Regione

COMUNE DI CENTRACHE

COMUNE DI MONTEPAONE

COMUNE DI PETRIZZI

PROGETTO DEFINITIVO RELATIVO ALLA REALIZZAZIONE DI UN IMPIANTO EOLICO COSTITUITO DA 5 AEROGENERATORI DA REALIZZARE NEI COMUNI DI CENTRACHE (CZ) E MONTEPAONE (CZ) E RELATIVE OPERE DI CONNESSIONE ALLA R.T.N. RICADENTI NEL COMUNE DI PETRIZZI (CZ)

RELAZIONE TECNICA DELL'IMPIANTO ELETTRICO E CALCOLO CORRENTI DI CORTO CIRCUITO

ELABORATO

A.9.1

PROPONENTE:

SKI 17 s.r.l.

via Caradosso n.9 Milano 20123 P.lva 12128880965

CONSULENZA:

Via Corsica, 169 - 86039 Termoli (Cb) - Italy Consultancy & Projects
T.+39 0875751452 - M. +393294130607 - E-Mail wirestudiosrls@gmail.com

PROGETTO E SIA:

Via Caduti di Nassiryia, 55 70124- Bari (BA) pec: atechsrl@legalmail.it

Ing. Alessandro Antezza

II DIRETTORE TECNICO Ing. Orazio Tricarico

SOLARITES s.r.l.

piazza V.Emanuele II n.14 Ceva (CN) 12073

0	30/11/2022	LP	LP	LP	Progetto Definitivo
EM./REV.	DATA	REDATTO	VERIFICATO	APPROVATO	DESCRIZIONE

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

Indice

1.INTR	RODUZIONE E SCOPO DEL LAVORO	6
2.NOR	MATIVE DI RIFERIMENTO	7
3.FON	ΓΙ DI ALIMENTAZIONE	8
3.1.	LINEA ALIMENTAZIONE PRIMARIA	8
4.DESC	CRIZIONE DEGLI IMPIANTI DI TRASFORMAZIONE E DISTRIBUZIONE ENERGI	A
ELET	TRICA	9
4.1.	SOTTOSTAZIONE	9
4.2.	CAMPO EOLICO	9
4.3.	SISTEMA DI PROTEZIONE	9
4.4.	VALORI DI TARATURA DA IMPOSTARE SUL RELÈ DI MINIMA E MASSIMA TENSIONE E DI	MINIMA E
MAS	SSIMA FREQUENZA RILEVATI DALL'ALLEGATO A17 DEL CODICE DI RETE I DI PROTEZIONE	10
4.5.	ELENCO RELÈ	11
5.STUE	DIO SELETTIVITA' E COORDINAMENTI	12
5.1.	INTRODUZIONE	12
5.2.	IMPOSTAZIONE DELLO STUDIO	13
5.3.	CALCOLI DELLE CORRENTI DI CORTO CIRCUITO	13
5.4.	FILOSOFIA DI REGOLAZIONE: SELETTIVITA' CRONOMETRICA.	14
5.5.	PROTEZIONI SOTTO STAZIONE	15
5.5	5.1. PROTEZIONE DIFFERENZIALE	15
5.5	5.2. PROTEZIONI DI MASSIMA CORRENTE LATO AT 36 KV	16
5.5	5.3. PROTEZIONI DI MASSIMA CORRENTE LATO AT 30 KV	16
5.5	7.4. PROTEZIONI DIREZIONALI DI MASSIMA CORRENTE TERRA 67N	18
5.5	5.5. PROTEZIONI DI MASSIMA TENSIONE OMOPOLARE (59Vo)	18
6.SELE	TTIVITÀ	19
6.1.	GRAFICO SELETTIVITÀ	21
7.CALC	COLO CORRENTI DI CORTO CIRCUITO	22
7.1.	CORRENTI DA MONTE (CONTRIBUTO SU RETE MT)	22

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

7.2.	CORRENTI DA MONTE (CONTRIBUTO SU RETE MT)	29
7.3.	TRASFORMATORE AUSILIARIO SOTTOSTAZIONE	36
7.4.	UTENZE DERIVATE DAL TRASFORMATORE AUSILIARIO SOTTOSTAZIONE	40
7.5.	TRASFORMATORE AUSILIARIO CABINA DI SMISTAMENTO	42
7.6.	Utenze derivate dal trasformatore ausiliario di smistamento	46
7.7.	LEGENDA SIMBOLI UTILIZZATI COME DA NORMA CEI	48
7.8.	SCHEMA UNIFILARE SEMPLIFICATO CON VALORI MAX	50
7.9.	SCHEMA UNIFILARE SEMPLIFICATO CON VALORI MIN	51

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 – 30 novembre 2022 Wire Studio Srls

Proponente: SKI 17 Srl

Regione	Calabria					
Comune	Centrache – Montepaone - Peti	rizzi				
Proponente	SKI 17 S.R.L.					
	via Caradosso n.9					
	Milano 20123					
	P.Iva 11479190966					
Redazione Progetto	Wire Studio Srls					
elettrico	Via Corsica, 169					
	86039 – Termoli (Cb)					
Documento	Relazione tecnica					
Revisione	00					
Emissione	30 novembre 2022					
Redatto	Lino Pistilli	Verificato	A.A.	Approvato	O.T.	

Redatto:	Wire Studio Srls
Gruppo di lavoro	
Verificato:	Lino Pistilli
Approvato:	Lino Pistilli

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 5 di 51

1. INTRODUZIONE E SCOPO DEL LAVORO

La presente relazione tecnica ha lo scopo di indicare le impostazioni dei relè di protezione relativi all'impianto eolico identificato come "Eolico Centrache 33 MW"

Il parco eolico è situato in agro di CENTRACHE e MONTEPAONE

Il seguente studio definisce le tarature dei relè a 36 kV e 30 kV delle cabine presenti nell'impianto in oggetto, con lo scopo di coordinarne l'intervento.

Nello specifico i relè presi in esame riguarderanno:

- Sottostazione 36 / 30 kV;
- La cabina utente in sottostazione
- La cabina di smistamento;
- Le partenze per i gruppi aereo generatori derivate dalla cabina di smistamento.

Per la realizzazione dello studio si è avvalsi della documentazione tecnica inoltrataci dal cliente

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Pagina 6 di 51

2. NORMATIVE DI RIFERIMENTO

Gli interventi in progetto saranno effettuati nel rispetto della legislazione e delle normative vigenti di seguito elencate:

Elenco Normative Tecniche

La progettazione sarà eseguita in conformità alle seguenti normative tecniche:

- CEI-EN (CENELEC) Norme Europee Armonizzate
 - Norma CEI 3-15(CEI EN 60617-3)

Segni grafici per schemi

Parte 3 conduttori e dispositivi di connessione

Norma CEI 3-16(CEI EN 60617-4)

Segni grafici per schemi

Parte 4 componenti passivi

Norma CEI 3-18(CEI EN 60617-6)

Segni grafici per schemi

Parte 6 Produzione, trasformazione e conversione dell'energia elettrica

Norma CEI 3-19(CEI EN 60617-7)

Segni grafici per schemi

Parte 7 Apparecchiature e dispositivi di comando e protezione

Norma CEI 3-20(CEI EN 60617-8)

Segni grafici per schemi

Parte 8 Strumenti di misura, lampade e dispositivi di segnalazione

Norma CEI 11-25(CEI EN 60909-0)

Correnti di corto circuito nei sistemi trifasi in corrente alternata

Parte 0 Calcolo delle correnti.

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Pagina 7 di 51

3. FONTI DI ALIMENTAZIONE

Le fonti di alimentazione dell'area impianto sono le seguenti:

- Da stazione Terne con tensione primaria (36kV).
- Dai Generatori eolici da 6.6 MVA in singolo radiale

3.1. Linea alimentazione primaria

La sottostazione è alimentata da TERNA con una linea derivata dalla propria rete per la quale ci sono stati inoltrati i seguenti dati:

DATI RETE A.T.							
S"kq	1250	MVA	Tempo di eliminazio	one del guasto			
Unq	36	kV					
I"k3 max	20	kA	1	sec			
I"k1 max	17,32	kA	1	sec			
I"k3 min	11	kA	1	sec			
I"k1 min	9,5	kA	1	sec			

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 8 di 51

4. DESCRIZIONE DEGLI IMPIANTI DI TRASFORMAZIONE E DISTRIBUZIONE ENERGIA ELETTRICA

4.1. Sottostazione

La sottostazione sarà connessa alla rete nazionale (RTN) a 36 kV in corrispondenza del nodo denominato da TERNA (SS di nuova costruzione), la potenza del trasformatore installato sarà pari a 40 MVA

4.2. Campo eolico

Il campo eolico è composto da 2 gruppi comprendenti uno n° 3 aereo generatori e l'altro n° 2 aereo generatori, che saranno derivati dalla cabina di raccolta denominata "CS" che a sua volta è connessa con il quadro di distribuzione sito in sottostazione. Sia in sottostazione che in cabina "CS" è presente un trasformatore MT/BT per l'alimentazione dei servizi ausiliari.

4.3. Sistema di protezione

Lo studio è stato realizzato in modo tale da garantire la protezione dell'impianto contro tutte le tipologie di guasto che possono verificarsi all'interno del campo eolico, inoltre in caso di guasto o funzionamento anomalo sulla rete AT imputabile alla rete RTN ne permetterà il distacco.

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 - 30 novembre 2022

Proponente: SKI 17 Srl

Pagina 9 di 51

4.4. Valori di taratura da impostare sul relè di minima e massima tensione e di minima e massima frequenza rilevati dall'allegato A17 del codice di rete i di protezione

Descrizione protezione	Soglia	Tempo di eliminazione del guasto (s)	Note
27	0.8	2.0 s	
59	1.15	1.0 s	
59Vo (soglia 1)	0.1Vo Max	2.0 s	
81<	47.5 Hz	4.0 s	
81<<	46.5 Hz	0.1 s	
81>	51.5 Hz	1.0 s	
81>>	52.5 Hz	0.1 s	

Vedi allegato A17 rev. 0203 maggio 2022 pag. 24

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:
Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Pagina 10 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

4.5. Elenco relè

Ubicazione	Elemento protetto	lato	Funzioni ANSI
Sottostazione AT/MT	RTN/ imp. di produzione	AT	27/59/59Vo/81 81 /50/51
Sottostazione AT/MT	Trasformatore AT/MT	AT	87T
S.S. AT/MT (Quadro MT)	Arrivo TR AT/MT	MT	50/51/59
S.S. AT/MT (Quadro MT)	Partenza Linea 1 cabina CS	MT	51/67/67N
S.S. AT/MT (Quadro MT)	Sbarra 30 KV	MT	59N
Cabina CS (Quadro MT)	Arrivo Linea 1 quadro SS	MT	51/67/67N
Cabina CS (Quadro MT)	Arrivo Linea 1 quadro SS	MT	50/51/67N
Cabina CS (Quadro MT)	Partenza Linea aereo generatori 1-3	МТ	50/51/67N
Cabina CS (Quadro MT)	Partenza Linea aereo generatori 4-5	МТ	50/51/67N
Cabina CS (Quadro MT)	Sbarra 30 KV	MT	59N

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 11 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

5. STUDIO SELETTIVITA' E COORDINAMENTI

5.1. *INTRODUZIONE*

Il presente studio definisce la selettività delle protezioni elettriche di alta e media tensione dell'impianto eolico "Centrache" sito agro di Centrache e Montepaone

Scopo del lavoro è la definizione delle regolazioni delle protezioni per assicurare una corretta protezione della rete e realizzare la selettività di intervento, ovvero fare in modo che sia sempre e solo la protezione più vicina al guasto ad intervenire.

