
REGIONE SICILIANA LIBERO CONSORZIO COMUNALE DI TRAPANI COMUNI DI CALATAFIMI SEGESTA E GIBELLINA

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO DI POTENZA PARI A Pn = 75,4 MW (Pi = 72MW), SU TERRENO SITO NEL COMUNE DI CALATAFIMI SEGESTA (TP) IN CATASTO AI FG. 94 P:LLE 246, 247, 368, 248, 340, 411, AL FG. 99 P.LLE 93, 92, 3, AL FG. 107 P.LLE 7, 15, 16, 123, 209, 208, 54, 206, AL FG. 104 P.LLE 4, 49, 33, 156, 157, AL FG. 106 P.LLE 93, 86, 23, 94, AL FG. 107 P.LLA 44, AL FG. 105 P.LLA 128, AL FG. 115 P.LLE 192, 136, 281, 66, 208, AL FG. 117 P.LLE 38, 28, E AL FG. 98 P.LLE 468, 463, 469, 470, 471 E ALTRE AFFERENTI ALLE OPERE DI RETE NEI COMUNI DI CALATAFIMI SEGESTA E GIBELLINA (TP)

RELAZIONE DI COMPATIBILITA' GEOMORFOLOGICA E IDRAULICA

IDENTIFICAZIONE ELABORATO								
Livello prog.	ID Terna S.p.A.	Tipo Elabor.	N.ro Elabor.	Project ID	DATA		SCALA	
PDef	202100949	Relazione	Relazione 24 CANICHIDDEUSI CANICHIDDEUSI Rel di Comp geomorf e idr 17 12 22.docx				19.12.2022	
	REVISIONI							
VERSIONE	DATA			DESCRIZIONE	ESEGUITO	VERIFICATO	APPROVATO	
Rev.00	19.12.2022	Prima emission	one		FC	MTM	VM	

IL PROPONENTE

CANICHIDDEUSI WIND SRL

Sede legale: Corso di Porta Vittoria, 9 - 20122 - Milano PEC: canichiddeusiwind@mailcertificata.net P.IVA 12673200965

PROGETTO DI

Geologo Francesco Criscenti

via A. De Stefano, 13 - 91016 - Casa Santa (TP) e-mail:fcrigeo@libero.it

SU INCARICO DI

Grounded Clean Ventures

Coolbine S.r.L.
Sede legale: Via Trinacria, 52 - 90144 - Palermo e-mail: progettazione@coolbine.it

Relazione di Compatibilità Geomorfologica e Idraulica (studio di invarianza idraulica ed idrologica)

Oggetto: PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO DI POTENZA PARI A Pn = 75,4 MW (Pi = 72MW), SU TERRENO SITO NEL COMUNE DI CALATAFIMI SEGESTA (TP) IN CATASTO AI FG. 94 P:LLE 246, 247, 368, 248, 340, 411, AL FG. 99 P.LLE 93, 92, 3, AL FG. 107 P.LLE 7, 15, 16, 123, 209, 208, 54, 206, AL FG. 104 P.LLE 4, 49, 33, 156, 157, AL FG. 106 P.LLE 93, 86, 23, 94, AL FG. 107 P.LLA 44, AL FG. 105 P.LLA 128, AL FG. 115 P.LLE 192, 136, 281, 66, 208, AL FG. 117 P.LLE 38, 28, E AL FG. 98 P.LLE 468, 463, 469, 470, 471 E ALTRE AFFERENTI ALLE OPERE DI RETE NEI COMUNI DI CALATAFIMI SEGESTA E GIBELLINA (TP).

1 - PREMESSE

Il presente rapporto, eseguito su incarico ricevuto dalla società <u>Canichiddeusi</u> <u>Wind S.r.L.</u> con sede in Corso di Porta Vittoria, 9 - 20122 – Milano, per il tramite della società Coolbine S.r.L. con sede a Palermo in via Trinacria n. 52, relaziona uno studio di invarianza idraulica (come da <u>DDG</u> n. 102 del 23/06/2021, "Aggiornamento criteri e metodi di applicazione del principio di invarianza idraulica e idrologica") di un'area, in un terreno ricadente interamente nel comune di Calatafimi Segesta (TP), in C.da "Canichiddeusi", Zaccanelli, Furna-Zaccanelli, Valle e Lagani.

L'impianto eolico "CANICHIDDEUSI", con riferimento alle carte geografiche dell'Istituto Geografico Militare (IGM) in scala 1:25.000, ricadono nelle tavolette al Foglio n. 257 I-SE (CALATAFIMI) e Foglio n. 257 II-NE (S. NINFA).

