

Committente:

Levant Wind S.r.I.

Levant Wind S.r.l. Via Sardegna, 40 00187 Roma P.IVA/C.F. 1618113100

Titolo del Progetto:

Parco Eolico "Levant" sito nei Comuni di: Buseto Palizzolo, Erice e Valderice

N° Documento: Documento:

Relazione geotecnica

IT-VESLVT-TEN-GEN-TR-13

Progettista:

sede legale e operativa

San Martino Sannita (BN) Località Chianarile snc Area Industriale

sede operativa

Lucera (FG) via Alfonso La Cava 114

P.IVA 01465940623

Azienda con sistema gestione qualità Certificato N. 50 100 11873

Progettista

Dott. Ing. Nicola FORTE

Consulente per la progettazione Dott. Ing. Gaetano PUPELLA **Dott. Ing. Salvatore PRIOLO**

Rev	Data Revisione	Descrizione	Redatto	Controllato	Approvato
00	Giugno 2022	Richiesta AU	SC	FB	NF

Codice Data creazione Data ultima modif. Revisione Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 1 di 21

INDICE

1 P	PREMESSA	3
2 N	IORMATIVA DI RIFERIMENTO	4
3 C	CARATTERIZZAZIONE GEOTECNICA	5
3.1	IDROGEOLOGIA	6
4 N	MODELLAZIONE GEOTECNICA E PERICOLOSITA' SISMICA DEL SITO	7
4.1	MODELLAZIONE GEOTECNICA FONDAZIONI SUPERFICIALI	7
4.2	MODELLAZIONE GEOTECNICA FONDAZIONI PROFONDE	7
4.2.1	CALCOLO - ANALISI AD ELEMENTI FINITI	7
4.2.2	PORTANZA TRASVERSALE DEI PALI - ANALISI AD ELEMENTI FINITI	8
4.3	PERICOLOSITÀ SISMICA	8
5 S	CELTA TIPOLOGICA DELLE OPERE DI FONDAZIONE	9
6 V	ERIFICHE DI SICUREZZA FONDAZIONI PROFONDE	10
6.1	Analisi dei pali	11
6.2	CAPACITÀ PORTANTE DI PUNTA	12
6.3	CAPACITÀ PORTANTE PER RESISTENZA LATERALE	12
6.4	GRAFICI SINTETICI PALI DI FONDAZIONE	13
7 V	ERIFICHE DI SICUREZZA FONDAZIONI SUPERFICIALI	14
7.1	CARICO LIMITE FONDAZIONI DIRETTE	15
7.1.1	CALCOLO DEI FATTORI NC, NQ, NГ	15
7.1.2	CALCOLO DEI FATTORI DI FORMA SC, SQ, SΓ	16
7.1.3	CALCOLO DEI FATTORI DI PROFONDITÀ DEL PIANO DI POSA DC, DQ, DF	16
7.1.4	CALCOLO DEI FATTORI DI INCLINAZIONE DEL CARICO IC, IQ, IC	16
7.1.5	CALCOLO DEI FATTORI DI INCLINAZIONE DEL PIANO DI CAMPAGNA BC, BQ, BF	17
7.1.6	CALCOLO DEI FATTORI DI INCLINAZIONE DEL PIANO DI POSA GC, GQ, GC	17
7.1.7	Calcolo dei fattori di riduzione per rottura a punzonamento Ψ c, Ψ Q, Ψ \Gamma	18
7.1.8	CORREZIONE PER FONDAZIONE TIPO PIASTRA	18
Ten Pro	piect	

Codice Data creazione Data ultima modif. Revisione Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 2 di 21

7.1.9	CALCOLO DEL CARICO LIMITE IN PRESENZA DI FALDA	19
7.1.10	FATTORI CORRETTIVI AL CARICO LIMITE IN PRESENZA DI SISMA	19
7.1.11	CALCOLO DEL FATTORE CORRETTIVO DOVUTO ALL'EFFETTO CINEMATICO CI	20
7.1.12	CALCOLO DEI FATTORI CORRETTIVI DOVUTI ALL'EFFETTO INERZIALE ZC, ZQ, ZF	20

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 3 di 21

1 PREMESSA

Il progetto descritto nella presente relazione riguarda la realizzazione di un impianto eolico costituito da undici aerogeneratori della potenza unitaria di 6,00 MW modello Vestas-V162, per una potenza complessiva di impianto pari a 66,00 MW. L'installazione insisterà nei comuni di Buseto Palizzolo (TP), Erice (TP) e Valderice (TP) alle località "Menta", "Carrubazza", "Timpone Tangi", con opere di connessione ricadenti sugli stessi territori comunali.

Proponente dell'iniziativa è la società LEVANT WIND s.r.l. con sede in Via Sardegna 40, 00187 Roma (RM) Catastalmente l'area dove sono previsti gli aerogeneratori si inquadra tra i fogli nn. 280-298-300 del comune di Erice, nn. 19-20-21 del comune di Buseto Palizzolo, nn. 63-64-65-66-67-68 del comune di Valderice. Gli aerogeneratori sono collegati tra di loro mediante un cavidotto in alta tensione interrato a 36 kV (detto "cavidotto interno").

L'energia erogata dall'impianto arriva, grazie al cavidotto interno alla cabina di raccolta sita sul territorio del comune di Erice. Dalla cabina di raccolta l'energia viene trasportata con cavo interrato a 36 kV (detto "cavidotto esterno") fino alla nuova stazione elettrica (SE) di trasformazione a 150/36 kV della RTN prevista sul foglio 42 del comune di Buseto Palizzolo e da inserire in doppio entra- esce alle due linee RTN 150 kV "Buseto Palizzolo - Fulgatore" e "Buseto Palizzolo – Castellammare Golfo" previa la realizzazione di opere di rete. La presente relazione descrive le opere strutturali previste per il progetto dell'impianto eolico.

La presente relazione geotecnica riguarda la modellazione geotecnica del "volume significativo" che interessa i siti di realizzazione dell'impianto eolico. Questa relazione è stata redatta sulla base dei dati dalle indagini, i cui risultati sono evidenziati nella relazione "Relazione geologica, geotecnica, idrogeomorfologica e sismica" a firma del geologo Stefano Finamore.

