

Regione Lazio Provincia di Viterbo Comuni di Monte Romano e Tuscania

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Titolo:

RELAZIONE DI CALCOLO DELLA GITTATA

Numero documento:

2 2 4 3 1 4

Commessa

Tipo doc.

R

Prog. doc.

Rev

D

0 2 7 1

0 0

Proponente:

FRI-EL S.p.A.
Piazza della Rotonda 2
00186 Roma (RM)
fri-elspa@legalmail.it
P. Iva 01652230218
Cod. Fisc. 07321020153

PROGETTO DEFINITIVO

Progettazione:

PROGETTO ENERGIA S.R.L.
Via Serra 6 83031 Ariano Irpino (AV)
Tel. +39 0825 891313
www.progettoenergia.biz - info@progettoenergia.biz

SERVIZI DI INGEGNERIA INTEGRATI

Progettista:

Ing. (Massimo Lo Russo

MASSIMO LO RUSSO

ROSSIONALE

ON 1555

		Sul presente docui	mento sussiste il DIRITTO di PROPRIETA'. Qualsiasi utilizzo non prevent	ivamente autorizzato sarà perseg	guito ai sensi della normativa	vigente
l_	N.	Data	Descrizione revisione	Redatto	Controllato	Approvato
NO.	00	17.11.2022	EMISSIONE PER AUTORIZZAZIONE	C. ELIA	D. LO RUSSO	M. LO RUSSO
EVIS						
۳						

Impianto Eolico denominato "Poggio della Guardiola"
ubicato nel comune di Monte Romano (VT)
costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW
per un totale di 45 MW con relative opere connesse ed infrastrutture
indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314_D_R_0271 Rev. 00

INDICE

1. PREMESSA	
2. CALCOLO DELLA GITTATA	
3. CONSIDERAZIONI SUL MODELLO UTILIZZATO E UTILIZZO DEL "MODELLO REALE"	
3.1 DATI DEGLI AEROGENERATORI CONSIDERATI NELLO STUDIO	5
3.2 FORZE AGENTI SULLA TRAIETTORIA DELLA PALA	6
3.3 CONCLUSIONI DELLO STUDIO	8
4. VALORE DI GITTATA ANALIZZATO CON IL "MODELLO REALE"	8
5. POSSIBILITÀ DI ACCADIMENTO DEI FENOMENI DI GUASTO E ROTTURA	8
5.1 CADUTA DELLA TORRE	g
5.2 CADUTA DELLA NAVICELLA E/O DEL ROTORE	g
5.3 CONCLUSIONI DELLO STUDIO DI DEWI OCC	9
6. CONCLUSIONI	10

ALLEGATO:

1. Calcolo della gittata

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

1. PREMESSA

La presente relazione viene redatta con lo scopo di analizzare gli effetti della rottura degli organi rotanti dell'impianto eolico, denominato "Poggio della Guardiola", costituito da 8 aerogeneratori per una potenza massima complessiva di 45 MW, nel comune di Monte Romano (VT), e relative opere di connessione ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (TR), collegato alla Rete Elettrica Nazionale mediante connessione con uno stallo a 150 kV in antenna su un futuro ampliamento della stazione di trasformazione (SE) della RTN 380/150 kV, ubicata nel comune di Tuscania.

A maggior comprensione del fenomeno si illustreranno i risultati di due studi tecnico-scientifici sull'argomento commissionati da due tra le più importanti case costruttrici di aerogeneratori, la danese Vestas e la tedesca Enercon, rispettivamente all'ente scientifico di ricerca BP Power e alla società di certificazione internazionale DEWI-OCC, in merito alle reali probabilità di accadimento del fenomeno di rottura degli organi rotanti di un aerogeneratore.

Lo studio della rottura degli organi rotanti è stato svolto escludendo le forze viscose, i risultati così ottenuti, sono in realtà molto cautelative; infatti, le distanze di gittata, considerando e comparando i risultati che si ottengono per analogia ad un modello più realistico che tiene conto invece delle forze viscose e del moto della pala completo (*rif. Studio Vestas redatto nel giugno 2008 denominato "Calcolo della traiettoria di una pala eolica in condizioni nominali di funzionamento"*) risultano di entità molto ridotta.

Il tipo di aerogeneratore previsto per l'impianto in oggetto (aerogeneratore di progetto) è ad asse orizzontale con rotore tripala e una potenza di 5,625 MW, avente le caratteristiche principali di seguito riportate:

- rotore tripala a passo variabile, di diametro massimo pari a 172 m, posto sopravvento
- alla torre di sostengo, costituito da 3 pale generalmente in resina epossidica rinforzata con fibra di vetro e da mozzo rigido in acciaio;
- navicella in carpenteria metallica con carenatura in vetroresina e lamiera, in cui sono collocati il generatore elettrico, il moltiplicatore di giri, il convertitore elettronico di potenza, il trasformatore BT/MT e le apparecchiature idrauliche ed elettriche di comando e controllo;
- torre di sostegno tubolare troncoconica in acciaio;
- altezza complessiva massima fuori terra dell'aerogeneratore pari a 200,00 m;
- diametro massimo alla base del sostegno tubolare: 4,80 m;
- area spazzata massima: 23.235 m².

Ai fini degli approfondimenti progettuali e dei relativi studi specialistici, si sono individuati alcuni specifici modelli commerciali di aerogeneratore ad oggi esistenti sul mercato, idonei ad essere conformi all'aerogeneratore di progetto.

Nello specifico i modelli di aerogeneratore considerati risultano i seguenti:

- Vestas V172– HH 114m 6,5 MW, limitata a 5.625 MW;
- Siemens Gamesa SG170 HH 115m 6,2 MW, limitata a 5.625 MW;
- General Electric GE164 HH 112m 6,0 MW, limitata a 5.625 MW;
- Vestas V162 HH 119m 6 MW, limitata a 5.625 MW.

Le caratteristiche di dettaglio del modello commerciale più sfavorevole, utilizzate al fine di redigere il presente studio sono quelle dell'aerogeneratore tipo General Electric GE164 – HH 112m – 6,0 MW.

2. CALCOLO DELLA GITTATA

Le condizioni al contorno considerate per il calcolo in esame, sono le più gravose possibili, in modo da porsi nella situazione maggiormente cautelativa ma che di fatto presenta probabilità di accadimento pressoché nulla, come meglio esplicitato a seguire. Le caratteristiche dimensionali degli aerogeneratori di progetto sono di seguito riportate:

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

Tipo torre	Lunghezza pala [m]		Massima velocità di rotazione [rpm]	Altezza al mozzo [m]	Altezza totale [m]	Potenza [MW]	Aerogeneratori
General Electric GE164 – HH 112m – 6,0 MW	80,40	164	9,7	112	194	6,00	WTG MR1 - WTG MR2 - WTG MR3 - WTG MR4 - WTG MR5 - WTG MR6 - WTG MR7 - WTG MR8

Si riporta di seguito il valore massimo ottenuto e si rinvia all'allegato per la trattazione completa:

Angolo α	n	L	H _{torre}	V ₀	V _{x0}	V _{y0}	Hg	D	r _g	g	Gittata teorica	X _g	Lg	Gittata Effettiva
72	9,70	80,40	112,00	28,85	27,44	8,91	139,01	164	28,40	9,81	164,33	8,78	53,60	217,93

3. CONSIDERAZIONI SUL MODELLO UTILIZZATO E UTILIZZO DEL "MODELLO REALE"

La trattazione del moto relativo al fenomeno di distacco della pala appena effettuato è stata applicato in assenza di forze viscose. Quindi, come già anticipato, il valore reale della gittata della pala, ossia quello calcolato tenendo conto della resistenza dell'aria, è certamente inferiore.

