REGIONE PUGLIA Comune di Francavilla Fontana Provincia di Brindisi

PROGETTO DEFINITIVO

PROGETTO PER LA COSTRUZIONE ED ESERCIZIO DELL'IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA CON ASSOCIATO IMPIANTO AGRICOLO (AGRIVOLTAICO) E DELLE RELATIVE OPERE ED INFRASTRUTTURE CONNESSE DELLA POTENZA NOMINALE MASSIMA DI 80239 KW E DELLA POTENZA NOMINALE IN A.C. PARI A 65800 KW SITO NEL COMUNE DI FRANCAVILLA FONTANA (BR) CON OPERE DI CONNESSIONE RICADENTI ANCHE NEI COMUNI DI MANDURIA (TA), ORIA (BR) ED ERCHIE (BR)

TITOLO TAVOLA

CALCOLI PRELIMINARI IMPIANTI ELETTRICI

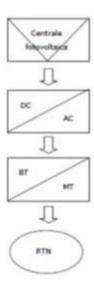
PROGETTAZIONICOLA SPAZIO RISERVATO AGLI ENTI PROPONENTE PROGETTISTI. MEAVILLA 1 SOLAR S.R.L. SEDE LEGALE Ing. Nicola ROSE MILANO (MI), cap 20131 viale Abruzzi nº 94 P.IVA 16318271000 Ing. Rocco SALOME, PROGETTISTI PARTI ELETTRICHE Per. Ind. Alessandro CORTI CONSULENZE E COLLABORAZIONI Arch Gianluca DI DONATO Ambiti archeologici - CAST s.r.l. Dott. Massimo MACCHIAROLA Ina Elvio MURETTA Geol. Vito PLESCIA

4.2.11_2	FILE EQWE434_4.2.11_2_CalcoliPreliminariImpiantiElettrici	CODICE PROGETTO EQWE434	SCALA	
				İ

REVISIONE	DATA	DESCRIZIONE REVISIONE	REDATTO	VERIFICATO	APPROVATO
Α	07/07/2022	EMISSIONE	ROSELLI	FRANCAVILLA1 SOLARSRL	FRANCAVILLA1SOLARSRL
В	DATA				
С	DATA				
D	DATA				
E	DATA				
F	DATA				

Ditta Proponente: Francavilla 1 Solar SRL

A.01 PREMESSA	2
A.02 PROGETTO DELL'IMPIANTO FOTOVOLTAICO	
A.02.1 Normativa di riferimento	
A.02.2 Dimensionamento dell'impianto fotovoltaico	
A.02.3 Sicurezza elettrica – Protezione dalle sovracorrenti	
A.02.4 Sicurezza elettrica – Protezione contro i contatti diretti	
A.02.5 Sicurezza elettrica – Protezione contro i contatti indiretti	
A.02.6 Attivazione dei tracker	
A.02.7 Convertitori di potenza - Inverter e Cabina di Campo	15
A.02.8 Impianto di terra	
A.04.09.2 Dimensionamento di massima della rete di terra	
A.02.9 Protezione da corto circuiti sul lato c.c. dell'impianto	
A.02.10 Sicurezze sul lato c.a. dell'impianto	
A.03 PROGETTO DELL'ELETTRODOTTO	
A.03.1 Normativa di riferimento	
A.03.2 Generalità	
A.03.3 Descrizione del tracciato	
A.03.4 Caratteristiche tecniche dell'elettrodotto in progetto e dimensionamento del cavo	
A.03.5 Campi elettrici e magnetici	
A.03.6 Modalità di posa	
A.03.7 Fibre ottiche	
A.03.8 Protezione dalle fulminazioni	
A OA TARELLE PLASSIBILIVE - DIMENSIONAMENTO EL ETTRICO	


A.01 PREMESSA

Il presente documento fornisce la descrizione dei calcoli preliminari degli impianti elettrici costituenti l'intero progetto.

Tale descrizione riguarda:

- il sistema fotovoltaico inteso come il raggruppamento dei moduli fotovoltaici, la trasformazione dell'energia solare in energia elettrica e i convertitori di potenza inverter;
- il trasporto dell'energia prodotta dal campo fotovoltaico tra questo e il punto di connessione, trasporto che avverrà con appositi elettrodotti interrati a 36 kV;

L'impianto sarà di tipo inseguitore monoassiale dotati di una tecnologia elettromeccanica per seguire ogni giorno l'esposizione solare Est-Ovest. Lo schema a blocchi dell'impianto sarà:

Nei paragrafi successivi saranno descritti in maniera più approfondita le varie componenti del ciclo produttivo sopra indicato, mentre in allegato alla presente sono riportate le risultanze elettriche delle varie componenti dell'impianto.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	2	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi)	
Ditta Proponente: Francavilla 1 Solar SRL	

A.02 PROGETTO DELL'IMPIANTO FOTOVOLTAICO

A.02.1 Normativa di riferimento

CEI 82-25: guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di Media e Bassa Tensione.

CEI 82-25; V2: guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di Media e Bassa Tensione.

CEI EN 60904-1(CEI 82-1): dispositivi fotovoltaici Parte 1: Misura delle caratteristiche fotovoltaiche tensione-corrente.

CEI EN 60904-2 (CEI 82-2): dispositivi fotovoltaici - Parte 2: Prescrizione per le celle fotovoltaiche di riferimento.

CEI EN 60904-3 (CEI 82-3): dispositivi fotovoltaici - Parte 3: Principi di misura per sistemi solari fotovoltaici per uso terrestre e irraggiamento spettrale di riferimento.

CEI EN 61215 (CEI 82-8): moduli fotovoltaici in silicio cristallino per applicazioni terrestri. Qualifica del progetto e omologazione del tipo.

CEI EN 61646 (82-12): moduli fotovoltaici (FV) a film sottile per usi terrestri - Qualifica del progetto e approvazione di tipo.

CEI EN 61724 (CEI 82-15): rilievo delle prestazioni dei sistemi fotovoltaici - Linee guida per la misura, lo scambio e l'analisi dei dati.

CEI EN 61730-1 (CEI 82-27): qualificazione per la sicurezza dei moduli fotovoltaici (FV) - Parte 1: Prescrizioni per la costruzione.

CEI EN 61730-2 (CEI 82-28): qualificazione per la sicurezza dei moduli fotovoltaici (FV) - Parte 2: Prescrizioni per le prove.

CEI EN 62108 (82-30): moduli e sistemi fotovoltaici a concentrazione (CPV) - Qualifica di progetto e approvazione di tipo.

CEI EN 62093 (CEI 82-24): componenti di sistemi fotovoltaici - moduli esclusi (BOS) - Qualifica di progetto in condizioni ambientali naturali.

CEI EN 50380 (CEI 82-22): fogli informativi e dati di targa per moduli fotovoltaici.

CEI EN 50521 (CEI 82-31): connettori per sistemi fotovoltaici - Prescrizioni di sicurezza e prove.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	3	34

CEI EN 50524 (CEI 82-34): fogli informativi e dati di targa dei convertitori fotovoltaici.

CEI EN 50530 (CEI 82-35): rendimento globale degli inverter per impianti fotovoltaici collegati alla rete elettrica.

EN 62446 (CEI 82-38): grid connected photovoltaic systems - Minimum requirements for system documentation, commissioning tests and inspection.

CEI 20-91: cavi elettrici con isolamento e guaina elastomerici senza alogeni non propaganti la fiamma con tensione nominale non superiore a 1 000 V in corrente alternata e 1 500 V in corrente continua per applicazioni in impianti fotovoltaici.

UNI 10349: riscaldamento e raffrescamento degli edifici. Dati climatici.

UNI/TR 11328-1: "Energia solare - Calcolo degli apporti per applicazioni in edilizia - Parte 1: Valutazione dell'energia raggiante ricevuta".

CEI 0-2: guida per la definizione della documentazione di progetto per impianti elettrici.

CEI 0-16: regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica.

CEI 0-21: regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica.

CEI 11-20: impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria.

CEI EN 50438 (CT 311-1): prescrizioni per la connessione di micro-generatori in parallelo alle reti di distribuzione pubblica in bassa tensione.

CEI 64-8: impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua.

CEI EN 60099-1 (CEI 37-1): scaricatori - Parte 1: Scaricatori a resistori non lineari con spinterometri per sistemi a corrente alternata

CEI EN 60439 (CEI 17-13): apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT).

CEI EN 60445 (CEI 16-2): principi base e di sicurezza per l'interfaccia uomo-macchina, marcatura e identificazione - Individuazione dei morsetti e degli apparecchi e delle estremità dei conduttori designati e regole generali per un sistema alfanumerico.

CEI EN 60529 (CEI 70-1): gradi di protezione degli involucri (codice IP).

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	4	34

CEI EN 60555-1 (CEI 77-2): disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da equipaggiamenti elettrici simili - Parte 1: Definizioni.

CEI EN 61000-3-2 (CEI 110-31): compatibilità elettromagnetica (EMC) - Parte 3: Limiti - Sezione 2: Limiti per le emissioni di corrente armonica (apparecchiature con corrente di ingresso " = 16 A per fase).

CEI EN 62053-21 (CEI 13-43): apparati per la misura dell'energia elettrica (c.a.) - Prescrizioni particolari - Parte 21: Contatori statici di energia attiva (classe 1 e 2).

CEI EN 62053-23 (CEI 13-45): apparati per la misura dell'energia elettrica (c.a.) - Prescrizioni particolari - Parte 23: Contatori statici di energia reattiva (classe 2 e 3).

CEI EN 50470-1 (CEI 13-52): apparati per la misura dell'energia elettrica (c.a.) - Parte 1: Prescrizioni generali, prove e condizioni di prova - Apparato di misura (indici di classe A, B e C).

CEI EN 50470-3 (CEI 13-54): apparati per la misura dell'energia elettrica (c.a.) - Parte 3: Prescrizioni particolari - Contatori statici per energia attiva (indici di classe A, B e C).

CEI EN 62305 (CEI 81-10): protezione contro i fulmini.

CEI 81-3: valori medi del numero di fulmini a terra per anno e per chilometro quadrato.

CEI 20-19: cavi isolati con gomma con tensione nominale non superiore a 450/750 V.

CEI 20-20: cavi isolati con polivinilcloruro con tensione nominale non superiore a 450/750 V.

CEI 13-4: sistemi di misura dell'energia elettrica - Composizione, precisione e verifica.

CEI UNI EN ISO/IEC 17025:2008: requisiti generali per la competenza dei laboratori di prova e di taratura.

Delibera ARG/ELT n. 33-08: condizioni tecniche per la connessione alle reti di distribuzione dell'energia elettrica a tensione nominale superiore ad 1 kV.

Deliberazione 84/2012/R/EEL: interventi urgenti relativi agli impianti di produzione di energia elettrica, con particolare riferimento alla generazione distribuita, per garantire la sicurezza del sistema elettrico nazionale.

D.Lgs. 81/2008: (testo unico della sicurezza): misure di tutela della salute e della sicurezza nei luoghi di lavoro e succ. mod. e int.

DM 37/2008: sicurezza degli impianti elettrici all'interno degli edifici

"Guida per l'installazione degli impianti fotovoltaici" - DCPREV, prot.5158 - Edizione 2012.

"Guida per l'installazione degli impianti fotovoltaici" - Nota DCPREV, prot.1324 - Edizione 2012.

"Guida per l'installazione degli impianti fotovoltaici" - Chiarimenti alla Nota DCPREV, prot.1324 "Guida per l'installazione degli impianti fotovoltaici – Edizione 2012".

Per quanto non esplicitato, normativa di riferimento del settore.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	5	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi) Ditta Proponente: Francavilla 1 Solar SRL	

A.02.2 Dimensionamento dell'impianto fotovoltaico

L'area d'interesse (di seguito "Area") per la realizzazione dell'impianto agrivoltaico con fotovoltaico a terra ad inseguimento mono-assiale, presenta un'estensione complessiva di circa 121 ha di cui circa 103 ha in cui insiste il campo fotovoltaico e la potenza complessiva massima dell'impianto sarà pari a 80,238 MWp con potenza nominale in A.C. di 65,80 MWp e sarà realizzato in un unico lotto.

L'Area è ubicata Regione Puglia, nel Comune di Francavilla Fontana (Provincia di Brindisi) ad una quota altimetrica di circa 160 m s.l.m., in c/da "Tramarulo" presso la tenuta "Cantagallo" e non risulta acclive ma piuttosto pianeggiante.

L'Area oggetto dell'intervento è ubicata geograficamente a Sud - Ovest del centro abitato del Comune di Francavilla Fontana e le coordinate geografiche del sito sono: Lat. 40,504408°, Long. 17,511569°. L'intera area ricade in zona agricola, la destinazione d'uso è "rurale".

Le aree interessate dall'attraversamento dell'elettrodotto interrato e dalle opere di connessione ricadono nei comuni di Francavilla Fontana, Oria (BR), Manduria (TA) e Erchie (BR).

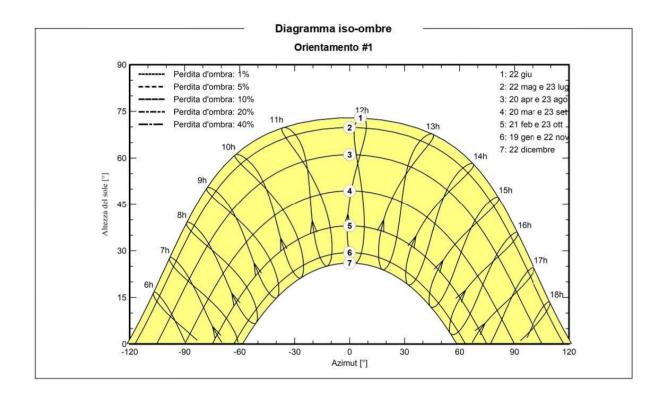
Nello specifico l'Area totale d'intervento (campo fotovoltaico e linea elettrica di connessione a 36 kV alla RTN) riguarderà i seguenti comuni:

- Comune di Francavilla Fontana (BR) campo fotovoltaico estensione complessiva dell'area circa mq 1.206.716,00 mq estensione complessiva dell'intervento mq 1.032.700,00;
- Comuni di Francavilla Fontana (BR), Oria (BR), Manduria (TA) e Erchie (BR)— Linea elettrica interrata di connessione della lunghezza complessiva di circa 27.2 km;
- Comune di Erchie (BR) –Sottostazione Terna- connessione.

Il parco agrivoltaico su indicazione del documento TERNA, codice pratica **202102280** che riporta la soluzione tecnica minima generale (STMG) per la connessione dell'impianto in oggetto alla rete di trasmissione nazionale, prevede, la realizzazione di un cavidotto a 36 kV, che allaccerà il parco agrivoltaico su una futura Stazione Elettrica (SE) di trasformazione della RTN da inserire in entraesce alla linea 380 kV "Erchie 380 – Taranto N2".

SIGL	A REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	6	34

|--|


L'impianto fotovoltaico, della potenza massima di picco pari a 80,238 MWp e con potenza nominale in A.C. di 65,80 MWp, sarà realizzato in un unico lotto e prevede i seguenti elementi:

- strutture per il supporto dei moduli (tracker mono-assiali) ciascuna alloggiante i moduli
 fotovoltaici disposti in verticale su una fila in modalità "portrait"; tali strutture di supporto
 costituiscono una stringa elettrica. Sono previste 4022 stringhe ciascuna costituita da 30
 moduli fotovoltaici bi-facciali;
- 120.660 moduli in silicio monocristallino della tipologia Canadian Solar mod. BiHiKu_CS7N-MS, della potenza di 665 W, bifacciale (o modello similare), per una potenza complessiva di picco pari a 80,238 MWp;
- n. 376 inverter di stringa della tipologia Huawei Technologies del tipo SUN2000-185KTL-H1,
 da ubicare in corrispondenza di ogni stringa come indicato nell'elaborato planimetria impianto;
- n. 15 cabine di campo destinate ad ospitare tutte le linee provenienti dagli inverter di stringa;
- n. 1 cabina generale di campo destinata ad ospitare tutte le linee provenienti dalle cabine di campo.