Il sito e i singoli aerogeneratori, nel dettaglio, sono facilmente individuabili attraverso le seguenti coordinate geografiche:

Aerogeneratore	Coordinate geografiche	Comune	Foglio catastale	Particelle nella disponibilità del proponente
CAN_01	37°52'48.46"N - 12°52'34.87"E		94	246, 247, 368, 248, 340, 411
CAN_02	37°52'37.76"N - 12°53'14.01"E		99	93, 92, 3
CAN_03	37°52'7.18"N - 12°53'0.77"E		107	7, 15, 16, 123, 209, 208, 54, 206
CAN_04	37°51'38.43"N - 12°52'16.01"E		104	4, 49
CAN_05	37°51'25.62"N - 12°51'46.19"E		104	33
CAN_06	37°51'33.00"N - 12°52'41.84"E		106	93, 86, 23, 94
CAN_07	37°51'29.10"N - 12°53'1.85"E		107	44
CAN_08	37°51'2.88"N - 12°51'39.36"E		105	128
CAN_09	37°51'0.55"N - 12°52'3.63"E	Calatafimi	115	192, 136
CAN_10	37°50'47.30"N - 12°51'59.81"E	Segesta	115	281, 66, 208
CAN_11	37°51'21.01"N - 12°53'28.01"E		117	38, 28
CAN_12	37°51'59.65"N - 12°51'58.25"E		98	468, 463
CAN 12	27954144 CAUN 12954140 04U5		98	469, 470, 471
CAN_13	37°51'44.64"N - 12°51'48.84"E		104	156, 157
Area cabine di trasformazione utente 30 kV/36 kV	37°51'21.63"N - 12°53'9.61"E		107	44

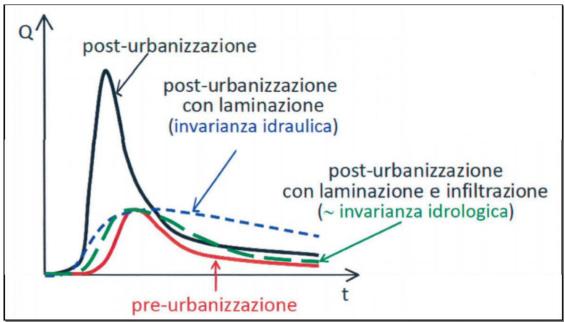
Negli ultimi decenni, l'intensa urbanizzazione ha portato ad un'eccessiva impermeabilizzazione del territorio che negli anni si è tradotto in un aumento della vulnerabilità dei sistemi ambientali.

Questo, come riportato nella circolare del 11/10/2019 dell'Autorità di Bacino del distretto Idrografico della Sicilia, ha avuto essenzialmente i seguenti effetti sul territorio:

- ha ridotto sensibilmente i tempi di corrivazione intensificando i fenomeni alluvionali;
- ha ridotto l'infiltrazione efficace e quindi la naturale ricarica delle falde sotterranee;
- ha aumentato lo scorrimento superficiale e quindi l'erosione dei suoli ed il trasporto solido.

La Regione Sicilia, in seguito all'approvazione del Piano di Gestione del Distretto Idrografico della Sicilia (PdG) e del Piano di Gestione del Rischio Alluvioni (PGRA), ha individuato una serie di interventi atti a ridurre i carichi derivanti dal ruscellamento e dall'erosione secondo la seguente tabella:

ID KTM	Descrizione KTM	Cod. Azione	Misura	Tipologia di misura	Azione
KTM17	Misure per ridurre i carichi di sedimenti dovuti all'erosione del suolo e al deflusso superficiale		Tutela ambientale	Strutturale	Mantenimento della permeabilità dei suoli e della capacità di invaso


KTM17	Misure per ridurre i carichi di sedimenti dovuti all'erosione del suolo e al deflusso superficiale	Ridurre i carichi puntuali	Regolamentazione	Definizione norme edilizieed urbanistiche, per i nuovi insediamenti, per l'applicazione di criteri costruttivi volti alla limitazione delle superfici impermeabilizzate
KTM17	Misure per ridurre i carichi di sedimenti dovuti all'erosione del suolo e al deflusso superficiale	Tutela ambientale	Incentivazione	Incentivazione delle operazioni di riqualificazione delle aree urbane degradate al fine di ridurre il consumo di suolo

Il PGRA, in questo contesto, costituisce lo strumento conoscitivo, normativo e tecnico-operativo mediante il quale sono pianificate e programmate le azioni e le misure finalizzate a garantire, per l'ambito territoriale costituito dal distretto idrografico della Sicilia, il perseguimento de-gli scopi e degli obiettivi di cui alla direttiva n. 2007/60/CE e al decreto legislativo 23 febbraio 2010, n. 49.

A tal fine, in questo contesto, vengono inseriti i concetti di invarianza idraulica di cui di seguito sono riportate le definizioni:

- a) Invarianza idraulica: principio in base al quale le portate di deflusso meteoricoscaricate dalle aree urbanizzate o di nuova urbanizzazione nei ricettori naturali o artificiali di valle non sono maggiori di quelle preesistenti all'urbanizzazione;
- b) *Invarianza idrologica*: principio in base al quale sia le portate sia i volumi di deflusso meteorico scaricati dalle aree urbanizzate nei ricettori naturali o artificiali di valle non sono maggiori di quelli preesistenti all'urbanizzazione;
- c) drenaggio urbano sostenibile: sistema di gestione delle acque meteoriche urbane, costituito da un insieme di strategie, tecnologie e buone pratiche volte a ridurre i fenomeni di allagamento urbano, a contenere gli apporti di acque meteoricheai corpi idrici ricettori mediante il controllo "alla sorgente" delle acque meteoriche, e a ridurre il degrado qualitativo delle acque.

