LOCALIZZAZIONE

REGIONE SICILIA PROVINCIA DI TRAPANI COMUNI DI CALATAFIMI SEGESTA, SANTA NINFA E GIBELLINA

TITOLO BREVE

AGRIVOLTAICO "GIBELLINA"

SPAZIO PER ENTI (VISTI, PROTOCOLLI, APPROVAZIONI, ALTRO)

Ħ						
ISIONI						
REVIS						
3.7	00	16/05/2022	PRIMA EMISSIONE ELABORATO	Vincenzo Scarpinato	Claudio Rizzo	Claudio Rizzo
	REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO

PROPONENTE

X-ELIO GIBELLINA S.r.l.
Corso Vittorio Emanuele II, 349 - 00186 - ROMA
PEC xeliogibellinasrl@legalmail.it
C.F./P.IVA 16234841001

PROGETTAZIONE E SERVIZI

ENVLAB s.r.l.s. - C.F./P. IVA 02920050842 Via Smeraldo n. 39 - 92016 RIBERA (AG) 0925 096280 - envlab@pec.it - www.envlab.it CODICE ELABORATO

XE-GIBELLINA-AFV-PD-R-1.1.11.0-r0A-R00

SCALA

FOGLIO 1/36

A4

IL DIRETTORE TECNICO DI ENVLAB

PROGETTO

IMPIANTO AGRIVOLTAICO "GIBELLINA" - PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

OGGETTO ELABORATO

PROGETTO DEFINITIVO

RELAZIONE DI STIMA DELLA PRODUCIBILITÀ ELETTRICA

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Sommario

1. PRE	EMESSA	3
2. SIN	TETICA DESCRIZIONE DELLA COMPONENTE FOTOVOLTAICA	4
2.1	Caratteristiche generali	4
2.2	Sito di installazione e riferimenti cartografici	5
3. CAI	LCOLI DI PRODUCIBILITA' ELETTRICA	13
3.1	Software adottato	13
3.2	Dati ambientali del sito, dati di rilievo clinometrico e diagramma delle ombre	13
3.3	Caratteristiche di input dei campi fotovoltaici	15
3.4	Perdite considerate	19
3.4.1	Perdite per ombreggiamento	19
3.4.2	Perdite per livello di irraggiamento	19
3.4.3	Perdite causa temperatura	19
3.4.4	Perdite per qualità del modulo fotovoltaico	19
3.4.5	Perdite per mismatch del generatore fotovoltaico	19
3.4.6	Degrado delle prestazioni dei moduli fotovoltaici	20
3.4.7	Perdite ohmiche di cablaggio	20
3.4.8	Perdite sul sistema di conversione	20
3.4.9	Perdite sui circuiti in corrente alternata	20
3.4.10	Perdite sezione AT	21
3.4.11	Disponibiltià di esercizio	21
3.4.12	Consumi ausiliari	21
3.5	Producibilità del sistema	21
3.6	Bilancio delle Emissioni di CO2	21
4. REF	PORT PVSYST	22

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

1. PREMESSA

Il presente documento costituisce la <u>RELAZIONE DI STIMA DELLA PRODUCIBILITÀ ELETTRICA</u> della componente fotovoltaica dell'impianto agrivoltaico "GIBELLINA" della potenza di 86,95 MWp (80,00 MW in immissione) con sistema di accumulo da 40 MW e delle relative opere di connessione alla RTN che la società X-ELIO GIBELLINA S.r.l. intende realizzare nei Comuni di Calatafimi-Segesta, Santa Ninfa e Gibellina in provincia di Trapani.

Il soggetto proponente dell'iniziativa è la Società X-ELIO GIBELLINA S.r.l. avente sede legale ed operativa in ROMA, Corso Vittorio Emanuele II n. 349, iscritta nella Sezione Ordinaria della Camera di Commercio Industria Agricoltura ed Artigianato di Roma, C.F. e P.IVA N. 16234841001.

La Società è soggetta alla direzione e coordinamento del socio unico X-ELIO ITALIA S.r.l., società a sua volta appartenente al gruppo X-ELIO. Il gruppo X-ELIO nasce del 2005 in Spagna come *Gestamp Asetym Solar*, è presente in 12 Paesi al mondo, conta circa 200 impiegati. L'espansione internazionale di X-ELIO è iniziata nel 2009. Dal 2009 X-ELIO ha goduto di una crescita costante nella sua rete di sviluppo aziendale che gli permette di accedere alle migliori opportunità nei suoi mercati target.

X-ELIO svolge la maggior parte della sua attività al di fuori della Spagna, principalmente nei paesi dell'OCSE.

Dal 2005 X-ELIO ha progettato e gestito la costruzione di oltre 78 impianti fotovoltaici solari in 12 Paesi. L'azienda è diventata rapidamente un attore globale riconosciuto nel settore del fotovoltaico con presenza in USA, Medio Oriente, Giappone, Sud Africa, Sud America, Australia, Sud Est asiatico, Italia e Spagna.

Ad oggi, X-ELIO ha partecipato allo sviluppo di oltre 650 MW in progetti fotovoltaici.

X-Elio risulta certificata secondo i principali standard di riferimento ISO 9001, ISO 14001 compresa la certificazione secondo la norma OHSAS 18001 per le attività di "Ingegneria, Costruzione e Messa in servizio".

Il progetto in esame è configurabile come intervento rientrante tra le categorie elencate nell'Allegato II alla parte seconda del D.Lgs. 152/06 e s.m.i., ed è pertanto soggetto alla Valutazione di Impatto Ambientale (VIA) in sede statale in quanto:

- impianti fotovoltaici per la produzione di energia elettrica con potenza complessiva superiore a 10 MW. (fattispecie aggiunta dall'art. 31, comma 6, della legge n. 108 del 2021).

Ai sensi del comma 2-bis dell'art. 7-bis del D.Lgs. 152/06 e s.m.i. il presente progetto rientra tra "Le opere, gli impianti e le infrastrutture necessari alla realizzazione dei progetti strategici per la transizione energetica del Paese inclusi nel Piano nazionale di ripresa e resilienza (PNRR) e al raggiungimento degli obiettivi fissati dal Piano nazionale integrato energia e clima (PNIEC), predisposto in attuazione del Regolamento (UE) 2018/1999, come individuati nell'Allegato I-bis, e le opere ad essi connesse costituiscono interventi di pubblica utilità, indifferibili e urgenti."

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

2. SINTETICA DESCRIZIONE DELLA COMPONENTE FOTOVOLTAICA

2.1 Caratteristiche generali

Il progetto integra l'aspetto produttivo agricolo con la produzione energetica da fonte rinnovabile al fine di fonderli in una iniziativa unitaria ecosostenibile.

La definizione della soluzione impiantistica per la produzione di energia elettrica con tecnologia fotovoltaica è stata guidata dalla volontà della Società Proponente di perseguire la tutela, la salvaguardia e la valorizzazione del contesto agricolo di inserimento dell'impianto.

Nella progettazione dell'impianto è stato quindi incluso, come parte integrante e inderogabile, dell'iniziativa, la definizione di un piano di dettaglio di interventi agronomici.

Pertanto nel progetto coabitano due macro-componenti quali:

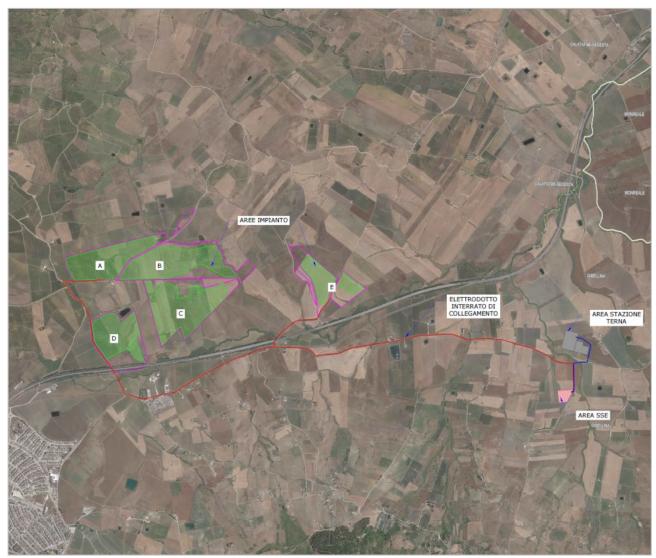
- la Componente energetica costituita dal generatore fotovoltaico e dalle opere di connessione alla rete di trasmissione;
- la Componente agricola con le relative attività di coltivazione agricola e zootecnica.

<u>La Componente energetica consiste nella realizzazione di un impianto fotovoltaico a terra, su strutture ad inseguimento monoassiale (trackers), in 5 distinti lotti di terreno ubicati nel Comune di Calatafimi-Segesta nelle contrade Rosignolo, Favorettella e Nadore</u>

La Sottostazione elettrica di utenza (SSE) di elevazione della tensione da 30kV a 220kV - che ha ricevuto il benestare da Terna del 15/04/2022, Codice Pratica: 201901411 - per l'immissione dell'energia prodotta nella rete ad Alta Tensione di Terna sarà ubicata nel Comune di Gibellina in un sito posto nelle immediate vicinanze della futura Stazione Elettrica di connessione (quest'ultima proposta da altro Operatore nell'ambito della procedura P.A.U.R. n. 855 - Classifica: PA_049_IF00855 che ha ricevuto il benestare al progetto da Terna S.p.A. con nota prot. N. 0026893 del 10/04/2019 e riproposta nel presente progetto al fine di descrivere compiutamente tutti i macro-elementi che compongono l'architettura del Sistema nel suo complesso dalla generazione elettrica all'immissione nella rete elettrica).

L'impianto agrovoltaico sarà composto, come prima detto, complessivamente da n. 5 Lotti per un totale di n. 12 campi di potenza variabile da 2,30 MW sino a 8,28 MW, per una potenza complessiva di 86,95 MW (86.950,50 kW), collegati fra loro attraverso una rete di distribuzione interna in media tensione.

