

Autorità di Sistema Portuale del Mar Tirreno Centro Settentrionale

PORTI DI ROMA E DEL LAZIO - CIVITAVECCHIA - FIUMICINO - GAETA

OPERE STRATEGICHE PER IL PORTO DI CIVITAVECCHIA - 2° STRALCIO -

NUOVO ACCESSO AL BACINO STORICO -COLLEGAMENTO TRA IL MOLO VESPUCCI E L'ANTEMURALE COLOMBO

PROGETTO DEFINITIVO

Titolo elaborato

Committente:

RELAZIONE DI CALCOLO OPERE A GETTATA

P R 2	DR	0 0) 5	0 0	CSI
			Progetto	A.T.I. :	

Autorità Portuale di Civitavecchia, Fiumicino e Gaeta IL PRESIDENTE: Dr. Pino Musolino IL RESPONSABILE DEL PROCEDIMENTO Dott. Ing. Maurizio Marini IL COORDINATORE GENERALE Dott. Ing. Giuseppe Solinas			MODIMAR S.r.I. (Capogru V.A.M.S. Ingegneria S.r.I. SEACON S.r.I.	ıppo)		
12/12/2022	0	PRIMA EMISSIONE		F. MONDINI	F. MONDINI	P.CONTINI
Data	Rev.	DESCRIZIONE		Redatto:	Verificato:	Approvato:

INDICE

1.	ONDE DI PROGETTO	2
2.	DIGA DI PROTEZIONE DEL NUOVO ACCESSO AL BACINO STORICO	3
2.1	Onde di progetto e propagazione al piede dell'opera	3
2.2	Verifiche di stabilità della scogliera	3
2.3	Verifiche di stabilità del muro paraonde	5
3.	MATERIALI	11
3.1	Calcestruzzo	11
3.2	Acciaio per cemento armato	12
4.	VERIFICHE DI RESISTENZA DEL MURO PARAONDE	14
4.1	Verifiche di resistenza (SLU) per la sezione A	14
4.1.1 4.1.2	Verifica a tiessione Verifica a taglio	15 16
4.2 4.2.1	Verifiche di resistenza (SLU) per la sezione B Verifica a flessione	••••••••••••••••••••••••••••••••••••••
4.2.2	Verifica a taglio	
5.	SCOGLIERA DI PROTEZIONE DEL NUOVO TERRAPIENO	19
5.1	Metodologia per la definizione delle onde di calcolo	19
5.2	Propagazione in costa	19
5.3	Propagazione al piede dell'opera	20
5.4	Verifiche di stabilità della scogliera	27
5.5	Verifiche di stabilità del muro paraonde	29
5.6	Verifiche di resistenza (SLU) per la sezione A	32
5.6.1 5.6.2	Verifica a flessione Verifica a taglio	
5.0.2 E 7	Verifiche di resistenza (SIII) per la sezione B	رر
5.7.1	Verifica a flessione	••••••••••••••••••••••••••••••••••••••
5.7.2	Verifica a taglio	

1. ONDE DI PROGETTO

Per le verifiche di stabilità delle mantellate delle opere a gettata si è fatto riferimento alle analisi statistiche riportate nello Studio Meteomarino. I risultati di tali analisi sono sintetizzati nella Tabella 1. Nella Tabella 2 sono riportati i settori angolari utilizzati per le analisi.

Si osserva che, ai sensi del D.M. 2018, per le verifiche è stato fatto riferimento ad un tempo di ritorno di 50 anni per la diga di protezione del nuovo accesso e per la scogliera di delimitazione del nuovo terrapieno.

	Hs (m)						
Tempo di ritorno (anni)	10	50	100	500			
Settore I	5.2	6.5	7.0	10.0			
Settore II	5.5	6.5	7.5	10.0			
Omindirezionale	5.5	6.5	7.0	8.5			

Tabella 1 – Altezza d'onda in funzione del tempo di ritorno al largo di Civitavecchia

SETTORI	DIREZIONE
Omnidirezionale	135° – 285 °N
I settore	135 – 195 °N
II settore	195 – 285 °N

Tabella 2 – Settori angolari

2. DIGA DI PROTEZIONE DEL NUOVO ACCESSO AL BACINO STORICO

2.1 Onde di progetto e propagazione al piede dell'opera

Per le verifiche di stabilità delle mantellate delle opere a gettata si è fatto riferimento alle analisi statistiche riportate nello Studio Meteomarino. I risultati di tali analisi sono sintetizzati nella Tabella 1. Nella Tabella 2 sono riportati i settori angolari utilizzati per le analisi. Si osserva che per le verifiche è stato fatto riferimento ad un tempo di ritorno di 50 anni per la diga di protezione del nuovo accesso e per la scogliera di delimitazione del nuovo terrapieno.

2.2 Verifiche di stabilità della scogliera

Il dimensionamento dell'opera a gettata è stato effettuato impiegando la collaudata formula di Hudson (1974) che consente di ricavare il peso medio dei massi da adottare in funzione di un assegnato grado di stabilità valutato, tenendo conto dell'impiego dei massi tetrapodi e considerando l'onda non frangente, sia per la sezione corrente che per la testata. Si ricorda che la relazione semiempirica di Hudson è espressa da:

$$\frac{H}{\Delta D_{n50}} = \left(K_D \cot \alpha\right)^{\frac{1}{3}}$$

oppure, esplicitando in funzione del peso mediano del singolo elemento, da :

$$M_{50} = \frac{\rho_s H^3}{K_D \left(\frac{\rho_s}{\rho_w} - 1\right)^3 \cot \alpha}$$

dove :

H = altezza d'onda di progetto M₅₀ = peso mediano dei massi, $M_{50} = \rho_s D_{n50}^3$ ρ_s = densità del masso ρ_w = densità dell'acqua marina $\Delta = (\rho_s / \rho_w) - 1$ K_D = coefficiente di stabilità α = pendenza della scarpata

Per quanto riguarda l'onda di progetto si è fatto riferimento ad un tempo di ritorno di 100 anni cui corrisponde un'altezza d'onda significativa di 7.5 m (v. Studio Meteomarino) che nei fondali in esame risulta non frangente. Applicando le formule precedenti per la sezione corrente si ottiene un peso minimo per ogni singolo tetrapodo di circa 21 t (Tabella 3). Pertanto, i tetrapodi previsti in progetto del peso di 25 t risultano verificati.

