

ROMA CAPITALE

Città Metropolitana di Roma REGIONE LAZIO

PROGETTO DEFINITIVO DI UN LOTTO DI IMPIANTI FOTOVOLTAICI DELLA POTENZA DI PICCO COMPLESSIVA P=31'006,30 kWp E POTENZA IN IMMISSIONE PARI A 4X6'000 = 24'000 kW

Proponente

GREENERGY PV11 S.r.l.

VIA TRASPONTINA, 46 - 0072 ARICCIA (RM) N.REA: 1639324 - C.F.: 16173351004 PEC: greenergypv11@pec.it

Progettazione

Preparato Verificato

A. Filiberti M. laquinta

Approvato
P.Polinelli

PROGETTAZIONE DEFINITIVA

Titolo elaborato

IMPIANTO FV "SOLFORATELLE" Relazione Preliminare Statica Strutture FV

Elaborato N.	Data emissione			
	30/12/22			
1.18-00-A-CIV	Nome file			
1.10-00-A-CIV	Relazione Preliminare			
	Statica Strutture FV			
N. Progetto	Pagina	00	27/01/23	PRIMA EMISSIONE
-	COVER	REV.	DATA	DESCRIZIONE

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO S CRITTO DI GREENERGY PV11 S.R.L.. OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE.
THIS DOCUMENT CAN NOT BE COPIED, REPRODUCED OR PUBLISHED, EITHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITEN PERMISSION OF GREENERGY PV11 S.R.L.. UNAUTHORIZED USE WILL BE PROSECUTE BY LAW.

Sommario

Revisione

Data

1	Prem	iessa		4	
2	Nor	rmativa di	riferimento e fonti d	consultate	4
3	Doc	cumenti di	progetto		5
4	Des	scrizione d	elle opere		5
5	Car	ichi di pro	getto		6
	5.1	Carichi p	ermanenti		6
	5.1.	.1 Pes	i permanenti struttu	ırali (G1)	6
	5.1.	.2 Pes	permanenti non st	rutturali (G2)	6
	5.2	Sovracca	richi (Q)		7
	5.2.	.1 Piar	no di copertura		7
	5.2.	.2 Azio	one della neve (Q ne	ve)	7
	5.2.	.3 Azio	one del vento (W, W	т)	8
	5.2.	.4 Azio	one sismica (E)		11
	5.3	Sintesi ca	arichi di progetto		14
6	Ma	teriali			15
	6.1	Acciaio			15
7	Sof	tware imp	iegato per le analisi	FEM	16
	7.1	Sistemi c	li riferimento		16
	7.2	Elementi	beam		16
	7.2.	.1 Out	put delle azioni inte	rne	16
	7.2.	.2 Out	put delle azioni inte	rne	17
8	Ana	alisi e verif	iche		18
	8.1	Analisi st	rutturale tramite m	odello FEM	18
	8.2	Geometr	ia del modello		18
	8.3	Svincoli.			22
	8.4	Vincoli			22
	8.5	Condizio	ni di carico		23
	8.6	Analisi m	odale		26
	8.7	Combina	zioni di carico		28
	8.8	Giudizio	motivato accettabil	ità dei risultati	30
	8.8.	.1 Ver	ifica pesi strutturali	e non strutturali	30
	8.9	Risultati			31
		00	27-01-2023	Prima Emissione	

Descrizione

1.18-00-A-CIV-Relazione Preliminare Statica Strutture PV

8.9.1	Reazioni di base	31
8.9.2	Diagrammi azioni interne	33
8.9.3	Spostamenti orizzontali	40
8.10 Ver	ifica degli elementi strutturali	41
8.10.1	Verifica delle colonne	41
8.10.2	Verifica travi principali	43
8.10.3	Verifica travi secondarie	44
8.10.4	Verifica elementi diagonali	45
8.11 Por	tata del palo per carichi verticali	46

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

1 Premessa

Il presente documento costituisce la relazione di calcolo strutturale delle opere relative al progetto definitivo per la realizzazione dell'impianto FV "Solforatelle" nel comune di Roma (RM).

Nella presente relazione si riportano le ipotesi di calcolo e le risultanze di verifica strutturale relative alle carpenterie metalliche di sostegno dei pannelli fotovoltaici.

2 Normativa di riferimento e fonti consultate

Si elencano i principali riferimenti Normativi a cui si farà riferimento nella presente relazione:

D.M. 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»".

Circolare n.7 Reg. Atti Int. CONSUP del 21.01.2019 "Istruzioni per l'applicazione dello "Aggiornamento delle «Norme tecniche per le costruzioni»" di cui al decreto ministeriale 17 gennaio 2018

CNR-DT 207 - Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni

UNI EN 1990. Criteri generali di progettazione strutturale.

UNI EN 1991-1-1 Parte 1-1: Azioni in generale - Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici

UNI EN 1991-1-3 Parte 1-3: Azioni in generale - Carichi da neve

UNI EN 1991-1-4 Parte 1-4: Azioni in generale - Azioni del vento

UNI EN 1991-1-6 Parte 1-6: Azioni in generale - Azioni durante la costruzione

UNI EN 1993-1-1 Parte 1-1: Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici

UNI EN 1993-1-3 Parte 1-3: Progettazione delle strutture in acciaio. Regole generali - Regole supplementari per l'impiego dei profilati e delle lamiere sottili piegati a freddo

UNI EN 1993-1-4 Parte 1-4: Progettazione delle strutture in acciaio. Regole generali - Regole supplementari per acciai inossidabili

UNI EN 1993-1-5 Parte 1-5: Progettazione delle strutture in acciaio. Elementi strutturali a lastra

UNI EN 1993-1-8 Parte 1-8: Progettazione delle strutture in acciaio. Progettazione dei collegamenti

UNI EN 1997-1 Parte 1: Progettazione geotecnica. Regole generali

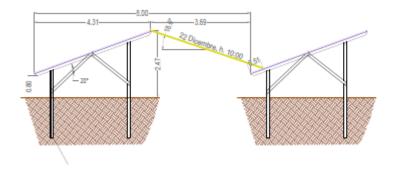
UNI EN 1997-2 Parte 2: Progettazione geotecnica. Indagini e prove nel sottosuolo

UNI EN 1998-1 Parte 1: Progettazione delle strutture per la resistenza sismica. Regole generali, azioni sismiche e regole per gli edifici

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

3 Documenti di progetto

La presente relazione è da leggersi contestualmente al seguente elaborato grafico di progetto "E16 – Particolari struttura FV e dettagli".


4 Descrizione delle opere

Le opere in progetto sono le strutture di sostegno di pannelli fotovoltaici, con layout 26x2 pannelli, che si prevede di realizzare interamente in carpenteria metallica.

L'impalcato che sostiene i pannelli è inclinato di 20°, per poter assecondare l'inclinazione dei pannelli stessi. Le strutture principali sono costituite da una serie di telai piani affiancati; in particolare ogni telaio è costituito da due colonne, formate da profili ad Omega di dimensioni 40x150x100 e spessore 3 mm, e due traversi costituiti da un profilo quadrato cavo di dimensioni 30x30 e spessore 2 mm. In appoggio sulle colonne è posto un elemento "trave" costituito da un profilato cavo rettangolare di dimensioni 40x80 e spessore 3 mm. Traversalmente all'elemento "trave" di ogni telaio piano sono disposte travi secondarie su cui grava direttamente il peso dei pannelli, costituite da profili formati a freddo con sezione a C di dimensioni 80x40x20 e spessore 3 mm.

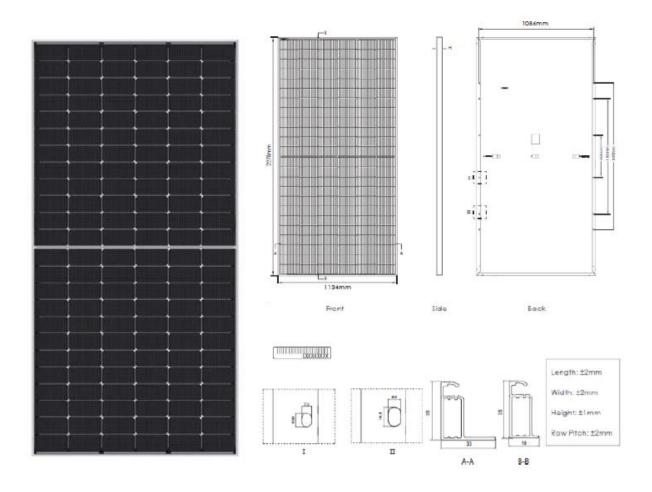
Le strutture sono fondate in maniera indiretta attraverso una serie di pali metallici infissi, costituiti dallo stesso profilo delle colonne.

Nella figura sottostante si riporta una vista laterale delle strutture in progetto:

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

5 Carichi di progetto

5.1 Carichi permanenti


5.1.1 Pesi permanenti strutturali (G1)

Il peso proprio delle strutture è calcolato in automatico dal software a elementi finiti, tenuto conto dei volumi degli elementi strutturali e del peso specifico dei materiali assegnati agli elementi. Per le strutture in acciaio è stato assunto un peso specifico pari a 78.50 kN/m³.

5.1.2 Pesi permanenti non strutturali (G2)

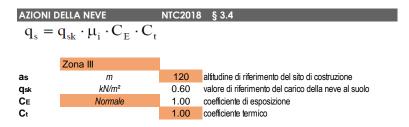
5.1.2.1 Impalcato inclinato

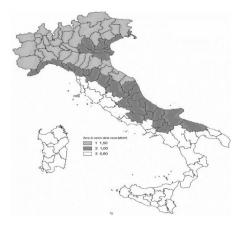
I carichi permanenti portati sono per lo più imputabili al peso dei pannelli fotovoltaici.

I pannelli hanno una dimensione complessiva pari a 2278 x 1134 x 35 mm ed un peso pari a 28 kg.

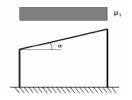
I pannelli vengono posati accostati tra di loro su due file parallele, il carico dovuto al loro peso è schematizzabile come distribuito lungo tutta la superficie superiore dell'impalcato inclinato.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione


5.2 Sovraccarichi (Q)


5.2.1 Piano di copertura

Non essendo possibile utilizzare i pannelli come piano di calpestio, non viene assunto alcun sovraccarico imputabile ad attività antropica.


5.2.2 Azione della neve (Q neve)

L'azione della neve è determinata in accordo al §3.4 delle NTC2018. I valori del carico da neve sono stati determinati come riportato a seguire.

Copertura a una falda					
α	gradi	20.0			
μί	-	0.80	coefficiente di forma della copertura		
q s	kN/m²	0.48	carico da neve su copertura		

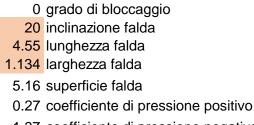
00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

5.2.3 Azione del vento (W, WT)

L'azione del vento è determinata in accordo al §3.3 delle NTC2018. I parametri necessari a calcolare i valori del carico da vento sono determinati come riportato a seguire.

