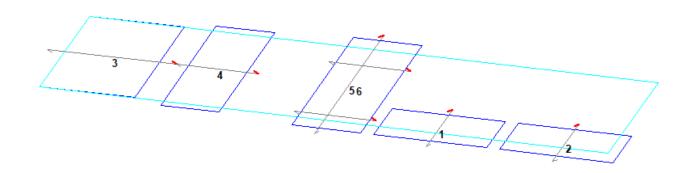
la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

ld.Arch.	Identificativo dell' archivio
Tipo	Tipo di carico

	Variab. Carico variabile generico
	Var. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)
	<i>Neve</i> Carico di neve
G1k	carico permanente (comprensivo del peso proprio)
G2k	carico permanente non strutturale e non compiutamente definito
Qk	carico variabile
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento")
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: <i>per la definizione</i> delle masse sismiche
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici


Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'ele	numero dell'elemento					
Tipo	codice di compo	codice di comportamento					
	S	elemento utilizzato solo per scarico					
	С	elemento utilizzato per scarico e per modellazione piano rigido					
	P	elemento utilizzato come pannello					
	М	scarico monodirezionale					
	В	scarico bidirezionale					
Id.Arch.	Identificativo de	II' archivio					
Mat	codice del mate	riale assegnato all'elemento					
Orditura	angolo (rispetto	angolo (rispetto all'asse X) della direzione dei travetti principali					
Gk	carico permaner	nte solaio (comprensivo del peso proprio)					

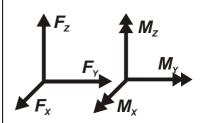
Qk	carico variabile solaio
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)

ID Arch.	Тіро	G1k	G2k	Qk	s sis.	Psi 0	Psi 1	Psi 2	Psi S 2	Fatt. Fi
		daN/cm2	daN/cm2	daN/cm2						
1	CARICO DELLE STRUTTURE PORTATE	0.15			1.00	0.70	0.50	0.30	0.30	1.00
3	CARICO DI NEVE			8.00e-03	1.00	0.50	0.20	0.0	0.0	1.00

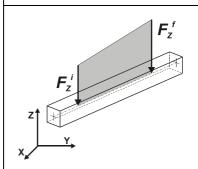
Elem.	Tipo	ID Arch.	Mat.	Orditura	G1k	G2k	Qk	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5
					daN/cm2	daN/cm2	daN/cm2					
1	СМ	1	m=157	90.0	0.15			13	14	17	16	
2	СМ	1	m=157	90.0	0.15			14	15	18	17	
3	СМ	1	m=157	0.0	0.15			9	10	20	19	
4	СМ	1	m=157	0.0	0.15			10	11	21	20	
5	SM	3	m=1	90.0	1.00e-03		8.00e-03	9	15	25	19	
6	СМ	1	m=157	0.0	0.15			12	13	16	23	22

21 Inverter - MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI


Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

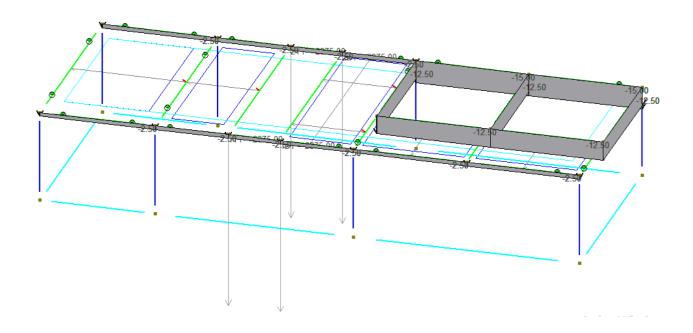
carico concentrato nodale6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)


3 carico distribuito globale su elemento tipo trave

7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)

7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)

Carico concentrato nodale



Carico distribuito globale

Tipo		carico concentrato	o nodale					
Id	Tipo		Fx	Fy	Fz	Mx	Му	Mz
			daN	daN	daN	daN cm	daN cm	daN cm
2	CN:Fz=-2375	5.00	0.0	0.0	-2375.00	0.0	0.0	0.0

Tipo		carico distribuito globale su trave							
Id	Tipo		Pos.	fx	fy	fz	mx	my	mz
			cm	daN/cm	daN/cm	daN/cm	daN	daN	daN
1	QUADRI IN	VERTER-DG:Fzi=-12.50 Fzf=-12.50	0.0	0.0	0.0	-12.50	0.0	0.0	0.0
			0.0	0.0	0.0	-12.50	0.0	0.0	0.0
3	PP CABINA	TO 20'-DG:Fzi=-2.50 Fzf=-2.50	0.0	0.0	0.0	-2.50	0.0	0.0	0.0

Tipo carico distribuito globale su trave									
Id	Tipo		Pos.	fx	fy	fz	mx	my	mz
			0.0	0.0	0.0	-2.50	0.0	0.0	0.0

22 Inverter -SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

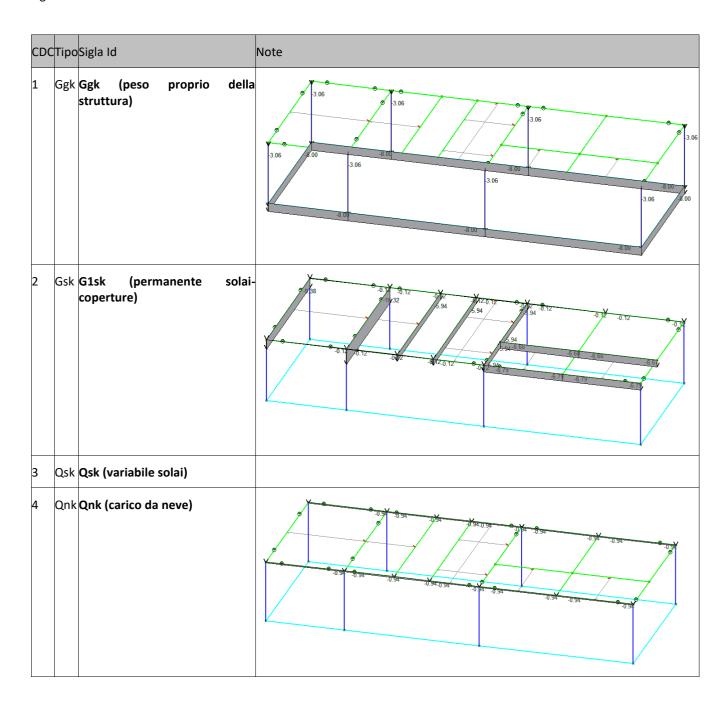
Il programma consente l'applicazione di diverse tipologie di casi di carico.

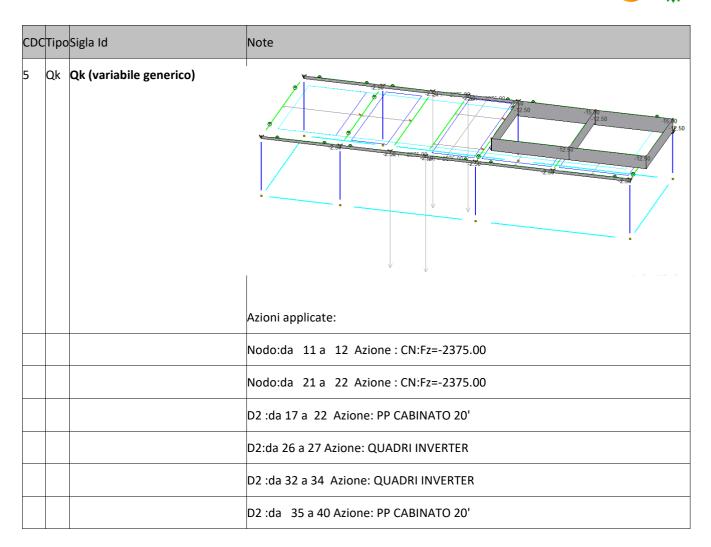
Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla Tipo Descrizione					
1	Ggk	А	caso di carico comprensivo del peso proprio struttura			
2	Gk	NA	carico con azioni permanenti			
3	Qk	NA	caso di carico con azioni variabili			
4	Gsk	А	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture			
5	Qsk	А	caso di carico comprensivo dei carichi variabili sui solai			
6	Qnk	А	caso di carico comprensivo dei carichi di neve sulle coperture			

Sono di <u>tipo automatico A</u> (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.


Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di



carico stesso:

Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

23 Inverter - DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente.

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $?G1?G1 + ?G2?G2 + ?P?P + ?Q1?Qk1 + ?Q2??02?Qk2 + ?Q3??03?Qk3 + \dots \\$

Combinazione caratteristica (rara) SLE

G1 + G2 + P + Qk1 + ?02?Qk2 + ?03?Qk3 + ...

Combinazione frequente SLE

G1 + G2 + P + 2112Qk1 + 2222Qk2 + 2232Qk3 + ...

Combinazione quasi permanente SLE

G1 + G2 + P + 2212Qk1 + 2222Qk2 + 2232Qk3 + ...

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

E + G1 + G2 + P + 212Qk1 + 222Qk2 + ...

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

G1 + G2+ Ad + P + 2212Qk1 + 2222Qk2 + ...

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	20	?1	?2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

Coefficiente	EQU	A1	A2
?f			

Carichi permanenti	Favorevoli Sfavorevoli	? G1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	₽G2	0,8 1,5	0,8 1,5	0,8
Carichi variabili	Favorevoli Sfavorevoli	2Qi	0,0 1,5	0,0 1,5	0,0

Cmb	Тіро	Sigla Id
1	SLU	Comb. SLU A1 1
2	SLU	Comb. SLU A1 2
3	SLU	Comb. SLU A1 3
4	SLU	Comb. SLU A1 4
5	SLU	Comb. SLU A1 5
6	SLU	Comb. SLU A1 6
7	SLU	Comb. SLU A1 7
8	SLU	Comb. SLU A1 8
9	SLU	Comb. SLU A1 9
10	SLU	Comb. SLU A1 10
11	SLU	Comb. SLU A1 11
12	SLU	Comb. SLU A1 12
13	SLU	Comb. SLU A1 13
14	SLU	Comb. SLU A1 14
15	SLE(r)	Comb. SLE(rara) 15
16	SLE(r)	Comb. SLE(rara) 16
17	SLE(r)	Comb. SLE(rara) 17
18	SLE(r)	Comb. SLE(rara) 18
19	SLE(r)	Comb. SLE(rara) 19
20	SLE(r)	Comb. SLE(rara) 20

Cmb	Тіро	Sigla Id
21	SLE(r)	Comb. SLE(rara) 21
22	SLE(f)	Comb. SLE(freq.) 22
23	SLE(f)	Comb. SLE(freq.) 23
24	SLE(f)	Comb. SLE(freq.) 24
25	SLE(f)	Comb. SLE(freq.) 25
26	SLE(f)	Comb. SLE(freq.) 26
27	SLE(p)	Comb. SLE(perm.) 27
28	SLE(p)	Comb. SLE(perm.) 28

Cmb	CDC 1	CDC 2	CDC 3	CDC 4	CDC 5
1	1.30	1.30	0.0	0.0	0.0
2	1.30	1.30	0.0	0.75	0.0
3	1.30	1.30	1.50	0.0	1.50
4	1.30	1.30	1.50	0.75	1.50
5	1.00	1.00	0.0	0.0	0.0
6	1.00	1.00	0.0	0.75	0.0
7	1.00	1.00	1.50	0.0	1.50
8	1.00	1.00	1.50	0.75	1.50
9	1.30	1.30	0.0	1.50	0.0
10	1.30	1.30	1.05	0.0	1.50
11	1.30	1.30	1.05	1.50	1.50
12	1.00	1.00	0.0	1.50	0.0
13	1.00	1.00	1.05	0.0	1.50
14	1.00	1.00	1.05	1.50	1.50
15	1.00	1.00	0.0	0.0	0.0
16	1.00	1.00	0.0	0.50	0.0
17	1.00	1.00	1.00	0.0	1.00

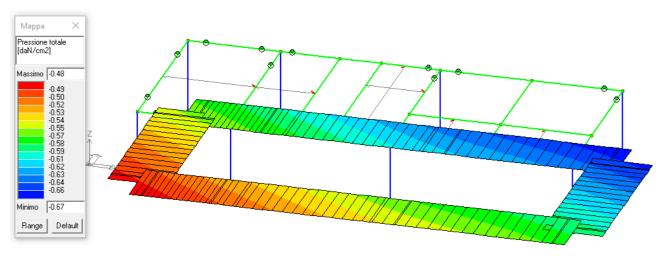
Cmb	CDC 1	CDC 2	CDC 3	CDC 4	CDC 5
18	1.00	1.00	1.00	0.50	1.00
19	1.00	1.00	0.0	1.00	0.0
20	1.00	1.00	0.70	0.0	1.00
21	1.00	1.00	0.70	1.00	1.00
22	1.00	1.00	0.0	0.0	0.0
23	1.00	1.00	0.50	0.0	0.90
24	1.00	1.00	0.0	0.20	0.0
25	1.00	1.00	0.30	0.0	0.80
26	1.00	1.00	0.30	0.20	0.80
27	1.00	1.00	0.0	0.0	0.0
28	1.00	1.00	0.30	0.0	0.80

24 Inverter - RISULTATI OPERE DI FONDAZIONE

LEGENDA RISULTATI OPERE DI FONDAZIONE

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sotto riportate.

La <u>tabella</u> è riferita alle fondazioni tipo trave su suolo elastico.


Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

Elem.	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm2	daN/cm2
1	11	-0.50	-0.53	-0.53	21	-0.37	-0.38	-0.38	23	-0.35	-0.36	-0.36
	28	-0.34	-0.35	-0.35								
2	11	-0.53	-0.56	-0.56	21	-0.38	-0.41	-0.41	23	-0.36	-0.38	-0.38
	28	-0.35	-0.36	-0.36								
3	11	-0.56	-0.59	-0.59	21	-0.41	-0.42	-0.42	23	-0.38	-0.39	-0.39

Elem.	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max	Cmb	Pt ini	Pt fin	Pt max
	28	-0.36	-0.37	-0.37								
1	11	-0.50	-0.57	-0.57	21	-0.37	-0.41	-0.41	23	-0.35	-0.38	-0.38
	28	-0.34	-0.37	-0.37								
5	11	-0.59	-0.66	-0.66	21	-0.42	-0.46	-0.46	23	-0.39	-0.42	-0.42
	28	-0.37	-0.39	-0.39								
õ	11	-0.57	-0.60	-0.60	21	-0.41	-0.43	-0.43	23	-0.39	-0.40	-0.40
	28	-0.37	-0.38	-0.38								
7	11	-0.60	-0.64	-0.64	21	-0.43	-0.45	-0.45	23	-0.40	-0.42	-0.42
	28	-0.38	-0.39	-0.39								
}	11	-0.64	-0.67	-0.67	21	-0.45	-0.47	-0.47	23	-0.42	-0.43	-0.43
	28	-0.39	-0.40	-0.40								

Pressione massima sul terreno

25 Inverter - VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle Ok o NV.

Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (**S.L.**) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (T.A.) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

26 Inverter - PROGETTAZIONE DELLE FONDAZIONI

II D.M.17/01/2018 - par: 7.2.5 prevede:

"Sia per CD"A" sia per CD"B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azione in fondazione, trasmessa dagli elementi soprastanti, una tra le seguenti:

quella derivante dall'analisi strutturale eseguita ipotizzando comportamento strutturale non dissipativo;

[...]

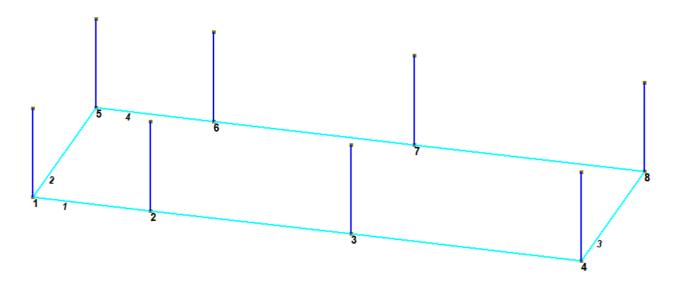
quella trasferita dagli elementi soprastanti nell'ipotesi di comportamento strutturale dissipativo, amplificata di un coefficiente pari a 1,30 in CD"A" e 1,10 in CD"B";

Nel contesto visualizzazione risultati e nella stampa della relazione sulle fondazioni PRO_SAP mostra le sollecitazioni che derivano dall'analisi non incrementate sia in termini di pressioni sul terreno che in termini di sollecitazioni.

La progettazione degli elementi strutturali con proprietà fondazione è effettuata da PRO_SAP (per travi e platee) o da PRO_CAD Plinti (per plinti e pali di fondazione) incrementando le sollecitazioni delle combinazioni con sisma di un coefficiente pari 1.1 in CDB e 1.3 in CDA per pali, plinti, travi e platee.

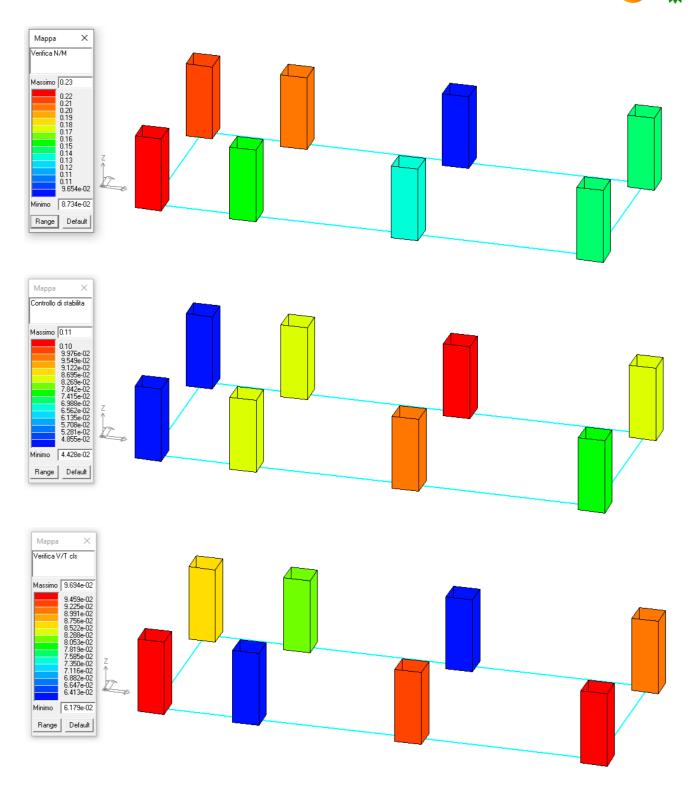
Simbologia adottata nelle tabelle di verifica

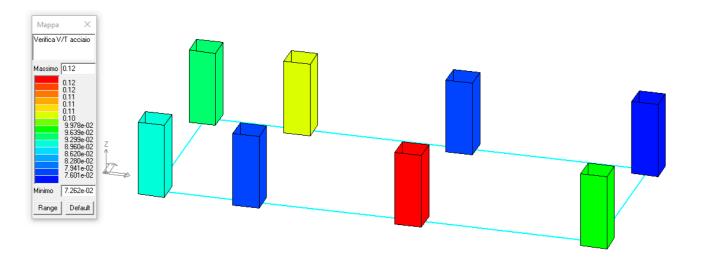
Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:


M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)
Pilas.	numero identificativo dell'elemento D2
Note	Codici identificativi delle sezione (s) e materiale (m) pilastro
Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte
Quota	Quota sezione di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
r. snell.	Rapporto di snellezza λ su λ^* : valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la verifica con il metodo diretto dello stato di equilibrio
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle posizioni nL1 e nL2, come da schemi in figura precedente
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva

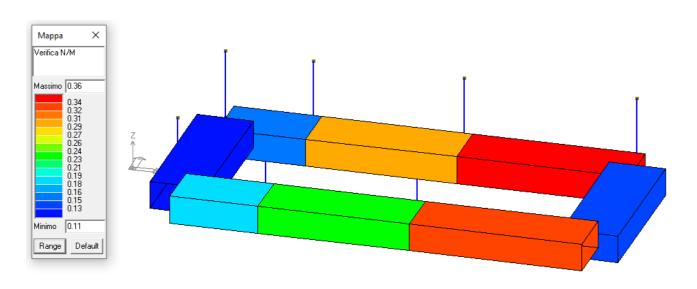
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto 7.4.4.2.1: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro

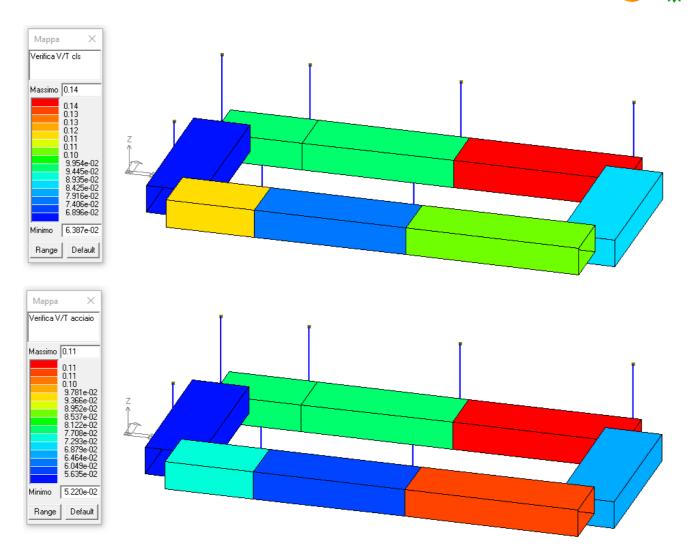
Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:


M_TZPP	Numero della travata (T), quota media (Z), n° pilastrata iniziale (P) e finale (P) (nodo in assenza di pilastrata)
Trave	numero identificativo dell'elemento D2
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle verifiche effettuate appresso descritte
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Af inf.	Area di armatura longitudinale posta all'intradosso
Af sup	Area di armatura longitudinale posta all'estradosso
Af long.	Area complessiva armatura longitudinale
x/d	rapporto tra posizione dell'asse neutro e altezza utile
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave


Verifica dei pilastri in c.a.

					M_P= 1	X=50.0	Y=50.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
			cm						L=cm			
9	s=1,m=1	ok,ok	-40.0	1.01	0.04	4d14 2+2 d14	0.23	0.0	2+2d8/15 L=45	0.10	0.08	11,0,11,11
			10.0	1.01	0.04	4d14 2+2 d14	0.11	0.0	2+2d8/17 L=10	0.10	0.09	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.04	4d14 2+2 d14	0.02	0.0	2+2d8/15 L=45	0.10	0.08	11,0,11,11
					M_P= 2	X=175.0	Y=50.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
10	s=1,m=1	ok,ok	-40.0	1.01	0.08	4d14 2+2 d14	0.16	0.0	2+2d8/15 L=45	0.06	0.07	11,0,11,11
			10.0	1.01	0.08	4d14 2+2 d14	0.08	0.0	2+2d8/17 L=10	0.06	0.08	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.08	4d14 2+2 d14	0.03	0.0	2+2d8/15 L=45	0.06	0.07	11,0,11,11
					M_P= 3	X=389.4	Y=50.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
11	s=1,m=1	ok,ok	-40.0	1.01	0.10	4d14 2+2 d14	0.14	0.0	2+2d8/15 L=45	0.09	0.11	11,0,11,11
			10.0	1.01	0.10	4d14 2+2 d14	0.04	0.0	2+2d8/17 L=10	0.09	0.12	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.10	4d14 2+2 d14	0.07	0.0	2+2d8/15 L=45	0.09	0.11	11,0,11,11
					M_P= 4	X=634.4	Y=50.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
12	s=1,m=1	ok,ok	-40.0	1.01	0.07	4d14 2+2 d14	0.14	0.0	2+2d8/15 L=45	0.10	0.09	11,0,11,11


	1	1		1		ı		T.	I	ı		T
			10.0	1.01	0.07	4d14 2+2 d14	0.04	0.0	2+2d8/17 L=10	0.10	0.10	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.07	4d14 2+2 d14	0.07	0.0	2+2d8/15 L=45	0.10	0.09	11,0,11,11
					M_P= 5	X=50.0	Y=285.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
13	s=1,m=1	ok,ok	-40.0	1.01	0.04	4d14 2+2 d14	0.22	0.0	2+2d8/15 L=45	0.09	0.08	11,0,11,11
			10.0	1.01	0.04	4d14 2+2 d14	0.11	0.0	2+2d8/17 L=10	0.09	0.09	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.04	4d14 2+2 d14	0.03	0.0	2+2d8/15 L=45	0.09	0.08	11,0,11,11
					M_P= 6	X=175.0	Y=285.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
14	s=1,m=1	ok,ok	-40.0	1.01	0.09	4d14 2+2 d14	0.20	0.0	2+2d8/15 L=45	0.08	0.09	11,0,11,11
			10.0	1.01	0.09	4d14 2+2 d14	0.10	0.0	2+2d8/17 L=10	0.08	0.11	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.09	4d14 2+2 d14	0.03	0.0	2+2d8/15 L=45	0.08	0.09	11,0,11,11
					M_P= 7	X=389.4	Y=285.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
15	s=1,m=1	ok,ok	-40.0	1.01	0.11	4d14 2+2 d14	0.09	0.0	2+2d8/15 L=45	0.06	0.07	11,0,11,11
			10.0	1.01	0.11	4d14 2+2 d14	0.05	0.0	2+2d8/17 L=10	0.06	0.08	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.11	4d14 2+2 d14	0.05	0.0	2+2d8/15 L=45	0.06	0.07	11,0,11,11
					M_P= 8	X=634.4	Y=285.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
16	s=1,m=1	ok,ok	-40.0	1.01	0.08	4d14 2+2 d14	0.15	0.0	2+2d8/15 L=45	0.09	0.06	11,0,11,11
			10.0	1.01	0.08	4d14 2+2 d14	0.05	0.0	2+2d8/17 L=10	0.09	0.07	11,0,11,11
	[b=1.0;1.0]		60.0	1.01	0.08	4d14 2+2 d14	0.05	0.0	2+2d8/15 L=45	0.09	0.06	11,0,11,11