Per tale valutazione si richiama a seguire lo studio della BP Power (per conto di Vestas) dove vengono valutati in maniera più completa i fattori che condizionano la gittata della pala nel caso di rottura intitolato, "Calcolo della traiettoria di una pala eolica in condizioni nominali di funzionamento" del 2008.

Questo ente aveva già condotto per Vestas nel 2001 un calcolo molto accurato e successivamente pubblicato con il titolo "*Blade throw calculation under normal operative condition V80 2MW*", in cui era stata studiata la possibilità del distacco e la gittata, non solo di una pala nel suo complesso, ma anche di una porzione di essa di lunghezza pari rispettivamente a 5 metri e 10 metri.

Il nuovo studio ricalca in toto le analisi svolte dal precedente ma, rispetto allo stesso, sottolinea una assunzione fondamentale, che si riporta di seguito testualmente:

"Dalle note operative esposte si può concludere che ha senso effettuare un calcolo di gittata della pala intera in quanto esiste un punto di discontinuità, l'attacco bullonato che unisce la pala al mozzo, ed esiste un'ipotesi, seppur remota, sulla possibilità di cedimento di tale attacco.

Il calcolo di gittata nei casi di distacco di frammenti o porzioni di guscio, per le ragioni spiegate in precedenza, risulta problematico e privo di basi computazionali, in quanto lo stabilire le dimensioni del pezzo di guscio distaccato è del tutto aleatorio e non dipendente da una causa specifica come quelle collegabili ad una discontinuità, un difetto di progettazione o di realizzazione della pala.

Il caso di distacco di porzioni di pala si potrebbe trattare effettuando un'analisi del rischio che è dato dal prodotto fra la probabilità di occorrenza della specifica rottura e la gravità delle conseguenze. Una simile analisi comporterebbe comunque delle assunzioni arbitrarie fra le quali le dimensioni del pezzo di pala interessato al distacco e uno studio probabilistico sull'occorrenza e la gravità delle conseguenze. Per effettuare queste valutazioni è necessaria la conoscenza di tutta una serie di circostanze circa gli eventi di questo tipo e la base statistica degli eventi incidentali dovrebbe essere notevolmente ampia, la qual cosa non è verificata nella realtà".

Detto questo, la BP Power ha provveduto al calcolo della gittata su sei modelli di aerogeneratori prodotti dalla VESTAS, i modelli V52, V80, V82, V90 1.8 MW, V90 2 MW, V90 3 MW.

Per il solo modello V80 è stato effettuato il calcolo della traiettoria di una pala in caso di distacco nelle seguenti tre condizioni:

caso 1: è la condizione più cautelativa in quanto include solo le forze di inerzia ed esclude le forze viscose;

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

- caso 2: si includono nel calcolo le forze viscose;
- caso 3: si considera il moto della pala completo, valutando la traiettoria della pala come risultante da un moto rotazionale complesso ("modello reale").

La prima condizione è quella che porta a stimare la maggiore gittata, ma in una condizione del tutto teorica, nel caso di distacco della pala (è il calcolo del moto del giavellotto), ma in realtà le forze di resistenza che si esercitano sulla pala fanno sì che i risultati ottenuti con la prima condizione siano da considerare **sovrastimati del 20%** rispetto ai risultati effettivamente attesi in caso di incidente.

Per tutti gli altri modelli di aerogeneratori lo studio è stato dunque ripetuto solamente in considerazione della prima condizione, escludendo dunque dai parametri di calcolo sia l'attrito dell'aria sia le caratteristiche del moto rotazionale complesso che caratterizza la traiettoria della pala una volta che questa si sia staccata del rotore in movimento.

Da un punto di vista teorico, se non si considerano le forze aerodinamiche la massima gittata si ottiene quando la pala si distacca dal rotore con un angolo di 45° (135° in posizione azimutale).

Le forze di resistenza che agiscono sulla pala in realtà rendono minore il tempo di volo e quindi la gittata.

Il moto reale è molto più complesso, in quanto dipende dalle caratteristiche aerodinamiche e dalle condizioni iniziali (rollio, imbardata e beccheggio della pala).

Tutte le condizioni di rottura sono state assunte con una velocità del vento pari a 25 m/s.

Le velocità di rotazione al momento della rottura sono state incrementate rispetto alle velocità massime di progetto del: 16% per la V52; 5% per le V80 e V90 3 MW; 10% per le V82 e V90 1.8MW- 2MW (rif. Paragrafo seguente).

3.1 DATI DEGLI AEROGENERATORI CONSIDERATI NELLO STUDIO

Di seguito sono riportati i modelli degli aerogeneratori sui quali è stato condotto lo studio di Vestas con i dati necessari per i calcoli:

- V52: pala di lunghezza pari a 25 m; velocità di rotazione massima di 26 rpm; torre di altezza pari a 55 m. La velocità considerata al momento della rottura: 31 rpm.
- V80: pala di lunghezza pari a 39 m; velocità di rotazione massima di 19,2 rpm; torre di altezza pari a 67 m. La velocità considerata al momento della rottura: 20 rpm.
- V82: pala di lunghezza pari a 40 m; velocità di rotazione massima di 14,4 rpm; torre di altezza pari a 78 m. La velocità considerata al momento della rottura: 15,84 rpm.
- V90 da 1.8 MW: pala di lunghezza pari a 44 m; velocità di rotazione massima di 14,9 rpm; torre di altezza pari a 80 m. La velocità considerata al momento della rottura: 16,39 rpm.
- V90 da 2 MW: pala di lunghezza pari a 44 m; velocità di rotazione massima di 14,9 rpm; torre di altezza pari a 80 m. La velocità considerata al momento della rottura: 16,39 rpm.
- V90 3 MW: pala di lunghezza pari a 44 m; velocità di rotazione massima di 16.1 rpm posto su una torre di altezza pari a 80 m. La velocità considerata al momento della rottura: 15,7 rpm.

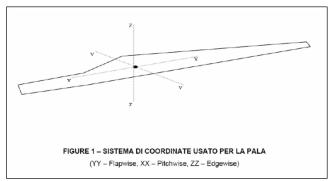
La velocità di distacco della pala dal rotore è stata incrementata del 16% passando da 26 a 31 rpm per la V52, del 5% per la V80, passando così da 19 a 20 rpm; per la V82 e V90 1.8 MW - 2 MW, invece, è stata incrementata del 10% passando così da 14,4 a 15,84 e da 14,9 a 16,39 rpm rispettivamente, per la V90 3 MW è stata incrementata del 5 % passando da 14,9 a 15,7 rpm). Nella tabella seguente è riportata una sintesi dei dati di input per il calcolo.