Presso l'impianto verranno altresì realizzate le cabine di sottocampo e le cabine principali di impianto dalla quale si dipartono le linee di collegamento di media tensione interrate verso il punto di consegna, presso la nuova sottostazione elettrica di trasformazione di utente, che verrà realizzata nel Comune di Gibellina; sarà altresì realizzata la Control Room per la gestione e monitoraggio dell'impianto, i servizi ausiliari e di videosorveglianza.


Per quanto concerne la Componente agricola si rappresenta che una parte predominante dei terreni disponibili sarà destinata ad attività agricole (oliveti, seminativi, piante aromatiche, vigneti), all'apicoltura, al pascolo ed a vasti interventi di forestazione il tutto in una logica di integrazione costante con la componente di produzione energetica da fonte rinnovabile.

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Inquadramento aree d'impianto su ortofoto (Elaborato XE-GIBELLINA-AFV-PD-D-1.4.0.0)

2.2 Sito di installazione e riferimenti cartografici

Il nuovo impianto agrivoltaico in oggetto insisterà come prima riassunto su 5 distinti lotti nel Comune di Calatafimi Segesta (TP), come di seguito indicati:

- il primo lotto (Area "A"), sito in C/da Favorettella, per un'area complessiva di circa 32,62 ettari;
- il secondo lotto (Area "B"), sito in C/da Favorettella, per un'area complessiva di circa 47,40 ettari;
- il terzo lotto (Area "C"), sito in C/da Rosignolo, per un'area complessiva di circa 47,91 ettari;
- il quarto lotto (Area "D"), sito in C/da Rosignolo, per un'area complessiva di circa 29,30 ettari;
- il quinto lotto (Area "E"), sito in C/da Nadore, per un'area complessiva di circa 25,72 ettari;

La superficie catastale complessiva lorda oggetto del presente progetto è di circa 182,95 ettari.

La Sottostazione elettrica utente di elevazione (SSE) ricade su un terreno esteso circa 2,03 ettari mentre la nuova Stazione elettrica di connessione alla RTN (SE RTN di competenza Terna S.P.A.) interesserà circa 3

Progettazione e Consulenza Ambientale

RELAZIONE GENERALE

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

ettari di un più ampio appezzamento di terreno; entrambi le stazioni elettriche sorgeranno nel territorio del Comune di Gibellina.

Dal punto di vista cartografico, le opere in progetto ricadono in agro dei Comuni di Calatafimi-Segesta e Gibellina cartografati e mappati come di seguito indicato:

- Foglio I.G.M. in scala 1:25.000 WSG 84 Fuso 33, tavola "257 II-NE Santa Ninfa" per i Lotti del parco agrivoltaico;
- Foglio I.G.M. in scala 1:25.000 WSG 84 Fuso 33, tavola "606_II Sirignano" per la SSE utente e la SE RTN 220 kV;
- Carta tecnica regionale CTR, scala 1:10.000, foglio nº 606150 per i Lotti del parco agrivoltaico;
- Carta tecnica regionale CTR, scala 1:10.000, foglio n° 606160 per la SSE e la SE RTN 220 kV;

In <u>catasto</u> le particelle interessate dalle <u>opere relative al parco agrivoltaico</u> sono così censite:

- Foglio di mappa catastale del Comune di Calatafimi-Segesta n° 124, p.lle 121, 2, 128, 132, 123, 114, 153, 126, 133, 64, 103, 130, 39, 102, 7, 37, 47, 61, 52, 35, 34, 66, 36, 65, 44, 38, 111, 137, 45, 31, 32, 27, 28, 101, 43, 141, 88, 89, 124;
- Foglio di mappa catastale del Comune di Calatafimi-Segesta n° 127, p.lle 1, 8, 10, 9, 14, 16;

la <u>sottostazione elettrica di utenza</u> (SSE) interessa la particella n. 284 del Foglio di mappa n. 5 del Comune di Gibellina;

la <u>stazione elettrica di collegamento</u> alla RTN (SE RTN 220 kV) interessa le particelle del Foglio di mappa n° 7 del Comune di Gibellina, particelle 213, 214, 216, 115, 219, 220.

mentre gli <u>elettrodotti interrati MT e AT esterni alle aree del parco</u> attraversano i fogli di mappa nn. 124, 123, 127 di Calatafimi-Segesta, nn. 1 e 2 di Santa Ninfa e nn. 1, 2, 3, 4, 5, 6, 7 di Gibellina e si sviluppano lungo la viabilità esistente SP 14 per continuare sulla SP41 e sulla SP37.

Di seguito la Tabella di riepilogo dei dati di inquadramento cartografico comprensiva delle coordinate assolute nel sistema UTM 33S WGS84 delle aree che saranno interessate dall'impianto agrovoltaico e dalle opere di connessione alla RTN.

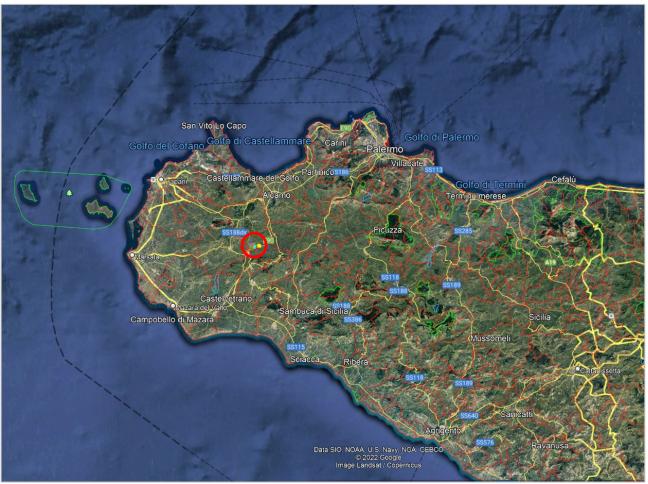
	SITO DI INSTALLAZIONE E RIFERIMENTI CARTOGRAFICI											
DESCRIZIONE	SISTEMA	UTM 33S V	VGS84		CATASTALI	CTR	IGM					
	E	N	H (m)	Foglio	Particelle	1:10.000	1:25.000					
Area "A" (Calatafimi-Segesta)	313493	4189348	238	124	121, 2, 128, 132, 123, 114, 153, 126, 133, 64, 103, 130	606150	257 II-NE Santa Ninfa					
Area "B" (Calatafimi-Segesta)	313700	4189359	234	124	39, 102, 44, 38, 111, 124	606150	257 II-NE Santa Ninfa					

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

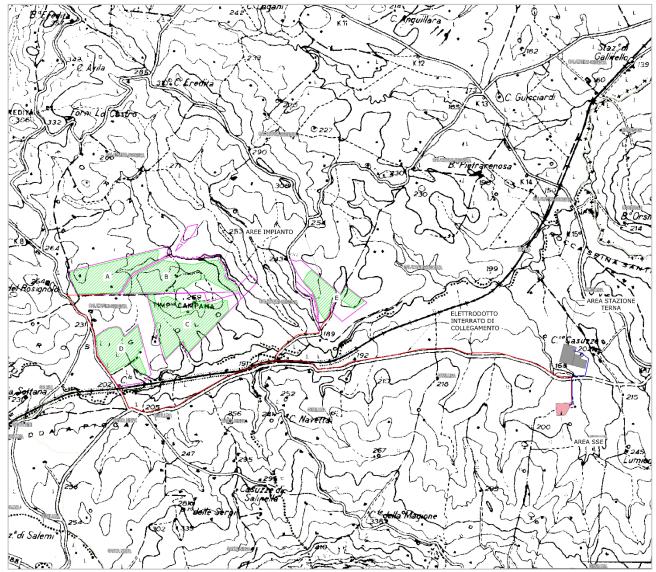
SITO DI INSTALLAZIONE E RIFERIMENTI CARTOGRAFICI										
DECORIZIONE	SISTEMA UTM 33S WGS84				CATASTALI	CTR	IGM			
DESCRIZIONE	E	N	H (m)	Foglio	Particelle	1:10.000	1:25.000			
Area "C" (Calatafimi-Segesta)	314626	4189346	235	124	7, 37, 47, 137, 45, 31, 32, 27, 28, 101, 43, 141	606150	257 II-NE Santa Ninfa			
Area "D" (Calatafimi-Segesta)	313354	4188830	215	124	61, 52, 35, 34, 66, 36, 65	606150	257 II-NE Santa Ninfa			
Area "E" (Calatafimi-Segesta)	316120	4189233	188	124 127	88, 89 1, 8, 10, 11, 9, 14, 16	606150	257 II-NE Santa Ninfa			
Elettrodotto Interrato di collegamento MT (Calatafimi-Segesta, Santa Ninfa, Gibellina)	da: 313531 a: 318857	4189356 4188266	238 186	vari	Viabilità esistente (SP14, SP41, SP37) e fondi privati come da piano particellare	606150 606160	257 II-NE Santa Ninfa 606_II Sirignano			
Sottostazione Elettrica di Utenza (Gibellina)	318824	4188020	186	5	284	606160	606_II Sirignano			
Elettrodotto Interrato di	da: 318857	4188266	186		Viabilità esistente (SP37) e fondi	606460	606 II			
collegamento AT (Gibellina)	a: 318942	4188594	175	vari	privati come da piano particellare	606160	Sirignano			
Stazione Elettrica RTN, competenza TERNA (Gibellina)	318850	4188585	175	5 7	6, 191, 194, 195, 196, 197, 198, 282, 285, 293 29, 35, 49, 50, 78, 79, 115, 129, 130, 193	606160	606_II Sirignano			


Per l'inquadramento grafico delle opere sono consultabili le seguenti tavole di progetto:

- XE-GIBELLINA-AFV-PD-D-1.1.0.0 "Corografia generale"
- XE-GIBELLINA-AFV-PD-D-1.2.0.0 "Inquadramento impianto su IGM"
- XE-GIBELLINA-AFV-PD-D-1.3.0.0 "Inquadramento impianto su CTR"
- XE-GIBELLINA-AFV-PD-D-1.4.0.0 "Inquadramento impianto su Ortofoto"
- XE-GIBELLINA-AFV-PD-D-1.5.0.0 "Inquadramento impianto su Catastale"

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

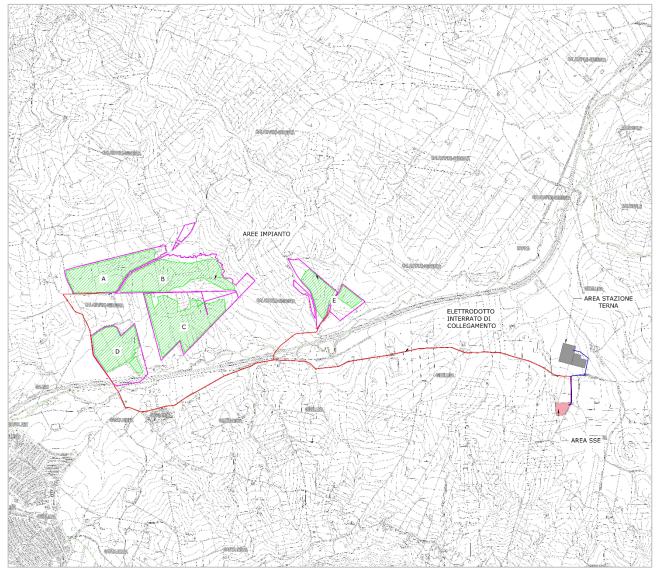
IMPIANTO AGRIVOLTAICO "GIBELLINA"



Ubicazione aree di impianto

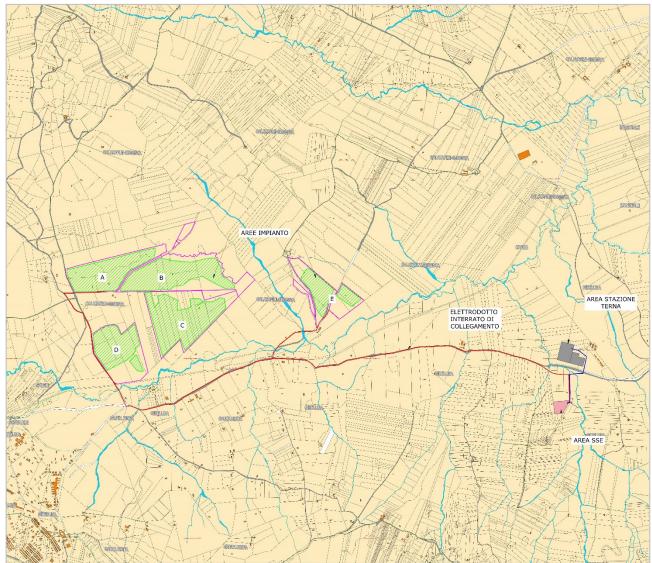
X-ELIO GIBELLINA S.r.l.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"



Inquadramento aree di impianto su I.G.M. (Elaborato XE-GIBELLINA-AFV-PD-D-1.2.0.0)

IMPIANTO AGRIVOLTAICO "GIBELLINA"



Inquadramento aree di impianto su C.T.R. (Elaborato XE-GIBELLINA-AFV-PD-D-1.3.0.0)

IMPIANTO AGRIVOLTAICO "GIBELLINA"

Inquadramento aree di impianto su Catastale (Elaborato XE-GIBELLINA-AFV-PD-D-1.5.0.0)

X-ELIO GIBELLINA S.r.l.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Lay-out generale dell'impianto agrovoltaico (Elaborato XE-GIBELLINA-AFV-PD-D-1.6.0.0)

XE-GIBELLINA-AFV-PD-R-1.1.1.0-r0A-R00 Pag. **12** di **36**

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

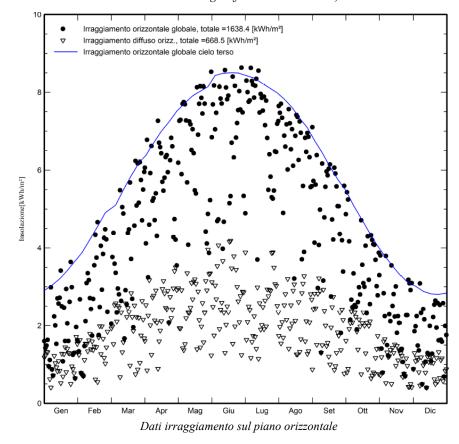
IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

3. CALCOLI DI PRODUCIBILITA' ELETTRICA

3.1 Software adottato

Per condurre i calcoli di producibilità elettrica è stato impiegato il software di simulazione PVsyst 7.2 concesso in licenza a ENVLAB srls; in allegato si riporta il report di calcolo generato dal software.

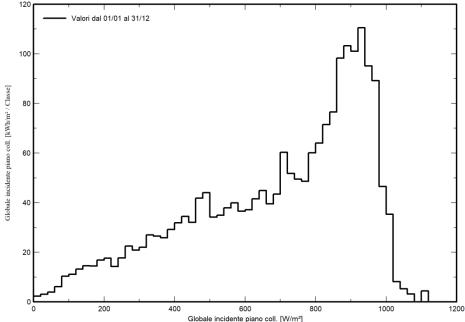

3.2 Dati ambientali del sito, dati di rilievo clinometrico e diagramma delle ombre

Ai fini del calcolo della radiazione solare media annua su base giornaliera, si è fatto uso del database internazionale MeteoNorm, che rende disponibili i dati meteorologici per le località interessate dal progetto. L'attendibilità dei dati contenuti nel database è internazionalmente riconosciuta; possono pertanto essere usati per l'elaborazione statistica e la stima della radiazione solare per il sito in esame.

In particolare sono stati utilizzati i dati del database MeteoNorm 8.0, aggiornati alla data di stesura del progetto definitivo. Nelle immagini che seguono si riportano i dati meteorologici assunti per la presente relazione.

	Gen.	Feb.	Mar.	Apr.	Mag.	Giu	Lug.	Ago	Sett.	Ott.	Nov.	Dic.	Anno	
Globale orizzontale	60.2	77.3	128.6	163.4	205.2	210.1	220.2	199.4	144.7	106.5	67.7	55.0	1638.3	kWh/m²
Diffusa orizzontale	31.5	37.9	60.5	71.6	76.1	81.7	75.7	66.9	57.2	49.6	31.2	28.5	668.4	kWh/m²
Extraterrestre	143.9	172.1	246.1	294.2	343.0	347.5	351.9	320.8	260.7	210.2	151.6	130.5	2972.6	kWh/m²
Indice di trasparenza	0.418	0.449	0.522	0.555	0.598	0.605	0.626	0.622	0.555	0.507	0.447	0.421	0.551	ratio
Temper. ambiente	11.8	11.7	14.0	16.1	20.4	24.2	27.5	27.6	23.8	21.0	16.7	13.2	19.0	°C
Velocità del vento	3.7	4.0	3.9	3.7	3.4	3.3	3.4	3.3	3.3	3.1	3.7	3.7	3.5	m/s

Dati metereologici (fonte Meteonorm 8.0)



(+) X-FI IO GIBELLINA S.r.l. Corso Vittorio Emanuele II, 349 00186 ROMA - C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Distribuzione irraggiamento incidente

Radiazione globale incidente sul piano dei collettori

Il grafico che segue mostra le altezze massime e minime del sole nell'arco dell'anno e il diagramma delle ombre dovuto al paesaggio circostante. Si tratta di un diagramma orientativo, che tiene conto della posizione del sito e delle interferenze con l'ambiente circostante. Sulla base dei modelli DTM tridimensionali del terreno, è stato elaborato il profilo del terreno per la determinazione delle ombre lontane, che di seguito si riporta.

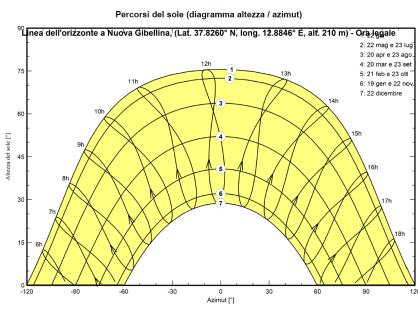


Diagramma clinometrico

A seguito dei rilievi effettuati in sede di sopralluogo, è stato accertato che non esistono ostacoli significativi tali da presentare ombreggiamenti locali sulla superficie dell'impianto fotovoltaico.

X-ELI (GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

3.3 Caratteristiche di input dei campi fotovoltaici

Dal lay-out di impianto ed in base delle caratteristiche tecniche ed elettriche dei principali componenti quali moduli, inseguitori, inverter, trasformatori e cavi di collegamento sono state definite le caratteristiche dei campi fotovoltaici e definiti i dati elettrici di input della simulazione di seguito riportati.

