REGIONE PUGLIA

PROVINCIA DI FOGGIA

COMUNE DI FOGGIA

DENOMINAZIONE:

Comune di Foggia (FG) Località "Torre Guiducci"

PROGETTO DEFINITIVO

per la realizzazione di un impianto agrovoltaico da ubicare in agro del comune di Foggia (FG) in località "Torre Guiducci", potenza nominale pari a 33,4062 MW DC e potenza in immissione pari a 30 MW AC, e delle relative opere di connessione alla RTN ricadenti nello stesso comune.

PROPONENTE

FORTORE ENERGIA S.p.A.

Piazza G. Marconi, 15 – 00144 Roma

PEC: fortoreenergia@pec.it Part. IVA 03151540717

Codice Autorizzazione Unica

Z7FYM26

El	LABORATO	Relazione Generale			4CR.01		
	Numero	Data	Motivo	Eseguito	Verificato	Approvato	
ienti	Rev 0	Febbraio 2022	Piano Tecnico delle Opere di Connessione alla RTN	SG	AL	AL	
giornan	Rev 0	Giugno 2022	Integrazione Piano Tecnico delle Opere di Connessione alla RTN	AL	AL	AL	
Ag	2						

PROGETTAZIONE

Dott.ssa Ing. ANGELA LANCELLOTTI Via del Gallitello n.281 85100 Potenza (PZ) Ordine degli Ingegneri di Potenza n.1702 Mail: esapro.studiotecnico@gmail.com PEC: angela.lancellotti@ingpec.eu

Cell: 320 8683387

TECNICO

Dott.ssa Ing. ANGELA LANCELLOTTI Via del Gallitello n.281 85100 Potenza (PZ) Ordine degli Ingegneri di Potenza n.1702 Mail: esapro.studiotecnico@gmail.com PEC: angela.lancellotti@ingpec.eu Cell: 320 8683387 Spazio riservato agli Enti

Tay no

IMPIANTO AGRIFOTOVOLTAICO – COMUNE DI Foggia (FG)

Documento: Relazione Tecnico-Descrittiva delle opere di connessione Data: 24/06/2022 Rev.: 01

Sommario

1.	Premessa			
	Motivazione dell'opera			
3.	Ubicazione ed accessi	3		
4.	Descrizione e caratteristiche tecniche dell'opera	5		

IMPIANTO AGRIFOTOVOLTAICO - COMUNE DI Foggia (FG)

Documento: Relazione Tecnico-Descrittiva delle opere di connessione Data: 24/06/2022 Rev.: 01

1. Premessa

Lo scopo del presente documento è fornire una descrizione tecnica di massima delle opere di collegamento tra l'impianto "agro-voltaico" da ubicarsi nel Comune di Foggia (FG), della potenza in immissione (in AC) pari a 30 MW, e la futura stazione (SE) della Rete di Trasmissione Nazionale (RTN) prevista nel medesimo territorio comunale in località "Sprecacenere", quale ampliamento della esistente SE RTN denominata "Foggia 380". L'impianto sarà connesso alla RTN per il tramite di una stazione utente di trasformazione, che consentirà di elevare la tensione dell'impianto di produzione dalla Media (MT - 30 kV) all'Alta (AT - 150 kV), ed un sistema di sbarre AT 150 kV, che raccoglierà l'energia prodotta sia dall'impianto in questione che da almeno altri 3 produttori con i quali si condividerà lo stallo AT della SE RTN assegnato dal Gestore della Rete, ossia la società TERNA.

Il sistema di sbarre sarà connesso al quadro di alta tensione a 150 kV del futuro satellite in ampliamento della SE RTN "*Foggia 380*" tramite cavo interrato AT, di lunghezza pari a circa 420 mt.

