Regione SICILIA Provincia di Palermo Comune di Termini Imerese

RELAZIONE INVARIANZA IDRAULICA E IDROLOGICA

Committente

Nome ALTA Capital 16 S.r.l.

Indirizzo Corso Galileo Ferraris. nº 22 - 10121 Torino (TO)

Edificio / Area

Descrizio Progetto per la realizzazione dell'impianto agrivoltaico integrato ne ecocompatibile" Lettiga" da 46,2 MWp a Termini Imerese 90018 (PA)

Indirizzo Contrada Canna, Termini Imerese (PA)

Studio tecnico

Nome ID&A S.R.L.

Indirizzo VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

Progettista

Rif.: Invarianza Idraulica Lettiga

Software di calcolo: Edilclima - EC737 - versione 2 Data di redazione del documento: 10/05/2022

INDICE

- 1. PREMESSA
- 2. DESCRIZIONI GENERALI DELL'AREA E DATI AMMINISTRATIVI
- 3. DESCRIZIONE DELLA SOLUZIONE PROGETTUALE DI INVARIANZA IDRAULICA E/O IDROLOGICA
- 4. PORTATE MASSIME SCARICABILI
- 5. DEFINIZIONE DELLE PIOGGE DI PROGETTO
- 6. METODOLOGIE DI DIMENSIONAMENTO E VERIFICA ADOTTATI
 - 6.1 Metodo delle sole piogge
 - 6.2 Metodo analitico di dettaglio
- 7. CALCOLO DELLA PORTATA MASSIMA SCARICATA
- 8. TEMPO DI SVUOTAMENTO
- 9. PRINCIPALI RISULTATI DEI CALCOLI

1. PREMESSA

Oggetto della presente relazione è la verifica del rispetto dei requisiti minimi di invarianza idraulica e/o idrologica relativi alla realizzazione di un impianto agrivoltaico integrato ecocompatibile denominato "Lettiga" da realizzarsi a Termini Imerese (PA).

L'area drenata oggetto d'intervento si estende su una superficie di 623839 m².

La modifica delle condizioni del suolo a seguito della progettazione, impone di dimostrare, attraverso uno studio di carattere idrologico-idraulico, il rispetto del principio dell'invarianza idraulica secondo cui la trasformazione di un'area deve avvenire senza provocare aggravio della portata di piena del corpo idrico o della rete di drenaggio ricevente i deflussi originati dall'area stessa.

Il rispetto dell'invarianza idraulica è ottenibile, oltre che tramite l'adozione di buone pratiche costruttive, anche mediante l'adozione di misure compensative quali dispositivi di compensazione (volumi d'invaso) e dispositivi idraulici.

Nello specifico, scopo del presente lavoro è l'individuazione delle modifiche all'assetto idrogeologico dell'area, conseguenti alle trasformazioni in progetto, con l'obiettivo di definire le misure compensative e/o le caratteristiche delle opere necessarie ad evitare l'aggravio delle condizioni idrauliche rispetto alla situazione preesistente o come da richiesta di norma.

Le verifiche del rispetto dei requisiti minimi di invarianza idraulica e/o idrologica vengono condotte conformemente al D.D.G. n. 102 del Dipartimento Regionale dell'Urbanistica del Dipartimento Autorità di Bacino del Distretto Idrografico della Sicilia ed in particolare secondo le indicazioni di cui all'allegato 1 e all'allegato 2 del medesimo Decreto. Nello specifico verranno adottati i metodi di calcolo in essa richiamati e, in mancanza di precise indicazioni, si farà riferimento a formulazioni consolidate in letteratura tecnica a seguito esplicitate.

Nel presente documento verranno descritte le soluzioni progettuali adottate, i metodi di calcolo utilizzati e verranno riportati i report dei calcoli eseguiti, con relativi grafici, e le verifiche effettuate.

2. DESCRIZIONI GENERALI DELL'AREA E DATI AMMINISTRATIVI

Il progetto prevede la realizzazione di un impianto da 46,20 MWp nel territorio del Comune di Termini Imerese (PA), per la produzione di energia elettrica mediante tecnologia fotovoltaica e opere di connessione e di infrastrutture annesse da cedere alla Rete di Trasmissione Nazionale (RTN) secondo quanto previsto dalla Legge 9/91 "Norme per l'attuazione del nuovo Piano energetico nazionale" e s.m.i.

L'impianto è di tipo agrivoltaico integrato ecocompatibile ad installazione a terra e non integrato, connesso alla rete (grid-connected) in modalità trifase in Alta Tensione (AT) alla tensione utente di 150 kV.

Si tratta di un impianto a terra, per una potenza complessiva installata di circa 46,20 MWp, a cui occupanti una superficie di circa 221.338 m² mentre catastalmente una superficie catastale di 623.839 m².

La potenza dell'impianto sarà di 46.200 kWp. La produzione di energia annua stimata è di 79.104,16 MWh e deriva da 79.200 pannelli (moduli) occupanti una superficie massima di circa 221.338 m².

I pannelli saranno montati su strutture ad inseguimento (tracker), in configurazione bifilare, asse di rotazione Nord-Sud con inclinazione Est-Ovest compresa tra $\pm -45^{\circ}$.

L'impianto agrivoltaico in progetto prevede l'installazione a terra, su terreno di estensione totale di 623.839 m² attualmente a destinazione agricola, di pannelli fotovoltaici (moduli) in silicio monocristallino della potenza unitaria di 615 Wp.

Il progetto prevede complessivamente 79.200 moduli occupanti una superficie massima di circa 221.338 m², per una potenza complessiva installata di circa 48,70 MWp lato DC, di moduli fotovoltaici, collegati a n. 3264 inverters DC/AC da 175 kW per avere una potenza nominale di picco complessiva del campo lato AC pari a 46,2 MWp.

L'impianto sarà corredato di 264 inverters DC/AC da 175 kW, n. 12 cabine MT/BT 0,8/30kV/kV da 4000 kVA, n.2 cabine MT/BT da 500 kVA per i Servizi Ausiliari (SA), una stazione di trasformazione con n. 1 trasformatore MT/AT ONAN da 50/60MVA-30/150 kV ONA/ONAF ed una control room. Dal trasformatore MT/AT si dipartirà una terna di cavi interrati che collegheranno, in AT ed in antenna, l'intero campo agrivoltaico alla stazione di Terna 150kV/220kV, situata a Caracoli, nel territorio di Termini Imerese (PA), con trasformazione della stessa da 150 kV a 220 kV, il tutto come riportato nell'Elaborato Grafico "Schema unifilare impianto agrivoltaico".