Altezza d'onda significativa al largo (m) H_{so} 6.50 Periodo di picco (s) T_p 10.80 Periodo medio (s) T_m 9.82 Lunghezza d'onda al largo relativa a T_p (m) L_{op} 150.5 Ripidità dell'onda al largo relativa a T_p s_o 0.043 Verifica frangimento Profondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00 Sovalzo massimo del livello medio marino (m s.l.m.) S_m 0.50 Lunghezza d'onda al piede dell'opera (m) L_p 124.31 Coefficiente di shoaling K_s 0.95 Altezza d'onda al piede senza frangimento (m) H_{s0}^+ 6.15 Altezza d'onda al piede dell'opera (m) H_b 15.23 Risultato verifica ONDA NON FRANGENTE Caratteristiche dell'opera (m) Profondità del fondale al piede dell'opera (m s.l.m.) h_c Sovalzo massimo del livello medio marino (m s.l.m.) h_c Sovalzo massimo del livello medio marino (m s.l.m.) h_c Periodnità del fondale al piede dell'opera (m s.l.m.) h_c Sovalzo massimo del livello medio marino (m s.l.m.) h_c	Caratteristiche dell'onda di progetto al largo		
Periodo di picco (s)Tp10.80Periodo medio (s)Tm9.82Lunghezza d'onda al largo relativa a Tp (m)Lop150.5Lunghezza d'onda al largo relativa a Tp (m)Lom150.5Ripidità dell'onda al largo relativa a Tp (m)Lom150.5Verifica frangimentoVerifica frangimento150.5Profondità del fondale al piede dell'opera (m s.l.m.)Nm0.50Sovalzo massimo del livello medio marino (m s.l.m.)Sm0.50Lunghezza d'onda al piede dell'opera (m)L'p124.31Coefficiente di shoalingKs0.95Altezza d'onda al piede senza frangimento (m)Hs of6.15Altezza d'onda frangente al piede dell'opera (m)Hb15.23Risultato verificaONDA NON FRANGENTECaratteristiche dell'opera (m)h16.00Sovralzo massimo del livello medio marino (m s.l.m.)Sm0.50Tirante idrico al piede dell'opera (m)h16.50Pendenza del fondale al piede dell'opera (m s.l.m.)Sm0.50Tirante idrico al piede dell'opera (m)h16.50Pendenza del fondale al piede dell'operam1/7Porosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³) ρ_w 1025Densità relativa della mantellataA1.34Onda di progetto a ridosso della barrieraAAltezza d'onda di calcolo (m)Hs6.15Periodo medio (s)Tm9.82angolo di attacco (°) β 0.0	Altezza d'onda significativa al largo (m)	H _{so}	6.50
Periodo medio (s) T_m 9.82Lunghezza d'onda al largo relativa a T_p (m) L_{op} 150.5Lunghezza d'onda al largo relativa a T_p (m) L_{om} 150.5Ripidità dell'onda al largo relativa a T_p s_o 0.043Verifica frangimentoProfondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00Sovralzo massimo del livello medio marino (m s.l.m.) S_m 0.50Lunghezza d'onda al piede dell'opera (m) L_p 124.31Coefficiente di shoaling K_s 0.95Altezza d'onda riangente al piede dell'opera (m) $H_{s.0}^+$ 6.15Altezza d'onda frangente al piede dell'opera (m) H_b 15.23Risultato verificaONDA NON FRANGENTECaratteristiche dell'opera (m s.l.m.)Profondità del fondale al piede dell'opera (m s.l.m.)Sovralzo massimo del livello medio marino (m s.l.m.) S_m 0.50Tirante idrico al piede dell'opera (m)h16.00Sovralzo massimo del livello medio marino (m s.l.m.) S_m 0.50Pendenza del fondale al piede dell'opera (m)h16.50Pendenza del fondale al piede dell'operam1/7Porosità d'insieme dela mantellataP0.50Peso specifico apparente dei massi (kg/m³) p_r 2400Peso specifico apparente dei massi (kg/m³) p_r 2400Peso specifico adella dacuqua marina (kg/m³) p_r 1.34Ond ad i calcolo (m) H_s 6.15Periodo di picco (s) T_p 10.80	Periodo di picco (s)	Tp	10.80
Lunghezza d'onda al largo relativa a T_p (m) L_{op} 150.5 Lunghezza d'onda al largo relativa a T_p s_o 0.043 Verifica frangimento Profondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00 Soralzo massimo del livello medio marino (m s.l.m.) S_m 0.50 Lunghezza d'onda al piede dell'opera (m) L'_p 124.31 Coefficiente di shoaling K_s 0.95 Altezza d'onda al piede senza frangimento (m) H_{s0}^{-1} 6.15 Altezza d'onda frangente al piede dell'opera (m) H_b 15.23 Risultato verifica ONDA NON FRANGENTE Caratteristiche dell'opera 0.50 Profondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00 Sovralzo massimo del livello medio marino (m s.l.m.) S_m 0.50 Tirante idrico al piede dell'opera (m) h 16.50 Pendenza del fondale al piede dell'opera (m) h 16.50 Pendenza del fondate al piede dell'opera m 1/7 Porosità d'insieme della mantellata P 0.50 Peso specifico aparente dei massi (kg/m ³) ρ_r	Periodo medio (s)	T _m	9.82
Lunghezza d'onda al largo relativa a T_p Lom 150.5 Ripidità dell'onda al largo relativa a T_p So 0.043 Verifica frangimento Profondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00 Sovalzo massimo del livello medio marino (m s.l.m.) S_m 0.50 Lunghezza d'onda al piede dell'opera (m) L'_p 124.31 Coefficiente di shoaling K_s 0.95 Altezza d'onda al piede senza frangimento (m) H_{s0}^{-1} 6.15 Altezza d'onda frangente al piede dell'opera (m) H_b 15.23 Risultato verifica ONDA NON FRANGENTE Caratteristiche dell'opera Profondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00 Sovalzo massimo del livello medio marino (m s.l.m.) S_m 0.50 Tirrante idrico al piede dell'opera (m) h 16.50 Pendenza del fondale al piede dell'opera (m) h 16.50 Pendenza del fondale al piede dell'opera m 1/7 Porosità d'insieme della mantellata P 0.50 Peso specifico apparente dei massi (kg/m³) ρ_r 2400	Lunghezza d'onda al largo relativa a T_p (m)	L _{op}	150.5
Ripidità dell'onda al largo relativa a T _p s _o 0.043 Verifica frangimento 1 Profondità del fondale al piede dell'opera (m s.l.m.) hc 16.00 Sovralzo massimo del livello medio marino (m s.l.m.) S _m 0.50 Lunghezza d'onda al piede dell'opera (m) L' _p 124.31 Coefficiente di shoaling Ks 0.95 Altezza d'onda al piede senza frangimento (m) H _{s0} ⁴ 6.15 Altezza d'onda frangente al piede dell'opera (m) H _b 15.23 Risultato verifica ONDA NON FRANGENTE Caratteristiche dell'opera 16.00 Sovralzo massimo del livello medio marino (m s.l.m.) hc Sovralzo massimo del livello medio marino (m s.l.m.) Sm Profondità del fondale al piede dell'opera (m) h Protostà d'insieme della mantellata P Peso specifico apparente dei massi (kg/m ³) ρ_r Periodo di picco (s) T _m Periodo ad di calcolo (m) H _s Altezza d'onda di calcolo (m) H _s Periodo di picco (s) T _m Periodo di picco (s) T _m Periodo di picco (s) T _m <td>Lunghezza d'onda al largo relativa a T_m (m)</td> <td>L_{om}</td> <td>150.5</td>	Lunghezza d'onda al largo relativa a T _m (m)	L _{om}	150.5
Verifica frangimentohcProfondità del fondale al piede dell'opera (m s.l.m.)hcSovralzo massimo del livello medio marino (m s.l.m.)SmLunghezza d'onda al piede dell'opera (m)L'p124.31Coefficiente di shoalingKsAltezza d'onda al piede senza frangimento (m)Hso'Altezza d'onda frangente al piede dell'opera (m)HbItezza d'onda frangente al piede dell'opera (m)HbRisultato verificaONDA NON FRANGENTECaratteristiche dell'operaProfondità del fondale al piede dell'opera (m s.l.m.)Sovralzo massimo del livello medio marino (m s.l.m.)SmSovralzo massimo del livello medio marino (m s.l.m.)SmProfondità del fondale al piede dell'opera (m)h16.00Sovralzo massimo del livello medio marino (m s.l.m.)Sovralzo massimo del livello medio marino (m s.l.m.)SmProfondità del fondale al piede dell'operam1/7Prorosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barrieraAAltezza d'onda di calcolo (m)Hs6.15Periodo medio (s)Tm9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodiCalcolo del peso minimo dei massitetrapodiCalc	Ripidità dell'onda al largo relativa a T _p	So	0.043
Vertica transmittoProfondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00Sovralzo massimo del livello medio marino (m s.l.m.) S_m 0.50Lunghezza d'onda al piede dell'opera (m) L_p 124.31Coefficiente di shoaling K_s 0.95Altezza d'onda al piede senza frangimento (m) H_{s0}° 6.15Altezza d'onda frangente al piede dell'opera (m) H_b 15.23Risultato verificaONDA NON FRANGENTECaratteristiche dell'opera0.50Profondità del fondale al piede dell'opera (m s.l.m.) h_c Sovralzo massimo del livello medio marino (m s.l.m.) S_m Sovralzo massimo del livello medio marino (m s.l.m.) S_m Sovralzo massimo del livello medio marino (m s.l.m.) S_m Profondità del fondale al piede dell'opera (m) h Pendenza del fondale al piede dell'opera m 1/7Porosità d'insieme della mantellata P 0.50Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di calcolo (m) H_s 6.15Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodiCondizioni di calcoloAcqua bassaTipologia massitetrapodiCalcolo del peso minimo dei massi21.06Peso	Varifica francimento		
Individual derionidate al piede dell'opera (m.s.l.m.)The10.00Sovralzo massimo del livello medio marino (m.s.l.m.)Sm0.50Lunghezza d'onda al piede dell'opera (m)L'p124.31Coefficiente di shoalingKs0.95Altezza d'onda al piede senza frangimento (m)Hso'6.15Altezza d'onda frangente al piede dell'opera (m)Hb15.23Risultato verificaONDA NON FRANGENTECaratteristiche dell'operaONDA NON FRANGENTECaratteristiche dell'opera (m.s.l.m.)hc16.00Sovralzo massimo del livello medio marino (m.s.l.m.)Sm0.50Tirante idrico al piede dell'opera (m)h16.50Pendenza del fondale al piede dell'operam1/7Porosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³)pr2400Peso specifico dell'acqua marina (kg/m³)pw1025Densità relativa della mantellataΔ1.34Onda di progetto a ridosso della barrieraTm9.82angolo di attacco (°)β0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodiCondizioni di calcoloAcqua bassaTheologia massitetrapodiCalcolo del peso minimo dei massitetrapodiCalcolo del peso minimo dei massi21.06Calcolo de	Profondità del fondale al niede dell'opera (m.s.l.m.)	h	16.00
SolvatorInterventionSim0.00Lunghezza d'onda al piede dell'opera (m)L'p124.31Coefficiente di shoalingKs0.95Altezza d'onda al piede senza frangimento (m)Hso'6.15Altezza d'onda frangente al piede dell'opera (m)Hb15.23Risultato verificaONDA NON FRANGENTECaratteristiche dell'operaONDA NON FRANGENTECaratteristiche dell'operanProfondità del fondale al piede dell'opera (m s.l.m.)hSovralzo massimo del livello medio marino (m s.l.m.)SmSovralzo massimo del livello medio marino (m s.l.m.)SmPendenza del fondale al piede dell'opera (m)hPendenza del fondale al piede dell'operamProso specifico apparente dei massi (kg/m³) ρ_r Peso specifico della cqua marina (kg/m³) ρ_w 1025Densità relativa della mantellataOnda di progetto a ridosso della barrieraAAltezza d'onda di calcolo (m)HsPeriodo medio (s)Tmangolo di attacco (°) β Candizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodiCoefficienteKbDensisi5.5pendenza mantellataCotgaCalcolo del massi (mantellata (t)M mCoefficienteKbCoefficienteKbCalcolo del peso minimo dei massiTipologia massicotgaCalcolo del massi di mantellataCoefficienteKbCalcolo del massi di mantellat	Souraizo massimo del livello medio marino (m s.l.m.)		0.50
