

REGIONE SICILIAPROVINCIA DI CALTANISSETTA

COMUNE DI GELA COMUNE DI BUTERA

OGGETTO

PROGETTO DI UN IMPIANTO AGRO-FOTOVOLTAICO PER UNA POTENZA NOMINALE DI 15,998 MWp (13 MW IN IMMISSIONE) INTEGRATO DA UN SISTEMA DI ACCUMULO DA 6,66 MW E RELATIVE OPERE DI CONNESSIONE DA REALIZZARSI NEI COMUNI DI GELA E BUTERA (CL)

PROGETTO DEFINITIVO

PROPONENTE

TITOLO

RELAZIONE E CALCOLI PRELIMINARI DELLE STRUTURE

PROGETTISTA

Dott. Ing. Girolamo Gorgone

LO STRUTTURISTA

DOLMEN S.r.I

CODICE ELABORATO

XM_R_10_A_D

SCALA

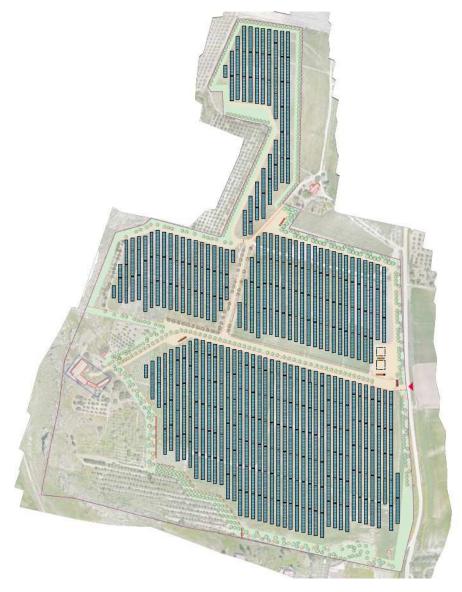
n°.Rev.	DESCRIZIONE REVISIONE	DATA	ELABORATO	VERIFICATO	APPROVATO

Rif. PROGETTO	
N. L	

NOME FILE DI STAMPA

SCALA DI STAMPA DA FILE

Pagina | 1


Sommario

PREMESSA	2
1. NORMATIVA DI RIFERIMENTO	3
2. DESCRIZIONE STRUTTURE STRINGHE FOTOVOLTAICHE	3
2.1 Analisi dei carichi	5
2.1.1 Carichi verticali	5
2.1.2 Azioni del vento	5
2.1.3 Azioni sismiche	8
2.2 Verifiche montanti (moduli da 2x15)	11
2.3 Verifiche montanti (moduli da 2x30)	13
3. DESCRIZIONE FONDAZIONI EDIFICI AUSILIARI	14
3.1 Power Station	15
3.2 Cabina ausiliaria prefabbricata	15
3.3 Control room	15
3.4 Locali batteria	16
3.5 Criteri di calcolo	16

Pagina | 2

PREMESSA

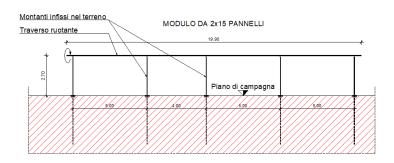
Il presente documento costituisce la *Relazione e calcoli preliminari delle strutture* relativa alla realizzazione da parte della società X-ELIO di un impianto di generazione di energia da fonte solare di tipo agro-fotovoltaico per una potenza nominale di 15,998 MWp (13 MW in immissione) integrato da un sistema di accumulo da 6,66 MW. L'impianto agro-fotovoltaico è sito nel comune di Gela (località Piano Mendola), mentre le opere di connessione alla rete elettrica nazionale si sviluppano nei comuni di Gela e Butera (ove è sita la stazione di connessione).