La filosofia dell'utilizzo delle protezioni è basata sulla conoscenza che le condizioni anomale di funzionamento o di guasto possono essere suddivise come segue:

- Sovraccarichi;
- quasti a terra;
- guasti fase-fase e trifase.

L'individuazione delle condizioni anomale menzionate è effettuata dai relé di protezione che operano per separare la parte di rete guasta dal resto dell'impianto. La regolazione dei relé di protezione è selezionata per dare la maggiore continuità di servizio evitando danneggiamenti ai componenti della rete. I valori di regolazione sono scelti al di sopra delle condizioni transitorie che si possono verificare in rete. I tempi d'intervento devono consentire il ripristino dei parametri transitori all'interno dei loro valori normali.

<u>Nota</u>

Le regolazioni indicate rappresentano la migliore soluzione tecnica possibile sulla base delle nostre conoscenze. Tutte le regolazioni devono essere verificate e controllate (riviste ove necessario) durante la messa in servizio in campo. Le regolazioni dei relè calcolate e riportate in questo documento sono basate sui dati delle macchine e della rete disponibili. Se, durante la fase di avviamento dell'impianto, nuovi, più dettagliati o differenti dati saranno disponibili rispetto a quanto riportato, il presente documento dovrà essere revisionato.

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pagina 12 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

5.2. *IMPOSTAZIONE DELLO STUDIO*

Al fine di facilitarne la consultazione, lo studio è stato suddiviso in più allegati. Ogni allegato contiene i dati utilizzati e i risultati (regolazioni delle protezioni) ottenuti nello sviluppo dello studio. In dettaglio per quanto afferisce al lavoro di nostra competenza sono riportati:

- calcolo delle correnti di cortocircuito riportante: schema unifilare semplificato, dati della rete relativi ai vari livelli di tensione (36 - 30 kV), dati delle linee MT di collegamento, dati dei TR in alta e media tensione e dei aereo generatori. I dati riportati sono quelli su cui è basato lo studio di coordinamento delle protezioni;
- schema unifilare semplificato che riporta le protezioni utilizzate e i trasformatori di misura (TA e TV)
 con il loro rapporto (fornito dal committente);
- tabelle di regolazione delle protezioni con indicazione del costruttore e del tipo della protezione, i valori primari e i valori secondari di regolazione sia per la grandezza di misura (ad es. corrente o tensione) che per il tempo di ritardo;

5.3. CALCOLI DELLE CORRENTI DI CORTO CIRCUITO

Il calcolo delle correnti di corto circuito è stato realizzato in conformità alle norme CEI 11-25 IEC 60909-2001 e in particolar modo sono state determinate:

- Correnti di cortocircuito trifase (valori max)
- Correnti di cortocircuito trifase (valori min)
- Correnti di cortocircuito bifase (valori max)
- Correnti di cortocircuito bifase (valori min)
- Correnti di cortocircuito fase terra

I calcoli sono stati realizzati considerando il contemporaneo funzionamento di tutti gli aereo generatori, come rappresentato nello schema semplificato.

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

I punti di calcolo presi in esame sono identificati con la lettera "F" (Fault), i risultati ottenuti sono stati in parte riportati per maggiore comprensione sullo schema unifilare semplificato, i valori sono affiancati da una freccia che indica il senso del contributo al corto circuito (monte o valle). Per quanto riguarda i calcoli delle correnti di cortocircuito da monte sono stati determinati i valori massimi e minimi, assumendo il coefficiente "C" come indicato dalla norma CEI 11-25 (val. max e min riferiti ai diversi livelli di tensione) e assumendo i valori massimi e minimi della potenza di cortocircuito sulla rete AT indicati al paragrafo 3.1.

Per quanto riguarda le correnti di inserzione ("in rush") sono state determinate con l'equazione $I_{magn} = I_n \times K \times e^{(-t/T)/1f^2}$, i parametri K e T sono stati desunti dalle norme CEI 11-35 allegato F:

5.4. FILOSOFIA DI REGOLAZIONE: SELETTIVITA' CRONOMETRICA.

Il criterio seguito per il coordinamento delle protezioni di massima corrente è stato quello di isolare in caso di guasto nel più breve tempo possibile (selettività) la più piccola area di impianto e poi assicurare una riserva (rincalzo) in caso di fallimento della protezione primaria.

La selettività di tipo cronometrico, è ottenuta graduando i tempi di intervento delle protezioni (discriminazione in tempo o selettività cronometrica) o, dove possibile, graduando la soglia di intervento (discriminazione in corrente o selettività amperometrica) in modo che il relè più vicino al guasto intervenga in un tempo inferiore o per una corrente inferiore rispetto a quelli più lontani.

Le regolazioni delle protezioni sono calcolate assegnando tempi man mano crescenti a partire dai relè destinati alla protezione degli aereo generatori fino ad arrivare alle sorgenti di energia (trasformatore AT/MT fino al punto di consegna TERNA). Con questo criterio si elimina solo la parte di impianto affetta dal guasto. Questo criterio ha il grave svantaggio che i tempi di eliminazione del guasto non possono essere comunque troppo lunghi perché:

- i materiali non sopportano guasti per tempi elevati;
- associato ad un corto circuito vi è un abbassamento di tensione;
- più il corto circuito rimane alimentato, più i danni che si creano nel punto di guasto possono essere notevoli (anche con conseguenze gravi quali incendi, etc.).

Per quanto riguarda la graduazione in tempo questa deve tenere conto delle caratteristiche delle apparecchiature presenti nell'impianto, e nel caso specifico:

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 – 30 novembre 2022

Wire Studio Srls
Proponente: SKI 17 Srl

Pagina 14 di 51

tempo di apertura degli interruttori MT: X≈ 60 ms;

tempo di inerzia delle protezioni: X≈20 ms;

massimo errore dell'intervento temporizzato: X≈60 ms;

- margine di sicurezza: X≈100 ms;

da cui risulta necessaria una graduazione di circa 250-300 ms tra due protezioni in serie.

5.5. PROTEZIONI SOTTO STAZIONE

5.5.1. PROTEZIONE DIFFERENZIALE

Per la taratura della protezione differenziale del trasformatore 36 / 30 kV sono stati considerati:

- i casi di guasto interni ed esterni alla zona protetta, al fine di valutare in quale punto del grafico
 Id-IR questi si collochino, confrontando tale posizione con la curva di scatto
- la corrente di inserzione del trasformatore
- la corrente di magnetizzazione del trasformatore
- gli errori dovuti al rapporto dei TA e alla precisione degli stessi
- gli estremi coperti dal trasformatore in quanto dotato di variatore sotto carico.

I valori proposti sono i seguenti:

- corrente differenziale di prima soglia (I DIFF >) = 30 % della corrente nominale dell'oggetto protetto;
- corrente differenziale di seconda soglia (I DIFF>>) = 7 In
- il tempo di intervento delle due soglie differenziali è fissato al valore base;
- pendenza del primo tratto di compensazione = 25%;
- pendenza del secondo tratto di compensazione = 70 %

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Wire Studio Srls

Pagina 15 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

L'intervento della protezione differenziale provoca il blocco alla richiusura dell'interruttore posto a protezione del TR lato AT e dell'interruttore generale posto sul quadro in media tensione tramite l'attivazione del relè di blocco relè 86T.

5.5.2. PROTEZIONI DI MASSIMA CORRENTE LATO AT 36 KV

La protezione di massima corrente di fase (50-51) lavora come riserva della protezione differenziale di trasformatore in caso di guasto trifase o fase-terra nella zona comprese tra i TA di alta e quelli di media tensione.

Le soglie di intervento impostate presentano una con caratteristica a tempo indipendente per l'intervento in caso di corto circuito trifase sul lato 36 kV e 30 kV, consentendo un margine di selettività cronometrica per guasto passante.

- La prima soglia (F= 51) sarà tarata a 3018 A, che è pari a 4,7 volte la corrente nominale del trasformatore, pertanto l'intervento è assicurato solo nel caso in cui si verifichino sovraccarichi, inoltre tale valore è superiore a 2820 Amp che rappresentano il contributo generato dal campo eolico in caso di guasto sulla rete RTN. Il tempo di intervento impostato è pari a 1 s per poter realizzare la selettività cronometrica con le protezioni poste a valle.
- La seconda soglia (F= 51) sarà tarata a 4238 A (6,6 In del trasformatore), con un tempo di intervento pari a 0,1 s, in modo da intervenire per corrente di guasto alimentate da rete RTN

L'intervento della protezione di massima corrente provoca il blocco alla richiusura dell'interruttore posto a protezione del TR lato AT tramite l'attivazione del relè di blocco relè 86T

5.5.3. PROTEZIONI DI MASSIMA CORRENTE LATO AT 30 KV

Le protezioni di massima corrente (50-51) posta sul lato MT del trasformatore in sottostazione (protezione generale) e protezioni sulle partenze linea verso la cabina di raccolta CS (linea 1 cabina CS) sono state impostate nel seguente modo:

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 – 30 novembre 2022

Wire Studio Srls

Pagina 16 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

- protezione generale:
 - F 51 = 847 Amp che rappresentano circa il 10% in più della corrente nominale del trasformatore con una caratteristica a tempo inverso (K= 0,3).
 - F 50 = 4000 Amp pari a 4 In del TA con una caratteristica a tempo definito pari a 750 ms in selettività cronometrica con le protezioni in partenza verso la cabina di raccolta CS e con la protezione di AT.
- protezione linea L1 verso cabina CS:
 - F 51 = 699 Amp con una soglia di sovraccarico a tempo inverso (K = 0,2)
 - F 67 = direzione di intervento verso cabina CS angolo 90°± 90° 4000 Amp pari a 5 In del TA con una caratteristica a tempo definito pari a 500 ms (direzione del guasto verso CS)
- protezione linea L1 da cabina CS:
 - F 51= 699 Amp con una soglia di sovraccarico a tempo inverso (K = 0,2)
 - F 67 = direzione di intervento verso cabina SS angolo 90°± 90° 4000 Amp pari a 5 In del TA con una caratteristica a tempo definito pari a 500 ms (direzione del guasto verso SS)
- protezione linea L3, in partenza da quadro di raccolta CS:
 - F 51 = 400 Amp con una soglia di sovraccarico a tempo inverso (K = 0,2).
 - F 67 = direzione di intervento verso cabina Generatori angolo 90°± 90°- 2800 Amp pari a 7 In del TA con una caratteristica a tempo definito pari a 100 ms. (direzione del guasto verso generatori)