Solo a titolo di esempio, si riporta il grafico che è presente nella circolare, in cui vengono riportati i diversi idrogrammi di piena di un bacino prima che vengano eseguiti gli interventi di urbanizzazione e dopo, nonché gli effetti di invarianza idraulica e di invarianza idrologica:

Per dare attuazione a quanto riportato nel PGRA, è stata prevista una misura di regolamentazione finalizzata all'attuazione del principio di invarianza e/o idrologica delle trasformazioni urbanistiche e all'adozione delle tecniche di drenaggio urbano sostenibile descritte più avanti.

I principi di invarianza idraulica e/o idrologica vanno sempre considerati in tutte quelle situazioni in cui le trasformazioni del territorio comportano modifiche alle condizioni naturali del regime idrologico che hanno come effetto un aumento delle portate recapitate ai corpi idrici recettori, siano questi naturali e/o artificiali, per cui vanno sempre applicati per le:

- a) trasformazioni urbanistico edilizia;
- b) infrastrutture di trasporto.

In tal senso occorre evidenziare che l'incremento delle aree urbanizzate che si è registrato negli ultimi 40 anni in Sicilia, soprattutto con riferimento alle aree costiere, ha prodotto una significativa crescita del grado di impermeabilizzazione del territorio e spesso un integrazione nel tessuto urbano delle reticolo idrografico naturale che è stato in genere oggetto d'interventi di artificializzazione (tombamento) ed è stato utilizzato come recapito della rete fognaria di drenaggio urbano delle acque meteoriche.

Una maggiore incidenza delle superfici impermeabili in un bacino urbanizzato si traduce, come già precedentemente scritto, nell'incremento delle portate al colmo di piena e dei volumi di piena scaricate sul reticolo idrografico dalle fognature per acque meteoriche, generando situazioni di pericolosità e di rischio.

Per tali situazioni il Piano prevede come misura l'adozione di sistemi di drenaggio urbano sostenibile noti nella letteratura anglosassone con gli acronimi di SUDS, (Sustainible Urban Drainage Sistem), o LID (low impact development)

Schema funzionamento SUDS (Ciria 2015)

Questi sistemi si fondano sull'idea di recuperare le funzioni idrologiche naturali del suolo e ridurre le alterazioni al ciclo dell'acqua provocate dall'impermeabilizzazione dei suoli.

Per garantire da un lato un'efficace difesa idraulica del centro abitato, dall'altro un controllo sulla qualità degli scarichi dei reflui nei corpi idrici.

Il sistema di drenaggio urbano sostenibile è composto da una serie di strutture fisiche e tecniche finalizzate a ricevere le acque del deflusso di scorrimento superficiale delle acque piovane (principalmente attraverso processi di infiltrazionee detenzione). Nell'ambito del sistema le vasche di laminazione e i canali di gronda sono finalizzati a regolare gli afflussi al reticolo idrografico che interessa i centri abitati.

I Sistemi di Drenaggio Urbano sostenibile (SUDS) assolvono diverse funzioni , in particolare:

- gestioni delle portate idriche (laminazione, ritenzione, infiltrazione);
- miglioramento della qualità delle acque.

In questo contesto normativo si inserisce il presente lavoro.

2 - RIFERIMENTI NORMATIVI

- L. 14 agosto 1942, n. 1150 e successive modifiche ed integrazioni;
- L. R. 27 dicembre 1978, n. 71 e successive modifiche ed integrazioni;
- L.R. n. 3/2016, n. 44/1991, n. 5/2011e n.22/2008;
- D.P.R.S. n. 23 de108.07.2014;
- D.Lgs 152/2006 e ss.mm.ii.;
- L.R. n. 16/2016, che ha recepito con modifiche il D.P.R. 380/01 Testo Unico dell'Edilizia;
- D.Lgs n. 33/2013 e ss.mm.ii.;
- circolare regionale n. 1/2015 prot. 11642 de119.05.2015;
- Dlgs 18/08/2000 n. 267 e successive modifiche ed integrazioni;
- vigente Ordinamento Regionale degli Enti Locali;
- D.P.C.M. del 7 marzo 2019 con il quale è stato approvato il nuovo Piano Gestione dell'Rischio di Alluvioni del distretto idrografico della Sicilia;
- Circolare 6834 del 11/10/2019 Autorità di Bacino Distretto Idrografico della Sicilia;
- D.M. 17/01/2018 (N.T.C.) al Cap. 6, ai punti 12 e 12.1;
- L.R. n.19 del 13/08/2020, art. 22;
- DDG n. 102 del 23/06/2021;
- D.A. n. 117 del 07/07/2021;
- Direttiva Dirigente Generale del Dipartimento Regionale Tecnico prot. 112363 del 09/07/2021
 (Regione Siciliana).