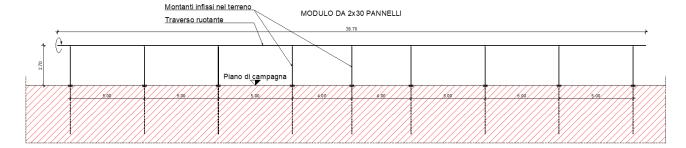
(Layout generale dell'impianto agro-fotovoltaico)

Pagina | 3

XM R 10 A D

1. NORMATIVA DI RIFERIMENTO


La normativa di riferimento utilizzata per le verifiche e per la determinazione delle azioni sulle strutture è la seguente:

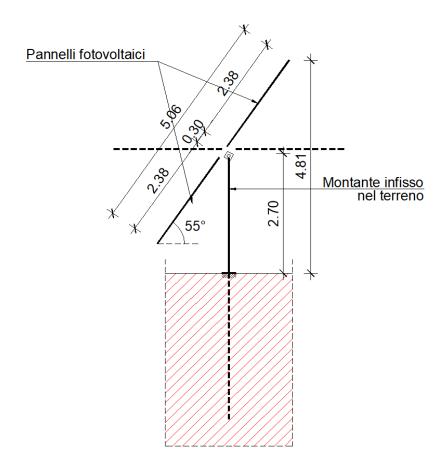

- Legge 05/11/1971 n. 1086 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Legge 02/02/1974 n. 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- CEI 11-4 03/1988 "Esecuzione delle linee elettriche aeree esterne"
- CNR-DT 207/2008 "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni"
- D.M. 14/01/2008 "Nuove norme tecniche per le costruzioni" Allegato B: Tabelle dei parametri che definiscono l'azione sismica;
- D.M. 17/01/2018 Aggiornamento delle "Nuove Norme tecniche per le costruzioni"
- Circ. 21/01/2019 n. 7 C.S.LL.PP. "Istruzioni per l'applicazione dell'aggiornamento delle "Norme tecniche per le costruzioni"

2. DESCRIZIONE STRUTTURE STRINGHE FOTOVOLTAICHE

Il campo fotovoltaico è costituito da stringhe da 2x15 moduli e da 2x30 moduli ad inseguimento solare.

Il sistema proposto dalla Soltec prevede dei montanti infissi nel terreno allineati a passo di 5.00 o 4.00 m alla cui estremità superiore viene fissato un traverso per mezzo di cuscinetti che consentono la rotazione dello stesso attorno al proprio asse.

Questa rotazione permette ai pannelli fotovoltaici di rivolgersi ai raggi solari con un angolo di


Pagina | 4

variabilità del piano dei pannelli che va da +55° a -55° rispetto all'orizzontale.

Il traverso ha una sezione scatolare quadrata 150x150 mm con spessore variabile da 6 a 4 mm dal montante centrale verso gli estremi. Esso ha vincolo di continuità alla testa di ogni montante, tranne nel montante centrale dove esso si fissa a cerniera al motore che consente la rotazione.

Sul traverso rotante vengono disposte delle travi ortogonali con sezione ad omega e passo pari alla larghezza dei pannelli fotovoltaici per il loro fissaggio.

Nel proseguo della presente relazione di calcolo preliminare ci si concentrerà solamente sul dimensionamento dei montanti del sistema, costituiti da profili HEA240, lasciando il resto del dimensionamento alla relazione di calcolo definitiva.

In sezione la situazione schematica della struttura è la seguente:

La stringa da 2x15 moduli ha una lunghezza totale di 19.90 m con n. 5 montanti infissi nel terreno a passo di 5.00 m (un solo passo è pari a 4.00 m), con doppio pannello da 2.38 m di lunghezza disposti in modo da lasciare 0.30 m di spazio in verticale tra loro, per un ingombro complessivo di circa 5.06 m (l'azione del vento determinata nel proseguo è stata definita per ingombro di 5.00 m).

La stringa da 2x30 moduli ha una lunghezza totale di 39.70 m con n. 9 montanti infissi nel terreno

Pagina | 5

XM R 10 A D

a passo di 5.00 m (tranne i 2 passi centrali da 4.00 m), con doppio pannello da 2.38 m di lunghezza disposti in modo da lasciare 0.30 m di spazio in verticale tra loro, per un ingombro complessivo di circa 5.06 m.

2.1 Analisi dei carichi

2.1.1 Carichi verticali

Peso proprio pannelli fotovoltaici	13.0	daN/m²
Peso proprio struttura fissaggio pannelli	1.7	daN/m²
Peso proprio scatolari	18.5	daN/m

2.1.2 Azioni del vento

La pressione del vento viene ricavata seguendo le indicazioni del D.M. 17/01/2018 "Nuove Norme tecniche per le costruzioni" e della relativa Circolare n. 7 del 21/10/2019 "Istruzioni per l'applicazione dell'aggiornamento delle "Nuove Norme tecniche per le costruzioni", nonché le raccomandazioni CNR-DT 207/2008 "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".