Il parco agrivoltaico, oggetto della presente relazione, sarà costituito da 10 sottocampi, ciascuno di potenza pari a circa 4000 kWp.

Ad ogni inverter saranno collegate n. 12 stringhe in parallelo da 25 moduli per un totale di 300 moduli ad inverter. Tutti i moduli saranno costituiti da pannelli di potenza pari a 615 Wp in monocristallino. Gli inverters di ciascun sottocampo saranno collegati ad un quadro di parallelo posto all'interno di un box cabina di trasformazione, in cui sarà presente un trasformatore in resina. Nello specifico si avranno 12 trasformatori da 4000 kVA 0,8/30kV/kV.

Tali sottocampi saranno reciprocamente ed elettricamente collegati per mezzo di un sistema di distribuzione ramificato in MT 30kV in entra ed esci e si andranno ad attestare al trasformatore MT/AT mediante un cavidotto interrato.

L'impianto di trasformazione MT/AT sarà formato da un'unica stazione di trasformazione di utenza MT/AT con n. 1 trasformatore da 40 MVA ONAN 30/150 kV/kV.

Dal trasformatore si dipartirà una terna di cavi in AT a 150 kV che si andrà a disporre sull'intero campo agrivoltaico alla sezione 150 kV della stazione elettrica (SE) della RTN 220/150 kV di Caracoli, oggetto di rifacimento a cura Terna.

Per le modalità di scambio di energia fra la rete in AT e l'impianto agrivoltaico, la potenza massima di progetto conferibile in rete pubblica richiesta è pari a 46,2 MW. Preso un punto centrale dell'area destinata alla costruzione del futuro impianto agrivoltaico, questo è individuato, nel sistema decimale di coordinate geografiche, da uno span di latitudine e di longitudine:

LATITUDINE: 37.921082°

LONGITUDINE: 13.790034°

Allo scopo di effettuare una localizzazione univoca dei terreni sui quali insiste il campo agrivoltaico in progetto, di seguito si riportano le cartografie riguardanti:

- sovrapposizione del campo agrivoltaico su foto Satellitare (figura 1);
- sovrapposizione del campo agrivoltaico su Catastale (figura 2);
- sovrapposizione del campo agrivoltaico su CTR (figura 3);
- sovrapposizione del campo agrivoltaico su IGM (figura 4).

Figura 1 - Inquadramento dell'impianto su Foto Satellitare

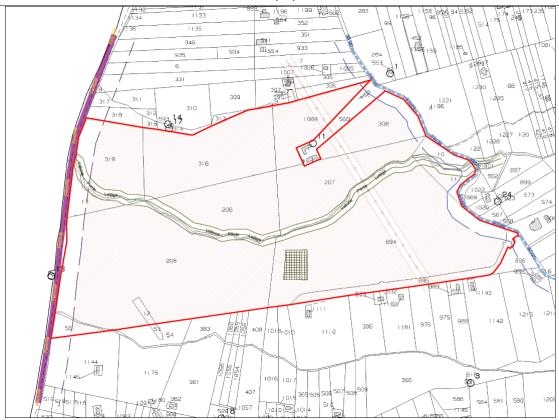


Figura 2 - Inquadramento dell'impianto su catastale

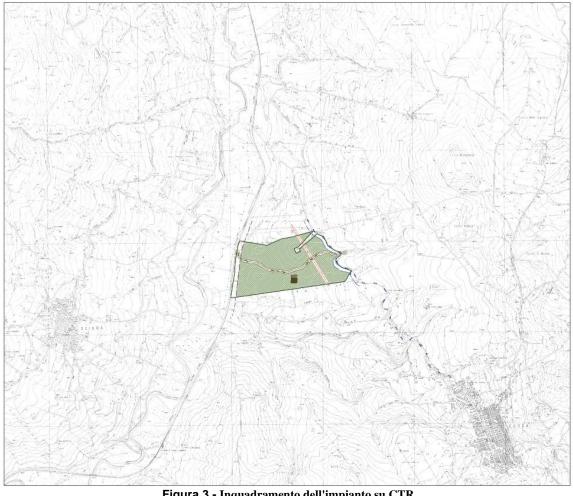


Figura 3 - Inquadramento dell'impianto su CTR

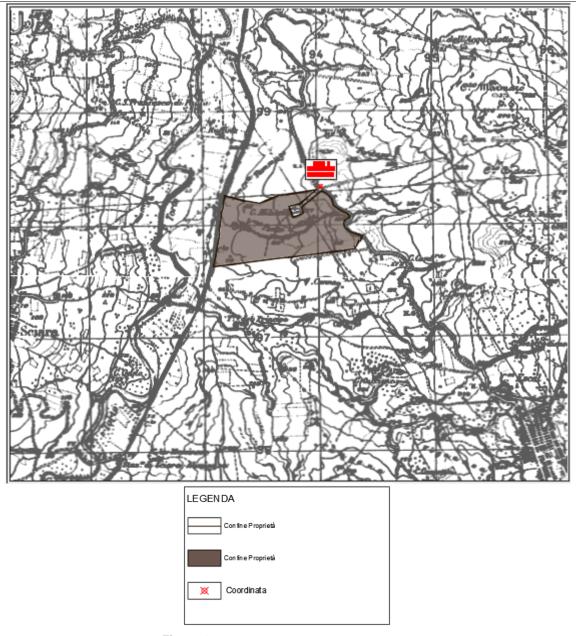


Figura 4 - Inquadramento dell'impianto su IGM

Individuazione dell'area

Comune di Termini Imerese Provincia Palermo

Per il calcolo del coefficiente di deflusso φ , secondo quanto stabilito dall'allegato 2 del citato D.D.G. n. 102, al fine di prendere in considerazione l'umidità iniziale del terreno (grado di saturazione), la porosità, la pendenza, la copertura vegetale, ecc., si è utilizzato il metodo Kennessey, utilizzando i coefficienti φ per tipologia di suolo di seguito elencati:

- Superfici Impermeabili 1,0
- Pavimentazioni Drenanti o Semipermeabili 0,7
- Aree permeabili 0,3
- Incolto e Uso Agricolo 0,0