							M_T= 1	Z=-40.0	P=1	P=4		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
		cm									L=cm	
1	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.12	0.07	0.03	4d10/15 L=90	11,11,11
	s=3,m=1	125.0	0.25	8.0	8.0	0.0	0.13	0.18	0.12	0.08	4d10/15 L=90	11,11,11
2	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.09	0.05	0.03	4d10/15 L=50	11,11,11
	s=3,m=1	107.2	0.25	8.0	8.0	0.0	0.13	0.04	0.03	0.02	4d10/26 L=79	14,14,11
		214.4	0.25	8.0	8.0	0.0	0.13	0.24	0.08	0.06	4d10/15 L=50	11,11,11
3	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.33	0.11	0.09	4d10/15 L=50	11,11,11
	s=3,m=1	122.5	0.25	8.0	8.0	0.0	0.13	0.09	0.05	0.06	4d10/26 L=110	11,11,11
		245.0	0.25	8.0	8.0	0.0	0.13	0.14	0.03	0.02	4d10/15 L=50	11,9,11
							M_T= 2	Z=-40.0	P=1	P=5		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
4	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.06	0.06	0.05	4d10/15 L=50	11,11,11
	s=3,m=1	117.5	0.25	8.0	8.0	0.0	0.13	0.11	0.02	0.01	4d10/26 L=100	11,14,13
		235.0	0.25	8.0	8.0	0.0	0.13	0.04	0.06	0.05	4d10/15 L=50	9,11,11
							M_T= 3	Z=-40.0	P=4	P=8		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
5	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.03	0.07	0.06	4d10/15 L=50	9,11,11

	s=3,m=1	117.5	0.25	8.0	8.0	0.0	0.13	0.14	0.02	7.20e-03	4d10/26 L=100	11,7,13
	,									0.07		
		235.0	0.25	8.0	8.0	0.0	0.13	0.07	0.08	0.07	4d10/15 L=50	14,14,11
							M_T= 4	Z=-40.0	P=5	P=8		
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb
6	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.14	0.05	0.03	4d10/15 L=90	11,11,11
	s=3,m=1	125.0	0.25	8.0	8.0	0.0	0.13	0.16	0.10	0.08	4d10/15 L=90	11,11,11
7	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.07	0.05	0.03	4d10/15 L=50	9,11,11
	s=3,m=1	107.2	0.25	8.0	8.0	0.0	0.13	0.02	0.04	0.04	4d10/26 L=79	11,14,14
		214.4	0.25	8.0	8.0	0.0	0.13	0.30	0.10	0.08	4d10/15 L=50	11,14,11
8	ok,ok	0.0	0.25	8.0	8.0	0.0	0.13	0.36	0.14	0.10	4d10/15 L=50	11,11,11
	s=3,m=1	122.5	0.25	8.0	8.0	0.0	0.13	0.10	0.07	0.06	4d10/26 L=110	11,14,11
		245.0	0.25	8.0	8.0	0.0	0.13	0.12	0.07	0.03	4d10/15 L=50	11,14,11

27 Inverter - STATI LIMITE D' ESERCIZIO

LEGENDA TABELLA STATI LIMITE D' ESERCIZIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, in relazione al tipo di elemento strutturale, i risultati relativi alle tre categorie di combinazione considerate:

Combinazioni rare

Combinazioni frequenti

Combinazioni quasi permanenti.

I valori di interesse sono i seguenti:

rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare [normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]
dR	massima deformazione in combinazioni rare
dF	massima deformazione in combinazioni frequenti
dP	massima deformazione in combinazioni quasi permanenti

Per ognuno dei nove valori soprariportati viene indicata (Rif.cmb) la combinazione in cui si è verificato.

In relazione al tipo di elemento strutturale i valori sono selezionati nel modo seguente:

pilastri	rRfck	rRfyk	rPfck	per sezioni significative
travi	rRfck	rRfyk	rPfck	per sezioni significative
	wR	wF	wP	per sezioni significative
	dR	dF	dP	massimi in campata

Si precisa che i valori di massima deformazione per travi sono riferiti al piano verticale (piano locale 1-2 con momenti flettenti 3-3).

Pilas.	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	Pos.	rRfck	rRfyk	rPfck	Rif. cmb
	cm					cm				

Pilas.	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	Pos.	rRfck	rRfyk	rPfck	Rif. cmb
9	0.0	0.23	0.20	0.26	21,21,28	50.0	0.11	0.08	0.12	21,21,28
	100.0	0.02	9.04e-03	0.02	21,21,28					
10	0.0	0.14	0.06	0.16	21,21,28	50.0	0.07	0.04	0.08	21,21,28
	100.0	0.04	0.02	0.04	21,21,28					
11	0.0	0.11	0.06	0.12	21,21,28	50.0	0.05	0.03	0.06	21,21,28
	100.0	0.06	0.03	0.07	21,21,28					
12	0.0	0.14	0.06	0.16	21,21,28	50.0	0.04	0.02	0.04	21,21,28
	100.0	0.05	0.02	0.05	21,21,28					
13	0.0	0.21	0.19	0.24	21,21,28	50.0	0.10	0.08	0.11	21,21,28
	100.0	0.02	8.54e-03	0.02	21,21,28					
14	0.0	0.16	0.08	0.18	21,21,28	50.0	0.08	0.04	0.09	21,21,28
	100.0	0.04	0.02	0.04	21,21,28					
15	0.0	0.09	0.05	0.10	21,21,28	50.0	0.05	0.03	0.06	21,21,28
	100.0	0.06	0.03	0.06	21,21,28					
16	0.0	0.14	0.07	0.16	21,21,28	50.0	0.05	0.03	0.05	21,21,28
	100.0	0.04	0.02	0.05	21,21,28					

Trave	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb	dR	dF	dP	Rif. cmb
	cm					mm	mm	mm		cm	cm	cm	
1	0.0	0.04	0.12	0.04	21,21,28	0.0	0.0	0.0	0,0,0	0.18	0.18	0.18	15,22,27
	125.0	0.06	0.17	0.06	21,21,28	0.0	0.0	0.0	0,0,0				
2	0.0	0.02	0.11	0.03	21,21,28	0.0	0.0	0.0	0,0,0	0.33	0.33	0.33	15,22,27
	107.2	2.96e-03	0.06	3.03e-03	17,21,27	0.0	0.0	0.0	0,0,0				
	214.4	0.07	0.22	0.08	21,21,28	0.0	0.0	0.0	0,0,0				
3	0.0	0.10	0.28	0.12	21,21,28	0.0	0.0	0.0	0,0,0	0.40	0.40	0.40	19,24,27
	122.5	0.03	0.09	0.03	21,21,28	0.0	0.0	0.0	0,0,0				
	245.0	0.04	0.13	0.05	21,21,28	0.0	0.0	0.0	0,0,0				

Trave	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb	dR	dF	dP	Rif. cmb
4	0.0	0.02	0.04	0.02	21,21,28	0.0	0.0	0.0	0,0,0	0.45	0.38	0.38	21,22,27
	117.5	0.04	0.09	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	235.0	0.01	0.03	0.02	19,19,27	0.0	0.0	0.0	0,0,0				
5	0.0	0.01	0.02	0.01	19,19,27	0.0	0.0	0.0	0,0,0	0.48	0.42	0.42	17,24,27
	117.5	0.05	0.11	0.05	21,21,28	0.0	0.0	0.0	0,0,0				
	235.0	0.02	0.04	0.02	21,21,28	0.0	0.0	0.0	0,0,0				
6	0.0	0.04	0.13	0.05	21,21,28	0.0	0.0	0.0	0,0,0	0.19	0.19	0.19	15,22,27
	125.0	0.05	0.15	0.06	21,21,28	0.0	0.0	0.0	0,0,0				
7	0.0	0.02	0.07	0.03	19,21,27	0.0	0.0	0.0	0,0,0	-0.35	-0.35	-0.35	15,22,27
	107.2	0.0	0.05	0.0	0,21,0	0.0	0.0	0.0	0,0,0				
	214.4	0.09	0.27	0.10	21,21,28	0.0	0.0	0.0	0,0,0				
8	0.0	0.11	0.30	0.12	21,21,28	0.0	0.0	0.0	0,0,0	-0.41	-0.41	-0.41	19,24,27
	122.5	0.03	0.09	0.03	21,21,28	0.0	0.0	0.0	0,0,0				
	245.0	0.04	0.11	0.04	21,21,28	0.0	0.0	0.0	0,0,0				
									_1				

• RELAZIONE SUI MATERIALI

Il capitolo Materiali riportata informazioni esaustive relative all'elenco dei materiali impiegati e loro modalità di posa in opera e ai valori di calcolo.

LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1 materiale tipo cemento armato

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

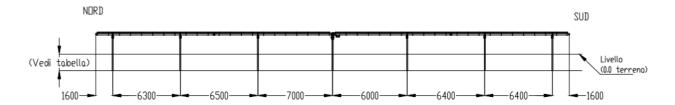
Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari
Massima compressione	Massima tensione di compressione per aste non lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio

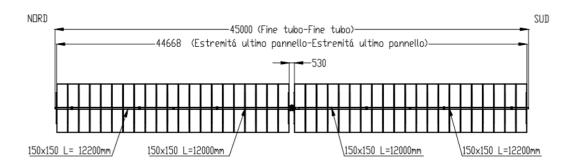
I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

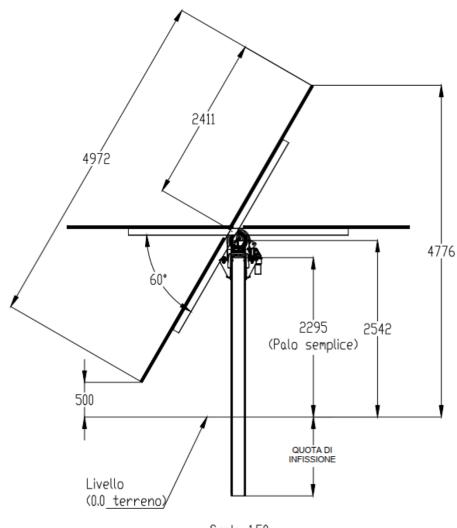
1	c.a.		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

Id	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
1	Calcestruzzo Classe C25/30			3.145e+05	0.20	1.310e+05	2.50e-03	1.00e-05	
	Resistenza Rc	300.0							
	Resistenza fctm		25.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
157	Materiale inf. rigido no peso			1.000e+09	0.0	5.000e+08	0.0	1.20e-05	
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05




28 TRACKER


DESCRIZIONE DELLE OPERE STRUTTURALI

La presente relazione riguarda la progettazione e la verifica di un palo in acciaio infisso nel terreno per sostenere una sovrastruttura mobile per l'installazione di un impianto FV.

I pali hanno una lunghezza totale di metri _____ sono infissi nel terreno per metri 2.50 partendo dalla quota campagna. I pali saranno dei profili laminati a caldo HEA240 in acciaio di qualità S355 JR.

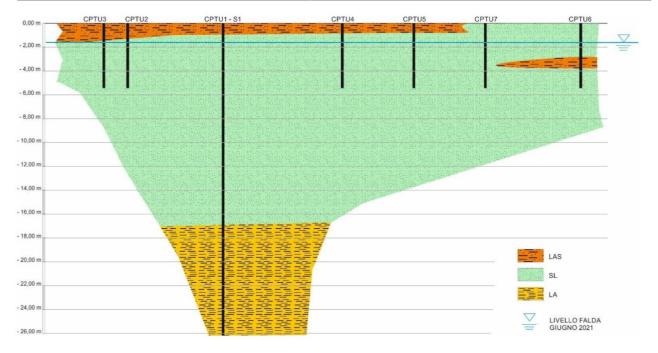
Scala 1:50

Palo semplice - Lunghezza interrata standard
60 gradi
1,3m
1.5m
1.7m
2m
2.5m
2.8m
3m

29 TRACKER - LE CARATTERISTICHE DEL SITO DI FABBRICA

La relazione geologica costituisce uno studio preliminare delle caratteristiche dell'ambiente sottosuolo e idrico, due componenti necessarie alla definizione dello stato dell'ambiente naturale all'interno del quale sarà inserita l'opera in progetto.

I criteri e le procedure adottati per la redazione della presente relazione consentono di definire il modello geologico e geotecnico di sito con un approfondimento adeguato alla fase preliminare di studio ed in conformità ai seguenti dispositivi:


- I. paragrafi 6.2.1 e 6.2.2 del D.M. 17/01/2018 "Approvazione delle nuove norme tecniche per le costruzioni";
- II. Deliberazione Giunta Regionale 30 novembre 2011 n. IX/2616.

I dati reperiti sono serviti sia per la definizione lito-stratigrafica sia per la parametrizzazione geotecnica dei terreni che caratterizzano il volume significativo di sottosuolo che verrà influenzato dalle opere di fondazione.

Per le risultanze di dettaglio si rimanda alla Relazione Geologica.

I livelli stratigrafici individuati lungo le verticali di prova sono stati correlati fra di loro e i corrispondenti parametri geotecnici mediati. Questa operazione è stata condotta sulla base delle indicazioni contenute nell'Eurocodice 7: ("Se l'edificio è sufficientemente rigido e resistente, il parametro rappresentativo può essere dato dalla media dei valori medi nell'ambito dell'intero volume, o parte del volume stesso, di terreno sottostante l'edificio stesso.") e nella Circolare 02.02.2009 ("...appare giustificato il riferimento a valori prossimi ai valori medi ... quando la struttura a contatto con il terreno è dotata di rigidezza sufficiente a trasferire le azioni dalle zone meno resistenti a quelle più resistenti.").