2. Motivazione dell'opera

La realizzazione delle opere di utenza (stazione di trasformazione AT/MT e sistema di sbarre) per la connessione alla RTN permetteranno l'immissione nella stessa dell'energia prodotta dal campo agro-voltaico del produttore; inoltre, come sopra detto, il sistema di sbarre AT costituirà anche un centro di raccolta di ulteriori iniziative di produzione di energia da fonte rinnovabile per il collegamento delle quali occorrerà condividere lo stallo AT all'interno della SE RTN, come richiesto da Terna nella Soluzione Tecnica Minima Generale, "al fine di razionalizzare l'utilizzo delle strutture di rete". A tal proposito si segnala che lo stallo RTN sul quale si prevede di collegare la stazione di raccolta è stato assegnato da Terna con mail del 06/10/2021, riportando tutti i produttori coinvolti, ossia:

- Artemis S.r.I. connessioni@green-go.net
- Green Flag S.r.l. solarsudsrl@legalmail.it
- Bas Italy Ottava S.r.l. basitalyottavasrl@gmail.com

Allo stato attuale, l'accordo di condivisione è in fase di stipula con gli altri produttori coinvolti; non appena lo stesso sarà definito e siglato da tutte le parti coinvolte, sarà cura della scrivente integrarlo al presente Piano Tecnico.

3. Ubicazione ed accessi

L'individuazione del sito ed il posizionamento delle opere di utenza per la connessione (stazione di trasformazione e sistema di sbarre) risultano dai seguenti allegati:

- planimetria generale su Carta Tecnica Regionale CTR;
- planimetria generale su Ortofoto;
- planimetria generale su Mappa Catastale.

L'area impegnata dalla stazione di trasformazione AT/MT e da quella di raccolta AT è pari a 3.115 mq circa ed interessa la p.lla 147 del foglio 37 del Comune di Foggia

IMPIANTO AGRIFOTOVOLTAICO - COMUNE DI Foggia (FG)

Documento: Relazione Tecnico-Descrittiva delle opere di connessione Data: 24/06/2022 Rev.: 01

(FG); entrambe le stazioni saranno opportunamente recintate.

Dal punto di vista vincolistico non ci sono particolarità che impediscono la realizzazione delle opere, come risulta dal seguente stralcio del Piano Paesaggistico Territoriale Regionale della Puglia, approvato con Delibera n. 176 del 16 febbraio 2015 (pubblicata sul BURP n. 40 del 23.03.2015).

Figura 1 - stralcio PPTR Puglia (area di intervento cerchiata in giallo)

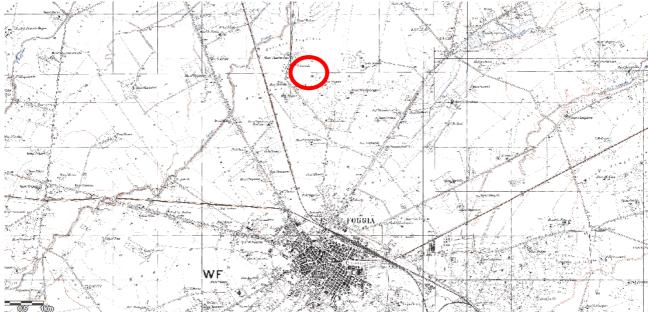


Figura 2 - stralcio IGM 1:25.000, tratto dal Geoportale Nazionale (area di intervento cerchiata in rosso)

La viabilità di accesso alle stazioni di utenza sarà raccordata alla derivazione su viabilità esistente, ossia la Strada Statale 673.

IMPIANTO AGRIFOTOVOLTAICO - COMUNE DI Foggia (FG)

Documento: Relazione Tecnico-Descrittiva delle opere di connessione Data: 24/06/2022 Rev.: 01

4. Descrizione e caratteristiche tecniche dell'opera

4.1. Opere di rete per la connessione

Lo stallo a 150 kV del futuro ampliamento della Stazione RTN "Foggia 380" sarà costituito dalle seguenti apparecchiature AT:

- interruttore:
- trasformatore amperometrico TA;
- sezionatore orizzontale tripolare;
- trasformatore di tensione induttivo TV;
- scaricatori;
- terminali.

Tutte le apparecchiature sopra citate e le relative fondazioni in c.a. saranno in accordo all'unificazione di TERNA, cui sarà connesso il cavo AT, come da immagine sotto allegata (stralciata dall'elaborato 4CR.06):

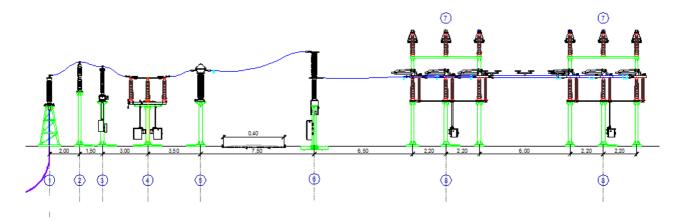


Figura 2 – sezione futuro stallo 150 kV di arrivo in Stazione Elettrica RTN

4.2. Opere di utenza per la connessione

Le opere di utenza per la connessione consistono nella realizzazione delle seguenti opere:

- stazione utente di trasformazione 150/30 kV, comprendente un montante TR
 equipaggiato con scaricatori di sovratensione ad ossido di zinco, TV e TA per
 protezioni e misure fiscali, interruttore, sezionatore orizzontale tripolare con
 isolatore rompi-tratta; inoltre sarà realizzato un edificio che ospiterà le
 apparecchiature di media e bassa tensione ed un locale destinato al
 contenimento del trafo MT/BT per servizi ausiliari;
- stazione con sbarre AT di raccolta, con n. 5 stalli dedicati ad altrettanti produttori e n. 1 stallo destinato alla connessione verso la RTN con cavo interrato; il montante di uscita sarà equipaggiato con TA e interruttore, sezionatore orizzontale tripolare, TV induttivo, scaricatori e terminali AT, mentre ciascuno dei montanti per produttori sarà dotato di colonnini porta sbarre e sezionatore verticale di sbarra.

La connessione tra le due stazioni di utenza avverrà in tubo rigido in alluminio, mentre

Progettista: Committente:

Ing. Angela Lancellotti Fortore Energia SpA

IMPIANTO AGRIFOTOVOLTAICO - COMUNE DI Foggia (FG)

Documento: Relazione Tecnico-Descrittiva delle opere di connessione Data: 24/06/2022 Rev.: 01

la connessione tra il sistema di sbarre in condivisione e la SE RTN avverrà per mezzo di un conduttore costituito da una corda rotonda compatta e tamponata composta da fili di alluminio, conforme alla Norma IEC 60840 per conduttori di Classe 2; l'isolamento sarà composto da uno strato di polietilene reticolato (XLPE) della sezione di 1600 mm2, adatto ad una temperatura di esercizio massima continuativa del conduttore pari a 90° (tipo ARE4H1H5E), come da stralcio della scheda tecnica successivamente allegata:

1 AMBITO DI APPLICAZIONE

Le presente tabella tecnica si applica ai cavi terrestri unipolari estrusi, isolati in XLPE e aventi le seguenti caratteristiche:

 - Tensione nominale:
 U₀/U = 87/150 kV

 - Tensione massima del sistema:
 Um = 170 kV

 - Frequenza nominale:
 50 Hz

 - Tensione di tenuta di breve durata a frequenza industriale("):
 325 kVms

 - Tensione nominale di tenuta a impulso atmosferico(") (BIL):
 750 kVα

 - Gradiente elettrico nominale sul conduttore:
 E₁ ≤ 8 kV/mm;

 - Gradiente elettrico nominale sull'isolante:
 E₀ ≤ 4 kV/mm.

Non saranno accettati cavi con gradienti elettrici E₁ > 8,0 kV/mm ed E₀ > 4,0 kV/mm.

2 CARATTERISTICHE FUNZIONALI E COSTRUTTIVE

Schema costitutivo (a titolo indicativo)

Figura 3 – scheda tecnica cavo AT con isolamento in XLPE

La sezione andrà eventualmente aggiornata in funzione della reale potenza da connettere sullo stallo RTN.

IMPIANTO AGRIFOTOVOLTAICO - COMUNE DI Foggia (FG)

Documento: Relazione Tecnico-Descrittiva delle opere di connessione Data: 24/06/2022 Rev.: 01

I cavi saranno installati con configurazione a trifoglio (al fine di contenere anche l'emissioni di campi elettromagnetici e ridurre le distanze di prima approssimazione), come riportato nell'elaborato grafico allegato. La posa avverrà prevalentemente su terreno agricolo / strada battuta, a meno del tratto all'interno della SE RTN; lungo il circuito si prevede la posa di un tritubo per la eventuale posa di cavi a fibre ottiche, oltre a due cavi di rame aventi sezione 120 mm² per l'eventuale connessione tra le maglie di terra delle stazioni di utenza e di quella RTN. Tale collegamento sarà comunque sezionabile all'interno di un pozzetto posto in prossimità dello stallo di connessione.