L'impianto è ubicato in Sicilia – Zona 4 (vedi Tabella sottostante):

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con	25	1000	0,010
	eccezione della provincia di Trieste)			
2	Emilia Romagna	25	750	0,015
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria	27	500	0,020
	(esclusa la provincia di Reggio Calabria)			
4	Sicilia e provincia di Reggio Calabria	28	500	0,020
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola della Maddalena)	28	750	0,015
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola della	28	500	0,020
	Maddalena)			
7	Liguria	28	1000	0,015
8	Provincia di Trieste	30	1500	0,010
9	Isole (con eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,020

Nella tabella viene riportata la velocità del vento per altezza a dal livello del mare del sito ove sorge la costruzione, ed i parametri che consentono di ricavare la v_b nel caso in cui il sito abbia altezza superiore ad ao.

XM R 10 A D

X-ELI®

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 15,998 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Gela e Butera (CL).

Pagina | 6

Nel nostro specifico caso, questo non avviene in quanto la quota del sito è di 45-50 m s.l.m. inferiore ai 500 m s.l.m. di cui alla tabella per la Zona 4. Pertanto, come da (3.3.1) $v_b=v_{b,0}$

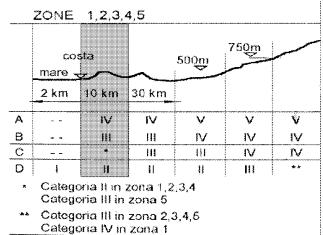
La pressione effettiva del vento vale, come da formula (3.3.2) del D.M. 17/01/2018:

$$p=q_b \cdot c_e \cdot c_p \cdot c_d$$

dove \mathbf{q}_b è la pressione cinetica di riferimento, \mathbf{c}_e coefficiente di esposizione, \mathbf{c}_p coefficiente di forma, \mathbf{c}_d coefficiente dinamico (assunto pari ad 1.0 a favore di sicurezza).

Dalla formula (3.3.4) $\mathbf{q}_b = 1/2 \cdot \rho \cdot v^2 = 0.5 \times 1.25 \times 28^2 = 490 \text{ N/m}^2 = > 49 \text{ daN/m}^2$

Con ρ densità dell'aria assunta convenzionalmente costante, come recita la Norma stessa, e pari a 1.25 kg/m^3 .


Per la determinazione del coefficiente di esposizione c_e bisogna preliminarmente definire la classe di rugosità del terreno, come dalla Tabella 3.3.III, che si riporta:

Classe di rugosità del terreno	Descrizione
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i
	15 m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle
	classi A, B, D
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o
	sabbiose, superfici innevate o ghiacciate, mare, laghi)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinchè una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe permenga intorno alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più sfavorevole.

Per il sito in specie viene scelta una classe di rugosità **D**, trattandosi di aperta campagna.

Successivamente dalla classe di rugosità è possibile definire la categoria di esposizione del sito:

XM_R_10_A_D
Pagina | 7

Quindi, trattandosi di struttura ubicata entro 10 km dalla costa, la categoria di esposizione è la II.

Infine dalla tabella 3.3.II del D.M.

Categoria di esposizione del sito	k _r	z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

si ricavano i parametri per il calcolo del coefficiente di esposizione secondo la formula (3.3.5):

$$\mathbf{c}_{e}(\mathbf{z}) = k_r^2 \cdot c_t \cdot \log_e(z_{min}/z_0)[7 + c_t \cdot \log_e(z_{min}/z_0)]$$

Riguardo il fattore di forma c_p , si fa ricorso alla CNR-DT207-2008, relativamente al caso di muri e parapetti al $\S G.5$, condizione assai simile alla situazione dei pannelli fotovoltaici nella configurazione a massima inclinazione con l'orizzontale.

