

PROGETTO PER LA REALIZZAZIONE DI UN PARCO AGRIVOLTAICO E DELLE RELATIVE OPERE DI CONNESSIONE ALLA RTN

IMPIANTO RAMACCA 02

Comune di MINEO (CT)

Località "Masseria Modichella" - "Contrada Mongialino"

A. PROGETTO DEFINITIVO DELL'IMPIANTO, DELLE OPERE CONNESSE E DELLE INFRASTRUTTURE INDISPENSABILI

OGGETTO OGGETTO					
Codice: ITS_RMC02 Autorizzazione Unica ai sensi del D.Lgs 387/2003 e D.Lgs 152/2006					
N° Elaborato: A11	Disciplinare Descrittivo e Prestazionale degli Elementi Tecnici				

Tipo documento	Data
Progetto definitivo	Ottobre 2022

Rappresentante legale

Emmanuel Macqueron

	REVISIONI						
Rev.	Data	Descrizione	Elaborato	Controllato	Approvato		
00	Ottobre 2022	Emissione	AC	AS/QV/ DR	QI		

ITS_RMC02 _A11_Disciplinare descrittivo e prestazionale degli elementi tecnici.do	ITS_RMC02_ A11_Disciplinare descrittivo e prestazionale degli elementi tecnici.pdf
---	--

INDICE

1. PREMES	SSA	3
Z. CARAT	TERISTICHE FISICHE E TECNICHE DELL'INTERVENTO	3
2.1. Co	DMPONENTI DELL'IMPIANTO	3
2.1.1.	Moduli fotovoltaici	3
2.1.1.	Convertitori di notenza	
2.1.3.	Convertitori di potenzaTrasformatore	9
2.1.4.	Strutture supporto moduli fotovoltaici - TRACKER	10
2.1.5.	Cavi e quadri di campo	11
2.1.6.	Quadri MT	12
2.1.7.	Cavidotto per la trasmissione dell'energia prodotta e per il controllo a 13	•
2.1.8.	Protezioni	
2.1.9.	Stazione elettrica rete-utente	16

1. PREMESSA

Il progetto agrovoltaico proposto dalla società ITS MEDORA Srl, prevede che lo stesso venga realizzato in agro del comune di Mineo (CT), alle località "Masseria Modichella" - "Contrada Mongialino".

Il sito per la realizzazione del parco è posto a nord-ovest del centro abitato di Mineo da cui dista (in linea d'aria) 9.8 km circa, a nord-ovest del centro abitato di Palagonia e a sud-ovest del centro abitato di Ramacca da cui dista (in linea d'aria), rispettivamente circa 9.0 e 5.9 km. L'altezza sul livello del mare è di 260 m s.l.m. (quota media) e si estende su un area di circa 65 ha.

Il progetto agrovoltaico proposto dalla società ITS MEDORA Srl, prevede che lo stesso venga collegato mediante cavidotto interrato a 30 kV di lunghezza pari a circa 16 km alla rete di trasmissione nazionale (RTN) di Terna, da realizzare nel comune di Ramacca (CT), previa realizzazione di una stazione elettrica di trasformazione della tensione da 30 kV a 150 kV.

2. CARATTERISTICHE FISICHE E TECNICHE DELL'INTERVENTO

2.1. Componenti dell'impianto

Gli elementi principali costituenti l'impianto fotovoltaico sono:

- Moduli fotovoltaici;
- Convertitori di potenza;
- Trasformatori;
- Strutture di supporto (tracker);
- Cavi e quadri di campo;
- Quadri MT;
- Cavidotto.

2.1.1. Moduli fotovoltaici

I moduli previsti per la realizzazione del generatore fotovoltaico hanno potenza nominale fino a 665 Wp e sono di tipo monocristallino da 132 celle (le misurazioni sono state eseguite in condizioni standard ovvero 1000 W/m², 25°C, AM 1,5) - Figura 1.

Sul prodotto è prevista la garanzia di 12 anni ed è realizzato con celle ad alta efficienza.

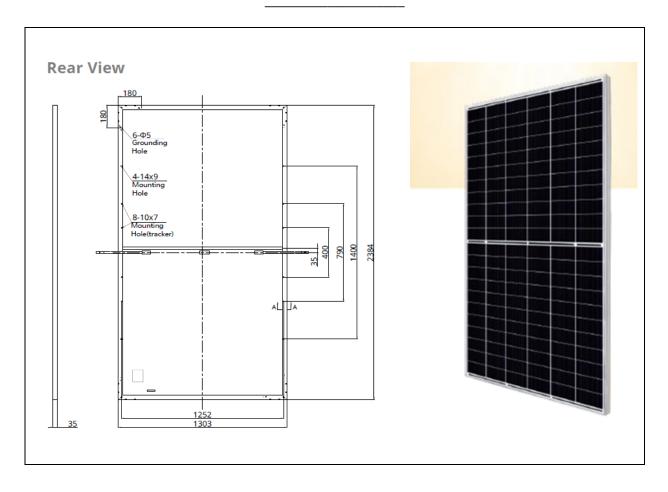


Figura 1: pannello FV fino a 665 Wp con dimensioni 2384 x 1303 x 35 mm

Di seguito si riportano le caratteristiche dimensionali del modulo fotovoltaico:

Altre informazioni, dettagliate, su caratteristiche operative ed elettriche relative alla capacità di produzione in funzione dei valori fisici esterni, quali temperature, umidità, irraggiamento, sono riportate nella scheda tecnica del pannello fornita dal costruttore ed allegata al presente progetto.

Dati caratteristici del Pannello Monocristallino da 132 celle scelto

HiKu7 Mono PERC

640 W ~ 670 W

CS7N-640 | 645 | 650 | 655 | 660 | 665 | 670 MS

MORE POWER

Module power up to 670 W Module efficiency up to 21.6 %

Up to 3.5 % lower LCOE Up to 5.7 % lower system cost

Comprehensive LID / LeTID mitigation technology, up to 50% lower degradation

Better shading tolerance

MORE RELIABLE

40 °C lower hot spot temperature, greatly reduce module failure rate

Minimizes micro-crack impacts

Heavy snow load up to 5400 Pa, wind load up to 2400 Pa*

Enhanced Product Warranty on Materials and Workmanship*

Linear Power Performance Warranty*

1" year power degradation no more than 2% Subsequent annual power degradation no more than 0.55%

According to the applicable Canadian Solar Limited Warranty Statement.