In particolare, visto gli elementi del progetto, si sono adottati i coefficienti di cui alla seguente tabella:

CARATTERISTICHE AREA					
Descrizione	Superficie [m²]	Coeff. Afflusso φ			
Superficie Pannelli Fotovoltaici	Area impermeabile	221338,0	1,00		
Superficie suolo agricolo	Area permeabile	402501,0	0,00		

Superficie totale	623839,0	m^2	Coefficiente afflusso medio ponderale ϕ_{m}	0,3548
-------------------	----------	-------	---	--------

3. DESCRIZIONE DELLA SOLUZIONE PROGETTUALE DI INVARIANZA IDRAULICA E/O IDROLOGICA

La soluzione progettuale adottata per il rispetto delle prescrizioni sull'invarianza idraulica e idrologica, prevede l'utilizzo di dispositivi di compensazione costituiti da invasi artificiali di laminazione. La progettazione definitiva di un invaso artificiale si è basata sui seguenti criteri generali:

- l'ubicazione e la planimetria dell'invaso sono state ricavate in seguito ad un'analisi progettuale che ha tenuto in considerazione sia l'aspetto tecnico che quello funzionale legato alla morfologia dei terreni e degli impluvi naturali che, in maniera sussidiaria, alla distribuzione dei volumi irrigui alle aree sottese all'invaso;
- la realizzazione dei volumi di terra risulta in parte in scavo e in parte in rilevato, al fine di impiegare parte del materiale scavato nella costruzione del rilevato arginale, cioè una briglia in terra battuta, riducendo il più possibile l'eccedenza di materiale da dover smaltire o trasportare a discarica;
- realizzazione di argini perimetrali di contenimento idrico, al fine di incrementare il volume immagazzinabile rispetto alla realizzazione di un invaso solo con scavo;
- la quota di massimo invaso è stata assunta considerando un franco di sicurezza tra il livello idrico di regolazione e la quota massima del rilevato di 1 m;
- la quota di minimo invaso è stata posta a circa 20 cm rispetto al fondo del lago per favorire la sedimentazione delle particelle di terra, evitando l'interrimento dello scarico di fondo;

Il miglioramento dell'efficienza della risorsa idrica è stato conseguito inoltre osservando i seguenti obiettivi:

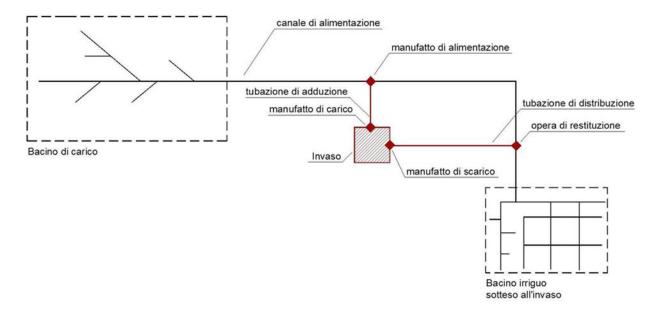
- 1) L'ubicazione dell'invaso è stata definita in funzione della possibilità di approvvigionamento idrico, al di fuori dei prelievi in acque pubbliche, verificando la disponibilità teorica data dal bilancio idrologico del bacino impluviale in direzione dell'invaso di progetto.
- 2) Le precipitazioni che si abbattono sul bacino di carico dell'opera permettono di invasarla completamente, ottenendo un risparmio di risorsa pari al volume dell'invaso in progetto;
- 4) L'impermeabilizzazione della superficie interna dell'invaso consente di stoccare tutta la risorsa senza perdite per infiltrazione nel terreno.

La realizzazione di un invaso di laminazione per il controllo dei tempi di corrivazione verso valle e il mantenimento del coefficiente udometrico costante nei valori ante e *post operam*, deve prevedere un sistematico svuotamento dello stesso per il mantenimento della capacità di invasatura delle acque meteoriche residue di ruscellamento superficiale, ottenuto come residuo del bilancio idrologico annuo medio per le aree di progetto, caratterizzate da differenti composizioni del substrato, secondo la relazione:

$$R = P - ET - I$$

dove:

R = ruscellamento residuo;


P = Quantitativi d'acqua di precipitazione;

ET = quantitativi d'acqua di evapotraspirazione;

I = quantitativi d'acqua di infiltrazione efficace.

Il valore di R determinerà la quantificazione annua della risorsa idrica immagazzinabile nell'invaso di laminazione e rappresenterà la risorsa utilizzabile per scopi irrigui, con ciò mantenendo l'invaso di compensazione delle portate a capacità di raccolta di sicurezza (vedi i calcoli della relazione geologica e idrogeologica cui si rimanda per la verifica dell'Invarianza Idraulica).

Al contempo, il progetto di realizzazione dell'invaso ad uso irriguo che consente di immagazzinare la risorsa idrica per poterla utilizzare nei periodi di carenza e deficit della risorsa stessa, può essere schematizzato come segue

Gli elementi progettuali di un invaso possono essere raggruppati nelle seguenti categorie:

- opere generali;
- invaso;
- rete di distribuzione.

Le opere generali comprendono tutte le attività di preparazione propedeutiche allo svolgimento dei lavori di realizzazione delle opere in progetto, e consisteranno in:

• sterro del cotico superficiale del terreno per il livellamento della superficie.

Il terreno rimosso avente caratteristiche pedologiche più scadenti sarà temporaneamente accantonato per esser successivamente riutilizzato per le coperture finali delle pendici dell'opera di ritenuta (briglia in terra battuta) e per i livellamenti di raccordo morfologico con il versante. Il terreno avente migliori caratteristiche pedologiche sarà separato e riutilizzato per i lavori preparatori del piano di impianto nell'area di compensazione vegetazionale con termine.

 riprofilatura delle parti terminali dei fossi defluenti in direzione dell'invaso di ritenuta; il lavoro sarà eseguito con escavatore cingolato di dimensioni più ridotte e dotato di benna trapezoidale per lo scavo di fossi.