LangetZa d'onda a prede dell'opera (m)Lp124.31Coefficiente di shoalingKs0.95Altezza d'onda la piede senza frangimento (m)Hso'6.15Altezza d'onda frangente al piede dell'opera (m)Hb15.23Risultato verificaONDA NON FRANGENTECaratteristiche dell'opera0NDA NON FRANGENTECaratteristiche dell'opera0.50Profondità del fondale al piede dell'opera (m s.l.m.)h16.00Sovralzo massimo del livello medio marino (m s.l.m.)Sovralzo massimo del livello medio marino (m s.l.m.)SmPendenza del fondale al piede dell'operam1/7Porosità d'insieme della mantellataPeso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³)Peso specifico dell'acqua marina (kg/m³) ρ_w 10250.34Densità relativa della mantellata Δ 1.340.34Onda di progetto a ridosso della barrieraAltezza d'onda di calcolo (m)HsPeriodo medio (s)Tm9.82angolo di attacco (°) β Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficienteKbDenza mantellataCalcolo del massi di mantellata (t)Deso medio dei massi di mantellata (t)	Lunghozza d'onda al piedo dell'opera (m)		124.21
Code inclusion $\mathbf{N_s}$ 0.95Altezza d'onda al piede senza frangimento (m) $\mathbf{H_{s0}}'$ 6.15Altezza d'onda frangente al piede dell'opera (m) $\mathbf{H_b}$ 15.23Risultato verifica ONDA NON FRANGENTECaratteristiche dell'operaONDA NON FRANGENTECaratteristiche dell'operaONDA NON FRANGENTECaratteristiche dell'operaN cProfondità del fondale al piede dell'opera (m s.l.m.) $\mathbf{h_c}$ Sovralzo massimo del livello medio marino (m s.l.m.) $\mathbf{S_m}$ O.50Tirante idrico al piede dell'opera (m) \mathbf{h} Pendenza del fondale al piede dell'opera \mathbf{m} Profosità d'insieme della mantellata \mathbf{P} O.50Peso specifico apparente dei massi (kg/m³) $\mathbf{p_w}$ Peso specifico dell'acqua marina (kg/m³) $\mathbf{p_w}$ 1025Densità relativa della mantellata Δ 1.34 Onda di progetto a ridosso della barrieraH Altezza d'onda di calcolo (m) $\mathbf{H_s}$ 6.15Periodo medio (s) $\mathbf{T_m}$ 9.82angolo di attacco (°) $\boldsymbol{\beta}$ 0.00Condizioni di calcolo Acqua bassaCalcolo del peso minimo dei massi tetrapodiTipologia massitetrapodicoefficiente $\mathbf{K_0}$ Peso medio dei massi di mantellata (t) \mathbf{M} Peso medio dei massi di mantellata (t) \mathbf{M}	Coefficiente di checiling	<u> </u>	0.05
Altezza d'orida al piède seriza frangimento (m) \mathbf{H}_{so} 6.15Altezza d'onda frangente al piède dell'opera (m) \mathbf{H}_{b} 15.23Risultato verificaONDA NON FRANGENTECaratteristiche dell'operaProfondità del fondale al piède dell'opera (m s.l.m.) \mathbf{h}_{c} 16.00Sovralzo massimo del livello medio marino (m s.l.m.) \mathbf{S}_{m} 0.50Tirante idrico al piède dell'opera (m) \mathbf{h} 16.50Pendenza del fondale al piède dell'opera \mathbf{m} 1/7Porosità d'insieme della mantellata \mathbf{P} 0.50Peso specifico apparente dei massi (kg/m³) ρ_{r} 2400Peso specifico dell'acqua marina (kg/m³) ρ_{w} 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barriera \mathbf{M}_{s} 6.15Periodo di picco (s) \mathbf{T}_{m} 9.82angolo di attacco (°) $\boldsymbol{\beta}$ 0.00Condizioni di calcolo $\mathbf{Acqua bassa}$ Tipologia massitetrapodicoefficiente \mathbf{K}_{0} Peso medio, dei massi (di mantellata \mathbf{cotga} 21.06			0.95
Altezza d'onda frangente al piède dell'opera (m) H_b 15.23 Risultato verifica ONDA NON FRANGENTE Caratteristiche dell'opera	Altezza d'onda al piede senza frangimento (m)	H _{s0}	6.15
Risultato verifica ONDA NON FRANCENTE Caratteristiche dell'opera	Altezza d'onda frangente al piede dell'opera (m)		15.23
Caratteristiche dell'operahcProfondità del fondale al piede dell'opera (m s.l.m.)hcSovralzo massimo del livello medio marino (m s.l.m.)SmO.50Tirante idrico al piede dell'opera (m)hPendenza del fondale al piede dell'operam1/7Porosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barrieraAltezza d'onda di calcolo (m)Hs6.15Periodo medio (s)Tmangolo di attacco (°) β Calcolo del peso minimo dei massiTipologia massitetrapodicoefficienteKp5.5pendenza mantellatacotgo.21 osi21 osi	Risultato verifica	UNDA NUN FRA	NGENTE
Profondità del fondale al piede dell'opera (m s.l.m.) h_c 16.00Sovralzo massimo del livello medio marino (m s.l.m.) S_m 0.50Tirante idrico al piede dell'opera (m)h16.50Pendenza del fondale al piede dell'operam1/7Porosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellataΔ1.34Onda di progetto a ridosso della barrieraAltezza d'onda di calcolo (m) H_s 6.15Periodo di picco (s) T_p 10.80Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaTipologia massitetrapodicoefficiente K_D 5.5pendenza mantellata $Cotg\alpha$ 2Peso medio dei massi di mantellata (t) M_{re} 21.06	Caratteristiche dell'opera		
Sovralzo massimo del livello medio marino (m s.l.m.) S_m 0.50Tirante idrico al piede dell'opera (m)h16.50Pendenza del fondale al piede dell'operam1/7Porosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barriera Δ Altezza d'onda di calcolo (m) H_s 6.15Periodo medio (s) T_p 10.80Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodicoefficiente K_D 5.5pendenza mantellatacotga2Peso medio dei massi di mantellata (t)M.m.24.06	Profondità del fondale al piede dell'opera (m s.l.m.)	h _c	16.00
Tirante idrico al piede dell'opera (m)h16.50Pendenza del fondale al piede dell'operam1/7Porosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barriera Δ 1.34Altezza d'onda di calcolo (m) H_s 6.15Periodo di picco (s) T_p 10.80Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodicoefficiente K_D 5.5pendenza mantellatacotga2Peso medio dei massi di mantellata (t)M. ra24.0624.06	Sovralzo massimo del livello medio marino (m s.l.m.)	S _m	0.50
Pendenza del fondale al piede dell'operam $1/7$ Porosità d'insieme della mantellataP 0.50 Peso specifico apparente dei massi (kg/m³) ρ_r 2400 Peso specifico dell'acqua marina (kg/m³) ρ_w 1025 Densità relativa della mantellata Δ 1.34 Onda di progetto a ridosso della barriera Λ 1.34 Altezza d'onda di calcolo (m) H_s 6.15 Periodo di picco (s) T_p 10.80 Periodo medio (s) T_m 9.82 angolo di attacco (°) β 0.00 Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodiTipologia massitetrapodicoefficiente K_p 5.5 pendenza mantellata $cotg\alpha$ 2 Peso medio dei massi di mantellata (t) M_re 21.06	Tirante idrico al piede dell'opera (m)	h	16.50
Porosità d'insieme della mantellataP0.50Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barriera Δ 1.34Altezza d'onda di calcolo (m) H_s 6.15Periodo di picco (s) T_p 10.80Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficiente K_D 5.5pendenza mantellatacotga2Peso medio dei massi di mantellata (t)M.m21.06	Pendenza del fondale al piede dell'opera	m	1/7
Peso specifico apparente dei massi (kg/m³) ρ_r 2400Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barriera Δ 1.34Altezza d'onda di calcolo (m) H_s 6.15Periodo di picco (s) T_p 10.80Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massitetrapodiTipologia massitetrapodicoefficiente K_p 5.5pendenza mantellatacotg α 2Peso medio dei massi di mantellata (t)M. ra21.06	Porosità d'insieme della mantellata	Р	0.50
Peso specifico dell'acqua marina (kg/m³) ρ_w 1025Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barriera Δ 1.34Altezza d'onda di calcolo (m) H_s 6.15Periodo di picco (s) T_p 10.80Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficiente K_p 5.5pendenza mantellatacotga2Peso medio dei massi di mantellata (t)M.r.21.06	Peso specifico apparente dei massi (kg/m ³)	ρ _r	2400
Densità relativa della mantellata Δ 1.34Onda di progetto a ridosso della barrieraH6.15Altezza d'onda di calcolo (m)H6.15Periodo di picco (s)TTPeriodo medio (s)T9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficienteK5.5pendenza mantellatacotga2Peso medio dei massi di mantellata (t)M21.06	Peso specifico dell'acqua marina (kg/m ³)	ρ _w	1025
Onda di progetto a ridosso della barrieraAltezza d'onda di calcolo (m)Hs6.15Periodo di picco (s)Tp10.80Periodo medio (s)Tm9.82angolo di attacco (°)βCondizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficienteKDpendenza mantellatacotgα21 06	Densità relativa della mantellata	Δ	1.34
Altezza d'onda di calcolo (m) H_s 6.15 Periodo di picco (s) T_p 10.80 Periodo medio (s) T_m 9.82 angolo di attacco (°) β 0.00 Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficiente K_D 5.5 pendenza mantellata $cotg\alpha$ 2Peso medio dei massi di mantellata (t)Mura 21.06	Onda di progetto a ridosso della barriera		
Periodo di picco (s) T_p 10.80Periodo medio (s) T_m 9.82angolo di attacco (°) β 0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficiente K_D 5.5pendenza mantellatacotg α 2Peso medio dei massi di mantellata (t)Mura21.05	Altezza d'onda di calcolo (m)	H _s	6.15
Periodo medio (s) T _m 9.82 angolo di attacco (°) β 0.00 Condizioni di calcolo Acqua bassa Calcolo del peso minimo dei massi Tipologia massi tetrapodi coefficiente K _D 5.5 pendenza mantellata cotgα 2 Peso medio dei massi di mantellata (t) Mura 21.05	Periodo di picco (s)	Τ _p	10.80
angolo di attacco (°)β0.00Condizioni di calcoloAcqua bassaCalcolo del peso minimo dei massiTipologia massitetrapodicoefficienteK _D pendenza mantellatacotgα21 06	Periodo medio (s)	T _m	9.82
Condizioni di calcolo Acqua bassa Calcolo del peso minimo dei massi	angolo di attacco (°)	β	0.00
Calcolo del peso minimo dei massi tetrapodi Tipologia massi tetrapodi coefficiente K _D 5.5 pendenza mantellata cotgα 2 Peso medio dei massi di mantellata (t) Muso 21.05	Condizioni di calcolo		Acqua bassa
Carcolo del peso minimo del massi tetrapodi Tipologia massi tetrapodi coefficiente K _D 5.5 pendenza mantellata cotgα 2 Peso medio dei massi di mantellata (t) Muso 21.05	Calaala dal naaa minima dai maaai		
KD State coefficiente KD pendenza mantellata cotgα Peso medio dei massi di mantellata (t) Massi	Tipologia massi		tetranodi
κo κo 5.5 pendenza mantellata cotgα 2 Peso medio dei massi di mantellata (t) Massi 21.06	coefficiente	L L	
Peso medio dei massi di mantellata (t) Muso 21.06	nendenza mantellata		
	Peso medio dei massi di mantellata (t)	CCCgu	21 06