MANAGEMENT SYSTEM CERTIFICATES*

ISO 9001:2015 / Quality management system ISO 14001:2015 / Standards for environmental management system ISO 45001: 2018 / International standards for occupational health & safety

PRODUCT CERTIFICATES*

IEC 61215 / IEC 61730 / CE / INMETRO / MCS / UKCA UL 61730 / IEC 61701 / IEC 62716 / IEC 60068-2-68 UNI 9177 Reaction to Fire: Class 1 / Take-e-way

* The specific certificates applicable to different module types and markets will vary, and therefore not all of the certifications listed herein will simultaneously apply to the products you order or use. Please contact your local Canadian Solar sales representative to confirm the specific certificates available for your Product and applicable in the regions in which the products will be used.

CSI Solar Co., Ltd. is committed to providing high quality solar photovoltaic modules, solar energy and battery storage solutions to customers. The company was recognized as the No. 1 module supplier for quality and performance/price ratio in the IHS Module Customer Insight Survey. Over the past 20 years, it has successfully delivered over 63 GW of premium-quality solar modules across the world.

-	 -		•	•	

CS7N	CAOME	CAENIC	CEOMIC	CEENIC	CCOME	665MS	570MC
							D/UIVIS
Nominal Max. Power (Pmax)	640 W	645 W	650 W	655 W	660 W	665 W	570 W
Opt. Operating Voltage (Vmp)	37.5 V	37.7 V	37.9 V	38.1 V	38.3 V	38.5 V	38.7 V
Opt. Operating Current (Imp)	17.07 A	17.11 A	17.16 A	17.20 A	17.24 <i>F</i>	17.28 A	17.32 A
Open Circuit Voltage (Voc)	44.6 V	44.8 V	45.0 V	45.2 V	45.4 V	45.6 V	45.8 V
Short Circuit Current (Isc)	18.31 A	18.35 A	18.39 A	18.43 A	18.47 A	18.51 A	18.55 A
Module Efficiency	20.6%	20.8%	20.9%	21.1%	21.2%	21.4%	21.6%
Operating Temperature	-40°C ~	+85°C					
Max. System Voltage	1500V	(IEC/UL)) or 100	OV (IEC	′UL))		
Module Fire Performance		(UL 617 SS C (IE0			′PE 2 (U	L 61730	1000V)
Max. Series Fuse Rating	30 A						
Application Classification	Class A						
Power Tolerance	0 ~ + 1	0 W					

	DICAL		NMOT*
CLECI	KICAL	DAIA	

CS7N	640MS	645MS	650MS	655MS	660MS	665MS	70MS
Nominal Max. Power (Pmax)	480 W	484 W	487 W	491 W	495 W	499 W	02 W
Opt. Operating Voltage (Vmp)	35.2 V	35.3 V	35.5 V	35.7 V	35.9 V	36.1 V	6.3 V
Opt. Operating Current (Imp)	13.64 A	13.72 A	13.74 A	13.76 A	13.79 A	13.83 A	3.85 A
Open Circuit Voltage (Voc)	42.2 V	42.3 V	42.5 V	42.7 V	42.9 V	43.1 V	13.3 V
Short Circuit Current (Isc)	14.77 A	14.80 A	14.83 A	14.86 A	14.89 A	14.93 A	4.96 A
* Under Nominal Module Operating Te temperature 20°C, wind speed 1 m/s.	mperature	e (NMOT),	irradiance	of 800 W/	m², spectri	um Alvi 1.5,	ambient

MECHANICAL DATA

Specification	Data
Cell Type	Mono-crystalline
Cell Arrangement	132 [2 x (11 x 6)]
Dimensions	2384 × 1303 × 35 mm
Dimensions	(93.9 × 51.3 × 1.38 in)
Weight	34.4 kg (75.8 lbs)
Front Cover	3.2 mm tempered glass with anti-ref- lective coating
Frame	Anodized aluminium alloy,
riaille	crossbar enhanced
J-Box	IP68, 3 bypass diodes
Cable	4 mm ² (IEC), 12 AWG (UL)
Cable Length (Including Connector)	460 mm (18.1 in) (+) / 340 mm (13.4 in) (-) or customized length*
Connector	T4 series or MC4-EVO2
Per Pallet	31 pieces

Per Container (40' HQ) 527 pieces

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.34 % / °C
Temperature Coefficient (Voc)	-0.26 % / °C
Temperature Coefficient (Isc)	0.05 % / °C

2.1.2.Convertitori di potenza

La conversione della corrente da continua in alternata sarà realizzata mediante dei gruppi statici trifase (inverter) della potenza di 175 kWp costituito da 20 ingressi per stringhe e relativo monitoraggio. Presenta un'efficienza massima del 99% (corrispondente al 98,69% di efficienza europea), con n.9 MPPT indipendenti, in grado di ridurre le perdite per mismatching delle stringhe. Il grado di protezione IP 68 è adatto per esterno e dotato di raffreddamento naturale.

L'energia derivata dalla trasformazione dell'irraggiamento solare verrà trasformata da continua in alternata mediante l'impiego di macchine statiche, appunto l'inverter, necessarie a realizzare la trasformazione dell'energia prodotta da CC in CA ed eseguire, in automatico, il parallelo con la rete adeguando i propri parametri a quelli di rete, indipendentemente dalla quantità di energia prodotta e dalle condizioni meteo, per la successiva immissione nella rete elettrica.

^{*} For detailed information, please contact your local Canadian Solar sales and technical representatives.

·

La scelta dell'inverter per i sistemi fotovoltaici avviene in funzione del migliore compromesso raggiungibile nell'accoppiamento tra i pannelli fotovoltaici ed il dispositivo di conversione della potenza da CC in CA (l'inverter appunto).