ZONA			3_Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)
a_s		m	120 quota sul livello del mare (in m) del sito ove sorge la costruzione
a_0		m	500 quota s.l.m. di riferimento
$v_{b,0}$		m/s	27 velocità di riferimento del vento
ks			0.37
Ca			1 coefficiente d'altitudine
v_b	c _a v _{b,0}		27 velocità di riferimento del vento per T _R = 50 anni
T_R		anni	50 periodo di ritorno di progetto dell'azione del vento
$lpha_{R}$	$0.75 \cdot [1-0.2 \cdot \ln(-\ln(1-1/T_R))]^{0.5}$		1.00 coefficiente legato al periodo di ritorno di progetto
v_r	$\alpha_R V_b$	m/s	27.00 velocità di riferimento del vento associata al tempo di ritorno di progetto
ρ		kg/m³	1.25 densità dell'aria
q_r	$\frac{1}{2} \rho \cdot v_r^2$	kN/m²	0.46 pressione cinetica di riferimento
CLASSE	DI RUGOSITÀ DEL TERRENO		D Aree prive di ostacoli
CATEGO	RIA DI ESPOSIZIONE DEL SITO		II
\mathbf{k}_{r}			0.19 fattore di terreno
\mathbf{z}_0		m	0.05 altezza di rugosità
\mathbf{z}_{\min}		m	4 altezza minima
\mathbf{c}_{t}			1 coefficiente di topografia
c _{e,min} (z)	C _e (Z _{min})		1.801 coefficiente di esposizione per z <z<sub>min</z<sub>

Le strutture sono principalmente schematizzabili come falde inclinate (tettoie) senza alcun ingombro al di sotto della loro superficie (grado di bloccaggio pari a 0). Il sovraccarico da vento è determinabile come riportato a seguire.


00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

CALCOLO DELL'AZIONE DEL VENTO SU TETTOJE A FALDA SINGOLA

VENTO DIREZIONE Y (ortogonale alla linea di colmo)

VEITIO	INCELIONE I (Onogoniale a	iid iiiicd di	
ф		0	0 0
α		0	20 ii
d		m	4.55 l
b		m	1.134 la
L^2	b*d	m^2	5.16 s
$c_F > 0$	$0.2 + \alpha/30$		0.27
$c_F < 0$	-0.5-1.3*α/30		-1.37 c
ze	h	m	2.47 a
$\mathbf{k_r}$			0.19 f
z_0		m	0.05 a
\mathbf{z}_{\min}		m	4 a
Ct			1 c
C _{e,min}	$c_e(z_{min})$	m	1.801 c
c_e (z_e)	$k_r^2 \cdot c_t \cdot \ln(z/z_0) \cdot [7 + c_t \ln z/z_0]$	(z/z_0)	1.535 c
Ce	max ($c_{e,min}$; $c_{e}(z_{e})$)		1.801 c
C _d			1 c
$\mathbf{q}_{\mathbf{r}}$		kN/m²	0.46 p
q_p	C _e C _d Q _r	kN/m²	0.82 p
-			

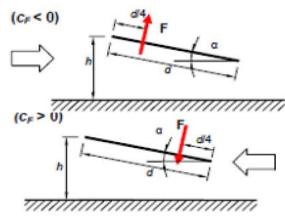
-1.37 coefficiente di pressione negativo

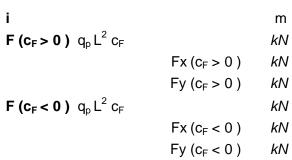
2.47 altezza di riferimento0.19 fattore di terreno

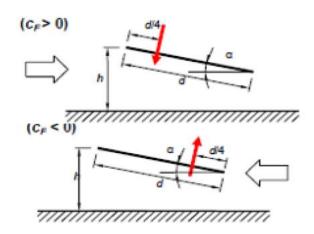
0.05 altezza di rugosità4 altezza minima

1 coefficiente di topografia

1.801 coefficiente di esposizione per $z < z_{min}$


1.535 coefficiente di esposizione per z = ze


1.801 coefficiente di esposizione di calcolo


1 coefficiente dinamico

0.46 pressione cinetica di riferimento

0.82 pressione di calcolo

1 interasse tra i profili

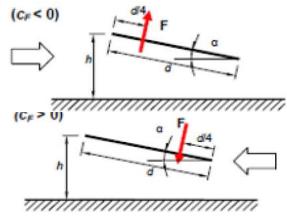
1.13 forza caratteristica del vento per $c_F > 0$

0.39 componente orizzontale della forza

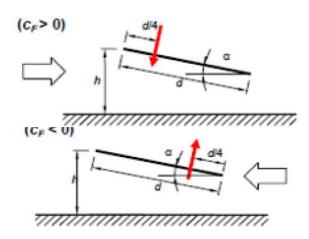
1.06 componente verticale della forza

-5.78 forza caratteristica del vento per c_F<0

-1.98 componente orizzontale della forza


-5.44 componente verticale della forza

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione



VENTO DIREZIONE X (parallela alla linea di colmo)

ф		0	0	grado di bloccaggio
α		0	0	inclinazione falda
d		m	4.55	lunghezza falda
b		m	1.134	larghezza falda
L^2		m^2	5.16	superficie falda
$c_F > 0$	$0.2 + \alpha/30$		0.2	coefficiente di pressione positivo
$c_F < 0$	-0.5-1.3*α/30		-0.5	coefficiente di pressione negativo
ze	h	m	2.5	altezza di riferimento
C _{e,min}	$C_e(Z_{min})$	m	1.801	coefficiente di esposizione per z $<$ z $_{min}$
c_e (z_e)	$k_r^2 \cdot c_t \cdot \ln(z/z_0) \cdot [7 + c_t \ln(z/z_0)]$	(z/z_0)	1.541	coefficiente di esposizione per z = ze
Ce	$max \ (\ c_{e,min} \ ; \ c_{e}(z_{e}) \)$		1.801	coefficiente di esposizione di calcolo
c_{d}			1	coefficiente dinamico
$\mathbf{q}_{\mathbf{r}}$		kN/m²	0.46	pressione cinetica di riferimento
\mathbf{q}_{p}	$c_e c_d q_r$	kN/m²	0.82	pressione di calcolo

1 interasse tra i profili 0.85 forza caratteristica del vento per $c_F>0$ 0.29 componente orizzontale della forza 0.80 componente verticale della forza -2.12 forza caratteristica del vento per $c_F<0$ -0.72 componente orizzontale della forza

-1.99 componente verticale della forza

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

5.2.4 Azione sismica (E)

Il sito in cui è previsto di realizzare la struttura è identificato nell'immagine seguente.

Figura 5.1 – Inquadramento su Ortofoto

Le coordinate geografiche indicative dell'area prevista per il progetto sono le seguenti:

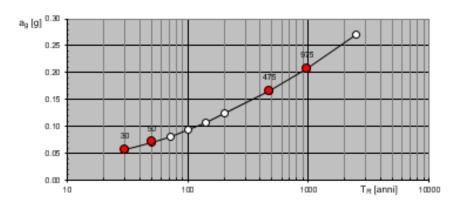
Latitudine 42° 5'10.19"N

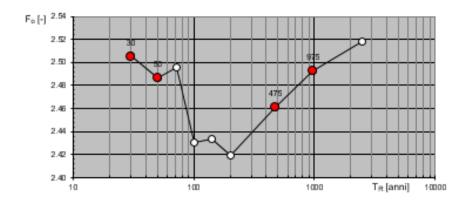
Longitudine 13° 3'12.59"E

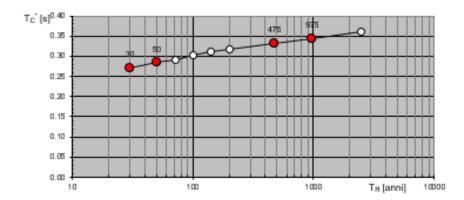
L'opera è da considerarsi di tipo "ordinario", la vita nominale V_N è assunta pari a 50 anni. L'opera è ritenuta di classe d'uso II, corrisponderà quindi un coefficiente $C_U = 1$. La vita di riferimento è pari a :

$$V_R = V_N \cdot C_U = 50 \cdot 1 = 50 \text{ anni}$$

Nell'area di indagine non sono state eseguite delle prove geofisiche atte a valutare l'entità delle velocità delle onde di taglio che permettono di identificare la corrispondente categoria di sottosuolo. Prendendo a riferimento le evidenze sul contesto geologico riportate in bibliografia, si assume cautelativa che la Categoria di Sottosuolo sia la **categoria C**.


Essendo l'area in esame collocata in un contesto geomorfologico pianeggiante di raccordo tra la linea di costa e i monti Albani verso est si assume che la Categoria Topografia sia **11**.


00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

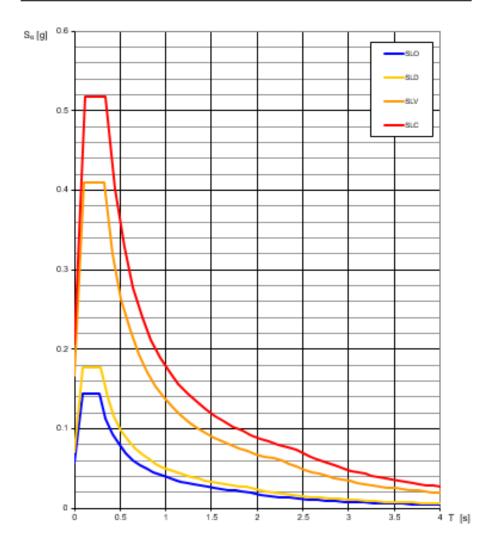


Dalle precedenti assunzioni si sono determinati i parametri sismici da adottare per i diversi stati limite.

Valori di progetto dei parametri a , , F , , T c in funzione del periodo d

Dalle precedenti considerazione è stato possibile estrarre lo spettro elastico per le strutture in progetto.

Considerata la tipologia strutturale adottata si è scelto di progettare la struttura in come non dissipativa.


Per il tipo di struttura si adotta un fattore di comportamento q=1 Infatti, potendosi assumere $K_R=1$ si ha

$$q = K_R \cdot q_0 = 1 \cdot 1 = 1$$

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

Spettri di risposta elastici per i diversi Stati Limite

Si riportano in forma tabellare i parametri governanti l'azione sismica, per i differenti tempi di ritorno, per le coordinate in progetto:

SLATO	T _R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.057	2.505	0.271
SLD	50	0.071	2.487	0.284
SLV	475	0.166	2.462	0.331
SLC	975	0.208	2.493	0.344

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

5.3 Sintesi carichi di progetto

Nella sottostante tabella sono riassunti i casi di carico di progetto che verranno poi opportunamente combinati come previsto al Capitolo 2 delle NTC.