Tabella 3 - Verifiche della scogliera

2.3 Verifiche di stabilità del muro paraonde

Le verifiche di stabilità del muro paraonde hanno riguardato:

- Traslazione sul piano di posa
- Ribaltamento rispetto al piede interno del muro

Per le verifiche di stabilità al ribaltamento e alla traslazione (stato limite ultimo) è stata verificata la condizione: $E_d \leq R_d$

dove:

• E_d valore dell'azione di progetto;

R_d valore della resistenza del sistema.

La condizione $E_d \leq R_d$ è stata verificata secondo l'approccio:

(A1+M1+R3)

tenendo conto dei valori dei coefficienti parziali riportati nelle tabelle che seguono.

CARICHI	EFFETTO	Coefficiente Parziale γ _F	(A1) STR
Pormananti	Favorevole		1.0
Fernianenu	Sfavorevole	ŶG1	1.3
Permanenti non	Favorevole		0.8
strutturali	Sfavorevole	γG2	1.5
Voriobili	Favorevole		0.0
vanabili	Sfavorevole	γQi	1.5

Tabella 4 - Coefficienti parziali per le azioni

VERIFICA	Coefficiente Parziale (R3)
Scorrimento	γ _R =1.1

Tabella 5 - Coefficienti parziali per le verifiche agli stati limite ultimi

Per valutare le azioni del moto ondoso incidente sul muro paraonde si è fatto riferimento all'onda di progetto utilizzata per la verifica della stabilità dei massi della mantellata e si è utilizzata la metodologia proposta da F.L.Martin ("Wave loads on rubble mound breakwater crown walls" – F.L.Martin, M.A.Losada, R.Medina – Coastal Enginnering 1999), che definisce, per onde frangenti di tipo surging e collapsing o già frante, la distribuzione delle pressioni indotte sul muro paraonde.

Tale criterio quindi non può essere applicato nel caso di impatto di eventi di "shock".

La metodologia si basa sulla considerazione sperimentale che una singola onda può generare sulla struttura verticale due distinte sollecitazioni massime dette: forza da impatto ("impact force") e forza di pulsazione ("pulsating force").

Per determinare la distribuzione delle pressioni da impatto, Martin suggerisce di utilizzare le seguenti espressioni (Figura 2-1):

- per la parte del muro non protetta dalla scogliera:

$$P_{so} = C_{w1} \times \rho_w \times g \times S_c$$

per la parte del muro protetta dalla scogliera:

$$P_{s1} = C_{w2} \times C_{w1} \times \rho_w \times g \times S_o$$

dove:

 C_{w1} è funzione del massimo run-up, dell'altezza d'onda di progetto e della pendenza della scarpata;

- C_{w2} è funzione della larghezza della berma e della lunghezza d'onda relativa al periodo di picco;
- $\rho_w = 10.1 \text{ kN/m}^3$ la densità dell'acqua
- g = 9.81 m/s² accelerazione di gravità
- S_o è il massimo run-up previsto sulla berma della scogliera

La distribuzione delle pressioni da pulsazione (idrostatiche) è data da:

$$P_{p}(z) = C_{w3} \times \rho_{w} \times g \times (S_{o} + A_{c} - z)$$

dove:

- z è la quota di calcolo rispetto al l.m.m.;
- C_{w3} è un parametro adimensionale, funzione delle caratteristiche della scogliera
- A_c è l'altezza della berma rispetto al l.m.m.

Nella Tabella 6 sono riportati i risultati dei calcoli finalizzati alla stima dei valori delle pressioni e delle azioni sul muro sia nel caso di forza da impatto ("impact force") sia in quello di forza di pulsazione ("pulsating force"). Tuttavia va osservato che per l'opera in esame le pressioni e le azioni che vanno prese in considerazione sono quelle relative al secondo caso ovvero le forze di pulsazione.

Tenendo conto della geometria del muro e del peso ad esso associato (Figura 2-2) sono state eseguite le verifiche di stabilità i cui risultati sono riportati nella Tabella 7.

A riguardo va osservato che:

- per la resistenza alla traslazione orizzontale è stato considerato un coefficiente di attrito tra cls e pietrame sottostante pari a 0.6;
- il muro risulta stabile sia alla traslazione sia al ribaltamento,
- le pressioni di contatto sono accettabili.

Sulla base delle elaborazioni eseguite sono state individuate le azioni per le verifiche strutturali di due sezioni rappresentative del muro paraonde riportate nella Tabella 8.