I gruppi di conversione scelti sono dotati di un insieme di componenti, quali filtri, dispositivi di sezionamento, di protezione e di controllo - che li rendono idonei per la trasformazione della potenza prodotta dal generatore fotovoltaico e successiva immissione in rete - in quanto rispondenti ai requisiti normativi e tecnici in vigore poiché permetteranno di ridurre i costi di installazione, i materiali accessori e garantiranno maggiore sicurezza grazie al monitoraggio continuo, di cui sono dotati, secondo le norme CEI di riferimento applicabili.

Nell'impianto saranno presenti diversi tipi di tensione, in particolare sarà in CC all'uscita delle varie stringhe con un valore prossimo a 1400 Vcc, quindi, operante in bassa tensione (essendo 1500 Vcc il limite normativo), quindi a seguito della conversione eseguita dagli inverter di stringa, la tensione sarà pari a 400 Vca, in corrente alternata.

Ogni inverter avrà una potenza complessiva nominale di 175 kWp, valore raggiungibile attraverso il collegamento di stringhe ai 20 ingressi (+ e -), che fanno capo a n.9 inseguitori indipendenti, aventi la funzione di ottimizzare, mediante un algoritmo interno, la produzione di energia da ciascun ingresso, attraverso l'algoritmo interno (MPPT).

Tutti gli inverter sono dotati di sistema per seguire il punto di massima potenza dell'ingresso corrispondente alla/e stringhe su ciascun ingresso indipendente della curva caratteristica I-V (ovvero la funzione MPPT) e costruire l'onda sinusoidale in uscita con la tecnica PWM, così da contenere l'ampiezza delle armoniche entro valori assimilabili migliorando al contempo l'efficienza di conversione in funzione dei dati di ingresso dovuti all'irraggiamento solare.

Di seguito sono riportati i parametri tecnici dell'inverter rilevati dalla scheda tecnica fornita dal costruttore - Tabella 1.

May Efficiency	Efficiency 99.03%
Max. Efficiency	
European Efficiency	98.69% Input
Max. Input Voltage	1,500 V
Max. Current per MPPT	26 A
Max. Short Circuit Current per MPPT	40 A
Start Voltage	550 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
Number of Inputs	18
Number of MPP Trackers	9
vullber of WFF Trackers	Output
Nominal AC Active Power	175,000 W @40°C, 168,000 W @45°C, 160,000 W @50°C
Max. AC Apparent Power	185,000 W @40 0, 105,000 W @45 0, 100,000 W @30 0
Max. AC Active Power (cosφ=1)	185,000 VA
Naminal Output Voltage	800 V, 3W + PE
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	126.3 A @40°C, 121.3 A @45°C, 115.5 A @50°C
Max. Output Current	134.9 A
578 578 5850 3 550 586 58 550 550 550	0.8 LG 0.8 LD
Adjustable Power Factor Range Max. Total Harmonic Distortion	<3%
viax. Total Harmonic Distortion	
nout-side Disconnection Povice	Protection Yes
nput-side Disconnection Device Anti-islanding Protection	Yes
AC Overcurrent Protection	Yes
	Yes
OC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	
OC Surge Arrester	Type II
AC Surge Arrester	Type II
OC Insulation Resistance Detection	Yes
Residual Current Monitoring Unit	Yes
Disalan	Communication
Display	LED Indicators, WLAN + APP
JSB MBUS	Yes
MBUS	Yes
RS485	Yes
Dimensions (Maritter D)	General
Dimensions (W x H x D)	1,035 x 700 x 365 mm (40.7 x 27.6 x 14.4 inch)
Weight (with mounting plate)	84 kg (185.2 lb.)
Operating Temperature Range	-25°C ~ 60°C (-13°F ~ 140°F)
Cooling Method	Smart Air Cooling
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
Relative Humidity	0 ~ 100%
DC Connector	Staubli MC4 EV02
AC Connector	Waterproof Connector + OT/DT Terminal
Protection Degree	IP66
Topology	Transformerless

Tabella 1: Caratteristiche dell'inverter da 175 kWp scelto per il progetto in esame

La configurazione dell'inverter permette di collegare ciascuna stringa ad un ingresso indipendente, i quali sono dotati di sezionatori "DC Switch Box" e di SPD, scaricatori di sovratensione, oltre che di un filtro di protezione da armoniche, già integrati nell'inverter. A valle del filtro, ciascun MPPT provvede a trasformare l'energia elettrica per fornire all'inverter il miglior valore della curva caratteristica I-V in conseguenza del quale il rendimento di conversione risulta essere sempre il massimo possibile, indipendentemente dal funzionamento di ciascuna stringa fotovoltaica.

In uscita dall'inverter si avrà la massima energia disponibile in BT.

2.1.3. Trasformatore

Il sistema di conversione prevede delle cabine di trasformazione in posizione baricentriche, per ogni gruppo di stringhe, con installazione di quadri di campo, che, a loro volta, sono collegati ad un gruppo di conversione in corrente alternata.

Il sistema di conversione, controllo, consegna, è sistemato in un locale protetto, che sarà collegato al trasformatore, posizionato all'interno del locale tecnico apposito (inverter/trafo) utilizzato per elevare il livello di tensione da 400V a 30kV.

Technical data and types							
Type code	1850	2220	2590	2960	3330	3700	4070
Invertor	PVS-175-TL						
Number of invertors in parallel	10	12	14	16	18	20	22
Maximum rating in kVA		2220	2590		3300		4070
LV distribution panel							
Number of fused protected feeders	10	12	14	16	18	20	22
Fuse rating of feeders							
Breakable on load				Yas			
Overvoltage protection - replaceable surge arrester				e 2 (Type 1+2			
MV transformer							
Transformer type				Dil immersed (0			
AC Power № 30° C in kVA	1850	2220	2590	2960	3300	3700	4070
AC Power IF 40° C in kVA	1750	2100	2450	2800		3500	3850
Low voltage level				800 V			
Medium voltage level range				≤ 36kV			
Rated frequency				50 Hz or 60	Hz		
Oil type				eral (vegetable			
Tap changer	± 2 x 2.5%						
Winding material (primary / secondary)				Al / Al			
Eco afficiency optional	Yas						
MV switchgear							
Switchgear type				SF _a -insulate	d		
Rated current				630 A			
Configuration			Single	(CV) or double	leeder (CCV)		
Protection (up to 24 kV / up to 36 kV)	Single (CV) or double feeder (CCV) Circuit breaker (15 kA or 20 kA / 20 kA or 25 kA)						
Protection relay type	Circuit breaker (16 kA or 20 kA / 20 kA or 25 kA)						
	REJ603 (others on request)						
Motorized optional				Yas			
Auxillary supply					-		
Auxiliary transformer power	10 kVA (higher on request)						
Auxiliary transformer voltage	800 / 400-230 V						
Low voltage distribution panel for auxiliary functions				Yas			
Mechanical characteristics							
Dimensions (length x width x height) in mm				5700 x 2150 x			
Weight approx. in ton	9 9 10 10 10 11 11						
Environmental							
Operating temperature range				O" C (with dera			
Operating altitude range				≤ 2000 m			
Relative humidity (non-condensing)				≤ 95%			
Environmental protection rating				IP 54			
Painting corrosion protection				C4 (C5M optio			
Product compliance							