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

	(Outboard) Section of	Plan area Plane XY	Plan area Plane XZ	Plan area Plane YZ	Mass
	blade	m²	m²	m²	kg
V90 1,8MW	44	87.84	25.69	2.37	6660
V82	40	86	23.2	2.08	6200
V80	39	81.46	22.8	2.38	6300
V52	25.3	53.83	14.67	1.55	1900
V90 2MW	44	87.84	25.69	2.37	6660
V90 3MW	44	87.84	25.69	2.37	6700

Per il caso in esame si è valutato con il modello teorico la condizione peggiore di gittata, in assenza di attrito.


3.2 FORZE AGENTI SULLA TRAIETTORIA DELLA PALA

Le ipotesi fatte nello studio Vestas considerano il caso peggiore; esso accade quando la pala si distacca dal rotore con un angolo di 45° sul piano verticale (cioè 135° azimuth).

Per il progetto esaminato si è valutato con il modello teorico proprio questa condizione ottenendo i risultati riportati al capitolo 2. Si precisa che la determinazione delle forze e dei momenti agenti sulla pala a causa di una rottura istantanea, durante il moto rotatorio, è molto complessa. La traiettoria iniziale è determinata principalmente dall'angolo di lancio e dalle forze generalizzate inerziali agenti sulla pala. Queste includono anche, per esempio, oltre all'impulso, i momenti di "flapwise", "edgewise" e "pitchwise" agenti al momento del distacco (rif. figura seguente).

La pala, quindi, quando inizierà il suo moto continuerà a ruotare (conservazione della quantità di moto). L'unica forza inerziale agente in questo caso è la forza di gravità. La durata del volo considerato è determinata considerando la velocità verticale iniziale applicata al centro di gravità. Il tempo risultante è usato per calcolare la distanza orizzontale (gittata) nel piano e fuori dal piano. La gittata è determinata dalla velocità orizzontale al momento del distacco iniziale.

Le forze inerziali sono modellate considerando un flusso irrotazionale e stazionario.

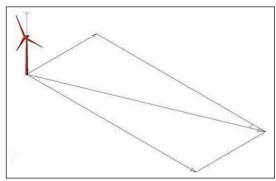


Figura 2: Sistema di riferimento per il calcolo della gittata.

Sono state calcolate tre traiettorie nelle seguenti ipotesi:

Caso 1: Moto irrotazionale

Assenza di moti intorno agli assi XX, YY e ZZ. L'asse XX è allineato con la traiettoria. L'asse YY giace sul piano verticale. Questa ulteriore assunzione fa sì che questo caso sia il peggiore ipotizzabile, in quanto definisce la condizione ideale di massima gittata.

Caso 2: Moto irrotazionale

L'asse XX è allineato con la traiettoria. L'asse YY giace sul piano orizzontale. Quando la pala ha raggiunto questa posizione non ci sono ulteriori moti intorno agli assi XX, YY e ZZ. In questo caso la traiettoria risultante è del tipo "a giavellotto". Questa ulteriore assunzione fa sì che questo caso sia il caso teorico peggiore ipotizzabile, in quanto definisce la condizione ideale di massima gittata. Inoltre:

La traiettoria in alto è aumentata dalla forza di portanza generata dalla pala, per cui la gittata è maggiore che in assenza di portanza.

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

Sono stati modellati tre casi:

- Caso 2a. L'effetto della portanza sul tempo di volo è zero. La soluzione (approssimata) per questo è data dal caso 1 solo nella direzione in-plane.
- Caso 2b. L'effetto della portanza sul tempo di volo è aumentato del 5%.
- Caso 2c. L'effetto della portanza sul tempo di volo è aumentato del 10%, in questo caso si ottiene il maggior tempo di volo.
 Caso 3: Moto rotazionale complesso ("modello reale")

In questo caso si studia il moto della pala al distacco del rotore nel suo complesso considerando anche i moti di rotazione intorno agli assi XX, YY e ZZ. Questo caso è quello più reale della traiettoria di una pala. La rotazione della pala intorno all'asse ZZ è causato dalla conservazione del momento della quantità di moto. L'incidenza del vento out-of-plane sulla pala genera un momento intorno all'asse YY (centro di massa e centro aerodinamico della pala non sono coincidenti). Il vento incidente out-of-plane sulla pala genera ancora un momento intorno all'asse XX (centro di massa della sezione di pala lungo la corda non coincide con il centro aerodinamico).

La resistenza della pala sia in-plane che out-of-plane è generata dalla rotazione intorno agli assi XX e YY. Per semplificare lo studio si è assunta l'area della pala pari alla stessa in direzione XY moltiplicata per il quadrato del coseno di 45°. La portanza in-plane è generata dalla rotazione intorno al piano XX. In questo caso si è assunto un aumento del 10% del tempo di volo dovuto alla portanza. Tre casi sono stati modellati per tener conto dell'effettivo valore della resistenza:

- Caso 3a. Cd (in-plane e out-of-plane) = 0,5;
- Caso 3b. Cd (in-plane e out-of-plane) = 1,0;
- Caso 3c. Cd (in-plane e out-of-plane) = 1,5.

In definitiva, nella relazione di Vestas il moto a giavellotto (che è quello assimilabile allo studio teorico proposto per le pale di progetto) viene considerato dagli stessi autori estremamente improbabile; rappresenta un mero esercizio matematico. Difatti nello studio è riportata la seguente affermazione:

"l'esperienza pratica su tutta la flotta operativa di 4.959 unità (giugno 2007) ha mostrato che in caso di distacco di pala o parti di essa il moto è stato di tipo "rotazionale complesso" e le distanze raggiunte sono normalmente risultate inferiori a quelle stimate con i calcoli semplificati di seguito riportati. Frammenti di pala, solitamente di piccole dimensioni, per la maggior parte staccatisi a causa di azioni esterne (tipica la fulminazione atmosferica) o imperizia umana, sono stati ritrovati a non più di 40-50 m dalla base dell'aerogeneratore";

ed ancora si afferma:

"Il distacco di una pala completa dal rotore dell'aerogeneratore può essere determinato della rottura della giunzione bullonata fra la pala ed il mozzo.

In occasione di tali tipi di evento, la pala ha raggiunto il terreno ad una distanza inferiore ai cento metri. Questo tipo di incidente si è quasi sempre manifestato in concomitanza di fulminazioni di natura atmosferica".

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

3.3 CONCLUSIONI DELLO STUDIO

Nella tabella successiva vengono riportati i risultati relativi al modello del moto irrotazionale.

Caso 1	Pala V80	Pala V90 1.8 MW	Pala V82	Pala V52	Pala V90 2 MW	Pala V90 3 MW
Velocità di rotazione	20	16.39	15.84	31	16.39	15.7
Tempo di volo	6.27	5.44	4.56	4.92	5.44	4.52
Distanza in plane	104.4	86.37	94.91	60.88	86.37	81.81
Distanza out of plane	80.1	64.73	45.31	79.95	64.73	50.82
Distanza vettoriale	131.6	108	105	100.5	108	96.3

Tabella 1: Sintesi dello studio.