3. - <u>REGIME VINCOLISTICI (CARTE DEL PAI, TAVOLA DEL BACINO IN CUI</u> RICADE L'AREA MAPPE DELLA PERICOLOSITÀ IDRAULICA E DEL RISCHIO IDRAULICO)

Il Decreto legislativo 49/2010, all'articolo 2 definisce il rischio di alluvione come "la combinazione della probabilità di accadimento di un evento alluvionale e delle potenziali conseguenze negative per la salute umana, il territorio, i beni, l'ambiente, il patrimonio culturale e le attività economiche e sociali derivanti da tale evento". L'articolo 6 dello stesso Decreto dispone la predisposizione delle mappe di pericolosità e di rischio di alluvione. Tali mappe devono indicare le aree geografiche potenzialmente allagabili con riferimento a tre scenari: - Alluvioni rare di estrema intensità: tempo di ritorno fino a 500 anni dall'evento (bassa probabilità); - Alluvioni poco frequenti: tempo di ritornofra 100 e 200 anni (media probabilità) - Alluvioni frequenti: tempo di ritorno fra 20 e 50 anni (elevata probabilità) Nel territorio regionale, le attività finalizzate alla mappatura della pericolosità e del rischio ai sensi dell'art. 6 delD.Lgs. 49/2010 sono state sviluppate con l'obiettivo di avviare il processo di elaborazione del Piano di Gestione in modo da adempiere alle prescrizioni normative comunitarie e statali, partendo dalla valorizzazione degli studi svolti nell'ambito dei Piani per l'assetto idrogeologico (PAI). Pertanto, in relazione alle risorse disponibili e alle scadenze temporali stabilite, si è proceduto prioritariamente nella valutazione e nell'omogeneizzazione dei PAI vigenti anche al fine di avviare il loro aggiornamento in relazione alle successive scadenze stabilite dal decreto legislativo 49/2010. Occorre infatti evidenziare che la definizione delle mappe di pericolosità e di rischio è soltanto una fase intermedia finalizzata alla redazione del Piano di gestione del rischio alluvioni. Gli studi sono organizzati per bacino idrografico.

4. - INQUADRAMENTO GEOMORFOLOGICO

4.1 - Compatibilità geomorfologica della zona di studio

L'ambiente geomorfologico del territorio nell'area in esame non manifesta né forme del suolo attive, né forme suolo inattive o relitte la cui evoluzione possa incidere significativamente con la pianificazione in progetto. Non si rilevano inoltre forme del suolo per le quali a seguito delle destinazioni d'uso previste siano ipotizzabili particolari impatti geomorfologici, nè si rilevano particolari elementi geomorfologici rari o di particolare pregio paesaggistico.

In tali condizioni uno dei principali effetti dell'urbanizzazione del territorio si concretizza dal punto di vista geomorfologico nella rimodellazione e nell'impermeabilizzazione del suolo.

L'impermeabilizzazione delle superfici di suolo naturale e la loro modellazione e regolarizzazione contribuiscono all'incremento del coefficiente di afflusso e all'aumento conseguente del coefficiente udometrico delle aree trasformate. Ciò determina una riduzione del tempo di corrivazione di tutta l'area urbanizzata che, nel caso di eventi meteorici brevi ed intensi, si traduce in una rapida ed improvvisa ondata di piena affluente nel corpo idrico recettore (sistema fognario o viario urbano).

In considerazione di ciò, nell'edificazione delle strutture, al fine di non contribuire ai fenomeni di "piena urbana degli scarichi fognari", sarà opportuno prevedere l'adozione di alcuni accorgimenti atti a favorire l'invarianza idraulica delle trasformazioni del territorio.

In linea generale, per l'ottenimento dell'invarianza idraulica potranno essere adottati sia meccanismi di laminazione delle piene, sia meccanismi di regolazione del tempo di corrivazione, sia meccanismi atti a favorire l'infiltrazione nel sottosuolo, quali:

- la realizzazione di percorsi di fognatura bianca più lunghi e sovradimensionati nei volumi, nei quali gli eventi di piena possono essere sia differiti nel tempo, sialaminati nelle portate;
- la predisposizione nell'area di volumi di invaso, mediante vasche di accumulo interrate o superficiali che tendono a ritardare il picco di piena del corpo idrico recettore;
- la predisposizione di una rete per la dispersione delle acque provenienti dai tetti dell'edificato (acque pulite) verso aree a fondo naturale, favorendone così la naturale infiltrazione sotterranea.

Sulla base di quanto esposto si ricava che, per le aree in esame, non sussistono particolari problematiche legate ad aspetti di natura morfologica e le previste trasformazioni d'uso del suolo risultano compatibili con le condizioni geomorfologiche delle aree destinate ad accoglierle.