	Parame	etri principali ——		
Sistema connesso in rete	Eliostati illimit	ati con indetreggiamento		
Orientamento campo FV				
Orientamento	Algoritmo dell'in	nseguimento	Strategia Backtracki	ng
Assi inseguimento orizzontali	Ottimizzazione irr	raggiamento	N. di eliostati	10 unità
	Backtracking attiv	/ato	Eliostati illimitati	
			Dimensioni	
			Distanza eliostati	10.00 m
			Larghezza collettori	4.80 m
			Fattore occupazione (GCR) 48.0 %
			Banda inattiva sinistra	0.02 m
			Banda inattiva destra	0.02 m
			Phi min / max	-/+ 60.0 °
			Angolo limite indetre	eggiamento
			Limiti phi	+/- 60.9 °
Modelli utilizzati				
Trasposizione Perez				
Diffuso Perez, Meteonorm				
Circumsolare separare				
Orizzonte	Ombre vicine		Bisogni dell'utente	•
Orizzonte libero	Senza ombre		Carico illimitato (rete)	
Sistema a moduli bifacciali				
Modello	Calcolo 2D			
eli	iostati illimitati			
Geometria del modello bifacciale		Definizioni per il mode	ello bifacciale	
Distanza eliostati	10.00 m	Albedo dal suolo		0.30
ampiezza eliostati	4.84 m	Fattore di Bifaccialità		70 %
GCR	48.4 %	Ombreg. posteriore		5.0 %
Altezza dell'asse dal suolo	2.10 m	Perd. Mismatch post.		10.0 %
		Frazione trasparente de	ella tettoia	0.0 %
Conservazione			Limitazione potenz	za di rete
Tipo Assorbimento dei pice	chi di potenza		Potenza attiva	69.37 MWac
	Strategia di scar		Rapporto Pnom	1.253

	———— Caratteristi	che campo FV ————	
Modulo FV		Inverter	
Costruttore	Trina Solar	Costruttore	Ingeteam
Modello	TSM-650DEG21C.20	Modello_3Power_3825TL_C690_I	P65 [2021-12-03_up to 50°C]
(definizione customizza	ta dei parametri)	(definizione customizzata dei p	parametri)
Potenza nom. unit.	650 Wp	Potenza nom. unit.	3824 kWac
Numero di moduli FV	50490 unità	Numero di inverter	8 unità
Nominale (STC)	32.82 MWc	Potenza totale	30592 kWac
Campo #1 - PS-1.1			
Numero di moduli FV	12300 unità	Numero di inverter	2 unità
Nominale (STC)	7995 kWc	Potenza totale	7648 kWac
Moduli	410 Stringhe x 30 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamento	979-1300 V
Pmpp	7334 kWc	Rapporto Pnom (DC:AC)	1.05
U mpp	1021 V		
I mpp	7184 A		

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

———— Caratteristi	che campo FV ————	
12750 unità	Numero di inverter	2 unità
8288 kWc	Potenza totale	7648 kWac
425 Stringhe x 30 In serie		
	Voltaggio di funzionamento	979-1300 V
7602 kWc	Rapporto Pnom (DC:AC)	1.08
1021 V		
7447 A		
12720 unità	Numero di inverter	2 unità
		7648 kWac
	Poteriza totale	7040 KVVaC
424 Stringne x 50 in sene	Valtannia di franzianamenta	979-1300 V
7504.134	**	
	Rapporto Phom (DC:AC)	1.08
7429 A		
	Numero di inverter	2 unità
8268 kWc	Potenza totale	7648 kWac
424 Stringhe x 30 In serie		
	Voltaggio di funzionamento	979-1300 V
7584 kWc	Rapporto Pnom (DC:AC)	1.08
1021 V		
7429 A		
	Inverter	
Trina Solar		Ingeteam
		•
		3658 kWac
'		8 unità
		29264 kWac
30.42 WWC	Poteriza totale	29204 KVVdC
		2 unità
7995 kWc	Potenza totale	7316 kWac
410 Stringhe x 30 In serie		
	Voltaggio di funzionamento	936-1300 V
7334 kWc	Rapporto Pnom (DC:AC)	1.09
1021 V		
7184 A		
11520 unità	Numero di inverter	2 unità
7488 kWc	Potenza totale	7316 kWac
384 Stringhe x 30 In serie		•
ű	Voltaggio di funzionamento	936-1300 V
,	Voltaggio di funzionamento	936-1300 V 1.02
6869 kWc 1021 V	Voltaggio di funzionamento Rapporto Pnom (DC:AC)	936-1300 V 1.02
	12750 unità 8288 kWc 425 Stringhe x 30 In serie 7602 kWc 1021 V 7447 A 12720 unità 8268 kWc 424 Stringhe x 30 In serie 7584 kWc 1021 V 7429 A 12720 unità 8268 kWc 424 Stringhe x 30 In serie 7584 kWc 1021 V 7429 A 12720 unità 8268 kWc 424 Stringhe x 30 In serie 7584 kWc 1021 V 7429 A Trina Solar TSM-650DEG21C.20 dei parametri) 650 Wp 46800 unità 30.42 MWc 12300 unità 7995 kWc 410 Stringhe x 30 In serie 7334 kWc 1021 V 7184 A	8288 kWc 425 Stringhe x 30 In serie 7602 kWc 1021 V 7447 A 12720 unità 8268 kWc 424 Stringhe x 30 In serie Voltaggio di funzionamento Rapporto Pnom (DC:AC) 12720 unità 8268 kWc 424 Stringhe x 30 In serie Voltaggio di funzionamento Rapporto Pnom (DC:AC) Inverter Costruttore Modella_3Power_3825TL_C660_I (definizione customizzata dei protenza nom. unit. Numero di inverter Potenza nom. unit. Numero di inverter Potenza totale Voltaggio di funzionamento Rapporto Pnom (DC:AC) Inverter Costruttore Modella_3Power_3825TL_C660_I (definizione customizzata dei protenza nom. unit. Numero di inverter Potenza totale Voltaggio di funzionamento Rapporto Pnom (DC:AC) Voltaggio di funzionamento Rapporto Pnom (DC:AC) Numero di inverter Voltaggio di funzionamento Rapporto Pnom (DC:AC)

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

Caratteristi	iche campo FV ————	
11520 unità	Numero di inverter	2 unità
7488 kWc	Potenza totale	7316 kWac
384 Stringhe x 30 In serie		
	Voltaggio di funzionamento	936-1300 V
6869 kWc		1.02
1021 V	,	
6729 A		
44460	November di inventor	2 unità
	Potenza totale	7316 kWac
382 Stringhe x 30 In serie		
	**	936-1300 V
	Rapporto Pnom (DC:AC)	1.02
6693 A		
	Inverter	
Trina Solar	Costruttore	Ingeteam
TSM-650DEG21C.20	Modello 3Power 3825TL C630 II	•
dei parametri)	(definizione customizzata dei p	parametri)
	Potenza nom. unit.	, 3492 kWac
·	Numero di inverter	4 unità
		13968 kWac
14.07 101000	1 otenza totale	10000 KVVac
		2 unità
7196 kWc	Potenza totale	6984 kWac
369 Stringhe x 30 In serie		
	Voltaggio di funzionamento	895-1300 V
6600 kWc	Rapporto Pnom (DC:AC)	1.03
1021 V		
6466 A		
11040 unità	Numero di inverter	2 unità
		6984 kWac
	. Otoriza totalo	OUT NVGO
550 Ottingrio A 50 III serie	Voltaggio di funzionamento	895-1300 V
6583 NWo		1.03
	Napporto Filotti (DC.AC)	1.03
0440 A		
		Ingeteam
TSM-650DEG21C.20	Modellos_3Power_3825TL_C600_II	
a dei parametri)	(definizione customizzata dei p	,
650 Wp	Potenza nom. unit.	3326 kWac
10830 unità	Numero di inverter	2 unità
7040 kWc	Potenza totale	6652 kWac
361 Stringhe x 30 In serie	Voltaggio di funzionamento	853-1300 V
-	Rapporto Pnom (DC:AC)	1.06
6457 kWc	, ,	
1021 V		
	11520 unità 7488 kWc 384 Stringhe x 30 In serie 6869 kWc 1021 V 6729 A 11460 unità 7449 kWc 382 Stringhe x 30 In serie 6833 kWc 1021 V 6693 A Trina Solar TSM-650DEG21C.20 dei parametri) 650 Wp 22110 unità 14.37 MWc 11070 unità 7196 kWc 369 Stringhe x 30 In serie 6600 kWc 1021 V 6466 A 11040 unità 7176 kWc 368 Stringhe x 30 In serie 6583 kWc 1021 V 6466 A Trina Solar TSM-650DEG21C.20 dei parametri) 6583 kWc 1021 V 6448 A	7488 kWc 384 Stringhe x 30 In serie Voltaggio di funzionamento Rapporto Pnom (DC:AC) 11460 unità 7449 kWc 382 Stringhe x 30 In serie Voltaggio di funzionamento Rapporto Pnom (DC:AC) 11460 unità 7449 kWc 382 Stringhe x 30 In serie Voltaggio di funzionamento Rapporto Pnom (DC:AC) Voltaggio di funzionamento Rapporto Pnom (DC:AC) Inverter Costruttore Model® 3Power_3825TL_C630_I (definizione customizzata dei p Potenza nom. unit. Numero di inverter Potenza totale 11070 unità 7196 kWc 369 Stringhe x 30 In serie Voltaggio di funzionamento Rapporto Pnom (DC:AC) Inverter Costruttore Voltaggio di funzionamento Rapporto Pnom (DC:AC) Voltaggio di funzionamento Rapporto Pnom (DC:AC) Inverter Costruttore Voltaggio di funzionamento Rapporto Pnom (DC:AC)

I(+) X-ELIO GIBELLINA S.r.l. Corso Vittorio Emanuele II, 349 00186 ROMA – C.F./P.IVA 16234841001

Ingeteam

1052 kWac

1169 kWac

655-1300 V

1.09

2 unità 2104 kWac

Ingecon Sun 1170TL B450 IP54 H1000

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Caratteristiche campo FV

Costruttore

Potenza nom. unit.