La contemporanea corrente di inserzione di n° 3 TR da 7500 KVA non provoca l'intervento della protezione (I rush totale = 1800 Amp)

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Wire Studio Srls

Pagina 17 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

- protezione linea L6, in partenza da quadro di raccolta CS:
 - F 51 = 279 Amp con una soglia di sovraccarico a tempo inverso (K = 0,2).
 - F 67 = direzione di intervento verso cabina Generatori angolo 90°± 90°- 2800 Amp pari a 7 In del
 TA con una caratteristica a tempo definito pari a 100 ms. (direzione del guasto verso generatori)

La contemporanea corrente di inserzione di n° 2 TR da 7500 KVA non provoca l'intervento della protezione (I rush totale = 1200 Amp)

5.5.4. PROTEZIONI DIREZIONALI DI MASSIMA CORRENTE TERRA 67N

Per quanto afferisce le soglie di massima corrente direzionale di terra si è considerato un ritardo di 300 ms tra le protezioni in cascata, con un valore minimo impostato sulle protezioni più a valle sulle partenze delle linee verso gli aerogeneratori pari a 100 ms e valore massimo di 700 ms sulle protezioni della partenza in sottostazione;

Tale impostazione garantisce una selettività cronometrica tra le protezioni installate nella cabina di raccolta e le protezioni in cabina di sottostazione.

Il valore di corrente impostato Io è pari a 2 Amp, notevolmente più basso del valore minimo calcolato nelle varie ipotesi di guasto, inoltre tale valore garantisce l'intervento delle protezioni anche con impedenza di guasto elevata (guasto non franco a terra).

Il valore di tensione impostato Uo è pari 5% l'angolo caratteristico trovandoci di fronte ad una rete con neutro isolato è pari a $90^{\circ} \pm 30^{\circ}$

La corrente di corto circuito monofase calcolata nell'impianto con una sola linea in esercizio dalla sottostazione è superiore a i 100 Amp.

Tutte le protezioni direzionali di terra proteggeranno i tratti di linea poste a valle delle stesse

5.5.5. PROTEZIONI DI MASSIMA TENSIONE OMOPOLARE (59Vo)

Sia sul quadro di media tensione di sottostazione che in quello in cabine di raccolta CS, si imposterà su ciascuna protezione generale una soglia di massima tensione omopolare che interverrà in rincalzo alle protezioni per guasto a terra 67N. La protezione 59V0 che sarà impostata ad un valore del 5 % Uo con un tempo di intervento di 1";

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 – 30 novembre 2022

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

6. SELETTIVITÀ

Project Title:	Selettività			Location:	Parco Eolico Ce	entrache
Setting Line			Protezione gene	erale lato 30 kV		
Current Transformer	Current Primary	1000	Current Secondary	1	Ratio	1000
IEC	ANSI	Operation Mode	Start Current	Current Transformer	Current	Operate Time Time Multipler
3>	51-1	Inverse	0,85	1000	847	0,3
3>>	51-2	Definite Time	4,00	1000	4000	0,75
3>>>	51-3	Definite Time	4,00	1000	4000	0,75
Setting Line			Linea 1 SS d	a e Verso CS		
Current	Current		Current			1
Transformer	Primary	800	Secondary	1	Ratio	800
IEC	ANSI	Operation Mode	Start Current	Current Transformer	Current	Operate Time Time Multipler
3>	51-1	Inverse	0,87	800	699	0,2
3>>	67-1	Definite Time	5,00	800	4000	0,5
3>>>	67-2	Definite Time	5,00	800	4000	0,5
Setting Line			linee L3 Aer	eogeneratori		
Current Transformer	Current Primary	400	Current Secondary	1	Ratio	400
IEC	ANSI	Operation Mode	Start Current	Current Transformer	Current	Operate Time Time Multipler
3>	51-1	Inverse	1,00	400	400	0,2
3>>	67-1	Definite Time	7,00	400	2800	0,25
3>>>	67-2	Definite Time	7,00	400	2800	0,25
	L	1		<u> </u>	1	

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

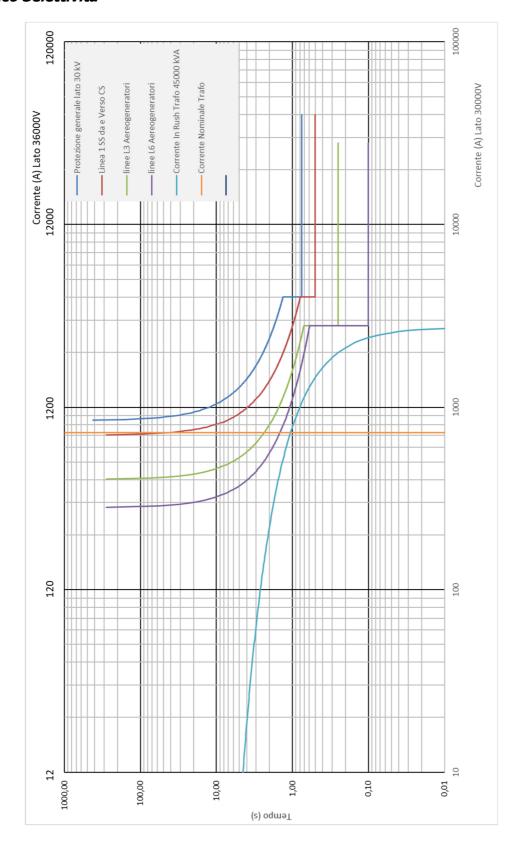
Pagina 19 di 51

Setting Line			linee L6 Aer	eogeneratori		
Current Transformer	Current Primary	400	Current Secondary	1	Ratio	400
IEC	ANSI	Operation Mode	Start Current	Current Transformer	Current	Operate Time Time Multipler
3>	51-1	Inverse	0,7	400	280	0,2
3>>	67-1	Definite Time	7	400	2800	0,1
3>>>	67-2	Definite Time	7	400	2800	0,1
		Corrente	In Rush Trafo 45	6000 kVA		
						•
	Power (kVA)	Voltage (V)	Current (A)	Number of Terminals	Frequency (Hz)	
PRIMARY	45.000	36.000	722,54	3F+N	50	
SECONDARY	45.000	30.000	867,05	3F	50	
Setting Line						
Current Transformer	Current Primary	1	Current Secondary	1	Ratio	1
IEC	ANSI	Operation Mode	Start Current	Current Transformer	Current	Operate Time Time Multipler
3>	51-1	Definite Time		1	0	
3>>	51-2	Definite Time		1	0	
3>>>	51-3	Definite Time		1	0	
		ı		1	1	

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls


Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 20 di 51

6.1. Grafico Selettività

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 21 di 51

7. CALCOLO CORRENTI DI CORTO CIRCUITO

7.1. Correnti da monte (contributo su rete MT)

IMPIANTO :	Progetto di un impianto eolico costituito da 5 turbine da realizzarsi nei comuni di	Centrache e Montepaone (CZ)		
INIPANTO:				
OGGETTO :	CALCOLO CORRENTI DI CORTO CIRCUITO I" $_{\it K}$ E I $_{\it p}$ CORRENTI DA MONTE (C	ONTRIBUTO SU RETE MT)		
PROGETTISTA	LINO PISTILLI	N° di iscrizione Collegio di Campobasso	227	

RETE AT 36 KV								
			DATI TRASFORMATORE					
DATI RETE			TR					
			Tipo	in o	lio			
Unq	36	KV	Srt	40.000	KVA			
S"kq	1500	MVA	Ukr	12,00	%			
Qc	1,1	%	Pkr	160960	Watt			
Zqt	0,9504	ohm	Ро	24588	Watt			
Xqt	0,95	ohm	V2	36.000	Volt			
Rqt	0,10	ohm	V1	30000	Volt			
			l1r	642,26	Атр			
			I2r	770,71	Amp			

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:
Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Pagina 22 di 51

	DATI GENERATORI EOLICI IN BASSA TENSIONE									DATI TRASFORMATORE		
			G1-0	G5						TR1-TR5		
Tipo		Gamesa S		Tipo	in O	LIO						
SrG	6600	KVA	cos fi	0,95					Srt	7500,00	KVA	
U _{rG}	690	Volt	_						Ukr	9,50	%	
Irm	5529,03	Amp							Pkr	84.240	Watt	
Ilm	16,59	kA							Ро	4800	Watt	
Ilm/Irm	3								V2	30.000	Volt	
Хm	0,995	Zm	0,024	ohm					V1	690	Volt	
Rm	0,10	Хm	0,002	ohm					l1r	144,5087	Атр	
Zm	0,024	ohm							I2r	6282,986	Атр	

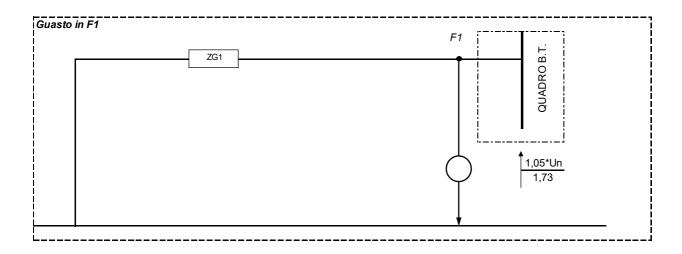
	CAVO ARE4H5E 18/30 KV										
I.D	L1	L2	L3	L4	L5	L6	L7				
Sez.	630		300	300	300	300	300		mm²		
n°//	2		1	1	1	1	1				
Lung.	13300		1257	2209	878	2537	2257		mt		
R 85°/Km	0,065		0,130	0,130	0,130	0,130	0,130		Ohm/Km		
X/Km	0,16		0,14	0,14	0,14	0,14	0,14		Ohm/Km		
R	0,431585		0,16341	0,28717	0,11414	0,32981	0,29341		Ohm		
Х	1,064		0,17598	0,30926	0,12292	0,35518	0,31598		Ohm		

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl


Rev. 0 – 30 novembre 2022

Pagina 23 di 51

Calcolo delle correnti di cortocircuito I"k e Ip in caso di corto circuito simmetrico trifase nel punto di guasto F1, con il contributo di GENERATORI Asincroni connessi alla rete