Il caso più realistico da considerare è, come detto, il caso tre. Pertanto, dallo studio emerge che la gittata di una pala di un aerogeneratore:

- V52 è di circa 80,4 m
- V80 è di circa 106 m
- V82 è di circa 84 m
- V90 1.8 MW 2 MW è di circa 87 m
- V90 3 MW è di circa 77 m

Ossia circa il 20% in meno della gittata nel caso ideale, caso 1.

4. VALORE DI GITTATA ANALIZZATO CON IL "MODELLO REALE"

Come si osserva dallo studio riportato nel precedente capitolo, valutando un maggior numero di elementi nel calcolo, quali le forze viscose e il moto rotazione complesso, il caso cosiddetto "reale" in media presenta un valore di gittata ridotto di circa il 20% rispetto a quello teorico.

Pertanto, in merito a quanto appena esposto, si può analogamente asserire che i valori di gittata ottenuti con il modello teorico nel caso specifico degli aerogeneratori in esame, per tenere in conto anche in questo caso di altri fattori e avvicinarsi al caso "reale", vanno opportunamente ridotti di almeno il 20 % ottenendo così i seguenti valori:

Gittata pala = 174,34 m

Si ribadisce che dall'analisi della flotta di aerogeneratori dell'appena citato studio Vestas si può assumere che il fenomeno di rottura degli organi rotanti di un aerogeneratore risulta altamente improbabile per il distacco intero della pala, e che per effetto della fulminazione atmosferica frammenti di pala, solitamente di piccole dimensioni, sono stati ritrovati a non più di 40 – 50 m dalla base dell'aerogeneratore.

Al fine di illustrare le reali possibilità di distacco della pala e la possibilità di arrecare danni a cose e persone si richiamano ulteriori studi in merito alle probabilità di accadimento dei fenomeni di guasti e rotture di vario genere sugli aerogeneratori (DEWI "Independent expertise on expected failure rates of ENERCON wind turbines" maggio del 2007), e i criteri di progettazione adottati anche dalla casa costruttrice Vestas per la realizzazione degli aerogeneratori (IEC 61400-1 Ed.3 – AMD 1).

5. POSSIBILITÀ DI ACCADIMENTO DEI FENOMENI DI GUASTO E ROTTURA

La DEWI ha fornito il documento "Independent expertise on expected failure rates of ENERCON wind turbines" nel maggio del 2007 nel quale sono analizzati i casi di collasso della torre, caduta della navicella e/o del rotore, rottura delle pale e/o di parti delle pale.

Impianto Eolico denominato "Poggio della Guardiola" ubicato nel comune di Monte Romano (VT) costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

Per la determinazione della possibilità di rottura di una pala del rotore o di una parte di esso, è stato analizzato un database dei danni occorsi alle pale relativo a tutti gli aerogeneratori Enercon installati, dati dal 1984. Di seguito si presentano I risultati della perizia.

5.1 CADUTA DELLA TORRE

Si è accertato che, in generale, la caduta della torre è il risultato di una progettazione industriale sbagliata e/o della cattiva manutenzione della strutture della torre o della fondazione.

La probabilità annuale di accadimento è stata valutata inferiore a 10-6 (sul numero totale di eventi stimati).

5.2 CADUTA DELLA NAVICELLA E/O DEL ROTORE

Per quanto riguarda il caso della caduta della navicella e/o del rotore di una pala eolica, il valore atteso di accadimento per turbina e per anno è risultato di 5,8 x 10⁻⁵. Il 95% del massimo consentito dell'occorrenza di questo scenario è 1,3 x 10⁻⁴. Lo studio riporta il risultato di uno studio olandese che attestava il valore atteso per questo evento pari a 2,0 x 10⁻⁴.

Siccome il valore desunto dalla DEWI deriva dall'analisi di un database di danni occorsi alle pale eoliche che sono state installate anche prima del riconoscimento degli standard di sicurezza descritti al paragrafo 1, i valori attesi sono considerati cautelativi rispetto alle effettive probabilità di guasto.

In conformità con il livello di sicurezza dimostrato dal produttore con la certificazione della turbina alla IEC 61400, DEWI OCC afferma che la probabilità realistica annua di caduta della navicella e/o del rotore è sicuramente inferiore a 2,0 x 10⁻⁴.

Gli eventi di rottura registrati nel database di Enercon sono classificati in base alle dimensioni dei frammenti. Applicando le regole della statistica (in particolare il processo di Poisson), gli eventi di rottura sono stati correlati al numero totale di pale in funzione per anno. L'analisi porta ad un valore atteso di rottura, per turbina e per anno, di 5,3 x 10⁻⁴.

Lo studio, inoltre, ha messo in relazione le rotture che possono essere state indotte da uno scorretto posizionamento della turbina rispetto alle condizioni climatiche dei siti di installazione e il numero totale delle rotture; l'analisi chiarisce come la metà delle rotture accorse al parco turbine istallate è dipesa da una stima erronea delle condizioni climatiche del sito di installazione (come ad es. la velocità massima del vento).

DEWI OCC, in definitiva, stima un tasso di rottura medio annuo per turbina non superiore a 4,2 x 10⁻⁴.

5.3 CONCLUSIONI DELLO STUDIO DI DEWI OCC

Le percentuali dei guasti annuali stimate vanno da un valore minore di 10⁻⁶ per lo scenario della caduta della torre, ad un valore atteso di 2,0 x 10⁻⁴ per la caduta della navicella e/o del rotore e infine di al valore di 4,2 x 10⁻⁴ per la rottura delle pale e/o di parti di esse.

Tali valori, per come sono stati ricavati, possono ritenersi oltre che molto bassi anche decisamente cautelativi; infatti, il parco turbine su cui sono state fatte le statistiche comprende anche istallazioni molto datate (anche ante 1984). Oggi i metodi di progettazione e costruzione degli aerogeneratori sono decisamente migliorati e rispondono a riconosciuti standard internazionali.

Pertanto, la possibilità di rottura delle pale e/o delle parti delle pale è da ritenersi altamente improbabile.

Quindi in riferimento anche al capito precedente (cap.5) si può assumere che il fenomeno della gittata presenta rischio quasi nullo di accadimento, essendo la progettazione delle turbine eseguita applicando una progettazione strutturale e industriale corretta e prevedendo una giusta manutenzione delle strutture della torre e della fondazione, anche in fase d'esercizio.

RELAZIONE DI CALCOLO DELLA GITTATA
Impianto Eolico denominato "Poggio della Guardiola"
ubicato nel comune di Monte Romano (VT)
uito da 8 (otto) perceperatori di potenza pominale 5 625 MV

costituito da 8 (otto) aerogeneratori di potenza nominale 5,625 MW per un totale di 45 MW con relative opere connesse ed infrastrutture indispensabili nei comuni di Monte Romano (VT) e Tuscania (VT)

Codifica Elaborato: 224314 D R 0271 Rev. 00

6. CONCLUSIONI

In un intorno di ampiezza pari a 174,34 m che rappresenta il valore di gittata reale stimato non ricade nessun punto sensibile.

Sulla base dell'esperienza pratica della Vestas su tutta la propria flotta operativa (4.959 unità al giugno 2007) si è dimostrato che in caso di distacco di pala le distanze raggiunte sono normalmente risultate inferiori a quelle stimate con i calcoli semplificati in precedenza riportati.