Numero di inverter

Potenza totale

Modello

Campo #12 - PS-5.2

Modulo FV

Costruttore Trina Solar Modello TSM-650DEG21C.20

(definizione customizzata dei parametri)

Potenza nom. unit. 650 Wp Numero di moduli FV 3540 unità Nominale (STC) 2301 kWc 118 Stringhe x 30 In serie Moduli

In cond. di funz. (50°C)

2111 kWc Pmpp U mpp 1021 V I mpp 2068 A

Potenza PV totale

86951 kWp Nominale (STC) 133770 moduli Superficie modulo 415537 m² Superficie cella 389351 m²

Capacità batteria

Batteria

Costruttore LG Chem Modello R1000_JH3 128Ah

Pacco batterie

Numero di unità 881 in parallelo Min.SOC di scarica 20.0 % 80526.8 kWh Energia stoccata

Ingresso carica batteria

Modello Generico Mas. potenza carica 40.0 MWdc Mas./effic. EURO 97.0/95.0 %

Batteria all'inverter di rete

Modello Generico Mas. potenza scarica 40.0 MWac Mas./effic. EURO 97.0/95.0 %

Potenza totale inverter

Voltaggio di funzionamento Potenza max. (=>30°C)

Rapporto Pnom (DC:AC)

82580 kWac Potenza totale Numero di inverter 24 unità 1.05 Rapporto Pnom

(definizione customizzata dei parametri)

Caratteristiche gruppo batterie

881 V Capacità nominale 113473 Ah (C10) Fissa 20 °C Temperatura

Perdite campo

Fatt. di perdita termica Perdita diodo di serie

Perdita di qualità moduli Temperatura modulo secondo irraggiamento Perdita di Tensione 0.7 V Fraz. perdite -0.8 %

Uc (cost) 29.0 W/m²K Fraz. perdite 0.1 % a STC

Uv (vento) 0.0 W/m2K/m/s

Perdite per mismatch del modulo Perdita disadattamento Stringhe

2.0 % a MPP Fraz. perdite Fraz. perdite 0.1 %

Fattore di perdita IAM Effetto d'incidenza, profilo definito utente (IAM): Profilo definito utente

75° 1.000 1.000 0.983 0.961 0.933 0.000 0.998 0.992 0.853

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

3.4 Perdite considerate

Di seguito si fornisce il dettaglio delle perdite stabilite in sede di input in ragione delle caratteristiche dell'impianto, illustrandone i criteri di calcolo di ciascuna componente nei seguenti paragrafi.

3.4.1 <u>Perdite per ombreggiamento</u>

Le <u>perdite per ombreggiamento</u> reciproco fra le schiere sono funzione della geometria di disposizione del generatore fotovoltaico sul terreno e degli ostacoli all'orizzonte che possono ridurre anche sensibilmente le ore di sole nell'arco delle giornate soprattutto invernali.

Grazie all'utilizzo di strutture di sostegno ad inseguimento monoassiale, dotate di sistema di "<u>backtracking</u>", tenuto conto della distribuzione spaziale delle strutture, il valore individuato in sede di progettazione definitiva risulta pari a pari a -1,73%.

3.4.2 Perdite per livello di irraggiamento

L'efficienza nominale dei moduli fotovoltaici è misurata al livello di irraggiamento pari a 1000 W/m2 ma risulta variabile con lo stesso. Per celle con tecnologia in silicio cristallino la deviazione dell'efficienza segue l'espressione seguente:

$$\Delta \eta = -0.4 \cdot \text{In}(\text{ I}/1000) \cdot \eta \text{n}$$

con I = irraggiamento in W/m2 e ηn l'efficienza all'irraggiamento nominale di 1000 W/m2.

In base ai dati climatici del sito (database MeteoNorm) ed alla curva del comportamento dei moduli adottati in funzione del livello di irraggiamento è stato calcolato tale parametro.

Pertanto il valore delle <u>perdite per livello di irraggiamento</u> calcolate dal software PVSyst risulta essere pari a +0,22% (positivo grazie al modulo bifacciale).

3.4.3 <u>Perdite causa temperatura</u>

Le perdite causa temperatura sono legate alla diversa performance che hanno i moduli in relazione ai vari regime di temperatura di funzionamento. All'aumentare della temperatura, le celle fotovoltaiche diminuiscono le prestazioni elettriche di potenza.

In sede di progetto definitivo è stata effettuata una valutazione di tale parametro sulla base dei dati climatici del sito e della curva del comportamento dei moduli scelti in funzione della temperatura, ottenendo un valore di calcolo pari a -5,13%.

3.4.4 Perdite per qualità del modulo fotovoltaico

Tale valore tiene conto della tolleranza sulla potenza nominale del modulo fotovoltaico. In particolare, il modulo proposto in progetto ha una tolleranza positiva 0% + 3% sulla potenza nominale di 650W.

La corretta formulazione di tale parametro di perdita tiene conto di una media pesata delle tolleranze positive dei moduli fotovoltaici, secondo formule di pesatura assunte a standard in letteratura.

Secondo tale criterio di pesatura precedentemente richiamato, con la tolleranza positiva del modulo in progetto, il valore di tali perdite è stato calcolato pari a +0,75% (guadagno).

3.4.5 Perdite per mismatch del generatore fotovoltaico

Sono perdite relative alla naturale non uniformità di prestazioni elettriche fornite dai vari moduli che compongono ogni stringa fotovoltaica e quindi fra una stringa e l'altra.

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

La disposizione delle strutture, la distribuzione spaziale dei quadri stringbox, l'ottimizzazione delle linee elettriche DC, fanno si che le differenze di prestazioni elettriche fra una stringa e l'altra risultino minimizzati, potendo così stabilire per tale perdita un valore pari a -2,10%.

3.4.6 <u>Degrado delle prestazioni dei moduli fotovoltaici</u>

Il degrado dei moduli fotovoltaici è funzione della tecnologia, del sito di installazione (spettro solare e temperature) e della qualità del prodotto. Generalmente l'andamento del degrado non è lineare: nel primo anno la perdita è maggiore fino a stabilizzarsi con un degrado costante negli anni seguenti.

La tipologia di moduli in progetto presenta una garanzia sulla produzione massima al primo anno d'esercizio del 98% e un decadimento annuo successivo massimo del 0,45% per i 30 anni successivi.

Nel software di calcolo PVSyst è stato inserito il corretto modello del modulo, con la curva di decadimento appena descritta. Si considera quindi il valore medio di perdita pari a -0,45%.

3.4.7 <u>Perdite ohmiche di cablaggio</u>

Si tratta di una perdita legata alle sezioni e alla lunghezza dei cavi elettrici e al loro cablaggio. Sulla base del progetto elettrico dell'impianto, con il dimensionamento e la verifica delle linee elettriche BT, grazie all'ottimizzazione dei percorsi dei cavi di corrente continua e all'utilizzo di sezioni di cavi per le stringhe di sezione idonea, il valore di tali perdite è stato calcolato pari a -1,21%.

3.4.8 Perdite sul sistema di conversione

Sono dovute alla curva di efficienza degli inverter in funzione della potenza in uscita e quindi, in prima analisi, dal progetto della macchina in funzione delle condizioni di irraggiamento del sito e di quelle del carico. La stima dipende dal tipo di convertitore utilizzato, marca e dallo schema di trasformazione.

Secondo i calcoli delle perdite di rete con il software PVSyst, imputando nel modello di calcolo i dati dell'inverter in progetto, le perdite sono state calcolate pari al -1,63%.

Inoltre, tenendo conto del rapporto fra la potenza nominale per parco fotovoltaico e la potenza nominale degli inverter, si può rilevare che non si hanno perdite legate al superamento della potenza massima in ingresso agli inverter.

3.4.9 Perdite sui circuiti in corrente alternata

In questa voce vanno considerate due componenti:

Perdite circuiti in corrente alternata AC

Data la prossimità tra inverter e trasformatore queste perdite sono pari allo 0,2% a STC.

Perdite circuiti in corrente alternata in MT interne all'impianto

Secondo lo schema unifilare di progetto e la disposizione planimetrica delle cabine PS, sono state calcolate le perdite della rete MT. Il parametro di perdite sui circuiti in corrente alternata per i collegamenti interni al parco fotovoltaico è assunto pari a -0,054%.

Perdite circuiti in corrente alternata in MT di collegamento alla SSE

Secondo lo schema unifilare di progetto e il tracciato dell'elettrodotto di collegamento con la SSE, sono state calcolate le perdite della rete MT. Il parametro di perdite sui circuiti in corrente alternata di collegamento alla SSE è assunto pari a -0,62%.

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

3.4.10 Perdite sezione AT

Ai fini della presente relazione non si terrà conto delle perdite sulla sezione AT di impianto, potendosi queste considerare di poca rilevanza rispetto alle altre perdite sin qui calcolate. Tali perdite saranno comunque calcolate nel dettaglio in fase di progettazione esecutiva.

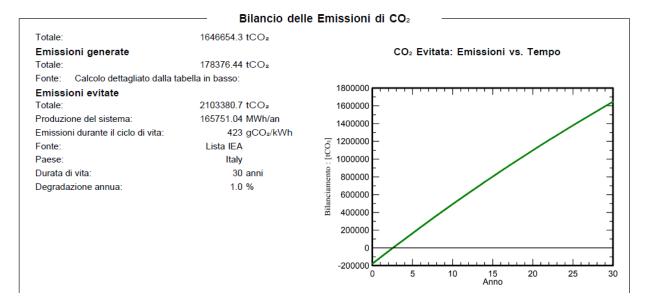
3.4.11 <u>Disponibiltià di esercizio</u>

In sede di progetto è stata effettuata una stima dell'indice di disponibilità garantito, sulla base della propria esperienza di O&M derivante dalla gestione di impianti similari a quello in progetto. Sulla base di quanto sopra esposto, per l'indisponibilità di esercizio sono assunte pari a -1,10%

3.4.12 Consumi ausiliari

Si stima una perdita sul totale della produzione pari a circa il -0,25%.

3.5 Producibilità del sistema


In base alle considerazioni effettuate nei precedenti paragrafi è stata pertanto condotta la simulazione della producibilità attesa del sistema tramite il software di calcolo PVSyst.

La produzione attesa ed immessa in rete dalla componete fotovoltaica dell'impianto in progetto risulta essere stimata in 165.751 MWh/anno.