Casi di carico

G1 pesi permanenti strutturali

G2 pesi permanenti non strutturali

WX-_Cf+ Azioni di uplift per vento agente parallelamente linea di colmo WX+_Cf- Azioni di downlift per vento agente parallelamente linea di colmo

WY+_Cf-_Top
WY-_Cf+_Top
WY-_Cf+_Bottom
WY+_Cf-_Bottom

S carico da neve

Ex azione sismica direzione X
Ey azione sismica direzione Y

Ex_ex azione sismica direzione X - eccentricità accidentale X Ey_ey azione sismica direzione Y - eccentricità accidentale Y

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

6 Materiali

6.1 Acciaio

È previsto di realizzare le strutture in acciaio avente le seguenti caratteristiche:

Elementi costituenti l'impalcato e i traversi: acciaio tipo \$275

fy = 275 Mpa resistenza a snervamento

fu = 430 Mpa resistenza ultima a rottura

E = 210000 MPa modulo elastico

v = 0.3 coefficiente di poisson

G = E/2 (1+v) modulo di elasticità tangenziale

 $\alpha = 12 \times 10^{-6} \text{ 1/K}$ costante di dilatazione

 γ = 7580 kg/m³ densità di massa

Elementi costituenti i montanti: acciaio tipo \$355

fy = 355 Mpa resistenza a snervamento

fu = 510 Mpa resistenza ultima a rottura

E = 210000 MPa modulo elastico

v = 0.3 coefficiente di poisson

G = E/2 (1+v) modulo di elasticità tangenziale

 $\alpha = 12 \times 10^{-6} \text{ 1/K}$ costante di dilatazione

 γ = 7580 kg/m³ densità di massa

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

7 Software impiegato per le analisi FEM

Le sollecitazioni di progetto utili per la verifica delle strutture sono state desunte da un modello agli elementi finiti tridimensionale elaborato con il codice di calcolo Midas Gen di Midas Information Tecnology di estesa commercializzazione.

I modelli strutturali sono stati realizzati congruentemente alle geometrie strutturali e alle caratteristiche dei materiali rappresentate negli elaborati strutturali di progetto.

7.1 Sistemi di riferimento

In Midas Gen sono definiti i seguenti sistemi di coordinate

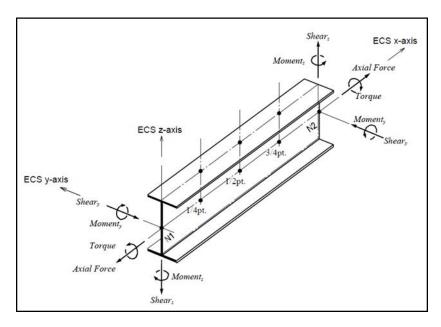
- Global Coordinate System (GCS)
- Element Coordinate System (ECS)
- Node local Coordinate System (NCS)

Il GCS usa le lettere maiuscole X, Y e Z per definire un sistema di coordinate cartesiale globale, che segue la regola della mano destra. È utilizzato per la maggior parte della definizione degli input, compreso ad esempio la definizione dei nodi e la restituzione di risultati globali ad essi associati, quali spostamenti e reazioni vincolari.

Il GCS definisce la posizione geometrica della struttura da analizzare e il suo punto di riferimento (l'origine) è automaticamente fissata al set di coordinate (0,0,0). Dal momento che la direzione verticale è rappresentata dall'asse Z è convenzionale modellare le strutture nel loro sviluppo verticale lungo questo asse.

L'ECS usa le lettere minuscole x,y e z per definire un sistema di riferimento cartesiano, che segue la regola della mano destra, associati a un elemento. I risultati delle analisi in termini di forze interne e tensioni e la maggior parte degli input associati al singolo elemento sono espressi in questo sistema di coordinate locali.

7.2 Elementi beam


Gli elementi a due nodi assimilabili a elementi strutturali monodimensionali, quali travi e pilatri, sono stati modellati come elementi beam. La formulazione di tali elementi è basata sulla teoria della trave di Timoshenko, considerando le capacità di rigidezza in tensione e compressione, taglio e le capacità deformative in condizione di flessione e torsione. La definizione delle caratteristiche della sezione trasversale, caratterizzanti la meccanica dell'elemento, sono definite da apposite finestre di dialogo all'interno del software.

7.2.1 Output delle azioni interne

Per gli elementi beam la convenzione dei segni è quella riportata nella figura seguente, le frecce indicano i versi delle sollecitazioni considerate come positive.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

7.2.2 Output delle azioni interne

La convenzione dei segni per le azioni interne di un elemento plate e per le sollecitazioni è definita sia dall'ECS che dal GCS.

I seguenti risultati di output sono definite con riferimento all'ECS:

- Azioni sui nodi di connessione
- Azioni per unità di lunghezza sui nodi di connessione e sul baricentro dell'elemento
- Tensioni sulla superficie superiore e inferiore in corrispondenza dei nodi di connessione

In ogni nodo, moltiplicando ogni componente di spostamento nodale per la corrispondente componenti di rigidezza viene determinata l'azione dell'elemento sul nodo.

Per calcolare le forze per unità di lunghezza in un nodo di connessione o nel baricentro di un elemento, le tensioni sono calcolate separatamente per il comportamento nel piano e quello fuori dal piano e integrate nella direzione dello spessore.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8 Analisi e verifiche

8.1 Analisi strutturale tramite modello FEM

L'analisi strutturale è stata utilizzata utilizzando il softwarare MidasGen 2021, realizzando un modello ad elementi finiti tridimensionale. Gli elementi strutturali sono stati schematizzate mediante elementi finiti di tipo beam, introducendo le condizioni di vincolo esterno e gli opportuni svincoli nei punti in cui in vincolo di collegamento è a cerniera.

Nei successivi paragrafi vengono riportati nel dettaglio le ipotesi poste alla base delle analisi.

8.2 Geometria del modello

I profili sono stati schematizzati con elementi beam, assegnando agli elementi le corrispondenti caratteristiche geometriche sezionali. Vengono riportate alcune viste del modello predisposto e i profili modellati.

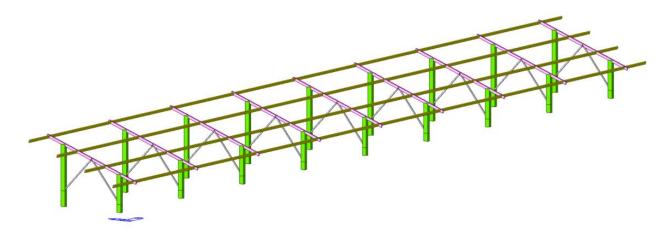


Figura 8.1 Modello FEM, vista Isometrica

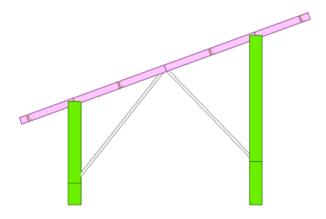


Figura 8.2 - Modello FEM, vista laterale

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

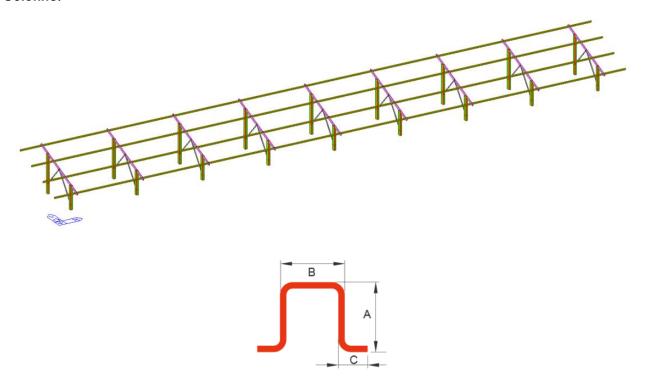


Figura 8.3 - Modello FEM, vista frontale

Le sezioni vengono modellate associando ad ogni elemento le caratteristiche sezionali e geometriche proprie di ogni elemento.

Colonne:

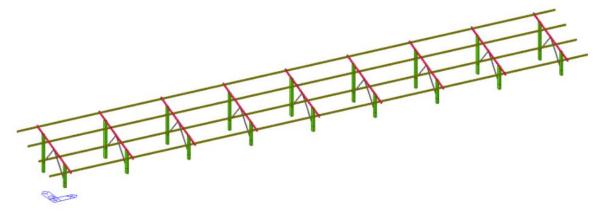

	C-4-D	C	A	В	S	Sv.	Peso	Area	ey	Vy	Jx	Wx	Ix	Jy	Wy	Iy
	CxAxB	mm	mm	mm	mm	mm	Kg/ml	cm ²	cm	cm	cm4	cm3	cm	cm4	cm3	cm
	40x150x100x3	40.00	150.00	100.00	3.00	460 00	10.83	13.80	7.82	7 18	426.00	54 48	5.56	333 30	38 31	4 91

Figura 8.4 - Modello FEM, colonne

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

Travi principali:

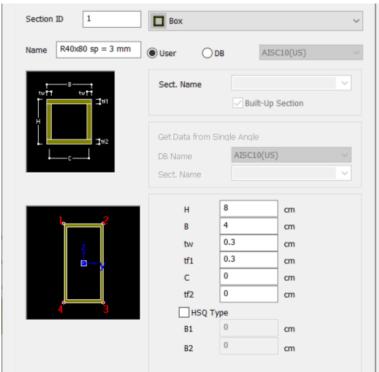
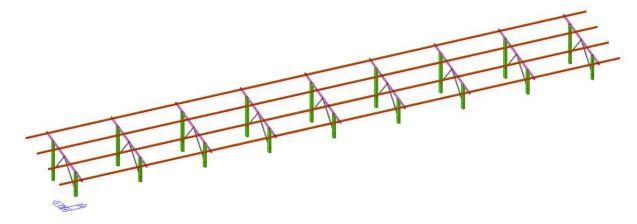



Figura 8.5 - Modello FEM, impalcato inclinato – travi principali

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

Travi secondarie:

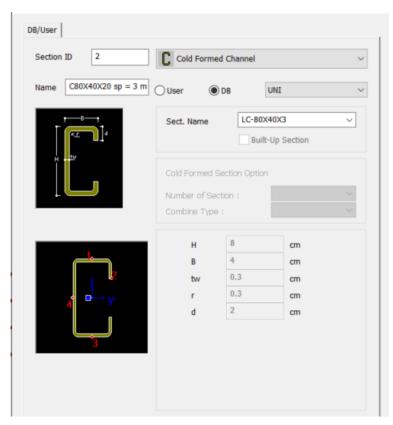


Figura 8.6 - Modello FEM, impalcato inclinato – travi secondarie

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.3 Svincoli

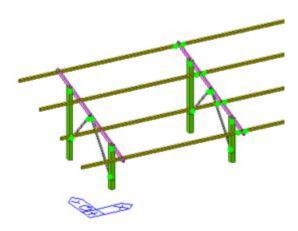


Figura 8.7 - Aste in appoggio (svincolate a momento)

8.4 Vincoli

La struttura viene vincolata attraverso incastri posti alla base delle colonne. Le reazioni ottenute in corrispondenza di tali vincoli verranno utilizzate per stimare la portata del palo a carichi verticali.