5 - METODOLOGIA DI CALCOLO PER L'INVARIANZA IDRAULICA E IDROLOGICA

L'intervento in esame, come descritto precedentemente, prevede la realizzazione di un impianto eolico di potenza pari a circa 75,4 MW e potenza in immissione di 72 MW, e più nel dettaglio gli aerogeneratori e le loro opere civili (strade di accesso e piazzole), accessorie ed elettriche saranno realizzati nel comune di Calatafimi Segesta, tra le contrade Canichiddeusi, Zaccanelli, Furna-Zaccanelli, Valle e Lagani; l'impianto di utenza (a cura del proponente) si svilupperà tra i comuni di Calatafimi Segesta e Gibellina; l'impianto di rete (a cura del gestore di rete Terna S.p.A.), interesserà il comune di Gibellina. Di seguito viene riportata la planimetria di progetto.

- Viabilità esistente da migliorare
 - Viabilità di accesso all'impianto
- Aerogeneratore
- Piazzola definitiva Aerogeneratore
- Cavidotto MT 30 kV
 - Cavidotto 36 kV
- Area cabina di trasformazione utente 30kV/36kV

Il lotto si presenta con pendenze regolari, digradante in varie direzioni, ed i terreni affioranti hanno un grado di permeabilità medio alta, per cui il deflusso superficiale, anche in caso di eventi di pioggia anchedi lunga durata è pressochè inesistente.

La Regione Sicilia non ha fornito particolari dettagli su come eseguire i calcoli, mentre altre Regioni D'Italia si sono muniti di Normativa ad hoc oltre a strumenti di calcolo uniformi, in modo che il risultato dei calcoli sia uniforme e comunque all'interno di codici di calcolo precisi e non legato al tipo di software utilizzato e/o alla sensibilità di chi lo esegue.

Detto questo, per poter realizzare un progetto di invarianza idraulica ed idrologica, bisogna conoscere almeno 3 fattori:

- 1 superficie di intervento e divisione in tipologie in base al grado di permeabilità;
- 2 coefficiente di deflusso medio ponderale ϕ_m ;
- 3 regime delle piogge.

5.1 - <u>Descrizione delle opere e superfici disponibili</u>

L'impianto eolico che la ditta intende realizzare avrà una potenza complessiva di 75,4 MW e potenza in immissione di 72 MW.

Il sito, oggetto del presente Progetto Definitivo, è ubicato nell'entroterra della Sicilia Occidentale, e più nel dettaglio gli aerogeneratori e le loro opere civili (strade di accesso e piazzole), accessorie ed elettriche saranno realizzati nel comune di Calatafimi Segesta, tra le contrade Canichiddeusi, Zaccanelli, Furna-Zaccanelli, Valle e Lagani; l'impianto di utenza (a cura del proponente) si svilupperà tra i comuni di Calatafimi Segesta e Gibellina; l'impianto di rete (a cura del gestore di rete Terna S.p.A.), interesserà il comune di Gibellina.

Orograficamente l'impianto si sviluppa secondo una direttrice N/S nel territorio Comunale del Comune di Calatafimi Segesta (TP) in Provincia di Trapani su di un'area geograficamente identificata come quella compresa tra autostrada E90 a est, i comuni di Salemi e Vita a ovest, il comune di Gibellina a Sud ed il comune di Calatafimi Segesta a Nord. Il contesto morfologico è caratterizzato da una serie di rilievi collinari, in funzione della natura del substrato geologico, separati da morfologie più pianeggianti.

L'area di studio è caratterizzata da valori altimetrici che tendono a decrescere da ovest verso est in quanto si ha la transizione da un ambiente di tipo collinare ad un ambiente di bassa collina e piane alluvionali ed è occupato quasi totalmente a vigneto, seminativo e pascolo. Il territorio oggetto di studio, quindi è identificato nella fascia altimetrica compresa tra i 150 ed i 500 m. e caratterizzato da un'altitudine media di 460 m s.l.m. .La zona è ubicata a nord-est del bacino idrografico del Fiume Arena. Il bacino idrografico del Fiume Arena è localizzato nella porzione occidentale della Sicilia settentrionale ed occupa una

superficie complessiva di 316 km². I paesaggi dominanti sono due: uno prevalentemente collinare che caratterizza il bacino nella sua porzione settentrionale (le colline di Vita, Salemi e Santa Ninfa), ove il maggiore rilievo presente è quello di Monte Polizzo (713 m s.l.m.), seguito da Monte San Giuseppe (677 m.s.l.m.), Monte di Pietralunga (519 m. s.l.m.) e M. Calemici (548 m.s.l.m.) ed i rilievi che costituiscono gli spartiacque orientale e settentrionale del bacino. A questo paesaggio collinare segue, procedendo verso la costa, quello tipicamente pianeggiante dell'area di Mazara del Vallo. I corsi d'acqua presenti nel bacino hanno un orientamento prevalente N-W e N-E e si presentano relativamente sinuosi.