Il dimensionamento dell'impianto è stato condotto con il programma PVSYST di cui si riporta il report completo del dimensionamento elettrico.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	7	34

Ditta Proponente: Francavilla 1 Solar SRL

Dati di irraggiamento solare

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	8	34

Ditta Proponente: Francavilla 1 Solar SRL

Parametri principali

Eliostati illimitati Sistema connesso in rete

Orientamento campo FV

Algoritmo dell'inseguimento Orientamento

Assi inseguimento orizzontali N. di eliostati Calcolo astronomico

Eliostati illimitati Dimensioni

> Distanza eliostati 10.5 m Larghezza collettori 4.96 m Fattore occupazione (GCR) 47.2 % Banda inattiva sinistra 0.02 m Banda inattiva destra 0 02 m Phi min / max -/+ 60.0 °

Angoli limite ombreggiamento

Configurazione inseguitori

10 unità

Limiti phi +/- 61.5 ° Modelli utilizzati

Trasposizione Perez Diffuso Importato

Orizzonte Ombre vicine

Bisogni dell'utente Orizzonte libero Carico illimitato (rete) Senza ombre

Sistema bifacciale

Circumsolare

Modello Calcolo 2D

separare

eliostati illimitati

Geometria del modello bifacciale Definizioni per il modello bifacciale

Distanza eliostati 10.50 m 0.30 Albedo dal suolo ampiezza eliostati 5.00 m Fattore di Bifaccialità 70 % GCR 47.6 % Ombreg, posteriore 5.0 % Altezza dell'asse dal suolo 3.00 m Perd. Mismatch post. 10.0 % Frazione trasparente della tettoia 0.0 %

Caratteristiche campo FV

Modulo FV Inverter Canadian Solar Inc. Costruttore Huawei Technologies Costruttore SUN2000-185KTL-H1

Modello BiHiKu7_CS7N-MS Modello (PVsyst database originale) (definizione customizzata dei parametri)

Potenza nom. unit. 665 Wp Potenza nom. unit. 175 kWac Numero di moduli FV 120660 unità Numero di inverter 376 unità Nominale (STC) 80.24 MWc Potenza totale 65800 kWac Moduli 4022 Stringhe x 30 In serie Voltaggio di funzionamento 550-1500 V

In cond. di funz. (50°C) Potenza max. (=>30°C) 185 kWac 74.58 MWc Rapporto Pnom (DC:AC) Pmpp 1.22 1049 V

U mpp 71083 A

Potenza totale inverter Potenza PV totale

80239 kWp 65800 kWac Nominale (STC) Potenza totale Totale 120660 moduli Numero di inverter 376 unità Superficie modulo 374812 m² Rapporto Pnom 1.22

Ī	SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
		0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	9	34

Ditta Proponente: Francavilla 1 Solar SRL

Perdite campo

Perdite per sporco campo

Fatt. di perdita termica

Temperatura modulo secondo irraggiamento

Perdite DC nel cablaggio

Perdite per mismatch del modulo

0.24 mΩ 1.5 % a STC

1.0 % a MPP

Res. globale campo

Fraz. perdite

Fraz. perdite

Uc (cost)

Uv (vento) 0.0 W/m2K/m/s

29 0 W/m²K

LID - Light Induced Degradation Perdita di qualità moduli

0.1 %

0.0 % Fraz. perdite 1.0 % Fraz. perdite

Perdita disadattamento Stringhe Degrado medio dei moduli Fraz. perdite

Anno nº Fattore di perdita annuale 0.2 %/anno

Mismatch dovuto a degrado

Dispersione Imp RMS 0.2 %/anno Dispersione Vmp RMS 0.2 %/anno

Fattore di perdita IAM

Fraz. perdite

Effetto d'incidenza, profilo definito utente (IAM): Vetro Fresnel levigato, n = 1.526

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

Correzione spettrale

Primo modello solare

Acqua precipitabile stimata dall'umidità relativa

coefficienti	C0	C1	C2	C3	C4	C5
Monocrystalline Si	0,85914	-0,02088	-0,0058853	0,12029	0,026814	-0,001781

Perdite sistema

22.0 kW

indisponibilità del sistema

Perdite ausiliarie

0.5 % frazione di tempo

Ventilatori costanti

1.8 giorni, 3 periodi

22.0 kW dalla soglia di potenza Proporzionali alla potenza 5.0 W/kW

0.0 kW dalla soglia di potenza 7.0 kW Cons. aus. nottumo

Perdite cablaggio AC

Linea uscita inv. sino al trasformatore MT

Tensione inverter 800 Vac tri Fraz. perdite 0.00 % a STC

Inverter: SUN2000-185KTL-H1

Rame 376 x 3 x 3000 mm² Sezione cavi (376 Inv.) Lunghezza media dei cavi 20 m

Linea MV fino alla iniezione

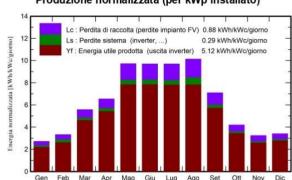
Voltaggio MV 36 kV

Media ciascun inverter

Conduttori All 3 x 185 mm² Lunghezza 27000 m Fraz. perdite 2.54 % a STC

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	10	34

Ditta Proponente: Francavilla 1 Solar SRL


Risultati principali

Produzione sistema

Energia prodotta 150051 MWh/anno Prod. Specif. Indice di rendimento PR

1870 kWh/kWc/anno 81.40 %

Produzione normalizzata (per kWp installato)

PR : Indice di rendimento (Yf / Yr) : 0.814 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

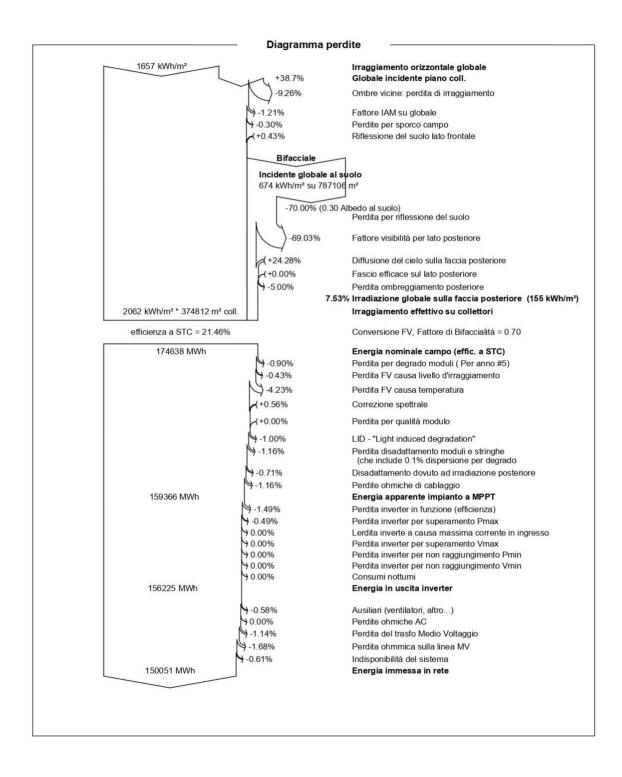
Indice di rendimento PR

Bilanci e risultati principali

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
Gennaio	60.3	32.05	6.32	84.1	70.4	5927	5583	0.828
Febbraio	66.7	34.68	8.46	93.2	79.7	6592	6000	0.802
Marzo	124.6	54.04	11.98	172.8	151.9	12174	11608	0.837
Aprile	146.2	62.71	14.43	196.1	177.0	13847	13173	0.837
Maggio	220.6	66.01	20.21	301.0	276.9	20636	19591	0.811
Giugno	216.8	71.38	22.89	290.8	269.4	20018	19013	0.815
Luglio	219.5	71.04	24.85	300.5	276.6	20564	19532	0.810
Agosto	220.2	57.95	26.34	314.0	285.5	21182	19601	0.778
Settembre	152.3	58.38	24.69	212.8	191.2	14591	13898	0.814
Ottobre	93.5	45.61	16.43	129.8	113.4	9081	8668	0.832
Novembre	66.8	30.11	14.43	97.0	81.1	6632	6337	0.814
Dicembre	69.2	25.39	9.37	105.3	88.9	7356	7047	0.834
Anno	1656.6	609.36	16.74	2297.4	2062.1	158598	150051	0.814

Legenda

GlobHor Irraggiamento orizzontale globale DiffHor Irraggiamento diffuso orizz. T_Amb Temperatura ambiente


GlobInc Globale incidente piano coll.

GlobEff Globale "effettivo", corr. per IAM e ombre EArray Energia effettiva in uscita campo E_Grid Energia immessa in rete PR

Indice di rendimento

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	11	34

Ditta Proponente: Francavilla 1 Solar SRL

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	12	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi) Ditta Proponente: Francavilla 1 Solar SRL	
Ditta Proponente. Francavilla i Solai SKL	

A.02.3 Sicurezza elettrica – Protezione dalle sovracorrenti

La protezione contro le sovracorrenti sarà assicurata secondo le prescrizioni della Norma CEI 64-8. In particolare sarà assicurato il coordinamento tra i cavi e i dispositivi di massima corrente installati, secondo le seguenti regole:

 $I_b \le I_n \le I_z$

 $I_{cc}^2 t \le K^2 S^2$, dove:

 I_{b} = corrente di impiego del cavo

 I_n = corrente nominale dell'interruttore

 I_z = portata del cavo

 I_{cc} = corrente di cortocircuito

t = tempo di intervento

dell'interruttore

K = coefficiente che dipende dal tipo di isolamento del cavo

S = sezione del cavo

A.02.4 Sicurezza elettrica – Protezione contro i contatti diretti

Le varie sezioni dell'impianto sono costituite da sistemi di Categoria I. Non essendo presenti circuiti a bassissima tensione di sicurezza (SELV) né a bassissima tensione di protezione (PELV), la protezione contro i contatti diretti sarà assicurata mediante isolamento completo delle parti attive, sia per la sezione in corrente continua che per quella in corrente alternata.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	13	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi) Ditta Proponente: Francavilla 1 Solar SRL	

A.02.5 Sicurezza elettrica – Protezione contro i contatti indiretti

Tutte le parti attive del generatore fotovoltaico saranno isolate da terra, mentre le masse metalliche saranno collegate all'impianto di terra di protezione.

La protezione contro i contatti indiretti sarà assicurata mediante:

- messa a terra delle masse e delle masse estranee;
- scelta e coordinamento dei dispositivi di interruzione automatici della corrente di guasto, in conformità a quanto prescritto dalla Norma CEI 64-8.
- ricerca ed eliminazione del primo guasto a terra.

In particolare, l'impianto rientra nei sistemi di tipo "TN", saranno installati interruttori differenziali tali da garantire il rispetto della seguente relazione nei tempi riportati in tabella I:

$$Z_S \times I_a \leq U_0$$

dove:

Zs è l'impedenza dell'anello di guasto comprensiva dell'impedenza di linea e dell'impedenza della sorgente

 I_a è la corrente che provoca l'interruzione automatica del dispositivo di protezione in Ampere, secondo le prescrizioni della norma 64-8/4; quando il dispositivo di protezione è un dispositivo di protezione a corrente differenziale, la I_a è la corrente differenziale $I_{\square n}$.

 U_0 tensione nominale in c.a. (valore efficace della tensione fase – terra) in Volt

Tab. I Tempi massimi di interruzione per sistemi TN

$\mathbf{U}_0(\mathbf{V})$	Tempo di interruzione (s)
120	0,8

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	14	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi)	
Ditta Proponente: Francavilla 1 Solar SRL	

230	0,4
400	0,2
>400	0,1

Per ridurre il rischio di contatti pericolosi il campo fotovoltaico lato corrente continua è assimilabile ad un sistema IT cioè flottante da terra. La separazione galvanica tra il lato corrente continua e il lato corrente alternata sarà garantita dalla presenza del trasformatore BT/MT. In tal modo perché un contatto accidentale sia realmente pericoloso occorre che si entri in contatto contemporaneamente con entrambe le polarità del campo. Il contatto accidentale con una sola delle polarità non ha praticamente conseguenze, a meno che una delle polarità del campo non sia casualmente a contatto con la massa.

Per prevenire tale eventualità ogni inverter sarà munito di un opportuno dispositivo di rivelazione degli squilibri verso massa, che ne provoca l'immediato spegnimento e l'emissione di una segnalazione di allarme.

A.02.6 Attivazione dei tracker

I tracher mono-assiali saranno movimentati attraverso un'alimentazione elettrica a 400 V CA – autoalimentati - con un consumo energetico annuo di circa 600 kWh per ogni MW prodotto. Il monitoraggio sarà possibile attraverso controllo locale/remoto.

A.02.7 Convertitori di potenza - Inverter e Cabina di Campo

Le cabine previste nel campo fotovoltaico saranno del tipo:

- Cabina elettrica di campo (semplicemente cabina elettrica o cabina di campo);
- Cabina generale di campo di raccolta delle linee provenienti dalle cabine di campo.

Le cabine elettriche di campo svolgono la funzione di locali tecnici per la posa dei quadri, del trasformatore, delle apparecchiature di telecontrollo, di consegna e misura. In esse verranno

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	15	34

convogliate le linee provenienti dagli inverter di stringa.

Esse saranno assemblate direttamente dalla ditta fornitrice degli inverter e saranno realizzate con struttura metallica leggera con zattera inferiore, anch'essa in metallo, predisposta con forature prestabilite per il passaggio dei cavi MT/BT.

Sono previste 15 cabine elettriche di campo dotate di trasformatore di potenza.

Le cabine elettriche, situate all'interno del campo fotovoltaico come da planimetrie allegate, saranno di tipo modulare e saranno costituiti dai seguenti elementi:

- Due/tre moduli per il trasformatore MT/BT;
- Un modulo locale distribuzione BT/MT con tutti gli apparati elettrici completo di porta metallica.

La superficie complessiva occupata da tale cabina sarà di circa 101,75 mg (18,50 ml x 5,50 ml) per un'altezza complessiva di circa 3,30 ml e sarà sistemata su una base di cemento di poco superiore alle dimensioni in pianta della cabina elettrica.

Ciascuna di tali cabine elettriche vengono fornite complete di impianto elettrico di illuminazione, impianto di terra interno, kit di dispositivi di protezione individuale.

L'accesso alle cabine elettriche di trasformazione avviene tramite la viabilità interna.

In ogni cabina di campo verranno convogliate i cavi provenienti dagli inverter di stringa del tipo SUN 2000-185KTL-H1 o similari; gli inverter verranno posizionati in corrispondenza delle stringhe come da allegata planimetria di progetto.