Lo studio ha analizzato un database riportante i danni accorsi alle pale di tutti gli aerogeneratori istallati, inclusi quelli istallati prima dell'emissione delle norme della serie IEC 61400 e quindi progettati e costruiti secondo norme sicuramente meno severe e controllate di quelle alle quali sono sottoposti gli aerogeneratori da circa 20 anni a questa parte.

La DEWI OCC per Enercon inoltre ha stimato un tasso di rottura medio annuo per turbina non superiore a 4,2 x 10⁻⁴. Lo studio evidenza che la metà delle rotture è dipesa da una stima erronea delle condizioni climatiche del sito di installazione (come ad es. la velocità massima del vento).

da inserire

Numero di giri al minuto del rotore	n =	9,7
Lunghezza della pala in metri	Γ=	80,4
Altezza del mozzo in metri	H _{torre} =	112

Se non è disponibile il valore di D, inserire almeno D=2L

Diametro del rotore	D=	16
Diametro del rotore		

Angolo α	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_{g}	D	$r_{\rm g}$	g	Gittata teorica	X_{g}	L_{g}	Gittata Effettiva
0	9,70	80,40	112,00	28,85	0,00	28,85	112,00	164	28,40	9,81	-28,40	28,40	53,60	25,20
1	9,70	80,40	112,00	28,85	0,50	28,84	112,50	164	28,40	9,81	-24,09	28,40	53,60	29,51
2	9,70	80,40	112,00	28,85	1,01	28,83	112,99	164	28,40	9,81	-19,76	28,38	53,60	33,84
3	9,70	80,40	112,00	28,85	1,51	28,81	113,49	164	28,40	9,81	-15,42	28,36	53,60	38,18
4	9,70	80,40	112,00	28,85	2,01	28,78	113,98	164	28,40	9,81	-11,07	28,33	53,60	42,53
5	9,70	80,40	112,00	28,85	2,51	28,74	114,48	164	28,40	9,81	-6,72	28,29	53,60	46,88
6	9,70	80,40	112,00	28,85	3,02	28,69	114,97	164	28,40	9,81	-2,37	28,24	53,60	51,23
7	9,70	80,40	112,00	28,85	3,52	28,63	115,46	164	28,40	9,81	1,98	28,19	53,60	55,58
8	9,70	80,40	112,00	28,85	4,01	28,57	115,95	164	28,40	9,81	6,32	28,12	53,60	59,92
9	9,70	80,40	112,00	28,85	4,51	28,49	116,44	164	28,40	9,81	10,66	28,05	53,60	64,26
10	9,70	80,40	112,00	28,85	5,01	28,41	116,93	164	28,40	9,81	14,98	27,97	53,60	68,58
11	9,70	80,40	112,00	28,85	5,50	28,32	117,42	164	28,40	9,81	19,28	27,88	53,60	72,88
12	9,70	80,40	112,00	28,85	6,00	28,22	117,90	164	28,40	9,81	23,57	27,78	53,60	77,17
13	9,70	80,40	112,00	28,85	6,49	28,11	118,39	164	28,40	9,81	27,83	27,67	53,60	81,43
14	9,70	80,40	112,00	28,85	6,98	27,99	118,87	164	28,40	9,81	32,07	27,56	53,60	85,67
15	9,70	80,40	112,00	28,85	7,47	27,87	119,35	164	28,40	9,81	36,28	27,43	53,60	89,88
16	9,70	80,40	112,00	28,85	7,95	27,73	119,83	164	28,40	9,81	40,45	27,30	53,60	94,05
17	9,70	80,40	112,00	28,85	8,43	27,59	120,30	164	28,40	9,81	44,60	27,16	53,60	98,20
Angolo α	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_{g}	D	$r_{\rm g}$	g	Gittata teorica	X_{g}	L_{g}	Gittata Effettiva
18	9,70	80,40	112,00	28,85	8,91	27,44	120,78	164	28,40	9,81	48,70	27,01	53,60	102,30
19	9,70	80,40	112,00	28,85	9,39	27,28	121,25	164	28,40	9,81	52,76	26,85	53,60	106,36
20	9,70	80,40	112,00	28,85	9,87	27,11	121,71	164	28,40	9,81	56,78	26,69	53,60	110,38
21	9,70	80,40	112,00	28,85	10,34	26,93	122,18	164	28,40	9,81	60,76	26,51	53,60	114,36
22	9,70	80,40	112,00	28,85	10,81	26,75	122,64	164	28,40	9,81	64,68	26,33	53,60	118,28
23	9,70	80,40	112,00	28,85	11,27	26,55	123,10	164	28,40	9,81	68,55	26,14	53,60	122,15
24	9,70	80,40	112,00	28,85	11,73	26,35	123,55	164	28,40	9,81	72,37	25,94	53,60	125,97
25	9,70	80,40	112,00	28,85	12,19	26,15	124,00	164	28,40	9,81	76,13	25,74	53,60	129,73
26 27	9,70 9,70	80,40 80,40	112,00 112,00	28,85 28,85	12,65 13,10	25,93 25,70	124,45 124,89	164 164	28,40 28,40	9,81 9,81	79,84 83,48	25,53 25,30	53,60	133,44 137,08
28	9,70	80,40	112,00	28,85	13,54	25,47	125,33	164	28,40	9,81	87,05	25,08	53,60	140,65
29	9,70	80,40	112,00	28,85	13,99	25,23	125,77	164	28,40	9,81	90,56	24,84	53,60	144,16
30	9,70	80,40	112,00	28,85	14,42	24,98	126,20	164	28,40	9,81	94,01	24,60	53,60	147,61
31	9,70	80,40	112,00	28,85	14,86	24,73	126,63	164	28,40	9,81	97,38	24,34	53,60	150,98
32	9,70	80,40	112,00	28,85	15,29	24,46	127,05	164	28,40	9,81	100,68	24,08	53,60	154,28
33	9,70	80,40	112,00	28,85	15,71	24,19	127,47	164	28,40	9,81	103,91	23,82	53,60	157,51
34	9,70	80,40	112,00	28,85	16,13	23,92	127,88	164	28,40	9,81	107,06	23,54	53,60	160,66
35	9,70	80,40	112,00	28,85	16,55	23,63	128,29	164	28,40	9,81	110,13	23,26	53,60	163,73
36	9,70	80,40	112,00	28,85	16,96	23,34	128,69	164	28,40	9,81	113,13	22,98	53,60	166,73
37	9,70	80,40	112,00	28,85	17,36	23,04	129,09	164	28,40	9,81	116,05	22,68	53,60	169,65
38	9,70	80,40	112,00	28,85	17,76	22,73	129,48	164	28,40	9,81	118,88	22,38	53,60	172,48
39 40	9,70 9,70	80,40 80,40	112,00	28,85 28,85	18,15 18,54	22,42 22,10	129,87 130,26	164 164	28,40 28,40	9,81 9,81	121,64 124,31	22,07	53,60	175,24 177,91
41	9,70	80,40	112,00	28,85	18,93	21,77	130,26	164	28,40	9,81	124,31	21,76	53,60	180,49
42	9,70	80,40	112,00	28,85	19,30	21,77	131,00	164	28,40	9,81	129,39	21,11	53,60	182,99
43	9,70	80,40	112,00	28,85	19,67	21,10	131,37	164	28,40	9,81	131,80	20,77	53,60	185,40
44	9,70	80,40	112,00	28,85	20,04	20,75	131,73	164	28,40	9,81	134,13	20,43	53,60	187,73
45	9,70	80,40	112,00	28,85	20,40	20,40	132,08	164	28,40	9,81	136,37	20,08	53,60	189,97
46	9,70	80,40	112,00	28,85	20,75	20,04	132,43	164	28,40	9,81	138,52	19,73	53,60	192,12
			-		-				•		•			