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 4 di 21

2 NORMATIVA DI RIFERIMENTO

Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative:

- Legge 5 novembre 1971 n. 1086 (G. U. 21 dicembre 1971 n. 321)
- "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Legge 2 febbraio 1974 n. 64 (G. U. 21 marzo 1974 n. 76)

Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica - Roma 1981.

- D. M. Infrastrutture Trasporti 17/01/2018 (G.U. 20/02/2018 n. 42 Suppl. Ord. n. 8)
- "Aggiornamento delle Norme tecniche per le Costruzioni".

Inoltre, in mancanza di specifiche indicazioni, ad integrazione della norma precedente e per quanto con esse non in contrasto, sono state utilizzate le indicazioni contenute nelle seguenti norme:

- Circolare 21 gennaio 2019 n. 7 del Ministero delle Infrastrutture e dei Trasporti (G.U. 11 febbraio 2019 n. 35 Suppl. Ord.)
- "Istruzioni per l'applicazione delle 'Norme Tecniche delle Costruzioni' di cui al D.M. 17 gennaio 2018".
- **Eurocodice 7** "*Progettazione geotecnica*" EN 1997-1 per quanto non in contrasto con le disposizioni del D.M. 2018 "*Norme Tecniche per le Costruzioni*".

[&]quot;Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 5 di 21

3 CARATTERIZZAZIONE GEOTECNICA

In base alle informazioni disponibili dalla relazione geologia, per la determinazione delle caratteristiche dei terreni, sono state eseguite delle indagini nell'area di impianto consistenti in:

- N° 1 Sondaggio a Carotaggio continuo;
- N° 2 SPT in foro;
- Prove di laboratorio sul campione prelevato da -5,50 m a -5,90 m;
- N° 5 Masw

Di seguito i risultati disponibili:

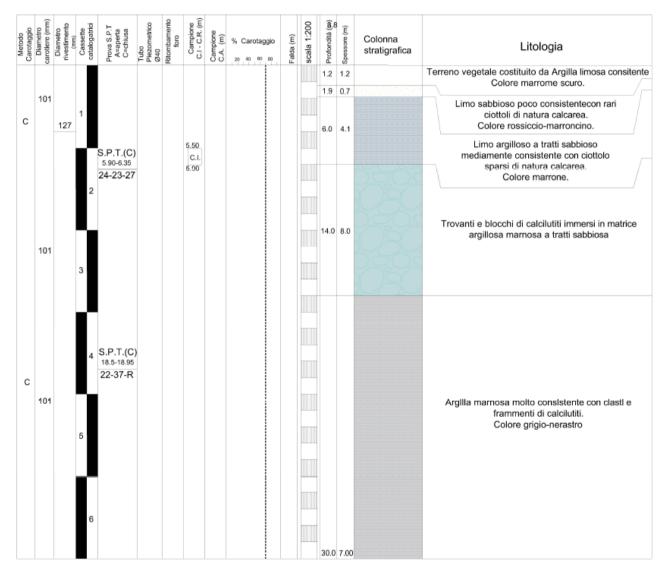


Figura 1 - sondaggio S1

Codice IT-VESLVT-TEN-GEN-TR-13
Data creazione 05/07/2022
Data ultima modif.
Revisione 00
Pagina 6 di 21

Il campione prelevato alla profondità 5,50 – 5,90 m è stato sottoposto a prove di laboratorio presso I.P.G. s.n.c.

 Istituto Prove Geotecniche. Dai risultati delle prove sono state dedotte le caratteristiche meccaniche del terreno analizzato assunte come riferimento per i calcoli delle fondazioni profonde.

Di seguito si riportano le proprietà geotecniche dei singoli terreni coinvolti e la stratigrafia di progetto:

Tabella 1 - caratteristiche fisico meccaniche terreni area parco condizione drenata

Descrizione	γ	γsat	Parametri	ф	δ	С	ca
	[kN/mc]	[kN/mc]		[°]	[°]	[kPa]	[kPa]
Argilla con Limo Sabbiosa	18,310	26,840	Caratteristici Minimi	27.04 27.04	18.03 18.03	5,5 5,5	2,8 2,8
			Medi	27.04	18.03	5,5	2,8

Simbologia adottata

 $\begin{array}{lll} \text{Descrizione} & \text{Descrizione terreno} \\ \gamma & \text{Peso di volume del terreno espresso in [kN/mc]} \\ \gamma_{\text{sat}} & \text{Peso di volume saturo del terreno espresso in [kN/mc]} \\ \phi & \text{Angolo di attrito interno del terreno espresso in gradi} \\ \delta & \text{Angolo di attrito palo-terreno espresso in gradi} \\ c & \text{Coesione del terreno espressa in [kPa]} \\ ca & \text{Adesione del terreno espressa in [kPa]} \end{array}$

Tabella 2 - Stratigrafia area parco

N	Z1	Z2	Z3	Terreno	Ks	Kw
	[m]	[m]	[m]			[Kg/cm²/cm]
1	-35,0	-35,0	-35,0	Argilla con Limo Sabbiosa	0.500	0.006

Simbologia adottata

N Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]
 Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]
 Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]
 Terreno associato allo strato

Ks Coefficiente di spinta

Kw Costante di Winkler orizzontale espressa in [Kg/cm²/cm]

3.1 Idrogeologia

Nella relazione geologica è specificato che la falda non è stata riscontrata nel sondaggio.

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 7 di 21

4 MODELLAZIONE GEOTECNICA E PERICOLOSITA' SISMICA DEL SITO

4.1 Modellazione geotecnica fondazioni superficiali

Ai fini del calcolo strutturale, il terreno sottostante l'opera viene modellato secondo lo schema di Winkler, cioè un sistema costituito da un letto di molle elastiche mutuamente indipendenti. Ciò consente di ricavare le rigidezze offerte dai manufatti di fondazione, siano queste profonde o superficiali, che sono state introdotte direttamente nel modello strutturale per tener conto dell'interazione opera/terreno.