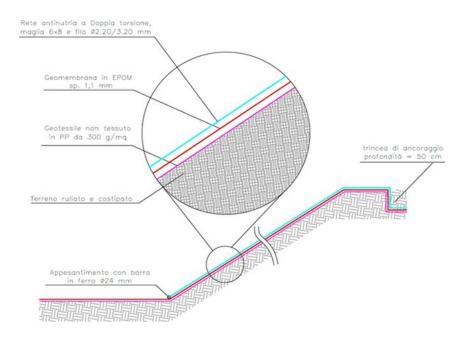
Completati i lavori preparatori si procederà allo scavo del bacino dell'invaso (vasca) ed alla predisposizione della fondazione per l'opera di ritenuta, secondo le seguenti operazioni:

- a) Scavo con escavatore meccanico della vasca. Il piano del fondo invaso dovrà possedere una pendenza (misurata da monte verso valle) non inferiore al 1,5%, allo scopo di permettere uno svuotamento rapido in caso di necessità;
- b) Deposito del materiale in zona limitrofa all'area di intervento; il materiale argilloso sarà riutilizzato per i livellamenti e i raccordi morfologici al termine delle operazioni di riporto;

- c) Scavo con escavatore meccanico dell'alloggiamento delle opere di sbarramento;
- d) Deposito del materiale in zona limitrofa all'area di intervento; il materiale scavato sarà riutilizzato in sito per livellamenti del terreno e riprofilature del versante al termine delle operazioni di riporto;
- e) Realizzazione di idonea rete di drenaggio delle acque meteoriche di tipo provvisionale esternamente al coronamento dello scavo, allo scopo di limitare il ruscellamento superficiale e gli eccessivi accumuli di acqua piovana.

L'opera di sbarramento posta a valle dell'invaso è costituita da una briglia in terra battuta opportunamente dimensionata al contenimento della capacità massima dell'invaso e immorsata nel substrato argilloso.

Predisposto il piano di posa (radice) della briglia, si procederà al riporto di argilla in strati di spessore massimo 50 cm opportunamente stesi e compattati con rullo compressore vibrante a zampa di montone (rullo bugnato); la bugnatura del rullo permetterà una inter digitazione degli strati successivi allo scopo di rendere più stabile il corpo della briglia e maggiore il rapporto di compressione dei materiali argillosi utilizzati.


I materiali utilizzati per la realizzazione della briglia saranno lavorati solo se in possesso delle caratteristiche fisico-meccaniche e tipologiche necessari all'ottenimento delle migliori condizioni statiche. Ultimati i lavori di realizzazione del corpo della briglia in terra battuta, si procederà al riporto di materiale argilloso per la costituzione della vasca di accumulo idrico, procedendo in base alle sezioni di progetto, con rinfranco delle fiancate e del fondo con ulteriori 50 cm di argille opportunamente compattate.

Per evitare fenomeni di filtrazione è stata prevista inoltre l'impermeabilizzazione del fondo e delle banche lato invaso mediante la posa di una geomembrana impermeabile in EPDM.

Nel dettaglio il rivestimento del fondo e della sponda lato bacino di accumulo che è così composto:

- regolarizzazione del fondo scavo;
- impermeabilizzazione mediante posa di geo membrana in EPDM dello spessore di 1,10 mm su uno strato di tessuto non tessuto di massa aerica apri a 300 grammi/mq;
- rete maglia 6×8 e filo Φ 2,20/3,20 mm; tale rete rimarrà tesa mediante l'utilizzo di una barra in ferro Φ 24 mm posizionata orizzontalmente nella parte inferiore della rete.

Di seguito è riportato un estratto del pacchetto di impermeabilizzazione da realizzare sul fondo del lago e sulle sponde lato bacino.

Le verifiche periodiche e le manutenzioni ordinarie dell'invaso dovranno accertare l'integrità dell'impermeabilizzazione del fondo e dei fianchi e provvedere al rinfranco dello strato di argilla compattata ove necessario.

Si procederà quindi alla realizzazione dei fossi perimetrali all'invaso.

I fossi saranno impermeabilizzati al fondo con argilla compattata allo scopo di evitare perdite, erosione delle sponde e sifonamenti delle opere di contenimento.

Le tubazioni di distribuzione che a questo punto verranno posate saranno tutte in PVC o PEAD.

Ultimati i riporti e la posa dei manufatti si procederà alla regolarizzazione delle superfici esterne alla vasca di accumulo con riporto di circa 30 cm di suolo riutilizzando il terreno precedentemente accantonato nella fase preparatoria iniziale. Successivamente le pendici esterne della briglia in terra battuta e delle zone esterne all'invaso saranno rinverdite con semina a spaglio di essenza erbacee autoctone opportunamente selezionate allo scopo di produrre una corretta integrazione paesaggistica delle opere con il contesto territoriale circostante.

In ultimo si eseguirà un opportuno livellamento ed una ulteriore rullatura del fondo per la realizzazione della pista di servizio che contorna il perimetro dell'invaso e che permetterà l'accesso per gli interventi di manutenzione ordinaria e se del caso straordinaria.

4. PORTATE MASSIME SCARICABILI

Per quanto attiene alle portate massime scaricabili, Q_{umax}, si adotta il seguente valore: 442,68 l/s.

Tale portata è desunta facendo riferimento all'allegato 2 del D.D.G. n. 102 del Dipartimento Regionale dell'Urbanistica del Dipartimento Autorità di Bacino del Distretto Idrografico della Sicilia, il quale prevede una portata ammissibile allo scarico nel ricettore non superiore a 20 l/s per ettaro di superficie impermeabile dell'intervento.

Nel caso specifico si ha:

 $Q_{umax} = 22,134 \text{ Ha} \times 20 \text{ l/s} = 442,68 \text{ l/s}$

5. DEFINIZIONE DELLE PIOGGE DI PROGETTO

Al fine di dimensionare e verificare le opere d'invarianza idraulica in progetto devono essere definite preventivamente le precipitazioni di progetto.

A tal fine viene applicato il metodo delle linee segnalatrici di pioggia a due parametri a e n, in cui i parametri a ed n vengono determinati con riferimento ad un ben preciso valore di tempo di ritorno, TR, dell'evento meteorico.

L'altezza di precipitazione di progetto viene calcolata come segue:

$$h = a \cdot D^n$$

h [mm]: altezza di pioggia

D [ore]: durata di pioggia

n [-]: coefficiente di scala della linea segnalatrice di pioggia

a [mm/oraⁿ]: parametro della linea segnalatrice di pioggia

Per durate delle precipitazioni superiori ad un'ora si adottano i valori dei parametri *a* e *n* valevoli per durate superiori ad un'ora ed inferiori a 24 ore.