$\underset{\alpha}{\text{Angolo}}$	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_{g}	D	$r_{\rm g}$	g	Gittata teorica	X_{g}	L_{g}	Gittata Effettiva
47	9,70	80,40	112,00	28,85	21,10	19,67	132,77	164	28,40	9,81	140,59	19,37	53,60	194,19
48	9,70	80,40	112,00	28,85	21,44	19,30	133,11	164	28,40	9,81	142,56	19,00	53,60	196,16
49	9,70	80,40	112,00	28,85	21,77	18,93	133,43	164	28,40	9,81	144,45	18,63	53,60	198,05
50	9,70	80,40	112,00	28,85	22,10	18,54	133,76	164	28,40	9,81	146,25	18,26	53,60	199,85
51	9,70	80,40	112,00	28,85	22,42	18,15	134,07	164	28,40	9,81	147,96	17,87	53,60	201,56
52	9,70	80,40	112,00	28,85	22,73	17,76	134,38	164	28,40	9,81	149,58	17,48	53,60	203,18
53	9,70	80,40	112,00	28,85	23,04	17,36	134,68	164	28,40	9,81	151,11	17,09	53,60	204,71
54	9,70	80,40	112,00	28,85	23,34	16,96	134,98	164	28,40	9,81	152,55	16,69	53,60	206,15
55	9,70	80,40	112,00	28,85	23,63	16,55	135,26	164	28,40	9,81	153,91	16,29	53,60	207,51
56	9,70	80,40	112,00	28,85	23,92	16,13	135,54	164	28,40	9,81	155,18	15,88	53,60	208,78
57	9,70	80,40	112,00	28,85	24,19	15,71	135,82	164	28,40	9,81	156,36	15,47	53,60	209,96
58	9,70	80,40	112,00	28,85	24,46	15,29	136,08	164	28,40	9,81	157,46	15,05	53,60	211,06
59	9,70	80,40	112,00	28,85	24,73	14,86	136,34	164	28,40	9,81	158,47	14,63	53,60	212,07
60	9,70	80,40	112,00	28,85	24,98	14,42	136,60	164	28,40	9,81	159,40	14,20	53,60	213,00
61	9,70	80,40	112,00	28,85	25,23	13,99	136,84	164	28,40	9,81	160,24	13,77	53,60	213,84
62	9,70	80,40	112,00	28,85	25,47	13,54	137,08	164	28,40	9,81	161,00	13,33	53,60	214,60
63	9,70	80,40	112,00	28,85	25,70	13,10	137,30	164	28,40	9,81	161,68	12,89	53,60	215,28
64	9,70	80,40	112,00	28,85	25,93	12,65	137,53	164	28,40	9,81	162,28	12,45	53,60	215,88
65	9,70	80,40	112,00	28,85	26,15	12,19	137,74	164	28,40	9,81	162,80	12,00	53,60	216,40
66	9,70	80,40	112,00	28,85	26,35	11,73	137,94	164	28,40	9,81	163,24	11,55	53,60	216,84
67	9,70	80,40	112,00	28,85	26,55	11,27	138,14	164	28,40	9,81	163,61	11,10	53,60	217,21
68	9,70	80,40	112,00	28,85	26,75	10,81	138,33	164	28,40	9,81	163,90	10,64	53,60	217,50
69	9,70	80,40	112,00	28,85	26,93	10,34	138,51	164	28,40	9,81	164,11	10,18	53,60	217,71
70	9,70	80,40	112,00	28,85	27,11	9,87	138,69	164	28,40	9,81	164,25	9,71	53,60	217,85
71	9,70	80,40	112,00	28,85	27,28	9,39	138,85	164	28,40	9,81	164,33	9,25	53,60	217,93
72	9,70	80,40	112,00	28,85	27,44	8,91	139,01	164	28,40	9,81	164,33	8,78	53,60	217,93
73	9,70	80,40	112,00	28,85	27,59	8,43	139,16	164	28,40	9,81	164,26	8,30	53,60	217,86
74	9,70	80,40	112,00	28,85	27,73	7,95	139,30	164	28,40	9,81	164,13	7,83	53,60	217,73
75	9,70	80,40	112,00	28,85	27,87	7,47	139,43	164	28,40	9,81	163,93	7,35	53,60	217,53
Angolo α	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_{g}	D	$r_{\rm g}$	g	Gittata teorica	X_{g}	L_{g}	Gittata Effettiva
76	9,70	80,40	112,00	28,85	27,99	6,98	139,56	164	28,40	9,81	163,67	6,87	53,60	217,27
77	9,70	80,40	112,00	28,85	28,11	6,49	139,67	164	28,40	9,81	163,35	6,39	53,60	216,95
78	9,70	80,40	112,00	28,85	28,22	6,00	139,78	164	28,40	9,81	162,97	5,90	53,60	216,57
79	9,70	80,40	112,00	28,85	28,32	5,50	139,88	164	28,40	9,81	162,53	5,42	53,60	216,13
80	9,70	80,40	112,00	28,85	28,41	5,01	139,97	164	28,40	9,81	162,03	4,93	53,60	215,63
81	9,70	80,40	112,00	28,85	28,49	4,51	140,05	164	28,40	9,81	161,48	4,44	53,60	215,08
82	9,70	80,40	112,00	28,85	28,57	4,01	140,12	164	28,40	9,81	160,88	3,95	53,60	214,48
83	9,70	80,40	112,00	28,85	28,63	3,52	140,19	164	28,40	9,81	160,22	3,46	53,60	213,82
84	9,70	80,40	112,00	28,85	28,69	3,02	140,24	164	28,40	9,81	159,51	2,97	53,60	213,11
85	9,70	80,40	112,00	28,85	28,74	2,51	140,29	164	28,40	9,81	158,76	2,48	53,60	212,36
86	9,70	80,40	112,00	28,85	28,78	2,01	140,33	164	28,40	9,81	157,96	1,98	53,60	211,56
87	9,70	80,40	112,00	28,85	28,81	1,51	140,36	164	28,40	9,81	157,12	1,49	53,60	210,72
88	9,70	80,40	112,00	28,85	28,83	1,01	140,38	164	28,40	9,81	156,23	0,99	53,60	209,83
89	9,70	80,40	112,00	28,85	28,84	0,50	140,40	164	28,40	9,81	155,31	0,50	53,60	208,91
90	9,70	80,40	112,00	28,85	28,85	0,00	140,40	164	28,40	9,81	154,34	0.00	53,60	207,94
90	2,70	00,40	112,00	20,03	20,03	0,00	140,40	104	40 ,4 0	2,01	134,34	0,00	55,00	207,34