La modellazione del suolo come letto di molle alla Winkler prevede la definizione delle costanti di sottofondo del terreno che vengono definite tramite la seguente espressione:

$$K = c \cdot K_1$$
;

dove:

K₁ = costante di Winkler del terreno riferita alla piastra standard di lato b = 30 cm (i valori assunti sono definiti sulla base di letteratura ufficiale (R*if. Fondazioni C. Viggiani, 2003*);

c = coefficiente di correzione, funzione del comportamento del terreno e della particolare geometria degli elementi di fondazione. Nel caso di "*Riduzione Automatica*" è dato dalle successive espressioni (*Rif. Evaluation of coefficients of subgrade reaction K. Terzaghi, 1955 p. 315*):

$$c = \left[\frac{\left(B+b\right)}{2 \cdot B}\right]^{2}$$
 per terreni incoerenti
$$c = \left(\frac{L/B+0.5}{1.5 \cdot L/B}\right) \cdot \frac{b}{B}$$
 per terreni coerenti

Essendo:

b = 0,30 m, dimensione della piastra standard;

L = lato maggiore della fondazione;

B = lato minore della fondazione.

4.2 Modellazione geotecnica fondazioni profonde

4.2.1 Calcolo - Analisi ad elementi finiti

Per l'analisi platea si utilizza il metodo degli elementi finiti (FEM). La struttura viene suddivisa in elementi connessi fra di loro in corrispondenza dei nodi. Il campo di spostamenti interno all'elemento viene approssimato in funzione degli spostamenti nodali mediante le funzioni di forma. Il programma utilizza, per l'analisi tipo piastra, elementi quadrangolari e triangolari. Nel problema di tipo piastra gli spostamenti nodali sono lo spostamento verticale w e le rotazioni intorno agli assi x e y, ϕ_x e ϕ_x , legati allo spostamento w tramite relazioni:

$$\phi_x = -dw/dy$$

$$\phi_y = dw/dx$$

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 8 di 21

Note le funzioni di forma che legano gli spostamenti nodali al campo di spostamenti sul singolo elemento è possibile costruire la matrice di rigidezza dell'elemento \mathbf{k}_{e} ed il vettore dei carichi nodali dell'elemento \mathbf{p}_{e} . La fase di assemblaggio consente di ottenere la ottenere la matrice di rigidezza globale della struttura \mathbf{K} ed il vettore dei carichi nodali \mathbf{p} . La soluzione del sistema:

$$K^*u = p$$

consente di ricavare il vettore degli spostamenti nodali u.

Dagli spostamenti nodali è possibile risalire per ogni elemento al campo di spostamenti ed alle sollecitazioni M_x , M_y ed M_{xy} . I pali di fondazione sono modellati con molle verticali aventi rigidezza pari alla rigidezza verticale del palo. Per l'analisi tipo lastra (analisi della piastra soggetta a carichi nel piano) vengono utilizzati elementi triangolari a 6 nodi a deformazione quadratica. Gli spostamenti nodali sono gli spostamenti u e v nel piano XY. L'analisi fornisce in tal caso il campo di spostamenti orizzontali e le tensioni nel piano della lastra σ_x , σ_y e τ_{xy} . Dalle tensioni è possibile ricavare, noto lo spessore, gli sforzi normali N_x , N_y e N_{xy} . Nell'analisi tipo lastra i pali di fondazione sono modellati con molle orizzontali in direzione X e Y aventi rigidezza pari alla rigidezza orizzontale del palo.

4.2.2 Portanza trasversale dei pali - Analisi ad elementi finiti

Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante elastica *K* espressa in Kg/cm²/cm che rappresenta la pressione (in Kg/cm²) che bisogna applicare per ottenere lo spostamento di 1 cm.

Il palo viene suddiviso in un certo numero di elementi di eguale lunghezza. Ogni elemento è caratterizzato da una sezione avente area ed inerzia coincidente con quella del palo.

Il terreno viene schematizzato come una serie di molle orizzontali che reagiscono agli spostamenti nei due versi. La rigidezza assiale della singola molla è proporzionale alla costante di Winkler orizzontale del terreno, al diametro del palo ed alla lunghezza dell'elemento. La molla, però, non viene vista come un elemento infinitamente elastico ma come un elemento con comportamento del tipo elastoplastico perfetto (diagramma sforzi-deformazioni di tipo bilatero). Essa presenta una resistenza crescente al crescere degli spostamenti fino a che l'entità degli spostamenti si mantiene al di sotto di un certo spostamento limite, X_{max} oppure fino a quando non si raggiunge il valore della pressione limite. Superato tale limite non si ha un incremento di resistenza. E' evidente che assumendo un comportamento di questo tipo ci si addentra in un tipico problema non lineare che viene risolto mediante una analisi al passo.

4.3 Pericolosità sismica

Ai fini della pericolosità sismica sono stati analizzati i dati relativi alla sismicità dell'area di interesse e ad eventuali effetti di amplificazione stratigrafica e topografica. Si sono tenute in considerazione anche la classe delle opere e la vita nominale, in particola è stata considerata una **Vita Nominale** pari a **50** e per **Classe d'Uso** pari a **4**.

Per tale caratterizzazione si riportano di seguito i dati di pericolosità più significativi:

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

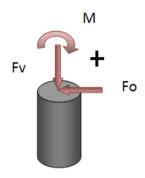
IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 9 di 21

Tabella 3 - parametri di pericolosità sismica sito di interesse_area parco

SLATO	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0,028	2,443	0,200
SLD	101	0,035	2,476	0,222
SLV	949	0,077	2,616	0,336
SLC	1950	0,095	2,678	0,356

5 SCELTA TIPOLOGICA DELLE OPERE DI FONDAZIONE

La tipologia delle opere di fondazione sono consone alle caratteristiche meccaniche del terreno ed alle azioni agenti sulle strutture. Per il progetto in esame sono previste **fondazioni indirette** per le fondazioni delle turbine eoliche e **fondazioni dirette** per la cabina di raccolta.


Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 10 di 21

6 VERIFICHE DI SICUREZZA FONDAZIONI PROFONDE

Le verifiche sono state sviluppate considerando solo gli SLU di tipo geotecnico che si attingono in seguito al raggiungimento del carico limite del palo. Al riguardo si deve osservare che per la geometria e le caratteristiche strutturali della fondazione (plinto circolare ad elevata rigidezza come riportato nella relazione tecnica di calcolo strutturale) e per la posizione dei pali (distribuiti lungo una circonferenza a ridosso del bordo esterno del plinto) si esclude la verifica a stabilità globale.

Per quanto riguarda il segno dei carichi esso adotta la seguente convenzione:

Convenzione positiva dei carichi

Nel dettaglio le verifiche agli SLU sono state sviluppate secondo gli approcci indicati dalla normativa Ai+Mi+Ri dove con A_i sono indicati i fattori di combinazione dei carichi, con M_i quelli riduttivi dei parametri caratteristici del terreno e R_i quelli di riduzione della resistenza caratteristica. I coefficienti di sicurezza da applicare alle azioni sono riportati nella tabella 6.2.I del cap.6 (progettazione geotecnica) della norma, i coefficienti di sicurezza da applicare ai parametri geotecnici del terreno sono riportati nella tabella 6.2.II e sono unitari. I coefficienti di sicurezza da applicare alle resistenze sono maggiori dell'unità e sono riportati nella tabella 6.4.II. La resistenza caratteristica R_k del palo singolo può essere dedotta da metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici, oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito; il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) è dato dal minore dei valori ottenuti applicando alle resistenze calcolate $R_{c,cal}(R_{t,cal})$ i fattori di correlazione ξ riportati di seguito (Tab. 6.4.IV NTC 18) in funzione del numero n di verticali di indagine

$$\begin{split} R_{c,k} &= \text{MIN} \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\} \P \\ \\ R_{t,k} &= \text{MIN} \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\} \P \\ \\ \hline \text{Numero di verticali indagate} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 7 \quad \geq 10 \\ \hline \xi_2 & \quad 1.70 \quad 1.65 \quad 1.60 \quad 1.55 \quad 1.50 \quad 1.45 \quad 1.40 \\ \hline \xi_4 & \quad 1.70 \quad 1.55 \quad 1.48 \quad 1.42 \quad 1.34 \quad 1.28 \quad 1.21 \end{split}$$

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 11 di 21

Nell'ambito dello stesso sistema di fondazione, il numero di verticali d'indagine da considerare per la scelta dei coefficienti ξ deve corrispondere al numero di verticali lungo le quali la singola indagine sia stata spinta ad una profondità superiore alla lunghezza dei pali, in grado di consentire una completa identificazione del modello geotecnico di sottosuolo.

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tab. 6.4.Il della norma riportata di seguito.

Tabella 6.4.II − Coefficienti parziali ¾ da applicare alle resistenze caratteristiche.

Resistenza	Simbolo	Pali infissi		Pali trivellati			Pali ad elica continua			
	$\gamma_{\rm R}$	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	γъ	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in	γ_s	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
compressione										
Totale (*)	γt	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in	γ_{st}	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25
trazione										

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Per i carichi trasversali si adottano i seguenti coefficienti:

COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
PARZIALE	PARZIALE	PARZIALE
(R1)	(R2)	(R3)
$\gamma_T = 1.0$	$\gamma_T = 1.6$	$\gamma_T = 1.3$

6.1 Analisi dei pali

Per l'analisi della capacità portante dei pali occorre determinare alcune caratteristiche del terreno in cui si va ad operare. In particolare bisogna conoscere l'angolo d'attrito ϕ e la coesione c. Per pali soggetti a carichi trasversali è necessario conoscere il modulo di reazione laterale o il modulo elastico laterale.

La capacità portante di un palo viene valutata come somma di due contributi: portata di base (o di punta) e portata per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_L - W_P$$

dove:

Q_T portanza totale del palo

Q_P portanza di base del palo

Q_L portanza per attrito laterale del palo

W_P peso proprio del palo

e le due componenti QP e QL sono calcolate in modo indipendente fra loro.

Dalla capacità portante del palo si ricava il carico ammissibile del palo Q_A applicando il coefficiente di sicurezza della portanza alla punta η_p ed il coefficiente di sicurezza della portanza per attrito laterale η_1 .

Palo compresso:

$$Q_A = Q_p \, / \, \eta_p + Q_l \, / \, \eta_l$$
 - W_p

Palo teso:

$$Q_A = Q_l / \eta_l + W_p$$

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 12 di 21

6.2 Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P(cN'_c + qN'_q)$$

dove A_P è l'area portante efficace della punta del palo, c'è la coesione, q è la pressione geostatica alla quota della punta del palo, γ è il peso di volume del terreno, D è il diametro del palo ed i coefficienti N'_c N'_q sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di forma e di profondità. Sono stati utilizzati i coefficienti di Hansen con i corrispondenti fattori correttivi per la profondità e la forma. Il parametro η che compare nell'espressione assume il valore:

$$\eta = \frac{1 + 2K0}{3}$$

quando si usa la formula di Vesic e viene posto uguale ad 1 per le altre formule.

 K_0 rappresenta il coefficiente di spinta a riposo che può essere espresso come: $K_0 = 1 - \sin\phi$.

6.3 Capacità portante per resistenza laterale

La resistenza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limite:

$$Q_L = integrale_S \tau_a dS$$

dove τ_a è dato dalla relazione di Coulomb

$$\tau_a = c_a + \sigma_h tg \delta$$

dove c_a è l'adesione palo-terreno, δ è l'angolo di attrito palo-terreno, γ è il peso di volume del terreno, z è la generica quota a partire dalla testa del palo, L e P sono rispettivamente la lunghezza ed il perimetro del palo, K_s è il coefficiente di spinta che dipende dalle caratteristiche meccaniche e fisiche del terreno dal suo stato di addensamento e dalle modalità di realizzazione del palo.