L'impianto eolico in progetto "Canichiddeusi" sarà costituito da n. 12 aerogeneratore aventi potenza nominale pari a 6MW e n.1 aerogeneratore avente potenza nominale pari a 3,4MW, per una potenza complessiva dell'impianto eolico di 74,5 MW e una potenza in immissione di 72 MW.

Si riportano nella seguente Tabella le caratteristiche geometriche e funzionali degli aerogeneratori di progetto.

Aerogeneratore	Modello (presunto)	Potenza nominale [MW]	Numero pale	Tipologia torre	Altezza mozzo [m]	Diametro rotore [m]	Altezza tip [m]	Velocità cut-in [m/s]	Velocità cut-out [m/s]	Intervallo temperatura ambientale di riferimento [°C]
CAN_01					125	162	206			
CAN_02					125	162	206			
CAN_03					166	162	247	1		
CAN_04					119	162	200			
CAN_05	V162	6,0		Troncoconica	166	162	247	3,0	24,0	-20° to +45° C
CAN_06	No. of Contract of				125	162	206			
CAN_07			3		119	162	200			
CAN_08					166	162	247			
CAN_09					105	162	186	1		
CAN_10	V126	3,4]		87	126	150	3,0	22,5	
CAN_11	V162	6,0			119	162	200	3,0 24,0		
CAN_12					119	162	200		24,0	
CAN_13]			119	162	200			

Di seguito si rappresenta la fotosimulazione dell'impianto eolico su paesaggio esistente.

Fotosimulazione dell'impianto eolico su paesaggio esistente

La superficie interessata all'installazione degli aerogeneratori rappresenta una percentuale molto esigua rispetto all'intera superficie particellare considerata e nella disponibilità totale del proponente (diverse decine di ettari), difatti l'occupazione permanente dei terreni è limitata alle piazzole, ai basamenti, alla viabilità interna e alla sotto stazione elettrica.

Sulla base delle considerazioni fatte nel presente capitolo ed in quelli precedenti, la ripartizione delle superfici disponibili, secondo i dati forniti dalla ditta, è quella riportata qui di seguito:

- 1- La superficie di intervento totale è di circa 7,6694 Ha, così suddivisi:
- <u>Superficie edificata stimata</u> (viabilità interna e piazzole in materiale drenante, ecc..):65.394 m^2 ($\phi = 0.4$ semipermeabile);
- <u>Superficie edificata stimata</u> (fabbricati, stazioni MT, plinti di fondazione pali eolici , ecc...): $11.300 \, \text{m}^2$ ($\phi = 0.9 \, \text{-} \, \text{impermeabile}$);
- 2- una volta suddivise le diverse aree in base al loro Coefficiente di deflusso ϕ , è possibile calcolare il coefficiente di deflusso medio ponderale ϕ_m , come di seguito:

Destinazione uso superficie	Area (m²)	Coefficiente di deflusso	Area deflusso			
Sup. semipermeabili	65.394	0,4	26.157			
Sup. impermeabili	11.300	0,9	10.170			
Superficie totale 76.694		Superficie di deflusso	36.327			
Superficietot.dispon.pro	ponente					
Coefficiente di deflusso medio ponderale: 0,473						

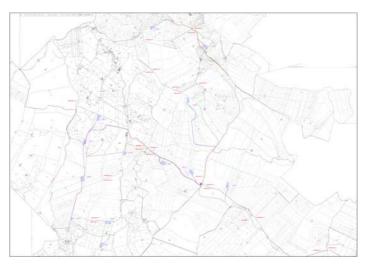
6 - Regime delle piogge

Ottenuto il valore del coefficiente di deflusso medio ponderale, occorre, in ultima fase avere i dati di pioggia, che per buona norma dovrebbero essere calcolati con $T_r = 50$ anni, riferiti ovviamente al sottobacino in cui ricade quest'area.

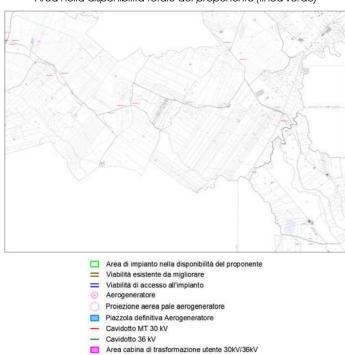
Area di intervento

Questo è il problema più grosso che ci si trova ad affrontare per più motivi, primo fra tutti, il recupero dei dati pluviometrici, che in alcune regioni (quali la Lombardia) può essere facilmente fatto on line in pochi minuti e che al contrario per la Regione Sicilia diventa più difficoltoso.

Per ovviare a questo tipo di problema, sicuramente non trascurabile ed alla mancanza di indicazioni precise regionali e nello specifico, nei regolamenti edilizi comunali, alcuni Comuni hanno inserito nei regolamenti per un calcolo semplificato, uno di questi è Catania, che ha introdotto il concetto di invarianza idraulica, calcolata secondo una semplice formula matematicaper cui per ogni m^2 di superficie impermeabile realizzata, dovrà essere calcolato ina volume parialmeno a $0.03~m^3$ di acque da pioggia da laminare in vasche e/o comunque con strumenti adeguati; il calcolo ovviamente è cautelativo e come valori per le superfici impermeabilizzate saranno presi in considerazioni quelli "ponderati" calcolati nel presente paragrafo, quindi non solo quelle realmente impermeabili, ma anche quelle parzialmente, per il loro contributo.