Ī	SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
I		0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	16	34

Ditta Proponente: Francavilla 1 Solar SRL

SUN2000-185KTL-H1 Smart String Inverter

Immagine dell'inverter SUN 2000-185KTL-H1 –o similare

La ripartizione dei vari moduli su ognuno degli inverter utilizzati sarà effettuata sulla base delle caratteristiche tecniche sotto riportate.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	17	34

Ditta Proponente: Francavilla 1 Solar SRL

SUN2000-185KTL-H1

Technical Specifications

	Efficiency
Max. Efficiency	99.03%
European Efficiency	98.69%
	Input
Max. Input Voltage	1,500 V
Max. Current per MPPT	26 A
Max. Short Circuit Current per MPPT	40 A
Start Voltage	550 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
Number of Inputs	18
Number of MPP Trackers	9
	Output
Nominal AC Active Power	175,000 W @40°C, 168,000 W @45°C, 160,000 W @50°C
Max. AC Apparent Power	185,000 VA
Max. AC Active Power (cosφ=1)	185,000 W
Nominal Output Voltage	800 V, 3W + PE
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	126.3 A @40°C, 121.3 A @45°C, 115.5 A @50°C
Max. Output Current	134.9 A
Adjustable Power Factor Range	0.8 LG 0.8 LD
Max. Total Harmonic Distortion	< 3%
	Protection
Input-side Disconnection Device	Yes
Anti-islanding Protection	Yes
AC Overcurrent Protection	Yes
DC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Type II
AC Surge Arrester	Type II
DC Insulation Resistance Detection	Yes
Residual Current Monitoring Unit	Yes
	Communication
Display	LED Indicators, WLAN + APP
USB	Yes
MBUS	Yes
RS485	Yes
New Telephone (Control of Control	General
Dimensions (W x H x D)	1,035 x 700 x 365 mm (40.7 x 27.6 x 14.4 inch)
Weight (with mounting plate)	84 kg (185.2 lb.)
Operating Temperature Range	-25°C - 60°C (-13°F - 140°F)
Cooling Method	Smart Air Cooling
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
Relative Humidity	0 ~ 100%
DC Connector	Staubli MC4 EVO2
AC Connector	Waterproof Connector + OT/DT Terminal
Protection Degree	Waterproof Connector + 01/01 Terminat
	Transformerless
Topology	
Standard	d Compliance (more available upon request)
Certificate	EN 62109-1/-2, IEC 62109-1/-2, EN 50530, IEC 62116, IEC 60068, IEC 61683, IEC 6172 P.O. 12.3, RD 1699, RD 661, RD 413, RD 1565, RD 1663, UNE 206007-1, UNE 206006

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	18	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi)	
Ditta Proponente: Francavilla 1 Solar SRL	

La cabina principale di impianto raccoglie tutti i cavi provenienti dalle cabine di trasformazione (cabine di campo); la cabina principale d'impianto convoglia l'energia prodotta dall'impianto, tramite elettrodotti interrati alla tensione di 36 kV, al punto di connessione stabilito dal preventivo di connessione Terna.

La costruzione della cabina d'impianto verrà realizzata in calcestruzzo armato di tipo prefabbricato esarà posizionata in una zona centrale dell'impianto, come si evince dalla planimetria generale dell'impianto allegata alla presente. La fondazione della stessa sarà costituita da piastra in conglomerato cementizio in opera avente superficie identica a quella della cabina (tranne che per degli sbordi laterali di circa cm. 50) e altezza commisurata alla portanza dei terreni interessati, comunque non inferiore a cm. 40.

All'interno di essa, oltre alle celle di MT ed al trasformatore MT/BT Ausiliari, vi alloggeranno anche l'UPS, il rack dati, la centralina antintrusione, gli apparati di supporto e controllo dell'impianto di generazione ed il QGBT Ausiliari. La cabina principale d'impianto sarà costituita da un edificio dalla superficie complessiva di circa 101,75 mg (18,50x 5,50 metri) per una cubatura complessiva di circa 335,77 mc.

A.02.1 Impianto di terra

L'impianto di terra sarà progettato e realizzato in accordo con la norma CEI EN 61936-1, CEI EN 50522, Norma CEI 99-3 ed alle prescrizioni della Guida CEI C. 1155 (revisione della CEI 11-37), partendo dai dati di resistività del terreno, corrente di guasto sul nodo elettrico e tempo di eliminazione del quasto che saranno riportati nel documento di progetto.

L'impianto di terra sarà costituito essenzialmente da un dispersore intenzionale con tondini in acciaio zincato del diametro non inferiore a 10 mm, interrato ad una profondità di circa 800 mm e realizzato in modo da costituire una maglia equipotenziale su tutta l'area in cui insisterà l'impiantistica di stazione.

Per le connessioni agli armadi verranno impiegati conduttori di rame di sezione pari a 35/50 mmq. Alla maglia di terra verranno collegati i dispersori di fatto, costituiti dalle armature metalliche delle opere civili, e tutte le masse e masse estranee facenti parte dell'impianto.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	19	34

Tutti i collegamenti di terra saranno realizzati con cavi rispondenti alle norme CEI 7-4, 7-1 e 7-6 di sezione adeguata.

Prima della messa in servizio dell'impianto, saranno effettuate le verifiche dell'impianto di terra previste dal DPR 22 ottobre 2001 n. 462.

A.04.09.2 Dimensionamento di massima della rete di terra

La rete di terra sarà dimensionata in accordo alle norme di riferimento.

In particolare si procederà:

- al dimensionamento termico del dispersore e dei conduttori di terra;
- alla definizione delle caratteristiche geometriche del dispersore, in modo da garantire il rispetto delle tensioni di contatto.

Dimensionamento termico del dispersore

Il dispersore deve avere una buona resistenza meccanica e alla corrosione che può essere ottenuta adottando i materiali e le dimensioni minime previste dalla norma.

La sezione del conduttore percorso dalla corrente di guasto può essere determinata con la seguente formula:

$$A = \frac{I}{k} \sqrt{\frac{t}{I_n \frac{\Theta f + \beta}{\Theta i + \beta}}}$$

Dove:

A = sezione minima del conduttore di terra, in mm²

I = corrente del conduttore, in A

t = durata della corrente di guasto, in sec.

k e β sono dei coefficienti forniti dalla Norma che dipendono dai materiali, come da tabella seguente:

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	20	34

Materiale	β(°C)	k (Amm ⁻² s ^{1/2})
Rame	234,5	226
Alluminio	228	148
Acciaio	202	78

⊙i = temperatura iniziale in °C

of = temperatura finale in oC

Tensioni di contatto e di passo

La definizione della geometria del dispersore al fine di garantire il rispetto dei limiti di tensione di contatto e di passo sarà effettuata in fase di progetto esecutivo, quando saranno noti i valori di resistività del terreno, da determinare con apposita campagna di misure. In via preliminare, sulla base degli standard normalmente adottati e di precedenti esperienze, può essere ipotizzato un dispersore orizzontale a maglia, con lato di maglia di 5 m. In caso di terreno non omogeneo con strati superiori ad elevata resistività si potrà procedere all'installazione di dispersori verticali (picchetti) di lunghezza sufficiente a penetrare negli strati di terreno a resistività più bassa, in modo da ridurre la resistenza di terra dell'intero dispersore.

A.02.9 Protezione da corto circuiti sul lato c.c. dell'impianto

Gli impianti FV sono realizzati attraverso il collegamento in serie/parallelo di un determinato numero moduli FV, a loro volta realizzati attraverso il collegamento in serie/parallelo di celle FV inglobate e sigillate in un unico pannello d'insieme. Pertanto gli impianti FV di qualsiasi dimensione conservano le caratteristiche elettriche della singola cella, semplicemente a livelli di tensione e correnti superiore, a seconda del numero di celle connesse in serie (per ottenere tensioni maggiori) oppure in parallelo (per ottenere correnti maggiori).

Negli impianti fotovoltaici la corrente di corto circuito dell'impianto non può superare la somma delle correnti di corto circuito delle singole stringhe.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	21	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi) Ditta Proponente: Francavilla 1 Solar SRL	
Sixua i roponomo. I rumouvima i Goldi Give	

Essendo le stringhe composte da una serie di generatori di corrente (i moduli fotovoltaici) la loro corrente di corto è di poco superiore alla corrente nel punto di massima potenza.

A.02.10 Sicurezze sul lato c.a. dell'impianto

La limitazione delle correnti del campo fotovoltaico comporta analoga limitazione anche nelle correnti in uscita dagli inverter.

Eventi di corto circuito sul lato alternata dell'impianto sono tuttavia pericolosi perché possono provocare ritorni da rete di intensità non limitata.

L'interruttore MT in SF6 è equipaggiato con una protezione generale di massima corrente e una protezione contro i guasti a terra.

Ī	SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
		0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	22	34

|--|

A.03 PROGETTO DELL'ELETTRODOTTO.

A.03.1 Normativa di riferimento

- CEI 0-2 Guida per la definizione della documentazione di progetto degli impianti elettrici
- CEI 0-16 Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica
- CEI 11-27 Lavori su impianti elettrici
- CEI EN 61936-1 Impianti elettrici con tensione superiore a 1 kV in corrente alternata
- CEI EN 50522 Messa a terra degli impianti elettrici a tensione superiore a 1 kV in corrente alternata
- CEI 11-17 Impianti di produzione, trasmissione e distribuzione di energia elettrica –
 Linee in cavo
- CEI 11-20 + V1 e V2 Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria
- CEI EN 50110-1 CEI (11-48) Esercizio degli impianti elettrici
- CEI EN 50160 CEI (8-9) Caratteristiche della tensione fornita dalle reti pubbliche di distribuzione dell'energia elettrica
- CEI 20-13 Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV
- Norma CEI 0-14 "Guida all'applicazione del DPR 462/01 relativa alla semplificazione del procedimento per la denuncia di installazioni e dispositivi di protezione contro le scariche atmosferiche, di dispositivi di messa a terra degli impianti elettrici e di impianti elettrici pericolosi"
- Norma CEI 11-4 "Esecuzione delle linee elettriche aeree esterne"
- Norma CEI 11-32 "Impianti di produzione di energia elettrica connessi a sistemi di III categoria"

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	23	34

- Norma CEI 11-46 "Strutture sotterranee polifunzionali per la coesistenza di servizi a rete diversi – Progettazione, costruzione, gestione ed utilizzo – Criteri generali di posa"
- Norma CEI 11-47 "Impianti tecnologici sotterranei Criteri generali di posa"
- Norma CEI 11-61 "Guida all'inserimento ambientale delle linee aeree esterne e delle stazioni elettriche"
- Norma CEI 11-62 "Stazioni del cliente finale allacciate a reti di terza categoria"
- Norma CEI 11-63 "Cabine Primarie"
- Norma CEI 64-8 "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500 V in corrente continua"
- Norma CEI 103-6 "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto"
- Norma CEI EN 50086 2-4 "Sistemi di tubi ed accessori per installazioni elettriche Parte
 2-4: Prescrizioni particolari per sistemi di tubi interrati"
- Decreto Legislativo 9 Aprile 2008 n. 81 "Attuazione dell'articolo 1 della legge 3 agosto 2007, n. 123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro"
- D.P.R. 22 Ottobre 2001 n. 462 "Regolamento di semplificazione del procedimento per la denuncia di installazioni e dispositivi di protezione contro le scariche atmosferiche, di dispositivi di messa a terra di impianti elettrici e di impianti elettrici pericolosi"
- Decreto Legislativo 1 agosto 2003 n. 259 "Codice delle comunicazioni elettroniche"
- D.M. 12 Settembre 1959 "Attribuzione dei compiti e determinazione delle modalità e delle documentazioni relative all'esercizio delle verifiche e dei controlli previste dalle norme di prevenzione degli infortuni sul lavoro"
- Testo Unico di Leggi sulle Acque e sugli Impianti Elettrici (R.D. n. 1775 del 11/12/1933);

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	24	34

- Norme per l'esecuzione delle linee aeree esterne (R.D. n. 1969 del 25/11/1940) e successivi aggiornamenti (D.P.R. n. 1062 del 21/6/1968 e D.M. n. 449 del 21/3/1988);
- "Approvazione delle norme tecniche per la progettazione l'esecuzione e l'esercizio delle linee aeree esterne" (D.M. n. 449 del 21/03/1988);
- "Aggiornamento delle norme tecniche per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne" (D.M. 16/01/1991) e successivi aggiornamenti (D.M. 05/08/1998);
- Codice Civile (relativamente alla stipula degli atti di costituzione di servitù);
- "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz)" (D.P.C.M del 8/07/2003);
- "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0,8" (D.M. 24.11.1984 e s.m.i.);
- Codice della strada (D.Lgs. n. 285/92) e successive modificazioni;
- Leggi regionali e regolamenti locali in materia di rilascio delle autorizzazioni alla costruzione degli elettrodotti, qualora presenti ed in vigore.

I riferimenti di cui sopra possono non essere esaustivi. Ulteriori disposizioni di legge, norme e deliberazioni in materia, anche se non espressamente richiamati, si considerano applicabili.

A.03.2 Generalità

Il tracciato è stato studiato in armonia con quanto dettato dall'art.121 del T.U. 11-12-1933 n.1775, comparando le esigenze di pubblica utilità dell'opera con gli interessi sia pubblici che privati.

Nella definizione dell'opera sono stati adottati i seguenti criteri progettuali:

• contenere per quanto possibile la lunghezza del tracciato sia per occupare la minor porzione possibile di territorio, sia per non superare certi limiti di convenienza tecnico economica;

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	25	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi) Ditta Proponente: Francavilla 1 Solar SRL	

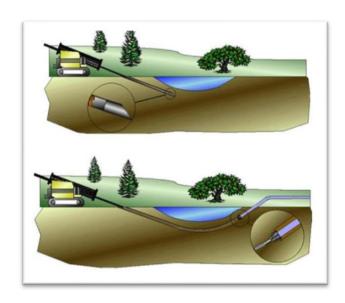
- mantenere il tracciato del cavo il più possibile all'interno delle strade esistenti, soprattutto in corrispondenza dell'attraversamento di nuclei e centri abitati, tenendo conto di eventuali trasformazioni ed espansioni urbane future;
- evitare per quanto possibile di interessare case sparse e isolate, rispettando le distanze minime prescritte dalla normativa vigente;
- minimizzare l'interferenza con le eventuali zone di pregio naturalistico, paesaggistico e archeologico.

Inoltre, per quanto riguarda l'esposizione ai campi magnetici, in linea con il dettato dell'art. 4 del DPCM 08-07-2003 di cui alla Legge. n° 36 del 22/02/2001, i tracciati sono stati eseguiti tenendo conto dell'obiettivo di qualità di $3~\mu T$.

A.03.3 Descrizione del tracciato

Per quanto riguarda l'elettrodotto interrato di collegamento del campo fotovoltaico alla sottostazione Terna, questo avrà una lunghezza di circa 27.2 km e percorrerà gran parte della viabilità esistente, per poi raggiungere la zona in cui è ubicata la sottostazione.

Le strade esistenti che saranno percorse dall'elettrodotto interrato sono le Strade Provinciali SP51 (per circa 6 km), la SP54 (per circa 5 km), successive strade interpoderali (per circa 12.7 km) e la SS7 ter (per circa 3.5 km). Tutta la viabilità risulta quasi tutta asfaltata, ad eccezione di:


- un tratto di circa 2950 ml che è di tipo sterrato e ricade nei comuni di Manduria (TA) e Oria (BR);
- un tratto di circa 3750 ml che è di tipo sterrato e ricade nel comune di Manduria (TA);
- un tratto di circa 770 ml che è di tipo sterrato e ricade nei comuni di Manduria (TA) e Erchie (BR);
- un tratto di circa 600 ml che è di tipo sterrato e ricade nel comune di Erchie (BR), in prossimità del punto di connessione alla RTN.

Lungo il percorso sono presenti alcune tubazioni di scarico delle acque meteoriche stradali, due tratti ferroviari e un tratto di strada statale il cui attraversamento sarà possibile applicando le tecniche del

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	26	34

Ditta Proponente: Francavilla 1 Solar SRL

"no dig" o "perforazione teleguidata" che permette la posa in opera di tubazioni e cavi interrati senza ricorrere agli scavi a cielo aperto e senza compromettere il naturale flusso degli stessi corsi d'acqua. Di seguito un'immagine esplicativa della tecnica prevista.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	27	34

Ditta Proponente: Francavilla 1 Solar SRL

Vista d'insieme dell'impianto con collegamento cavo a 36 kV(in rosso)

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	28	34

A.03.4 Caratteristiche tecniche dell'elettrodotto in progetto e dimensionamento del cavo

L'elettrodotto in oggetto costituisce l'elemento di collegamento tra la cabina di campo, situata sul perimetro dell'impianto fotovoltaico e il punto di connessione ove smistare l'energia elettrica prodotta dall'impianto alla Rete di Trasmissione Nazionale.