Calcolo della corrente di corto circuito generatore Contributo generatore n°1 in F1(correnti da valle)

$$I''_{KGI} = c*Un = 17,42 ext{ KA } val.max$$

 $1,73*Z''K_{GI} = 15,758 ext{ KA } val.min.$

$$Z''k_{G1} =$$
 0,024 m ohm

Calcolo della corrente di cresta Ip.c

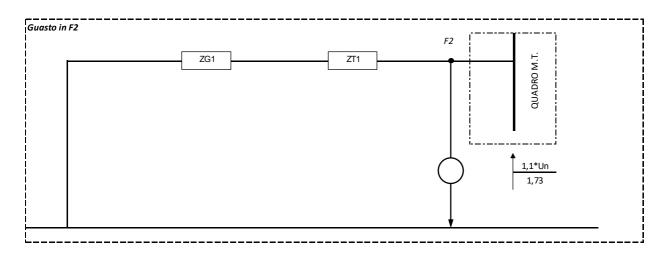
$$K = 1.02 + 0.98 e^{-3^a R/X}$$
 $R/X = 0.1$ $K = 1.7460$

$$I_{PG1} = K^* \sqrt{2^* I''_{KG1}} = 43,007 \text{ KA}$$

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls


Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 24 di 51

Per maggore comprensione vedi schema allegato

Trasformatore

La reattanza equivalente riportata al secondario del T1 (30.000 Volt) sarà:

$$Z2_{T1} = U_{krT1}$$
 x U^21_{rAT4} = 11400 mohm $X2_{T1} = Z2^2_{T1} - R2^2_{T1}$ $X2_{T1} = 11320$ m ohm $I_{T1} = I_{T1} = I$

$$tr^2_{2"G1} = tr^2 (R"_{G1} + X"_{G1}) = 4,52 + j$$
 45 mohm $t_r^2 = 1890,3592$ $Z"_{T1} = (R"_{T1} + X"_{T1}) = 1344,65 + j$ 11320,42 mohm

Calcolo delle correnti di cortocircuito I"k in F2

$$I''_{\text{KG1(F2)}} = \frac{c^*Un}{1,73^*Z''_{\cdot G1-71}} = \frac{1,667}{1,364} \text{ KA} \quad \text{val.max}$$

Calcolo della corrente di cresta Ip.c

$$K = 1.02 + 0.98 e^{-3^*R/X}$$
 $R/X = 0.1187062$ $K = 1.7064$

$$I_{P(F2)} = K^* \sqrt{2^*I''}_{KG1-T1} = 4.022 \text{ KA}$$

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pagina 25 di 51

Calcolo delle correnti di cortocircuito I"k in F3 (correnti da valle) contributo del singolo ramo

	R	JX		R	JX		R	JX			
G3	1349,17	11366	G2	1349,17	11366	G1	1349,17	11366			
L3	163,41	175,98	L3	163,41	175,98	L3	163,41	175,98			
			L4	287,17	309,26	L4	287,17	309,26			
						L5	114,14	122,92		торт	
Z_{G3}	11640		Z_{G2}	119	87	Z _{G1}	1212	26			
I" _{KG3(F3)}	1,6387		I" _{KG2(F3)}	1,59	913	I" _{KG1(F3)}	1,57	31		kA	
I" _{KG3(F3)} .	1,3408		I" _{KG2(F3)} <	1,30		/" _{KG1(F3)} <	1,28	71			
R/X	0,1311		R/X	0,15		R/X	0,15	98			
K	1,6814		K	1,64	114	K	1,62	67			
	3,8967			3,69	40		3,61	89			
I _{PG3(F3)} <	3,1882		I _{PG2(F3)}	3,02	23	I _{PG1(F3)}	2,96	09		kA	
I" _{Kt(F3)}					4,	8032				kA	
I" _{KP(F3)}		11,2096									
I" _{Kt(F3)<}	3,9299										
I" _{KP(F3)<}					9,	1715				kA	

Calcolo delle correnti di cortocircuito 1"k in F4 (correnti da valle) contributo del singolo ramo

	R	JX		R	JΧ		R	JХ		
G4	1349,17	11366	G5	1349,17					1	
L6	329,81	355,18	L6	329,81	355,18				1	
			L7	293,41						Ē
										шорш
				T					1	
Z _{G4}	11840		Z_{G5}	121	97					
I" _{KG4(F4)}	1,6110		I" _{KG5(F4)}	1,56	39					kA
	1,3181			1,27	795					
R/X	0,1432		R/X	0,16						
K	1,6577		K	1,61	94					
	3,7767			3,58	16					
I _{PG4(F4)}	3,0900		I _{PG5(F4)}	2,93	04					kA
I" Kt(F4)					3,	1749				kA
I" _{KP(F4)}					6	0204				kA
I" Kt(F4)<					2	5976				kA
I" _{KP(F4<)}					6	0204				kA

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pagina 26 di 51

Calcolo delle correnti di cortocircuito I"k in F6 (correnti da valle) contributo di tutti i rami

corrente di cortocircuito simmetrica

$$I''_{Kt(F6)} = I''_{Kt(F3)} -$$

corrente di cortocircuito di picco

$$I''_{Kp(F6)} = I''_{Kp(F3)}$$

Calcolo delle correnti di cortocircuito I"k in F7 (correnti da valle)

$$S''_{kq(F6)} = 1.73 * U_{nq(F6)} * I_{"kt(F6)}$$

$$Zqt_{(F6)} = C*Unq^2$$

$$S''_{kq(F6)}$$

$$Xqt_{(F6)} = 0,995 * Zqt$$

$$Rqt_{(F6)} = 0,100 * Zqt$$

calcolo delle correnti di cortocircuito in F7 ipotizzando la sola linea L1 in servizio

$$Zt_{(F7)} = Zqt_{(F6)} + Z_{L1}$$

$$I''_{Kt(F7)} =$$

Calcolo della corrente di cresta Ip.c

$$K = 1.02 + 0.98 e^{-3*R/X}$$

$$R/X = 0,1947955$$

$$I_{P(F7)} = K^* \sqrt{2^* I''_{Kt(f7)}} =$$

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 - 30 novembre 2022 Wire Studio Srls

Proponente: SKI 17 Srl

calcolo delle correnti di cortocircuito in F10

Trasformatore

La reattanza equivalente del TR (36.000 Volt) sarà:

$$Z_{TR} = U_{krTR}$$

$$100\%$$

$$X_{2TR} = Z2_{TR}^2 - R2_{TR}^2$$

ohm

Pkr

$$tr^2_{ZT(F9)} =$$

$$tr^{2}$$
 ($R_{(F)9} + X_{(F9)}$)

$$t_r^2 = 1,44$$

Calcolo delle correnti di cortocircuito I"k in F10

Calcolo della corrente di cresta Ip.c

$$K = 1.02 + 0.98 e^{-3*R/X}$$

$$R/X =$$

$$I_{P(F10)} = K^* \sqrt{\frac{2}{2^*}} I_{Kt(F10)}^{"} =$$

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 - 30 novembre 2022

Pagina 28 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

7.2. Correnti da monte (contributo su rete MT)

IMPIANTO :	Progetto di un impianto eolico costituito da 5 turbine da realizzarsi nei comuni di	Centrache e Montepaone (CZ)	
IIII IAIVIO.			
ОGGЕТТО :	CALCOLO CORRENTI DI CORTO CIRCUITO I" _K E I _p CORRENTI DA MONTE (C	ONTRIBUTO SU RETE MT)	
PROGETTISTA	LINO PISTILLI	N° di iscrizione Collegio di Campobasso	227

		RETE AT	36KV							
						DATI 1	DATI TRASFORMATORE			
DATI	RETE VALORI MA	SSIMI	DATI RI	ETE VALORI N	IINIMI	TR				
						Tipo	in ol	io		
Unq	36	KV	Unq	36	KV	Srt	40.000	KVA		
S"kq	1500	MVA	S"kq	882	MVA	Ukr	12,00	%		
Qc	1,1	%	Qc	1,1	%	Pkr	160960	Watt		
Zqt	0,9504	ohm	Zqt	1,616	ohm	Ро	24588	Watt		
Xqt	0,95	ohm	Xqt	1,61	ohm	V2	36.000	Volt		
Rqt	0,10 ohm		Rqt	0,16	ohm	V1	30000	Volt		
						l1r	642,26	Amp		
						I2r	770,71	Amp		

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 29 di 51

	DATI GENERATORI EOLICI IN BASSA TENSIONE										ATORE	
			G1-0	36						TR1-TR5		
Tipo			Gamesa S			Tipo	in O	LIO				
SrG	6600	KVA	cos fi	0,95					Srt	7500	KVA	
UrG	690	Volt							Ukr	9,5	%	
Irm	5529,03	ohm							Pkr	84240	Watt	
Ilm	16,59	p.u							Ро	4800	Watt	
Ilm/Irm	3	p.u							V2	30000	Volt	
Хm	0,995	p.u	0,0239252	ohm					V1	690	Volt	
Rm	0,1	p.u	0,0023925	ohm					l1r	144,5087	Amp	
Zm	0,02	ohm	0	0					I2r	6282,986	Amp	

					CAVC) ARE4H5E 18	3/30 KV		
I.D	L1	L2	L3	L4	L5	L6	L7	L8	
Sez.	630	0	300	300	300	300	300	0	mm²
n°//	2	0	1	1	1	1	1	0	
Lung.	13300	0	1257	2209	878	2537	2257	0	mt
R 85°/Km	0,0649	0	0,13	0,13	0,13	0,13	0,13	0	Ohm/Km
X/Km	0,16	0	0,14	0,14	0,14	0,14	0,14	0	Ohm/Km
R	0,431585	0	0,16341	0,28717	0,11414	0,32981	0,29341	0	Ohm
Х	1,064	0	0,17598	0,30926	0,12292	0,35518	0,31598	0	Ohm
C/Km	0,36	0	0,27	0,27	0,27	0,27	0,27	0	mF
С	4,788	0	0,33939	0,59643	0,23706	0,68499	0,60939	0	mF
Ic	79,8	0	7,542	13,254	5,268	15,222	13,542	0	Атр

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 30 di 51

val min

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

1,12 *ohm*

1,8722

1,8557

val min.

determinazione delle impedenze di sequenza diretta

La reattanza equivalente del TR (30.000 Volt) sarà:

impedenza della rete di alimentazione riportato lato media tensione (valori max e min.)

	→ kq(F9)	()					
Xqt _(F9) =	0,995 * Zqt	0,657	ohm	Xqt _(F9) =	0,995 * Zqt	1,117	ohm
Rqt _(F9) =	0,100 * Zqt	0,066	ohm	$Rqt_{(F9)} =$	0,100 * Zqt	0,112	ohm

0,66 **ohm** val max

val max

0,0465922

0,0530939

ohm

R/X =

R/X =

15,036 KA

calcolo delle correnti di cortocircuito in F9

I" _{Kt(F9)} =	c*Un	=	5,679 KA	val. max	I" _{K2t(F9)} =	4,912 KA	val. max
	1,73*Z" _{t(F9)}		4,54 KA	val. min.	I" _{K2t(F9)} =	3,924 KA	val. min.