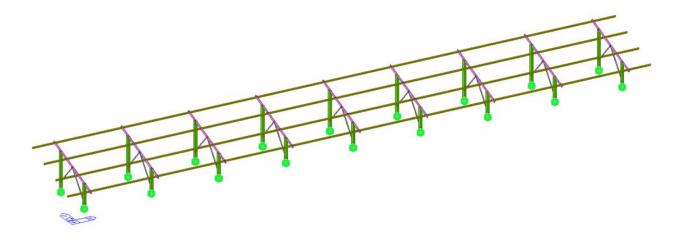


Figura 8.8 – Vincoli di incastro alla base

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.5 Condizioni di carico

I carichi dovuti a peso dei pannelli e alla neve vengono riportati come carichi lineari distribuiti sulle travi secondarie secondo le aree di influenza dei carichi stessi. L'azione del vento è distribuita in maniera puntuale sui punti di appoggio dei traversi, in modo da descrivere il comportamento globale della struttura.

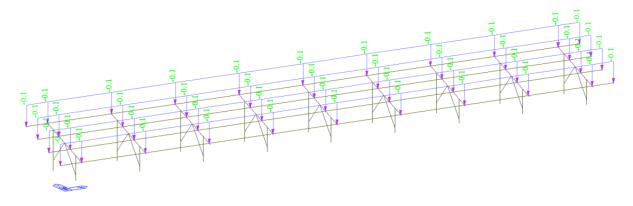


Figura 8.9 - Carichi permanenti portati per peso dei pannelli (G2)

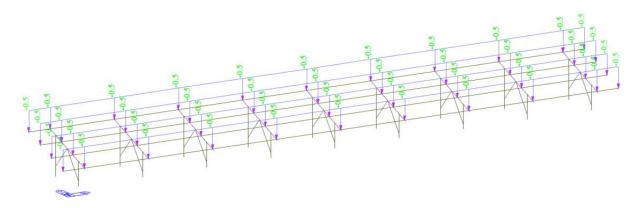


Figura 8.10 - Sovraccarico da neve (Q neve)

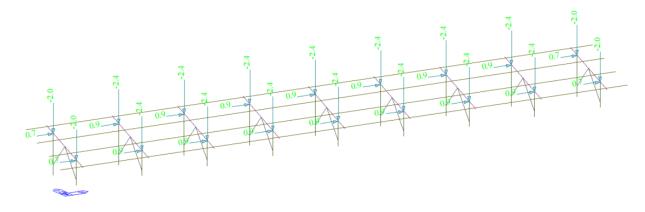


Figura 8.11 - Vento dir. X applicato all'impalcato (WX_CF+)

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

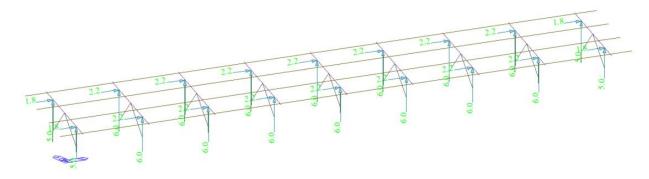


Figura 8.12 - Vento dir. X, applicato all'impalcato (WX_CF-)

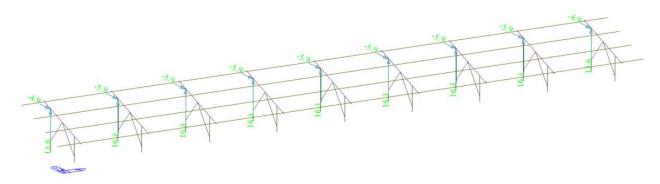


Figura 8.13 - Vento dir. Y, applicato all'impalcato (WY+_CF-_Top)

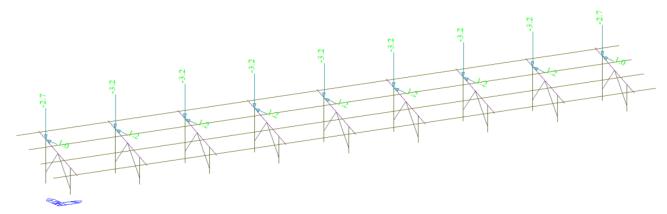


Figura 8.14 - Vento dir. Y, applicato all'impalcato (WY-_CF+_Top)

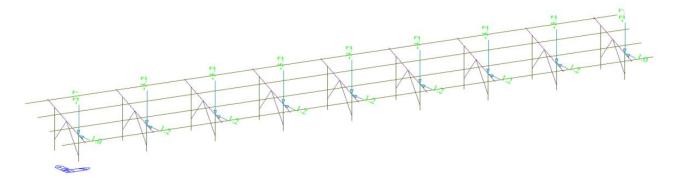


Figura 8.15 - Vento dir. Y, applicato all'impalcato (WY-_CF+_Bottom)

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

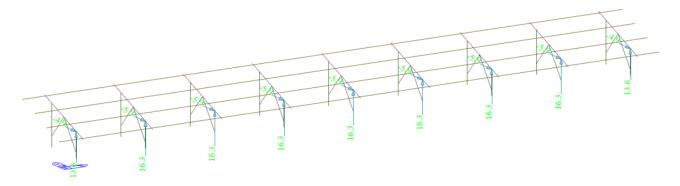


Figura 8.16 - Vento dir. Y, applicato all'impalcato (WY+_CF-_Bottom)

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.6 Analisi modale

Ai fini della valutazione degli effetti dell'azione sismica è stata realizzata un'analisi di tipo dinamica lineare, tale procedura consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale);
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- nella combinazione di questi effetti.

Si riportano i risultati numerici ottenuti.

EIG	ENVALU	E ANAL	YSIS	MOD	AL PAR	TECIPATI	ON MA	SSES
Mode No	Freq	uency	Period	Mode No	TRAN-X		TRAN-Y	
	(rad/sec)	(cycle/sec)	(sec)		MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	36.6693	5.8361	0.1713	1	34.56	34.5568	0	0
2	41.2215	6.5606	0.1524	2	0.03	34.5908	0	0
3	56.7266	9.0283	0.1108	3	33.53	68.1197	0	0
4	62.1801	9.8963	0.101	4	0.00	68.1197	0.2613	0.2613
5	62.9951	10.026	0.0997	5	0.09	68.2063	0	0.2613
6	63.4861	10.1041	0.099	6	0.00	68.2063	0.9611	1.2224
7	68.2156	10.8568	0.0921	7	0.00	68.2063	0.0102	1.2326
8	68.8595	10.9593	0.0912	8	13.11	81.3141	0	1.2326
9	69.7455	11.1003	0.0901	9	0.00	81.3141	2.2364	3.469
10	71.3196	11.3509	0.0881	10	6.83	88.1464	0	3.469
11	72.5125	11.5407	0.0866	11	2.65	90.7944	0	3.469
12	120.4728	19.1738	0.0522	12	2.56	93.3533	0	3.469
13	219.2327	34.892	0.0287	13	0.00	93.3533	57.1624	60.6314
14	219.2956	34.902	0.0287	14	0.00	93.3533	0	60.6314
15	219.4088	34.92	0.0286	15	0.00	93.3533	10.7292	71.3606
16	219.4524	34.9269	0.0286	16	0.00	93.3533	0	71.3606
17	220.4682	35.0886	0.0285	17	0.00	93.3533	0.0588	71.4194
18	220.8474	35.149	0.0285	18	0.00	93.3533	0	71.4194
19	221.182	35.2022	0.0284	19	0.00	93.3533	0.0124	71.4318
20	255.0988	40.6002	0.0246	20	0.00	93.3533	0.0033	71.4351
21	265.1941	42.207	0.0237	21	0.00	93.3533	13.0071	84.4423
22	265.3728	42.2354	0.0237	22	0.00	93.3533	0	84.4423
23	268.2957	42.7006	0.0234	23	0.00	93.3533	0.1166	84.5588
24	275.1621	43.7934	0.0228	24	0	93.3533	0.0503	84.6091
25	288.9757	45.9919	0.0217	25	0	93.3533	0.0426	84.6517

Si sono estratti 2 modi di vibrare principali, con le quali si è estratta tutta la massa sismica assegnata al modello strutturale. Vista la simmetria della struttura in entrambe le direzioni si ottiene un grande grado di regolarità dell'azione sismica.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

Sono stati considerati tutti i modi con massa partecipante significativa, tutti i modi con massa partecipante superiore al 5% e un numero di modi la cui massa partecipante totale sia superiore allo 85%.

Si riportano le configurazione deformate dei principali modi di vibrare ottenuti

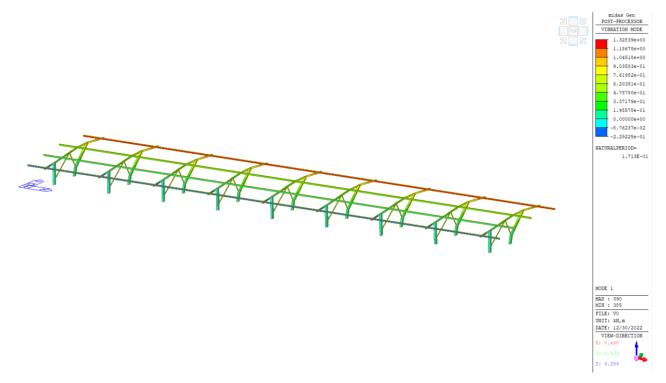


Figura 8.17 - Modo di vibrare 1

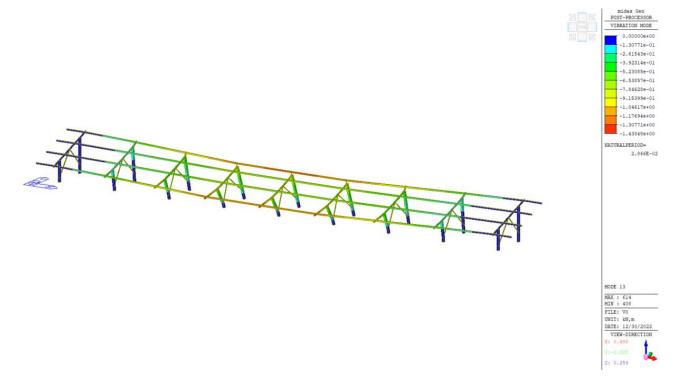


Figura 8.18 - Modo di vibrare 13

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.7 Combinazioni di carico

Sono state considerate le seguenti combinazioni di carico. Inoltre, è stata introdotta una combinazione di invlluppo delle combinazioni allo SLU.