La tensione massima degli elettrodotti interrati sarà di 36kV.

La linea, di tipo interrata, sarà realizzata interamente con terna di cavi interrati all'interno di un cavidotto in PVC, in modo da ridurre al minimo l'impatto ambientale.

I cavi utilizzati saranno del tipo tripolari elicordati ad elica ad isolamento solido estruso con conduttori di alluminio, del tipo ARE4H5EX 20,8/36 kV, aventi una sezione nominale di 300 mm².

L'isolamento sarà costituito da mescola a base di polietilene reticolato (XLPE) o, in alternativa, da mescola elastomerica reticolata ad alto modulo a base di gomma sintetica (HEPR), qualità G7 rispondente alle norme CEI 20-11 e CEI 20-13: in entrambi i casi la temperatura di esercizio del cavo sarà pari a 90° C.

Ne seguito le caratteristiche principale del cavo da utilizzare (o similare):

ľ	SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
		0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	29	34

Ditta Proponente: Francavilla 1 Solar SRL

APPLICATIONS In MV energy distribution networks for voltage systems up to 42kV. Suitable for fixed installation indoor or outdoor laying in air or directly or indirectly buried, also in wet location. FUNCTIONAL CHARACTERISTICS Rated voltage U_n/U: 20,8/36 kV Maximum voltage U_m: 42 kV Test voltage: 3,5 U₀ Max operating temperature of conductor: 90 °C Max short-circuit temperature: 250 °C (max duration 5 s) Max short-circuit temperature (screen): 150 °C CONSTRUCTION 1. Conductor stranded, compacted, round aluminium - class 2 acc. to IEC 60228 2. Conductor screen extruded semiconducting compound 3. Insulation extruded XLPE compound 4. Insulation screen extruded semiconducting compound - fully bonded 5. Longitudinal watertightness semiconducting water blocking tape 6. Metallic screen and radial water barrier aluminium tape longitudinally applied (nominal thickness = 0,20 mm) 7. Outer sheath extruded PE compound - colour: red

La portata del cavo interrato a trifoglio da 300 mm² è pari a 583 A, per cui la sezione scelta è sufficiente a trasportare la potenza richiesta.

La scelta dell'alluminio come materiale conduttore del cavo è stata determinata dalla più ampia reperibilità sul mercato e dal più basso costo, ma soprattutto da considerazioni di sicurezzatipicamente legate ad eventi locali. Infatti, l'esperienza in altri cantieri ha evidenziato l'improponibilità dell'utilizzo di cavi in rame a causa dei ripetuti furti e danneggiamenti subiti dai cavi in fase di posa che hanno reso estremamente difficoltoso il normale svolgimento della costruzione degli elettrodotti. La scelta delle sezioni dei cavi è stata fatta considerando:

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	30	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi)	
Ditta Proponente: Francavilla 1 Solar SRL	

- le correnti di impiego determinate dalla potenza effettiva per tener conto della effettiva potenza massima che i moduli FV riescono a produrre (a valle delle perdite nella conversione), per evitare un sovradimensionamento dei cavi;
- le portate dei cavi per la tipologia di posa (norma CEI 20-21) e per la tipologia di carico ciclico giornaliero (CEI 20-42/1);
- il contenimento delle perdite di linea.

I coefficienti di calcolo per la portata dei cavi (profondità di posa, condizioni termiche, ecc.) sono stati assunti secondo le seguenti ipotesi:

- resistività termica del terreno pari a 1,5 °K m/W (in fase di progettazione esecutiva sarà effettuata una misura di resistività termica del terreno lungo il tracciato previsto, in modo tale da effettuare una correzione del valore se risultasse più alto), pari a quella del cls, ipotesi a favore della sicurezza rispetto alle prescrizioni della norma CEI 20-21;
- temperatura terreno pari a 20° C (CEI 20-21 A.3);
- coefficiente di variazione della portata per carico ciclico giornaliero;
- fattori di riduzione quando nello scavo sono presenti condutture affiancate;
- ulteriore fattore di sicurezza corrispondente ad una riduzione del 10% rispetto alla portata calcolata (Iz);
- condizioni di posa con la situazione termica più critica.

La scelta della sezione è stata effettuata considerando che il cavo deve avere una portata Iz uguale o superiore alla corrente di impiego Ib del circuito.

Durante le operazioni di installazione la temperatura dei cavi per tutta la loro lunghezza e per tutto il tempo in cui essi possono venir piegati o raddrizzati non deve essere inferiore a quanto specificato dal produttore del cavo.

Successivamente alle operazioni di posa e comunque prima della messa in servizio, l'isolamento dei cavi a MT, dei giunti e dei terminali, sarà verificato attraverso opportune misurazioni secondo le CEI

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	31	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi)	
Ditta Proponente: Francavilla 1 Solar SRL	

11-17. La tensione di prova dell'isolamento in corrente continua dovrà essere pari a quattro volte la tensione nominale stellata.

A.03.5 Campi elettrici e magnetici

Per quanto riguarda i campi elettrici e magnetici, si rimanda alla relazione tecnica interamente dedicata a tale tema e allegata alla presente.

A.03.6 Modalità di posa

L'elettrodotto in oggetto, come in precedenza specificato, è composto da 6 linee interrate ciascuna corrispondente a una terna di cavi elicordati della sezione sopra richiamata. Le linee saranno posate all'interno di altrettanti cavidotti di protezione di diametro 200mmq. La profondità minima di posa, deve essere tale da garantire almeno 2 m, misurato dall'estradosso superiore dei cavi.

Il corrugato verrà alloggiato su opportuno strato di sabbia vagliata.

Altre soluzioni particolari, quali l'alloggiamento dei cavi in cunicoli prefabbricati o gettati in opera od in tubazioni di PVC della serie pesante o di ferro, oppure soluzioni di tipo no-dig e/o micro tunneling, potranno essere adottate per attraversamenti specifici, qualora necessario.

Gli attraversamenti delle opere interferenti saranno eseguiti in accordo a quanto previsto dalla Norma CEI 11-17.

Per evitare danneggiamenti meccanici sul cavo, durante la posa, si dovrà tenere conto dello sforzo massimo del cavo e del raggio di curvatura minimo.

In caso di presenza di acqua occorrerà prestare particolare attenzione per evitare che possa entrare acqua o umidità alle estremità dei cavi: dovrà essere effettuata la spelatura del cavo per 30cm, la sigillatura mediante coni di fissaggio in corrispondenza dell'inizio dell'isolante e la sigillatura mediante calotte termo-restringenti in caso di interramento del cavo prima della realizzazione di giunzioni o terminazioni.

I cavi sono protetti dai corrugati a doppia parete con grado di sciacciamento di almeno 450N.

SIGLA	REV	DESCRIZIONE	Data	Pag.	тот.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	32	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi) Ditta Proponente: Francavilla 1 Solar SRL	

Sarà previsto superiormente il nastro segnaletico posato ad almeno 50cm dal corrugato.

A.03.7 Fibre ottiche

E' prevista l'installazione di fibre ottiche a servizio della linea, le quali saranno posate contestualmente alla stesura del cavo secondo le modalità descritte nei tipici allegati.

In sede di progetto esecutivo e comunque prima che si dia inizio alla realizzazione dell'opera ed in particolare prima dell'installazione della rete di comunicazioni elettroniche in fibre ottiche a servizio dell'elettrodotto, si procederà all'ottenimento dell'autorizzazione generale espletando gli obblighi stabiliti dal Decreto Legislativo 1 agosto 2003, n. 259, "Codice delle comunicazioni elettroniche"; in particolare si procederà alla presentazione della dichiarazione, conforme al modello riportato nell'allegato n. 14 al suddetto decreto, contenente l'intenzione di installare o esercire una rete di comunicazione elettronica ad uso privato; ciò costituisce denuncia di inizio attività ai sensi dello stesso D.Lgs.259/2003 art. 99, comma 4.

A.03.8 Protezione dalle fulminazioni

Un campo fotovoltaico correttamente collegato a massa, non altera in alcun modo l'indice ceraunico della località di montaggio, e quindi la probabilità di essere colpito da un fulmine.

I moduli fotovoltaici sono in alto grado insensibili alle sovratensioni atmosferiche, che invece possono risultare pericolose per le apparecchiature elettroniche di condizionamento della potenza. Per ridurre i danni dovuti ad eventuali sovratensioni i quadri di parallelo sottocampi sono muniti di varistori su entrambe le polarità dei cavi d'uscita.

In caso di sovratensioni i varistori collegano una od entrambe le polarità dei cavi a massa e provocano l'immediato spegnimento degli inverter e l'emissione di un segnale d'allarme.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	33	34

Impianto agrivoltaico con fotovoltaico a terra del tipo a inseguimento solare da ubicare nel Comune di Francavilla Fontana (Provincia di Brindisi) Ditta Proponente: Francavilla 1 Solar SRL	
--	--

A.04 TABELLE RIASSUNTIVE – DIMENSIONAMENTO ELETTRICO.

SIGLA	REV	DESCRIZIONE	Data	Pag.	TOT.
	0	RELAZIONE CALCOLI PRELIMINARI IMPIANTI ELETTRICI	07/07/2022	34	34

RIEPILOGO LINEE INVERTER

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	1.1		20
	1.2		5
	1.3		10
	1.4		65
	1.5		105
	1.6		185
	1.7		200
	1.8		5
	1.9		20
	1.10		35
	1.11		50
	1.12		65
	1.13		80
	1.14		95
	1.15		110
	1.16		125
1	1.17	H1Z2Z2-K	150
1	1.18	2x1x240 mmq	190
	1.19		265
	1.20		295
	1.21		325
	1.22		355
	1.23		385
	1.24		415
	1.25		445
	1.26		330
	1.27		345
	1.28		360
	1.29		375
	1.30		390
	1.31		405
	1.32		505
	1.33		605
	1.34		565

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	2.1		110
	2.2		50
	2.3		5
	2.4		5
	2.5		5
	2.6		10
	2.7		25
	2.8		30
	2.9		55
	2.10		95
	2.11		120
2	2.12	H1Z2Z2-K	145
2	2.13	2x1x240 mmq	145
	2.14		155
	2.15		165
	2.16		170
	2.17		175
	2.18		190
	2.19		195
	2.20		200
	2.21		205
	2.22		210
	2.23		220
	2.24		230

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	3.1		380
	3.2		360
	3.3		320
	3.4		275
	3.5		250
	3.6		255
	3.7		210
	3.8		200
	3.9		190
	3.10		180
	3.11		145
3	3.12	H1Z2Z2-K	140
5	3.13	2x1x240 mmq	115
	3.14		120
	3.15		110
	3.16		100
	3.17		80
	3.18		70
	3.19		60
	3.20		50
	3.21		40
	3.22		25
	3.23		15
	3.24		5

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	4.1		140
	4.2		100
	4.3		35
	4.4		5
	4.5		5
	4.6		10
	4.7		25
	4.8		40
	4.9		170
	4.10		195
	4.11		50
4	4.12	H1Z2Z2-K	60
4	4.13	2x1x240 mmq	75
	4.14		85
	4.15		95
	4.16		105
	4.17		115
	4.18		125
	4.19		135
	4.20		165
	4.21		170
	4.22		180
	4.23		185
	4.24		200

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	5.1		5
	5.2		10
	5.3		5
	5.4		10
	5.5		35
	5.6		50
	5.7		115
	5.8		95
	5.9		105
	5.10		125
	5.11		160
	5.12		160
5	5.13	H1Z2Z2-K	175
5	5.14	2x1x240 mmq	190
	5.15		200
	5.16		210
	5.17		210
	5.18		260
	5.19		345
	5.20		390
	5.21		445
	5.22		175
	5.23		145
	5.24		275
	5.25		255
	5.26		215

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	6.1		15
	6.2		15
	6.3		30
	6.4		140
	6.5		245
	6.6		15
	6.7		25
	6.8		165
	6.9		40
	6.10		55
	6.11		185
	6.12		295
	6.13		65
	6.14		75
	6.15		205
	6.16		85
	6.17	H1Z2Z2-K	90
6	6.18	2x1x240 mmq	225
	6.19	2X1X240 IIIIIq	335
	6.20		100
	6.21		110
	6.22		245
	6.23		120
	6.24		135
	6.25		265
	6.26		375
	6.27		160
	6.28		170
	6.29	-	285
	6.30		180
	6.31		190
	6.32		305
	6.33		200
	6.34		275
	6.35		380

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	7.1		90
	7.2		65
	7.3		250
	7.4		50
	7.5		240
	7.6		45
	7.7		230
	7.8		35
	7.9		220
	7.10		25
	7.11		210
	7.12		15
	7.13		200
	7.14		10
	7.15		185
	7.16		10
	7.17	11470701/	195
7	7.18	H1Z2Z2-K	10
	7.19	2x1x240 mmq	205
	7.20		40
	7.21		215
	7.22		60
	7.23		225
	7.24		105
	7.25		125
	7.26		145
	7.27		160
	7.28		170
	7.29		190
	7.30		205
	7.31		230
	7.32		255
	7.33		275
	7.34		295
	7.35		335

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	8.1		90
	8.2		80
	8.3		70
	8.4		60
	8.5		45
	8.6		25
	8.7		10
	8.8		15
	8.9		10
	8.10		50
8	8.11	H1Z2Z2-K	20
0	8.12	2x1x240 mmq	30
	8.13		40
	8.14		50
	8.15		65
	8.16		75
	8.17		85
	8.18		95
	8.19		105
	8.20		130
	8.21		190
	8.22		225

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	9.1		40
	9.2		40
	9.3		20
	9.4		15
	9.5		5
	9.6		5
	9.7		10
	9.8		140
	9.9		20
	9.10		30
	9.11		160
	9.12		45
	9.13		55
0	9.14	H1Z2Z2-K	180
9	9.15	2x1x240 mmq	60
	9.16		70
	9.17		200
	9.18		90
	9.19		105
	9.20		115
	9.21		125
	9.22		240
	9.23		130
	9.24		145
	9.25		155
	9.26		225
	9.27		285
	9.28		335

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	10.1		5
	10.2		5
	10.3		5
	10.4		10
	10.5		25
	10.6		40
	10.7		50
	10.8		60
10	10.9	H1Z2Z2-K	70
10	10.10	2x1x240 mmq	80
	10.11		90
	10.12		100
	10.13		110
	10.14		120
	10.15		130
	10.16		155
	10.17		195
	10.18		235

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	11.1		90
	11.2		65
	11.3		65
	11.4		55
	11.5		30
	11.6		20
	11.7		10
	11.8		155
	11.9		5
	11.10		145
11	11.11	H1Z2Z2-K	5
11	11.12	2x1x240 mmq	155
	11.13		10
	11.14		15
	11.15		30
	11.16		40
	11.17		50
	11.18		60
	11.19		90
	11.20		150
	11.21		195
	11.22		255

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	12.1	240	
	12.2		200
	12.3		160
	12.4		120
	12.5		80
	12.6		40
	12.7		10
	12.8		205
	12.9		5
	12.10	H1Z2Z2-K 2x1x240 mmq	215
12	12.11		10
12	12.12		60
	12.13		235
	12.14		110
	12.15		110
	12.16		140
	12.17		150
	12.18		160
	12.19		160
	12.20		170
	12.21		180
	12.22		190

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	13.1		120
	13.2		100
	13.3		60
	13.4		10
	13.5		5
	13.6		5
	13.7		5
	13.8	H1Z2Z2-K 2x1x240 mmq	20
	13.9		35
4.2	13.10		45
13	13.11		55
	13.12		65
	13.13		75
	13.14		85
	13.15		95
	13.16		105
	13.17		115
	13.18		125
	13.19		255
	13.20		135