Di seguito il calcolo e pertanto ne consegue che:

-Superficie impermeabile di calcolo: $36.327 \, m^2$;


- -Volume di acque di pioggia da regimentare per m^2 di superficie impermeabile: 0,03 m^3
- -Volume da regimentare/laminare = $36.327 \times 0.03 = 1.089 \, \text{m}^3$

In definitiva, si dovranno prevedere dei SUDS (Sistemi di Drenaggio Urbano Sostenibile) in grado di poter permettere la laminazione di questo quantitativo di acqua; ovviamente 1.089 m^3 è una quantità molto modesta in riferimento all'estensione dell'impianto eolico e all'area nella disponibilità totale del proponente (diverse decine di ettari), per cui, dallo studio appena condotto, basterà prevedere dei sistemi di assorbimento laterali alla viabilità e alle piazzole in grado di potere facilmente assorbire tale quantitativo d'acqua, favorendone così la naturale infiltrazione sotterranea.

Tale scelta progettuale permetterà al terreno circostante di drenare il più possibile l'acqua meteorica verso i canali vicini e il convogliamento lungo l'asta principale, e minimizzare in caso di forti temporali.

Area nella disponibilità totale del proponente (linea verde)

7 - INQUADRAMENTO BIOCLIMATICO

L'area geologica oggetto di studio ricade su di un territorio in cui il grado di antropizzazione è molto elevato. Colture agrarie, un tempo fulcro portante dell'economia dell'intera zona, ormai sono solo un ricordo.

La vegetazione spontanea tipica della macchia mediterranea è relegata nelle zone più impervie ed economicamente marginali del territorio.

Per inquadrare il territorio nel suo ambiente ecologico bisogna approfondire lo studio del clima. In particolar modo l'ambiente ecologico è l'espressione di quei parametri climatici che caratterizzano quel territorio, per cui avremo un manto vegetale che sarà l'espressione edafo – climatica del territorio.

Lo studio del clima viene effettuato attraverso degli indici bioclimatici che ci permettono di valutare le correlazioni tra il clima e la distribuzione della vegetazione reale.

Gli aspetti prevalenti del clima presi in considerazione sono: la Temperatura e la Piovosità. Della temperatura occorre conoscere: temperatura media annua, la temperatura media nei mesi più freddi, quella dei mesi più caldi e i valori minimi e massimi in tali mesi. Della piovosità ci interessa sapere: le precipitazioni medie annue, la frequenza, l'intensità e la distribuzione durante l'anno.

I principali Indici Bioclimatici sono:

Pluviofattore di Lang

E' dato dal rapporto fra le precipitazioni medie annue, espresse in mm, e la temperatura media annua, espressa in gradi Celsius. Tale Indice evidenzia il grado di umidità di una stazione, ed in base al suo valore è possibile individuare la regione climatica e la relativa pedogenesi climatica.

Nell'area oggetto di studio il valore del Pluviofattore di Lang è compreso fra 40 e 60, il clima è tropicale e subtropicale e le tipologie pedologiche presenti, a seconda della temperatura, sono terre rosse e gialle povere di Humus e a rapida mineralizzazione.

Indice di Aridità di De Martonne.

E' dato dal rapporto fra le precipitazioni medie annue, espresse in mm, e la temperaturamedi annua, espressa in gradi Celsius + 10. Tale indice evidenzia il grado di aridità di una stazione.

Nell'area oggetto di studio il valore dell'Indice di Aridità di De Martonne è compreso fra 15e on

Indici di Rivas-Martinez.

Sono degli indici che hanno una maggiore importanza nei nostri ambienti in quanto permettono di effettuare un suddivisione del territorio più dettagliata rispetto agli altri indici bioclimatici. Tali indici sono:

- Indice di Mediterranietà: è dato dal rapporto fra l'evapotraspirazione potenziale nei mesi estivi, calcolato secondo il bilancio di Thornthwaite e la media mensile delle precipitazioni durante lo stesso periodo. La stagione decorre tanto più secca quanto più quest'indice è elevato.
- Indice di Termicità: è dato dalla somma della temperatura medi annuale e delle temperature minime (m) e massime (M) del mese più freddo, il tutto va poi moltiplicato per 10.
- Indice Ombrometrico Estivo: è dato dal rapporto tra la somma delle precipitazioni medie nel periodo estivo e la somma delle temperature medie nello stesso periodo.
- Indice Ombrometrico Estivo Compensativo: viene calcolato allo stesso modo dell' indice
 Ombrometrico Estivo solo che il periodo estivo viene allargato al mese di maggio.