							4.	14.							
СОМВО	ТУРЕ		e) (e	14. Q	MXX C	XX OF TOO	1. Cx 68	WYX BORON	Cr. Boston,		· /	\$ \	2	¢ e+	E Q
SLU1	Strength/Stress	Add	1.30	1.50	1.50						0.75	· ·			
SLU2	Strength/Stress	Add	1.30	1.50	1.00	1.50					0.75				
SLU3	Strength/Stress	Add	1.30	1.50		1.00	1.50				0.75				
SLU4	Strength/Stress	Add	1.30	1.50				1.50			0.75				
SLU5	Strength/Stress	Add	1.30	1.50					1.50		0.75				
SLU6	Strength/Stress	Add	1.30	1.50						1.50	0.75				
SLU7	Strength/Stress	Add	1.30	1.50	0.90						1.50				
SLU8	Strength/Stress	Add	1.30	1.50		0.90					1.50				
SLU9	Strength/Stress	Add	1.30	1.50			0.90				1.50				
SLU10	Strength/Stress	Add	1.30	1.50				0.90			1.50				
SLU11	Strength/Stress	Add	1.30	1.50					0.90		1.50				
SLU12	Strength/Stress	Add	1.30	1.50						0.90	1.50				
SLU13	Strength/Stress	Add	1.00	0.80	1.50						0.75				
SLU14	Strength/Stress	Add	1.00	0.80		1.50					0.75				
SLU15	Strength/Stress	Add	1.00	0.80			1.50				0.75				
SLU16	Strength/Stress	Add	1.00	0.80				1.50			0.75				
SLU17	Strength/Stress	Add	1.00	0.80					1.50		0.75				
SLU18	Strength/Stress	Add	1.00	0.80						1.50	0.75				
SLU19	Strength/Stress	Add	1.00	0.80	0.90						1.50				
SLU20	Strength/Stress	Add	1.00	0.80		0.90					1.50				
SLU21	Strength/Stress	Add	1.00	0.80			0.90				1.50				
SLU22	Strength/Stress	Add	1.00	0.80				0.90			1.50				
SLU23	Strength/Stress	Add	1.00	0.80					0.90		1.50				
SLU24	Strength/Stress	Add	1.00	0.80	-					0.90	1.50				

	· ·				\ .	\ ,	1/2	1/2							
					1	L 2	2	Cr /i	0						
		\ \		4	4	$\hat{\mathbf{x}}$	NO T	XX	Tip)	\ '	\ '		((
				7.	Tx	1.5	XX	NO ME	NO ME				4	12	
СОМВО	TYPE	/@	; \ E	4. Q.	14× Q.	LX CX. TOB	A. Ch. log	Ctx Bollon	Ci. Bollon.	, /	s /	\$ \2	G _{e+}	20	
SLV1	Strength (Elastic)	Add	1.00	1.00						`		1.00	0.30	1.00	0.30
SLV2	Strength (Elastic)	Add	1.00	1.00								1.00	0.30	1.00	-0.30
SLV3	Strength (Elastic)	Add	1.00	1.00								1.00	0.30	-1.00	0.30
SLV4	Strength (Elastic)	Add	1.00	1.00								1.00	0.30	-1.00	-0.30
SLV5	Strength (Elastic)	Add	1.00	1.00								1.00	-0.30	1.00	0.30
SLV6	Strength (Elastic)	Add	1.00	1.00								1.00	-0.30	1.00	-0.30
SLV7	Strength (Elastic)	Add	1.00	1.00								1.00	-0.30	-1.00	0.30
SLV8	Strength (Elastic)	Add	1.00	1.00								1.00	-0.30	-1.00	-0.30
SLV9	Strength (Elastic)	Add	1.00	1.00								-1.00	0.30	1.00	0.30
SLV10	Strength (Elastic)	Add	1.00	1.00								-1.00	0.30	1.00	-0.30
SLV11	Strength (Elastic)	Add	1.00	1.00								-1.00	0.30	-1.00	0.30
SLV12	Strength (Elastic)	Add	1.00	1.00								-1.00	0.30	-1.00	-0.30
SLV13	Strength (Elastic)	Add	1.00	1.00								-1.00	-0.30	1.00	0.30
SLV14	Strength (Elastic)	Add	1.00	1.00								-1.00	-0.30	1.00	-0.30
SLV15	Strength (Elastic)	Add	1.00	1.00								-1.00	-0.30	-1.00	0.30
SLV16	Strength (Elastic)	Add	1.00	1.00								-1.00	-0.30	-1.00	-0.30
SLV17	Strength (Elastic)	Add	1.00	1.00								0.30	1.00	1.00	0.30
SLV18	Strength (Elastic)	Add	1.00	1.00								0.30	1.00	1.00	-0.30
SLV19	Strength (Elastic)	Add	1.00	1.00								0.30	1.00	-1.00	0.30
SLV20	Strength (Elastic)	Add	1.00	1.00								0.30	1.00	-1.00	-0.30
SLV21	Strength (Elastic)	Add	1.00	1.00								-0.30	1.00	1.00	0.30
SLV22	Strength (Elastic)	Add	1.00	1.00								-0.30	1.00	1.00	-0.30
SLV23	Strength (Elastic)	Add	1.00	1.00								-0.30	1.00	-1.00	0.30
SLV24	Strength (Elastic)	Add	1.00	1.00								-0.30	1.00	-1.00	-0.30
SLV25	Strength (Elastic)	Add	1.00	1.00								0.30	-1.00	1.00	0.30
SLV26	Strength (Elastic)	Add	1.00	1.00								0.30	-1.00	1.00	-0.30
SLV27	Strength (Elastic)	Add	1.00	1.00								0.30	-1.00	-1.00	0.30
SLV28	Strength (Elastic)	Add	1.00	1.00								0.30	-1.00	-1.00	-0.30
SLV29	Strength (Elastic)	Add	1.00	1.00								-0.30	-1.00	1.00	0.30
SLV30	Strength (Elastic)	Add	1.00	1.00								-0.30	-1.00	1.00	-0.30
SLV31	Strength (Elastic)	Add	1.00	1.00								-0.30	-1.00	-1.00	0.30
SLV32	Strength (Elastic)	Add	1.00	1.00								-0.30	-1.00	-1.00	-0.30

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

1.18-00-A-CIV-Relazione Preliminare Statica Strutture PV

					,										
					4.	4	12	MYX BORON	C. Bollon						
				. \	1 13	× V	! _ \\	3× //	O : /	_ \					
				4. Qx	MXX CX	⋌ ⋩ॱ `	VO;	Box .	180 K			\ '	\	\	
			3> \ 6	- / Q:	/ic	16	160	TON	TON		r \q	2	40+	120	
COMBO	TYPE		<u> </u>			/2		/,	/,	/,	7.	- 12	. *\	12	
SLEr1	Serviceability	Add	1.00	1.00	1.00						0.50				
SLEr2	Serviceability	Add	1.00	1.00		1.00					0.50				
SLEr3	Serviceability	Add	1.00	1.00			1.00				0.50				
SLEr4	Serviceability	Add	1.00	1.00				1.00			0.50				
SLEr5	Serviceability	Add	1.00	1.00					1.00		0.50				
SLEr6	Serviceability	Add	1.00	1.00						1.00	0.50				
SLEr7	Serviceability	Add	1.00	1.00							1.00				
SLEr8	Serviceability	Add	1.00	1.00	0.60						1.00				
SLEr9	Serviceability	Add	1.00	1.00		0.60					1.00				
SLEr10	Serviceability	Add	1.00	1.00			0.60				1.00				
SLEr11	Serviceability	Add	1.00	1.00				0.60			1.00				
SLEr12	Serviceability	Add	1.00	1.00					0.6		1.00				
SLEr13	Serviceability	Add	1.00	1.00						0.6	1.00				
SLEr14	Serviceability	Add	1.00	1.00	-1.00						0.50				
SLEr15	Serviceability	Add	1.00	1.00		-1.00					0.50				
SLEr16	Serviceability	Add	1.00	1.00			-1.00				0.50				
SLEr17	Serviceability	Add	1.00	1.00				-1.00			0.50				
SLEr18	Serviceability	Add	1.00	1.00					-1.00		0.50				
SLEr19	Serviceability	Add	1.00	1.00						-1.00	0.50				
SLEr20	Serviceability	Add	1.00	1.00							1.00				
SLEr21	Serviceability	Add	1.00	1.00	-0.60						1.00				
SLEr22	Serviceability	Add	1.00	1.00		-0.60					1.00				
SLEr23	Serviceability	Add	1.00	1.00			-0.60				1.00				
SLEr24	Serviceability	Add	1.00	1.00				-0.60			1.00				
SLEr25	Serviceability	Add	1.00	1.00					-0.60		1.00				
SLEr26	Serviceability	Add	1.00	1.00						-0.60	1.00				
SLEf1	Serviceability	Add	1.00	1.00	0.20										
SLEf2	Serviceability	Add	1.00	1.00		0.20									
SLEf3	Serviceability	Add	1.00	1.00			0.20								
SLEf4	Serviceability	Add	1.00	1.00				0.20							
SLEf5	Serviceability	Add	1.00	1.00					0.20						
SLEf6	Serviceability	Add	1.00	1.00						0.20					
SLEf7	Serviceability	Add	1.00	1.00							0.20				
SLEf8	Serviceability	Add	1.00	1.00			-0.20								
SLEf9	Serviceability	Add	1.00	1.00				-0.20							
SLEf10	Serviceability	Add	1.00	1.00					-0.20						
SLEf11	Serviceability	Add	1.00	1.00						-0.20					
SLEqp1	Serviceability	Add	1.00	1.00											_

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.8 Giudizio motivato accettabilità dei risultati

8.8.1 Verifica pesi strutturali e non strutturali

Il modello viene validato confrontando le reazioni totali ottenute dal modello FEM con quelle risultanti da calcolo manuale, considerando come carichi i pesi propri ed i pesi permanenti portati.

Nella schermata sottostante si riporta l'output delle reazioni in condizione SLEqp1, che comprende i carichi G1 e G2 con coefficiente di amplificazione unitario.

SUMMATION OF REACTION FORCES PRINTOUT									
Load	FX (kN)	FY (kN)	FZ (kN)						
SLEqp1		0.000000							

Si confronta questo valore con quello ottenuto da calcolo manuale.

Elemento	Tipologia Profilo	Parti uguali	L	U.M.	Massa unitaria	Massa elemento	Massa Totale	Peso
			m		U.M.	kg	kg	kN
Moduli PV		52	-	kg	28	28	1456	14.28
Travi principali	Rettangolare cavo 40x80 sp = 3 mm	9	3.55	kg/m	5.37	19.06	171.57	1.68
Travi secondarie	C - 80x40x20 sp = 3 mm	4	29.64	kg/m	4.16	123.30	493.21	4.84
Diagonali (1)	Quadrato cavo 30x30 sp = 2 mm	9	1.7	kg/m	1.76	2.99	26.93	0.26
Diagonali (2)	Quadrato cavo 30x30 sp = 2 mm	9	1.5	kg/m	1.76	2.64	23.76	0.23
Montanti (1)	Omega - 40x150x100 sp = 3 mm	9	1.96	kg/m	10.83	21.23	191.04	1.87
Montanti (2)	Omega - 40x150x100 sp = 3 mm	9	1.2	kg/m	10.83	13.00	116.96	1.15
						Totale		24.3
						Reazioni da		24.3
						Scart	0 [%]	0.0

Visto il ridotto scarto, il risultato è ritenuto accettabile.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.9 Risultati

Si riportano i principali risultati forniti dal modello di calcolo.

8.9.1 Reazioni di base

A seguire si riportano le reazioni sugli incastri posti alla base delle colonne. Tali reazioni verranno utilizzate per stimare la portata verticale dei pali. I valori mostrati si riferiscono alla combinazione di inviluppo delle combinazioni SLU e SLV. Le reazioni sono espresse in kN.