Per le durate inferiori a un'ora si utilizza lo stesso parametro a, adottato per eventi di durata superiore all'ora, mentre il parametro n viene definito in modo specifico per tale durata.

In assenza di dati più precisi spesso, in letteratura tecnica idrologica, viene riportato un valore indicativo pari a n = 0.5.

Per quanto riguarda al tempo di ritorno TR adottato per la stima dei parametri, si fa riferimento a valori idonei a garantire le condizioni di sicurezza dell'opera e rispettare i valori e le indicazioni richiesti da norma, come riportato a seguito nel report dei calcoli.

Nel caso in esame, che ricade all'interno dei Bacini Minori tra Torto e San Leonardo Bacino, si è fatto riferimento ai dati di a e di n delle curve di possibilità pluviometrica della stazione pluviometrica di Termini Imerese, estrapolando i dati riportati nella tabella seguente:

STAZIONE PLUVIOMETRICA TERMINI IMERESE							
Tr 40 Tr 50			Tr 100		Tr 200		
а	n	а	n	а	n	а	n
59,4	0,22	61,7	0,22	68,9	0,21	76,0	0,21

Tabella 1 - Parametri a ed n per diversi tempi di ritorno

6. METODOLOGIE DI DIMENSIONAMENTO E VERIFICA ADOTTATI

Al fine di ottemperare alle verifiche di invarianza idraulica e/o idrologica vengono adottati i seguenti metodi di calcolo:

- metodo delle sole piogge
- metodo analitico di dettaglio

Nei paragrafi seguenti verranno descritti tali metodi ed a fine relazione verranno riportati i report dei calcoli.

Tra tutti questi metodi adottati si assumerà quale valore del volume minimo di progetto il maggiore tra tutti i valori calcolati.

6.1 Metodo delle sole piogge

Il metodo delle sole piogge si basa sul confronto tra la curva cumulata delle portate entranti e quella delle portate uscenti, ipotizzando che sia trascurabile l'effetto della trasformazione afflussi-deflussi, considerando costante la portata uscente ed andando a massimizzare il volume accumulato.

Nello specifico la portata media entrante viene calcolata come segue:

$$Q_e = 2,78 \cdot a \cdot \varphi_m \cdot D^{n-1} \cdot A$$

 Q_e [l/s]: portata media entrante

 φ_m [-]: coefficiente d'afflusso medio ponderale

A [ha]: area totale interessata dall'intervento

a [mm/oraⁿ]: parametro della linea segnalatrice di pioggia

D [ore]: durata della precipitazione

Conseguentemente il volume entrate W_e [m³] è pari a:

$$W_e = 10 \cdot \varphi_m \cdot a \cdot D^n \cdot A$$

Il volume uscente W_u [m³], essendo ipotizzata costante la portata uscente pari alla massima Q_{umax} [l/s], ha la seguente formulazione:

$$W_u = 3.6 \cdot Q_{umax} \cdot D$$

Pertanto, il volume invasato ad ogni durata D [ore] è pari a:

$$\Delta W = W_e - W_u = 10 \cdot \varphi_m \cdot a \cdot D^n \cdot A - 3.6 \cdot Q_{umax} \cdot D$$

Attraverso semplici passaggi matematici, derivando l'equazione sopra, si ottiene il valore della durata critica della precipitazione (D_w) ed il conseguente volume critico dell'invaso (W_0) :

$$D_w = \left(\frac{Q_{umax}}{2,78 \cdot \varphi_m \cdot a \cdot n \cdot A}\right)^{\frac{1}{n-1}}$$

$$W_0 = 10 \cdot \varphi_m \cdot a \cdot D_w^n \cdot A - 3.6 \cdot Q_{umax} \cdot D_w$$

 D_w [ore]: durata critica d'invaso

 Q_{umax} [l/s]: portata uscente massima

 W_0 [m^3]: volume di laminazione

a [mm/oraⁿ]: parametro della linea segnalatrice di pioggia

n [-]: coefficiente di scala della linea segnalatrice di pioggia

A [ha]: area totale interessata dall'intervento

 φ_m [-]: coefficiente d'afflusso medio ponderale

Si osservi che il parametro n (esponente della curva di possibilità pluviometrica) da utilizzare nelle equazioni precedenti dovrà essere congruente con la durata D_w , tenendo conto che il valore di n è generalmente diverso per le durate inferiori all'ora, per le durate tra 1 e 24 ore e per le durate maggiori di 24 ore.

Adottando valori di n valevoli per durate superiori ad un'ora si deve ottenere un valore di durata D_w superiore all'ora. Se così non fosse, si deve adottare un valore di n, valevole per durate inferiori ad un'ora e calcolare la conseguente durata.

Qualora il risultato ottenuto in questa seconda ipotesi, fosse superiore ad un'ora significa che ci si trova nel punto in cui cambiano i valori di *n*, ovvero un'ora, e si adotta tale valore.

6.2 Metodo analitico di dettaglio

Il metodo analitico di dettaglio prevede di calcolare in modo analitico la curva della portata entrante nell'accumulo, minuto per minuto, l'altezza idrica nell'invaso e la contestuale portata uscente o infiltrata, per un evento meteorico di fissata durata e tempo di ritorno.

Noto il volume invasato istante per istante, si calcola il relativo valore massimo, che rappresenta il volume minimo che l'accumulo deve possedere al fine di garantire il vincolo di invarianza ed il rispetto della portata scaricata, per detto evento meteorico di fissata durata e tempo di ritorno.

La durata dell'evento meteorico ritenuto critico viene riportato nel report dei calcoli.

Per quanto attiene alla portata entrante nel serbatoio essa viene calcolata, mediante il modello cinematico, come somma delle portate generate dalle singole aree.

L'applicazione della procedura dettagliata prevede l'implementazione dei seguenti passaggi:

- calcolo ietogramma di pioggia di progetto lorda mediante lo ietogramma Chicago;
- depurazione delle piogge e calcolo dello ietogramma netto;
- calcolo dell'idrogramma in ingresso all'accumulo come somma degli idrogrammi generati dalla singola area;
- calcolo del bilancio del serbatoio e del battente idrico al suo interno minuto per minuto;
- calcolo del volume invasato e dell'idrogramma in uscita dall'invaso;
- calcolo del volume minimo di laminazione come valore massimo del volume invasato.