Gli indici di **Rivas-Martinez** sono molto importanti in quanto ci permettono di inquadrareil territorio in funzione del potenziale vegetazionale naturale. Infatti dalla combinazione fra i termotipi e gli ombrotipi si ottengono delle aree omogenee dal punto di vista climatico che saranno caratterizzati da una determinata vegetazione naturale potenziale.

Il **territorio siciliano** rientra nella fascia mediterranea e può essere ripartito, riguardo alla temperatura, in **6 termotipi** principali:

- 1. INFRAMEDITERRANEO
- 2. TERMOMEDITERRANEO
- 3. MESOMEDITERRANEO
- 4. SUPRAMEDITERRANEO
- 5. OROMEDITERRANEO
- 6. CRIOROMEDITERRANEO

Alcuni di questi possono essere suddivisi in **SUPERIORE** ed **INFERIORE**; riguardo all'umidità, invece, si hanno tre Ombrotipi principali che sono:

- SECCO
- SUBUMIDO
- UMIDO

Questi Ombrotipi possono essere distinti in Superiore ed Inferiore, per cui si hanno sei ombrotipi, a cui si aggiunge l'ombrotipo semiarido superiore presente in zone limitate dell' Isola (Lampedusa) per cui in Sicilia si possono avere sette ombrotipi.

La combinazione dei termotipi e degli ombrotipi da origine a 23 tipici bioclimatici ognuno dei quali è caratterizzato da una flora e da una vegetazione.

L'area oggetto di studio è caratterizzata da un termotipo TERMOMEDITERRANEO INFERIORE, con temperature medie comprese fra 10 e 24 °C ed ha un indice di termicità compreso tra 500 e 550, con ombrotipo secco. La vegetazione climatica di questa area fa parte della Classe Quercetea ilicis, ordine Pistacia - Rhamnetalia alterni, alleanza Oleo - Ceratonion.

La vocazione di tutto il territorio del paesaggio locale è assolutamente agricola, con colture prevalentemente estensive di seminativi, vigneti e in parte uliveti.

Dunque la superficie totale del progetto, definita ai sensi della norma DIN SPEC 91434 come la superficie agricola prima della costruzione dell'impianto eolico, su cui, dopo la costruzione dell'impianto, vengono svolti contemporaneamente l'utilizzo per fini agricoli e l'utilizzo per la produzione di energia elettrica, oggetto dell'iniziativa è pari a circa 7,6694Ha.

Dal punto di vista delle coltivazioni agricole, attualmente i fondi in oggetto sono quasi totalmente coltivati. Sono condotti quasi interamente a seminativo e vigneto, con rotazione agraria aperta in cui la coltivazione del grano viene alternata a foraggere per la produzione di fieno e leguminose da granella.

Il fondo in oggetto risulta avere forma pressoché regolare e sono limitrofi alla pubblica viabilità.

Dal punto di vista paesaggistico rientrano pienamente nell'areale agricolo tipico dell'entroterra della provincia di Trapani in cui la coltivazione di seminativo e vigneto è interrotta dalla presenza di altri seminativi e vigneti.

8 - CONCLUSIONI

La presente relazione ha riguardato il calcolo del volume minimo di invaso per l'invarianza idraulica di un'area edificata di circa 7,6694Ha, invece l'intera superficie particellare considerata nella disponibilità totale del proponente è di diverse decine di ettari, ed è ricadente interamente nel Comune di Calatafimi Segesta (TP), in C.da "Canichiddeusi", Zaccanelli, Furna-Zaccanelli, Valle e Lagani.

Per la realizzazione del presente studio, vista la mancanza di direttive precise sia da parte Comunale che Regionale, ci si è riferiti, per la parte descrittiva e di indirizzo alla Circolare dell'Autorità di Bacino, per la parte riguardante i calcoli, si è fatto riferimento all'art.80 del Bacinodel Distretto Idrografico della Sicilia del 11/10/2019 prot.6834, mentre per eseguire il calcolo, siè fatto riferimento al regolamento edilizio comunale di Catania, dove all'articolo 80 sono riportate, seppur in maniera provvisoria le direttive per il calcolo dell'invarianza idraulica.

In conclusione, dai calcoli così eseguiti, si è ottenuto che per avere l'invarianza idraulica dell'area dopo l'esecuzione dell'intervento si dovranno prevedere dei SUDS (Sistemi di Drenaggio Urbano Sostenibile) in grado di poter permettere la laminazione di questo quantitativo di acqua; ovviamente 1.089 m³ è una quantità molto modesta in riferimento all'estensione dell'impianto eolico e all'area nella disponibilità totale del proponente (diverse decine di ettari), per cui, dallo studio appena condotto, basterà prevedere dei sistemi di assorbimento laterali alla viabilità e alle piazzole in grado di potere facilmente assorbire tale quantitativo d'acqua, favorendone così la naturale infiltrazione sotterranea.

Tale scelta progettuale permetterà al terreno circostante di drenare il più possibile l'acqua meteorica verso i canali vicini e il convogliamento lungo l'asta principale, e minimizzare in caso di forti temporali.