In particolare si farà riferimento alla figura G.21 riportata nelle raccomandazioni, in cui vengono definite delle zone di pressione dell'azione del vento differenziate:

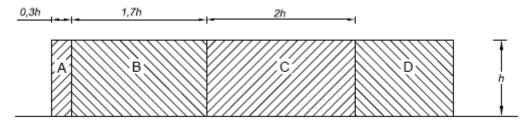


Figura G.21 – Suddivisione di muri e parapetti in aree di uguale pressione complessiva.

ed alla tabella G.X sotto riportata:

φ	Chiusura laterale	l/h	Α	В	С	D
		<3	2.3	1.4	1.2	
1.0	no	5	2.9	1.8	1.4	1.2
		>10	3.4	2.1	1.7	
	si	tutti	2.1	1.8	1.4	
0.8	si/no	tutti	1.2			

Nel caso della stringa 2x15 moduli il rapporto l/h vale: 19.90/5.00=3.98, nel caso della stringa 2x30 moduli invece: 39.70/5.00=7.94

I valori in tabella possono essere interpolati linearmente, per rapporti l/h differenti da quelli previsti, ma considerando le varie zone (A, B, C, D), con valori di l/h intorno a 5, si è a favore di sicurezza

X-ELI⊕

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 15,998 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Gela e Butera (CL).

Pagina | 8

XM R 10 A D

considerando un valore del coefficiente di forma c_p =1.8 costante per tutta la lunghezza dei moduli e per entrambi i moduli.

Riguardo il valore $c_e(z)$, a favore di sicurezza si calcolerà l'espressione $c_e(z)=c_e(z_{max})$ ovvero si considererà costante l'azione del vento lungo tutta la superficie dei pannelli con il coefficiente c_e massimo. Il coefficiente di topografia contenuto nella formula è stato posto pari ad 1.0 trattandosi di zona pianeggiante:

 $\textbf{c}_{e}(\textbf{z}) = k_r^2 \cdot c_t \cdot \log_e(z_{\text{max}}/z_0) [7 + c_t \cdot \log_e(z_{\text{max}}/z_0)] = 0.19^2 \times 1.0 \times \log_e(4.81/0.05) \times [7 + 1.0 \times \log_e(4.81/0.05)] = \textbf{1.907}$

Infine il coefficiente dinamico, \mathbf{c}_{d} , dovrebbe tenere conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali. La Circolare prevede la definizione di tale parametro in funzione della superficie totale investita dal vento o per particolari fenomeni aeroelastici.

Nel caso in specie le superfici in gioco sono di piccola entità, e pertanto per il coefficiente dinamico c_d si assumerà valore unitario (1.0).

In definitiva quindi la spinta del vento sui pannelli equivale ad un carico uniformemente distribuito del valore di:

 $p=q_b \cdot c_e \cdot c_p \cdot c_d = 49x1.907x1.8x1.0 = 168 \text{ daN/m}^2$

2.1.3 Azioni sismiche

I sito su cui sorgerà la struttura in esame <u>è zona sismica 2</u> così come si evince dalla **Ordinanza della Presidenza del Consiglio dei Ministri n. 3274 del 20/03/2003** – Allegato 1, e successive modifiche ed integrazioni, riportante l'elenco delle località sismiche del territorio italiano.

Le coordinate geografiche in cui è ubicata la struttura sono le seguenti:

Longitudine (deg): 14.8296; Latitudine (deg): 37.4690;

Pagina | 9

Per le strutture in esame viene scelta una vita nominale V_N=50 anni.

Si precisa che la scelta della vita nominale delle strutture rimane ad arbitrio del progettista e del Committente.

Così come precisato meglio dalla Circolare essa individua solamente il periodo dopo il quale diventa necessario intervenire con opere di manutenzione straordinaria per ripristinare la capacità di durata della costruzione.

Sempre la Circolare ribadisce che il carattere strategico di un'opera o la sua rilevanza per le conseguenze di un eventuale collasso, sono definiti dalla classe d'Uso.

La classe d'uso è: **Classe IV** – Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 05/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Pagina | 10

Pertanto la vita V_R della struttura, ai fini del calcolo delle azioni sismiche, è pari a:

$$V_R=V_N\cdot C_U=100$$
 anni

Il periodo di ritorno per sisma SLV è di 949 anni.