MODE	MODELLO GEOTECNICO SEMPLIFICATO DA PIANO CAMPAGNA ATTUALE (ZERO PENETROMETRICO)									
Profondit à m	Unità Geotec.	Litologia	Φ' (°)	Dr (%)	Cu kg/cm ²	c ' kg/cm²	Ynat t/m ³	E _s kg/cm ²	M kg/cm ²	K m/s
Come da sezione	LAS	Limo argilloso sabbioso addensato (cond drenate)	30	40	-	0.10	2.00	-	100	1*10 ⁻⁶
Come da sezione	LAS	Limo argilloso sabbioso addensato (cond non renate)	-	-	1.00	-	2.00	-	100	1*10 ⁻⁶
Come da sezione	SL	Limo sabbioso mediamente addensato	29	40	-	-	1.90	110	-	1*10 ⁻⁵
Come da sezione	LA	Limo argilloso plastico	-	-	0.50	2	1.90	-	50	1*10 ⁻⁸

30 TRACKER - CARATTERISTICHE DEI MATERIALI E TRATTAMENTI PROTETTIVI.

ACCIAIO PER I PALI

- E = modulo di elasticità longitudinale dell'acciaio = 210.000 N/mm2;
- G = E / $[2*(1+\square)]$ (N/mm2) = modulo di elasticità tangenziale = 80.769 N/mm2;
- Coefficiente di Poisson: □ = 0.3
- Coefficiente di espansione termica lineare: α = 1,17*10-5 per °C-1 (per T < 100°C)
- □ = densità = 7850 kg/m3;

Acciaio S355JR: ft= 510 N/mm2 fy= 355 N/mm2

31 TRACKER - CRITERI PER LA MISURA DELLA SICUREZZA

In generale ai fini della sicurezza sono stati adottati i criteri contemplati dal metodo semiprobabilistico agli stati limite. In particolare sono stati soddisfatti i requisiti per la sicurezza allo stato limite ultimo (anche sotto l'azione sismica), allo stato limite di esercizio, nei confronti di eventuali azioni eccezionali. Per quanto riguarda le azioni sismiche verranno anche esaminate le deformazioni relative, che controllano eventuali danni alle opere secondarie e agli impianti.

ACCIAIO CARPENTERIA METALLICA

Tabella 4.2.V Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1,05$
Resistenza all'instabilità delle membrature	$\gamma_{\rm M1} = 1,05$
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	$\gamma_{M1} = 1,10$
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	$\gamma_{M2} = 1,25$

32 TRACKER - COEFFICIENTI PER LA VERIFICA DI SICUREZZA E DELLE PRESTAZIONI

Coefficienti parziali per le azioni o per l'effetto delle azioni

CARICHI	EFFETTO	Coefficiente parzia	(A2) - GEO	
Permanenti	Sfavorevole	γ _{G1}	1,30	1,00
Variabili	Sfavorevole	γοί	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZACo	efficiente parziale	(M1)	(M2)
Tangente dell'angolo di resistenza a	l taglio tan φ' _k	γ_{ϕ} '	1,00	1,25
Coesione efficace	c' _k	γc'	1,00	1,25
Resistenza non drenata	Cuk	γ _{cu}	1,00	1.40

Coefficienti parziali γ_R da applicare alle resistenze caratteristiche

Resistenza	γR	(R1)	(R2)	(R3)
Base	γь	1,00	1,60	1,30
Laterale in compressione	γ_{s}	1,00	1,45	1,15
Totale	γ_{t}	1,00	1,55	1,25
Laterale in trazione	γst	1,00	1,60	1,25

33 TRACKER - CARICO SUL PALO

STRUTTURA PORTATA

Al fine di determinare l'incidenza gravitazionale dei carichi verticali si è valutato in 50 daN/m2 i carichi dovuti al peso elle sottostruttura dei pannelli, la trave portante longitudinale e le motorizzazioni con i relativi leveraggi.

AZIONI DEL VENTO

Zona vento = 2

(Vb.o = 25 m/s; Ao = 750 m; Ka = 0.015 1/s)

Classe di rugosità del terreno: D

[Aree prive di ostacoli o con al di più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,..)]

Categoria esposizione: tipo II

(Kr = 0.19; Zo = 0.05 m; Zmin = 4 m)

Velocità di riferimento = 25,00 m/s

Pressione cinetica di riferimento (qb) = 39 daN/mq

Coefficiente di forma (Cp) = 1,00

Coefficiente dinamico (Cd) = 1,00

Coefficiente di esposizione (Ce) = 1,80

Coefficiente di esposizione topografica (Ct) = 1,00

Altezza dell'edificio = 3,00 m

Pressione del vento (p = qb Ce Cp Cd) = 70 daN/mq

34 TRACKER - RELAZIONE DI CALCOLO STRUTTURALE

Nella presente parte sono riportati i principali elementi di inquadramento del progetto esecutivo riguardante le strutture, in relazione agli strumenti urbanistici, al progetto architettonico, al progetto delle componenti tecnologiche in generale ed alle prestazioni attese dalla struttura.

La fondazione è realizzata mediante palo battuto in acciaio con sezione HEA240 di lunghezza 250 cm.

35 TRACKER - QUADRO NORMATIVO DI RIFERIMENTO ADOTTATO

Le norme ed i documenti assunti quale riferimento per la progettazione strutturale vengono indicati di seguito.

Nel capitolo "normativa di riferimento" è comunque presente l'elenco completo delle normative disponibili.

Progetto-verifica degli elementi	
Progetto cemento armato	D.M. 17-01-2018
Progetto acciaio	D.M. 17-01-2018
Progetto legno	D.M. 17-01-2018
Progetto muratura	D.M. 17-01-2018
Azione sismica	
Norma applicata per l'azione sismica	D.M. 17-01-2018

Azioni di progetto sulla costruzione

Nei capitoli "modellazione delle azioni" e "schematizzazione dei casi di carico" sono indicate le azioni sulla costruzioni.

Nel prosieguo si indicano tipo di analisi strutturale condotta (statico, dinamico, lineare o non lineare) e il

metodo adottato per la risoluzione del problema strutturale nonché le metodologie seguite per la verifica o per il progetto-verifica delle sezioni. Si riportano le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti; le configurazioni studiate per la struttura in esame sono risultate effettivamente esaustive per la progettazione-verifica.

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

 $\mathbf{K} * \mathbf{u} = \mathbf{F}$ dove $\mathbf{K} = \text{matrice di rigidezza}$

u = vettore spostamenti nodali

F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

Elemento tipo **TRUSS** (biella-D2) Elemento tipo **BEAM** (trave-D2)

Elemento tipo **MEMBRANE** (membrana-D3) Elemento tipo **PLATE** (piastra-guscio-D3) Elemento tipo **BOUNDARY** (molla)

Elemento tipo **STIFFNESS** (matrice di rigidezza)

Elemento tipo **BRICK** (elemento solido)

Elemento tipo **SOLAIO** (macro elemento composto da più membrane)

Modello numerico

In questa parte viene descritto il modello numerico utilizzato (o i modelli numerici utilizzati) per l'analisi della struttura. La presentazione delle informazioni deve essere, coerentemente con le prescrizioni del paragrafo 10.2 e relativi sottoparagrafi delle NTC-18, tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità

Tipo di analisi strutturale	
Analisi lineare	SI

Un attento esame preliminare della documentazione a corredo del software *ha consentito di valutarne l'affidabilità* e *soprattutto l'idoneità al caso specifico*. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:

Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente

link: https://www.2si.it/it/prodotti/affidabilita/

36 TRACKER - MODELLAZIONE DELLA STRUTTURA

Modellazione della geometria e proprietà meccaniche:		
nodi	9	
elementi D2 (per aste, travi, pilastri)	8	
Dimensione del modello strutturale [cm]	:	
X min =	0.00	
Xmax =	0.00	
Ymin =	0.00	
Ymax =	0.00	
Zmin =	0.00	
Zmax =	260.00	
Strutture verticali:		
Pilastri	SI	
Tipo di vincoli:		
Fondazioni puntuali (plinti/plinti su palo)	SI	

Modellazione delle azioni

Si veda il capitolo "**Schematizzazione dei casi di carico**" per le informazioni necessarie alla comprensione ed alla ricostruzione delle azioni applicate al modello numerico, coerentemente con quanto indicato nella parte "2.6. Azioni di progetto sulla costruzione".

Combinazioni e/o percorsi di carico

Si veda il capitolo "**Definizione delle combinazioni**" in cui sono indicate le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti.

Combinazioni dei casi di carico	
APPROCCIO PROGETTUALE	Approccio 2
Tensioni ammissibili	NO
SLU	SI
SLV (SLU con sisma)	NO
SLC	NO
SLD	NO

SLO	NO
SLU GEO A2 (per approccio 1)	NO
SLU EQU	NO
Combinazione caratteristica (rara)	SI
Combinazione frequente	SI
Combinazione quasi permanente (SLE)	SI
SLA (accidentale quale incendio)	NO

37 TRACKER - MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- sezione di tipo generico
- profilati semplici
- profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.):

i valori dimensionali con prefisso B sono riferiti all'asse 2

i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	HEA 240	76.80	0.0	0.0	41.60	2769.00	7763.00	230.70	675.10	351.70	744.60
8	HEA 180	45.30	0.0	0.0	14.80	925.00	2510.00	102.70	293.60	156.50	324.90

38 TRACKER - MODELLAZIONE STRUTTURA: NODI

LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella: Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

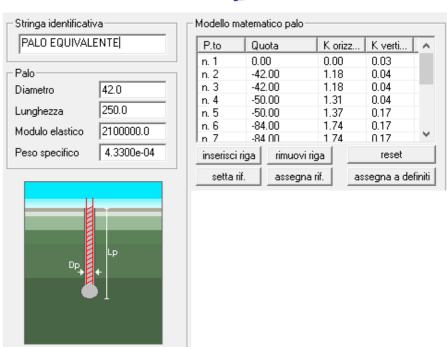
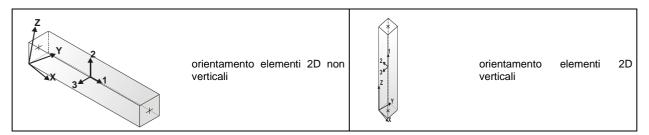

Nodo	numero del nodo.
Х	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto
	su pali,) che è collegato al nodo.
	(ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo

TABELLA DATI NODI

Nodo	Х	Υ	Z	Nodo	Х	Υ	Z	Nodo	Х	Υ	Z
	cm	cm	cm		cm	cm	cm		cm	cm	cm
2	0.0	0.0	260.0	3	0.0	0.0	227.5	4	0.0	0.0	130.0
5	0.0	0.0	65.0	6	0.0	0.0	195.0	7	0.0	0.0	32.5
8	0.0	0.0	162.5	9	0.0	0.0	97.5				

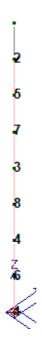
Nodo	X	Υ	Z	Note	Rig. TX	Rig. TY	Rig. TZ	Rig. RX	Rig. RY	Rig. RZ
	cm	cm	cm		daN/cm	daN/cm	daN/cm	daN cm/rad	daN cm/rad	daN cm/rad
1	0.0	0.0	0.0	FS=1						

39 TRACKER - MODELLAZIONE STRUTTURA: ELEMENTI TRAVE


TABELLA DATI TRAVI

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.

Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

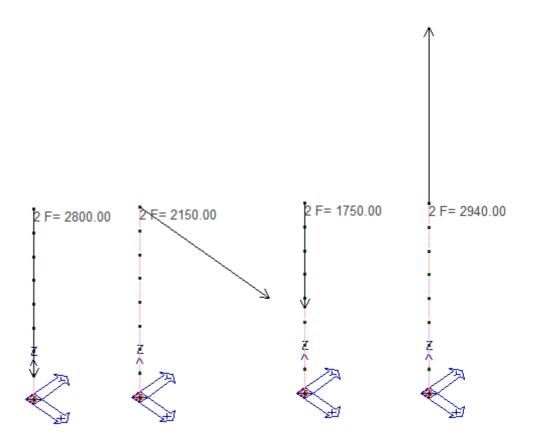

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:

Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento

Elem.	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.
1	Pilas.	1	7	12	8	1
2	Pilas.	3	2	12	8	1
3	Pilas.	4	8	12	8	1
4	Pilas.	5	9	12	8	1
5	Pilas.	6	3	12	8	1
6	Pilas.	7	5	12	8	1
7	Pilas.	8	6	12	8	1
8	Pilas.	9	4	12	8	1

40 TRACKER - MODELLAZIONE DELLE AZIONI


LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)

r dati (ix,iy,iz,iix,iiiy,iiiz,ascissa di iiile canco)	
F_{x} M_{x}	Carico concentrato nodale
F _z , Y	Carico distribuito globale

Tipo	carico concentrato nodale									
ld	Tipo	Fx	Fy	Fz	Mx	My	Mz			
		daN	daN	daN	daN cm	daN cm	daN cm			
2	CARICO NEVE	0.0	0.0	-2800.00	0.0	0.0	0.0			
3	CARICO VENTO	2 150.00	0.0	0.0	0.0	0.0	0.0			
	DIREZIONE X									
4	CARICO PERMANENTE	0.0	0.0	-1750.00	0.0	0.0	0.0			
5	CARICO VENTO	0 .0	0.0	2940.00	0.0	0.0	0.0			
	DIREZIONE Z									

41 TRACKER - SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti
3	Qk	NA	caso di carico con azioni variabili
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture

Sono di <u>tipo automatico A</u> (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk. Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Qvk	CDC=Qvk (carico da vento) dir X +	Azioni applicate:
			Nodo: 2 Azione: CN:Fx=2150.00
3	Qk	carico di neve	Azioni applicate:
			Nodo: 2 Azione: NEVE-CN:Fz=-2800.00
4	Gk	permanente	Azioni applicate:
			Nodo: 2 Azione: CN:Fz=-1750.00
5	Qvk	VENTO SOLLEVAMENTO	Azioni applicate:
			Nodo: 2 Azione : CN:Fz=2940.00

42 TRACKER - DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente.

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 γ G1·G1 + γ G2·G2 + γ P·P + γ Q1·Qk1 + γ Q2· ψ 02·Qk2 + γ Q3· ψ 03·Qk3 + ...