Calcolo della corrente di cresta Ip.c 1.02+0,98 e ^{-3*R/X}

 $Zt_{(F9)} = Zqt_{(F9)} + (Z_{TR})$

 $I_{P(F9)} = K^* \sqrt{2^* I''}_{Kt(F9)} =$

val. max

Calcolo della corrente di cresta Ip.c

$$K = 1.02 + 0.98 e^{-3*R/X} \qquad R/X = 0.0957294 \qquad K = 1.7554 R/X = 0.0962346 \qquad K = 1.7542$$

$$I_{P(F9)} = K* \sqrt{2^*I''}_{Kt(F9)} = = 12,126 \text{ KA} \quad \text{val max}$$

val min

9,847 KA

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 - 30 novembre 2022 Wire Studio Srls

Proponente: SKI 17 Srl

Pagina 31 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

Calcolo delle correnti di cortocircuito I"k in F2 (correnti da monte) val max

	R	JX		R	JX		R	JΧ	
Zqt	66,00	656,70	Zqt	66,00	656,70	Zqt	66,00	656,70	
Z_{TR}	90,33	2698,489	Z_{TR}	90,33	2698,4887	Z_{TR}	90,33	2698,489	
L1	215,7925	532	L1	215,7925	532	L1	215,7925	532	
L3	163,41	175,98	L3	163,41	175,98	L3	163,41	175,98	mohm
			L4	287,17	309,26	L4	287,17	309,26	ω
						L5	114,14	0,12292	
Z _{T3(F2)}	4098		Z _{T2(F2)}	444	19	Z _{T1(F2)}	447	2	
I" _{KT3(F2)}	4,6544		I" _{KT2(F2)}	4,28	374	I" _{KT1(F2)}	4,26	57	kA
R/X	0,1318		R/X	0,18	882	R/X	0,21	43	
K	1,6799		K	1,57	73	K	1,53	53	
I _{PT3(F2)}	11,0579		I _{PT2(F2)}	9,56	35	I _{PT1(F2)}	9,26	19	kA
I" _{K2T3(F2)} =	4,026		I" _{K2T2(F2)} =	3,70	09	" _{K2T1(F2)} =	3,69	90	kA

Calcolo delle correnti di cortocircuito I"k in F2 (correnti da monte) val max

	R	JX		R	JΧ	R	JΧ	
Zqt	66,00	656,70	Zqt	66,00	656,70			
Z_{TR}	90,33	2698,489	Z_{TR}	90,33	2698,4887			
L1	215,7925	532	L1	215,7925	532			
L6	329,81	355,18	L6	329,81	355,18			торш
			L7	293,41	315,98			e E
			•					
$Z_{T4(F2)}$	4300		$Z_{T5(F2)}$	466	66			
I" _{KT4(F2)}	4,4360		I" _{KT5(F2)}	4,08	883			kA
R/X	0,1655		R/X	0,21	L84			
K	1,6166		K	1,52	290			
I _{PT4(F2)}	10,1415		I _{PT5(F2)}	8,84	105			kA
I" _{K2T4(F2)} =	3,837		I" _{K2T5(F2)} =	3,5	36			kA

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 32 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

Calcolo delle correnti di cortocircuito I"k in F2 (correnti da monte) val min.

	R	JΧ		R	JΧ		R	JΧ	
Zqt	112,24	1116,84	Zqt	112,24	1116,84	Zqt	112,24	1116,84	
Z_{TR}	90,33	2698,489	Z_{TR}	90,33	2698,4887	Z _{TR}	90,33	2698,489	
L1	215,7925	532	L1	215,7925	532	L1	215,7925	532	
L3	163,41	175,98	L3	163,41	175,98	L3	163,41	175,98	торт
			L4	287,17	309,26	L4	287,17	309,26	ш
						L5	114,14	0,12292	
Z _{T3(F2)}	4561		$Z_{T2(F2)}$	49:	10	$Z_{T1(F2)}$	493	2	
I" _{KT3(F2)}	3,8024		I" _{KT2(F2)}	3,53	317	I" _{KT1(F2)}	3,51	63	kA
R/X	0,1286		R/X	0,17	798	R/X	0,20	34	
K	1,6863		K	1,59	914	K	1,55	23	
I _{PT3(F2)}	9,0678		I _{PT2(F2)}	7,94	185	I _{PT1(F2)}	7,71	94	kA
I" _{K2T3(F2)} =	3,289		I" _{K2T2(F2)} =	3,0	55	I" _{K2T1(F2)} =	3,04	12	kA

Calcolo delle correnti di cortocircuito I"k in F2 (correnti da monte) val min

	R	JΧ		R	JΧ			
Zqt	112,24	1116,84	Zqt	112,24	1116,84			
Z_{TR}	90,33	2698,489	Z_{TR}	90,33	2698,4887			
L1	215,7925	532	L1	215,7925	532			
L6	329,81	355,18	L6	329,81	355,18			торт
			L7	293,41	315,98			ω
Z _{T4(F2)}	4762		$Z_{T5(F2)}$	512	25			
I" _{KT4(F2)}	3,6418		I" _{KT5(F2)}	3,38	333			kA
R/X	0,1591		R/X	0,20)75			
K	1,6280		K	1,54	158			
I _{PT4(F2)}	8,3849	•	I _{PT5(F2)}	7,39	162			kA
I" _{K2T4(F2)} =	3,150		I" _{K2T5(F2)} =	2,92	27			kA

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 33 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

calcolo delle correnti capacitive con guasto in F6 (quadro MT)

					С	orrenti da va	lle				
ramo	L3	L4	L5		ramo	L6	L7		ramo		
Ic	7,542	13,254	5,268		Ic	15,222	13,542	0	Ic		Amp
Zc		665,3	33		Zc		602,87		Zc		ohm
Ic		26,06	64		Ic		28,764		Ic		Amp
ramo	l1				ramo	L2			ramo		
Ic	79,8	0	0	0	Ic	0	0	0	Ic		Amp
Zc		217,3	31		Zc				Zc		ohm
Ic		79,8	3		Ic		0		Ic		Amp
	Ic _(F6)						134,628				

calcolo delle correnti capacitive con guasto in F3 (si intende sulla linea MT derivata da CS)

	correnti da valle														
ramo	L3	L4	L5		ramo	L7	L8	L9							
Ic	7,542	13,254	5,268		Ic	15,222	13,542	42 0							
Zc		665,3	33	-	Zc	602,87									
Ic	26,064 lc 28,764														
	correnti da monte														
ramo	l1				ramo	L2									
Ic	79,8	0	0	0	Ic	0	0	0							
Zc		217,3	31		Zc										
Ic		79,8	3		Ic										
-						- -									
Ic _(F6)	lc _(F6) 134,628														

calcolo delle correnti capacitive con guasto in F4 (si intende sulla linea MT derivata da CS)

					(correnti da va	ılle							
ramo	L3	L4	L5		ramo	L6	L7	L8	ramo					
Ic	7,542	13,254	5,268		Ic				Ic		Amp			
Zc	665,33				Zc				Zc		ohm			
Ic	26,064			Ic		Amp								
correnti da monte														
ramo	l1				ramo	L2			ramo					
Ic	79,8	0	0	0	Ic	0	0	0	Ic		Amp			
Zc		217,3	31	-	Zc		-		Zc		ohm			
Ic		79,8	3			Ic		Amp						
	IC _(F6) 105,864													

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Wire Studio Srls

$calcolo\ delle\ correnti\ capacitive\ con\ guasto\ in\ F7\ \ (si\ intende\ sulla\ linea\ MT\ derivata\ da\ S.S.\)$

						correnti da va	ılle									
ramo	L3	L4	L5		ramo	L6	L7	L8								
Ic	7,542	13,254	5,268		Ic	15,222	13,542	0								
Zc		665,3	33		Zc	602,87										
Ic		26,00	64		Ic		28,764									
	correnti da monte															
ramo	L1				ramo	L2										
Ic	0	0	0	0	Ic	0	0	0								
Zc					Zc											
Ic					Ic		0									
Ic _(F6)	·	54,828														

				TABEL	LA RIASSUN	ITIVA CORR	ENTI SIMMET	RICHE					
	Guasto	I"k d	a valle	Ip da v	/alle	I"k da	monte	Ip da	monte	I"k to	otale	lp to	tale
F6		7,98		17,23		4,88		12,13		12,86		29,36	
F9		5,438		12,046		5,679		15,036		11,12		27,08	

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pagina 35 di 51

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

7.3. Trasformatore ausiliario Sottostazione

		Pro	getto di ui	n impianto	eolico cost	ituito da 5	5 tu	tu	tu	tι	tι	tι	u	ı	,,	r	b	in	ie	d	la	7 1	re	ali	ZZ(ars	si n	ıei	со	mı	ıni	di	Се	ntr	ас	he	e i	M	or	nt	eį	ра	101	ne	' (CZ	<i>:)</i>				
IMPLA	NTO :																																				_	_			_	_	_	_	_	_	_	_	_	_	
oggi	ЕТТО :		CALCO	LO CORRE	NTI DI COR	TO CIRCUI	UITO	TC	TC	TC	Τ	7	c	2)	1	<i>l</i> "	' ĸ	E	: 1	l _p	,	TR	RA:	SF	OF	RM	Αī	01	RE.	4 <i>U</i>	SIL	ΙA	RIC	s	01	T	<u> </u>	5 <i>T.</i>	'A.	ΖI	<u>-</u>	N	E							_
PROGE	TTISTA				LINO P	ISTILLI																											Со	lle			isc i C						ss	_ _	_	I		22	27	_	
	DATIT	RASFORMA	ATORE																																																
	7	72																																																	
Тіро	in re	esina																																																	
Srt	160	KVA		KVA																																															
Ukr	6,00	%		%																																															
Pkr	2.800	Watt		Watt																																															
Ро	650	Watt		Watt																																															
V2	30.000	Volt		Volt																																															
V1	400	Volt		Volt																																															
l1r	3,082852	Amp		Amp																																															
I2r	231,2139	Атр		Amp																																															
		DA	TI IMPIAN	то																																															
	L1/	/BT		L	9																																														
Sez.	120	mm²		70	mm²																																														
n°//	3	1	′1 KV		1	0 KV																																													
Lung.	40	mt	5 06/1	20	mt	18/30																																													
R 85°/Km	0,195	Ohm/Km	FG16R16 06/	0,345	Ohm/Km	RG7H1R 18/3																																													
X/Km	0,143	Ohm/Km	FG	0,19	Ohm/Km	R _O																																													
R	0,0078	Ohm		0,0069	Ohm																																														
Х	0,00572	Ohm		0,0038	Ohm																																														
								•	•																																										

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 36 di 51

Calcolo della potenza di corto circuito

 $S"_{kG} = c*U_n*1,73*I"_k = 414,06 MVA$ $S"_{kR} = c*U_n*1,73*I"_k = 294,75 MVA$ $S"_{kT} = S"_{kG} + S"Ke = 708,81 MVA$

Il valore di resistenza e reattanza del cavo di collegamento trasformatore quadro generale sarà

$$Z_{L1} = R_{I1} + J X_{I1}$$

$$R_{L1/BT} = 7,800 \text{ m ohm}$$

 $X_{L1/BT} = 5,720 \text{ m ohm}$

Determinazione delle impedenze di sequenza diretta.