Con questo periodo di ritorno i valori tipici per la costruzione dello spettro sismico, nella zona considerata, valgono:

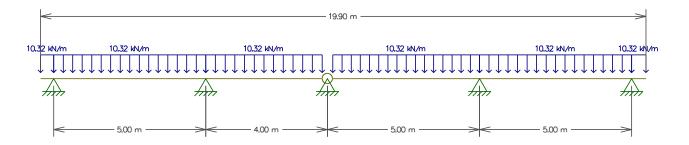
$$a_0$$
=0.2602 F_0 =2.405 T^*_c =0.459

Il terreno, come definito dal geologo, è di categoria C. Pertanto lo spettro sismico in definitiva, con fattore di comportamenti q=1.0 ha i seguenti valori:

De	Definizione dei valori di S, TB, TC e TD degli spettri di risposta SLD						
S	1.50		C _c 1.573				
T _b	0.154	T _c 0.462	T _d 1.934				

Dati spettro	Fattore di struttu	ıra 1.00	
Secondi	Ordinata elast.	Ordinata SLU	
0.000	0.349	0.349	
0.149	0.702	0.702	
0.154	0.714	0.714	
0.208	0.840	0.840	B.900 → Spettro di risposta SLV ■
0.224	0.840	0.840	Spettro di risposta SLV
0.448	0.840	0.840	1 3.800
0.462	0.840	0.840	1□ ^{0.700} ↑
0.623	0.840	0.840	
0.672	0.779	0.779	1 ■ . 500 / 1
0.731	0.716	0.716	\$\int_{\begin{subarray}{cccccccccccccccccccccccccccccccccccc
1.014	0.516	0.516	1 ■ 300 ■ ■
1.297	0.404	0.404	200
1.580	0.331	0.331	0.200
1.863	0.281	0.281	■ .100
1.934	0.271	0.271	l=''`'' '
2.661	0.197	0.197	0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.50
3.076		0.147	司!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3.145	0.141	0.141	
3.573	0.109	0.109	
4.000	0.087	0.087	

A favore di sicurezza, si considera che la struttura abbia periodi propri di vibrazione tali da ricadere nel plateau dello spettro, ovvero con fattore di trasformazione dei carichi verticali in orizzontale pari a 0.84. Il peso della struttura per metro di sviluppo lineare, come da analisi dei carichi verticali, nella combinazione sismica [2.5.5] del D.M. 2018, vale:


Pagina | 11

che diventano 92x0.84=77 daN/m di forza orizzontale sulla testa dei montanti infissi nel terreno.

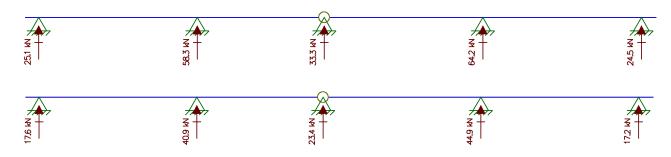
Valore di molto inferiore allo stesso carico determinato per l'azione del vento. Nel proseguo della presente relazione pertanto si farà riferimento alle azioni da vento che determinano certamente sollecitazioni maggiori di quelle sismiche sulle strutture.

2.2 Verifiche montanti (moduli da 2x15)

Il traverso vincolato con cuscinetti a sfere sulla testa dei montanti si comporta come una trave continua. Essa quindi, caricata con l'azione del vento, genererà delle reazioni su ogni singolo montante secondo il seguente schema geometrico:

L'azione del vento ortogonale ai pannelli inclinati di 55° rispetto alla verticale, vale nella combinazione fondamentale agli SLU [2.5.1] del D.M. 2018:

q=1.5x168x5.00=1260 daN/m


Le componenti orizzontali e verticali valgono:

q_{orizz}=1260xsen(55°)=1032 daN/m

q_{vert}=1260xcos(55°)=±723 daN/m

La componente verticale potrà avere sia segno positivo (dal basso verso l'alto) che negativo, in funzione della direzione del vento rispetto all'inclinazione del pannello.

Pertanto si hanno le reazioni orizzontali e verticali sui montanti:

X-ELI⊕

RELAZIONE E CALCOLI PRELIMINARI DELLE STRUTTURE

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 15,998 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Gela e Butera (CL).

XM_R_10_A_D
Pagina | 12

Ovvero, in base alle reazioni orizzontali e verticali sopra riportate si ha lo schema di carico della figura a fianco.

Il montante maggiormente sollecitato è il penultimo con:

F_{orizz}=6420 daN

F_{vert}=4490 daN

La forza orizzontale genera un momento flettente. Questo viene determinato considerando che l'incastro vero e proprio non si trova allo spiccato del montante dal terreno ma più in basso, ovvero si è considerato un braccio di 3.10 m.