			Per un ar	igolo comp	reso tra 27	0° e 360°	il valore de	lla Gittata	sarà neg	ativo perc	hé verso sin	istra		
$\begin{array}{c} Angolo \\ \alpha \end{array}$	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_{g}	D	$r_{\rm g}$	g	Gittata teorica	X_{g}	L_{g}	Gittata Effettiva
270	9,70	80,40	112,00	28,85	-28,85	0,00	83,60	164	28,40	9,81	-119,10	0,00	53,60	-172,70
271	9,70	80,40	112,00	28,85	-28,84	0,50	83,60	164	28,40	9,81	-121,07	0,50	53,60	-174,67
272	9,70	80,40	112,00	28,85	-28,83	1,01	83,62	164	28,40	9,81	-123,02	0,99	53,60	-176,62
273	9,70	80,40	112,00	28,85	-28,81	1,51	83,64	164	28,40	9,81	-124,96	1,49	53,60	-178,56
274	9,70	80,40	112,00	28,85	-28,78	2,01	83,67	164	28,40	9,81	-126,89	1,98	53,60	-180,49
275	9,70	80,40	112,00	28,85	-28,74	2,51	83,71	164	28,40	9,81	-128,79	2,48	53,60	-182,39
276	9,70	80,40	112,00	28,85	-28,69	3,02	83,76	164	28,40	9,81	-130,67	2,97	53,60	-184,27
277	9,70	80,40	112,00	28,85	-28,63	3,52	83,81	164	28,40	9,81	-132,53	3,46	53,60	-186,13
278	9,70	80,40	112,00	28,85	-28,57	4,01	83,88	164	28,40	9,81	-134,35	3,95	53,60	-187,95
Angolo α	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_{g}	D	$r_{\rm g}$	g	Gittata teorica	X_g	L_{g}	Gittata Effettiva
279	9,70	80,40	112,00	28,85	-28,49	4,51	83,95	164	28,40	9,81	-136,15	4,44	53,60	-189,75
280	9,70	80,40	112,00	28,85	-28,41	5,01	84,03	164	28,40	9,81	-137,92	4,93	53,60	-191,52
281	9,70	80,40	112,00	28,85	-28,32	5,50	84,12	164	28,40	9,81	-139,65	5,42	53,60	-193,25
282	9,70	80,40	112,00	28,85	-28,22	6,00	84,22	164	28,40	9,81	-141,35	5,90	53,60	-194,95
283	9,70	80,40	112,00	28,85	-28,11	6,49	84,33	164	28,40	9,81	-143,01	6,39	53,60	-196,61
284	9,70	80,40	112,00	28,85	-27,99	6,98	84,44	164	28,40	9,81	-144,62	6,87	53,60	-198,22
285	9,70	80,40	112,00	28,85	-27,87	7,47	84,57	164	28,40	9,81	-146,19	7,35	53,60	-199,79
286	9,70	80,40	112,00	28,85	-27,73	7,95	84,70	164	28,40	9,81	-147,71	7,83	53,60	-201,31
287	9,70	80,40	112,00	28,85	-27,59	8,43	84,84	164	28,40	9,81	-149,18	8,30	53,60	-202,78
288	9,70	80,40	112,00	28,85	-27,44	8,91	84,99	164	28,40	9,81	-150,60	8,78	53,60	-204,20
289	9,70	80,40	112,00	28,85	-27,28	9,39	85,15	164	28,40	9,81	-151,97	9,25	53,60	-205,57
290	9,70	80,40	112,00	28,85	-27,11	9,87	85,31	164	28,40	9,81	-153,28	9,71	53,60	-206,88