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	14.1		130
	14.2		70
	14.3		25
	14.4		5
	14.5		5
	14.6		10
	14.7		20
	14.8		30
	14.9		40
	14.10		50
14	14.11	H1Z2Z2-K	60
14	14.12	2x1x240 mmq	170
	14.13		70
	14.14		180
	14.15		80
	14.16		90
	14.17		100
	14.18		110
	14.19		120
	14.20		130
	14.21		145
	14.22		155

CAMPO	INVERTER	TIPO E SEZIONE CAVO	LUNGHEZZA [m]
	15.1		5
	15.2		10
	15.3		30
	15.4		40
	15.5		45
	15.6		60
	15.7		70
	15.8		80
	15.9		90
4.5	15.10	H1Z2Z2-K	100
15	15.11	2x1x240 mmq	110
	15.12		120
	15.13		130
	15.14		140
	15.15		160
	15.16		170
	15.17		175
	15.18		185
	15.19		220
	15.20		300

					POTENZA CC		TR/	AFO		
CABINA	STRINGHE	N. PANNELLI	POTENZA CC kWcc	N. INVERTER	kWcc per Inverter (media)	POTENZA CA kWca	TRAFO	kVA	N. INVERTER PER TRAFO	POTENZA CA kWca per Trafo
							TRAFO 1	2500	12	2100
CABINA 1	353	10590	7042,35	34	207,13	5950	TRAFO2	2500	11	1925
			,		,		TRAFO 3	2500	11	1925
							TRAFO 1	2500	12	2100
CABINA 2	274	8220	5466,3	24	227,76	4200	TRAFO2	2500	12	2100
			, .		, -					
							TRAFO 1	2500	12	2100
CABINA 3	264	7920	5266,8	24	219,45	4200	TRAFO2	2500	12	2100
			,		,					
							TRAFO 1	2500	12	2100
CABINA 4	253	7590	5047,35	24	210,31	4200	TRAFO2	2500	12	2100
			,		,					
							TRAFO 1	2500	13	2275
CABINA 5	295	8850	5885,25	26	226,36	4550	TRAFO2	2500	13	2275
			,		,					
							TRAFO 1	2500	11	1925
CABINA 6	363	10890	7241,85	35	206,91	6125	TRAFO2	2500	12	2100
			,		,		TRAFO 3	2500	12	2100
							TRAFO 1	2500	11	1925
CABINA 7	360	10800	7182	35	205,20	6125	TRAFO2	2500	12	2100
					/		TRAFO 3	2500	12	2100
							TRAFO 1	2500	11	1925
CABINA 8	247	7410	4927,65	22	223,98	3850	TRAFO2	2500	11	1925
		-	, , , ,		-7					
							TRAFO 1	2500	14	2450
CABINA 9	299	8970	5965,05	28	213,04	4900	TRAFO2	2500	14	2450
			2000,00		===,= :					
							TRAFO 1	2500	9	1575
CABINA 10	185	5550	3690,75	18	205,04	3150	TRAFO2	2500	9	1575
			,		,					
							TRAFO 1	2500	11	1925
CABINA 11	230	6900	4588,5	22	208,57	3850	TRAFO2	2500	11	1925
			,		,					
							TRAFO 1	2500	11	1925
CABINA 12	240	7200	4788	22	217,64	3850	TRAFO2	2500	11	1925
					,					
							TRAFO 1	2500	10	1750
CABINA 13	206	6180	4109,7	20	205,49	3500	TRAFO2	2500	10	1750
			,		,					
							TRAFO 1	2500	11	1925
CABINA 14	235	7050	4688,25	22	213,10	3850	TRAFO2	2500	11	1925
			,		,					
							TRAFO 1	2500	10	1750
CABINA 15	218	6540	4349,1	20	217,46	3500	TRAFO2	2500	10	1750
			-,		, -					
TOTALE	4022	120660	80239	376	Media: 213,83	65800	TRAFO:	33	376	65800

DIMENSIONAMENTO ELETTRICO

Quadro:					Zona:			Impia	anto:														
Nome Arrivo):				Cliente:			Desc	rizio	ne Q	uadro:												
Sistema di dist	ribuzione:			Alta	C.d.t. Max am	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito				ecchiatura			•				to circ							/raccari	ico		Ver. cont. ind.
	unghezza ≤ Lur C.d.t. % con I _b ≤								lcc ma mag. <					l²t ≤i	K²S²				$\textbf{I}_b \leq \textbf{I}_{ns} \leq \textbf{I}_z$		I _f ≤ 1	,45 I _z	
												FA	SE	NEU	TRO	PROT	EZIONE						
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	ld	P.d.I.	lcc max	I mag.	Imagma x	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K²S²	Iь	I _{ns}	lz	I _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
.Q1	6x[3x300]	27000	0	-2,78	n.d.	3	0	0	7,29	C	123,5	0	2,74E+10	0	0	C	0	1015,5	1032	2338,0	0	0	Verificato
Quadro: QMTG Nome Arrivo):):				Zona: CABINA G Cliente:	ENERALE		Impia		ne Qi	uadro:												
QMTG.Q1																							
Sistema di dist	ribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	ıadro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito			Appar	ecchiatura	1					Cor	to circ	uito					Sov	/raccari	ico		Ver. cont. ind.
Lu	unghezza ≤ Lur	nghezza r	max						Icc ma					l²t ≤i	K²S²				$I_b \leq I_{ns} \leq I_z$		l _f ≤ 1	,45 I _z	
(C.d.t. % con I _b ≤	C.d.t. m	ıax					I	mag. <	Imagn	nax												
Nome utenza	Formazione	L	L max	C.d.t.%	Sigla prot.	Poli	Id	P.d.l.	Icc	I mag.	Imagma	I ² t max	K ² S ²	NEU I ² t max	TRO K²S²	PROT I ² t max	EZIONE K ² S ²	I _b	I _{ns}	lz	l _f	1.45lz	
				con lb	Olgiu prou			[kA]	max [kA]		х	Inizio Linea		Inizio Linea		Inizio Linea			-	.2 [A]			
	[mm²]	[m]	[m]	[%]			[A]	[KA]		[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMTG.Q1	n.d.	0	0		SF1-36-16kA	3	1200	16	6,23	12000	_	0		0	0	C		1015,5	1032	0	0		Verificato
QMTG.FU1 QMTG.Q2	n.d.	0	0	-2,78 -2,78	CF-36kV-6.3A SF1-36-16kA	3	6,30 1200	20 16	6,97 6,23	12000	136,0 123,5	0		0	0	C	_	1,85 1017,1	8,26 1032	0	0		Verificato Verificato
QMTG.Q2 QMTG.Q3	n.a. 3x95	5	0	2,14		3	1200	16	6,23	12000	123,5	0	7,64E+07	0	0	0		1,85	2,78	207,4	0		Verificato
QMTG.Q4	3x[3x240]	505	32000		SF1-36-16kA	3	600	16	6,52	6000		0	4,39E+09	0		· ·		546,7	558	633,1	0		Verificato
QMTG.Q5	2x[3x240]	2070	128000		SF1-36-16kA	3	100	16	6,97	1000	_	4,86E+07	1,95E+09	0	0	C		0	100	477,4	0		Verificato
QMTG.Q6	3x[3x240]	1375	32000	-2,94	SF1-36-16kA	3	600	16	6,58	6000	129,5	0	4,39E+09	0	0	C	0	470,4	474	633,1	0	0	Verificato
QMTG.Q7	2x[3x240]	2085	128000	-2,78	SF1-36-16kA	3	100	16	6,97	1000	136,1	4,86E+07	1,95E+09	0	0	C	0	0	100	477,4	0	0	Verificato
QMTG.Q8	n.d.	0	0	0,008	COMPACT NSX25	4	250	25	2,67	2500	1971,0	0	0	0	0	C	0	160,8	151,6	0	325	0	Verificato
Quadro: QMT1					Zona: CABINA C	AMPO 1		Impia	anto:														
Nome Arrivo):				Cliente:			Desc	rizio	ne Q	uadro:												
Sistema di dist	ribuzione:			Alta	C.d.t. Max am	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito			Appar	ecchiatura	1					Cor	to circ	uito					Sov	/raccari	ico		Ver. cont. ind.
Lu	unghezza ≤ Lur	nghezza r	max						lcc ma					l²t ≤l	K ² S ²				$I_b \leq I_{ns} \leq I_z$		l _f ≤ 1	,45 lz	
(C.d.t. % con I _b ≤	C.d.t. m	ıax					I	mag. <	Imagn	nax			1									
								1	_			FA	SE	NEU	TRO	PROT	EZIONE						