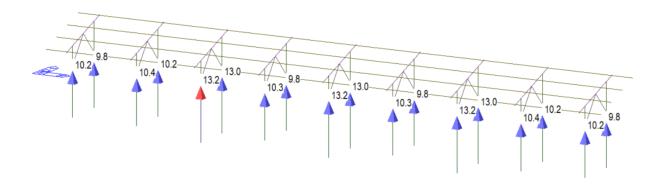


Figura 8.19 – Massime reazioni vincolari verticali positive (pali compressi)

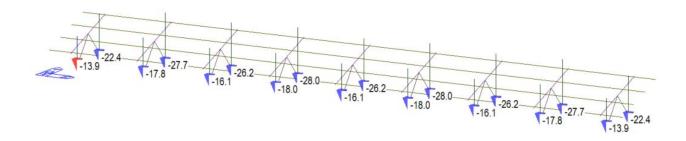


Figura 8.20 – Minime reazioni vincolari verticali negative (pali tesi)

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

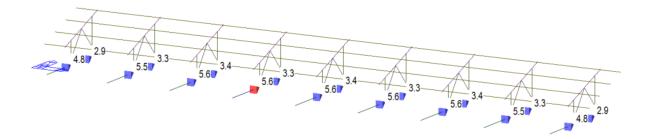


Figura 8.21 – Massime reazioni vincolari in direzione Y

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.9.2 Diagrammi azioni interne

A seguire vengono riportate le caratteristiche della sollecitazione dei principali elementi.

I diagrammi riportati si riferiscono agli inviluppi delle combinazioni di carico SLU e SLV.

Le sollecitazioni di momento sono riportate in kNm, le sollecitazioni di sforzo normale e taglio sono riportate in kN.

Travi secondarie:

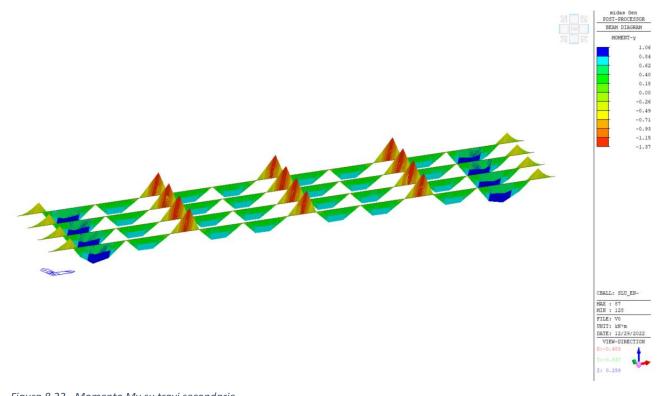


Figura 8.22 - Momento My su travi secondarie

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

Figura 8.23 - Momento Mz su travi secondarie

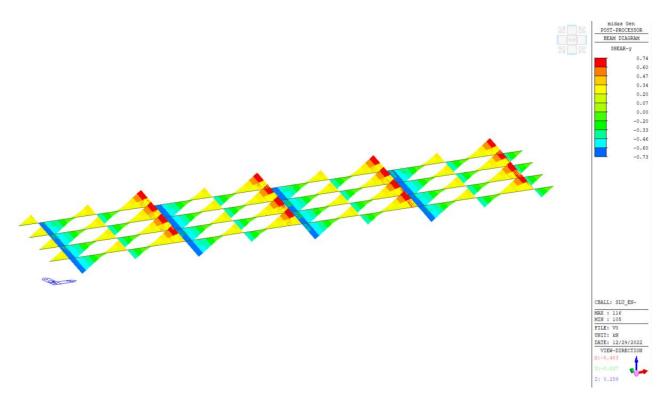


Figura 8.24 - Taglio Fy su travi secondarie

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

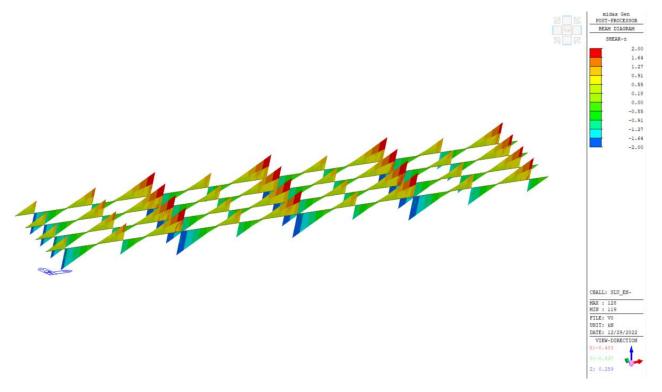


Figura 8.25 - Taglio Fz su travi secondarie

Travi principali:

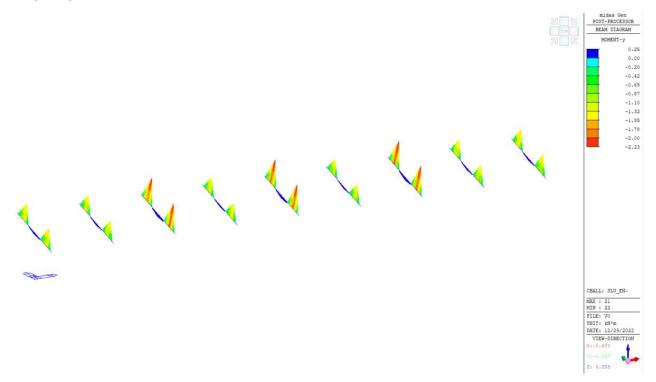


Figura 8.26 - Momento My su travi principali

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

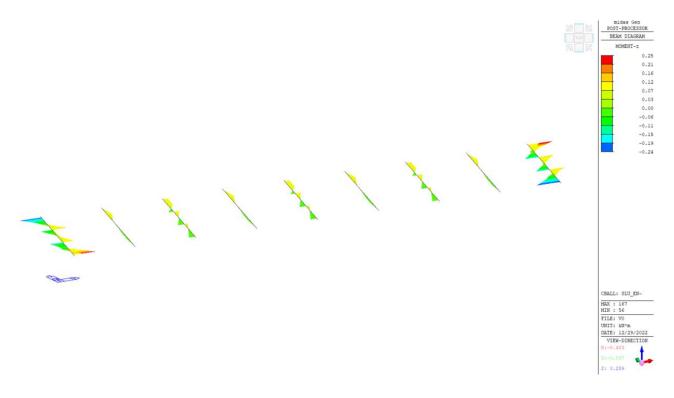


Figura 8.27 – Momento Mz su travi principali

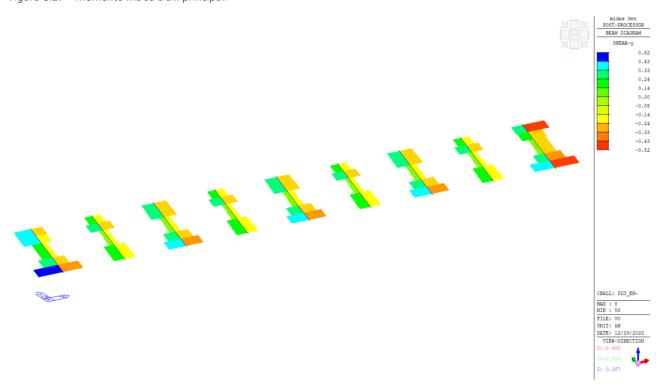


Figura 8.28 - Taglio Fy su travi principali

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

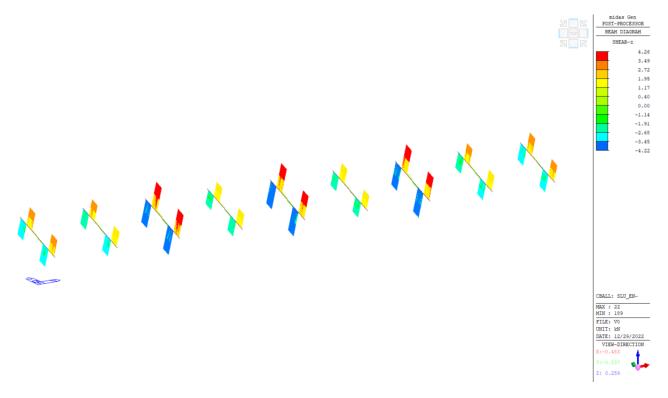


Figura 8.29 - Taglio Fz su travi principali

Colonne:

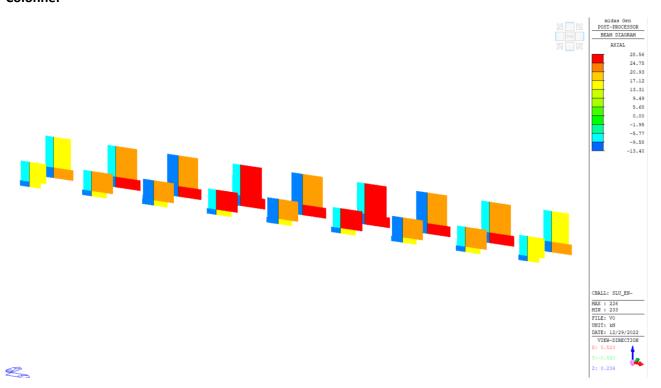


Figura 8.30 - Azione assiale sulle colonne

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

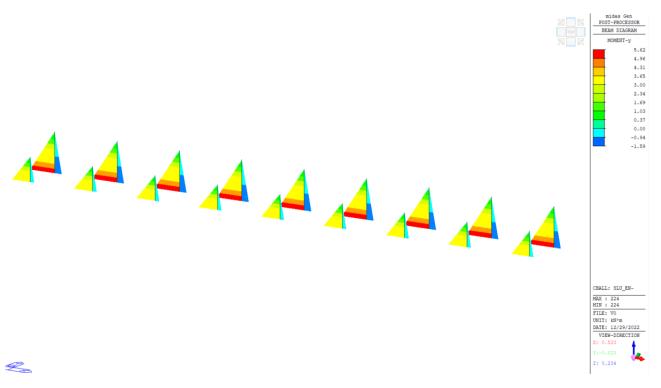


Figura 8.31 – Momento My sulle colonne

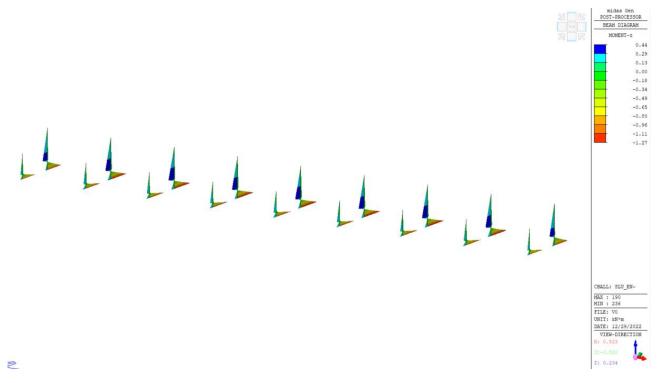


Figura 8.32 – Momento Mz sulle colonne

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

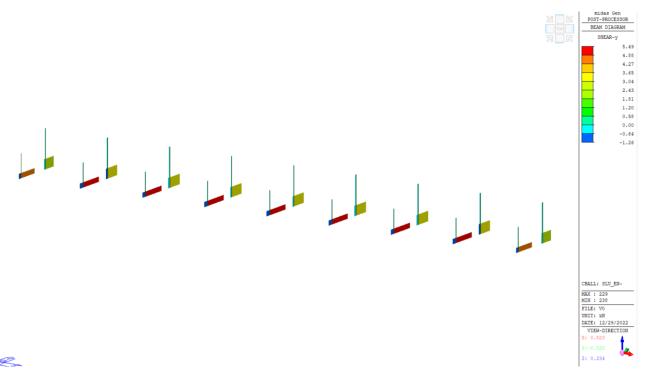


Figura 8.33 – Taglio Fy sulle colonne

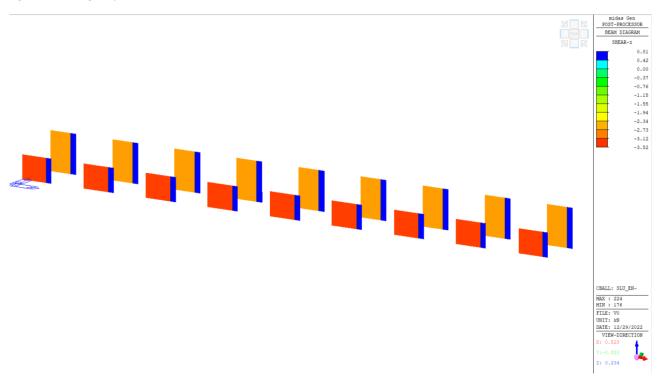


Figura 8.34 – Taglio Fz sulle colonne

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.9.3 Spostamenti orizzontali