Tabella 2: Caratteristiche del trasformatore trifase immerso in olio minerale

2.1.4. Strutture supporto moduli fotovoltaici - TRACKER

La struttura di sostegno delle vele sarà realizzata mediate l'utilizzo di tracker motorizzati monoassiali, su cui saranno alloggiati i pannelli fotovoltaici, sostenuti da una intelaiatura di profili in acciaio zincato a caldo. La struttura di sostegno della vela sarà realizzata con montanti in acciaio infissi nel terreno ad una profondità variabile tra 1,5 e 2,0 m secondo le caratteristiche geomorfologiche del terreno e con quota variabile rispetto al piano di campagna su un'inclinazione del terreno compresa tra 0,0 m a 0,6 m, lungo la linea di movimentazione avente una lunghezza di 15 m, e sorretta da n.3 montanti in acciaio. La scelta della profondità di infissione nel terreno sarà anche definita in seguito alle verifiche di tenuta allo sfilaggio.

I pali di sostegno dei tracker, su cui saranno montati i pannelli, potranno avere un'altezza variabile e funzionale rispetto alla pendenza del terreno (che varia nell'ordine del 5%). La movimentazione del tracker avrà il compito di predisporre l'inclinazione della stringa sempre nella direzione della radiazione solare, in relazione al movimento che il tracker potrà disegnare nel suo movimento "basculante", in modo da poter ottimizzare la quantità di radiazione incidente captata dalla vela.

Il movimento circolare - che potrà avere un'altezza variabile da 0,50 m ad una massima di 3,50 m, rispetto al piano di campagna - sarà sempre funzione delle diverse pendenze presenti sul terreno.

Il sistema di movimentazione sarà gestito mediante un automatismo, costituito da anemometri, in grado di valutare la ventosità e mediante un sistema di captazione della radiazione luminosa, quale il solarimetro, avente la funzione di orientare il sistema nella direzione della radiazione incidente. Il sistema potrà avere una programmazione annuale realizzata mediante orologio astronomico in grado di descrivere giornalmente la traiettoria del sole e, come conseguenza, la movimentazione del tracker.

Il sistema di sostegno, visibile nella figura seguente, deve reggere il peso del tracker e dei pannelli oltre ai carichi derivanti da condizioni ambientali avverse. Su tali pali, su cui saranno montati i sistemi "tracker", saranno posizionati le strutture di sostegno dei pannelli, realizzati in profilati zincati a caldo ad omega, per il bloccaggio dei moduli fotovoltaici. Ulteriori dettagli sul sistema di fissaggio dei moduli sono riportati nella scheda tecnica fornita dal costruttore.

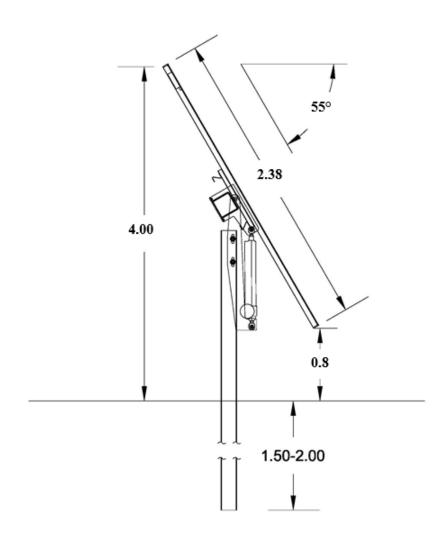


Figura 2 - struttura di sostegno dei pannelli fotovoltaici

2.1.5. Cavi e quadri di campo

Poiché l'impianto sarà realizzato da tracker della potenza a seconda della configurazione di 23.94 kWp o 47.88 kWp si è valutata la possibilità di collegare ciascuna stringa, costituente il tracker all'ingresso dell'inverter, essendo questo dotato di n.20 ingressi indipendenti e con n°9 inseguitori indipendenti. Per cui il parallelo tra le varie stringhe viene realizzato direttamente dall'inverter con vantaggio sia sotto l'aspetto tecnico- meno collegamenti - che economico - meno materiali da utilizzare.

Tale soluzione permette il controllo da rete del funzionamento delle varie stringhe permettendo il monitoraggio della trasmissione dei valori di lettura rilevati per ogni singola stringa.

I quadri di sotto-campo saranno posizionati in uscita dall'inverter per poter effettuare il parallelo sul lato AC e ridurre il numero di cavi di BT da installare nell'impianto. Avranno funzione di protezione e sezionamento delle linee in BT anche durante le operazioni di controllo e manutenzione dei moduli.

I vari quadri potranno essere dotati di appositi scaricatori, di elettronica di sorveglianza, connettori RJ45, morsetti per uscita di segnalazione guasti, morsetto nodo equipotenziale e quant'altro necessario per operare in sicurezza.

Su ciascun arrivo dalle rispettive linee saranno previsti sezionatori.

Il quadro di campo dovrà essere a tenuta d'acqua (livello di protezione minimo IP55) per esterno e fabbricato con resina autoestiguente (o in metallo), con pressacavi e chiusura meccanica.