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	ld	P.d.l.	Icc max	I mag.	Imagma x	l ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K ² S ²	Iь	I _{ns}	Iz	If	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.l.	Icc max	I mag.	Imagma x	l ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K ² S ²	I _b	I _{ns}	lz	I _f	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT1.Q1	n.d.	0	0	-2,85	IM-20kA-36kV	3	630	0	6,47	0	128,7	0	0	0	0	0	0	546,7	558	0) 0	Verificato
QMT1.Q2	3x95	8	33777,8	-2,85	SF1-36-16kA	3	100	16		1000	· ·	2,38E+06	7,64E+07	0	0	0	0	32,6	40	207,4			Verificato
QMT1.Q3	3x95	8	33777,8	-2,85	SF1-36-16kA	3	100	16		1000		2,38E+06	7,64E+07	0	0	0		29,8	40	207,4			Verificato
QMT1.Q4	3x95	8	33777,8	-2,85		3	100	16		1000		2,38E+06	7,64E+07	0		0		29,8	40	207,4		_	
QMT1.Q5	3x[3x240]	520	0	-2,91	IM-20kA-36kV	3	630	0	6,54	0	129,8	0	4,39E+09	0	0	0	0	454,5	558	633,1	(0	Verificato
QMT1.Q6	n.d.	0	0	-3,30	n.d.	3	0	0	6,89	0	22516,0	0	0	0	0	0	0	32,6	40	0	(0	Verificato
QMT1.Q7	n.d.	0	0	-3,27	n.d.	3	0	0	6,90	0	22517,9	0	0	0	0	0	0	29,8	40	0	(0	Verificato
QMT1.Q8	n.d.	0	0	-3,27	n.d.	3	0	0	6,89	0	22517,8	0	0	0	0	0	0	29,8	40	0	(0	Verificato
QMT1.Q9	3x(5x240)+3x24	10	0	-0,074	n.d.	4	0	0	31,2	0	22232,7	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	(0	Non verificato
QMT1.Q10	3x(5x240)+3x24	10	0	-0,067	n.d.	4	0	0	31,2	0	22234,6	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	(Non verificato
QMT1.Q11	3x(5x240)+3x24	10	0	-0,067	n.d.	4	0	0	31,2	0	22234,4	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	(0	Non verificato
O I				<u> </u>	7			ļ	<u> </u>		<u> </u>												
Quadro: QMT8					Zona: CABINA 8			Impi	anto:														
Nome Arrivo	0:				Cliente:			Desc	crizio	ne Qı	uadro:												
QMT8.Q1																							
Sistema di dist	tribuzione:			Alta	C.d.t. Max ar	nmessa % :	4	Icc qu	ıadro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circui	ito			Appai	ecchiatura	1					Cort	o circ	uito					Sov	vraccar	ico		Ver. cont. ind.
L	.unghezza ≤ Lun	ahezza m	124						loo mo	x ≤ P.d				l²t ≤K	r ² c ²				$I_b \le I_{ns} \le I_z$		1. 2		
		giiezza ii	IUA											I⊤t≤M	. 3				·D = ·113 = ·2		If ≥	1,45 Iz	
	C.d.t. % con I _b ≤	•						ı	mag. <										10 - 110 - 12		lf ≥	1,45 lz	
	C.d.t. % con I _b ≤	C.d.t. ma	ах	I a u a					mag. <	Imagn	nax	FA		NEU	TRO		ZIONE						
		•		C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.I.			nax	FA: I ² t max Inizio Linea	SE K²S²			PROTE I ² t max Inizio Linea	K ² S ²	I _b	I _{ns}	Iz	lr S	1,45 lz	
	C.d.t. % con I _b ≤	C.d.t. ma	ах		Sigla prot.	Poli	I _d		mag. <	Imagn	nax	I ² t max Inizio		NEU ⁻ I ² t max Inizio	TRO	I ² t max Inizio				I _z			
Nome utenza QMT8.Q1	C.d.t. % con $I_b \le$ Formazione [mm^2] n.d.	C.d.t. ma	L max [m]	[%] -2,94	IM-20kA-36kV	3	[A] 630	P.d.I. [kA]	Icc max [kA]	Imagn I mag.	Imagma x [A]	I ² t max Inizio Linea [A ² S]	K ² S ² [A ² S]	NEU [*] I ² t max Inizio Linea	TRO K²S²	l ² t max Inizio Linea	K ² S ²	Iь [А] 470,4	I _{ns} [A]	[A] 0	[A]	1.45I _z	Verificato
Nome utenza QMT8.Q1 QMT8.Q2		C.d.t. ma	L max [m] 0 33777,8	[%] -2,94 -2,94	IM-20kA-36kV SF1-36-16kA	3 3	[A] 630 100	P.d.I. [kA] 0 16	Icc max [kA] 6,45 6,83	Imagn I mag. [A] 0 1000	Imagma x [A] 129,5 135,6	I ² t max Inizio Linea [A ² S] 0 2,33E+06	K ² S ² [A ² S] 0 7,64E+07	NEU [*] I ² t max Inizio Linea [A ² S]	TRO κ²S² [A²S] 0	I ² t max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 0	Iь [А] 470,4 29,8	I _{ns} [A] 474	[A] 0 207,4	[A]	1.45l _z [A] 0 0	Verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3		C.d.t. ma L [m] 0 8	L max [m] 0 33777,8 33777,8	con lb [%] -2,94 -2,94 -2,94	IM-20kA-36kV SF1-36-16kA SF1-36-16kA	3 3 3	[A] 630 100 100	P.d.l. [kA] 0 16 16	Icc max [kA] 6,45 6,83	Imagn I mag. [A] 0 1000 1000	Imagma x [A] 129,5 135,6 135,6	I ² t max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 7,64E+07 7,64E+07	NEU [*] I ² t max Inizio Linea [A ² S] 0 0	(A ² S)	l²t max Inizio Linea [A²S]	[A ² S] 0 0	[A] 470,4 29,8 29,8	I _{ns} [A] 474 40 40	[A] 0 207,4 207,4	[A]	1.45l _z [A] 0 0 0 0 0 0 0	Verificato Verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q3		C.d.t. ma L [m] 0 8 8 35	L max [m] 0 33777,8 3777,8	con lb [%] -2,94 -2,94 -2,94 -2,95	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV	3 3 3 3	[A] 630 100 100 630	P.d.I. [kA] 0 16 16	Icc max [kA] 6,45 6,83 6,83	Imagn I mag. [A] 0 1000	Imagma x [A] 129,5 135,6 135,6 130,2	0 2,33E+06 0 0	K ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09	NEU I't max Inizio Linea [A'S] 0 0 0	[A ² S] 0 0 0 0	l't max Inizio Linea [A'S] 0 0 0	K ² S ²	[A] 470,4 29,8 29,8 410,7	I _{ns} [A] 474 40 40 474	[A] 0 207,4 207,4 477,4	[A]	1.45l _z [A] 0 0 0 0 0 0 0 0 0	Verificato Verificato Verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5		C.d.t. ma L [m] 0 8 8 35	L max [m] 0 33777,8 33777,8 0	con lb [%] -2,94 -2,94 -2,95 -3,36	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d.	3 3 3 3 3	[A] 630 100 100 630 0	P.d.I. [kA] 0 16 16 0 0	Icc max [kA] 6,45 6,83 6,83 6,50 6,82	Imagn I mag. [A] 0 1000 1000	Imagma x [A] 129,5 135,6 130,2 22500,8	0 2,33E+06 2,33E+06	K ² S ² [A ² S] 0 7,64E+07 7,64E+09 0	NEU [*] I ² t max Inizio Linea [A ² S] 0 0	(A ² S)	l't max Inizio Linea [A ² S]	[A ² S] 0 0 0 0 0	I _b [A] 470,4 29,8 29,8 410,7 29,8	I _{ns} [A] 474 40 40 474 40	[A] 0 207,4 207,4 477,4 0	[A]	1.45l ₂ [A] 0 0 0 0 0 0 0 0 0 0 0 0	Verificato Verificato Verificato Verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q5		C.d.t. ma L [m] 0 8 8 35 0 0	L max [m] 0 33777,8 33777,8 0 0	con lb [%] -2,94 -2,94 -2,95 -3,36 -3,36	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d.	3 3 3 3 3 3	[A] 630 100 100 630 0	P.d.I. [kA] 0 16 16 0 0	Icc max [kA] 6,45 6,83 6,83 6,50 6,82 6,82	Imagn I mag. [A] 0 1000 1000	Imagma x [A]	Pt max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0	NEUT I²t max Inizio Linea [A²S]	[A ² S]	I't max Inizio Linea [A'S] 0 0 0 0	[A ² S] 0 0 0 0 0 0	I _b [A] 470,4 29,8 29,8 410,7 29,8 29,8	Ins [A] 474 40 40 474 40 40	[A] 0 207,4 207,4 477,4 0	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q6 QMT8.Q7		C.d.t. ma L [m] 0 8 8 0 0 10	L max [m] 0 33777,8 33777,8 0	con lb [%] -2,94 -2,94 -2,94 -2,95 -3,36 -3,36 -0,068	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d.	3 3 3 3 3	[A] 630 100 100 630 0	P.d.I. [kA] 0 16 16 0 0 0	Icc max [kA] 6,45 6,83 6,83 6,50 6,82 6,82 31,2	Imagn I mag. [A] 0 1000 1000	Imagma x [A] 129,5 135,6 135,6 130,2 22500,8 22501,1 22217,1	Pt max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0 2,95E+10	NEU* I't max Inizio Linea [A'S] 0 0 0 0 2,59E+10	R2S (A2S) (0 0 0 0 0 0 0 0 0 0 0 0 0 1,06E+10	l't max Inizio Linea [A ² S]	[A ² S] 0 0 0 0 0 0	I _b [A] 470,4 29,8 29,8 410,7 29,8 1389,2	Ins [A] 474 40 40 474 40 40 1800	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6		C.d.t. ma L [m] 0 8 8 35 0 0	L max [m] 0 33777,8 33777,8 0 0 0	con lb [%] -2,94 -2,94 -2,94 -2,95 -3,36 -3,36 -0,068	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d.	3 3 3 3 3 3 4	[A] 630 100 100 630 0 0	P.d.I. [kA] 0 16 16 0 0 0	Icc max [kA] 6,45 6,83 6,83 6,50 6,82 6,82	Imagn I mag. [A] 0 1000 1000	Imagma x [A]	Pt max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0	NEUT I²t max Inizio Linea [A²S]	[A ² S]	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	K ² S ²	I _b [A] 470,4 29,8 29,8 410,7 29,8 29,8	Ins [A] 474 40 40 474 40 40	[A] 0 207,4 207,4 477,4 0	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q7 QMT8.Q8 Quadro:		C.d.t. ma L [m] 0 8 8 0 0 10	L max [m] 0 33777,8 33777,8 0 0 0	con lb [%] -2,94 -2,94 -2,94 -2,95 -3,36 -3,36 -0,068	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d. n.d.	3 3 3 3 3 3 4 4	[A] 630 100 100 630 0 0	P.d.I. [kA] 0 16 16 0 0 0	Icc max [kA] 6,45 6,83 6,83 6,50 6,82 6,82 31,2 31,2	Imagn I mag. [A] 0 1000 1000	Imagma x [A] 129,5 135,6 135,6 130,2 22500,8 22501,1 22217,1	Pt max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0 2,95E+10	NEU* I't max Inizio Linea [A'S] 0 0 0 0 2,59E+10	R2S (A2S) (0 0 0 0 0 0 0 0 0 0 0 0 0 1,06E+10	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	K ² S ²	I _b [A] 470,4 29,8 29,8 410,7 29,8 1389,2	Ins [A] 474 40 40 474 40 40 1800	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato
Nome utenza Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q7 QMT8.Q8 Quadro: QMT2		C.d.t. ma L [m] 0 8 8 0 0 10	L max [m] 0 33777,8 33777,8 0 0 0	con lb [%] -2,94 -2,94 -2,94 -2,95 -3,36 -3,36 -0,068	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d. n.d. n.d.	3 3 3 3 3 3 4 4	[A] 630 100 100 630 0 0	P.d.l. [kA] 0 16 16 0 0 0 Impli	Icc max [kA] 6,45 6,83 6,50 6,82 31,2 31,2	I mag. I mag.	Imagma x [A] 129,5 135,6 135,6 130,2 22500,8 22501,1 22217,5	Pt max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0 2,95E+10	NEU* I't max Inizio Linea [A'S] 0 0 0 0 2,59E+10	R2S (A2S) (0 0 0 0 0 0 0 0 0 0 0 0 0 1,06E+10	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	K ² S ²	I _b [A] 470,4 29,8 29,8 410,7 29,8 1389,2	Ins [A] 474 40 40 474 40 40 1800	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato
Nome utenza QMT8.Q1 QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q6 QMT8.Q7 QMT8.Q8		C.d.t. ma L [m] 0 8 8 0 0 10	L max [m] 0 33777,8 33777,8 0 0 0	con lb [%] -2,94 -2,94 -2,94 -2,95 -3,36 -3,36 -0,068	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d. n.d.	3 3 3 3 3 3 4 4	[A] 630 100 100 630 0 0	P.d.l. [kA] 0 16 16 0 0 0 Impli	Icc max [kA] 6,45 6,83 6,50 6,82 31,2 31,2	I mag. I mag.	Imagma x [A] 129,5 135,6 135,6 130,2 22500,8 22501,1 22217,1	Pt max Inizio Linea [A ² S]	K ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0 2,95E+10	NEU* I't max Inizio Linea [A'S] 0 0 0 0 2,59E+10	R2S (A2S) (0 0 0 0 0 0 0 0 0 0 0 0 0 1,06E+10	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	K ² S ²	I _b [A] 470,4 29,8 29,8 410,7 29,8 1389,2	Ins [A] 474 40 40 474 40 40 1800	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q6 QMT8.Q7 QMT8.Q8 Quadro: QMT2 Nome Arrivo		C.d.t. ma L [m] 0 8 8 0 0 10	L max [m] 0 33777,8 33777,8 0 0 0	con lb [%] -2,94 -2,94 -2,94 -2,95 -3,36 -3,36 -0,068	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d. n.d. n.d.	3 3 3 3 3 4 4	[A] 630 100 100 630 0 0 0	P.d.l. [kA] 0 16 16 0 0 0 Impli	Icc max [kA] 6.45 6.83 6.50 6.82 31,2 31,2 anto:	[A] [A] 0 1000 1000 0 0 0 0	Imagma x [A] 129,5 135,6 135,6 130,2 22500,8 22501,1 22217,5	I*t max Inizio Linea [A*S]	K ² S ²	NEU* I't max Inizio Linea [A'S] 0 0 0 0 2,59E+10	R2S (A2S) (0 0 0 0 0 0 0 0 0 0 0 0 0 1,06E+10	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	[A ² S] 0 0 0 0 0 0 0 0 0 0	I _b [A] 470,4 29,8 29,8 410,7 29,8 1389,2	Ins	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q6 QMT8.Q7 QMT8.Q8 Quadro: QMT2 Nome Arrivo		C.d.t. me L [m] 0 8 8 35 0 10 10	L max [m] 0 33777,8 33777,8 0 0 0	con lb [%] -2,94 -2,94 -2,95 -3,36 -3,36 -0,068 -0,067	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d. n.d. CABINA C Cliente: C.d.t. Max ar	3 3 3 3 3 4 4	[A] 630 100 100 630 0 0 0	P.d.I. [kA] 0 16 16 0 0 Impi	Icc max [kA] 6.45 6.83 6.50 6.82 31,2 31,2 anto:	[A] [A] 0 1000 1000 0 0 0 0	Imagma x [A] 129,5 135,6 135,6 130,2 22500,8 22501,1 22217,5	Pt max Inizio Linea	K ² S ²	NEU	R2S (A2S) (0 0 0 0 0 0 0 0 0 0 0 0 0 1,06E+10	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	[A ² S] 0 0 0 0 0 0 0 0 0 0	[A] 470,4 29,8 29,8 410,7 29,8 29,8 1389,2	Ins [A] 474 40 40 40 1800 1800	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato Non verificato
Nome utenza OMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q7 QMT8.Q8 Quadro: QMT2 Nome Arrivo QMT2.Q1 Sistema di disi		C.d.t. ma L [m] 0 8 8 35 0 10 10	L max [m] 0 33777.8 33777.8 0 0 0 0	con lb [%] -2,94 -2,94 -2,95 -3,36 -3,36 -0,068 -0,067	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d. n.d. CABINA C Cliente: C.d.t. Max ar	3 3 3 3 3 4 4 4	[A] 630 100 100 630 0 0 0	P.d.I. [kA] 0 16 16 0 0 Impi	Icc max [kA] 6.45 6.83 6.50 6.82 31,2 31,2 anto:	Imag. [A] 0 1000 1000 0 0 0 0 0	Imagma x [A] 129,5 135,6 135,6 130,2 22500,8 22501,1 22217,1 22217,5	Pt max Inizio Linea	R ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0 2,95E+10 2,95E+10	NEU	TRO K ² S ² 0 0 0 0 1,06E+10	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	[A ² S] 0 0 0 0 0 0 0 0 0 0	Ib [A] 470,4 29,8 29,8 410,7 29,8 1389,2 1389,2	Ins Ins 474 40 474 40 40 1800 1800 [V]:	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] 0	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato Non verificato 36000
Nome utenza QMT8.Q1 QMT8.Q2 QMT8.Q3 QMT8.Q4 QMT8.Q5 QMT8.Q6 QMT8.Q7 QMT8.Q8 Quadro: QMT2 Nome Arrivo QMT2.Q1 Sistema di dist		C.d.t. ma L [m] 0 8 8 35 0 10 10 ghezza m	L max [m] 0 33777,8 33777,8 0 0 0 0	con lb [%] -2,94 -2,94 -2,95 -3,36 -3,36 -0,068 -0,067	IM-20kA-36kV SF1-36-16kA SF1-36-16kA IM-20kA-36kV n.d. n.d. n.d. CABINA C Cliente: C.d.t. Max ar	3 3 3 3 3 4 4 4	[A] 630 100 100 630 0 0 0	P.d.I. [KA] 0 16 16 0 0 0 Impli	Icc max [kA] 6,45 6,83 6,50 6,82 31,2 31,2 anto:	Imag. Imag. Imag.	Imagma x [A] 129,5 135,6 130,2 22500,8 22217,1 22217,5 22217,5	Pt max Inizio Linea	R ² S ² [A ² S] 0 7,64E+07 7,64E+07 1,95E+09 0 2,95E+10 2,95E+10	NEU	TRO K ² S ² 0 0 0 0 1,06E+10	I ² t max Inizio Linea [A ² S] 0 0 0 0 0 0	[A ² S] 0 0 0 0 0 0 0 0 0 0	Ib [A] 470,4 29,8 29,8 410,7 29,8 1389,2 1389,2	Ins [A] 474 40 40 40 1800 1800	[A] 0 207,4 207,4 477,4 0 1821	[A]	1.45l ₂ [A] [O] [O] [O] [O] [O] [O] [O] [O] [O] [O	Verificato Verificato Verificato Verificato Verificato Verificato Non verificato Non verificato 36000

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	Id	P.d.l.	Icc max	I mag.	Imagma x	l²t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K²S²	Ι _b	I _{ns}	lz	I _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.I.	Icc max	I mag.	Imagma x	I ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K ² S ²	I _b	I _{ns}	Iz	I _f	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT2.Q1	n.d.	0	0	-2,91	IM-20kA-36kV	3	630	0	6,50	0	129,8	0	0	0	0	0	0	454,5	558	0	0	(Verificato
QMT2.Q2	3x95	8	33777,8	-2,91	SF1-36-16kA	3	100	16	6,86	1000	135,6	2,35E+06	7,64E+07	0	0	0	0	32,5	40	207,4	0	(Verificato
QMT2.Q3	3x95	8	33777,8	-2,91	SF1-36-16kA	3	100	16	6,86	1000	135,6	2,35E+06	7,64E+07	0	0	0	0	32,5	40	207,4	0	(Verificato
QMT2.Q4	3x[3x240]	60	0	-2,91	IM-20kA-36kV	3	630	0	6,54	0	130,6	0	4,39E+09	0	0	0	0	389,4	480	633,1	0	(Verificato
QMT2.Q5	n.d.	0	0			3	0	0	6,85	0	22507,6	0	0	0	0	0	0	32,5	40	0	0	(Verificato
QMT2.Q6	n.d.	0	0	-3,35		3	0	0	6,85	0	22507,9	0	0	0	0	0	0	32,5	40	0	0	(Verificato
QMT2.Q7	3x(5x240)+3x24	10	0	-0,073		4	0	0	31,2	0	22224,0	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	(
QMT2.Q8	3x(5x240)+3x24	10	0	-0,073	n.d.	4	0	0	31,2	0	22224,3	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	(Non verificato
Quadro:					Zona:			Impi	anto:											<u> </u>		<u> </u>	
QMT9					CABINA 9			IIIIpi	arito.														
Nome Arrivo	·-				Cliente:			Door	rizio	O	uadro:												
QMT9.Q1											iauro.		T										
Sistema di dist	ribuzione:			Alta	C.d.t. Max ar	nmessa % :	4	Icc qu	ıadro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circui	ito			Appar	ecchiatura	a					Cort	to circ	uito					So	vraccar	ico		Ver. cont. ind.
Lı	unghezza ≤ Lun	ghezza i	max						Icc ma	x < P.d.	ı.			l²t ≤l	(2 S 2				$I_b \le I_{ns} \le I_z$		l _f ≤ 1	.45 l _z	
	C.d.t. % con I _b ≤	•			1				mag. <					1121	()				-D = -118 = -12			,	
												FA	SE	NEU	TRO	PROTE	ZIONE						
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	Id	P.d.l.	lcc max	I mag.	Imagma x	I ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K ² S ²	Iь	I _{ns}	lz	I _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT9.Q1	n.d.	0	0	-2,95	IM-20kA-36kV	3	630	0	6,49	0	130,2	0	0	0	0	0	0	410,7	474	0	0	(Verificato
QMT9.Q2	3x95	8	33777,8	-2,95	SF1-36-16kA	3	100	16	6,81	1000	135,5	2,32E+06	7,64E+07	0	0	0	0	37,9	40	207,4	0	(Verificato
QMT9.Q3	3x95	8	33777,8	-2,95	SF1-36-16kA	3	100	16	6,81	1000	135,5	2,32E+06	7,64E+07	0	0	0	0	37,9	40	207,4	0	(Verificato
QMT9.Q4	2x[3x240]	120	0	-2,96	IM-20kA-36kV	3	630	0	6,55	0	131,2	0	1,95E+09	0	0	0	0	334,8	474	477,4	0	(Verificato
QMT9.Q5	n.d.	0	0	-3,44		3	0	0	6,81	0	22494,4	0	0	0	0	0	0	37,9	40	0	0	(Verificato
QMT9.Q6	n.d.	0	0	-3,44		3	0	0	6,81	0	22494,6	0		0	0	0	0	37,9	40	0	0	(
QMT9.Q7	3x(5x240)+3x24	10	0	-0,085		4	0	0	31,2	0	22210,9		2,95E+10	2,59E+10	1,06E+10	0	0	1768,1	1800	1821	0	-	Non verificato
QMT9.Q8	3x(5x240)+3x24	10	0	-0,085	n.d.	4	0	0	31,2	0	22211,1	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1768,1	1800	1821	0	(Non verificato
Quadro: QMT3					Zona:	AMDO 2	<u> </u>	Impi	anto:														
					CABINA C	AIVIFU 3		_															
Nome Arrivo QMT3.Q1):				Cliente:			Desc	crizioi	ne Qı	uadro:												
Sistema di dist	ribuzione:			Alta	C.d.t. Max ar	nmessa % :	4	Icc qu	ıadro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				3600
	Circui	ito			Appar	ecchiatura	1					Cort	to circ	uito					So	vraccar	ico		Ver. cont. ind.
	unghezza ≤ Lun	aho===	nav					1	Icc ma	v / D ~		1		•2. •	r202				$I_b \le I_{ns} \le I_z$		1. ~ 4	,45 lz	
L		yntczza i	IIGA		1			1 .		x ≤ P.a. Imagm				l²t ≤i	\ 5⁻				ıp ≥ ıns ≥ Iz		If ≥ 1	, - -J IZ	
(C.d.t. m	ах						mag. <	iiiiayii	ia.												
C	C.d.t. % con I _b ≤	C.d.t. m	ax					'	mag. <	illiagii		FA	SE	NEU	TRO	PROTE	ZIONE						