Figura 2-1 - Schema di riferimento

Figura 2-2 - Geometria e peso del muro paraonde

	Dimensioni struttura								
	Profondità fon	dale al piede dell'opera (n	n s.I.m.)	h	16.0				
	G	uota berma mantellata (n	n s.l.m.)	A _b	5.00				
		Larghezza be	rma (m)	Bb	9.3				
		Pendenza ma	antellata	$cotg \alpha$	2.0				
	Larghezza di base d	lel massiccio di coroname	ento (m)	B _c	17.0				
	Quota sommi	ommitale del muro paraonde (m s.l.m.)			7.50				
	Quota di imbasame	ento del muro paraonde (n	n s.l.m.)	A _i	0.50				
		Porosità ma	antellata	р	0.40				
	Porosita alla ba	se del massiccio di coror	namento	p _c	0.40				
	Diametro	medio massi della mantel	lata (m)	D _{n50}	2.22				
	Alta	Condizioni di impatto dire	etto dell'o	onda co	ntro il m	iuro pai	aonde	NO	
	Aitezza relativa	A A _b /H _c	0.73		0.47				
	Largnezza relativa	B _b /H _c	1.50	>	0.17		6.00		٨
run-u	p al margine della mantellata (m	5 0	1.90		A	, + 3 ₀ =	0.90	<	A _c
	Calcolo dell'altezza di Run-up	$R_u = H_c \cdot (A_u \cdot (1 - \exp(-h)))$	B _u ×ξ _m)))					
	Numero di Iribarrer	ι ξ _m	2.72						
Run-u	ip associato all'altezza d'onda H	, R _u	6.64	(m)	A _u	1.338	B _u	0.6	
	Pressioni di impatto P	(valido per S' _c >0.075)							
		C _{w1}	2.70		C _{w2}	0.352			
Tra	tto NON riparato dalla mantellata	a P _{do}	54.03	kN/m ²			P _{do} :	= C _{w1}	$\varphi_w \cdot \mathbf{g} \cdot \mathbf{S}_o$
Tratto inf	feriore (riparato dalla mantellata)	P _{di}	19.02	kN/m ²		Ρ,	$= C_{wa}$	2 · C w1	$\cdot \rho_w \cdot \mathbf{g} \cdot \mathbf{S}_o$
	Sottopressione lato mare	P _{se}	19.0	kN/m ²					
	Sottopressione lato terra	a P _{si}	0.0	kN/m ²					
	Pressioni di pulsazione P	(valido per 0.03 <s'_<0.0< td=""><td>75)</td><td></td><td></td><td></td><td></td><td></td><td></td></s'_<0.0<>	75)						
		C _o	0.32		C _{w3}	0.33			
Pres	ssione massima all'imbasamento	P _p	21.727	kN/m ²		$P_p = C$	w3 •Р w • (g∙(S₀	+ A _c - z)
Pressior	ne alla sommità del coronamento	P'p	0.00	kN/m ²					
	Sottopressione lato mare	Pse Pse	21.7	kN/m ²					
	Sottopressione lato terra	a P _{si}	4.6	kN/m ²					
	Solleci	azioni risultanti alla base	e dell'ele	mento a	li corona	amento			
	Spint	a risultante dovuta alla pres	ssione di	impatto	Sp _d	240.1	kN/m		
		Sottospinta dovuta alla pre		impatto	Sp _{du}	161.6	KIWM	_	
	Reaccio rolativo allo spigolo esterno del coronamente			IVIP _d	2000.0	KIN•11/1			
	Spinta risultante devuta alla pressione di pulsazione			Sp.	70.4	kN/m			
	Sottospinta dovuta alla pressione di pulsazion			sazione	Sn	224.0	kN/m		
	Mo	Momento indotto dalla pressione di pulsazione			Mn	2468	kN.m/r	n	
	Braccio relativo allo spidolo esterno del coronamento			Bp.	35.1	m			
					D Pp	00.1			
		Spinta orizzontale risultante			Sp ₀	310.5	kN/m		
	·	viomento indotto dalle sp	ointe oriz	zontali	IVIP _O	5353	KIN•m/r	n	
		Braccio delle sp	nnte oriz	zontali	вр _о	17.24	m		
		Spinta ver	ticale ris	ultante	Spv	224.0	kN/m		
		Momento indotto dalle	spinte v	verticali	Mp _v	1491.9	kN•m/r	n	
		Braccio delle spinte verticali				6.66	m		<u> </u>

Tabella 6 - Calcolo delle pressioni e delle azioni nel caso di impatto e di pulsazione

Verifiche per le condizioni di pulsazio	one dell'onda						
Vorifice of ribeltomenter							
vernica ai ribaitamento:							
Momento pressione di pulsazione (Mp _p):	2,467.7	kN∙m/m					
coefficiente parziale (γ_Q)	1.5						
Momento ribaltante (M _r):	3,701.6	kN∙m/m					
Momento peso struttura (M _s):	10,035.8	kN∙m/m					
coefficiente parziale (γ_G)	1.0						
Momento stabilizzante (M _s):	10,035.8	kN∙m/m					
R _D / E _D :	2.71		Verificat	0			
Verifica alla traslazione:							
Spinta orizzonale risultante (Sp _p):	70.4	kN/m					
coefficiente parziale (γ_Q)	1.5						
Azione mobilitante	105.6	kN/m					
Peso struttura:	1,193.6	kN/m					
Sottospinta dovuta alla pressione di pulsazione	224.0	KIN/M					
Risultante verticale (Peso- $\gamma_Q \times Sp_p$):	857.6	KIN/M					
	0.6						
COEII.pdizidie resistenza γ _R	1.1						
	407.0		Vorificat	~			
	4.43		vennca	.0			
Verifica allo schiacciamento:							
Peso struttura:	1,193.6	kN/m					
coefficiente parziale (y_{G})	1.3						
Sottospinta dovuta alla pressione di pulsazione	224.0	kN/m					
coefficiente parziale (γ_{O})	1.5						
Risultante verticale:	1,215.7	kN/m					
Momento peso struttura (M _s):	10,035.8	kN∙m/m					
coefficiente parziale (γ_G)	1.3						
Momento pressione di pulsazione (Mp _p):	2,467.7	kN∙m/m					
coefficiente parziale (γ_Q)	1.5						
Momento risultante ($M_s - M_r$):	9,345.0	kN∙m/m					
eccentricità (e):	0.81	m					
σ _{max} =	92.0	kN/m ²	:	sezione	interam	ente rea	agente
σ _{min} =	51.0	kN/m ³					

Tabella 7 - Verifica della stabilità del muro paraonde

SE7	B
SEZ	D

muro in elevazione. Sez		
Ν	kN	327.5
Т	kN	38.0
Μ	kNm	62.7
solettone. Sez B		
Ν	kN	295.0
Т	kN	222.1
М	kNm	638.5

Tabella 8 – Azioni sul muro paraonde per le verifiche strutturali

3. MATERIALI

3.1 Calcestruzzo

Tutti gli elementi in c.a. sono realizzati con calcestruzzo di classe C35/45, classe di esposizione XS3 che presenta le seguenti caratteristiche meccaniche:

- Peso per unità di volume: $\gamma_{cls} = 25.00 \ kN/m^3$
- Resistenza cubica caratteristica a compressione: $R_{ck} = 45 MPa$
- Resistenza caratteristica cilindrica a compressione: $f_{ck} = 0.83R_{ck} = 37.35 MPa$
- Resistenza di progetto a compressione: $f_{cd} = 0.85 \frac{f_{ck}}{1.5} = 21.17 MPa$
- Modulo elastico medio: $E_{cm} = 22000 \times \left(\frac{f_{cm}}{10}\right)^{0.3} = 34625 MPa$
- Resistenza media a trazione: $f_{ctm} = 0.3 \cdot f_{ck}^{\frac{2}{3}} = 3.35 MPa$
- Resistenza caratteristica a trazione: $f_{ctk} = 0.7 f_{ctm} = 2.35 MPa$
- Resistenza di progetto a trazione: $f_{ctd} = \frac{f_{ctk}}{\gamma_c} = 1.56 MPa$

Per il diagramma tensione-deformazione del calcestruzzo è stato adottato il modello σ - ϵ parabola rettangolo illustrato nella figura seguente con $\epsilon_{c2} = 0.20\%$ e $\epsilon_{cu} = 0.35\%$

Importante per il calcestruzzo è l'analisi della durabilità con la definizione della classe di esposizione e con la conseguente valutazione del copriferro minimo di armatura e del valore limite di apertura delle fessure.

Nel caso in esame, la classe di esposizione in cui ricade l'opera è la XS3 che considera la corrosione indotta da cloruri presenti nell'acqua di mare per strutture esposte a spruzzi e alla marea.

Come riportato nella Tab. 4.1.3 delle NTC-2018, si ricade in condizioni ambientali molto aggressive:

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab. 4.1.III – Descrizione delle condizioni ambientali

Si definisce quindi un valore di copriferro minimo per la protezione delle armature alla corrosione e il valore limite di apertura delle fessure. Per il copriferro si ottiene un valore nominale pari a:

$$c_{nom} = c_{min} + 10 \ mm = 50 \ mm$$

Mentre per l'apertura delle fessure, lo stato limite si ricava dalla Tab. 4.1.IV delle NTC-2018 di seguito riportata:

Condizioni ambientali Esigenze	Condizioni	Combinazione di	Armatura						
	azioni	Sensibile		Poco sensibile					
		Stato limite	wk	Stato limite	wk				
	Ordinaria	frequente	apertura fessure	≤w ₂	apertura fessure	≤w ₃			
A	A Ordinarie	quasi permanente	apertura fessure	$\leq \mathbf{w}_1$	apertura fessure	≤w ₂			
P		frequente	apertura fessure	$\leq W_1$	apertura fessure	$\leq w_2$			
В	B Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁			
6	Molto	frequente	formazione fessure	-	apertura fessure	$\leq W_1$			
aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq W_1$				

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Si osserva che per condizioni molto aggressive e armatura poco sensibile (acciai ordinari) lo stato limite di apertura delle fessure individua un valore limite di:

$$w_1 = 0.2 \ mm$$

3.2 Acciaio per cemento armato

L'acciaio per le armature è di classe B450C che presenta le seguenti caratteristiche meccaniche:

$$\begin{array}{l} - & f_{y,nom} = 450 \; MPa \\ \\ - & f_{t,nom} = 540 \; MPa \end{array}$$

La resistenza di calcolo dell'acciaio f_{yd} è riferita alla tensione caratteristica di snervamento dell'acciaio ed è ottenuta dividendo quest'ultima per un coefficiente parziale di sicurezza pari a:

$$\gamma_s = 1.15$$

 $f_{vd} = 391 \, MPa$.

ottenendo:

Per il diagramma tensione-deformazione dell'acciaio è stato adottato un modello σ - ϵ elastico perfettamente plastico indefinito illustrato nella figura seguente:

Per il modulo elastico dell'acciaio si è fatto riferimento al seguente valore:

$$E_s = 210000 MPa$$

da cui si ricava il seguente valore della deformazione di snervamento dell'acciaio da utilizzare nei calcoli:

$$\varepsilon_{yd} = 0.20\%$$

4. VERIFICHE DI RESISTENZA DEL MURO PARAONDE

Si riporta nel seguito l'analisi del muro paraonde con lo studio delle azioni sollecitanti dovute al moto ondoso e le verifiche di resistenza con il dimensionamento dell'armatura.