2.1.6.Quadri MT

La connessione alla rete elettrica, di ogni sezione dell'impianto, è prevista tramite linea interrata, in entra-esce da ciascuna sezione di impianto attraverso il collegamento di numero 6 cabine di campo, dalla potenza complessiva di 5MWp/cadauna, fino alla cabina di consegna, sita nel punto di accesso all'impianto, in prossimità della strada provinciale, da cui partirà la linea di consegna alla Sottostazione Elettrica e di lì alla stazione primaria di Terna. Le linee di collegamento tra le varie cabine di campo e la cabina di consegna, saranno realizzate in cavo interrato alla tensione di 30kV, in modo da ridurre le perdite lungo il tracciato.

Nella cabina di consegna posta all'ingresso dell'impianto fotovoltaico, saranno ubicati i quadri di sezionamento e di protezione delle varie sezioni di impianto.

A partire dalla cabina di consegna del campo fotovoltaico e fino alla cabina di consegna utente, realizzata in prossimità della sottostazione di Terna, sarà realizzato un cavidotto interrato con tensione di consegna a 30kV, che opportunamente trasformata nella cabina di consegna, dopo l'elevazione da 30kV a 150 kV, mediante trasformatore, sarà collegata alla RTN di Terna.

Per quanto riguarda l'impianto fotovoltaico, sono previste n.4 sezioni o cabine di campo. In ciascuna sezione saranno presenti n.2 trasformatori da 2500kVA, per un totale di 5MVA. Ciascuna cabina, realizzata in container attrezzati saranno collegati le varie linee in BT derivate dagli inverter di campo che opereranno la trasformazione della potenza da continua, prodotta dai pannelli fotovoltaici, in alternata. Gli inverter saranno posizionati ai bordi della viabilità interna, anch'essi in coppia, in modo da realizzare un solo cavidotto

.

in BT di collegamento tra inverter e cabina di campo, riducendo notevolmente il numero di cavidotti necessari. Le varie linee di collegamento in BT di uscita dagli inverter andranno a confluire nelle platee attrezzate in cui saranno posizionati i quadri di parallelo per il collegamento alle cabine di trasformazione.

Tali inverter saranno posizionati in prossimità della viabilità interna, alloggiati su una struttura costituita da due traverse ed una tettoia in legno o similare, sotto la quale saranno posizionati. In tal modo saranno derivate linee in BT di collegamento al quadro di parallelo posto in prossimità della cabina elettrica di campo.

2.1.7. Cavidotto per la trasmissione dell'energia prodotta e per il controllo dell'impianto

I collegamenti interni all'impianto fotovoltaico, tra le varie cabine di campo e la cabina di consegna, saranno realizzate in cavo interrato, con tensione di esercizio di 30kV. Ciascuna sezione di impianto, costituita da n.2 trasformatori da 2500 kVA, sarà collegata in parallelo, mediante cavidotto interrato ad una profondità superiore a 1,30 m, lungo la viabilità interna del campo, alla stazione di consegna. Ciascuna linea deve trasferire una potenza nominale di 5,0 MVA, prodotta dai due trasformatori, con tensione di 30,0 kV ed una corrente di linea pari a circa 100 A, in condizioni ottimali di irraggiamento. La sezione utilizzabile per tali linee potrà essere 150,0 mm² per le cabine più vicine e di 185,0 mm² per quelle più distanti. La lunghezza di ciascuna linea è legata al percorso stradale scelto. I cavidotti di collegamento delle cabine di campo, giunti nella cabina di consegna, una volta sezionati e protetti, dovranno collegarla con la stazione di utenza, la sottostazione elettrica, posta in prossimità della stazione di Terna. Tale cavidotto, sarà interrato ad una profondità non inferiore a 1,5 m e seguirà il tracciato riportato nella planimetria, per una lunghezza complessiva di circa 16 km.

La portata che tale cavo dovrà garantire, considerando i 30.000kVA di potenza nominale dell'impianto fotovoltaico, sarà data da circa 390 A, per cui la sezione indicativa più adatta è quella di 300 mmq. Tale valore di corrente è stato calcolato considerando nulle tutte le perdite di conversione, di trasmissione, di collegamento, ed altro, sapendo che il rendimento dell'impianto fotovoltaico è sempre inferiore rispetto al valore nominale di circa il 20%, con una riduzione significativa anche sulla corrente erogata.

I cavidotti seguiranno i percorsi interrati indicati nelle tavole progettuali e presenteranno le caratteristiche progettuali ivi riportare; trattandosi di cavi interrati, l'impatto estetico dei cavidotti sarà nullo.

I cavi saranno in alluminio ed avranno le seguenti caratteristiche di massima:

Designazione:	ARG7H1RNR o ARG7H1RNRX
Conduttori	a corda rotonda compatta di alluminio
Grado di isolamento:	18/30 kV
Sezione nominale	R 300 mmq
Tensione nominale:	30 kV

Tabella 3 – Caratteristiche dei cavi utilizzati

Dopo aver scelto la sezione commerciale del cavo, è stata effettuata la verifica con il criterio termico, con la condizione che la massima densità di corrente (e quindi la massima sovratemperatura rispetto all'ambiente circostante) non superi determinati valori di sicurezza. In base ai valori limiti delle portate di corrente (I_z) stabiliti dai costruttori dei cavi nelle varie condizioni di posa, quest'ultimi devono essere superiori alle correnti di impiego (Ib) calcolate in ogni tratto che compone il circuito elettrico:

$$I_z < I_b$$

Nel calcolo delle sezioni dei cavi si è tenuto conto anche del criterio economico, al fine di minimizzare il volume dei conduttori e quindi delle diverse sezioni delle linee.