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	Id	P.d.I.	Icc max	I mag.	Imagma x	I ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K ² S ²	I _b	I _{ns}	lz	I _f	1.45lz	
	[mm²]	[m]	[m]	[%]				[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT3.Q1	n.d.	0	0	-2,91	IM-20kA-36kV	3	630	0	6,54	0	130,6	0	0	0	0	0	0	389,4	480	0	0	0	Verificato
QMT3.Q2	3x95	8	33777,8	-2,91	SF1-36-16kA	3	100	16	6,85	1000	135,6	2,35E+06	7,64E+07	0	0	0	0	32,5	40	207,4	0	0	Verificato
QMT3.Q3	3x95	8	33777,8	-2,91	SF1-36-16kA	3	100	16	6,85	1000	135,6	2,35E+06	7,64E+07	0	0	0	0	32,5	40	207,4	0	0	Verificato
QMT3.Q4	3x[3x240]	250	0	-2,93	IM-20kA-36kV	3	630	0	6,59	0	131,4	0	4,39E+09	0	0	0	0	324,4	400	633,1	0	0	Verificato
QMT3.Q5	n.d.	0	0	-3,36	n.d.	3	0	0	6,84	0	22505,7	0	0	0	0	0	0	32,5	40	0	0	0	Verificato
QMT3.Q6	n.d.	0	0	-3,36	n.d.	3	0	0	6,84	0	22505,3	0	0	0	0	0	0	32,5	40	0	0	0	Verificato
QMT3.Q7	3x(5x240)+3x24	10	0	-0,073	n.d.	4	0	0	31,2	0	22222,2	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	0	Non verificato
QMT3.Q8	3x(5x240)+3x24	10	0	-0,073	n.d.	4	0	0	31,2	0	22221,8	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	0	Non verificato
Quadro:					Zona:			Impi	anto:														
QMT10					CABINA 10)																	
Nome Arrivo):				Cliente:			Desc	rizio	ne Oi	uadro:												
QMT10.Q1																							
Sistema di dist	ribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	ıadro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				360
	Circu	ito			Appar	ecchiatura						Cort	to circ	uito					Sov	vraccar	ico		Ver. cont. inc
Lu	unghezza ≤ Lur	nghezza i	nax						Icc ma	x ≤ P.d	ı.			l²t ≤k	√ 2S ²				$I_b \le I_{ns} \le I_z$		I _f ≤ 1	,45 l _z	
(C.d.t. % con I _b ≤	C.d.t. m	ax					ı	mag. <	Imagn	ax												
												FA	SE	NEU	TRO	PROTE	ZIONE						
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	Id	P.d.l.	lcc max	I mag.	Imagma x	I ² t max Inizio	K ² S ²	I ² t max Inizio	K ² S ²	I ² t max Inizio	K²S²	Ib	I _{ns}	Iz	l _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	Linea [A ² S]	[A ² S]	Linea [A ² S]	[A ² S]	Linea [A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT10.Q1	n.d.	0	0	-2,96	IM-20kA-36kV	3	630	0	6,54	0	131,2	0	0	0	0	0	0	334,8	474	0	0	0	Verificato
QMT10.Q2	3x95	8	33777,8	-2,96	SF1-36-16kA	3	100	16	6,81	1000	135,6	2,32E+06	7,64E+07	0	0	0	0	24,4	40	207,4	0	0	Verificato
QMT10.Q3	3x95	8	33777,8	-2,96	SF1-36-16kA	3	100	16	6,81	1000	135,6	2,32E+06	7,64E+07	0	0	0	0	24,4	40	207,4	0	0	Verificato
QMT10.Q4	2x[3x240]	60	0	-2,97	IM-20kA-36kV	3	630	0	6,58	0	131,9	0	1,95E+09	0	0	0	0	286,0	400	477,4	0	0	Verificato
QMT10.Q5	n.d.	0	0	-3,32	n.d.	3	0	0	6,80	0	22496,4	0	0	0	0	0	0	24,4	40	0	0	0	Verificato
QMT10.Q6	n.d.	0	0	-3,32	n.d.	3	0	0	6,80	0	22496,8	0	0	0	0	0	0	24,4	40	0	0	0	Verificato
QMT10.Q7	3x(5x240)+3x24	10		-0,055	1	4	0	0	31,2	0	22212,7	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0		1800	1821	0		Non verificato
QMT10.Q8	3x(5x240)+3x24	10	0	-0,055	n.d.	4	0	0	31,2	0	22213,1	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1136,7	1800	1821	0	0	Non verificato
Quadro: QMT4					Zona: CABINA C	AMPO 4		Impi	anto:														
Nome Arrivo	D:				Cliente:			Desc	crizio	ne Qı	uadro:												
Sistema di dist	ribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				360
	Circu	ito			Appar	ecchiatura	l					Cort	to circ	uito					Sov	vraccar	ico		Ver. cont. inc
11	unghezza ≤ Lur	nghezza	max						Icc ma	K < D Y	L.	l		l²t ≤k	√ 2 © 2				$\textbf{I}_{b} \leq \textbf{I}_{ns} \leq \textbf{I}_{z}$		l. < 1	,45 I _z	
	C.d.t. % con I _b ≤	_						ı	mag. <										·u - ·ns - ·tz		17 - 1	, .• ız	
Nome utenza	Formazione	L	L max	C.d.t.%	Sigla prot.	Poli	Id	P.d.l.	Icc	Imac	Imagma		SE K ² S ²		TRO K²S²	PROTE	ZIONE K ² S ²	l.		lz	I _f	1.45lz	
Nome utenza				con lb	Sigia prot.	FUII			max		x	I ² t max Inizio Linea		I ² t max Inizio Linea		Inizio Linea		Ib	I _{ns}				
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT4.Q1	n.d.	0	0	-2,93	IM-20kA-36kV	3	630	0	6,55	0	131,4	0	0	0	0	0	0	324,4	400	0	0	0	Verificato

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	Id	P.d.l.	Icc max	I mag.	Imagma x	l²t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K ² S ²	Iь	I _{ns}	lz	I _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT4.Q2	3x95	8	33777,8	-2,93	SF1-36-16kA	3	100	16	6,81	1000	135,5	2,32E+06	7,64E+07	0	0	(0	32,5	40	207,4	0	0	Verificato
QMT4.Q3	3x95	8	33777,8	-2,93	SF1-36-16kA	3	100	16	6,81	1000	135,5	2,32E+06	7,64E+07	0	0	(0	32,5	40	207,4	0	0	Verificato
QMT4.Q4	2x[3x240]	55	0			3	630	0	6,61	0	132,3	0	1,95E+09	0	0		0	259,3	320	477,4	0	0	
QMT4.Q5	n.d.	0	0	-3,38		3	0	0	6,81	0	22495,1	0		0	0	(32,5	40	0	0	0	Volinidato
QMT4.Q6	n.d.	0	0	-3,38		3	0	0	6,81	0	22495,5	0		0	0	(32,5	40	0	0	0	Volinidato
QMT4.Q7	3x(5x240)+3x24	10	0	-0,073		4	0	0	31,2	0	22211,6	3,93E+07	2,95E+10	2,59E+10	1,06E+10	(1515,5	1800	1821	0		Non verificato
QMT4.Q8	3x(5x240)+3x24	10	0	-0,073	n.d.	4	0	0	31,2	0	22212,0	3,93E+07	2,95E+10	2,59E+10	1,06E+10	(0	1515,5	1800	1821	0	0	Non verificato
Quadro: QMT11	1			l	Zona: CABINA 1	1	ı	Impia	anto:		l			1			1	l	1	l	l	1	•
Nome Arrivo	0:				Cliente:			Desc	rizior	ne Qı	ıadro:												
QMT11.Q1																							
Sistema di dis	tribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	: [V]:				36000
	Circu	ito			Appar	ecchiatura							o circ							vraccar	ico		Ver. cont. ind.
L	.unghezza ≤ Lun	ghezza r	nax						Icc max					l²t ≤l	K ² S ²				$I_b \leq I_{ns} \leq I_z$		l _f ≤ ′	1,45 lz	
	C.d.t. % con I _b ≤	C.d.t. m	ax					ı	mag. <	Imagm	ах			1									
Nome utenza	Formazione	L	L max	C.d.t.%	Sigla prot.	Poli	Id	P.d.l.	Icc	I mag.	Imagma	FA I ² t max	SE K ² S ²	NEU I²t max	TRO K²S²	PROT I ² t max	EZIONE K ² S ²	Iь	Ins	Iz	l _f	1.45lz	
				con lb	3				max		x	Inizio Linea		Inizio Linea		Inizio Linea							
	[mm ²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT11.Q1	n.d.	0	0	-2,97	IM-20kA-36kV	3	630	0	6,57	0	131,9	0	0	0	0	(0	286,0	400	0	0	0	Verificato
QMT11.Q2	3x95	8	33777,8		SF1-36-16kA	3	100	16	6,79	1000	135,6	2,31E+06	7,64E+07	0	0		0	29,8	40	207,4	0	0	Verificato
QMT11.Q3	3x95	8	33777,8		SF1-36-16kA	3	100	16	6,80	1000	135,6	2,31E+06	7,64E+07	0	0			29,8	40	207,4	0		
QMT11.Q4	2x[3x240]	380	0		IM-20kA-36kV	3	630	0	6,62	0	132,7	0	1,95E+09	0	0		0	226,4	320	477,4	0	0	Volliloato
QMT11.Q5	n.d.	0	0	-3,38		3	0	0	6,79	0	22491,7	0		0	0	1	-	29,8	40	0			
QMT11.Q6 QMT11.Q7	n.d. 3x(5x240)+3x24	10	0	-3,38 -0,067	n.d. n.d.	3	0	0	6,79 31,2	0	22491,7 22208,0	0 3,92E+07	0 2,95E+10	2,59E+10	1,06E+10	(29,8 1389,2	40 1800	1821	0		
QMT11.Q7 QMT11.Q8	3x(5x240)+3x24	10	0	-0,067	n.d.	4	0	0	31,2	0	22208,0	3,92E+07	2,95E+10	2,59E+10	1,06E+10	(1389,2	1800	1821	0	_	Non verificato
QWITI.Q0	3x(3x240)+3x24	10	0	-0,007	ii.u.	7	0	0	31,2	0	22200,1	3,32L+07	2,33L+10	2,532+10	1,002+10		, ,	1303,2	1000	1021			Non vernicato
Quadro:	1	<u> </u>	<u> </u>		Zona:	1	l	Impia	anto:			<u> </u>	Į.	<u>l</u>			Į.	l	l.	l	l.		
QMT5					CABINA C	AMPO 5		ШРК															
Nome Arrive	ο:				Cliente:			Desc	rizior	ne Oi	ıadro:												
QMT5.Q1	•				Olionto.			D000	7112101	10 00	addio.												
Sistema di dis	tribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	:[V]:				36000
_	Circu	ito			Appar	ecchiatura						Cort	o circ	uito					Sov	vraccar	ico		Ver. cont. ind.
1	.unghezza ≤ Lun	ghezza r	nax						Icc max	c < P.d.	I.			l²t ≤k	√ 2 © 2				$I_b \leq I_{ns} \leq I_z$			1,45 lz	
	C.d.t. % con I _b ≤								mag. <					1 (2)					-D = -113 = -12			.,	
												FA	SE	NEU	TRO	PROT	EZIONE						
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	ld	P.d.l.	Icc max	I mag.	Imagma x	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	Iь	I _{ns}	lz	l _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT5.Q1	n.d.	0	0	-2,94	IM-20kA-36kV	3	630	0	6,60	0	132,3	0	0	0	0	(0	259,3	320	0	0	0	Verificato
QMT5.Q2	3x95	8	33777,8	-2,94	SF1-36-16kA	3	100	16	6,81	1000		2,32E+06	7,64E+07	0	0	(0	34,8	40	207,4	0	0	Verificato
QMT5.Q3	3x95	8	33777,8	-2,94	SF1-36-16kA	3	100	16	6,81	1000	135,6	2,32E+06	7,64E+07	0	0	(0	34,8	40	207,4	0	0	Verificato
QMT5.Q4	2x[3x240]	485	0	-2,97	IM-20kA-36kV	3	630	0	6,66	0	133,1	0	1,95E+09	0	0	(0	189,7	240	477,4	0	0	Verificato