Considerata la potenza nominale dell'impianto, pari a 86.95 MWp, si determina una produzione specifica pari a 1.906 kWh/KWp/anno ed un indice di rendimento (Performance Ratio PR) pari a 91,56%.

3.6 Bilancio delle Emissioni di CO2

Dalla simulazione condotta si evince che il bilancio delle <u>emissioni nette in atmosfera</u>, tenuto conto anche delle emissioni generate dal sistema, è stato stimato essere <u>pari a – 1.646.654,3 t CO₂ (emissioni evitate in atmosfera)</u> per tutto il ciclo di vita dell'impianto (30 anni).

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

4. REPORT PVSYST

Di seguito si riporta il Report di simulazione generato dal software PVsyst.

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Versione 7.2.14

PVsyst - Rapporto di simulazione

Sistema connesso in rete

Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

Eliostati illimitati con indetreggiamento Potenza di sistema: 86.95 MWc Nuova Gibellina - Italia

Autore

ENVLAB SRLS (Italy) VIA SMERALDO 39 RIBERA / 92016 ITALIA

0.20

Parametri progetto

Albedo

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5, Simulato su 26/05/22 17:13 con v7.2.14 Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Sommario del progetto

Luogo geografico Ubicazione

Nuova GibellinaLatitudine37.83 °NItaliaLongitudine12.88 °EAltitudine210 m

Fuso orario UTC+1

Dati meteo

Nuova Gibellina

Meteonorm 8.0 (1991-2009), Sat=100% - Sintetico

Sommario del sistema

Sistema connesso in rete Eliostati illimitati con indetreggiamento

 Orientamento campo FV
 Ombre vicine

 Orientamento
 Algoritmo dell'inseguimento
 Senza ombre

Assi inseguimento orizzontali Ottimizzazione irraggiamento

Backtracking attivato

Informazione sistema

 Campo FV
 Inverter
 Pacco batterie

 Numero di moduli
 133770 unità
 Numero di unità
 24 unità
 Stategia di accu

Numero di moduli 133770 unità Numero di unità 24 unità Stategia di accumulo : Assorbimento dei picchi di poter Pnom totale 86.95 MWc Pnom totale 82.58 MWac Numero di unità 881 unità

Pnom totale 86.95 MWc Pnom totale 82.58 MWac Numero di unità 881 unità Limite della potenza di rete69.37 MWac Tensione 881 V

Rapporto Pnom lim. rete 1.253 Capacità 113473 Ah

Bisogni dell'utente

Carico illimitato (rete)

Bilancio delle Emissioni di CO2

Sommario dei risultati

Energia prodotta 166 GWh/anno Prod. Specif. 1906 kWh/kWc/anno Indice rendimento PR 91.56 %

Indice dei contenuti

Sommario del progetto e dei risultati

Parametri principali, Caratteristiche campo FV, Perdite sistema

Parametri principali, Caratteristiche campo FV, Perdite sistema 3
Risultati principali 9
Diagramma perdite 10
Grafici speciali 11
Valutazione P50-P90 12
Costo del sistema 13

26/05/22

2

14

10 unità

+/- 60.9

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5. Simulato su con v7.2.14

Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Parametri principali

Eliostati illimitati con indetreggiamento Sistema connesso in rete

Orientamento campo FV

Orientamento

Assi inseguimento orizzontali

Algoritmo dell'inseguimento

Ottimizzazione irraggiamento

Backtracking attivato

Strategia Backtracking

N. di eliostati Fliostati illimitati

Dimensioni

Limiti phi

Distanza eliostati 10.00 m Larghezza collettori 4.80 m Fattore occupazione (GCR) 48.0 % Banda inattiva sinistra 0.02 m

Banda inattiva destra 0.02 m Phi min / max -/+ 60.0 ° Angolo limite indetreggiamento

Modelli utilizzati

Trasposizione Perez Perez, Meteonorm Diffuso Circumsolare separare

Orizzonte

Ombre vicine

Strategia di scarica

Bisogni dell'utente

Carico illimitato (rete)

Sistema a moduli bifacciali

Modello

Orizzonte libero

Calcolo 2D eliostati illimitati

Geometria del modello bifacciale

10.00 m Distanza eliostati ampiezza eliostati 4 84 m 48.4 % Altezza dell'asse dal suolo 2.10 m

Definizioni per il modello bifacciale

Albedo dal suolo 0.30 Fattore di Bifaccialità 70 % Ombreg. posteriore 5.0 % 10.0 % Perd. Mismatch post. Frazione trasparente della tettoia 0.0 %

Conservazione Strategia di carica

Assorbimento dei picchi di potenza

Limitazione potenza di rete

Potenza attiva 69.37 MWac Rapporto Pnom 1.253

Potenza disponibile oltre693760deMa griglia (rete)Appena si ha bisogno di potenza

Caratteristiche campo FV

Modulo FV

Costruttore Trina Solar Modello TSM-650DEG21C.20

(definizione customizzata dei parametri) Potenza nom. unit. 650 Wp Numero di moduli FV 50490 unità Nominale (STC) 32.82 MWc Inverter Costruttore

Ingeteam Modello_3Power_3825TL_C690_IP65 [2021-12-03_up to 50°C]

(definizione customizzata dei parametri)

Potenza nom. unit. 3824 kWac Numero di inverter 8 unità 30592 kWac Potenza totale

Campo #1 - PS-1.1

Numero di moduli FV 12300 unità Nominale (STC) 7995 kWc Moduli 410 Stringhe x 30 In serie

Numero di inverter Potenza totale

2 unità 7648 kWac

In cond. di funz. (50°C)

7334 kWc Pmpp U mpp 1021 V

Voltaggio di funzionamento Rapporto Pnom (DC:AC)

979-1300 V 1.05

26/05/22 PVsyst Licensed to ENVLAB SRLS (Italy)

7184 A

Pagina 3/14

I mpp

X-ELIO GIBELLINA S.r.l.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5, Simulato su 26/05/22 17:13 con v7.2.14 Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Caratteristiche campo FV

	Caratteristi	che campo FV ————	
Campo #6 - PS-3.1			
Numero di moduli FV	12750 unità	Numero di inverter	2 unità
Nominale (STC)	8288 kWc	Potenza totale	7648 kWac
Moduli	425 Stringhe x 30 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamento	979-1300 V
Pmpp	7602 kWc	Rapporto Pnom (DC:AC)	1.08
U mpp	1021 V		
I mpp	7447 A		
Campo #7 - PS-3.2			
Numero di moduli FV	12720 unità	Numero di inverter	2 unità
Nominale (STC)	8268 kWc	Potenza totale	7648 kWac
Moduli	424 Stringhe x 30 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamento	979-1300 V
Pmpp	7584 kWc	Rapporto Pnom (DC:AC)	1.08
U mpp	1021 V		
I mpp	7429 A		
Campo #8 - PS-3.3			
Numero di moduli FV	12720 unità	Numero di inverter	2 unità
Nominale (STC)	8268 kWc	Potenza totale	7648 kWac
Moduli	424 Stringhe x 30 In serie		
In cond. di funz. (50°C)	-	Voltaggio di funzionamento	979-1300 V
Pmpp	7584 kWc	Rapporto Pnom (DC:AC)	1.08
U mpp	1021 V		
I mpp	7429 A		
Modulo FV		Inverter	
Costruttore	Trina Solar	Costruttore	Ingeteam
Modello	TSM-650DEG21C.20	Modello_3Power_3825TL_C660_I	P65 [2021-12-03_up to 50°C]
(definizione customizzata	a dei parametri)	(definizione customizzata dei p	parametri)
Potenza nom. unit.	650 Wp	Potenza nom. unit.	3658 kWac
Numero di moduli FV	46800 unità	Numero di inverter	8 unità
Nominale (STC)	30.42 MWc	Potenza totale	29264 kWac
Campo #2 - PS-1.2			
Numero di moduli FV	12300 unità	Numero di inverter	2 unità
Nominale (STC)	7995 kWc	Potenza totale	7316 kWac
Moduli	410 Stringhe x 30 In serie		
In cond. di funz. (50°C)	-	Voltaggio di funzionamento	936-1300 V
Pmpp	7334 kWc	Rapporto Pnom (DC:AC)	1.09
U mpp	1021 V		
I mpp	7184 A		
Campo #3 - PS-2.1			
Numero di moduli FV	11520 unità	Numero di inverter	2 unità
Nominale (STC)	7488 kWc	Potenza totale	7316 kWac
Moduli	384 Stringhe x 30 In serie	, otoriza totalo	1010 11100
In cond. di funz. (50°C)	55 . Striight A 66 in sond	Voltaggio di funzionamento	936-1300 V
			1.02
	6869 kWc	Rapporto Priom (DCAC)	
Pmpp U mpp	6869 kWc 1021 V	Rapporto Pnom (DC:AC)	1.02

26/05/22

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

PROPONENTE

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5, Simulato su 26/05/22 17:13 con v7.2.14 Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