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$

Combinazione frequente SLE

 $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi_{21} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + \psi_{23} \cdot Qk_3 + ...$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

 $G_1 + G_2 + A_d + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ψ0	ψ1	ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

NTC 2018 Tabella 2.6.I

		Coefficiente γf	EQU	A1	A2
Carichi permanenti	Favorevoli Sfavorevoli	γG1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	γG2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

Cmb	Tipo	Sigla Id
1	SLU	Comb. SLU A1 1
2	SLU	Comb. SLU A1 2
3	SLU	Comb. SLU A1 3
4	SLU	Comb. SLU A1 4
5	SLU	Comb. SLU A1 5
6	SLU	Comb. SLU A1 6
7	SLU	Comb. SLU A1 7
8	SLU	Comb. SLU A1 8
9	SLU	Comb. SLU A1 9

⁻ per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),

⁻ per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

Cmb	Tipo	Sigla Id
10	SLU	Comb. SLU A1 10
11	SLU	Comb. SLU A1 11
12	SLU	Comb. SLU A1 12
13	SLU	Comb. SLU A1 13
14	SLU	Comb. SLU A1 14
15	SLU	Comb. SLU A1 15
16	SLU	Comb. SLU A1 16
17	SLU	Comb. SLU A1 17
18	SLU	Comb. SLU A1 18
19	SLU	Comb. SLU A1 19
20	SLU	Comb. SLU A1 20
21	SLE(r)	Comb. SLE(rara) 21
22	SLE(r)	Comb. SLE(rara) 22
23	SLE(r)	Comb. SLE(rara) 23
24	SLE(r)	Comb. SLE(rara) 24
25	SLE(r)	Comb. SLE(rara) 25
26	SLE(r)	Comb. SLE(rara) 26
27	SLE(r)	Comb. SLE(rara) 27
28	SLE(r)	Comb. SLE(rara) 28
29	SLE(r)	Comb. SLE(rara) 29
30	SLE(r)	Comb. SLE(rara) 30
31	SLE(f)	Comb. SLE(freq.) 31
32	SLE(f)	Comb. SLE(freq.) 32
33	SLE(f)	Comb. SLE(freq.) 33
34	SLE(f)	Comb. SLE(freq.) 34
35	SLE(f)	Comb. SLE(freq.) 35
36	SLE(f)	Comb. SLE(freq.) 36
37	SLE(f)	Comb. SLE(freq.) 37
38	SLE(p)	Comb. SLE(perm.) 38
39	SLE(p)	Comb. SLE(perm.) 39

Cmb	CDC 1	CDC 2	CDC 3	CDC 4	CDC 5
1	1.30	0.0	0.0	1.30	0.0
2	1.30	0.0	1.50	1.30	0.0
3	1.00	0.0	0.0	1.00	0.0
4	1.00	0.0	1.50	1.00	0.0
5	1.30	1.50	0.0	1.30	0.0
6	1.30	1.50	1.50	1.30	0.0
7	1.00	1.50	0.0	1.00	0.0
8	1.00	1.50	1.50	1.00	0.0
9	1.30	0.90	0.0	1.30	0.0
10	1.30	0.90	1.50	1.30	0.0
11	1.00	0.90	0.0	1.00	0.0
12	1.00	0.90	1.50	1.00	0.0
13	1.30	0.0	0.0	1.30	0.90
14	1.30	0.0	1.50	1.30	0.90
15	1.00	0.0	0.0	1.00	0.90
16	1.00	0.0	1.50	1.00	0.90
17	1.30	0.0	0.0	1.30	1.50
18	1.30	0.0	1.50	1.30	1.50
19	1.00	0.0	0.0	1.00	1.50
20	1.00	0.0	1.50	1.00	1.50

Cmb	CDC 1	CDC 2	CDC 3	CDC 4	CDC 5
21	1.00	0.0	0.0	1.00	0.0
22	1.00	0.0	1.00	1.00	0.0
23	1.00	1.00	0.0	1.00	0.0
24	1.00	1.00	1.00	1.00	0.0
25	1.00	0.60	0.0	1.00	0.0
26	1.00	0.60	1.00	1.00	0.0
27	1.00	0.0	0.0	1.00	0.60
28	1.00	0.0	1.00	1.00	0.60
29	1.00	0.0	0.0	1.00	1.00
30	1.00	0.0	1.00	1.00	1.00
31	1.00	0.0	0.0	1.00	0.0
32	1.00	0.0	0.80	1.00	0.0
33	1.00	0.0	0.90	1.00	0.0
34	1.00	0.20	0.0	1.00	0.0
35	1.00	0.20	0.80	1.00	0.0
36	1.00	0.0	0.0	1.00	0.20
37	1.00	0.0	0.80	1.00	0.20
38	1.00	0.0	0.0	1.00	0.0
39	1.00	0.0	0.80	1.00	0.0

43 TRACKER - VERIFICHE PER ELEMENTI IN ACCIAIO

LEGENDA TABELLA VERIFICHE PER ELEMENTI IN ACCIAIO

Il programma consente la verifica dei seguenti tipi di elementi:

1. aste

2. travi

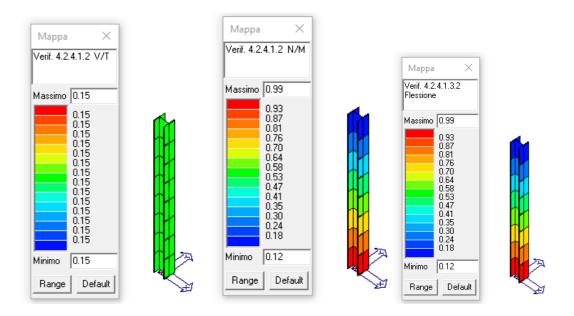
3. 3. pilastri L'esito delle verifiche è espresso con un codice come di seguito indicato

Ok: verifica con esito positivo NV: verifica con esito negativo verifica non richiesta. Nr.

Per comodità gli elementi vengono raggruppati in tabelle in relazione al tipo.

Ai fini delle verifiche (come da D.M. 17 Gennaio 2018 e circolare 21 Gennaio 2019 n.7) i tipi elementi differiscono per i seguenti aspetti:

Verifica		Aste	Travi	Pilastri
4.2.3.1	Classificazione	X	Х	Х
4.2.4.1.2.1	Trazione	X	X	X
4.2.4.1.2.2	Compressione	X	X	X
4.2.4.1.2.4	Taglio		X	X
4.2.4.1.2.5	Torsione		X	X
	Flessione, taglio e forza assiale		X	X
4.2.4.1.3.1	Aste compresse	X	X	X
4.2.4.1.3.2	Instabilità flesso-torsionale		Х	X
4.2.4.1.3.3	Membrature inflesse e compresse		Х	Х


L' insieme delle verifiche sopra riportate è condotto sugli elementi purché dotati di sezione idonea come da tabella seguente:

	Azione	SEZIONI GENERICHE	PROFILI SEMPLICI	PROFILI ACCOPPIATI
4.2.3.1	Classificazione automatica	L, doppio T, C, rettangolare cava, circolare cava	Tutti	Da profilo semplice
4.2.3.1	Classificazione di default 2	Circolare		
4.2.3.1	Classificazione di default 3	restanti		
4.2.4.1.2.1	Trazione	si	si	si
4.2.4.1.2.2	Compressione	Si	si	si
4.2.4.1.2.4	Taglio	si	si	si
4.2.4.1.2.5	Torsione	si	si	si
	Flessione, taglio e forza assiale	si	si	si
4.2.4.1.3.1	Aste compresse	si	si	per elementi ravvicinati e a croce o coppie calastrellate
4.2.4.1.3.2	Travi inflesse	doppio T simmetrica	doppio T	no

Le verifiche sono riportate in tabelle con il significato sotto indicato; le verifiche sono espresse dal rapporto tra l'azione di progetto e la capacità ultima, pertanto la verifica ha esito positivo per rapporti non superiori all' unità.

Asta	1	Trave		Pilastr	o	numero dell'elemento					
Stato codice di verifica per resistenza, stabilità, svergolamento											
		Note)			sezione e materiali adottati per l'elemento					
		V N				(ASTE) verifica come da par. 4.2.4.1.2 per punto (4.2.6) e (4.2.10)					
		V V/	Γ			(TRAVI E PILASTRI) verifica di resistenza come da par. 4.2.4.1.2 per azioni taglio-torsione (4.2.16 e 4.2.28)					
V N/M						(TRAVI E PILASTRI) verifica di resistenza come da par. 4.2.4.1.2 per azioni composte (4.2.33) con riduzione					
V IN/IVI						per taglio (4.2.40) ove richiesto					
N	N M3 M2 V2 V3 T					sollecitazioni di interesse per la verifica					
V stab (ASTE) verifica come da par. 4.2.4.1.3.1 per punto (4.2.41)											
		V sta	h			(TRAVI E PILASTRI) verifica come da par. 4.2.4.1.3 per punti (C4.2.32) o (C4.2.36) (membrature inflesse e					
		V Sta	D			compresse senza/con presenza di instabilità flesso-torsionale)					
BetaxL B22xL B33xL lunghezze libere di inflessione (se indicato riferiti al piano di normale 22 o 33 rispettivamente)											
		Snelle	zza			snellezza massima					
		Class	se .			classe del profilo					
		Chi m	n			coefficiente di riduzione (della capacità) per la modalità di instabilità pertinente					
		Rif. cr	nb			combinazioni in cui si sono rispettivamente attinti i valori di verifica più elevati					
		V fls	t			(TRAVI E PILASTRI) verifica di stabilità come da par. 4.2.4.1.3.2 per punto (4.2.48)					
		B1-1 >	. L			Beta1-1 x L: interasse tra i ritegni torsionali					
		Chi L	.T			coefficiente di riduzione (della capacità) per la modalità di instabilità flesso-torsionale					
Snell adim Valore della snellezza adimensionale, utilizzato per il controllo previsto al par. 7.5.5											
Valore del rapporto capacità/domanda per l'azione di interessa (momento per travi e azione assiale per aste)											
v.Omeg valore del rapporto capacitar domanda per l'azione di interesse (momento per travi e azione assiale per utilizzato per l'amplificazione delle azioni											
		f.Om.	N			Fattore di amplificazione delle azioni assiali per travi e colonne (prodotto di 1.1 x Omega x gamma rd					
		1.0111.	14			materiale); utilizzato come specificato al par. 7.5.5					
		f.Om.	т			Fattore di amplificazione delle azioni (assiali, flettenti e taglianti) per colonne (prodotto di 1.1 x Omega x					
		1.0111.	•			gamma rd materiale); utilizzato come specificato al par. 7.5.4					

Pilas.	Stato	Note	V	V	V	CI.	LamS	LamS	Snell	.Chi	V	LamS	Chi	Rif.
			V/T	N/M	stab		22	33		mn	flst	LT	LT	cmb
1	ok	s=8,m=12	0.15	0.99		1					0.99	3.96e- 02	1.00	5,5,0,5
2	ok	s=8,m=12	0.15	0.12		1					0.12	3.96e- 02	1.00	5,5,0,5
3	ok	s=8,m=12	0.15	0.49		1					0.49	3.96e- 02	1.00	5,5,0,5
4	ok	s=8,m=12	0.15	0.74		1					0.74	3.96e- 02	1.00	5,5,0,5
5	ok	s=8,m=12	0.15	0.25		1					0.25	3.96e- 02	1.00	5,5,0,5
6	ok	s=8,m=12	0.15	0.86		1					0.86	3.96e- 02	1.00	5,5,0,5
7	ok	s=8,m=12	0.15	0.37		1					0.37	3.96e- 02	1.00	5,5,0,5
8	ok	s=8,m=12	0.15	0.62		1					0.62	3.96e- 02	1.00	5,5,0,5

44 TRACKER - RISULTATI OPERE DI FONDAZIONE

DETERMINAZIONE DELLA PORTANZA VERTICALE DI FONDAZIONI PROFONDE

Per la determinazione della portanza verticale di fondazioni profonde si fa riferimento a due contributi: la "portanza di punta" e la "portanza per attrito laterale". Queste due componenti in genere sono calcolate in maniera autonoma dato che risulta molto difficoltoso, tranne che in poche situazioni, stabilire quanta parte del carico è assorbita dall'attrito laterale e quanta dalla resistenza alla punta. Nel seguito, ai fini del calcolo della portanza verticale, si assumeranno le seguenti espressioni generali valide per il caso di palo soggetto a compressione e per il caso di palo soggetto a trazione (nel calcolo della portanza verticale è possibile tenere in conto tutti o solo uno dei contributi su definiti):

$$Q_C = \frac{Q_P}{\eta_P} + \frac{Q_L}{\eta_L} - W_{\text{ATT.NEG.}} - W_P \quad \text{(caso di palo in compressione)} \qquad Q_T$$

$$= \frac{Q_L}{\eta_L} + W_P \quad \text{(caso di palo in trazione)}$$

dove i simboli su riportati hanno il seguente significato:

- Q_C resistenza a compressione del palo

- Q_T resistenza a trazione del palo

- Q_P carico limite verticale alla punta del palo

- Q_L carico limite verticale lungo la superficie laterale del palo

- W_{ATT.NEG.} attrito negativo agente sul palo

- W_P peso totale del palo

 $-\eta_{II}$ coefficiente di sicurezza per carico limite verticale alla punta del palo

 $-\eta_{A}$ coefficiente di sicurezza per carico limite verticale lungo la superficie laterale del palo

I valori del carico limite verticale alla punta del palo " Q_P " e del carico limite verticale lungo la superficie laterale del palo " Q_L " sono determinati con le note "formule statiche". Queste esprimono i valori di cui sopra in funzione della geometria del palo, delle caratteristiche geotecniche del terreno in cui è immerso, della modalità esecutiva e dell'interfaccia palo-terreno.