Il muro è realizzato in c.a. di classe C35/45 in continuità strutturale con il sottostante massiccio di coronamento.

Le verifiche strutturali sono state condotte nelle sezioni A e B indicate nella figura sottostante:

Figura 4-1 – Sezioni di calcolo del muro paraonde.

Per l'analisi dei carichi e le verifiche si considera la profondità di 1,00 m, ottenendo valori di sollecitazioni e resistenze a metro lineare.

I carichi che agiscono sulla struttura sono il peso proprio dell'elemento e la spinta dovuta al moto ondoso.

Le verifiche vengono condotte combinando tali carichi attraverso i coefficienti parziali di combinazione SLU che assumono valori:

- $\gamma_{G1} = 1.0$ per carichi permanenti (peso proprio);
- $\gamma_Q = 1.5$ per carichi variabili (spinta dell'onda).

4.1 Verifiche di resistenza (SLU) per la sezione A

Nella seguente tabella vengono riportate le sollecitazioni risultanti di sforzo normale, taglio e momento flettente di progetto agenti nella sezione A:

Muro in elevazione. Sez. A							
N _{Ed}	[kN/m]	327,5					
T _{Ed}	[kN/m]	57,0					
M _{Ed}	[kNm/m]	94,1					

4.1.1 Verifica a flessione

La sezione di base del muro paraonde ha dimensioni geometriche:

$$B_A = 1,00 m$$
 $H_A = 3,50 m$

Inserendo un'armatura simmetrica di ϕ 16/20, attraverso l'utilizzo del software VCASIu si ottiene un momento resistente pari a:

$$M_{Rd} = 1349 \ kNm/m$$

La verifica risulta soddisfatta:

$$\frac{M_{Rd}}{M_{Ed}} = 14,3$$

Le armature verticali rispettano i limiti sul quantitativo minimo forniti dalle NTC-2018 al §7.4.6.2.4, pari allo 0.2% $A_{\rm c}.$

4.1.2 Verifica a taglio

La verifica a taglio è stata condotta considerando la sezione del muro come un elemento autoportante a taglio.

Per il calcolo della resistenza si è quindi utilizzata la formula riportata dalle NTC-2018 al §4.1.2.3.5.1 per elementi non armati a taglio.

Verifica a taglio					
Sezione rettangolare 100x205					
T _{Ed}	57,0 [kN/m]				
Arm. Tesa	5Ø16				
ρ	0,0	003			
k _t	1,	24			
T_{Rd}	527,7	[kN/m]			
VERIFICATA					

La verifica è soddisfatta:

$$\frac{T_{Rd}}{T_{Ed}} = 9,26$$

4.2 Verifiche di resistenza (SLU) per la sezione B

4.2.1 Verifica a flessione

La sezione B appartiene alla sovrastruttura schematizzabile come un elemento piastra. La sezione presa in esame appartiene ad un tratto che presenta un comportamento a mensola soggetta a momento flettente e taglio.

Nella tabella seguente si riportano i valori delle sollecitazioni di progetto che derivano dalla combinazione dei carichi agli SLU.

Si osserva, in particolare, che l'azione N_{Ed} è una forza agente nel piano della sezione in quanto rappresenta il peso proprio dell'elemento strutturale.

N _{Ed}	[kN/m]	295,0
T _{Ed}	[kN/m]	333,1
M _{Ed}	[kNm/m]	957,7

Ai fini della verifica a flessione, si considerano come dimensioni geometriche della sezione:

$$B_B = 1,00 \ m$$
 $H_B = 2,05 \ m$

Inserendo un'armatura simmetrica ϕ 20/20, attraverso l'utilizzo del programma di calcolo VCASIu, si ottiene un momento resistente pari a:

$$M_{Rd} = 1218 \ kNm/m$$

La verifica risulta quindi soddisfatta:

$$\frac{M_{Rd}}{M_{Ed}} = 1,27$$

Le armature inserite rispettano i limiti sul quantitativo minimo forniti dalle NTC-2018 al §7.4.6.2.4, pari allo 0.2% $A_{\rm c}.$

4.2.2 Verifica a taglio

La verifica a taglio è stata condotta considerando la sovrastruttura come un elemento autoportante a taglio, essendo schematizzata come una piastra.

Per il calcolo della resistenza si è quindi utilizzata la formula riportata dalle NTC-2018 al §4.1.2.3.5.1 per elementi non armati a taglio.

Verifica a taglio					
Sezione rettangolare 100x205					
T _{Ed}	333,1 [kN/m]				
Arm. Tesa	5Ø20				
ρ	0,0008				
k _t	1,3	317			
T_{Rd}	450,97	[kN/m]			
VERIFICATA					

La verifica è soddisfatta:

$$\frac{T_{Rd}}{T_{Ed}} = 1,35$$

5. SCOGLIERA DI PROTEZIONE DEL NUOVO TERRAPIENO

5.1 Metodologia per la definizione delle onde di calcolo

Per le verifiche di stabilità della mantellata della scogliera di delimitazione del nuovo terrapieno si opere a gettata si è operato secondo la seguente metodologia:

- propagazione delle onde di progetto con tempo di ritorno di 50 anni dal largo fino ad un punto in costa ubicato prospiciente le opere in esame e ubicato su un fondale di 20 m di profondità;
- 2) sulla base dei risultati di cui al punto 1) sono state selezionate delle condizioni di moto ondoso utilizzate per individuare le onde di calcolo al piede dell'opera.

Nei successivi paragrafi sono illustrate nel dettaglio le fasi della metodologia seguita.

5.2 Propagazione in costa

La propagazione in costa è stata eseguita utilizzando il modello numerico Merope. Per maggiori dettagli riguardo all'utilizzo del modello (area di calcolo, metodologia e descrizione del modello) si rimanda allo Studio Meteomarino.

Con riferimento alla Tabella 1e alla Tabella 2 e considerata l'esposizione al moto ondoso dell'opera in esame, sono state propagate in costa tutte le onde del settore I e parte delle onde del settore II.

Nella Tabella 9 sono riportate le caratteristiche delle onde al largo e i corrispondenti valori in costa. Dalla tabella si può osservare una riduzione del valore dell'altezza d'onda (tanto maggiore quanto più ci si avvicina alla direzione di Scirocco) e la riduzione del settore di traversia. Tale settore si riduce da 90° al largo (140-230°N) a circa 40° in costa (188-229°N).

Per le successive elaborazioni si è scelto di selezionare delle onde in modo tale da sintetizzare le condizioni del moto ondoso di progetto, a partire dai risultati riportati nella Tabella 9, e da utilizzare per la successiva propagazione al piede dell'opera con il modello SWAN. Le onde selezionate sono riportate nella Tabella 10.

		ONDE LAR	GO		ONDE COS	бТА	
SETTORE	Hs	Тр	Dir	Hs	Тр	Dir	
	(m)	(s)	(°N)	(m)	(s)	(°N)	
	6.5	10.8	140	4.2	11.4	188	
	6.5	10.8	150	5.0	11.4	190	
I	6.5	10.8	160	5.5	11.4	192	
	6.5	10.8	170	5.7	11.4	195	
	6.5	10.8	180	5.9	11.4	199	
	6.5	10.8	190	5.9	11.4	204	
	6.5	10.8	200	5.9	11.4	210	
	6.5	10.8	210	6.0	11.4	216	
П	6.5	10.8	220	6.0	11.4	222	
	6.5	10.8	230	5.9	11.4	229	

Tabella 9 – Propagazione in costa delle onde di progetto

ONDE COSTA				ONDE SW	AN
Hs	Тр	Dir	Hs	Тр	Dir
(m)	(s)	(°N)	(m)	(s)	(°N)
4.2	11.4	188			
5.0	11.4	190	5.5	11.4	190
5.5	11.4	192			
5.7	11.4	195			
5.9	11.4	199	5.9	11.4	200
5.9	11.4	204			
5.9	11.4	210	5.9	11.4	210
6.0	11.4	216			
6.0	11.4	222	6.0	11.4	220
5.9	11.4	229			

Tabella 10 – Onde di progetto selezionate per la definizione delle onde di calcolo al piede dell'opera

5.3 Propagazione al piede dell'opera

Per la propagazione delle onde di progetto al piede dell'opera è stato utilizzato il modello matematico bidimensionale di rifrazione diretta spettrale di tipo euleriano SWAN.

Il modello SWAN è stato sviluppato dal Delft University of Technology e consente di valutare gli effetti indotti sia dai fenomeni generativi delle onde dovute all'azione del vento, sia dai fenomeni dissipativi (attrito sul fondo e frangimento in acqua profonda ed in acqua bassa) nella propagazione da largo verso riva.