Ietogramma di pioggia di progetto

Per la definizione dell'evento di pioggia di progetto si può utilizzare lo ietogramma Chicago, sviluppato da Keifer e Chu nel 1957 con riferimento alla fognatura di Chicago. Tale ietogramma è caratterizzato da un picco d'intensità massima e da una intensità media per ogni durata, anche parziale, uguale a quella definita dalla curva di possibilità pluviometrica. Analiticamente lo ietogramma Chicago è descritto da due equazioni, rispettivamente riferite al ramo crescente prima del picco e al successivo ramo decrescente dopo il picco.

Il calcolo dell'altezza di precipitazione h [mm], in funzione del tempo t [ore], viene calcolato con le seguenti.

$$h(t) = r \cdot a \left[\left(\frac{t_r}{r} \right)^n - \left(\frac{t_r - t}{r} \right)^n \right] \quad per \quad t \le t_r$$

$$h(t) = r \cdot a \cdot \left(\frac{t_r}{r}\right)^n + a \cdot (1 - r) \cdot \left(\frac{t - t_r}{1 - r}\right)^n \quad per \ t_r < t \le t_p$$

Per durate superiori alla durata della precipitazione t_p esso rimane costante.

h [mm]: altezza di precipitazione

a [mm/oraⁿ]: parametro della linea segnalatrice di pioggia

n [-]: coefficiente di scala della linea segnalatrice di pioggia

r [-]: coefficiente di posizione del picco di precipitazione rispetto alla durata della pioggia

t [ore]: generico istante di calcolo

tp [ore]: durata della precipitazione

 t_r [ore]: tempo del picco di precipitazione pari a $t_p \cdot r$

I parametri a ed n adottati sono quelli che fanno riferimento alla durata della precipitazione di progetto.

Il range di applicazione del coefficiente di posizione risulta $0 \le r \le 1$. La sua posizione all'interno della durata complessiva θ dell'evento può essere scelta sulla base di indagini statistiche relative alla zona in esame, oppure in mancanza di informazioni si può porre r=0,4 valore medio che risulta dagli studi in materia riportati in letteratura.

Sulla base di tali formule l'intensità di precipitazione i [mm/h], al generico istante t [ore], viene calcolato con la seguente.

$$i(t) = \frac{h(t) - h(t - \Delta t)}{\Delta t}$$

i [mm/ora]: intensità di precipitazione

∆t [ore]: passo di calcolo dell'intensità di precipitazione posto pari a 1 min.

<u>Ietogramma di pioggia netto</u>

Lo ietogramma di pioggia netto viene calcolato mediante il metodo percentuale, esso risulta essere, pertanto, dato dalla seguente formula:

$$i_n(t) = \varphi \cdot i(t)$$

 i_n [mm/ora]: intensità di pioggia netta i [mm/ora]: intensità di pioggia lorda

 φ [-]: coefficiente di afflusso

Idrogramma in ingresso all'invaso

L'idrogramma in ingresso all'invaso viene calcolato come somma degli idrogrammi delle singole aree.

Nello specifico si adotta il modello cinematico, ipotizzando una curva area tempi lineare.

Le equazioni generali di riferimento sono, in forma discretizzata, le seguenti.

$$\begin{cases} q_k = \sum_{j=1}^k p_j \cdot IUH_{k-j+1} \cdot \Delta t \\ p_j = \frac{2,78}{1000} \cdot i_{n,j} \cdot A \\ IUH_{k-j+1} = \frac{1}{A} \cdot \frac{A_{k-j+1}}{\Delta t} \end{cases}$$

 $q_k [m^3/s]$: portata all'istante di tempo $t = k \cdot \Delta t$

 p_j [m^3/s]: volume di pioggia netta all'istante di tempo $t = j \cdot \Delta t$

 $i_{n,j}$ [mm/ora]: intensità di pioggia netta all'istante di tempo $t=j\cdot \Delta t$

∆t [ore]: intervallo di tempo considerato, pari ad 1 minuto

 IUH_{k-j+1} [-]: idrogramma istantaneo unitario all'istante di tempo $t = (k - j + 1) \cdot \Delta t$

 A_{k-j+1} [ha]: porzione di bacino alla sezione di chiusura all'istante di tempo $t = (k - j + 1) \cdot \Delta t$

A [ha]: area totale dell'intervento

In mancanza d'indicazioni specifiche, si consideri la curva aree-tempi lineare, caso particolare per cui l'idrogramma istantaneo unitario (IUH) risulta costante nel tempo e pari:

$$IUH_{k-j+1} = \frac{1}{t_c}$$

t_c [ore]: tempo di corrivazione

Il tempo di corrivazione t_c , nelle reti di drenaggio urbano può essere calcolato come:

$$t_c = t_e + \frac{t_r}{1,5}$$

t_e [ore]: tempo di entrata in rete

t_r [ore]: tempo di rete del percorso idraulicamente più lungo a monte della sezione di calcolo

1,5: coefficiente di taratura

Il tempo di rete t_r si può calcolare come, il valore massimo di percorrenza di tutti i percorsi possibili:

$$t_r = max_j \left\{ \sum_{l} \frac{L_{i,j}}{V_{r,i,j}} \right\}$$

j [-]: j-esimo percorso possibile lungo la rete fino alla sezione di calcolo considerata

i [-]: i-esimo ramo lungo il j-esimo percorso

 L_{ij} [m]: lunghezza dell'i-esimo ramo lungo il j-esimo percorso

 V_{rij} [m/s]: velocità a pieno riempimento dell'i-esimo ramo lungo il j-esimo percorso

La velocità a pieno riempimento V_r si può calcolare utilizzando l'equazione di Chezy-Strickler:

$$V_r = k_s \cdot R^{2/3} \cdot \sqrt{i}$$

R[m]: raggio idraulico, che per condotte circolari risulta pari a: R = D/4

D[m]: diametro interno della condotta

i [-]: pendenza della condotta

 k_s [$m^{1/3}/s$]: coefficiente di scabrezza della condotta di Strikler

Per piccole superfici, quali tetti e cortili interni, il tempo di corrivazione è generalmente molto piccolo e può essere assunto pari al tempo di ingresso in rete, per cui in assenza di dati specifici relativi al caso in esame, possono essere presi a riferimento i valori in tabella seguente.