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 13 di 21

6.4 Grafici sintetici pali di fondazione

Per le varie tipologie di fondazioni sono di seguito riportati i risultati sotto forma di grafici sintetici o tabelle. Di seguito i risultati maggiormente significativi:

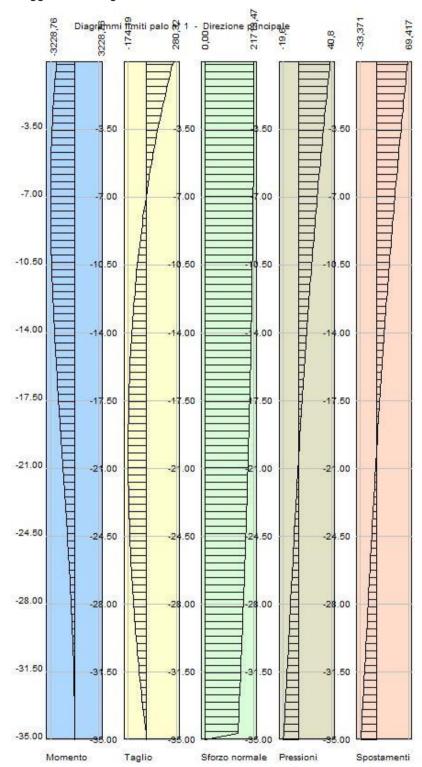


Figura 2 - sollecitazioni massime palo condizione drenata

Codice IT-VESLVT-TEN-GEN-TR-13
Data creazione 05/07/2022
Data ultima modif.
Revisione 00
Pagina 14 di 21

Tabella 4 - carico limite pali condizione drenata

N	Pd	FS _∨	Т	Td	FS _o
[kN]	[kN]		[kN]	[kN]	
4767,99	9040,95	1.896 (8)	203,98	295,79	1.450 (106)

Simbologia adottata

N Carico verticale agente alla testa del palo, espresso in [kN]

Pd Portanza di progetto, espresso in [kN]

FS_V Fattore di sicurezza (Pd/N). Tra parentesi l'indice della combinazione con fattore di sicurezza minimo.

T Carico orizzontale agente alla testa del palo, espresso in [kN]

Td Portanza trasversale di progetto, espresso in [kN]

FS₀ Fattore di sicurezza (Vd/V). Tra parentesi l'indice della combinazione con fattore di sicurezza minimo.

7 VERIFICHE DI SICUREZZA FONDAZIONI SUPERFICIALI

Nelle verifiche allo stato limite ultimo deve essere rispettata la condizione:

 $E_d \le R_d$

dove:

Ed è il valore di progetto dell'azione o dell'effetto dell'azione;

R_d è il valore di progetto della resistenza del sistema geotecnico.

Le verifiche strutturali e geotecniche delle fondazioni, sono state effettuate con l'**Approccio 2** come definito al §2.6.1 del D.M. 2018, attraverso la combinazione **A1+M1+R3**. Le azioni sono state amplificate tramite i coefficienti della colonna A1 (STR) definiti nella tabella 6.2.I del D.M. 2018.

Tabella 5 - Coefficienti parziali per le azioni o per l'effetto delle azioni - Tabella 6.2.I del D.M. 2018

CARICHI	EFFETTO	Coefficiente parziale γ _F (ο γ _E)	A1 (STR)	A2 (GEO)
Cariahi narmananti C	Favorevole		1,00	1,00
Carichi permanenti G₁	Sfavorevole	γ _{G1}	1,30	1,00
Carichi permanenti G ₂	Favorevole		0,80	0,80
	Sfavorevole	γ _{G2}	1,50	1,30
Azioni variabili Q	Favorevole		0,00	0,00
AZIOTII VAITABIII Q	Sfavorevole	γQi	1,50	1,30

I valori di resistenza del terreno sono stati ridotti tramite i coefficienti della colonna M1 definiti nella tabella 6.2.II del D.M. 2018.

Tabella 6 - Coefficienti parziali per i parametri geotecnici del terreno - Tabella 6.2.Il del D.M. 2018

PARAMETRO GEOTECNICO	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	M1	M2
Tangente dell'angolo di resistenza a taglio	tanφ _k	γ_{ϕ} '	1,00	1,25
Coesione efficace	C' _k	γς'	1,00	1,25
Resistenza non drenata	C _{uk}	γcu	1,00	1,40
Peso dell'unità di volume	γ_{γ}	γ_{γ}	1,00	1,00

I valori calcolati delle resistenze totali dell'elemento strutturale sono stati divisi per i coefficienti R3 della tabella 6.4.I del D.M. 2018 per le fondazioni superficiali.

Tabella 7 - Coefficienti parziali γR per le verifiche agli stati limite ultimi di fondazioni superficiali - Tabella 6.4.I del D.M. 2018

Verifica	Coefficiente Parziale
	(R3)
Carico limite	$v_{\rm R} = 2.3$

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13
05/07/2022
18/07/2022
00
15 di 21

Scorrimento	$\gamma_R = 1,1$

Per le varie tipologie di fondazioni sono di seguito elencate le metodologie ed i modelli usati per il calcolo del carico limite ed i risultati di tale calcolo.

7.1 Carico limite fondazioni dirette

La formula del carico limite esprime l'equilibrio fra il carico applicato alla fondazione e la resistenza limite del terreno. Il carico limite è dato dalla seguente espressione:

$$q_{\text{lim}} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot g_c \cdot b_c \cdot \Psi_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot g_q \cdot b_q \cdot \Psi_q + \frac{B'}{2} \cdot \gamma_f \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot b_\gamma \cdot \Psi_\gamma \cdot r_\gamma \cdot d_\gamma \cdot d_$$

in cui:

c = coesione del terreno al disotto del piano di posa della fondazione;

 $q = \gamma \cdot D$ = pressione geostatica in corrispondenza del piano di posa della fondazione;

 γ = peso unità di volume del terreno al di sopra del piano di posa della fondazione;

D = profondità del piano di posa della fondazione;

B' = larghezza ridotta della suola di fondazione (vedi NB);

L = lunghezza della fondazione;

 γ_f = peso unità di volume del terreno al disotto del piano di posa della fondazione;

 N_c , N_q , N_γ = fattori di capacità portante;

s, d, i, g, b, ψ , r = coefficienti correttivi.