Il modello è in grado di simulare sia perdite di energia subite dalle onde in propagazione sia la generazione del moto ondoso ad opera del vento ed i relativi trasferimenti non lineari di energia indotti anche dal frangimento in acqua profonda.

Nella Figura 5-1 e nella Figura 5-2 sono riportate rispettivamente l'ubicazione e la batimetria dell'area interessata dalle simulazioni numeriche del modello SWAN.

Per l'applicazione del modello, le condizioni di moto ondoso riportate nella sono state imposte lungo il contorno "offshore" dell'area di calcolo.

L'area di calcolo è caratterizzata dalle seguenti dimensioni 1.000 m x 1.500 m e da un passo di discretizzazione di 10 m.

Dalla Figura 5-3 alla Figura 5-6 sono riportati in forma grafica i risultati delle simulazioni numeriche. Nelle sono riportati il campo dell'altezza d'onda significativa e il campo della direzione delle onde.

Dai risultati delle simulazioni eseguite con il modello SWAN sono state estratte le caratteristiche del moto ondoso nei punti ubicati al piede dell'opera lungo lo sviluppo delle opere. Le caratteristiche del moto ondoso al piede dell'opera sono sintetizzate nella Tabella 11 – Onde di calcolo al piede dell'operaTabella 11 in cui sono riportati:

- l'altezza d'onda significativa Hs,
- i periodi d'onda (Tp periodo di picco e Tm periodo medio),
- la direzione del moto ondoso al largo

• l'angolo di attacco del moto ondoso β (angolo tra la direzione perpendicolare all'opera e la direzione delle onde al piede dell'opera).

In grassetto sono state evidenziate le condizioni più gravose utilizzate per le verifiche di stabilità dell'opera.

Si osserva che tutte le simulazioni hanno previsto un sovralzo di tempesta pari a 0.5 m.

Hs	Тр	Dir	punti	Hs	Тр	Dir	β
(m)	(s)	(°N)	piede opera	(m)	(s)	(°N)	(°)
			P1	2.68	10.90	189	9
5.5	11.4	190	P2	4.06	10.90	213	33
			P3	3.16	10.90	211	9
			P1	2.13	10.90	193	13
5.9	11.4	200	P2	4.26	10.90	215	35
			P3	3.23	10.90	213	7
			P1	1.47	10.90	197	17
5.9	11.4	210	P2	4.09	10.90	218	38
			P3	3.21	10.90	215	5
			P1	1.01	10.90	198	18
6.0	11.4	220	P2	3.81	10.90	221	41
			P3	3.10	10.90	215	5

Tabella 11 – Onde di calcolo al piede dell'opera

Figura 5-1 – Ubicazione dell'area di calcolo

Figura 5-2 – Batimetria dell'area di calcolo e ubicazione dei punti al piede dell'opera

Figura 5-3 – Modello SWAN. Campo di moto ondoso per la direzione 190°N

Figura 5-4 – Modello SWAN. Campo di moto ondoso per la direzione 200°N

Figura 5-5 – Modello SWAN. Campo di moto ondoso per la direzione 210°N

Figura 5-6 – Modello SWAN. Campo di moto ondoso per la direzione 220°N

5.4 Verifiche di stabilità della scogliera

Per le verifiche di stabilità dello strato di protezione (armour layer) si è fatto riferimento al capitolo 5.2.2.2 del CIRIA CUR "The Rock Manual. The use of rock in hydraulic engineering (2nd edition)" (2007) e in particolare al metodo di Van Der Meer.

Per il metodo proposto da Van Der Meer la stabilità della scogliera sottoposta alle sollecitazioni indotte dalla mareggiata di progetto dipende sostanzialmente da:

- caratteristiche dell'onda al piede dell'opera (frangente o non frangente);
- tipo di frangimento (wave breaking) dell'onda;
- caratteristiche strutturali della mantellata ed in particolare dal peso medio dei massi dello strato di protezione rapportato all'altezza significativa rappresentativa della mareggiata di progetto.

Nel caso in esame le onde di progetto risultano frangenti al piede dell'opera per i punti P2 e P3 in quanto risulta verificata la condizione:

$h < 3 \ Hs$

dove h e Hs sono la profondità e l'altezza d'onda al piede dell'opera.

Le verifiche eseguite sono state eseguite considerando nullo l'angolo di attacco delle onde di progetto per i punti P1 e P3 in quanto inferiori a 10°.

Con riferimento al capitolo 5.2.2.2 del CIRIA CUR "The Rock Manual. The use of rock in hydraulic engineering (2nd edition)", per una scogliera in massi naturali con pendenza 1:2 il livello di danneggiamento S può essere classificato come segue:

- inizio del danno Sd=2;
- danno intermedio $4 \le d \le 6$;
- collasso S=8, corrispondente ad un risagomamento della scogliera con conseguente esposizione degli strati sottostanti.

Le verifiche eseguite (Tabella 12-Tabella 13) sono state eseguite per individuare il peso medio dei massi tale che il livello di danneggiamento non sia superiore a 4. In questo modo è possibile minimizzare gli interventi manutentivi di ricarica e riprofilatura della scogliera che rientrano tra le condizioni ordinarie di vita utile delle opere di questa tipologia di opere.

Le verifiche hanno evidenziato che una mantellata in massi naturali di terza categoria risponde a questo requisito.

Caratteristiche dell'opera		P1	P2	P3
Profondità del fondale al piede dell'opera (m s.l.m.)	h _c	8.50	5.85	3.86
Sovralzo massimo del livello medio marino (m s.l.m.)	Sm	0.50	0.50	1.08
Tirante idrico al piede dell'opera (m)	h	9.00	6.35	4.94
Pendenza del fondale al piede dell'opera	m	0.05	0.05	0.01
Porosità d'insieme della mantellata	Р	0.40	0.40	0.40
Peso specifico apparente dei massi (kg/m ³)	ρr	2600	2600	2600
Peso specifico dell'acqua marina (kg/m ³)	ρw	1025	1025	1025
Densità relativa della mantellata	Δ	1.54	1.54	1.54
Onda di progetto a ridosso della barriera		P1	P2	P3
Altezza d'onda di progetto (m)	Hs	2.47	4.26	3.21
Periodo di picco (s)	Tp	10.90	10.90	10.90
Periodo medio (s)	T _m	9.91	9.91	9.91
angolo di attacco (°)	β	0.00	35.00	0.00
Condizioni di calcolo		Deep water	Shallow water	Shallow water

Tabella 12 - Caratteristiche dell'opera e onde di progetto

Riepilogo verifiche		P1	P2	P3
Condizioni di calcolo		Deep water	Shallow water	Shallow water
Periodo medio al piede dell'opera (s)	T _{m-1,0}	9.91	9.91	9.91
Parametro critico di Iribarren	ξ _{cr}	3.77	3.95	3.95
Parametro di Iribarren	ξs-1.0	3.94	3.00	3.46
Tipo di frangimento a ridosso della barriera		plunging	plunging	plunging
Numero di onde rappresentative della mareggiata	Ν	3000	3000	3000
Pendenza paramento lato mare	cotgα	2.00	2.00	2.00
Peso medio dei massi di mantellata (t)	M _{n50}	2.48	5.56	5.56
Diametro medio dei massi di mantellata (m)	D _{n50}	0.98	1.29	1.29
Numero di stabilità della barriera	Ns	1.63	1.74	1.62
Livello di danneggiamento	S	4.00	4.00	4.00

Tabella 13 – Riepilogo delle verifiche

5.5 Verifiche di stabilità del muro paraonde

Per le verifiche di stabilità del muro paraonde si è fatto riferimento alla metodologia riportata al par. 2.3 e all'onda di progetto utilizzata per la verifica della stabilità dei massi della mantellata con particolare riferimento al punto P2.

Nella Tabella 14 sono riportati i risultati dei calcoli finalizzati alla stima dei valori delle pressioni e delle azioni sul muro sia nel caso di forza da impatto ("impact force") sia in quello di forza di pulsazione ("pulsating force"). Tuttavia va osservato che per l'opera in esame le pressioni e le azioni che vanno prese in considerazione sono quelle relative al secondo caso ovvero le forze di pulsazione.

Tenendo conto della geometria del muro e del peso ad esso associato (Figura 5-7) sono state eseguite le verifiche di stabilità i cui risultati sono riportati nella Tabella 15.

A riguardo va osservato che:

- per la resistenza alla traslazione orizzontale è stato considerato un coefficiente di attrito tra cls e pietrame sottostante pari a 0.6;
- il muro risulta stabile sia alla traslazione sia al ribaltamento,
- le pressioni di contatto sono accettabili.

Sulla base delle elaborazioni eseguite sono state individuate le azioni per le verifiche strutturali di due sezioni rappresentative del muro paraonde riportate nella Tabella 16.