Per quanto concerne le modalità di posa del cavo AT, al momento si prevede una posa completamente in trincea; ad ogni modo saranno svolte ulteriori indagini (anche tramite utilizzo di georadar) per valutare la presenza di eventuali sotto-servizi esistenti (cavi di potenza, condotte metalliche, gasdotti, ecc.) e, qualora se ne dovesse riscontrare la presenza, il tratto di cavidotto interessato sarà realizzato mediante trivellazione orizzontale controllata (T.O.C.).

Infine, relativamente alla gestione degli schermi del cavo AT, è noto che le correnti circolanti negli stessi sono uno dei fattori che contribuiscono a ridurne la portata. Esse sono generate dalle tensioni indotte dai campi magnetici, proporzionali alla corrente che scorre nel cavo, che si concatenano con lo schermo stesso. Ne risulta, come sempre accade quando un conduttore è percorso da corrente, una produzione di calore per effetto joule che può essere eliminata azzerando la circolazione negli schermi. Altro aspetto problematico risiede nel valore della tensione indotta nello schermo che risulta proporzionale, oltreché alla corrente, alla lunghezza ed alla geometria con cui sono disposti i conduttori. Il crescere di tale valore determina una sollecitazione sugli isolanti dei cavi.

Per limitare le tensioni indotte è possibile mettere a terra gli schermi dei cavi ma in questo modo si crea un percorso di circolazione di corrente, con ritorno attraverso il terreno, da cui scaturisce la riduzione di portata di cui si è detto in precedenza.

In generale ci sono due modi possibili con cui gestire gli schermi dei cavi:

- a) collegare a terra entrambe le estremità;
- b) collegare a terra una sola estremità.
- Si analizzano di seguito i pregi e i difetti di ciascuna delle configurazioni.

Nel primo caso la tensione alla estremità degli schermi è nulla ma, come accennato, si crea un percorso attraverso cui scorre una corrente che determina una produzione di calore la quale, sommandosi a quella ordinaria, riduce la portata del cavo. Si sottolinea che la tensione indotta è nulla ai capi dello schermo, vincolati al potenziale di terra, ma non lungo il resto del percorso. Se quest'ultimo non è particolarmente lungo (minore di 5 km) non è necessario prevedere alcuna giunzione a terra dei punti intermedi. Altro aspetto peculiare di una siffatta gestione degli schermi sono i potenziali che si trasferiscono all'esterno delle stazioni elettriche, nel caso in cui l'estremità dello schermo lato-stazione sia collegata all'impianto di terra di quest'ultima.

Nel secondo caso, ovvero con una sola estremità dello schermo messa a terra e l'altra isolata, non si ha una circolazione di corrente, ma lungo il percorso del cavo le tensioni indotte possono divenire di entità tanto più problematica al crescere della

IMPIANTO AGRIFOTOVOLTAICO - COMUNE DI Foggia (FG)

Documento: Relazione Tecnico-Descrittiva delle opere di connessione Data: 24/06/2022 Rev.: 01

lunghezza del collegamento. Tale configurazione andrebbe adottata per cavi brevi (massimo un km, come nel ns. caso).

Un sistema alternativo a quelli rappresentati e quello del cross bonding in aggiunta alla messa a terra di entrambe le estremità della linea. Esso consiste in un collegamento incrociato degli schermi, da effettuarsi ad ogni terzo di percorso, ed ha il vantaggio di evitare la circolazione di correnti e l'insorgenza di tensioni eccessive sugli schemi permettendo l'allungamento delle condutture. Lo svantaggio risiede nel maggior costo dei giunti. Tale soluzione è adottata nei cavi AT e quando le lunghezze sono notevoli.

Tra le descritte la modalità di gestione, vista la lunghezza del cavo AT pari a circa 420 mt, si è deciso di adottare la scelta progettuale del "single point bonding" che prevede l'atterramento degli schermi dei cavi AT:

- in corrispondenza della SE di Terna come diretto, con la raccomandazione che la messa a terra sia di tipo sconnettibile e avvenga in tre cassette distinte una per ciascuna fase;
- in corrispondenza della SE utente di raccolta come atterrato previa interposizione di scaricatori di sovratensione.

Tra il punto di atterramento diretto lato Terna e l'analogo del comune degli scaricatori sarà posato un conduttore dal 120 mm² in rame.