	Caratteristi		
Campo #4 - PS-2.2			
Numero di moduli FV	11520 unità	Numero di inverter	2 unità
Nominale (STC)	7488 kWc	Potenza totale	7316 kWac
Moduli	384 Stringhe x 30 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamento	936-1300 V
Pmpp	6869 kWc	Rapporto Pnom (DC:AC)	1.02
U mpp	1021 V		
l mpp	6729 A		
Campo #5 - PS-2.3			
Numero di moduli FV	11460 unità	Numero di inverter	2 unità
Nominale (STC)	7449 kWc	Potenza totale	7316 kWac
Moduli	382 Stringhe x 30 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamento	936-1300 V
Pmpp	6833 kWc	Rapporto Pnom (DC:AC)	1.02
U mpp	1021 V	,	
I mpp	6693 A		
Modulo FV		Inverter	
Costruttore	Trina Solar	Costruttore	Ingeteam
Modello	TSM-650DEG21C.20	Modello 3Power_3825TL_C630_II	•
(definizione customizzata		(definizione customizzata dei p	
Potenza nom. unit.	650 Wp	Potenza nom. unit.	3492 kWac
Numero di moduli FV	22110 unità	Numero di inverter	4 unità
Nominale (STC)	14.37 MWc	Potenza totale	13968 kWac
Campo #9 - PS-4.1			
Numero di moduli FV	11070 unità	Numero di inverter	2 unità
Nominale (STC)	7196 kWc	Potenza totale	6984 kWac
Moduli	369 Stringhe x 30 In serie		
In cond. di funz. (50°C)	coo camigine is on in come	Voltaggio di funzionamento	895-1300 V
Pmpp	6600 kWc	Rapporto Pnom (DC:AC)	1.03
U mpp	1021 V	rapporter nom (Bo., 16)	1.00
I mpp	6466 A		
Campo #10 - PS-4.2			
Numero di moduli FV	11040 unità	Numero di inverter	2 unità
	7176 kWc	Potenza totale	6984 kWac
Nominale (STC) Moduli		Foteriza totale	0904 KVVaC
	368 Stringhe x 30 In serie	Voltaggio di funzione noto	90E 1200 V
In cond. di funz. (50°C)	GEOG 13M-	Voltaggio di funzionamento	895-1300 V
Pmpp	6583 kWc	Rapporto Pnom (DC:AC)	1.03
U mpp I mpp	1021 V 6448 A		
	V.14071		
Campo #11 - PS-5.1 Modulo FV		Invertor	
	Tring Color	Inverter	lanate
Costruttore	Trina Solar	Costruttore	Ingeteam
Modello	TSM-650DEG21C.20	Modello_3Power_3825TL_C600_II	
(definizione customizzata		(definizione customizzata dei p	,
Potenza nom. unit.	650 Wp	Potenza nom. unit.	3326 kWac
Numero di moduli FV	10830 unità	Numero di inverter	2 unità
Nominale (STC)	7040 kWc	Potenza totale	6652 kWac
Moduli	361 Stringhe x 30 In serie	Voltaggio di funzionamento	853-1300 V
In cond. di funz. (50°C)		Rapporto Pnom (DC:AC)	1.06
Pmpp	6457 kWc		
U mpp	1021 V		
l mpp	6325 A		

26/05/22 PVsyst Licensed to ENVLAB SRLS (Italy) Pagina 5/14

IŒ) X-FI IO GIBELLINA S.r.l. Corso Vittorio Emanuele II, 349 00186 ROMA – C.F./P.IVA 16234841001

1.09

Fissa 20 °C

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5. Simulato su 26/05/22 17:13 con v7.2.14

Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Caratteristiche campo FV

Campo #12 - PS-5.2

Modulo FV Inverter Costruttore Trina Solar Costruttore Ingeteam Modello TSM-650DEG21C.20 Modello Ingecon Sun 1170TL B450 IP54 H1000

(definizione customizzata dei parametri) (definizione customizzata dei parametri)

Potenza nom. unit. 650 Wp Potenza nom. unit. 1052 kWac 3540 unità Numero di moduli FV Numero di inverter 2 unità Nominale (STC) 2301 kWc Potenza totale 2104 kWac 118 Stringhe x 30 In serie Voltaggio di funzionamento 655-1300 V Moduli In cond. di funz. (50°C) Potenza max. (=>30°C) 1169 kWac

Rapporto Pnom (DC:AC)

Temperatura

0.1 % a STC

Pmpp 2111 kWc

U mpp 1021 V 2068 A I mpp

Potenza PV totale Potenza totale inverter

389351 m²

80526.8 kWh

Nominale (STC) 86951 kWp 82580 kWac Potenza totale Totale 133770 moduli Numero di inverter 24 unità Superficie modulo 415537 m² Rapporto Pnom 1.05

Capacità batteria

Superficie cella

Batteria

Costruttore LG Chem Modello R1000_JH3 128Ah

Pacco batterie

Caratteristiche gruppo batterie Numero di unità 881 in parallelo Tensione 881 V Min.SOC di scarica 20.0 % 113473 Ah (C10) Capacità nominale

Energia stoccata

Ingresso carica batteria Modello Generico Mas. potenza carica 40.0 MWdc Mas./effic. EURO 97.0/95.0 %

Batteria all'inverter di rete

Modello Generico 40.0 MWac Mas. potenza scarica 97.0/95.0 % Mas./effic. EURO

Perdite campo

Fatt. di perdita termica Perdita diodo di serie Perdita di qualità moduli 0.7 V Temperatura modulo secondo irraggiamento Perdita di Tensione Fraz. perdite

Fraz. perdite

29.0 W/m2K Uc (cost)

0.0 W/m2K/m/s Uv (vento)

Perdite per mismatch del modulo Perdita disadattamento Stringhe Fraz. perdite 2.0 % a MPP Fraz. perdite

Fattore di perdita IAM

Effetto d'incidenza, profilo definito utente (IAM): Profilo definito utente

0°	40°	50°	60°	70°	75°	80°	85°	90°
1.000	1.000	0.998	0.992	0.983	0.961	0.933	0.853	0.000

26/05/22

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

Rame 3 x 185 mm²

Pagina 7/14

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5, Simulato su 26/05/22 17:13 con v7.2.14

Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Perdite DC nel cablaggio

Res. globale di cablaggio $0.22 \text{ m}\Omega$ Fraz. perdite $1.5 \% \text{ a STC}$ Campo #1 - PS-1.1 Res. globale campo $0.30 \text{ m}\Omega$ Res. glo	
Res. globale campo 3.0 m Ω Res. globale campo 2.3 m Ω	
Fraz. perdite 1.9 % a STC Fraz. perdite 1.5 % a STC	
Campo #3 - PS-2.1 Campo #4 - PS-2.2	
Res. globale campo 2.5 m Ω Res. globale campo 2.5 m Ω	
Fraz. perdite 1.5 % a STC Fraz. perdite 1.5 % a STC	
Campo #5 - PS-2.3 Campo #6 - PS-3.1	
Res. globale campo 2.5 m Ω Res. globale campo 2.3 m Ω	
Fraz. perdite 1.5 % a STC Fraz. perdite 1.5 % a STC	
Campo #7 - PS-3.2 Campo #8 - PS-3.3	
Res. globale campo 2.3 m Ω Res. globale campo 2.3 m Ω	
Fraz. perdite 1.5 % a STC Fraz. perdite 1.5 % a STC	
Campo #9 - PS-4.1 Campo #10 - PS-4.2	
Res. globale campo 2.6 m Ω Res. globale campo 2.6 m Ω	
Fraz. perdite 1.5 % a STC Fraz. perdite 1.5 % a STC	
Campo #11 - PS-5.1 Campo #12 - PS-5.2	
Res. globale campo 2.7 m Ω Res. globale campo 8.1 m Ω	
Fraz. perdite 1.5 % a STC Fraz. perdite 1.5 % a STC	

Perdite cablaggio AC

Linea uscita	inv	eino	al tras	formatore	мт
Lillea uscita	IIIV.	SIIIO	ai ii as	siorinatore i	141 I

Tensione inverter $$690$ \ Vac tri \\ Fraz. perdite $0.01 \ \% \ a \ STC$

Inverter: IS_3Power_3825TL_C690_IP65 [2021-12-03_up to 50°C], IS_3Power_3825TL_C660_IP65 [2021-12-03_up to 50°C], IS_3Power_3825TL_C6

Sezione cavi (24 Inv.)

Rame 24 x 3 x 2500 mm²

Lunghezza media dei cavi

1 m

Linea MV fino alla iniezione

Voltaggio MV 30 kV Frazione perdita media 0.07 % a STC

Campo #1 - PS-1.1	Campo #2 - PS-1.2

 Conduttori
 Rame 3 x 185 mm²
 Conduttori
 Rame 3 x 185 mm²

 Lunghezza
 310 m
 Lunghezza
 30 m

 Campo #3 - PS-2.1
 Campo #4 - PS-2.2
 Campo #4 - PS-2.2

 Conduttori
 Rame 3 x 185 mm²
 Conduttori
 Rame 3 x 185 mm²

 Lunghezza
 395 m
 Lunghezza
 827 m

 Campo #5 - PS-2.3
 Campo #6 - PS-3.1
 Campo #6 - PS-3.1

Conduttori Rame 3 x 185 mm² Conduttori

 Lunghezza
 677 m
 Lunghezza
 917 m

 Campo #7 - PS-3.2
 Campo #8 - PS-3.3

 Conduttori
 Rame 3 x 185 mm²
 Conduttori
 Rame 3 x 185 mm²

 Lunghezza
 275 m
 Lunghezza
 1075 m

Campo #9 - PS-4.1 Campo #10 - PS-4.2

 Conduttori
 Rame 3 x 185 mm²
 Conduttori
 Rame 3 x 185 mm²

 Lunghezza
 1370 m
 Lunghezza
 775 m

 Campo #11 - PS-5.1
 Campo #12 - PS-5.2

 Conduttori
 Rame 3 x 185 mm²
 Conduttori
 Rame 3 x 185 mm²

 Lunghezza
 2792 m
 Lunghezza
 857 m

26/05/22 PVsyst Licensed to ENVLAB SRLS (Italy)

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5, Simulato su 26/05/22 17:13 con v7.2.14 Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Perdite AC nei trasformatori

Trafo MV

Tensione rete 30 kV

Perdite di operazione in STC

Potenza nominale a STC 7860 kVA Perdita ferro (Connessione 24/24) 7.86 kW Fraz. perdite 0.10 % a STC Resistenza equivalente induttori 3 x 0.61 m Ω Fraz. perdite 1.00 % a STC