Valori proposti in letteratura per la stima del tempo di entrata in rete

Tipi di bacini	t _e [min]
Centri urbani intensivi con tetti collegati direttamente alle canalizzazioni e con frequenti caditoie stradali	5 ÷ 7
Centri commerciali con pendenze modeste e caditoie meno frequenti	7 ÷ 10
Aree residenziali di tipo intensivo con piccole pendenze e caditoie poco frequenti	10 ÷ 15

Sulla base di quanto detto, nel caso in specie il tempo di corrivazione t_c è stato valutato in funzione delle caratteristiche di permeabilità e di estensione dell'area, assumendo i seguenti valori:

- Superficie occupata dai Pannelli Fotovoltaici t_c=15 min
- Superficie incolta non coperta da Pannelli t_c=30 min

Il tempo di base dell'idrogramma di piena t_b si calcola come $t_b = \theta + t_c$, dove θ è la durata della precipitazione.

Portata in uscita dall'invaso

Trattandosi di un sistema di scarico con luce a battente circolare tarata, per portare scaricate inferiori al valore di taratura $Q_{max,tar}$, si adotta la seguente legge di efflusso:

$$Q_u(H) = \mu \cdot A \cdot \sqrt{2g \cdot H}$$

Per portate superiori si adotta la seguente:

$$Q_{u} = Q_{max,tar}$$

 Q_u [m^3/s]: portata in uscita dall'invaso

H[m]: battente idrico

D [m]: diametro interno del foro

A $[m^2]$: area della bocca d'uscita = $\pi \cdot D^2/4$

 μ [-]: coefficiente di efflusso (μ = 0,6)

 $g [m/s^2]$: accelerazione di gravità

Calcolo del volume invasato con il metodo di dettaglio

Il calcolo del volume invasato dal sistema di laminazione e della portata scaricata viene descritto dall'equazioni di continuità seguente.

$$Q_e(t) - Q_u(t) = \frac{dW(t)}{dt}$$

 Q_e [m^3/s]: portata in ingresso all'invaso

 Q_u [m^3/s]: portata in uscita dall'invaso, scaricata o infiltrata

 $W[m^3]$: volume invasato

t [s]: tempo

Dove il volume invasato W, in ipotesi di forma prismatica, è dato dalla seguente relazione.

$$W = W[H(t)] = A_{inv} \cdot H(t)$$

H [m]: battente idrico all'interno dell'invaso

 A_{inv} [m^2]: area di base dell'invaso

Qu è la legge di efflusso dell'invaso che dipende dal battente idrico H, come descritto nel paragrafo precedente.

$$Q_u = Q_u \big(H(t) \big)$$

 Q_e è la portata in ingresso all'invaso relativa al tempo di ritorno di progetto ed alla durata critica di progetto.

Risolvendo numericamente l'equazione di continuità è possibile definire istante per istante l'altezza del battente idrico, il volume invasato e la portata scaricata o infiltrata.

Il volume minimo che deve avere l'invaso W_0 è dato dal massimo valore di tutti i volumi d'acqua invasati in tutti gli intervalli di tempo i-esimi.

$$W_0 = max_i(W_i)$$

7. CALCOLO DELLA PORTATA MASSIMA SCARICATA

La portata massima scaricata viene calcolata in base alle formule precedenti avendo assunto il battente idrico pari al suo massimo valore all'interno dell'invaso.

Nel caso si adottino più metodi di calcolo contemporaneamente si adotterà il valore maggiore di questi.

Per i metodi semplificati il battente idrico massimo H si calcola con la seguente relazione:

$$H = \frac{W}{A_{inv}}$$

 $W[m^3]$: volume invasato

 A_{inv} [m^2]: area in pianta dell'invaso

Per il metodo analitico il battente idrico viene calcolato come il massimo di tutti i tiranti idrici all'interno dell'invaso durante l'evento di piena.

8. TEMPO DI SVUOTAMENTO

Il tempo di svuotamento T_{sv} viene calcolato mediante la simulazione dinamica dell'invaso, come tempo intercorrente tra il termine dell'evento meteorico ed il tempo di completo svuotamento dell'invaso.

9. PRINCIPALI RISULTATI DEI CALCOLI

Si riportano di seguito i tabulati di calcolo che fanno riferimento alle metodologie ed ai criteri precedentemente descritti.

CARATTERISTICHE GENERALI

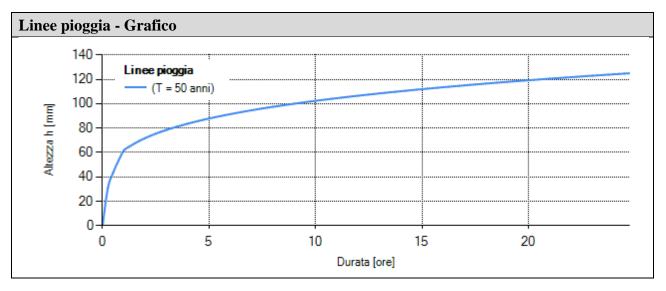
Comune di	Termini Imerese	Provincia	Palermo

Portata massima scaricabile			
Portata massima scaricabile	442,68	1/s	

Definizione aree						
Descrizione Tipo area		Superficie [m ²]	Coeff. Afflusso φ			
Superficie Pannelli Fotovoltaici	Area impermeabile	221338,0	1,00			
Superficie suolo agricolo	Area permeabile	402501,0	0,00			

Sup. totale intervento	$623839,0 \text{ m}^2$	Coeff. afflusso medio ponderale ϕ_{m}	0,3548
		-	

Per quanto concerne la determinazione della portata in ingresso, nel caso di studio, si è fatto riferimento ad una sollecitazione meteorica con tempo di ritorno **T di 50 anni**.


Un ulteriore parametro da fissare è la durata dell'evento di pioggia, che assume notevole importanza in tutti quei casi in cui entra in gioco la capacità d'invaso del sistema di infiltrazione.

In linea del tutto generale, vanno scelte brevi durate (da 10 minuti ad un'ora), e quindi elevate intensità di pioggia, nel caso di suoli molto permeabili e di piccole aree drenate; al contrario, lunghe durate (da qualche ora ad un giorno), e quindi basse intensità di pioggia, nel caso di suoli con permeabilità modesta.