Rete di alimentazione

$$X_{Qt} = 0.995 \ ZQt = 0.033216$$

 $R_{Qt} = 0.100 \ ZQt = 0.003338$

Trasformatore

La reattanza equivalente riportata al secondario del TR 1 sarà :

$$Z_{T1} = \frac{UKrT1}{100\%} \qquad X \qquad \frac{U^2rT1}{S_{rT1}}$$

$$X_{T1} = Z_{T1}^2 - R_{T1}^2$$

Linea MT riportata al secondario

 $R_{LM} * 1/tr^2$

X_{LM}*1/tr²

 R''_{L9}

X"_{L9}

0,001387

0,001017

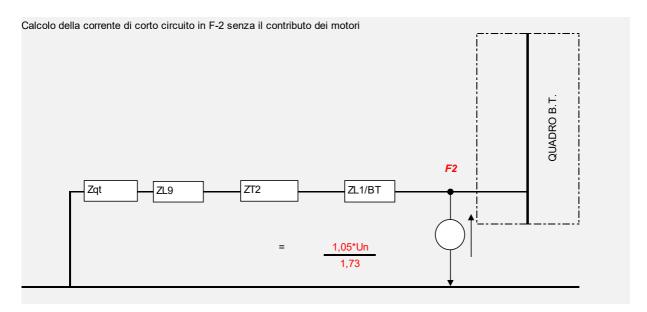
$$R_{T1} = Pkr$$

$$3l^2rT1$$

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls


Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 37 di 51

Calcolo delle correnti di cortocircuito l"k e lp in caso di corto circuito simmetrico trifase nei punti di guasto F1, senza il contributo dei motori.

 $Z_{kF2} = Z_{qT} + Z_{L9} + Z_{T2} + Z_{L1/BT}$

scomponendo la precedente relazione nella parte reale ed immaginaria

avremo:

$$Z_{kF2} = R_{qT} + R_{L9} + R_{T2} + R_{L1/BT} + X_{qT} + X_{L9} + X_{T2} + X_{L1/BT1}$$

$$Z_{kF2} = 25,2633 + j$$
 63,1580 m ohm

$$Z_{kF2} = 68,0233 \text{ m Ohm}$$

$$I''_{k(F2)} = \frac{c^*Un}{1.73^*7_{UC2}} = \frac{3,57}{1.73^*7_{UC2}}$$

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl

Pagina 38 di 51

Calcolo della corrente di cresta Ip.c

Metodo della frequenza equivalente (Fc = 20 Hz) rif norm. CEI 11-25 par. 9.1.3.2

$$X_{Qt.c} = 0.995 ZQt = 3.26695E-07$$

 $R_{Qt.c} = 0.100 ZQt = 8.20842E-08$

$$Z_{T2.c} = 17,459 + J 57,4038 * 20/50 m Ohm$$

 $Z_{L1/BT.c} = 7,800 + J 5,720 * 20/50 m Ohm$
 $Z_{L9.c} = 0,001387 + J 0,001 * 20/52 m Ohm$

$$Z_{kF2.c} = R_{qT.c} + R_{L9.}c + R_{T2.}c + R_{L1/BT.c}$$

$$X_{aT.c} + X_{L9.c} + X_{T2.c} + X_{L1/BT.c}$$

$$Z_{kF2,c} = 25,2600 + j 25,2499 \text{ m Ohm}$$

$$R/X = Rc/Xc \times Fc/Fn =$$
 $25,2600 \times 20 = 0,400159$ $25,2499 \times 50$

+ J

$$Xc$$
 1.02+0,98 e $^{-3*0,44260815}$ Xc = 1,3150

$$Ip.c = Xc * \sqrt{2 *I"k}$$
 $Ip.c = 6,64$ KA

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

PROGETTO DEFINITIVO

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

7.4. Utenze derivate dal trasformatore ausiliario sottostazione

IMPIA	NTO :	Pro	Progetto di un impianto eolico costituito da 5 turbine da realizzarsi nei comuni di Centrache e Montepaone (CZ)										
OGGI	тто :	CALC	CALCOLO CORRENTI DI CORTO CIRCUITO I" _K E I _p DELLE UTENZE DERIVATE DAL TRASFORMATORE AUSILIARIO STAZIONE										
PROGE	TTISTA				LINO P	ISTILLI	JIAL	10112			di iscrizio o di Camp		
	·												
			Calcolo de	elle corrent	i di cortoci	rcuito sim	metriche '	UTENZE DE	RIVATE DA	PC (Dati)			_
Utenza	Q. cc Sotto	omm. carico	l ' '		quadro carica batterie		gruppo	prese 1	gruppo	prese 2	illumin este		
Item	Lb	1.1	Lb	1.2	Lb1.3		Lb	1.4	Lb	1.5	Lb	1.6	
Sez.	4	mm²	4	mm²	4	mm²	6	mm²	6	mm²	6	mm²	
n°//	-	1	-	1	-	1	-	1	<u>-</u>	1	-	1	
Lung.	50	mt	45	mt	25	mt	15	mt	15	mt	150	mt	
R 85°/Km	5,900	Ohm/Km	5,900	Ohm/Km	5,900	Ohm/Km	3,900	Ohm/Km	3,900	Ohm/Km	3,900	Ohm/Km	
X/Km	0,129	Ohm/Km	0,129	Ohm/Km	0,129	Ohm/Km	0,122	Ohm/Km	0,122	Ohm/Km	0,122	Ohm/Km	
R	0,295	Ohm	0,2655	Ohm	0,1475	Ohm	0,0585	Ohm	0,0585	Ohm	0,585	Ohm	
Χ	0,00645	Ohm	0,005805	Ohm	0,003225	Ohm	0,00183	Ohm	0,00183	Ohm	0,0183	Ohm]

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 40 di 51

			cal	colo delle d	correnti di	corto circu	ito nei sott	to quadri d	erivati dal	PC		
Utenza	Q. comm. Sottocarico		por aggot	•	quadro carica batterie		gruppo prese 1 gruppo prese		prese 2	illuminazione esterna		
Item	Lb	1.1	Lb	1.2	Lb.	1.3	Lb	1.4	Lb	1.5	Lb1.6	
Z _{kF1}	68,02	m ohm	68,02	m ohm	68,02	m ohm	68,02	m ohm	68,02	m ohm	68,02	m ohm
R _{kF1}	25,26	m ohm	25,26	m ohm	25,26	m ohm	25,26	m ohm	25,26	m ohm	25,26	m ohm
X _{kF1}	63,16	m ohm	63,16	m ohm	63,16	m ohm	63,16	m ohm	63,16	m ohm	63,16	m ohm
R	295	m ohm	265,5	m ohm	147,5	m ohm	58,5	m ohm	58,5	m ohm	585	m ohm
Х	6,45	m ohm	5,805	m ohm	3,225	m ohm	1,83	m ohm	1,83	m ohm	18,3	m ohm
	1			calcolo d	lella corren	te di corto	circuito sin	nmetrico				
	Z_k	F1,1	Zk	F1,2	Zk	F1,3	Z_k	F1,4	Z _k	F1,5	Z _k	F1,6
Z	327,741	m ohm	298,830	m ohm	185,078	m ohm	106,018	m ohm	106,018	m ohm	615,68	m ohm
	I"k _{F1,1}		l"k	F1,2	I"k	F1,3	l"k	F1,4	I"k	F1,5	I"k	F1,6
Icc	0,74	kA	0,81	kA	1,31	kA	2,29	kA	2,29	kA	0,39	kA
	1		1	calcolo	della corre	ente di cort	to circuito d	di picco		1	1	
R _{kF1.c}	25,263	m ohm	25,263	m ohm	25,263	m ohm	25,263	m ohm	25,263	m ohm	25,263	m ohm
XkF1.c	25,263	m ohm	25,263	m ohm	25,263	m ohm	25,263	m ohm	25,263	m ohm	25,263	m ohm
R. _c	295	m ohm	265,5	m ohm	147,5	m ohm	58,5	m ohm	58,5	m ohm	585	m ohm
Х. с	2,58	m ohm	2,322	m ohm	1,29	m ohm	0,732	m ohm	0,732	m ohm	7,32	m ohm
	Z _{kF1,1.c}		Z _{kF1,1.c} Z _{kF1,1.c}		Z _{kF1,1.c}		Z _{kF1,1.c}		Z _{kF1,1.c}		Z _{kF1,1.c}	
Z. _c	321,471	m ohm	292,069	m ohm	174,792	m ohm	87,704	m ohm	87,704	m ohm	611,13	m ohm
	4,601	m ohm	4,216	m ohm	2,603	m ohm	1,289	m ohm	1,289	m ohm	7,492	m ohm
R/X		1,0200								405		
R/X Xc	1,0	200	1,0	200	1,0.	204	1,0	405	1,0	405	1,0	200

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pagina 41 di 51

PROGETTO DEFINITIVO

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

7.5. Trasformatore ausiliario cabina di smistamento

IMPIANTO:	Progetto di un impianto eolico costituito da 5 turbine da realizzarsi nei comui	ni di Centrache e Montepaone (Ca	Z)
IIVIPIANTO .			
OGGETTO :	CALCOLO CORRENTI DI CORTO CIRCUITO I" _K E I _p TRASFORMATORE AUSILI	ARIO CABINA DI SMISTAMENTO	
PROGETTISTA	LINO PISTILLI	N° di iscrizione Collegio di Campobasso	227

DATI TRASFORMATORE								
	T3	3						
Tipo	in res	sina						
Srt	100	KVA		KVA				
Ukr	6,00	%		%				
Pkr	1.800	Watt		Watt				
Ро	550	Watt		Watt				
V2	30.000	Volt		Volt				
V1	400	Volt		Volt				
I1r	1,9267823	Amp		Amp				
I2r	144,50867	Amp		Amp				

	DATI IMPIANTO								
	L1/	ВТ		L.	10				
Sez.	95	mm²		70	mm²				
n°//	1		≥		1	K			
Lung.	20 mt		5 06/1	20	mt	18/30			
R 85°/Km	0,248	Ohm/Km	FG16R16 06/1 KV	0,345	Ohm/Km	RG7H1R 18/30 KV			
X/Km	0,146 Ohm/Km		FG	0,19	Ohm/Km	RG			
R	0,00496 Ohm			0,0069	Ohm				
Х	0,00292	Ohm		0,0038	Ohm				

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pagina 42 di 51

Calcolo della potenza di corto circuito

c*U_n*1,73*I"_k 414,06 MVA S"_{kR}= c*U_n*1,73*I"_k 294,75 MVA $S''_{kT} = S''_{kG} + S''_{kG}$ 708,81 MVA

Il valore di resistenza e reattanza del cavo di collegamento trasformatore quadro generale sarà

$$Z_{L1} = R_{I1} + J X_{I1}$$

 $R_{L1/BT} = 4,960 \text{ m ohm}$ $X_{L1/BT} = 2,920 \text{ m ohm}$

Determinazione delle impedenze di sequenza diretta.