M=6420x3.10=19902 daNm

Al carico verticale si aggiungerà il peso proprio della struttura soprastante il montante, così determinato:

Peso proprio pannelli fotovoltaici

1.3x13.0x5.00= 85 daN

Peso proprio struttura fissaggio pannelli

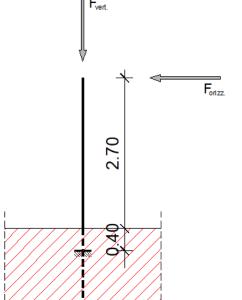
1.3x1.7x5.00= 11 daN

Peso proprio scatolari

1.3x18.5x5.00= 120 daN

Peso proprio montante HEA240

1.3x60.3x3.10= 243 daN


======

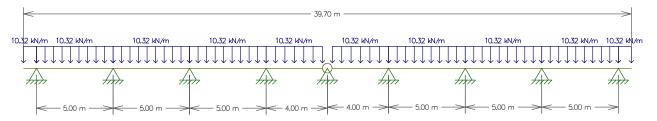
Totale 459 daN

Considerando un profilo HEA240 con caratteristiche di resistenza S355 e con le seguenti caratteristiche geometriche:

Area: 76.8 cm² J=7763 cm⁴ W=675 cm³

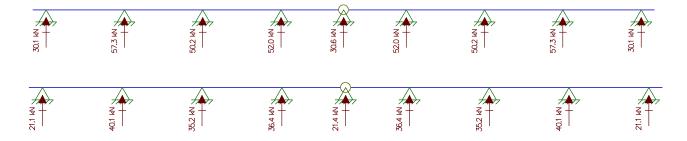
Si avrà la tensione massima di:

Pagina | 13


 σ =N/A+M/W=(4490+459)/76.8+1990800/675=3013.77 daN/cm²

Inferiore alla massima prevista dalla normativa: S355 → 3550/1.05=3380.95 daN/cm²

Sulla lunghezza di infissione del montante nel terreno si tratterà nella relazione geotecnica preliminare.


2.3 Verifiche montanti (moduli da 2x30)

Il traverso vincolato con cuscinetti a sfere sulla testa dei montanti si comporta come una trave continua. Essa quindi, caricata con l'azione del vento, genererà delle reazioni su ogni singolo montante secondo il seguente schema geometrico:

Le azioni del vento espresse in daN/m sono le stesse già viste per i moduli 2x15, pertanto si hanno le reazioni orizzontali e verticali sui montanti:

Ovvero, in base alle reazioni orizzontali e verticali sopra riportate si ha lo schema di carico della figura a fianco.

Il montante maggiormente sollecitato è il penultimo con:

F_{orizz}=5730 daN

F_{vert}=4010 daN

La forza orizzontale genera un momento flettente. Questo viene determinato considerando che l'incastro vero e proprio non si trova allo spiccato del montante dal terreno ma più in basso, ovvero si è considerato un braccio di 3.10 m.

X-ELI⊕

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 15,998 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Gela e Butera (CL).

XM_R_10_A_D
Pagina | 14

M=5730x3.10=17763 daNm

Al carico verticale si aggiungerà il peso proprio della struttura soprastante il montante, così determinato:

Peso proprio pannelli fotovoltaici	1.3x13x5.00=	85	daN
------------------------------------	--------------	----	-----

Peso proprio struttura fissaggio pannelli 1.3x1.7x5.00= 11 daN

Peso proprio scatolari 1.3x18.5x5.00= 120 daN

Peso proprio montante HEA240 1.3x60.3x3.10= 249 daN

=====

Totale 465 daN

Considerando un profilo HEA240 con caratteristiche di resistenza S355 e con le seguenti caratteristiche geometriche:

W=675 cm³

Area: 76.8 cm² J=7763 cm⁴

Si avrà la tensione massima di:

σ=N/A+M/W=(4010+465)/76.8+1776300/675=2689.82 daN/cm²

Inferiore alla massima prevista dalla normativa: S355 → 3550/1.05=3380.95 daN/cm²

Sulla lunghezza di infissione del montante nel terreno si tratterà nella relazione geotecnica preliminare.