NB: Se la risultante dei carichi verticali è eccentrica, B e L saranno ridotte rispettivamente di:

 $B' = B - 2 \cdot e_B$

e_B = eccentricità parallela al lato di dimensione B;

 $L' = L - 2 \cdot e_L$

e_L = eccentricità parallela al lato di dimensione L;

con $B' \leq L'$.

dove:

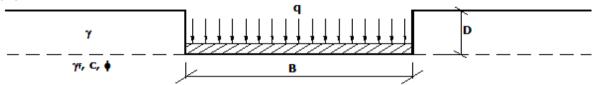


Figura 3 - schematizzazione impostazione di calcolo del carico limite

7.1.1 Calcolo dei fattori Nc, Nq, N y

Tabella 8 - fattori correttivi formula del carico limite

Terreni purament	e coesivi	Terreni dotati di attrito e coesione
(c≠0, φ=0)		(c≠0, φ≠0)
$N_c = 2 + \pi$	Ţ	$N_c = (N_q - 1) \cdot \cot \phi$
$N_q = 1$		$N_q = K_p \cdot e^{\pi \cdot tan\phi}$
$N_{\gamma} = 0$ $N_{\gamma} = -2 \cdot \sin \omega$	se $\omega = 0$ se $\omega \neq 0$	$N_{\gamma} = 2 \cdot (N_q + 1) \cdot tan\phi$

dove:

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 16 di 21

 $k_p = tan^2 \left(45 + \frac{\phi}{2} \right)$ è il coefficiente di spinta passiva di Rankine;

φ = angolo di attrito del terreno al disotto del piano di posa della fondazione;

 ω = angolo di inclinazione del piano campagna.

7.1.2 Calcolo dei fattori di forma sc, sq, sy

Tabella 9 - fattori correttivi formula del carico limite

Terreni puramente coesivi (c≠0, φ=0)	Terreni dotati di attrito e coesione (c≠0, φ≠0)
$s_c = 1 + \frac{B'}{(2+\pi) \cdot L'}$	$s_c = 1 + \frac{N_q}{N_c} \cdot \frac{B'}{L'}$
s _q = 1	$s_{q}^{}=1+\frac{B^{\prime}}{L^{\prime}}\cdot tan \varphi$
$s_{\gamma} = 1 - 0.40 \cdot \frac{B'}{L'}$	$s_{\gamma} = 1 - 0.40 \cdot \frac{B'}{L'}$

con B'/L'<1.

7.1.3 Calcolo dei fattori di profondità del piano di posa do, dq, dy

Si definisce il seguente parametro:

$$\begin{split} K &= \frac{D}{B'} & \text{se} & \frac{D}{B'} \leq 1 \text{;} \\ K &= \text{arctg}\!\!\left(\frac{D}{B'}\right) & \text{se} & \frac{D}{B'} > 1 \text{.} \end{split}$$

Tabella 10 - fattori correttivi formula del carico limite

Terreni puramente coesivi	Terreni dotati di attrito e coesione
(c≠0, ф=0)	(c≠0, φ≠0)
$d_c = 1+0,4\cdot K$	$d_{c} = d_{q} - \frac{1 - d_{q}}{N_{c} \cdot \tan \phi}$
$d_q = 1$	$d_q = 1 + 2 \cdot tan\phi \cdot (1 - sin\phi)^2 \cdot K$
$d_{\gamma}=1$	$d_{\gamma} = 1$

7.1.4 Calcolo dei fattori di inclinazione del carico ic, iq, iy

Si definisce il seguente parametro:

$$\begin{split} m &= m_B = \frac{2 + B/L}{1 + B/L} \\ m &= m_L = \frac{2 + L/B}{1 + L/B} \end{split} \qquad \text{se la forza H è parallela alla direzione trasversale della fondazione} \\ m &= m_D = m_L \cdot \cos^2\theta + m_B \cdot \sin^2\theta \end{aligned} \qquad \text{se la forza H e parallela alla direzione longitudinale della fondazione} \\ m &= m_\theta = m_L \cdot \cos^2\theta + m_B \cdot \sin^2\theta \end{aligned} \qquad \text{se la forza H forma un angolo } \theta \text{ con la direzione longitudinale della fondazione} \end{split}$$

Tabella 11 - fattori correttivi formula del carico limite

Terreni coesivi	Terreni incoerenti	Terreni dotati di attrito e coesione
(c≠0, φ=0)	(c=0, φ≠0)	(c≠0, φ≠0)
$i_c = 1 - \frac{m \cdot H}{c \cdot N_c \cdot B \cdot L}$	i _c = 0	$i_{c} = i_{q} - \frac{1 - i_{q}}{N_{c} \cdot \tan \phi}$
i _q = 1	$i_q = \left(1 - \frac{H}{V}\right)^m$	$i_{q} = \left(1 - \frac{H}{V + B \cdot L \cdot c \cdot \cot \phi}\right)^{m}$

Codice	IT-VESL
Data creazione	05/07/20
Data ultima modif.	18/07/20
Revisione	00
Pagina	17 di 21

IT-VESLVT-TEN-GEN-TR-13
05/07/2022
18/07/2022
00
17 di 21

$i_{\gamma} = 0 \qquad \qquad i_{\gamma} = \left(1 - \frac{H}{V}\right)^{m+1}$	$i_{\gamma} = \left(1 - \frac{H}{V + B \cdot L \cdot c \cdot \cot \phi}\right)^{m+1}$
--	---

dove:

H = componente orizzontale dei carichi agente sul piano di posa della fondazione;

V = componente verticale dei carichi agente sul piano di posa della fondazione.