2.1.8. Protezioni

Protezione dalle sovracorrenti

La protezione contro le sovracorrenti sarà assicurata secondo le prescrizioni della Norma CEI 64-8. In particolare, sarà assicurato il coordinamento tra i cavi e i dispositivi di massima corrente installati, secondo le seguenti regole:

$$I_b \le I_n \le I_z$$

 $I_{cc}^2 t \leq K^2 S^2$

Dove:

I_b = corrente di impiego del cavo

In = corrente nominale dell'interruttore

 I_z = portata del cavo

I_{cc} = corrente di cortocircuito

t = tempo di intervento dell'interruttore

K = coefficiente che dipende dal tipo di isolamento del cavo

S = sezione del cavo

Protezione contro i contatti diretti

Le varie sezioni dell'impianto sono costituite da sistemi di Categoria I. Non essendo presenti circuiti a bassissima tensione di sicurezza (SELV) né a bassissima tensione di protezione (PELV), la protezione contro i contatti diretti sarà assicurata mediante isolamento completo delle parti attive, sia per la sezione in corrente continua che per quella in corrente alternata.

Protezione contro i contatti indiretti

La protezione contro i contatti indiretti sarà assicurata mediante:

- messa a terra delle masse e delle masse estranee;
- scelta e coordinamento dei dispositivi di interruzione automatici della corrente di guasto, in conformità a quanto prescritto dalla Norma CEI 64-8.
- ricerca ed eliminazione del primo guasto a terra.

In particolare, l'impianto rientra nei sistemi di tipo "TN", saranno installati interruttori differenziali tali da garantire il rispetto della seguente relazione nei tempi riportati in tabella I:

$$Z_S \times I_a \leq U_0$$

Dove:

 Z_S è l'impedenza dell'anello di guasto comprensiva dell'impedenza di linea e dell'impedenza della sorgente

 I_a è la corrente che provoca l'interruzione automatica del dispositivo di protezione in Ampere, secondo le prescrizioni della norma 64-8/4; quando il dispositivo di protezione è un dispositivo di protezione a corrente differenziale, la I_a è la corrente differenziale $I_{\Delta n}$.

U₀ tensione nominale in CA (valore efficace della tensione fase - terra) in Volt.

U₀(V)	Tempo di interruzione (s)
120	0,8
230	0,4
400	0,2
>400	0,1

Tabella 4 - Tempi massimi di interruzione per sistemi TN

Per ridurre il rischio di contatti pericolosi il campo fotovoltaico lato corrente continua è assimilabile ad un sistema IT cioè flottante da terra. La separazione galvanica tra il lato corrente continua e il lato corrente alternata è garantita dalla presenza del trasformatore BT/MT. In tal modo perché un contatto accidentale sia realmente pericoloso occorre che si entri in contatto contemporaneamente con entrambe le polarità del campo. Il contatto

accidentale con una sola delle polarità non ha praticamente conseguenze, a meno che una delle polarità del campo non sia casualmente a contatto con la massa.

Per prevenire tale eventualità ogni inverter sarà munito di un opportuno dispositivo di rivelazione degli squilibri verso massa, che ne provoca l'immediato spegnimento e l'emissione di una segnalazione di allarme.

2.1.9. Stazione elettrica rete-utente

La società Terna S.p.A. responsabile in Italia della trasmissione e del dispacciamento dell'energia elettrica sulla rete ad alta e altissima tensione, con Codice Pratica 201901769, ha comunicato alla committenza la soluzione tecnica minima generale (STMG) per l'allacciamento alla rete elettrica nazionale. La proposta di soluzione, accettata dal proponente, prevede il collegamento in antenna a 150 kV con la sezione a 150 kV di una nuova stazione elettrica (SE) RTN 380/150 kV da inserire in entra - esce sulla futura linea RTN a 380 kV di cui al Piano di Sviluppo Terna, "Chiaramonte Gulfi - Ciminna".

Il punto in cui l'impianto viene collegato alla rete elettrica viene definito normativamente "punto di connessione". Il punto di consegna invece è costituito dal punto in cui termina l'impianto dell'utente ed inizia l'impianto di rete, e nel caso in questione coincide con la stazione elettrica di utenza.

La stazione elettrica di utenza costituisce quindi anche l'interfaccia tra l'impianto di utenza e quello di rete.

In corrispondenza della stazione di utenza saranno quindi installati tutti i dispositivi di regolazione e controllo dell'energia immessa in rete, nonché di protezione degli impianti elettrici.

La stazione utente avrà una sezione a 150 kV e una sezione in ingresso a 30 kV. La stazione è dimensionata secondo la massima potenza dell'impianto, e sarà costituita dalle seguenti opere e impianti:

- ▲ N° 1 montante di linea/trasformazione MT/AT, 30/150 KV composto dai seguenti dispositivi elettrici:
 - N° 1 trasformatore trifase di potenza 35 MVA, 150/30 kV, ONAF, provvisto di commutatore sotto carico lato AT;
 - N° 1 terna di scaricatori di sovratensione, per esterno ad ossido di zinco, 170 kV completi di conta scariche, installati sia a protezione del trasformatore di potenza e sia per il cavidotto in uscita interrato AT;
 - N° 3 trasformatori di corrente TA; 200-400/5-1-1-1 A, 20 VA-0.2, 20 VA-0.5, 30 VA-5P20, 20 VA-5P20;

[GR] [AC] ITS_RMC02_A11_Disciplinare descrittivo e prestazionale degli elementi tecnici.doc

• N° 1 terna di trasformatori di tensione induttivi TVI per esterno, con rapporto 150000: Z 3 - 100: Z3 V, 10 VA cl. 0.2;

- N° 1 interruttore tripolare, 170 kV;
- N° 1 terna di trasformatori di tensione capacitivi TV per esterno collegati sulle sbarre di parallelo, con rapporto 150000: Z3 - 100: Z3 - 100: Z3 - 100:3 V, 50 VACI.0.5, 50 VA-CI.0.5, 50 VA-3P;
- N° 1 sezionatore 170 kV;
- ▲ N° 1 edificio comandi e N°1 edificio ad uso del turbinista, costituiti da container coibentati e contenenti:
 - n° 1 trasformatore per servizi ausiliari MT/BT-potenza 50 kVA;
 - distribuzione ausiliaria C.A. e C.C. compresi di batterie composte;
 - impianto di illuminazione;
 - contatore per misure fiscali;
 - impianto di climatizzazione per i quadri Mt/Bt;
 - impianto di rilevazione incendio e antintrusione;
- ▲ N° 4 torri faro.