Rete di alimentazione

$$Z_{Qt} = \frac{CQ U^2 nQ}{S'' kQ} x \frac{1}{t^2 r} 0,033383 \text{ m Ohn}$$

 $X_{Qt} = 0.995 \ ZQt = 0.033216$ $R_{Qt} = 0,100 \ ZQt = 0,003338$

Linea MT riportata al secondario

 R''_{L9} $R_{LM} * 1/tr^2$ 0,000882 X"_{L9} X_{LM}*1/tr² 0,000519

Trasformatore

La reattanza equivalente riportata al secondario del TR 1 sarà :

$$Z_{T1} = UKrT1 \qquad x \qquad U^2rT1$$

96,000 m Ohm
$$X_{T1} = Z_{T1}^2 - R_{T1}^2$$
 91,600

m Ohm

$$R_{T1} = Pkr$$

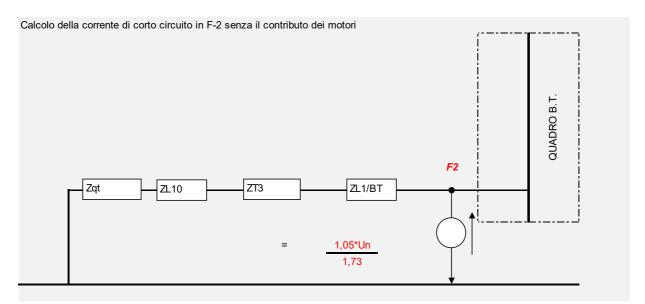
$$3l^2rT1$$

$$R_{T1}$$
 = 28,732 m ohm

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls


Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 43 di 51

Calcolo delle correnti di cortocircuito l"k e lp in caso di corto circuito simmetrico trifase nei punti di guasto F1, senza il contributo dei motori.

$$Z_{kF2} = Z_{qT} + Z_{L10} + Z_{T3} + Z_{L1/BT}$$

scomponendo la precedente relazione nella parte reale ed immaginaria

avremo:

$$Z_{kF2} = R_{qT} + R_{L10} + R_{T3} + R_{L1/BT} + X_{qT} + X_{L10} + X_{T3} + X_{L1/BT1}$$

$$Z_{kF2} = 33,6961 + j 94,5533 m ohm$$

$$Z_{kF2} = 100,3780 \text{ m Ohm}$$

$$I''_{k(F2)} = c*Un = 2,42 KA$$

$$1.73*Z_{\nu = 2}$$

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pag

Calcolo della corrente di cresta Ip.c

Metodo della frequenza equivalente (Fc = 20 Hz) rif norm. CEI 11-25 par. 9.1.3.2

$$X_{Qt.c} = 0,995 \ ZQt = 3,26695E-07$$

$$R_{Qt.c} = 0,100 \ ZQt = 8,20842E-08$$

$$Z_{T2.c} = 28,732 + J$$
 91,5996 * 20/50 m Ohm 28,732 + J 36,63983 m Ohm $Z_{L1/BT.c} = 4,960 + J$ 2,920 * 20/50 m Ohm 4,960 + J 1,168 m Ohm $Z_{L9.c} = 0,0008818 + J$ 0,001 * 20/52 m Ohm 0,001 + J 0,000208 m Ohm

$$Z_{kF2.c} = R_{qT.c} + R_{L10.c} + R_{T3.c} + R_{L1/BT.c} + J X_{qT.c} + X_{L10.c} + X_{T3.c} + X_{L1/BT.c}$$

$$Z_{kF2.c} = 33,6927 + j 37,8080 \text{ m Ohm}$$

$$R/X = Rc/Xc \times Fc/Fn =$$
 33,6927 \times 20 = 0,356461 37,8080 \times 50

$$Xc$$
 1.02+0,98 e -3*0,44260815 Xc = 1,3564

$$Ip.c = Xc * \sqrt{2 *I''k}$$
 $Ip.c = 4,64$ KA

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:
Wire Studio Srls

PROGETTO DEFINITIVO

Progetto relativo alla realizzazione di un impianto eolico costituito da 5 aerogeneratori da realizzare nei comuni di Centrache(Cz) e Montepaone (Cz) e dalle relative opere di connessione alla r.t.n. ricadenti nel comune di Petrizzi (Cz)

7.6. Utenze derivate dal trasformatore ausiliario di smistamento

IMPIANTO:	Progetto di un impianto eolico costituito da 5 turbine da realizzarsi nei comu	ni di Centrache e Montepaone (C	CZ)	
IIIII IAIVIO .				
OGGETTO :	CALCOLO CORRENTI DI CORTO CIRCUITO I" $_{\it K}$ E I $_{\it p}$ DELLE UTENZE DERIVATE DAL TI SMISTAMENTO	RASFORMATORE AUSILIARIO CA	BINA DI	
PROGETTISTA	LINO PISTILLI	N° di iscrizione	227	
, noternona	21110 1 10111EI	Collegio di Campobasso		

	Calcolo delle correnti di cortocircuito simmetriche 'UTENZE DERIVATE DA PC (Dati) CABINA SMISTAMENTO									
Utenza	ротра адд	gottaggio	quadro carica batterie		gruppo prese 1		gruppo prese 2		UPS	
Item	Lb1	1	Lb	1.2	2 Lb1		Lb1.4		20	
Sez.	4	mm²	4	mm²	6	mm²	6	mm²	6	mm²
n°//	1		1		1		1		-	1
Lung.	50	mt	20	mt	15	mt	15	mt	10	mt
R 85°/Km	5,900	Ohm/Km	5,900	Ohm/Km	3,900	Ohm/Km	3,900	Ohm/Km	3,900	Ohm/Km
X/Km	0,129	Ohm/Km	0,129	Ohm/Km	0,122	Ohm/Km	0,122	Ohm/Km	0,122	Ohm/Km
R	0,295	Ohm	0,118	Ohm	0,0585	Ohm	0,0585	Ohm	0,039	Ohm
Х	0,00645	Ohm	0,00258	Ohm	0,00183	Ohm	0,00183	Ohm	0,00122	Ohm

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022

Proponente: SKI 17 Srl Pagina 46 di 51

calcolo delle correnti di corto circuito nei sotto quadri derivati dal PC CABINA SMISTAMENTO										VTO	_	
Utenza	pompa aggottaggio		quadro carica batterie		gruppo prese 1		gruppo prese 2		UPS			_
Item	Lb1	1.1	Lb	1.2	Lb1.3		Lb1.4		Lb1.5			
Z_{kF1}	100,37	m ohm	100,37	m ohm	100,37	m ohm	100,37	m ohm	100,37	m ohm		
R _{kF1}	33,70	m ohm	33,70	m ohm	33,70	m ohm	33,70	m ohm	33,70	m ohm		
X _{kF1}	94,55	m ohm	94,55	m ohm	94,55	m ohm	94,55	m ohm	94,55	m ohm		
R	295	m ohm	118	m ohm	58,5	m ohm	58,5	m ohm	39	m ohm		
Х	6,45	m ohm	2,58	m ohm	1,83	m ohm	1,83	m ohm	1,22	m ohm		
			calcolo d	ella corrent	te di corto d	circuito sim	metrico		ı.			
	Z _{kF}	1,1	Zk	F1,2	Zk	F1,3	Zk	F1,4	Zk	F1,5		
Z	343,863	m ohm	180,126	m ohm	133,375	m ohm	133,375	m ohm	120,234	m ohm		
	l"k	F1,1	I"k _{F1,2}		I"k _{F1,3}		I"k _{F1,4}		I"k _{F1,5}			
Icc	0,71	kA	1,35	kA	1,82	kA	1,82	kA	2,02	kA		
			calcolo della corre		nte di corto	o circuito d	i picco		1	1		
R _{kF1.c}	33,696	m ohm	33,696	m ohm	33,696	m ohm	33,696	m ohm	33,696	m ohm		
XkF1.c	37,819	m ohm	37,819	m ohm	37,819	m ohm	37,819	m ohm	37,819	m ohm		
R. _c	295	m ohm	118	m ohm	58,5	m ohm	58,5	m ohm	39	m ohm		
Х. с	2,58	m ohm	1,032	m ohm	0,732	m ohm	0,732	m ohm	0,488	m ohm		
	Z _{kF1,1.c}		Z _{kF}	1,1.c	Z _{kF1,1.c}		Z kF1,1.c		Z _{kF}	1,1.c		
Z. _c	331,169	m ohm	156,592	m ohm	99,931	m ohm	99,931	m ohm	82,171	m ohm		
R/X	3,254	m ohm	1,562	m ohm	0,957	m ohm	0,957	m ohm	0,759	m ohm		
Хс	1,0201		1,0	290	1,0	756	1,0	756	1,1	205		
Ip	1,02	kA	1,96	kA	2,77	kA	2,77	kA	3,20	kA		