Vengono riportati gli spostamenti orizzontali ottenuti dall'inviluppo delle combinazioni SLV e SLU.

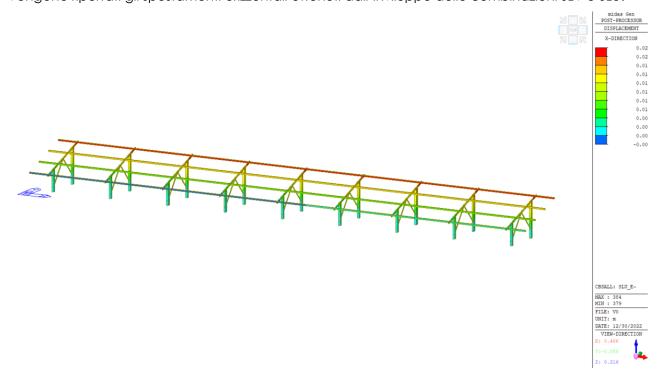


Figura 8.35 - Spostamento dir. X

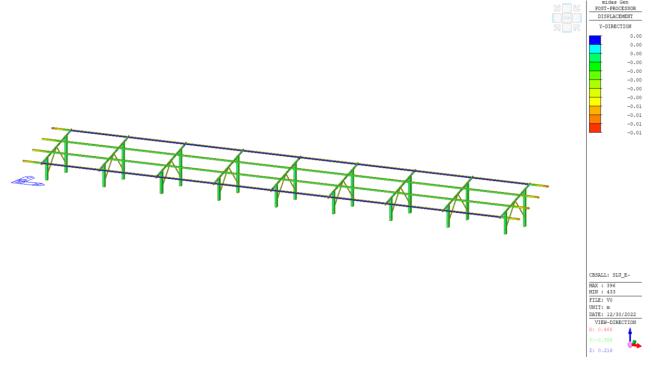


Figura 8.36 - Spostamento dir. Y

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.10 Verifica degli elementi strutturali

Le verifiche sugli elementi strutturali vengono eseguite come segue:

- SLU e SLV: verifiche rispetto alle massime sollecitazioni misurate nelle combinazioni
- SLE : verifiche di deformabilità dei profili

8.10.1 Verifica delle colonne

Verifica sezionale strutturale:

PROPRIETÀ SEZIONALI

PROPRIETA SEZIONALI					
Tipo profilo			40	0x150x100x3	
Area lorda della sezione			Ag =	1380.0 mm ²	
Altezza totale della sezione	•		h =	150.0 <i>mm</i>	
Momento di inerzia rispetto	all'asse orizzontale		Jy =	4260000 mm ⁴	
Momento di inerzia rispetto	all'asse verticale		Jz =	3333000 mm ⁴	
Distanza del baricentro dal	lembo superiore		dyg+ =	75.0 <i>mm</i>	
Distanza del baricentro dal	lembo inferiore		zg =	75.0	
Modulo di resistenza elastic	co della sezione		Wel,y =	54480 mm ³	
Posizione del baricentro ris	petto al lembo sinistro		yg =	90.0	
Modulo di resistenza per me	omento in direzione Z		Wel.z =	38310 <i>mm</i> ³	
MATERIALI					
Tensione di snervamento de	ell'acciaio		fyb =	355 <i>MPa</i>	
Tensione di rottura dell'accia	aio		fu =	510 <i>MPa</i>	
Modulo elastico			E =	210000 MPa	
Coefficiente di sicurezza pe	r resistenza		γ _{m0} =	1.05	
Coefficiente di sicurezza pe			γ _{m1} =	1.05	
Coefficiente per processo di			k =	7	
Numero di pieghe a 90°			n =	4	
Spessore nominale dell'eler	nento		t =	3.00 <i>mm</i>	
	seguito del processo di piegatu	ra	fya =	383.3 <i>MPa</i>	⁴ [3.1]
AZIONI SULL'ELEMENTO					
Azione assiale			N =	27.72 kN	
Eccentricità y			e _{N,y} =	0 mm	
Eccentricità z			e _{N,z} =	0 mm	
Taglio sollecitante dir. Y			V _{Ed,y} =	3.28 kN	
Taglio sollecitante dir. Z			V _{Ed,z} =	3.03 kN	
Momento per eccentricità Z			$\Delta M_v =$	0.00 kN m	
Momento per eccentricità Y			$\Delta M_z =$	0.00 kN m	
Momento sollecitante Y				5.94 kN m	
Momento sollecitante Z			$M_{Sd,y} =$		
Momento sollecitante 2			$M_{Sd,z} =$	1.53 kN m	
VERIFICHE DI RESISTENZA					
	zione o compressione e fles	sione			
Coefficiente di sfruttamento	per azione assiale		$N_{Sd}/(fy A_g) =$	0.052 (1)	
	per momento flettente in dir. Y		$_1+\Delta_{My})/(f_y*W_{eff,y}/\gamma_m) =$	0.299 (2)	
Coefficiente di sfruttamento	per momento flettente in dir. Z	$(M_{z,S})$	$_{id}+\Delta_{Mz})/(f_y*W_{eff,z}/\gamma_m) =$	0.109 (3)	
Coefficiente di sfruttamento	a pressoflessione		(1)+(2)+(3)	0.460 <1 verificato	
Resistenza a taglio dir. Z					
Deformazione al limite elast	ico	fyb/E	ε =	0.002	
Altezza inclinata dell'anima			$s_w =$	150.00 <i>mm</i>	
Spessore delle anime resis	tenti a taglio		t =	3.00 <i>mm</i>	
Snellezza relativa dell'animi	a	$(s_w/t)/(86.4 \epsilon)$	$\lambda_w =$	3.2	
Tensione di instabilità per ta	aglio	$0.67 \text{ fyb} / \lambda_w$	$f_{bw} =$	25.5 MPa	
Inclinazione dell'anima			p =	1.571 rad	
Altezza dell'anima misurata	tra linee d'asse delle ali		h _w =	150 <i>mm</i>	
Resistenza all'instabilità pe		h_w /senp * t * fbw / γ_{m1}	$V_{b,Rd} =$	10.9 <i>kN</i>	⁴ [5.13]
Resistenza plastica a taglio		h_w /senp * t * $f_{yb}/\sqrt{3}$ / γ_{m0}	$V_{pl,Rd} =$	31.6 <i>kN</i>	[¬] [5.14]
	a taglio della sezione in direzio		$V_{Ed}/V_{Rd} =$	0.30 <1 verificato	-
Resistenza combinata taglio	o-momento				
Contributo del taglio dir. Y a			$(VSd,y/VRd,y)^2 =$	0.090	
Contributo del taglio dir. Z a			$(VSd, y/VRd, y)^2 =$ $(VSd, z/VRd, z)^2 =$	0.090	
Contributo del momento Y a			$(MSd,y/MRd,y)^2 =$	0.089	
Contributo del momento Z a			$(MSd, y/MRd, y) = (MSd, z/MRd, z)^2 =$	0.009	
Coefficiente di utilizzo della			c.u. max	0.275 <1 verificato	
00	27-01-2023		Prima Fi	missione	
Revisione	Data		Descr	izione	

Verifica di deformabilità:

Lo spostamento massimo rilevato dal modello di calcolo in testa alle colonne è pari a 0,99 cm in direzione X e 0,05 cm in direzione Y.

Lo spostamento ottenuto viene confrontato con lo spostamento limite definito nella seguente tabella delle NTC 2018.

Tab. 4.2.XIII - Limiti di deformabilità per costruzioni ordinarie soggette ad azioni orizzontali

	Limiti superiori per gli spostamenti orizzontali		
Tipologia dell'edificio	<u>δ</u>	Δ	
	h 	H	
Edifici industriali monopiano senza carro-	1	/	
ponte	150	,	
Altri edifici monopiano	$\frac{1}{300}$	/	
Edifici multipiano	$\frac{1}{300}$	$\frac{1}{500}$	

In caso di specifiche esigenze tecniche e/o funzionali tali limiti devono essere opportunamente ridotti.

Considerata l'altezza massima delle colonne pari a circa 195 cm si determina il seguente spostamento massimo:

$$U_{MAX} = 195 / 150 = 1.3 cm$$

Gli spostamenti strutturali si mantengono entro i limiti imposti dalla Normativa, la verifica di deformabilità risulta dunque soddisfatta.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.10.2 Verifica travi principali

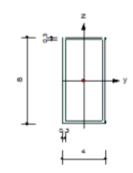
Si riporta la verifica dell'elemento maggiormente penalizzato in termini di resistenza.

Design Information

 Design Code
 Eurocode3:05

 Unit System
 kN, cm

 Member No
 46


 Material
 \$275 (No:2)

(Fy = 27.5000, Es = 21000.0)

Section Name R40x80 sp = 3 mm (No:1)

(Built-up Section).