Il trasformatore di potenza sarà alimentato dal quadro elettrico MT di collegamento dell'elettrodotto interrato al parco fotovoltaico. L'energia elettrica, dopo essere stata trasformata alla tensione di 150 kV, verrà evacuata in AT mediante un cavo aereo a 150 kV.

Tutto l'impianto e le apparecchiature installate saranno corrispondenti alle prescrizioni delle Norme CEI generali (11-1) e specifiche. Le caratteristiche principali sono le seguenti:

- tensione massima: 170 kV;
- tensione nominale di tenuta a frequenza industriale sul sezionamento: 325 kV;
- tensione nominale di tenuta ad impulso atmosferico sul sezionamento: 750 kV.

Interruttori tripolari in SF6:

- corrente nominale: 2000 A;
- potere di interruzione nominale in cto cto: 31,5 kA.

Sezionatori tripolari verticali di sbarra, orizzontali con lame di messa a terra sulle partenze di linea:

• corrente nominale: 2000 A (non lame di terra);

corrente nominale di breve durata: 31,5 kA.

Sezionatore tripolare di messa a terra sbarre:

• corrente nominale di breve durata: 31.5 kA.

Trasformatori di corrente:

- rapporto di trasformazione nominale: 400-1600/5 A/A;
- corrente massima permanente: 1,2 I primaria nominale;
- corrente nominale termica di cto cto: 31,5 kA.

Trasformatori di tensione:

- rapporto di trasformazione nominale: 150.000/1.73/100/1.73 V/V;
- le prestazioni verranno definite in sede di progetto esecutivo.

I trasformatori di tensione saranno di tipo capacitivo, eccetto quelli dedicati alle misure contrattuali che potranno essere di tipo induttivo.

Sbarre:

• corrente nominale: 2000 A.

Trasformatore trifase in olio minerale:

- Tensione massima 170 kV;
- Frequenza 50 Hz;
- Rapporto di trasformazione 150/30 kV;
- Livello d'isolamento nominale all'impulso atmosferico 750 kV;
- Livello d'isolamento a frequenza industriale 325 kV;

Tensione di corto circuito 22,5 %:

- Collegamento avvolgimento Primario Stella;
- Collegamento avvolgimento Secondario Triangolo;
- Potenza in servizio continuo (ONAN-ONAF) 30-35 MVA;
- Peso del trasformatore completo 60 t.

Caratteristiche di massima dei componenti MT:

- tensione di esercizio nominale Vn 30 kV;
- tensione di isolamento nominale 36 kV;
- tensione di prova a 50 Hz 1 min 70 kV;
- tensione di tenuta ad impulso 170 kV;

- frequenza nominale 50 Hz;
- corrente nominale in servizio continuo In 630 A;
- corrente ammissibile di breve durata IK 16 kA;
- corrente di cresta IP 2,5. IK;
- temperatura di esercizio -5 ÷ +40 °C.

Interruttore a tensione nominale 150 kV:

GRANDEZZE NOMINALI		
Tipologia	Tipo 1	Tipo 2
· · ·		a 56 (*)
Poli (n°)		3
Tensione massima (kV)	1	70
Corrente nominale (A)	1250	2000
Frequenza nominale (Hz)	í	50
Tensione nominale di tenuta ad impulso atmosferico verso massa (kV)	750	
Tensione nominale di tenuta a frequenza industriale verso massa (kV)	3	25
Corrente nominale di corto circuito (kA)	20	31.5
Potere di stabilimento nominale in corto circuito (kA)	50	80
Durata nominale di corto circuito (s)		1
Sequenza nominale di operazioni	O-0,3"-(CO-1'-CO
Potere di interruzione nominale in discordanza di fase (kA)	5	8
Potere di interruzione nominale su linee a vuoto (A)	63	
Potere di interruzione nominale su cavi a vuoto (A)	160	
Potere di interruzione nominale su batteria di condensatori (A)	600	
Potere di interruzione nominale di correnti magnetizzanti (A)	15	
Durata massima di interruzione (ms)	60	
Durata massima di stabilimento/interruzione (ms)	80	
Durata massima di chiusura (ms)	150	
Massima non contemporaneità tra i poli in chiusura (ms)	5,0	
Massima non contemporaneità tra i poli in apertura (ms)	3,3	

^(*)Valori superiori, per condizioni particolari, potranno essere adottati.

Sezionatori orizzontali a tensione nominale 150 kV con lame di messa a terra:

GRANDEZZE NOMINALI			
Poli (n°)	3		
Tensione massima (kV)	145-170		
Corrente nominale (A)	2000		
Frequenza nominale (Hz)	50		
Corrente nominale di breve durata:			
- valore efficace (kA)	20-31.5		
- valore di cresta (kA)	50-80		
Durata ammissibile della corrente di breve durata (s)	1		
Tensione di prova ad impulso atmosferico:			
- verso massa (kV)	650		
- sul sezionamento (kV)	750		
Tensione di prova a frequenza di esercizio:			
- verso massa (kV)	275		
- sul sezionamento (kV)	315		
Sforzi meccanici nominali sui morsetti:			
- orizzontale longitudinale (N)	800		
- orizzontale trasversale (N)	270		
Tempo di apertura/chiusura (s)	≤15		
Prescrizioni aggiuntive per il sezionatore di terra			
- Classe di appartenenza	A o B, secondo CEI EN 61129		
- Tensioni e correnti induttive nominali elettromagnetiche ed elettrostatiche (kV,A)	Secondo classe A o B, Tab.1 CEI EN 61129		

Sezionatori verticali a tensione nominale 150 kV:

GRANDEZZE NOMINALI			
Poli (n°)	3		
Tensione massima (kV)	145-170		
Corrente nominale (A)	2000		
Frequenza nominale (Hz)	50		
Corrente nominale di breve durata:			
- valore efficace (kA)	20-31.5		
- valore di cresta (kA)	50-80		
Corrente nominale commutazione di sbarra (A)	1600		
Durata ammissibile della corrente di breve durata (s)	1		
Tensione di prova ad impulso atmosferico:			
- verso massa (kV)	650		
- sul sezionamento (kV)	750		
Tensione di prova a frequenza di esercizio:			
- verso massa (kV)	275		
- sul sezionamento (kV)	315		
Sforzi meccanici nominali sui morsetti:			
- orizzontale longitudinale (N)	1250		
- orizzontale trasversale (N)	400		
Tempo di apertura/chiusura (s)	≤15		