291	9,70	80,40	112,00	20.05	26.02	10,34	85,49	164	7 20 40 1	0.91	154.52	10,18	52.60	209 12
291	9,70	80,40	112,00	28,85 28,85	-26,93 -26,75	10,34	85,49 85,67	164	28,40 28,40	9,81 9,81	-154,52 -155,70	10,18	53,60	-208,12 -209,30
293	9,70	80,40	112,00	28,85	-26,55	11,27	85,86	164	28,40	9,81	-156,82	11,10	53,60	-210,42
294	9,70	80,40	112,00	28,85	-26,35	11,73	86,06	164	28,40	9,81	-157,87	11,10	53,60	-210,42
295	9,70	80,40	112,00	28,85	-26,15	12,19	86,26	164	28,40	9,81	-158,85	12,00	53,60	-212,45
296	9,70	80,40	112,00	28,85	-25,93	12,65	86,47	164	28,40	9,81	-159,76	12,45	53,60	-213,36
297	9,70	80,40	112,00	28,85	-25,70	13,10	86,70	164	28,40	9,81	-160,59	12,89	53,60	-214,19
298	9,70	80,40	112,00	28,85	-25,47	13,54	86,92	164	28,40	9,81	-161,34	13,33	53,60	-214,94
299	9,70	80,40	112,00	28,85	-25,23	13,99	87,16	164	28,40	9,81	-162,02	13,77	53,60	-215,62
300	9,70	80,40	112,00	28,85	-24,98	14,42	87,40	164	28,40	9,81	-162,61	14,20	53,60	-216,21
301	9,70	80,40	112,00	28,85	-24,73	14,86	87,66	164	28,40	9,81	-163,12	14,63	53,60	-216,72
302	9,70	80,40	112,00	28,85	-24,46	15,29	87,92	164	28,40	9,81	-163,54	15,05	53,60	-217,14
303	9,70	80,40	112,00	28,85	-24,19	15,71	88,18	164	28,40	9,81	-163,88	15,47	53,60	-217,48
304	9,70	80,40	112,00	28,85	-23,92	16,13	88,46	164	28,40	9,81	-164,12	15,88	53,60	-217,72
305 306	9,70 9,70	80,40 80,40	112,00 112,00	28,85 28,85	-23,63 -23,34	16,55 16,96	88,74 89,02	164 164	28,40 28,40	9,81 9,81	-164,27 -164,33	16,29 16,69	53,60	-217,87 -217,93
307	9,70	80,40	112,00	28,85	-23,34	17,36	89,32	164	28,40	9,81	-164,33	17,09	53,60	-217,93
Angolo	2,70	,		20,03		17,50			20,40	7,01	Gittata	- í		Gittata
α	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_g	D	r_{g}	g	teorica	X_g	L_{g}	Effettiva
308	9,70	80,40	112,00	28,85	-22,73	17,76	89,62	164	28,40	9,81	-164,17	17,48	53,60	-217,77
309	9,70	80,40	112,00	28,85	-22,42	18,15	89,93	164	28,40	9,81	-163,94	17,87	53,60	-217,54
310	9,70	80,40	112,00	28,85	-22,10	18,54	90,24	164	28,40	9,81	-163,61	18,26	53,60	-217,21
311	9,70	80,40	112,00	28,85	-21,77	18,93	90,57	164	28,40	9,81	-163,19	18,63	53,60	-216,79
312	9,70	80,40	112,00	28,85	-21,44	19,30	90,89	164	28,40	9,81	-162,66	19,00	53,60	-216,26
313	9,70	80,40	112,00	28,85	-21,10	19,67	91,23	164	28,40	9,81	-162,03	19,37	53,60	-215,63
314 315	9,70 9,70	80,40 80,40	112,00 112,00	28,85 28,85	-20,75 -20,40	20,04	91,57 91,92	164 164	28,40 28,40	9,81 9,81	-161,30 -160,46	19,73 20,08	53,60	-214,90 -214,06
316	9,70	80,40	112,00	28,85	-20,40	20,40	91,92	164	28,40	9,81	-159,52	20,08	53,60	-214,06
317	9,70	80,40	112,00	28,85	-19,67	21,10	92,63	164	28,40	9,81	-159,32	20,43	53,60	-213,12
318	9,70	80,40	112,00	28,85	-19,30	21,44	93,00	164	28,40	9,81	-157,33	21,11	53,60	-210,93
319	9,70	80,40	112,00	28,85	-18,93	21,77	93,37	164	28,40	9,81	-156,08	21,43	53,60	-209,68
320	9,70	80,40	112,00	28,85	-18,54	22,10	93,74	164	28,40	9,81	-154,72	21,76	53,60	-208,32
321	9,70	80,40	112,00	28,85	-18,15	22,42	94,13	164	28,40	9,81	-153,26	22,07	53,60	-206,86
322	9,70	80,40	112,00	28,85	-17,76	22,73	94,52	164	28,40	9,81	-151,70	22,38	53,60	-205,30
323	9,70	80,40	112,00	28,85	-17,36	23,04	94,91	164	28,40	9,81	-150,03	22,68	53,60	-203,63
324	9,70	80,40	112,00	28,85	-16,96	23,34	95,31	164	28,40	9,81	-148,25	22,98	53,60	-201,85
325	9,70	80,40	112,00	28,85	-16,55	23,63	95,71	164	28,40	9,81	-146,38	23,26	53,60	-199,98
326 327	9,70 9,70	80,40 80,40	112,00 112,00	28,85 28,85	-16,13 -15,71	23,92 24,19	96,12 96,53	164 164	28,40 28,40	9,81 9,81	-144,40 -142,32	23,54 23,82	53,60	-198,00 -195,92
328	9,70	80,40	112,00	28,85	-15,71	24,19	96,95	164	28,40	9,81	-142,32	24,08	53,60	-193,92
329	9,70	80,40	112,00	28,85	-14,86	24,73	97,37	164	28,40	9,81	-137,86	24,34	53,60	-191,46
330	9,70	80,40	112,00	28,85	-14,42	24,98	97,80	164	28,40	9,81	-135,48	24,60	53,60	-189,08
331	9,70	80,40	112,00	28,85	-13,99	25,23	98,23	164	28,40	9,81	-133,00	24,84	53,60	-186,60
332	9,70	80,40	112,00	28,85	-13,54	25,47	98,67	164	28,40	9,81	-130,43	25,08	53,60	-184,03
333	9,70	80,40	112,00	28,85	-13,10	25,70	99,11	164	28,40	9,81	-127,76	25,30	53,60	-181,36
334	9,70	80,40	112,00	28,85	-12,65	25,93	99,55	164	28,40	9,81	-125,00	25,53	53,60	-178,60
335	9,70	80,40	112,00	28,85	-12,19	26,15	100,00	164	28,40	9,81	-122,15	25,74	53,60	-175,75
336 Angolo	9,70	80,40	112,00	28,85	-11,73	26,35	100,45	164	28,40	9,81	-119,22 Gittata	25,94	53,60	-172,82 Gittata
α	n	L	H_{torre}	\mathbf{v}_0	v_{x0}	v_{y0}	H_{g}	D	$r_{\rm g}$	g	teorica	X_{g}	L_{g}	Effettiva
337	9,70	80,40	112,00	28,85	-11,27	26,55	100,90	164	28,40	9,81	-116,19	26,14	53,60	-169,79
338	9,70	80,40	112,00	28,85	-10,81	26,75	101,36	164	28,40	9,81	-113,08	26,33	53,60	-166,68
339	9,70	80,40	112,00	28,85	-10,34	26,93	101,82	164	28,40	9,81	-109,89	26,51	53,60	-163,49
340	9,70	80,40	112,00	28,85	-9,87	27,11	102,29	164	28,40	9,81	-106,62	26,69	53,60	-160,22
341	9,70	80,40	112,00	28,85	-9,39	27,28	102,75	164	28,40	9,81	-103,26	26,85	53,60	-156,86
342	9,70	80,40	112,00	28,85	-8,91	27,44	103,22	164	28,40	9,81	-99,84	27,01	53,60	-153,44
343	9,70 9,70	80,40 80,40	112,00 112,00	28,85 28,85	-8,43 -7,95	27,59 27,73	103,70 104,17	164 164	28,40 28,40	9,81 9,81	-96,34 -92,77	27,16 27,30	53,60 53,60	-149,94 -146,37
345	9,70	80,40	112,00	28,85	-7,95 -7,47	27,73	104,17	164	28,40	9,81	-89,13	27,43	53,60	-140,37
345	9,70	80,40	112,00	28,85	-6,98	27,99	104,03	164	28,40	9,81	-85,42	27,56	53,60	-142,73
347	9,70	80,40	112,00	28,85	-6,49	28,11	105,61	164	28,40	9,81	-81,66	27,67	53,60	-135,26
348	9,70	80,40	112,00	28,85	-6,00	28,22	106,10	164	28,40	9,81	-77,83	27,78	53,60	-131,43
349	9,70	80,40	112,00	28,85	-5,50	28,32	106,58	164	28,40	9,81	-73,95	27,88	53,60	-127,55
350	9,70	80,40	112,00	28,85	-5,01	28,41	107,07	164	28,40	9,81	-70,01	27,97	53,60	-123,61
351	9,70	80,40	112,00	28,85	-4,51	28,49	107,56	164	28,40	9,81	-66,03	28,05	53,60	-119,63
352	9,70	80,40	112,00	28,85	-4,01	28,57	108,05	164	28,40	9,81	-61,99	28,12	53,60	-115,59
353	9,70	80,40	112,00	28,85	-3,52	28,63	108,54	164	28,40	9,81	-57,91	28,19	53,60	-111,51
354 355	9,70 9,70	80,40 80,40	112,00 112,00	28,85 28,85	-3,02 -2,51	28,69 28,74	109,03 109,52	164 164	28,40 28,40	9,81 9,81	-53,79 -49,64	28,24 28,29	53,60 53,60	-107,39 -103,24
356	9,70	80,40	112,00	28,85	-2,31	28,74	110,02	164	28,40	9,81	-49,64	28,33	53,60	-99,04
357	9,70	80,40	112,00	28,85	-1,51	28,81	110,02	164	28,40	9,81	-41,22	28,36	53,60	-94,82
358	9,70	80,40	112,00	28,85	-1,01	28,83	111,01	164	28,40	9,81	-36,97	28,38	53,60	-90,57
359	9,70	80,40	112,00	28,85	-0,50	28,84	111,50	164	28,40	9,81	-32,70	28,40	53,60	-86,30
360	9,70	80,40	112,00	28,85	0,00	28,85	112,00	164	28,40	9,81	-28,40	28,40	53,60	-82,00
			-									-		-