Di seguito si illustrano le metodologie con le quali saranno determinati i valori prima citati; è necessario tenere presente che tali metodi sono riferiti al calcolo del "singolo palo" e per estendere tale modalità computazione al caso di "pali in gruppo" si farà ricorso ai "coefficienti d'efficienza", in questo modo si potrà tenere in debito conto l'interferenza reciproca che i pali esercitano.

CARICO LIMITE VERTICALE ALLA PUNTA DEL PALO

Il valore del carico limite verticale alla punta del palo, indipendentemente dal metodo utilizzato per la sua determinazione, è condizionato dalla modalità esecutiva. Esso varia notevolmente a seconda che il palo sia del tipo "infisso" o "trivellato" poiché le caratteristiche fisico-meccaniche del terreno circostante il palo variano in seguito alle operazioni d'installazione. Di conseguenza, per tenere conto della modalità esecutiva nel calcolo dei coefficienti di portanza, si propone di modificare il valore dell'angolo di resistenza a taglio secondo quanto suggerito da Kishida (1967): $\phi_{cor} = \frac{\phi + 40}{2} \quad \text{(per pali infissi)} \qquad \phi_{cor} = \phi - 40$

$$\phi_{cor} = \frac{\phi + 40}{2}$$
 (per pali infissi) $\phi_{cor} = \phi - 3^{\circ}$ (per pali trivellati)

Con la correzione di cui sopra si determineranno i fattori adimensionali di portanza che sono presenti nella relazione per la determinazione del carico limite verticale alla punta che assume la seguente espressione:

$$Q_p = A_p \cdot \left(q_p \cdot N_q^* + c \cdot N_c^* \right)$$

dove i simboli su riportati hanno il seguente significato:

- superficie portante efficace della punta del palo
- **q**_P pressione del terreno presente alla punta del palo
- C coesione del terreno alla punta del palo (nel caso di condizione non drenata $c = c_u$)
- N_{a}^{*} , N_{c}^{*} fattori adimensionali di portanza funzione dell'angolo d'attrito interno $\varphi_{\chi o \rho}$ del terreno già corretti

In letteratura esistono diverse formulazioni per il calcolo dei fattori adimensionali di portanza, di seguito si riportano quelle che sono state implementate:

Formulazione di Meyerhof per base poggiante su terreni sciolti (1951)

• se $\varphi \neq 0$ (condizione drenata) si ha:

$$\begin{split} N_q &= \operatorname{tg}^2\left(\frac{\pi}{4} + \frac{\phi}{2}\right) \cdot e^{\pi \cdot \operatorname{tg}(\phi)} & N_c = (N_q - 1) \cdot \operatorname{ctg}(\phi) \\ s_q &= 1 + 0.1 \cdot \operatorname{tg}^2\left(\frac{\pi}{4} + \frac{\phi}{2}\right) & s_c = 1 + 0.2 \cdot \operatorname{tg}^2\left(\frac{\pi}{4} + \frac{\phi}{2}\right) & \text{(fattori di forma)} \\ d_q &= 1 + 0.1 \cdot \frac{L}{D} \cdot \sqrt{\operatorname{tg}^2\left(\frac{\pi}{4} + \frac{\phi}{2}\right)} & d_c = 1 + 0.2 \cdot \frac{L}{D} \cdot \sqrt{\operatorname{tg}^2\left(\frac{\pi}{4} + \frac{\phi}{2}\right)} & \text{(fattori di forma)} \\ N_q^* &= N_q \cdot s_q \cdot d_q & N_c^* &= N_c \cdot s_c \cdot d_c \\ \operatorname{se} \phi &= 0 \text{ (condizione non drenata) si ha:} \\ N_q &= 1.00 & N_c &= \pi + 2 \\ s_q &= 1.00 & s_c &= 1.20 & \text{(fattori di forma)} \\ d_q &= 1.00 & d_c &= 1 + 0.2 \cdot \frac{L}{D} & \text{(fattori di forma)} \end{split}$$

 $N_c^* = N_c \cdot s_c \cdot d_c$

Formulazione di Hansen per base poggiante su terreni sciolti (1970)

 $N_q^* = N_q \cdot s_a \cdot d_a$

se
$$\varphi \neq 0$$
 (condizione drenata) si ha:
$$N_q = \operatorname{tg}^2\left(\frac{\pi}{4} + \frac{\phi}{2}\right) \cdot e^{\pi \cdot \operatorname{tg}(\phi)} \qquad N_c = (N_q - 1) \cdot \operatorname{ctg}(\phi)$$
 $s_q = 1 + \operatorname{tg}(\phi) \qquad s_c = 1 + \frac{N_q}{N_c} \qquad \text{(fattori di forma)}$ $d_q = 1 + 2 \cdot \operatorname{tg}(\phi) \cdot \left(1 - \operatorname{sen}(\phi)\right)^2 \cdot \Theta \quad d_c = 1 + 0.4 \cdot \Theta \qquad \text{(fattori d'approfondimento)}$ dove: $\operatorname{se} \frac{L}{D} \leq 1 \quad \Rightarrow \quad \Theta = \frac{L}{D}, \ \operatorname{se} \frac{L}{D} > 1 \quad \Rightarrow \quad \Theta = \operatorname{arctg}\left(\frac{L}{D}\right)$ $N_q^* = N_q \cdot s_q \cdot d_q \qquad N_c^* = N_c \cdot s_c \cdot d_c$ se $\varphi = 0$ (condizione non drenata) si ha: $N_q = 1.00 \qquad N_c = \pi + 2$ $s_q = 1.00 \qquad s_c = 1.20 \qquad \text{(fattori di forma)}$

$$\begin{array}{ll} d_q = 1.00 & d_c = 1 + 0.4 \cdot \Theta \\ N_q^* = N_q \cdot s_q \cdot d_q & N_c^* = N_c \cdot s_c \cdot d_c \end{array} \tag{fattori d'approfondimento}$$

Formulazione di Zeevaert per base poggiante su terreni sciolti (1972)

se $\varphi \neq 0$ (condizione drenata) si ha:

$$N_q^* = \frac{\cos^2(\phi)}{2 \cdot \cos^2(\frac{\pi}{4} + \frac{\phi}{2})} \cdot e^{\left(\frac{8 \cdot \pi}{2} + \phi\right) \cdot \operatorname{tg}(\phi)}$$

$$N_c^* = (N_q - 1) \cdot \operatorname{ctg}(\phi)$$

se $\varphi = 0$ (condizione non drenata) si ha:

$$N_q^* = 1.00$$
 $N_c^* = 9.00$

Formulazione di Berezantzev per base poggiante su terreni sciolti (1970)

Berezantzev fa riferimento ad una superficie di scorrimento "alla Terzaghi" che si arresta sul piano della punta del palo. Inoltre considera il cilindro di terreno coassiale al palo (avente diametro pari all'estensione in sezione della superficie di scorrimento) in parte sostenuto da tensioni tangenziali dal rimanente terreno presente lungo la superficie laterale del cilindro. Consequentemente il valore della pressione presente alla punta del palo è inferiore alla corrispondente pressione litostatica ed è influenzata dal rapporto tra la profondità alla quale è posta la punta "L" del palo e il diametro "D" dello stesso. Quindi il valore di N_q è influenzato da questo effetto "Silo". I valori che l'autore propone sono: se φ ? 0 (condizione drenata) si ha:

Valori di N^{*}, per pali di diametro fino a 80.0 cm.

	valen an va per pan ar alametre inte a eele em.																		
Λ/Δ	8°	16°	18°	20°	22°	24°	26°	28°	30°	32°	34°	36°	38°	40°	42°	44°	46°	48°	50°
4	1.07	2.18	3.15	4.72	7.15	10.73	15.85	22.95	32.62	45.56	62.69	85.18	114.53	152.71	202.32	266.82	350.86	460.79	605.36
12	1.04	1.77	2.46	3.64	5.52	8.42	12.71	18.85	27.44	39.21	55.07	76.20	104.13	140.81	188.86	251.72	334.05	442.17	584.82
20	1.03	1.63	2.20	3.20	4.82	7.38	11.22	16.82	24.76	35.79	50.83	71.06	98.01	133.65	180.59	242.29	323.39	430.21	571.48
28	1.03	1.54	2.05	2.93	4.40	6.72	10.26	15.48	22.96	33.43	47.84	67.37	93.54	128.35	174.39	235.13	315.21	420.95	561.08
36	1.02	1.49	1.94	2.75	4.10	6.26	9.57	14.49	21.60	31.64	45.53	64.48	90.00	124.10	169.36	229.27	308.46	413.26	552.38
50	1.02	1.42	1.82	2.53	3.74	5.68	8.70	13.23	19.84	29.27	42.45	60.56	85.14	118.18	162.30	220.95	298.80	402.16	539.74
75	1.02	1.35	1.69	2.30	3.33	5.02	7.69	11.74	17.73	26.37	38.58	55.55	78.82	110.38	152.84	209.67	285.53	386.74	522.01
100	1.01	1.31	1.61	2.14	3.07	4.60	7.02	10.74	16.28	24.34	35.84	51.95	74.19	104.56	145.68	201.02	275.23	374.64	507.95
200	1.01	1.22	1.44	1.84	2.54	3.71	5.60	8.56	13.05	19.73	29.43	43.30	62.82	89.95	127.29	178.30	247.63	341.59	468.90
500	1.01	1.14	1.29	1.55	2.02	2.82	4.14	6.24	9.50	14.45	21.83	32.64	48.25	70.49	101.85	145.69	206.57	290.75	406.87

Valori di N^{*} per pali di diametro maggiore a 80.0 cm

	valori di 11 q poi pari di diamotro maggioro a 00:0 om:																		
Λ/Δ	8°	16°	18°	20°	22°	24°	26°	28°	30°	32°	34°	36°	38°	40°	42°	44°	46°	48°	50°
4	1.16	3.09	3.95	5.04	6.44	8.22	10.50	13.41	17.12	21.87	27.92	35.65	45.53	58.14	74.24	94.80	121.05	154.57	197.38
12	1.21	3.14	3.98	5.05	6.42	8.14	10.34	13.13	16.68	21.18	26.90	34.17	43.41	55.15	70.07	89.03	113.13	143.77	182.72
20	1.26	3.18	4.01	5.06	6.39	8.06	10.18	12.85	16.23	20.49	25.88	32.69	41.29	52.16	65.89	83.26	105.21	132.97	168.06
28	1.30	3.22	4.04	5.07	6.36	7.99	10.02	12.57	15.78	19.81	24.86	31.20	39.17	49.16	61.72	77.49	97.29	122.16	153.40
36	1.35	3.27	4.07	5.08	6.34	7.91	9.86	12.30	15.33	19.12	23.84	29.72	37.04	46.17	57.55	71.72	89.38	111.36	138.75
44	1.39	3.31	4.10	5.09	6.31	7.83	9.70	12.02	14.88	18.43	22.81	28.23	34.92	43.18	53.38	65.95	81.46	100.56	124.09
52	1.44	3.35	4.14	5.10	6.29	7.75	9.54	11.74	14.44	17.74	21.79	26.75	32.80	40.19	49.21	60.18	73.54	89.76	109.43
56	1.46	3.37	4.15	5.10	6.27	7.71	9.46	11.60	14.21	17.40	21.28	26.00	31.74	38.70	47.12	57.30	69.58	84.36	102.10
60	1.49	3.39	4.17	5.11	6.26	7.67	9.38	11.46	13.99	17.06	20.77	25.26	30.68	37.20	45.03	54.42	65.62	78.96	94.77
65	1.51	3.42	4.19	5.12	6.25	7.62	9.28	11.29	13.71	16.63	20.13	24.33	29.35	35.33	42.43	50.81	60.67	72.21	85.61

$$N_c^* = (N_q - 1) \cdot \operatorname{ctg}(\phi)$$

se $\varphi = 0$ (condizione non drenata) si ha:

$$N_q^* = 1.00$$
 $N_c^* = 9.00$

Formulazione di Vesic per base poggiante su terreni sciolti (1975) se
$$\phi \neq 0$$
 (condizione drenata) si ha:
$$N_q^* = \frac{3}{3-\text{sen}(\phi)} \cdot \text{tg}^2\left(\frac{\pi}{4} + \frac{\phi}{2}\right) \cdot I_{\text{rr}}^{\frac{4-\text{sen}(\phi)}{(1+\text{sen}(\phi))}} \cdot e^{\left(\frac{\pi}{2} - \phi\right) \cdot \text{tg}(\phi)} \qquad N_c^* = (N_q - 1) \cdot \text{ctg}(\phi) \\ I_{\text{rr}} = \frac{I_r}{1+\varepsilon_{v} \cdot I_r} \qquad \varepsilon_v = \frac{q_p \cdot \alpha}{E_t} \cdot \frac{(1+v) \cdot (1-2 \cdot v)}{(1-v)} \qquad I_r = \frac{E_t}{2 \cdot (1+v) \cdot (c+q_p \cdot \alpha \cdot \text{tg}(\phi))} \\ \text{se } \phi = 0 \text{ (condizione non drenata) si ha:}$$

$$N_q^* = 1.00$$

$$N_c^* = \frac{4}{3} \cdot (\log_n(I_{\rm rr}) + 1) + \frac{\pi}{2} + 1$$

dove i simboli su riportati hanno il seguente significato:

- Et modulo elastico del terreno alla profondità della punta del palo
- coefficiente di Poisson del terreno alla profondità della punta del palo - *ν*
- coefficiente di riduzione della pressione del terreno presente alla profondità della punta del palo $-\alpha$

Nel caso in cui si scelga di effettuare la riduzione della pressione del terreno presente alla profondità della punta del palo (cioè α =1) il coefficiente di riduzione " α " assume la seguente espressione:

$$\alpha = \frac{1 + 2 \cdot K_0}{3} \qquad \text{dove: se } \phi \neq 0 \Rightarrow K_0 = 1 - \text{sen}(\phi); \qquad \text{se } \phi = 0 \Rightarrow K_0 = \frac{\nu}{1 - \nu}$$

Formulazione di Janbu per base poggiante su terreni sciolti (1976)

se
$$\varphi \neq 0$$
 (condizione drenata) si ha:
$$N_q^* = \left(\operatorname{tg}(\phi) + \sqrt{1 + \operatorname{tg}^2(\phi)}\right)^2 \cdot e^{2 \cdot \vartheta \cdot \operatorname{tg}(\phi)} \qquad N_c^* = (N_q - 1) \cdot \operatorname{ctg}(\phi) \\ \vartheta = 60 + 0.45 \cdot \operatorname{Dr} \qquad \qquad \operatorname{dove} "Dr" \ \text{\'e} \ \operatorname{la} \ \operatorname{densit\'a} \ \operatorname{relativa} \ \operatorname{del} \ \operatorname{terreno}.$$

se $\varphi = 0$ (condizione non drenata) si ha:

$$N_q^* = 1.00$$
 $N_c^* = 5.74$

Formulazione di Terzaghi per base poggiante su roccia (1943)

Per la determinazione del carico limite nel caso di presenza di ammasso roccioso bisogna valutare molto attentamente il grado di solidità della roccia stessa. Tale valutazione viene in genere eseguita stimando l'indice RQD (Rock Quality Designation) che rappresenta una misura della qualità di un ammasso roccioso. Tale indice può variare da un minimo di 0 (caso in cui la lunghezza dei pezzi di roccia estratti dal carotiere è inferiore a 100 mm) ad un massimo di 1 (caso in cui la carota risulta integra) ed è calcolato nel seguente modo:

$$\mbox{RQD} = \frac{\sum \mbox{lunghezze dei pezzi di roccia intatta} \ > \ 100\mbox{mm}}{\mbox{lunghezza del carotiere}}.$$

Se il valore di RQD è molto basso la roccia è molto fratturata ed il calcolo della capacità portante dell'ammasso roccioso va condotto alla stregua di un terreno sciolto utilizzando tutte le formulazioni sopra descritte.

$$\begin{split} N_q &= \frac{e^{2\cdot\left(\frac{8-\pi}{4}-\frac{\phi}{2}\right)\cdot\operatorname{tg}(\phi)}}{2\cdot\cos^2\left(\frac{\pi}{4}+\frac{\phi}{2}\right)} & N_c &= (N_q-1)\cdot\operatorname{ctg}(\phi) & \operatorname{se}\;\phi &= 0 \Rightarrow N_c &= \frac{3}{2}\cdot\pi+1 \\ s_q &= 1.00 & s_c &= 1.30 & \text{(fattori di forma)} \\ N_q^* &= \operatorname{RQD}^2\cdot N_q\cdot s_q & N_c^* &= \operatorname{RQD}^2\cdot N_c\cdot s_c & \end{split}$$

Formulazione di Stagg-Zienkiewicz per base poggiante su roccia (1968)
$$N_q = \operatorname{tg}^6\left(\frac{90^\circ + \phi}{2}\right) \qquad \qquad N_c = 5 \cdot \operatorname{tg}^4\left(\frac{90^\circ + \phi}{2}\right) \\ s_q = 1.00 \qquad \qquad s_c = 1.30 \qquad \qquad \text{(fattori di forma)} \\ N_q^* = \operatorname{RQD}^2 \cdot N_q \cdot s_q \qquad \qquad N_c^* = \operatorname{RQD}^2 \cdot N_c \cdot s_c$$

CARICO LIMITE VERTICALE LUNGO LA SUPERFICIE LATERALE DEL PALO

Il valore del carico limite verticale lungo la superficie laterale del palo è dato dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali che si sviluppano all'interfaccia palo-terreno in condizioni limite:

$$Q_L = \int_{\Gamma} \tau_{\lim} \cdot d\Gamma = \int_{0}^{L} (c_a + \sigma_h \cdot \operatorname{tg}(\delta)) \cdot P_{\operatorname{lat}} \cdot \operatorname{dz}$$

dove i simboli sopra riportati hanno il seguente significato:

- adesione all'interfaccia terreno-palo alla generica profondità "z" $-\chi_{\alpha}$
- tensione orizzontale alla generica profondità "z" $-\sigma_n$

- $-\delta$ angolo di resistenza a taglio all'interfaccia terreno-palo alla generica profondità "z"
- $-\Pi_{\lambda\alpha\tau}$ perimetro della sezione trasversale del palo alla generica profondità "z"
- $-\Lambda$ sviluppo longitudinale del palo

Analogamente al carico limite alla punta, anche il valore del carico limite verticale lungo la superficie laterale del palo varia notevolmente a seconda che esso sia del tipo "infisso" o "trivellato" a causa del diverso comportamento del terreno circostante in palo. Conseguentemente i parametri sopra riportati possono essere correlati da leggi diverse in funzione delle modalità di esecuzione del palo. Di seguito si descrivono quelle che sono state implementate.

L'adesione " c_a " è correlata alla coesione "c" nel caso di condizioni drenate; oppure alla coesione non drenata " c_u " nel caso di condizioni non drenate, per mezzo del coefficiente d'adesione " ψ " secondo la seguente relazione:

$$c_a = c_* \cdot \psi \qquad \qquad \text{dove}: \ c_* = c \ \ \text{(in condizione drenata);} \\ c_* = c_u \text{(in condizione non drenata).}$$

Esprimendo il valore di " c_* " in N/cm², il coefficiente d'adesione " ψ " può assumere i seguenti valori:

Caquot-Kerisel (consigliato per pali trivellati)

$$\psi = \frac{100 + c_*^2}{100 + 7 \cdot c_*^2}$$

Meyerhof-Murdock (consigliato per pali trivellati)

se
$$c_* \le 5.00 \text{ N/cm}^2$$
 $\Rightarrow \psi = 1.000 - 0.100 \cdot c_*$
se $c_* > 5.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.525 - 0.005 \cdot c_*$

Whitaker-Cooke (consigliato per pali trivellati)

se
$$c_* \le 2.50 \text{ N/cm}^2$$
 \Rightarrow
 $\psi = 0.90$

 se $2.50 < c_* \le 5.00 \text{ N/cm}^2$
 \Rightarrow
 $\psi = 0.80$

 se $5.00 < c_* \le 7.50 \text{ N/cm}^2$
 \Rightarrow
 $\psi = 0.60$

 se $c_* > 7.50 \text{ N/cm}^2$
 \Rightarrow
 $\psi = 0.40$

Woodward (consigliato per pali trivellati)

se
$$c_* \le 4.00 \text{ N/cm}^2$$
 $\Rightarrow \psi = 0.90$
se $4.00 < c_* \le 8.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.60$
se $8.00 < c_* \le 12.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.50$
se $12.00 < c_* \le 20.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.40$
se $c_* > 20.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.30$

Viggiani e altri (consigliato per pali infissi)

se
$$c_* \le 5.00 \text{ N/cm}^2$$
 $\Rightarrow \psi = 1.00$
se $5.00 < c_* \le 10.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.70$
se $10.00 < c_* \le 15.00 \text{ N/cm}^2$ $\Rightarrow \phi = 0.50$
se $15.00 < c_* \le 20.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.40$
se $c_* > 20.00 \text{ N/cm}^2$ $\Rightarrow \psi = 0.30$

Il valore della tensione orizzontale " σ_{η} " è correlato al valore della pressione verticale " σ_{ϖ} " per mezzo del coefficiente di spinta orizzontale " K_s " secondo la seguente relazione:

$$\sigma_h = \sigma_v \cdot K_s$$

Il valore di " K_s " dipende essenzialmente dal tipo di terreno e dal suo stato d'addensamento nonché dalla tecnologia utilizzata per l'installazione.

Il programma permette di scegliere tra differenti teorie per il calcolo di $K_{\rm s.}$

Opzione 1:

Metodo "Tomlinson (1971)"

K_s può variare da un limite inferiore pari al coefficiente di spinta a riposo "K₀" fino a valori prossimi al coefficiente di spinta passiva " K_p "; i valori proposti sono:

pali trivellati: $K_s = K_0 = 1 - sen(\Phi)$

pali infissi: $K_s = \text{variabile da: } K_p = 1 + tg^2(\Phi)$ in sommità fino a $K_0 = 1 - \text{sen}(\Phi)$ alla punta

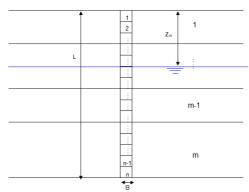
Opzione 2:

Metodo di "Kulhavy (1983)"

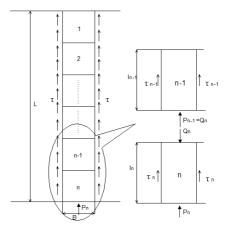
pali trivellati: $K_s = \alpha K_0$ con α variabile tra 2/3 e 1

pali infissi: $K_s = \alpha K_0 \operatorname{con} \alpha \operatorname{variabile} \operatorname{da} 3/4$, per compattazione del terreno trascurabile, fino a 2, nel caso di compattazione significativa.

Il valore dell'angolo di resistenza al taglio all'interfaccia terreno-palo "δ" è funzione della scabrezza della


superficie del palo e quindi della modalità esecutiva; i valori proposti sono:
$$\delta = \arctan(\operatorname{tg}(\operatorname{tg}(\phi))) \qquad (\operatorname{per pali trivellati}) \qquad \delta = \arctan(\frac{3}{4} \cdot \operatorname{tg}(\phi)) \qquad (\operatorname{per pali infissi})$$

DETERMINAZIONE DEI CEDIMENTI DI FONDAZIONI PROFONDE


Per la determinazione del comportamento del palo singolo sottoposto a carichi applicati alla sommità, si fa riferimento all'approccio semiempirico delle curve di trasferimento (Coyle e Reese (1966)). Il metodo delle curve di trasferimento é basato su dati provenienti da prove di carico su pali strumentati; elaborando tali dati è possibile costruire le curve di trasferimento che legano la tensione tangenziale mobilitata all'interfaccia palo-terreno lungo un concio del palo con lo spostamento relativo.

La curva di trasferimento si ottiene con una procedura che prevede i sequenti passi:

1. Suddivisione del palo in n conci

- 2. Definizione della resistenza limite del palo sulla base delle caratteristiche geometriche e delle caratteristiche del terreno. In presenza di terreno stratificato la resistenza sarà uguale alla sommatoria delle resistenze limite di ogni strato di terreno attraversato dal palo.
- 3. Si assegna all'estremità inferiore del palo (concio n) un cedimento Wp.
- 4. Si considera la curva di trasferimento appropriata (carico alla punta-cedimento) in base alla tecnologia costruttiva e al tipo di terreno presente e, noto il cedimento Wp, si ricava il carico alla punta Pn.

- 5. Si ipotizza che il cedimento alla base del concio Wp sia uguale al cedimento Wn che si verifica a metà del concio (Wp=Wn).
- 6. Con il valore di *Wn* si entra nell'appropriata curva di trasferimento (carico laterale-cedimento) e, nota la resistenza tangenziale limite, si ricava la tensione tangenziale mobilitata.
- 7. Il carico Qn agente sulla sommità del concio n-esimo è dato da:

$$Q_n = P_n + \tau_n \pi B l$$

Dove:

$$l = \frac{L}{n}$$

- 8. Si calcola l'abbassamento elastico in corrispondenza della metà del concio n $V_n = \frac{Q_n + P_n}{2} \frac{2l}{\pi B^2 E_n}$
- 9. Si somma il valore calcolato di Vn con il valore di cedimento Wp ipotizzato inizialmente: $W_n' = V_n + W_p$
- 10. Se il valore *Wn'* differisce in maniera significativa dal valore di *Wn* si riparte da passo 3 entrando nella curva di trasferimento con il valore di *Wn'*.
- 11. Quando si ottiene la giusta convergenza si passa a considerare il concio (n-1) e così via fino ad arrivare alla testa del palo.

Il risultato di questa procedura è una curva carico-cedimento con la quale è possibile ricavare i cedimenti sulla base del carico applicato.

SIMBOLOGIA ADOTTATA NEI TABULATI DI CALCOLO

Per maggior chiarezza nella lettura dei tabulati di calcolo viene riportata la descrizione dei simboli principali utilizzati nella stesura degli stessi. Per comodità di lettura la legenda è suddivisa in paragrafi con la stessa modalità in cui sono stampati i tabulati di calcolo.