Figura 5-7 - Geometria e peso del muro paraonde

		ruttura									
	Profondità	fona	lale al piede dell'opera (m	1 s.l.m.)	h	5.9					
		Qı	uota berma mantellata (m	ı s.l.m.)	A _b	4.50					
		Larghezza berma (m)									
		Pendenza mantellata cotg				2.0					
	Larghezza di bas	se de	el massiccio di coroname	ento (m)	B _c	7.0					
	Quota son	nmita	ale del muro paraonde (m	n s.l.m.)	A _c	6.50					
	Quota di imbasa	amer	nto del muro paraonde (m	n s.l.m.)	Α,	0.50					
			Porosità ma	ntellata	р	0.40					
	Porosità alla	a bas	se del massiccio di coron	amento	p _c	0.40					
	Diame	etro n	nedio massi della mantel	lata (m)	D _{n50}	1.29					
		C	Condizioni di impatto dire	tto dell'o	onda co	ntro il m	uro par	aonde	NO		
	Altezza rela	ativa	A _b /H _c	0.82							
	Larghezza rela	ativa	B _b /H _c	1.07	>	0.05					
run-u	run-up al margine della mantellata (m)		So	1.34		Ab	+ S _o =	5.84	<	A _c	
	Calcolo dell'altezza di Rur	n-up	$R_{\parallel} = H_{\circ} \cdot (A_{\parallel} \cdot (1 - \exp(-B)))$	3× <i>č</i>)))						_
	Numero di Iriba	rren	<u>μ</u> τη	3.08							
Run-u	Run-up associato all'altezza d'onda H _c		Ru	5.51	(m)	Au	1.338	Bu	0.6	j	
	Brossiani di impotto	, D	(valida zer Cl., 0.075)		. ,			ů			
		, r d	(valido per $S_c > 0.075$)	2.06		C	0 202				
Tro	tto NON ringrate dalla manta	llata	U	2.90	1.5.1/ 2	U _{w2}	0.393	D	- ^	- ~ ~ ~ ~	
Trette int				40.06	kN/m ⁻		•	$P_{do} = C_{w1} \cdot p_w \cdot g \cdot s$			o
Tratto Ini	renore (riparato dalla mantell	iata)	P _{di}	15.76	kN/m ⁻		Pd		2 · C w1	$p_w \cdot g \cdot s_c$	0
	Sottopressione lato n	nare	P _{se}	15.8	kN/m ⁻						
	Sottopressione lato t	erra	P _{si}	0.0	kN/m²						
	Pressioni di pulsazione	P_p	(valido per 0.03 <s'c<0.07< td=""><td>75)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s'c<0.07<>	75)							
			Co	0.12		C _{w 3}	0.28				
Pre	ssione massima all'imbasam	ento	Pp	15.052	kN/m ²		$P_p = C_1$	_{w3} .р _w .	j∙(S₀	+ A _c - z)
Pressior	ne alla sommità del coronam	ento	P'p	0.00	kN/m ²						
	Sottopressione lato n	nare	Pse	15.1	kN/m ²						
	Sottopressione lato t	erra	P _{si}	5.3	kN/m ²						
	Soll	lecita	azioni risultanti alla base	dell'elei	mento d	li corona	mento				
	SI	pinta	risultante dovuta alla pres	sione di	impatto	Sp _d	148.3	kN/m			
		5	Sottospinta dovuta alla pre	ssione d	'impatto	Sp _{du}	55.2	kN/m			
		Momento indotto dalla pressione di impa			impatto	Mpd	791.9	kN∙m/n	ก		
	Bracci	o rela	ativo allo spigolo esterno o	del coron	amento	Bp _d	5.3	m			
	Spint	a risı	ultante dovuta alla pressio	ne di pul	sazione	Spp	40.2	kN/m			
		So	ottospinta dovuta alla press	sione pul	sazione	Sp _{pu}	71.1	kN/m			
		Mom	nento indotto dalla pressio	ne di pul	sazione	Mpp	360	kN∙m/n	n		
	Bracci	o rela	ativo allo spigolo esterno o	del coron	namento	Bpp	9.0	m			

Tabella 14 - Calcolo delle pressioni e delle azioni nel caso di impatto e di pulsazione

	Verifica al ribaltamento:			
Momente	o pressione di pulsazione (Mp $_{\rm o}$):	360.3	kN∙m/m	
	coefficiente parziale (γ_Q)	1.5		
	Momento ribaltante (M _r):	540.5	kN∙m/m	
	Momento peso struttura (M _s):	2,830.9	kN∙m/m	
	coefficiente parziale (γ_G)	1.0		
	Momento stabilizzante (M _s):	2,830.9	kN∙m/m	
	R_D / E_D :	5.24		Verificato
	Verifica alla traslazione:			
S	pinta orizzonale risultante (Sp _p):	40.2	kN/m	
	coefficiente parziale (γ_Q)	1.5		
	Azione mobilitante	60.3	kN/m	
	Peso struttura:	656.9	kN/m	
Sottospinta do	vuta alla pressione di pulsazione	71.1	kN/m	
Rist	ultante verticale (Peso- $\gamma_Q \times Sp_p$):	550.2	kN/m	
	Coefficiente di attrito (f)	0.6		
	coeff.parziale resistenza γ_R	1.1		
	Forza resistente	300.1		
	R_D / E_D :	4.98		Verificato

Tabella 15 - Verifica della stabilità del muro paraonde

muro in elevazione. Sez A				
Ν	kN	254.4		
Т	kN	17.2		
М	kNm	21.2		
solettone. Sez B				
N	kN	201.2		
Т	kN	174.2		
M	kNm	304.9		

Tabella 16 – Azioni sul muro paraonde per le verifiche strutturali

5.6 Verifiche di resistenza (SLU) per la sezione A

Nella seguente tabella vengono riportate le sollecitazioni risultanti di sforzo normale, taglio e momento flettente di progetto agenti nella sezione A:

Muro ir) e	lev	azi	on	e.	Sez.	Α	
								_

N _{Ed}	[kN/m]	330,72
T _{Ed}	[kN/m]	22,36
M _{Ed}	[kNm/m]	27,56

5.6.1 Verifica a flessione

La sezione di base del muro paraonde ha dimensioni geometriche:

$$B_A = 1,00 m$$
 $H_A = 3,50 m$

Inserendo un'armatura simmetrica di ϕ 16/20, attraverso l'utilizzo del software VCASIu si ottiene un momento resistente pari a:

$M_{Rd} = 1349 \ kNm/m$

La verifica risulta soddisfatta:

$$\frac{M_{Rd}}{M_{Ed}} = 48,9$$

Le armature verticali rispettano i limiti sul quantitativo minimo forniti dalle NTC-2018 al §7.4.6.2.4, pari allo 0.2% $A_{\rm c}.$

5.6.2 Verifica a taglio

La verifica a taglio è stata condotta considerando la sezione del muro come un elemento autoportante a taglio.

Per il calcolo della resistenza si è quindi utilizzata la formula riportata dalle NTC-2018 al §4.1.2.3.5.1 per elementi non armati a taglio.

Verifica a taglio				
Sezione rettangolare 100x350				
T _{Ed}	22,36 [kN/m]			
Arm. Tesa	Arm. Tesa 5Ø16			
ρ	ρ 0,0003			
k _t	1,24			
T _{Rd}	527,7	[kN/m]		
VERIFICATA				

La verifica è soddisfatta:

$$\frac{T_{Rd}}{T_{Ed}} = 23,6$$

5.7 Verifiche di resistenza (SLU) per la sezione B

5.7.1 Verifica a flessione

La sezione B appartiene alla sovrastruttura schematizzabile come un elemento piastra. La sezione presa in esame appartiene ad un tratto che presenta un comportamento a mensola soggetta a momento flettente e taglio.

Nella tabella seguente si riportano i valori delle sollecitazioni di progetto che derivano dalla combinazione dei carichi agli SLU.

Si osserva, in particolare, che l'azione N_{Ed} è una forza agente nel piano della sezione in quanto rappresenta il peso proprio dell'elemento strutturale.

N _{Ed}	[kN/m]	261,6
T _{Ed}	[kN/m]	226,5
M _{Ed}	[kNm/m]	396,4

Ai fini della verifica a flessione, si considerano come dimensioni geometriche della sezione:

$$B_B = 1,00 m$$
 $H_B = 2,30 m$

Inserendo un'armatura simmetrica ϕ 16/20, attraverso l'utilizzo del programma di calcolo VCASIu, si ottiene un momento resistente pari a:

$$M_{Rd} = 957,6 \, kNm/m$$

La verifica risulta quindi soddisfatta:

$$\frac{M_{Rd}}{M_{Ed}} = 2,41$$

Le armature inserite rispettano i limiti sul quantitativo minimo forniti dalle NTC-2018 al $\S7.4.6.2.4$, pari allo 0.2% A_c.

5.7.2 Verifica a taglio

La verifica a taglio è stata condotta considerando la sovrastruttura come un elemento autoportante a taglio, essendo schematizzata come una piastra.

Per il calcolo della resistenza si è quindi utilizzata la formula riportata dalle NTC-2018 al §4.1.2.3.5.1 per elementi non armati a taglio.

Verifica a taglio				
Sezione rettangolare 100x230				
T _{Ed}	226,5 [kN/m]			
Arm. Tesa	5Ø16			
ρ	ρ 0,0004			
k _t	1,29			
T _{Rd}	435,02	[kN/m]		
VERIFICATA				

La verifica è soddisfatta:

$$\frac{T_{Rd}}{T_{Ed}} = 1,92$$