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 47 di 51

7.7. Legenda simboli utilizzati come da norma cei

	Simboli	
,	4	Valore iniziale della componente aperiodica
(c	Fattore di tensione
	cU _n /√3	Sorgente di tensione equivalente (valore efficace)
	E"	Tensione subtransitoria di una macchina sincrona
	f	Frequenza (50 Hz o 60 Hz)
	l _b	Corrente di cortocircuito simmetrica d'interruzione (valore efficace)
	/ _{b asym}	Corrente di cortocircuito asimmetrica d'interruzione (valore efficace)
	I _k	Corrente di cortocircuito permanente (valore efficace)
	I _{kP}	Corrente di cortocircuito permanente ai terminali di un generatore a eccitazione "compound"
	I"k 0 I"k3	Corrente di cortocircuito simmetrica iniziale (valore efficace)
	I _{LR}	Corrente a rotore bloccato di un motore asincrono
	ipc	Componente aperiodica decrescente della corrente di cortocircuito
	i _p	Valore di cresta della corrente di cortocircuito
	K	Fattore di correzione delle impedenze .
	P _{krT}	Perdite totali degli avvolgimenti di un trasformatore alla corrente nominale
	q	Fattore per il calcolo delle correnti d'interruzione dei motori asincroni
	q_n	Sezione nominale
	Ror	Resistenza, in valore assoluto o relativo
	R _G	Resistenza fittizia di una macchina sincrona per il calcolo di $I''_{\mathbf{k}} = i_{\mathbf{p}}$
	S″k	Potenza di cortocircuito simmetrica iniziale (potenza apparente)
	Sr	Potenza nominale apparente di un componente elettrico
	t_{f}	Rapporto di trasformazione fittizio
	t_{min}	Tempo minimo di ritardo
	$t_{\rm r}$	Rapporto di trasformazione nominale (commutatore di presa in posizione principale); $t_r \ge 1$
	U_{n}	Tensione nominale tra fasi di una rete (valore efficace)
	$U_{\rm r}$	Tensione assegnata o nominale tra fasi di una rete (valore efficace)
	<i>u</i> _{Kr}	Tensione di cortocircuito nominale, in percentuale
	U _{Rr}	Tensione resistiva nominale, in percentuale
		Tensioni, di sequenza diretta, inversa e omopolare
	X o X	Reattanza, in valore assoluto o relativo Reattanza sincrona, in fase o in quadratura
	X _{dP}	Reattanza fittizia di un alternatore a eccitazione "compound" durante un cortocircuito permanente ai terminali, quando si tenga conto dell'eccitazione
	X"d o X"q	Reattanza subtransitoria di una macchina sincrona (valore alla saturazione), in fase o in quadratura
	X _{d sat}	Reciproco del rapporto di cortocircuito
	Zoz	Impedenza, in valore assoluto o relativo
	\underline{Z}_k	Impedenza di cortocircuito di un sistema trifase in corrente alternata
	<u>Z</u> (1)	Impedenza di cortocircuito di sequenza diretta
	<u>Z</u> (2)	Impedenza di cortocircuito di sequenza inversa
	<u>Z</u> (0)	Impedenza di cortocircuito di sequenza omopolare
	η	Rendimento dei motori asincroni
	x	Fattore relativo al calcolo del valore di cresta della corrente di cortocircuito
	λ	Fattore relativo al calcolo della corrente di cortocircuito permanente Fattore relativo al calcolo delle correnti simmetriche d'interruzione di cortocircuito
	μ	Permeabilità assoluta del vuoto
	μ_{0}	Resistività
	6	Angolo di fase
	φ	Angelo di tado

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

Redazione:

Wire Studio Srls

Proponente: SKI 17 Srl

Rev. 0 – 30 novembre 2022

Pagina 48 di 51

Indici inferiori

(1)	Componente di sequenza diretta
(2)	Componente di sequenza inversa
(0)	Componente di sequenza omopolare

f Fittizio (fittizia) k o k3 Cortocircuito trifase

k1 Cortocircuito monofase, fase-neutro o fase-terra

k2 Cortocircuito bifase isolato

k2E o kE2E Cortocircuito bifase a terra, rispettivamente corrente di fase o corrente di terra

max Massimo min. Minimo

n Valore nominale del sistema (VEI 151-04-01)

Valore nominale (di targa) del macchinario e dell'apparecchiatura (VEI 151-04-03)

rsl Risultante

t Valore trasformato
AT Trasformatore ausiliario
B Sbarre collettrici

E Terra

F Guasto, posizione di guasto G Generatore (alternatore)

HV Alta tensione, avvolgimento ad alta tensione di un trasformatore LV Bassa tensione, avvolgimento a bassa tensione di un trasformatore

L Linea (o fase)
LR Rotore bloccato

L1,L2,L3 Fase 1,2,3 di un sistema trifase

M Motore o gruppo di motori asincroni

M Senza motore

MV Media tensione, avvolgimento a media tensione di un trasformatore

N Neutro di un sistema trifase in corrente alternata

P Terminale, polo

PSU Gruppo di produzione (alternatore e relativo trasformatore)

Q Punto di connessione ad un'alimentazione

T Trasformatore

Indici superiori

" Valore iniziale (subtransitorio)

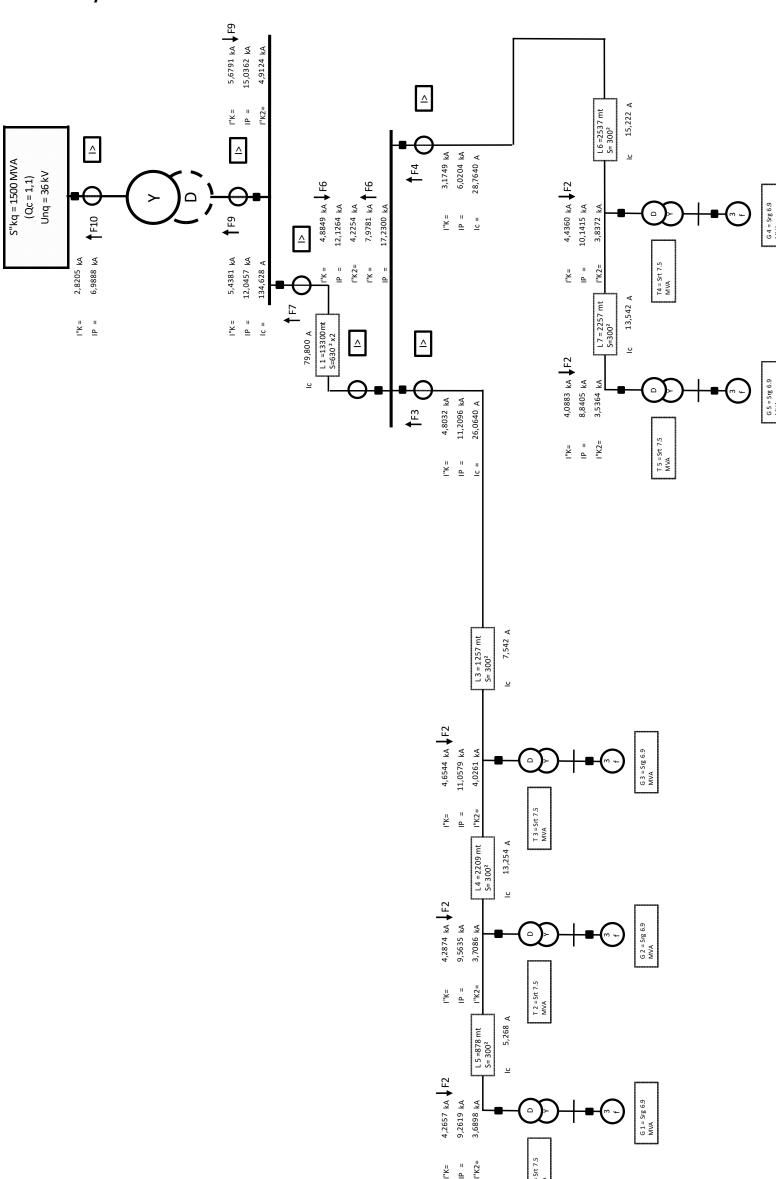
' Resistenza o reattanza per unità di lunghezza

Elaborato: Relazione tecnica Impianto Elettrico e Calcoli correnti di corto circuito

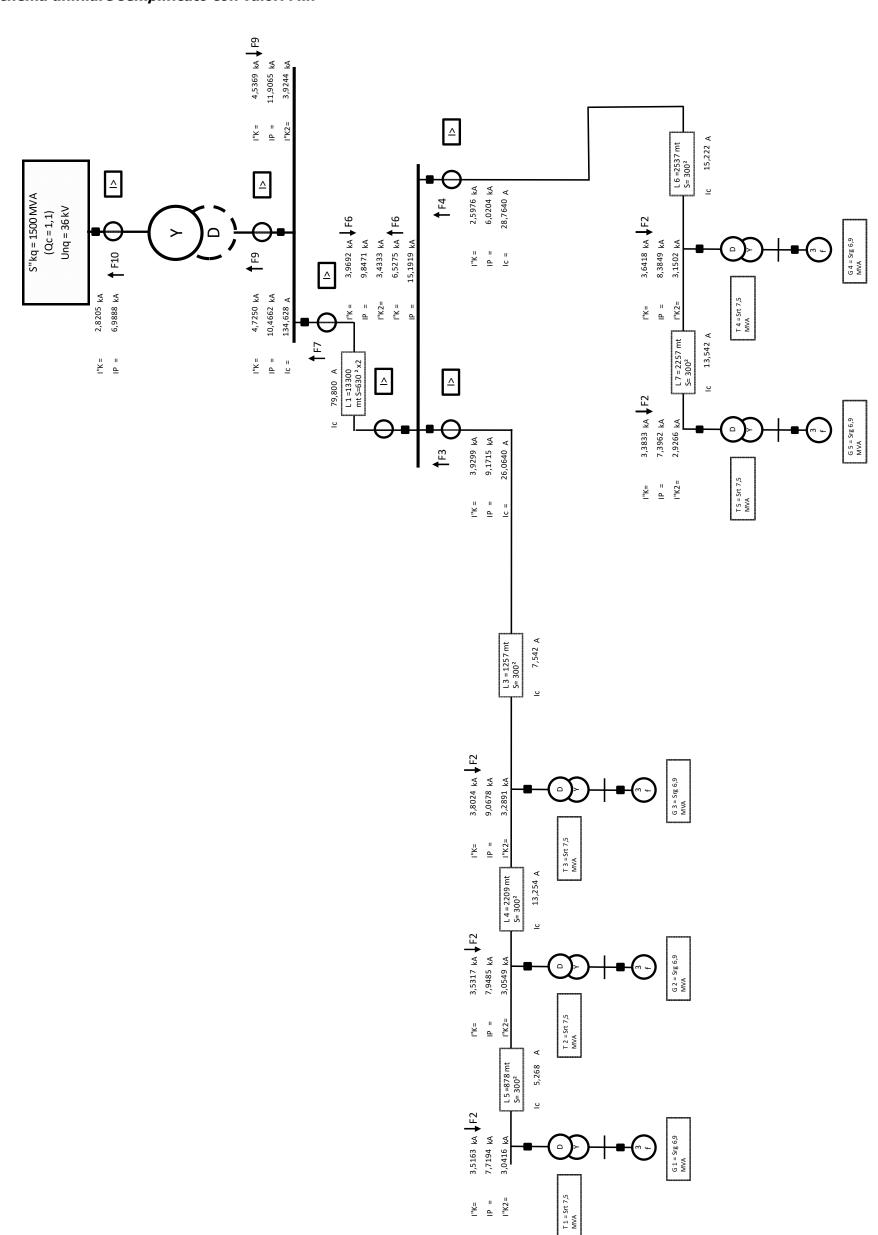
Redazione:

Wire Studio Srls

Rev. 0 – 30 novembre 2022


Proponente: SKI 17 Srl

Pagina 49 di 51


7.8. Schema unifilare semplificato con valori Max

7.9. Schema unifilare semplificato con valori Min