Dati geometrici degli elementi costituenti le fondazioni profonde

X elem. ascissa nel riferimento globale dell'elemento
 Y elem. ordinata nel riferimento globale dell'elemento

- Profon. profondità del piano di posa dell'elemento a partire dal piano campagna

Base larghezza della sezione trasversale dell'elemento
 Lungh. dimensione dello sviluppo longitudinale dell'elemento
 Altez. altezza della sezione trasversale dell'elemento
 Rotaz. rotazione dell'elemento rispetto al suo baricentro

- Grup. ap. nel caso cui l'elemento faccia parte di una palificata, rappresenta il numero

identificativo della stessa

- Ind. Strat. indice della stratigrafia associata all'elemento

- Tip. iniez. tipologia d'iniezione dei micropali ai fini del calcolo della portanza secondo le

raccomandazioni di Bustamante e Doix (No iniez. = assenza d'iniezione, Iniez.uni.

= iniezione unica, Iniez.rip. = iniezione ripetuta)

- Tip. ter. tipologia di terreno ai fini del calcolo della portanza secondo le raccomandazioni di

Bustamante e Doix (Coes. = coesivo, Inc. = incoerente)

Dia. P. diametro fusto del paloLun. P. lunghezza totale del palo

Lun. L. lunghezza tratto del palo senza contributo di terreno
Dis. P. distanza del baricentro del palo dal bordo del plinto

In. Px interasse principale del palo
In. Py interasse secondario del palo
Dia. B. diametro bulbo del palo

Lun. B. lunghezza della sbulbatura del palo

E.C.V. coefficiente d'efficienza per carico limite verticale del singolo palo
 E.C.C. coefficiente d'efficienza per carico critico verticale del singolo palo
 E.C.T. coefficiente d'efficienza per carico limite trasversale del singolo palo
 Svin. testa coefficiente d'efficienza per carico limite trasversale del singolo palo
 Codice di svincolo alla rotazione in testa al palo (0 = non attivo, 1 = attivo)

- Vin. piede codici di vincolo rispettivamente alla rotazione orizzontale, traslazione orizzontale

e traslazione verticale applicabili al piede del palo (0 = non attivo, 1 = attivo)

- Asc. X' ascissa del baricentro del singolo palo dell'elemento nel riferimento locale con

origine nel baricentro del plinto

- Asc. Y' ordinata del baricentro del singolo palo dell'elemento nel riferimento locale con

origine nel baricentro del plinto

Peso spec. peso specifico del palo

Mod. El. Pa. modulo elastico normale del palo

Dati di carico degli elementi costituenti le fondazioni profonde

Cmb numero della combinazione di carico
 Tipologia tipologia della combinazione di carico

- Sismica flag per l'applicazione della riduzione sismica alle caratteristiche meccaniche del

terreno di fondazione per la combinazione di carico in esame

- S. Normale sollecitazione normale agente alla quota del piano di fondazione dell'elemento

(riferimento locale con origine nel baricentro del plinto)

- S. Tagliante X' sollecitazione tagliante lungo l'asse X' agente alla quota del piano di fondazione

dell'elemento (riferimento locale con origine nel baricentro del plinto)

- S. Tagliante Y' sollecitazione tagliante lungo l'asse Y' agente alla quota del piano di fondazione

dell'elemento (riferimento locale con origine nel baricentro del plinto)

S. Flessionale X' sollecitazione flessionale lungo l'asse X' agente alla quota del piano di fondazione dell'elemento (riferimento locale con origine nel baricentro del plinto)

S. Flessionale Y' sollecitazione flessionale lungo l'asse Y' agente alla quota del piano di fondazione

dell'elemento (riferimento locale con origine nel baricentro del plinto)

- S. Torsionale sollecitazione torsionale agente alla quota del piano di fondazione dell'elemento

(riferimento locale con origine nel baricentro del plinto)

Valori di calcolo per le fondazioni profonde

- Port. punta carico limite verticale alla punta del palo (valore su singolo palo corretto dal relativo

coefficiente d'efficienza)

Port. lat. carico limite verticale lungo la superficie laterale del fusto del palo (valore su singolo

palo corretto dal relativo coefficiente d'efficienza)

- Port. bulbo carico limite verticale lungo la superficie laterale del bulbo del palo (valore su

singolo palo corretto dal relativo coefficiente d'efficienza)

- C. Critico carico critico per l'instabilità del palo (valore su singolo palo corretto dal relativo

coefficiente d'efficienza)

- Attr. Neg. attrito negativo agente sul palo (valore su singolo palo)

- Peso Palo peso totale del singolo palo

- Cmb numero e tipologia della combinazione di carico

- S. Norm. sollecitazione normale agente alla testa del palo in esame

- V. V. Com. resistenza a compressione del palo in esame (corretto dal relativo coefficiente di

sicurezza)

- V. V. Tra. resistenza a trazione del palo in esame (corretto dal relativo coefficiente di

sicurezza)

- Ver. Com. rapporto tra la sollecitazione normale agente alla testa del palo e la sua resistenza

a compressione (verifica positiva se il rapporto è < 1.0)

- Ver. Tra. rapporto tra la sollecitazione normale agente alla testa del palo e la sua resistenza

a trazione (verifica positiva se il rapporto è < 1.0)

S. Tagl. sollecitazione tagliante agente alla testa del palo
 S. Fles. sollecitazione flessionale agente alla testa del palo

- V. V. Trs. resistenza trasversale del palo in esame (corretto dal relativo coefficiente di

sicurezza)

Ver. Tra. rapporto tra la sollecitazione tagliante agente alla testa del palo e la sua resistenza

trasversale (verifica positiva se il rapporto è < 1.0)

Ced. V. cedimento verticale in corrispondenza della testa del palo
 Ced. H. cedimento orizzontale in corrispondenza della testa del palo

PARAMETRI DI CALCOLO

Modalità di calcolo della portanza verticale per fondazioni profonde:

Per elementi con pali: Portanza di punta e laterale Per elementi con micropali: Portanza di punta e laterale

Metodi di calcolo della portanza di punta per fondazioni profonde:

Per terreni sciolti: Vesic

Riduzione della tensione litostatica: No

Per terreni lapidei: Terzaghi

Riduzione di Kishida per pali battuti o trivellati: Si

Metodo di calcolo del coefficiente di spinta orizzontale Ks: Tomlinson

Coefficienti parziali e totali di sicurezza per Tensioni Ammissibili e S.L.E. nel calcolo della portanza per fondazioni profonde:

Coeff. di sicurezza alla punta: 2,50 Coeff. di sicurezza lungo il fusto: 2,50 Coeff. di sicurezza lungo il bulbo: 2,50 Coeff. di sicurezza per palo in trazione: 2,50

Combinazioni di carico:

APPROCCIO PROGETTUALE TIPO 2 - Comb. (A1+M1+R3)

Coefficienti parziali e totali di sicurezza per S.L.U. nel calcolo della portanza per pali trivellati: I coeff. A1 risultano combinati secondo lo schema presente nella relazione di calcolo della struttura.

- Coeff. M1 per Tan (statico): 1
- Coeff. M1 per c' (statico): 1
- Coeff. M1 per Cu (statico): 1
- Coeff. M1 per Tan (sismico): 1
- Coeff. M1 per c' (sismico): 1
- Coeff. M1 per Cu sismico): 1
- Coeff. R3 base: 1,35
- Coeff. R3 laterale in compressione: 1,15
- Coeff. R3 laterale in trazione: 1,25

Fattore di correlazione: 1,70

ARCHIVIO STRATIGRAFIE

Indice / Descrizione: 001 / Nuova stratigrafia n. 1

Numero strati: 3

Profondità falda: assente

Strato n.	Quota di riferimento	Spessore	Indice / Descrizione terreno

1	da 0,0 a -50,0 cm	50,0 cm	001 / 1) Limo argilloso sabbioso
2	da -50,0 a -100,0 cm	50,0 cm	002 / 2) Limo sabbioso
3	da -100,0 a -1700,0 cm	1600,0 cm	003 / 3) Limo sabbioso

ARCHIVIO TERRENI

Indice / Descrizione terreno: 001 / 1) Limo argilloso sabbioso

Comportamento del terreno: condizione drenata

Peso Spec.	P. Spec. Sat.	Angol o Res.	Coesion e	Mod.Elast	Mod.Edom	Dens.Rel	Poisso n	C. Ades
daN/cm	daN/cm	Gradi°	daN/cmq	daN/cmq	daN/cmq	%	%	
С	С							
1,700 E-	2,000 E-	30,000	0,100	66,750	100,000	40,0	0,333	0,90
3	3							

Indice / Descrizione terreno: **002 / 2) Limo sabbioso** Comportamento del terreno: condizione non drenata

Peso Spec.	P. Spec. Sat.	Coes.non dren.	Mod.Elast.	Mod.Edom.	Dens.Rel.	Poisson	C. Ades.
daN/cmc	daN/cmc	daN/cmq	daN/cmq	daN/cmq	%	%	
1,700 E-3	2,000 E-3	1,000	51,797	100,000	60,0	0,385	0,48

Indice / Descrizione terreno: **003 / 3) Limo sabbioso**Comportamento del terreno: condizione drenata

Peso Spec.	P. Spec. Sat.	Angol o Res.	Coesion e	Mod.Elast	Mod.Edom	Dens.Rel	Poisso n	C. Ades
daN/cm	daN/cm	Gradi°	daN/cmq	daN/cmq	daN/cmq	%	%	•
1,600 E-	1,900 E-	29,000	0,000	110,000	150,000	40,0	0,340	1,00

DATI GEOMETRICI DEGLI ELEMENTI COSTITUENTI LE FONDAZIONI PROFONDE Verifica del palo equivalente

Elemento: 1 - Palo singolo - Tipologia pali: infissi

Lieilielito.	ieniento. 1 - 1 alo singolo - ripologia pan. Innissi								
X elem.	Y elem.	Prof.	Base	Lungh.	Altez.	Rot.	Grup.ap.	Ind.strat.	
cm	cm	cm	cm	cm	cm	Gradi°	n.	n.	
0,0	0,0	0,0	0,0	0,0	0,0	0,00	1	001	

Dia.	Lun.	Lun	Dist.P	ln.	ln.	Dia	Lun	E.C.V	E.C.C	E.C.T	Svin.test	Vin.pied
P.	Ρ.	. L.		Px	Ру	. B.	. B.			•	a	е
cm	cm	cm	cm	С	С	cm	cm				codice	codice
				m	m							
42,	250,	0,0	0,0	0,	0,	0,0	0,0	1,00	1,00	1,00	0	0; 0; 0
0	0			0	0							

VALORI DI CALCOLO DELLA PORTANZA PER FONDAZIONI PROFONDE

Elemento: 1 - Palo singolo

Nq = 82.712, σ punta = 0.410, ϕ = 34.5, Nc = 118.892, c punta = 0.000 Port. lat. = 5708.6 daN, Port. punta = 46983.0 daN, P.P.Palo = 150.0 daN

Cmb.	Tipo	Palo	coord.X	coord.Y	N	N lim	Ver.N	Stato
n.		n.	cm	cm	daN	daN		
019	SLU STR	1	0.000	0.000	2567.5	2836.4	0,905	Ok

Sollecitazioni:

Cmb	Tipo	Sism.	N	Tx	Ту	Mx	Му
n.			daN	daN	daN	daN cm	daN cm
019	SLU STR	No	2567.5	0.0	0.0	0.0	0.0

VALORI DI CALCOLO DEI CEDIMENTI PER FONDAZIONI PROFONDE

Elemento: 1 - Palo singolo

Cmb. (Tipo)	Palo	coord.X	coord.Y	N	Ced.Vert			
n.	n.	cm	cm	daN	cm			
022 (SLE rare)	1	0.000	0.000	-4642.5	0.101			

Sollecitazioni:

Cmb	Tipo	Sism.	N	Tx	Ту	Mx	Му
n.			daN	daN	daN	daN cm	daN cm
022	SLE rare	No	-4642.5	0.0	0.0	0.0	0.0

45 TRACKER - RELAZIONE SUI MATERIALI

Il capitolo Materiali riportata informazioni esaustive relative all'elenco dei materiali impiegati e loro modalità di posa in opera e ai valori di calcolo.

LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

2 materiale tipo acciaio

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

	residue d'alestate la constant de la					
Young	modulo di elasticità normale E					
Poisson	coefficiente di contrazione trasversale ni					
G	modulo di elasticità tangenziale					
Gamma	peso specifico					
Alfa	coefficiente di dilatazione termica					
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo se diverso da quello globale della struttura)					
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura(è riportato solo se diverso da quello globale della struttura)					
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari					
Massima compressione	Massima tensione di compressione per aste non lineari					
Massima trazione	Massima tensione di trazione per aste non lineari					
Fattore attrito	Coefficinete di attrito per aste non lineari					
Rapporto HRDb	Rapporto di hardening a flessione					
Rapporto HRDv	Rapporto di hardening a taglio					

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensioneammissibile(>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm

ld	Tipo / Note	V.	V.	Young	Poisson	G	Gamma	Alfa	Altri
		caratt.	medio						
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
12	Acciaio S275			2.100e+06	0.30	8.077e+05			
								05	
	Tensione ft	4300.0							
	Resistenza fd	2750.0							
	Resistenza fd (>40)	2500.0							
	Tensione ammissibile	1900.0							
	Tensione ammissibile	1700.0							
	(>40)								
	Rapporto HRDb								1.00e-
									05
	Rapporto HRDv								1.00e-
									05