3. DESCRIZIONE FONDAZIONI EDIFICI AUSILIARI

Nell'ambito del parco fotovoltaico verranno posizionate delle ulteriori strutture oltre alle stringe di produzione fotoelettriche. In particolare:

- Power Station a 4 inverter con trasformatore e blocco quadri MT;
- Cabine ausiliarie prefabbricate;
- Control room costituita da container metallico;
- Locali batterie;

X-ELI⊕

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 15,998 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Gela e Butera (CL).

Pagina | 15

XM R 10 A D

3.1 Power Station

Si tratta di un macchinario con ingombro in pianta di circa 11.60x2.10 m e di altezza di 2.50 m circa, del peso complessivo di 23000 daN.

Verrà realizzata una platea in calcestruzzo armato di dimensioni 12.00x2.50 m e spessore di 0.30 m. Il terreno vegetale, indicato in 0.80 m dal geologo dovrà essere eliminato del tutto, fino ad arrivare alla quota del terreno costituito da sabbie ed alternanze di sabbie ed argille, ritornando in quota per mezzo di magrone ciclopico o con materiale arido ben compattato.

3.2 Cabine ausiliarie prefabbricate

Si tratta di una serie di piccoli locali destinati a differenti attività all'interno del parco. Sono tutti realizzati con cabine prefabbricate, di quelle generalmente utilizzate per le apparecchiature elettriche di rete, eventualmente assemblando più moduli.

La cabina MTR ha dimensioni di 11.40x2.50 m con un locale staccato "partenza linea" di circa 2.40x2.50 m.

Il Magazzino agricolo ha dimensioni 5.80x2.50 m

La Cabina ausiliaria ha dimensioni 2.40x2.50 m

Tutte queste strutture prevedono un guscio, anch'esso prefabbricato, di fondazione da cui convogliare i cavidotti interrati dal terreno all'interno delle cabine stesse. Tale guscio verrà posizionato su a quota di circa -0.40 m rispetto al piano di campagna, su di un semplice magrone armato con una rete elettrosaldata da 15 cm di spessore circa. Anche in questo caso si arriverà al terreno sabbioso e/o con alternanze di sabbia ed argilla, ritornando in quota per mezzo di magrone ciclopico o con materiale arido ben compattato.

3.3 Control room

Si tratta di un locale suddiviso in due ambienti. Per metà magazzino, per l'altra metà sala di controllo/ufficio con annesso piccolo bagno con antibagno.

Esso viene realizzato da un container metallico. Le sue dimensioni sono di circa 12.15x2.40 m con altezza di 2.70 m. Il peso del container è di circa 5500 daN.

X-ELI⊕

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 15,998 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Gela e Butera (CL).

Pagina | 16

XM R 10 A D

Verrà realizzata una platea in calcestruzzo armato di dimensioni 12.50x3.00 m e spessore di 0.30 m. Il terreno vegetale, indicato in 0.80 m dal geologo dovrà essere eliminato del tutto, fino ad arrivare alla quota del terreno costituito da sabbie ed alternanze di sabbie ed argille, ritornando in quota per mezzo di magrone ciclopico o con materiale arido ben compattato.

3.4 Locali batteria

Si tratta di semplici container di dimensioni 6.10x2.40 m all'interno dei quali vengono disposti pacchi di batterie di accumulo, per un peso totale di circa 30500 daN..

Verrà realizzata una platea in calcestruzzo armato di dimensioni 6.50x3.00 m e spessore di 0.30 m. Il terreno vegetale, indicato in 0.80 m dal geologo dovrà essere eliminato del tutto, fino ad arrivare alla quota del terreno costituito da sabbie ed alternanze di sabbie ed argille, ritornando in quota per mezzo di magrone ciclopico o con materiale arido ben compattato.

3.5 Criteri di calcolo

Riguardo alle fondazioni sopra descritte si tratta di semplici platee poggiate sul terreno.

Da un punto di vista di calcolo la platea viene considerata poggiata su un letto di molle alla Winkler. Poichè il carico sulle platee è di tipo uniformemente distribuito, in questo caso le sollecitazioni flessionali sulle platee sono pari a 0, essendo le molle al di sotto di esse compresse in maniera identica tra loro. Si avrà solamente un cedimento verticale uniforme della platea stessa.

Nella relazione geotecnica preliminare vengono riportate le verifiche a carico limite del complesso fondazione-terreno.