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	Id	P.d.l.	Icc max	I mag.	Imagma x	l²t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	Ι _b	I _{ns}	lz	l _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT5.Q5	n.d.	0	0	-3,41	n.d.	3	0	0	6,80	0	22493,6	0	0	0	0	0	0	34,8	40	0	0	0	Verificato
QMT5.Q6	n.d.	0	0	-3,41	n.d.	3	0	0	6,80	0	22494,2	0	0	0	0	0	0	34,8	40	0	0	0	Verificato
QMT5.Q7	3x(5x240)+3x24	10	0	1,13	n.d.	4	0	0	31,2	0	22210,0	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1641,8	1800	1821	0	0	Non verificato
QMT5.Q8	3x(5x240)+3x24	10	0	1,13	n.d.	4	0	0	31,2	0	22210,6	3,93E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1641,8	1800	1821	0	0	Non verificato
Quadro: QMT12					Zona: CABINA 12	2		Impia	anto:														
Nome Arrivo	0:				Cliente:			Desc	rizior	ne Qu	uadro:												
Sistema di dis	tribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito			Appar	ecchiatura						Cort	o circ	uito					Sov	/raccari	ico		Ver. cont. ind.
L	unghezza ≤ Lur	ıghezza ı	max						lcc max					l²t ≤l	(°S°				$I_b \leq I_{ns} \leq I_z$		$I_f \leq 1$,45 lz	
-	C.d.t. % con I _b s	C.d.t. m	ax					I	mag. <	Imagm	ax	E^	SE	ME	TRO	PROTE	ZIONE						
Nome utenza	Formazione	L	L max	C.d.t.%	Sigla prot.	Poli	I _d	P.d.I.	Icc max	I mag.	Imagma x	I ² t max Inizio	K ² S ²	I ² t max Inizio	K ² S ²	I ² t max Inizio	K ² S ²	I _b	I _{ns}	Iz	I _f	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	Linea [A ² S]	[A ² S]	Linea [A ² S]	[A ² S]	Linea [A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT12.Q1	n.d.	n	0	-3	IM-20kA-36kV	3	630	0	6,57	0	132,7	0	0	0	0	0	0	226,4	320	n	0	n	Verificato
QMT12.Q2	3x95	8	33777,8		SF1-36-16kA	3	100	16	6,74	1000	135,6	Ů	7,64E+07	0	0			29,8	40	207,4	0		Verificato
QMT12.Q3	3x95	8	33777,8		SF1-36-16kA	3	100	16	6,74	1000	135,6	2,27E+06	7,64E+07	0	0		0	29,8	40	207,4	0		Verificato
QMT12.Q4	2x[3x240]	250	0		IM-20kA-36kV	3	630	0	6,62	0	133,5	0	1,95E+09	0	0	0		166,8	240	477,4	0	0	
QMT12.Q5	n.d.	0	0			3	0	0	6,74	0	22477,4	0	0	0	0	0	0	29,8	40	0	0	0	
QMT12.Q6	n.d.	0	0	-3,42		3	0	0	6,74	0	22477,5	0	0	0	0	0	0	29,8	40	0	0	0	Verificato
QMT12.Q7	3x(5x240)+3x24	10	0	-0,067		4	0	0	31,2	0	22193,6	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	0	0	Non verificato
QMT12.Q8	3x(5x240)+3x24	10	0	-0,066	n.d.	4	0	0	31,2	0	22193,7	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	0	0	Non verificato
Quadro:					Zona:			Impia	anto:														
QMT6					CABINA C	AMPO 6																	
Nome Arrivo	J.				Cliente:			Desc	rizior	ω Οι	uadro:												
QMT6.Q1	J.				Cilerite.			Desc	112101	ie Qt	iauio.												
Sistema di dist	tribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito			Annar	ecchiatura							o circ							/raccari	ico		Ver. cont. ind.
	Circu	110			Арраі	eccinatura						COIT	.o circi	uito					301	riaccari			ver. cont. ma.
-	unghezza ≤ Lur C.d.t. % con I _b ≤	-							lcc max mag. <					l²t ≤l	⟨²S²				$I_b \leq I_{ns} \leq I_z$		I _f ≤ 1	,45 Iz	
												FA	SE	NEU	TRO	PROTE							
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.l.	lcc max	I mag.	Imagma x	I ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	I _b	I _{ns}	l _z	I _f	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT6.Q1	n.d.	0	0	-2,97	IM-20kA-36kV	3	630	0	6,59	0	133,1	0	·	0	0	0	0	189,7	240	0	0	0	Verificato
QMT6.Q2	3x95	8	33777,8		SF1-36-16kA	3	100	16	6,74	1000	135,6	2,27E+06	7,64E+07	0	0	0	0	29,8	40	207,4	0	0	Verificato
QMT6.Q3	3x95	8	33777,8	-2,97	SF1-36-16kA	3	100	16	6,74	1000	135,5			0	0	0	0	32,5	40	207,4	0	0	Verificato
QMT6.Q4	3x95	8	33777,8		SF1-36-16kA	3	100	16		1000			7,64E+07	0				32,5	40	207,4	0		Verificato
QMT6.Q5	3x240	305	0		IM-20kA-36kV	3	630	0	6,67	0	134,5		4,88E+08	0	0			94,8	120	346,0	0		Verificato
QMT6.Q6	n.d.	0	0	-3,39	+	3	0	0	6,73	0	22474,1	0	0	0	0	0	0	29,8	40	0	0		Verificato
QMT6.Q7	n.d.	0	0	-3,42	n.d.	3	0	0	6,73	0	22472,9	0	0	0	0	0	0	32,5	40	0	0	0	Verificato

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	ld	P.d.l.	Icc max	I mag.	Imagma x	I ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	I _b	I _{ns}	l _z	I _f	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT6.Q8	n.d.	0	0	-3,42	n.d.	3	0	0	6,73	0	22472,9	0	0	0	0	0	0	32,5	40	0	0	0	Verificato
QMT6.Q9	3x(5x240)+3x24	10	0	-0,066	n.d.	4	0	0	31,2	0	22190,4	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	0	0	Non verificato
QMT6.Q10	3x(5x240)+3x24	10	0	-0,072	n.d.	4	0	0	31,2	0	22189,2	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	0	Non verificato
QMT6.Q11	3x(5x240)+3x24	10	0	-0,072	n.d.	4	0	0	31,2	0	22189,3	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	0	Non verificato
Quadro: QMT13					Zona: CABINA 13	3		Impia	anto:														
Nome Arrivo QMT13.Q1):				Cliente:			Desc	rizior	ne Qı	uadro:												
Sistema di dist	tribuzione:			Alta	C.d.t. Max ar	nmessa % :	4	Icc qu	adro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito			Appar	ecchiatura						Cort	o circ	uito					Sov	/raccar	ico		Ver. cont. ind.
Lı	unghezza ≤ Lur	ghezza i	max						Icc max					l²t ≤l	K ² S ²				$I_b \leq I_{ns} \leq I_z$		l _f ≤ 1	1,45 lz	
-	C.d.t. % con I _b ≤	C.d.t. m	ax					I	mag. <	Imagm	ıax												
Name :	T =		T 1	0 2 . 0 .	Circle 1	T 5 "		D		1			SE		TRO		ZIONE	.			ļ.,	1 4 451	
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.l.	lcc max		Imagma x	I ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	I _b	Ins	l _z	I _f	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT13.Q1	n.d.	0	0	-3,02	IM-20kA-36kV	3	630	0	6,58	0	133,5	0	0	0	0	0	0	166,8	240	0	0	0	Verificato
QMT13.Q2	3x95	8	33777,8	-3,02	SF1-36-16kA	3	100	16	6,71	1000	135,6	2,25E+06	7,64E+07	0	0	0	0	27,1	40	207,4	0	0	Verificato
QMT13.Q3	3x95	8	33777,8	-3,02	SF1-36-16kA	3	100	16	6,71	1000	135,6	2,25E+06	7,64E+07	0	0	0	0	27,1	40	207,4	0	0	Verificato
QMT13.Q4	3x240	760	0	-3,08		3	630	0	6,63	0	,-	0	4,88E+08	0	0	0	0	112,6	160	346,0	0	0	Verificato
QMT13.Q5	n.d.	0	0	-3,40		3	0	0	6,70	0	22466,6	0	0	0	0	0	Ŭ	27,1	40	0	0		Verificato
QMT13.Q6	n.d.	0	0	-3,40	1	3	0	0	6,70	0	22466,8	0		0	0	0	0	27,1	40	0	0		Verificato
QMT13.Q7	3x(5x240)+3x24	10	0	-0,06		4	0	0	31,2	0	22182,8	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1263,0	1800	1821	0	<u> </u>	Non verificato
QMT13.Q8	3x(5x240)+3x24	10	0	-0,06	n.d.	4	0	0	31,2	0	22183,0	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1263,0	1800	1821	0	0	Non verificato
Quadro:	1				Zona:	<u> </u>		Imni	anto:					<u> </u>							<u> </u>		
						A NADO 7		Impi	anto.														
QMT7					CABINA C	AMPO /																	
Nome Arrivo QMT7.Q1): -				Cliente:						uadro:												
Sistema di dist	tribuzione:			Alta	C.d.t. Max ar	nmessa % :	4	Icc qu	ıadro [kA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito			Appar	ecchiatura						Cort	o circ	uito					Sov	/raccar	ico		Ver. cont. ind.
	unghezza ≤ Lur C.d.t. % con I _b ≤								lcc max mag. <					l²t ≤l	K ² S ²				$I_b \leq I_{ns} \leq I_z$		l _f ≤ 1	1,45 Iz	
	•											FA	SE	NEU	TRO	PROTE	ZIONE						
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.l.	lcc max	I mag.	Imagma x	I ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K ² S ²	I _b	I _{ns}	l _z	I _f	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT7.Q1	n.d.	0	0	-3,00	IM-20kA-36kV	3	630	0	6,58	0	134,5	0	0	0	0	0	0	94,8	120	0	0	0	Verificato
QMT7.Q2	3x95	8	33777,8	-3,00	SF1-36-16kA	3	100	16	6,65	1000	135,6	2,21E+06	7,64E+07	0	0	0	0	29,8	40	207,4	0	0	Verificato
QMT7.Q3	3x95	8	33777,8	_	SF1-36-16kA	3	100	16	6,64	1000		2,21E+06	1	0	0	0	0	1	40	207,4	0	1	Verificato
QMT7.Q4	3x95	8	33777,8	<u> </u>	SF1-36-16kA	3	100	16	6,64	1000		2,21E+06		0		0		32,5	40	207,4	0	+	Verificato
QMT7.Q5	3x240	2070	0		IM-20kA-36kV	3	630	0	6,68	0		4,46E+07	4,88E+08	0	0	0	-	0	120	346,0	0		Verificato
QMT7.Q6	n.d.	0	0	-3,41	1	3	0	0	6,65	0	22447,1	0	0	0	0	0	0	29,8	40	0	0	+	Verificato
QMT7.Q7	n.d.	0	0	-3,44	n.d.	3	0	0	6,64	0	22443,3	0	0	0	0	0	0	32,5	40	0	0	0	Verificato

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.l.	Icc max	I mag.	Imagma x	l²t max Inizio Linea	K ² S ²	l²t max Inizio Linea	K²S²	l ² t max Inizio Linea	K ² S ²	Ι _b	I _{ns}	lz	If	1.45lz	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT7.Q8	n.d.	0	0	-3,44	n.d.	3	0	0	6,64	0	22443,6	0	0	0	0	0	0	32,5	40	0	0	0	Verificato
QMT7.Q9	3x(5x240)+3x24	10	0	-0,066	n.d.	4	0	0	31,1	0	22163,3	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	0	0	Non verificato
QMT7.Q10	3x(5x240)+3x24	10	0	-0,072	n.d.	4	0	0	31,1	0	22159,7	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	0	Non verificato
QMT7.Q11	3x(5x240)+3x24	10	0	-0,072	n.d.	4	0	0	31,1	0	22160,0	3,92E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1515,5	1800	1821	0	0	Non verificato
Quadro: QMT14					Zona: CABINA 14	4		Impi	anto:														
Nome Arrivo	o:				Cliente:			Desc	rizior	ne Qu	uadro:												
Sistema di dist	tribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	adro [κΑ]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito				ecchiatura							o circ							/raccari	ico		Ver. cont. ind.
L	unghezza ≤ Lur	nghezza	max						lcc max					l²t ≤k	⟨²S²				$I_b \leq I_{ns} \leq I_z$		$I_{\rm f} \leq 1$,45 lz	
	C.d.t. % con I _b ≤	⊆ C.d.t. m	ıax	-				I	mag. <	Imagm	nax		0.5		TDO	DE ST	7101:-	ļ					
Nome utenza	Formazione	L	L max	C.d.t.%	Sigla prot.	Poli	I _d	P.d.l.	Icc	I mag.	Imagma	FA I ² t max	SE K ² S ²	NEU	TRO K²S²	PROTE	K ² S ²	I _b	Ins	l _z	l,	1.451,	
			[m]	con lb	o.g.a. p.o.a	. 0	.a [A]	[kA]	max [kA]	[A]	x	Inizio Linea		Inizio Linea		Inizio Linea			[A]	.2 [A]		[A]	
	[mm ²]	[m]	[]	[%]			[A]	[KA]	[KA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT14.Q1	n.d.	0	0	-,	IM-20kA-36kV	3	630	0	6,42	0	134,3	0	0	0	0	0	0	112,6	160	0	0	0	Verificato
QMT14.Q2	3x95	8	33777,8	-3,08	SF1-36-16kA	3	100	16	6,49	1000	135,6	2,11E+06	7,64E+07	0	0	0	0	29,4	40	207,4	0	0	Verificato
QMT14.Q3	3x95	8	33777,8	-3,08	SF1-36-16kA	3	100	16	6,49	1000	135,6	2,11E+06	7,64E+07	0	0	0	0	29,4	40	207,4	0	0	Verificato
QMT14.Q4	3x240	35	0		IM-20kA-36kV	3	630	0	6,47	0	135,2	4,19E+07	4,88E+08	0	0	0	0	53,8	80	346,0	0	0	
QMT14.Q5	n.d.	0	0	- , .		3	0	0	6,49	0	22396,3	0	0	0	0	0	0	29,4	40	0	0	0	
QMT14.Q6	n.d.	0	0	-3,49		3	0	0	6,49	0	22396,3	0	0	0	0	0	0		40	0	0	0	
QMT14.Q7	3x(5x240)+3x24	10	0		n.d.	4	0	0	31,1	0	22112,5	3,91E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	0	0	Non verificato
QMT14.Q8	3x(5x240)+3x24	10	0	1,21	n.d.	4	0	0	31,1	0	22112,5	3,91E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1389,2	1800	1821	0	0	Non verificato
Quadro:					Zona:	l.		I mana i					l					l .					
						_		Impia	anto:														
QMT15					CABINA 1	5																	
Nome Arrivo	0:				Cliente:			Desc	rizior	ne Qu	uadro:												
Sistema di dis	tribuzione:			Alta	C.d.t. Max an	nmessa % :	4	Icc qu	adro [κA]:		0	lpk qua	dro [kA]:			0	Tensione	[V]:				36000
	Circu	ito			Appar	ecchiatura	l					Cort	o circ	uito					Sov	/raccari	ico		Ver. cont. ind.
												ı									T		
	unghezza ≤ Lur C.d.t. % con I _b ≤	-							lcc max mag. <					l ² t ≤k	(²S²				$I_b \leq I_{ns} \leq I_z$		I _f ≤ 1	,45 lz	
							_				T-	FA		NEU		PROTE		<u></u>					
Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	I _d	P.d.l.	Icc max	I mag.	Imagma x	I ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K ² S ²	I ² t max Inizio Linea	K²S²	l _b	I _{ns}	l _z	l _f	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT15.Q1	n.d.	0	0		IM-20kA-36kV	3	630	0	6,46	0	135,2	0	0	0	0		0		80	0	0		Verificato
QMT15.Q2	3x95	8	33777,8		SF1-36-16kA	3	100	16	6,49	1000		2,10E+06	7,64E+07	0	0		0	27,1	40	207,4	0		Verificato
QMT15.Q3	3x95	8	33777,8		SF1-36-16kA	3	100	16	6,49	1000		2,10E+06	+	0			0		40	207,4	0		Verificato
QMT15.Q4	3x240	2085	0		IM-20kA-36kV	3	630	0	6,51	0	· ·	4,24E+07	4,88E+08	0			0	0	80	346,0	0		Verificato
QMT15.Q5	n.d.	0	0			3	0	0	6,48	0	22396,2	0	0	0	0	0	0		40	0	0		Verificato
QMT15.Q6	n.d.	0	0	-3,46	†	3	0	0	6,48	0	22396,4	0	0	0	0	0	0	26,7	40	0	0	0	romodio
QMT15.Q7	3x(5x240)+3x24	10	0	-0,06	n.d.	4	0	0	31,1	0	22112,2	3,91E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1263,0	1800	1821	0	0	Non verificato

Nome utenza	Formazione	L	L max	C.d.t.% con lb	Sigla prot.	Poli	Id	P.d.I.	lcc max	I mag.	Imagma x	I ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K ² S ²	Iь	I _{ns}	lz	If	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
QMT15.Q8	3x(5x240)+3x24	10	0	1,22	n.d.	4	0	0	31,1	C	22112,5	3,91E+07	2,95E+10	2,59E+10	1,06E+10	0	0	1263,0	1800	1821	0	0	Non verificato
																	-						