7.1.5 Calcolo dei fattori di inclinazione del piano di campagna bc, bq, by

Indicando con ω la pendenza del piano campagna, si ha:

Tabella 12 - fattori correttivi formula del carico limite

Terreni puramente coesivi (c≠0, b=0)	Terreni dotati di attrito e coesione (c≠0, φ≠0)
$b_{c} = 1 - \frac{2 \cdot \omega}{(2 + \pi)}$	$b_c = b_q - \frac{1 - b_q}{N_c \cdot \tan \phi}$
$b_q = (1-\tan\omega)^2 \cdot \cos\omega$	$b_q = (1-\tan\omega)^2 \cdot \cos\omega$
$b_{\gamma} = b_{q}/\cos\omega$	$b_{\gamma} = b_{q}/\cos\omega$

Per poter applicare tali coefficienti correttivi deve essere verificata la seguente condizione:

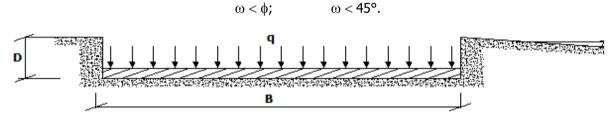


Figura 4 - schematizzazione impostazione di calcolo del carico limite

7.1.6 Calcolo dei fattori di inclinazione del piano di posa gc, gq, gy

Indicando con ϵ la pendenza del piano di posa della fondazione, si ha:

Tabella 13 - fattori correttivi formula del carico limite

Terreni puramente coesivi	Terreni dotati di attrito e coesione
(c≠0, φ=0)	(c≠0, φ≠0)
$g_c = 1 - \frac{2 \cdot \varepsilon}{(2 + \pi)}$	$g_c = g_q - \frac{1 - g_q}{N_c \cdot \tan \phi}$
$g_q = 1$	$g_q = (1 - \varepsilon \cdot tan\phi)^2$
$g_{\gamma}=1$	$g_{\gamma} = g_{q}$

Per poter applicare tali coefficienti correttivi deve essere verificata la seguente condizione:

$$\varepsilon < 45^{\circ}$$

Codice IT-VESLVT-TEN-GEN-TR-13
Data creazione 05/07/2022
Data ultima modif. 18/07/2022
Revisione 00
Pagina 18 di 21

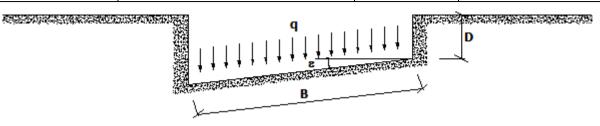


Figura 5 - schematizzazione impostazione di calcolo del carico limite

7.1.7 Calcolo dei fattori di riduzione per rottura a punzonamento Ψc, Ψq, Ψγ

Si definisce l'indice di rigidezza del terreno come:

$$I_r = \frac{G}{c + \sigma \cdot tan \, \phi}$$

dove:

 $G = \frac{E}{2 \cdot (1 + v)} = \text{modulo d'elasticità tangenziale del terreno;}$

E= modulo elastico del terreno (nei calcoli è utilizzato il modulo edometrico);

v = modulo di Poisson. Sia in condizioni non drenate che drenate è assunto pari a 0,5 (a vantaggio di sicurezza);

 σ = tensione litostatica alla profondità D+B/2.

La rottura a punzonamento si verifica quando i coefficienti di punzonamento ψ_c , ψ_q , ψ_γ sono inferiori all'unità; ciò accade quando l'indice di rigidezza I_r si mantiene inferiore al valore critico:

$$I_r < I_{r,\text{crit}} = \frac{1}{2} \cdot e^{\left[\left(3.3 - 0.45 \cdot \frac{B}{L}\right) \cdot \text{cot}\left(45 - \frac{\phi}{2}\right)\right]}.$$

Tabella 14 - fattori correttivi formula del carico limite

Terreni puramente coesivi (c≠0, φ=0)	Terreni dotati di attrito e coesione (c≠0, φ≠0)	
$\psi_c = 0.32 + 0.12 \cdot \frac{B'}{L'} + 0.6 \cdot Log(I_r)$	$\psi_c = \psi_q - \frac{1 - \psi_q}{N_c \cdot \tan \phi}$	
$\Psi_{q} = 1$	$\psi_q = e^{\left\{ \left(0,6\frac{B'}{L'}-4,4\right) \cdot tan_{\varphi} + \frac{3,07 \cdot sin_{\varphi} Log(2 \cdot I_r)}{1 + sin_{\varphi}} \right\}}$	
$\Psi_{\gamma} = 1$	$\Psi_{\gamma} = \Psi_{q}$	

7.1.8 Correzione per fondazione tipo piastra

Bowles, al fine di limitare il contributo del termine " $B \cdot N_{\gamma}$ ", che per valori elevati di B porterebbe ad ottenere valori del carico limite prossimi a quelli di una fondazione profonda, propone il seguente fattore di riduzione \mathbf{r}_{γ} :

$$r_{\gamma} = 1-0.25 \cdot \text{Log}(B/2) \qquad \text{con B} \ge 2 \text{ m}$$

Nella tabella sottostante sono riportati una serie di valori del coefficiente r $_{\gamma}$ al variare della larghezza dell'elemento di fondazione.

Tabella 15 - fattori correttivi formula del carico limite

B [m]	2	2.5	3	3.5	4	5	10	20	100
rγ	1,00	0,97	0,95	0,93	0,92	0,90	0,82	0,75	0,57

Codice	
Data creazione	
Data ultima modif.	
Revisione	
Pagina	

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 19 di 21

Questo coefficiente assume particolare importanza per fondazioni larghe con rapporto D/B basso, caso nel quale il termine " $B \cdot N_{\nu}$ " è predominante.

7.1.9 Calcolo del carico limite in presenza di falda

Se il pelo libero della falda è compreso fra il piano campagna ed il piano di posa della fondazione, ad un'altezza **a** sopra il piano di posa, l'espressione generale del carico limite, valutato in termini di *tensioni effettive*, diviene:

$$q_{\text{lim}} = \text{c'-N}_c \cdot s_c \cdot d_c \cdot i_c \cdot g_c \cdot b_c \cdot \Psi_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot g_q \cdot b_q \cdot \Psi_q + \frac{B'}{2} \cdot \gamma'_f \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot b_\gamma \cdot \Psi_\gamma \cdot r_\gamma + \gamma_{\text{H}_20} \cdot a_\gamma \cdot a_\gamma \cdot d_\gamma \cdot a_\gamma \cdot a_\gamma \cdot d_\gamma \cdot a_\gamma \cdot a_\gamma \cdot d_\gamma \cdot a_\gamma \cdot a_\gamma$$

dove la tensione litostatica al piano di posa è valutata come:

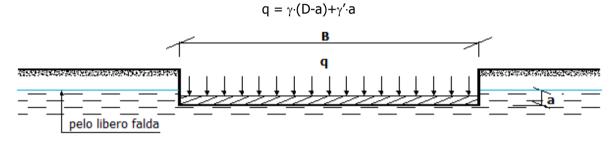


Figura 6 - schematizzazione impostazione di calcolo del carico limite al variare del livello di falda

Se il pelo libero della falda è al di sotto del piano di posa della fondazione di una profondità d, tale che:

 $D \le d \le D+B$, o in altri termini d < B

l'espressione generale del carico limite, valutato in termini di tensioni effettive, diviene:

$$q_{lim} = c' \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot g_c \cdot b_c \cdot \Psi_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot g_q \cdot b_q \cdot \Psi_q + \frac{B'}{2} \cdot \left[\gamma'_f + \left(\gamma_f - \gamma'_f \right) \cdot \frac{d}{B'} \right] \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot b_\gamma \cdot \Psi_\gamma \cdot r_\gamma + \frac{B'_q \cdot g_q \cdot$$

Figura 7 - schematizzazione impostazione di calcolo del carico limite al variare del livello di falda

Se il pelo libero della falda è al di sotto del piano campagna di una profondità d, tale che:

d ≥ D+B, o in altri termini d ≥ B

la presenza della falda viene trascurata.

7.1.10 Fattori correttivi al carico limite in presenza di sisma

L'azione del sisma si traduce in accelerazioni nel sottosuolo (effetto cinematico) e nella fondazione, per l'azione delle forze d'inerzia generate nella struttura in elevazione (effetto inerziale).

Nell'analisi pseudo-statica, modellando l'azione sismica attraverso la sola componente orizzontale, tali effetti possono essere portati in conto mediante l'introduzione di coefficienti sismici rispettivamente denominati \mathbf{K}_{hi} e

Codice	
Data creazione	
Data ultima modif.	
Revisione	
Pagina	

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 20 di 21

K_{nk}, il primo definito dal rapporto tra le componenti orizzontale e verticale dei carichi trasmessi in fondazione ed il secondo funzione dell'accelerazione massima attesa al sito.

La formula generale del carico limite si modifica nel seguente modo:

$$q_{lim} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot g_c \cdot b_c \cdot \Psi_c \cdot z_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot g_q \cdot b_q \cdot \Psi_q \cdot z_q + \frac{B'}{2} \cdot \gamma_f \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot b_\gamma \cdot \Psi_\gamma \cdot r_\gamma \cdot z_\gamma \cdot c_\gamma \cdot g_q \cdot$$

in cui, oltre ai termini già precedentemente indicati, si sono introdotti i seguenti termini:

 z_c , z_q , z_γ = coefficienti correttivi dovuti all'effetto inerziale;

 c_{γ} = coefficiente correttivo dovuto all'effetto cinematico.

7.1.11 Calcolo del fattore correttivo dovuto all'effetto cinematico cy

L'effetto cinematico modifica il solo coefficiente Ny in funzione del coefficiente sismico Khk che è pari a:

$$K_{hk} = \beta_s \cdot S_s \cdot S_T \cdot a_q/g;$$

dove:

 β_s = coefficiente di riduzione dell'accelerazione massima attesa al sito;

g = accelerazione di gravità;

S_S = coefficiente di amplificazione stratigrafica;

S_T = coefficiente di amplificazione topografica;

ag = accelerazione orizzontale massima attesa su sito di riferimento rigido.

I valori di βs sono riportati nella seguente tabella:

Tabella 16 - I valori di β in funzione della categoria di sottosuolo

	A	B,C,D,E
	βs	$oldsymbol{eta}_{ ext{s}}$
$0,2 < a_g(g) \le 0,4$	0,30	0,28
$0,1 < a_g(g) \le 0,2$	0,27	0,24
$a_g(g) \leq 0,1$	0,20	0,20

Il fattore correttivo dovuto all'effetto cinematico \mathbf{c}_{γ} è stato, pertanto, determinato con la seguente relazione:

Tabella 17 - fattori correttivi formula del carico limite in funzione dell'effetto cinematico

Terreni puramente coesivi	Terreni dotati di attrito e coesione		
(c≠0, φ=0)	(c≠0, φ≠0)		
$c_{\gamma} = 1$	$c_{\gamma} = \left(1 - \frac{K_{hk}}{\tan \phi}\right)^{0.45}$ se $\frac{K_{hk}}{\tan \phi} < 1$, altrimenti $c_{\gamma} = 0$		

7.1.12 Calcolo dei fattori correttivi dovuti all'effetto inerziale zc, zq, zy

L'effetto inerziale produce variazioni di tutti i coefficienti di capacità portante del carico limite in funzione del coefficiente sismico K_{hi}.

Tali effetti correttivi vengono valutati con la teoria di Paolucci - Pecker attraverso le seguenti relazioni:

Codice
Data creazione
Data ultima modif.
Revisione
Pagina

IT-VESLVT-TEN-GEN-TR-13 05/07/2022 18/07/2022 00 21 di 21

Tabella 18 - fattori correttivi formula del carico limite in funzione dell'effetto inerziale

Terreni puramente coesivi (c≠0, φ=0)	Terreni dotati di attrito e coesione $(c\neq 0, \phi\neq 0)$				
	$Z_c = 1-0.32 \cdot K_{hi}$	se $z_c > 0$	altrimenti z_c = 0		
$Z_c = Z_q = Z_\gamma = 1$	$z_{\gamma} = z_{q} = \left(1 - \frac{K_{hi}}{\tan \phi}\right)^{0.35}$	$se \ \frac{K_{hi}}{tan \varphi} < 1$	altrimenti z_{γ} = z_{q} = 0		

dove:

 $K_{hi}\ \grave{e}$ ricavato dallo spettro di progetto allo SLV attraverso la relazione:

$$K_{hi} = S_S \cdot S_T \cdot a_g/g;$$

i cui termini sono stati precedentemente precisati.

Si fa notare che il coefficiente sismico K_{hi} coincide con l'ordinata dello spettro di progetto allo SLU per T = 0 ed è indipendente dalle combinazioni di carico.