Member Length : 55.0000

2. Member Forces

Axial Force Fxx = 1.60081 (LCB: 8, POS:J)

Bending Moments My = -234.73, Mz = 5.78197

End Moments Myi = 11.7909, Myj = -234.73 (for Lb)

Myi = 11.7909, Myj = -234.73 (for Ly)

Mzi = -4.9954, Mzj = 5.78197 (for Lz)

Shear Forces Fyy = -0.3308 (LCB: 14, POS:1/2)

Fzz = 4.52017 (LCB: 9, POS:J)

Fig Wid Web Ce	8.00000 th 4.00000 enter 3.70000	Web Thick 0.30000 Top F Thick 0.30000 Bot F Thick 0.30000
	14.5450	A5Z 4.80000 Ozb 8.84500
	55.8532	Izz 18.4292
Yber	2.00000	Zber 4.00000
Wely	13.9633	Welz 9.21460
ry	2.85750	rz 1.54144

Design Parameters

Unbraced Lengths Ly = 55.0000, Lz = 55.0000, Lb = 55.0000

Effective Length Factors Ky = 1.00, Kz = 1.00

Equivalent Uniform Moment Factors Cmy = 1.00, Cmz = 1.00, CmLT = 1.00

Checking Result Slenderness Ratio

Shear Resistance

V_Edy/Vy_Rd = 0.009 < 1.000 V_Edz/Vz_Rd = 0.062 < 1.000

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

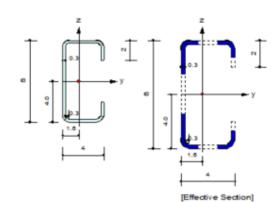
8.10.3 Verifica travi secondarie

Si riporta la verifica dell'elemento maggiormente penalizzato in termini di resistenza.

1. Design Information

Design Code Eurocode3-1-3:06

Unit System kN, om Member No 76


Material S275 (No:2)

(Fy = 27.5000, Es = 21000.0)

Section Name C80X40X20 sp = 3 mm (No:2)

(Rolled : LC-80X40X3).

Member Length : 342.000

2. Member Forces

Axial Force Fxx = -0.4549 (LCB: 8, POS:J) Bending Moments My = -138.73, Mz = -56.152

End Moments Myi = 0.00000, Myj = -138.73 (for Lb)

Myi = 0.00000, Myj = -138.73 (for Ly) Mzi = 0.00000, Mzj = -56.152 (for Lz)

Shear Forces Fyy = 0.77485 (LCB: 8, POS:J)

Fzz = 2.08342 (LCB: 8, POS:J)

Width	8,00000 4,00000 pth 2,00000	Thickness 0.30000 Rounding 0.30000
Area	5.40823	Ass 3.16411
Cyb	25.5510	Oab 5.79542
by	50.5809	IEE 12.4940
Ybar	1.58951	Zbar 4.00000
Sw	12.0452	8zz 5.18321
ry	3.05820	rz 1.51993

3. Design Parameters

Unbraced Lengths Ly = 342.000, Lz = 342.000, Lb = 342.000

Effective Length Factors Ky = 1.00, Kz = 1.00

Moment Factor / Bending Coefficient Cmy = 0.00, Cmz = 0.00, CmLT = 0.00

4. Checking Results

Axial Resistance

Bending Resistance

Moy,Ed / Moy,Rd,comp = 138.730/461.130 = 0.301 < 1.000 O.K

Moy,Ed / Moy,Rd,tens = 138.730/461.130 = 0.301 < 1.000 O.K

Shear Resistance

V,Ed/V,Rd = 2.0834/34.9297 = 0.060 < 1.000 O.K

Combined Ratio

R, T+M = -N,Ed/Nt,Rd + My,Ed/Moy,Rd,tens + M_z,Ed/M_cz,Rd,tens = 0.490 < 1.000 O.K

 $R,C+M = -N,Ed/No,Rd + (My,Ed + Delta \,My,Ed)/Moy,Rd,comp$

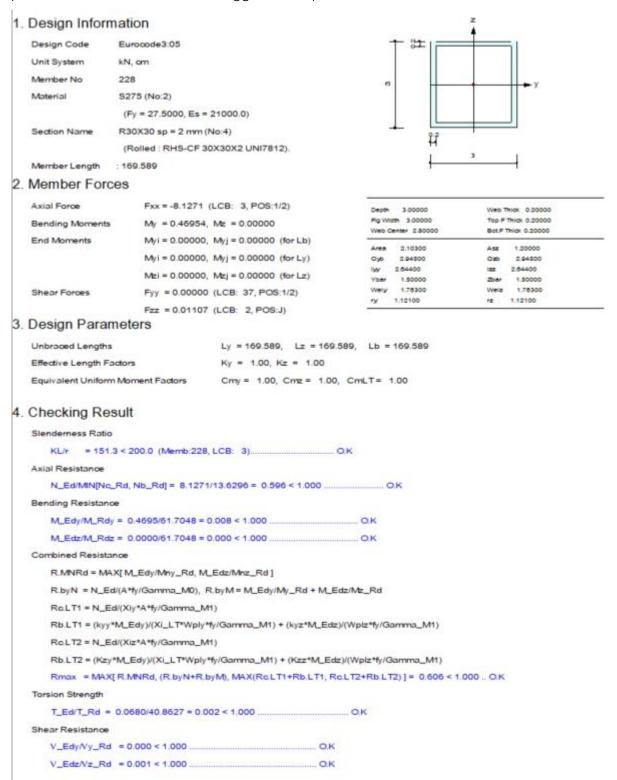
+ (Mz,Ed + Delta Mz,Ed)/Mcz,Rd,comp = 0.590 < 1.000 O.K

 $R_{\rm i}V + N + M = -N_{\rm i}Ed/N_{\rm i}Rd + My_{\rm i}Ed/My_{\rm i}Rd + (1-M'_{\rm i}Rd/Mpl_{\rm i}rd)((2V_{\rm i}Ed/Vw_{\rm i}Rd) - 1)^2 = 0.000 \le 1.000 ... O.K$

Buckling Resistance (Compression)

Buckling Resistance (Bending)

Buckling Resistance (Compression+Bending)


Deflection Checking Results

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.10.4 Verifica elementi diagonali

Si riporta la verifica dell'elemento maggiormente penalizzato in termini di resistenza.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione

8.11 Portata del palo per carichi verticali

Come tipologia fondazionale si è ipotizzato l'impiego di pali infissi, della stessa tipologia di profilo delle colonne.

La portata del palo per carichi verticali è stata condotta ipotizzando che solo la superficie laterale del palo contribuisca alla capacità portante del palo. I parametri meccanici del terreno sono stati determinati facendo riferimento ai parametri riportati in relazione geotecnica. Con una profondità di infissione di 3.4 m si raggiunge la portata richiesta dalle massime sollecitazioni di progetto allo SLU e SLV.

PALI INF	FISSI	τ_{s}	$K\sigma_{vo}$ ' tanδ												
K			1 per profili aperti infissi mediamente addensati												
$P_{profilo}$	custom	m	1 perimetro esterno superfici contatto profilo												
STRATO	Z _{sup}	\mathbf{z}_{inf}	\mathbf{z}_{m}	h	φ'	tanδ	γ	γ'	presenza	γ	$\sigma_{vo}'(z_{inf})$	$\sigma_{vo}'(z_m)$	τ_{s}	SI	S,i
	m	m	m	m	0	٥	kN/m³	kN/m³	falda	kN/m ³	kN/m ²	kN/m ²	kN/m ²	m ²	kN
	0.00	0.20	0.10	0.20	28.00	0.532	16.10	6.10	NO	16.10	3.22	1.61	0.86	0.20	0.17
	0.20	0.40	0.30	0.20	28.00	0.532	16.10	6.10	NO	16.10	6.44	4.83	2.57	0.20	0.51
	0.40	0.60	0.50	0.20	28.00	0.532	16.10	6.10	NO	16.10	9.66	8.05	4.28	0.20	0.86
	0.60	0.80	0.70	0.20	28.00	0.532	16.10	6.10	NO	16.10	12.88	11.27	5.99	0.20	1.20
	0.80	1.00	0.90	0.20	28.00	0.532	16.10	6.10	NO	16.10	16.10	14.49	7.70	0.20	1.54
	1.00	1.20	1.10	0.20	28.00	0.532	16.10	6.10	NO	16.10	19.32	17.71	9.42	0.20	1.88
	1.20	1.40	1.30	0.20	28.00	0.532	16.10	6.10	NO	16.10	22.54	20.93	11.13	0.20	2.23
1.0	1.40	1.60	1.50	0.20	28.00	0.532	16.10	6.10	NO	16.10	25.76	24.15	12.84	0.20	2.57
1.0	1.60	1.80	1.70	0.20	28.00	0.532	16.10	6.10	NO	16.10	28.98	27.37	14.55	0.20	2.91
	1.80	2.00	1.90	0.20	28.00	0.532	16.10	6.10	NO	16.10	32.20	30.59	16.26	0.20	3.25
	2.00	2.20	2.10	0.20	28.00	0.532	16.10	6.10	NO	16.10	35.42	33.81	17.98	0.20	3.60
	2.20 2.40	2.40 2.60	2.30 2.50	0.20 0.20	28.00 28.00	0.532 0.532	16.10 16.10	6.10	NO NO	16.10	38.64 41.86	37.03 40.25	19.69	0.20 0.20	3.94 4.28
	2.40	2.80	2.50	0.20	28.00	0.532	16.10	6.10 6.10	NO	16.10 16.10	45.08	43.47	21.40 23.11	0.20	4.26 4.62
	2.80	3.00	2.70	0.20	28.00	0.532	16.10	6.10	NO	16.10	48.30	46.69	24.83	0.20	4.62 4.97
	3.00	3.20	3.10	0.20	28.00	0.532	16.10	6.10	NO	16.10	51.52	49.91	26.54	0.20	5.31
	3.20	3.40	3.30	0.20	28.00	0.532	16.10	6.10	NO	16.10	54.74	53.13	28.25	0.20	5.65
	5.20	3.40	3.30	0.20	20.00	0.002	10.10	0.10	140	10.10	34.74	33.13	20.20	S _k	49.48
L_{palo}		m	3.40	3.40 lunghezza di infissione palo											
		kN/m		0.108 peso per unità di lunghezza del profilo											
W _{profilo}		kN/m													
$W_{p,k}$		KIN/III		0.37 peso totale del palo											
Y G1,sfav				1.3 coefficiente sulle azioni in condizione sfavorevole											
W_p		kN	0.48	0.48 peso del palo in condizione sfavorevole per compressione											
Ys,n-			1.15	1.15 coefficiente di riduzione della resistenza laterale per palo compresso											
Ys,N+			1.25	1.25 coefficiente di riduzione della resistenza laterale per palo teso											
$S_{d,N-}$		kN	43.03	43.03 portata laterale per palo compresso											
$S_{d,N+}$		kN	39.58	39.58 portata laterale per palo teso											
ξ				1.4 coefficiente di correlazione per numero di prove											
$\dot{\mathbf{Q}}_{\mathbf{d},\mathbf{N}}$	$S_{d,N}-W_p$	kN		30.39 portata utile palo a piano campagna (palo compresso)											
Q _{d,N+}	S _{d,N+} -W _p	kN		28.54 portata utile palo a piano campagna (palo teso)											
·ujitt	и,тет р			,	- 1	,	1 3 1	,	,						

In seguito alle risultanze di ulteriori prove in sito che definiscano le litologie presenti ed i relativi parametri geotecnici si potrà verificare la tipologia fondazionale proposta, la metodologia di infissione dei pali più idonea e la relativa profondità.

00	27-01-2023	Prima Emissione
Revisione	Data	Descrizione