Sezionatore di terra sbarre a tensione nominale 150 kV:

GRANDEZZE NOMINALI			
Poli (n°)	3		
Tensione massima (kV)	145-170		
Frequenza nominale (Hz)	50		
Corrente nominale di breve durata:			
- valore efficace (kA)	20-31.5		
- valore di cresta (kA)	50-80		
Durata ammissibile della corrente di breve durata (s)	1		
Tensione di prova ad impulso atmosferico:			
- verso massa (kV)	650		
Tensione di prova a frequenza di esercizio:			
- verso massa (kV)	275		
Sforzi meccanici nominali sui morsetti:			
- orizzontale trasversale (N)	600		
Tempo di apertura/chiusura (s)	≤15		

Trasformatore di corrente a tensione nominale 150 kV:

GRANDEZZE NOMINALI				
Tensione massima	(kV)	170		
Frequenza	(Hz)	50		
Rapporto di trasformazione(**)	(A/A)	400/5 800/5 1600/5		
Numero di nuclei(**)	(n°)	3		
Corrente massima permanente	(p.u.)	1,2		
Corrente termica di corto circuito	(kA)	31,5		
Impedenza secondaria II e III nucleo a 75°C	(Ω)	≤0,4		
Reattanza secondaria alla frequenza industriale	(Ω)	Trascurabile		
Prestazioni(**) e classi di precisione:				
- I nucleo	(VA)	30/0,2 50/0,5		
- II e III nucleo	(VA)	30/5P30		
Fattore sicurezza nucleo misure		≤10		
Tensione di tenuta a f.i. per 1 minuto	(kV)	325		
Tensione di tenuta a impulso atmosferico	(kV)	750		
Salinità di tenuta alla tensione di 98 kV	(kg/m ³)	da 14 a 56(*)		
Sforzi meccanici nominali sui morsetti				
Secondo la Tab.8, Classe II della Norma CEI EN 600	044-1.			

^(*)Valori superiori, per condizioni particolari, potranno essere adottati.
(**) I valori relativi ai rapporti di trasformazione, alle prestazioni ed al numero dei nuclei devono intendersi come raccomandati; altri valori potranno essere adottati in funzione delle esigenze dell'impianto.

Trasformatore di tensione capacitivo a tensione nominale di 150 kV:

GRANDEZZE NOMINALI	
Tensione massima di riferimento per l'isolamento (kV)	170
Rapporto di trasformazione	150.000 / √3
	100 / √3
Frequenza nominale (Hz)	50
Capacità nominale (pF)	4000
Prestazioni nominali (VA/classe)	40/0,2-75/0,5-100/3P(**)
Fattore di tensione nominale con tempo di funzionamento di 30 s	1,5
Tensione di tenuta a f.i. per 1 minuto (kV)	325
Tensione di tenuta a impulso atmosferico (kV)	750
Salinità di tenuta alla tensione di 98 kV (kg/m³)	Da 14 a 56(*)
Scarti della capacità equivalente serie in AF dal valore nominale a frequenza di rete	-20% + 50%
Resistenza equivalente in AF (Ω)	≤ 40
Capacità e conduttanza parassite del terminale di bassa tensione a frequenza compresa tra 40 e 500 kHz, compresa l'unità elettromagnetica di misura:	
- C _{pa} (pF)	≤(300+0,05 C _n)
- G _{pa} (μS)	≤50
Sforzi meccanici nominali sui morsetti:	
- orizzontale, applicato a 600 mm sopra la flangia B (N)	2000
- verticale, applicato sopra alla flangia B (N)	5000

Trasformatore di tensione induttivo a tensione nominale di 150 kV:

GRANDEZZE NOMINALI		
Tensione massima di riferimento per l'isolamento (kV)	170	
Tensione nominale primaria (V)	150.000/√3	
Tensione nominale secondaria (V)	100/√3	
Frequenza nominale (Hz)	50	
Prestazione nominale (VA)(**)	50	
Classe di precisione	0,2-0,5-3P	
Fattore di tensione nominale con tempo di funzionamento di 30 s	1,5	
Tensione di tenuta a f.i. per 1 minuto (kV)	325	
Tensione di tenuta a impulso atmosferico (kV)	750	
Salinità di tenuta alla tensione di 98 kV (kg/m³)	Da 14 a 56(*)	
Sforzi meccanici nominali sui morsetti:		
- orizzontale (N)	Tab. 9 Norma	
- verticale (N)	CEI EN 60044- 2	

^(*)Valori superiori, per condizioni particolari, potranno essere adottati (**) I valori relativi alle prestazioni e al numero dei nuclei devono essere intesi come raccomandati altri valori potranno essere adottati in funzione delle esigenze dell'impianto.

^(*)Valori superiori, per condizioni particolari, potranno essere adottati
(**) I valori relativi alle prestazioni e al numero dei nuclei devono essere intesi come raccomandati; altri valori potranno essere adottati in funzione delle esigenze dell'impianto.

Scaricatori per tensione nominale a 150 kV:

GRANDEZZE NOMINALI	
Tensione di servizio continuo (kV)	110
Frequenza (Hz)	50
Salinità di tenuta alla tensione di 98 kV (kg/m³)	Da 14 a 56(*)
Massima tensione temporanea per 1s (kV)	158
Tensione residua con impulsi atmosferici di corrente (alla corrente nominale 8/20 μ s) (kV)	396
Tensione residua con impulsi di corrente a fronte ripido (10 kA - fronte 1 μs) (kV)	455
Tensione residua con impulsi di corrente di manovra (500 A, 30/60 µs) (kV)	318
Corrente nominale di scarica (kA)	10
Valore di cresta degli impulsi di forte corrente (kA)	100
Classe relativa alla prova di tenuta ad impulsi di lunga durata	2
Valore efficace della corrente elevata per la prova del dispositivo di sicurezza contro le esplosioni (kA)	31,5

^(*)Valori superiori, per condizioni particolari, potranno essere adottati