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

PVsyst V7.2.14 VC5, Simulato su 26/05/22 17:13 con v7.2.14

Progetto: GIBELLINA - xelio

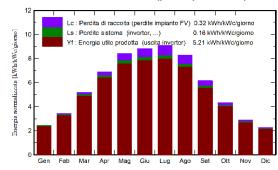
Variante: DEFNITIVO

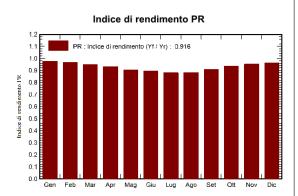
ENVLAB SRLS (Italy)

Risultati principali

Produzione sistema

Energia prodotta 166 GWh/anno


Prod. Specif. Indice di rendimento PR 1906 kWh/kWc/anno 91.56 %


Decadimento batterie (Usura (SOW))

 SOW ciclico
 99.6 %

 SOW statico
 80.0 %

Produzione normalizzata (per kWp installato)

Bilanci e risultati principali

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	EBatDis	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	GWh	GWh	GWh	ratio
Gennaio	60.2	31.54	11.78	75.7	74.1	6.60	6.43	0.039	0.976
Febbraio	77.3	37.86	11.71	95.8	94.0	8.28	8.04	0.000	0.965
Marzo	128.6	60.47	13.96	160.4	157.6	13.63	13.25	0.028	0.950
Aprile	163.4	71.64	16.13	206.5	203.1	17.27	16.75	0.165	0.933
Maggio	205.2	76.14	20.41	260.3	256.2	21.18	20.49	0.530	0.905
Giugno	210.1	81.74	24.22	264.9	260.7	21.26	20.60	0.409	0.895
Luglio	220.2	75.69	27.45	281.8	277.6	22.27	21.57	0.444	0.880
Agosto	199.4	66.90	27.59	257.2	253.4	20.36	19.76	0.096	0.884
Settembre	144.7	57.22	23.76	184.5	181.5	15.00	14.58	0.029	0.909
Ottobre	106.5	49.59	20.95	134.0	131.6	11.20	10.90	0.000	0.935
Novembre	67.7	31.18	16.74	86.3	84.6	7.36	7.13	0.000	0.951
Dicembre	55.0	28.54	13.23	69.5	67.8	6.02	5.82	0.000	0.964
Anno	1638.4	668.52	19.04	2076.8	2042.1	170.44	165.33	1.739	0.916

Legenda

GlobHor Irraggiamento orizzontale globale **EArray** Energia effettiva in uscita campo DiffHor E Grid Irraggiamento diffuso orizz. Energia immessa in rete **EBatDis** Energia di scarica batteria T_Amb Temperatura ambiente GlobInc Indice di rendimento Globale incidente piano coll. GlobEff Globale "effettivo", corr. per IAM e ombre

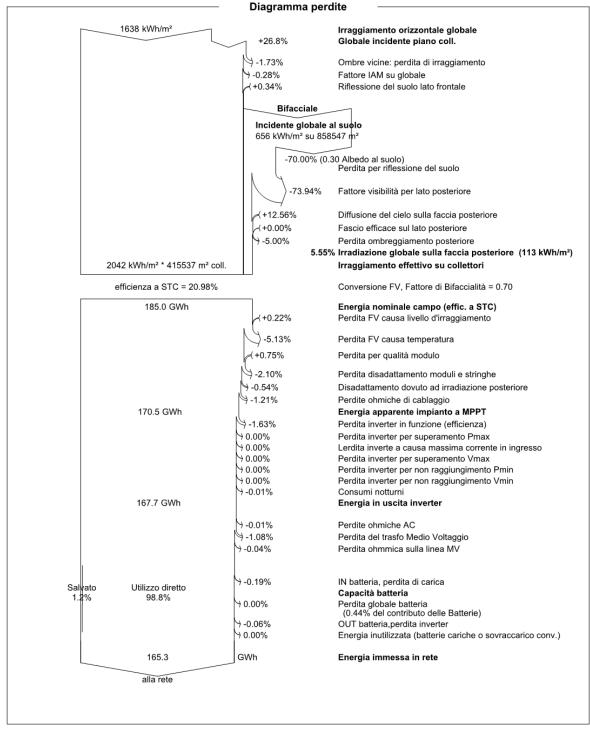
26/05/22

PVsyst Licensed to ENVLAB SRLS (Italy)

Pagina 9/14

X-ELIO GIBELLINA S.r.l.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001

IMPIANTO AGRIVOLTAICO "GIBELLINA"


PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

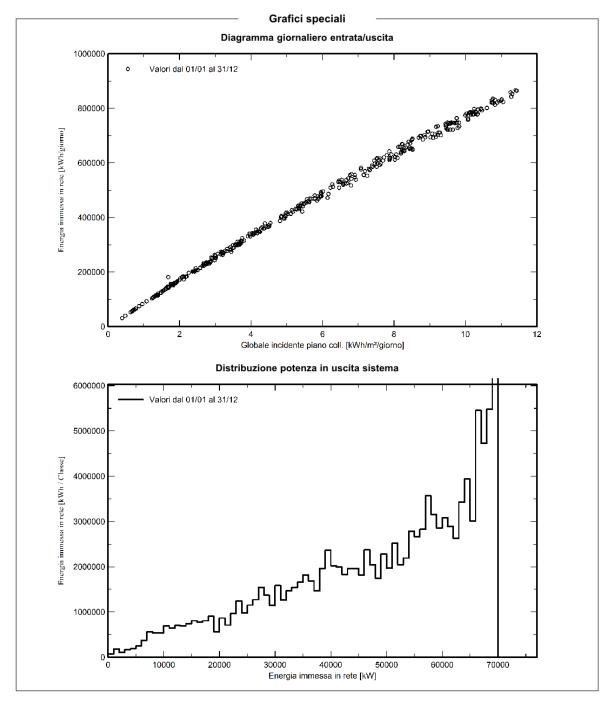
Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Pag. **32** di **36**

X-ELIO GIBELLINA S.r.I.
Corso Vittorio Emanuele II, 349
00186 ROMA – C.F./P.IVA 16234841001


IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Progetto: GIBELLINA - xelio
Variante: DEFNITIVO

ENVLAB SRLS (Italy)

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Da4:4		ne P50-P90		
Dati meteo Fonte Meteonorm 8.0 (1991-2009), Sa	at=100%	Incertezze dei parametri e simulazione settaggio parametri modulo FV		
	e mensili	Incertezza nella stima efficienza inverter	1.0 %	
'	e mensiii		0.5 %	
Sintetico - Media su più anni	2.0.0/	Incertezze di disadattamento e sporcizia	1.0 %	
Differena da anno in anno(Varianza)	3.9 %	Incertezza nella stima del degrado	1.0 %	
Deviazione Standard	0.0.0/			
Cambiamento Climatico	0.0 %			
/ariabilità globale		Valore di probabilità associato alla	produzione	
/ariabilità (Somma quadratica media)	4.3 %	Variabilità	7.05 GWh	
		P50	165.75 GWh	
		P90	156.71 GWh	
		P95	154.17 GWh	
	Distribuzion	e di probabilità		
0.50		 	, , , , , ,	
Ē			3	
0.45			-	
į.	D50 - 4/	65.75 GWh	‡	
0.40	F50 = 10	● E Grid simul = 165.75 GWh	4	
F			- 1	
0.35			3	
-	/		1	
. .	/	\	1	
0.30	/	\	4	
हा।(वृक्ष्य 0.25 - - -	/	\	3	
ਊ 0.25	/	\		
£ -	/	\	1	
0.20	/	\		
· · ·	P90 = 156.71 GWh	\	4	
A 15 F	7 130 - 130.71 GWII	\	4	
0.15	/	\	3	
E .	/		3	
0.10 ⊢	P95 = 154.17 GWh		=	
· · · · · /			- 1	
[/		_	4	
0.05		\		
0.05			1	
0.00	155 160 1 6	5 170 175 180	85 190	

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

ENVLAB SRLS (Italy)

Costo del sistema

Costi d'installazione					
Elemento	Quantità	Costo	Totale		
	unità	EUR	EUR		
Totale			0.00		
Attività ammortizzabile			0.00		

Costi operativi

Elemento	Totale
	EUR/an
Totale (OPEX)	0.00

Sommario del sistema

 Costo totale d'installazione
 0.00 EUR

 Costi operativi
 0.00 EUR/an

 Energia prodotta
 165333 MWh/an

 Costo energia prodotta (LCOE)
 0.000 EUR/kWh

IMPIANTO AGRIVOLTAICO "GIBELLINA"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA DI 86.95 MWp (80,00 MW IN IMMISSIONE) CON SISTEMA DI ACCUMULO DA 40,00 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN RICADENTE NEL COMUNI DI CALATAFIMI-SEGESTA, SANTA NINFA E GIBELLINA

Progetto: GIBELLINA - xelio

Variante: DEFNITIVO

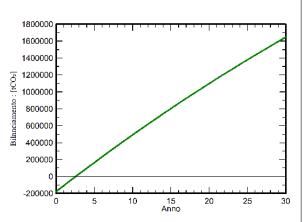
ENVLAB SRLS (Italy)

Bilancio delle Emissioni di CO₂

Totale: 1646654.3 tCO₂

Emissioni generate

Totale: 178376.44 tCO₂ Fonte: Calcolo dettagliato dalla tabella in basso:


Emissioni evitate

Totale: 2103380.7 tCO₂

Produzione del sistema: 165751.04 MWh/an

Emissioni durante il ciclo di vita: 423 gCO₂/kWh

Fonte: Lista IEA
Paese: Italy
Durata di vita: 30 anni
Degradazione annua: 1.0 %

CO₂ Evitata: Emissioni vs. Tempo

Dettagli delle emissioni del sistema nel ciclo di vita

Elemento	LCE (ciclo vitale energia)	Quantità	Subtotale
			[kgCO ₂]
Moduli	1713 kgCO2/kWc	86951 kWc	148921860
Supporti	4.40 kgCO2/Kg	6688500 Kg	29444115
Inverter	436 kgCO2/unità	24.0 unità	10467