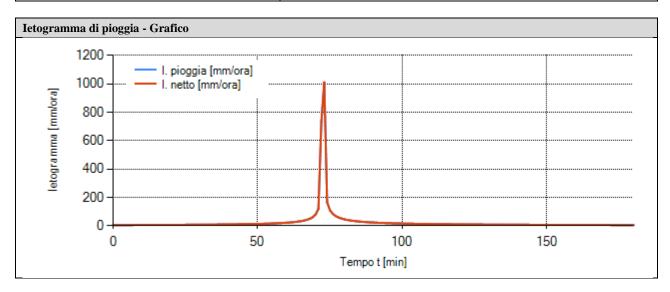
Nel caso in esame, la durata critica della pioggia **tp, è stata scelta pari a 3 ore** in funzione dell'estensione delle aree in esame e delle caratteristiche di permeabilità del sottosuolo.

LINEE SEGNALATRICI DI PROBABILITÀ PLUVIOMETRICA

Linee segnalatrici di probabilità pluviometrica						
Tempo di ritorno	TR	50	anni			
Coefficiente pluviometrico orario	a	61,70	mm/h ⁿ			
Coefficiente di scala	n	0,2200	-			
Coefficiente di scala (durata < 1 ora)	n_1	0,5000	-			

Linee pioggia - Risultati tabellari					
Durata	(T= 50 anni)				
[ore]	h [mm]				
0	0,00				
1	61,70				
2	71,86				
3 4	78,57				
4	83,70				
5	87,91				
6	91,51				
7	94,67				
8	97,49				
9	100,05				
10	102,40				
11	104,57				
12	106,59				
13	108,48				
14	110,26				
15	111,95				
16	113,55				
17	115,08				
18	116,53				
19	117,93				
20	119,26				
21	120,55				
22	121,79				
23	122,99				
24	124,15				

CARATTERISTICHE IDROLOGICHE AREE


Caratteristiche idrologiche					
Descrizione	Tipo area	Superficie A [m ²]	Coeff. Afflusso φ	T. corriv. t _c [min]	
Superficie Pannelli Fotovoltaici	Area impermeabile	221338,0	1,00	15	
Superficie suolo agricolo	Area permeabile	402501,0	0,00	30	

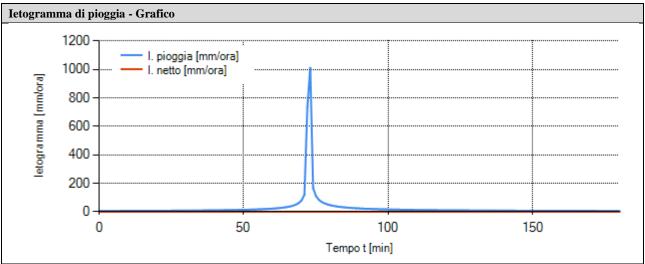
Superficie totale intervento: 623839,0 m² Valori medi 0,3548

IETOGRAMMA DI PIOGGIA

Lo ietogramma è costruito in modo tale che al suo interno si possano trovare eventi parziali il cui volume di precipitazione è fornito dalla curva di probabilità pluviometrica, e che pertanto è il più elevato valore che si può verificare (per l'area di progetto) relativamente al tempo di ritorno di 50 anni.

Definizione ietogramma di pioggia - Superficie Pannelli Fotovoltaici						
Durata pioggia di progetto (θ)	3,00	ore				
Coefficiente di posizione (r)	0,40 -					
Metodo di depurazione delle piogge	Metodo percentuale					

Ietogramma di pioggia - Risultati tabellari						
Tempo [min]	Intensità di pioggia [mm/h]	Int. di pioggia netta [mm/h]				
0	5,73	5,73				
5	6,06	6,06				
10	6,43	6,43				
15	6,87	6,87				
20	7,37	7,37				
25	7,97	7,97				
30	8,69	8,69				
35	9,58	9,58				
40	10,72	10,72				
43	11,56	11,56				
44	11,87	11,87				
45	12,21	12,21				
46	12,57	12,57				
47	12,95	12,95				
48	13,36	13,36				
49	13,80	13,80				
50	14,28	14,28				
51	14,79	14,79				
52	15,35	15,35				
53	15,96	15,96				
54	16,63	16,63				
55	17,37	17,37				
56	18,19	18,19				
57	19,09	19,09				
58	20,12	20,12				
59	21,27	21,27				
60	22,59	22,59				
61	24,11	24,11				


ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

VIXTINE IBINI 2 Te		O CHETTINISSETTI (CE)
62	25,88	25,88
63	27,99	27,99
64	30,53	30,53
65	33,66	33,66
66	37,65	37,65
67	42,92	42,92
68	50,24	50,24
69	61,23	61,23
70	79,98	79,98
71	121,24	121,24
72	735,30	735,30
73	1010,37	1010,37
74	166,33	
		166,33
75	109,73	109,73
76	84,01	84,01
77	68,92	68,92
78	58,88	58,88
79	51,66	51,66
80	46,19	46,19
81	41,88	41,88
82	38,40	38,40
83	35,51	35,51
84	33,07	33,07
85	30,99	30,99
86	29,18	29,18
87	27,60	27,60
88		26,20
	26,20	
89	24,95	24,95
90	23,83	23,83
91	22,82	22,82
92	21,90	21,90
93	21,06	21,06
94	20,29	20,29
95	19,59	19,59
96	18,93	18,93
97	18,33	18,33
98	17,76	17,76
99	17,24	17,24
100	16,75	16,75
101	16,29	16,29
102	15,86	15,86
	,	
103	15,45	15,45
104	15,06	15,06
105	14,70	14,70
106	14,36	14,36
107	14,03	14,03
108	13,72	13,72
109	13,43	13,43
110	13,15	13,15
111		12,88
	12,88	
112	12,63	12,63
113	12,38	12,38
114	12,15	12,15
115	11,93	11,93
116	11,71	11,71
117	11,51	11,51
118	11,31	11,31
119		
	11,12	11,12
120	10,93	10,93
121	10,76	10,76
122	10,59	10,59
123	10,42	10,42
124	10,27	10,27
125	10,11	10,11
126	9,97	9,97
127	9,82	9,82
128	9,68	9,68
	· · · · · · · · · · · · · · · · · · ·	

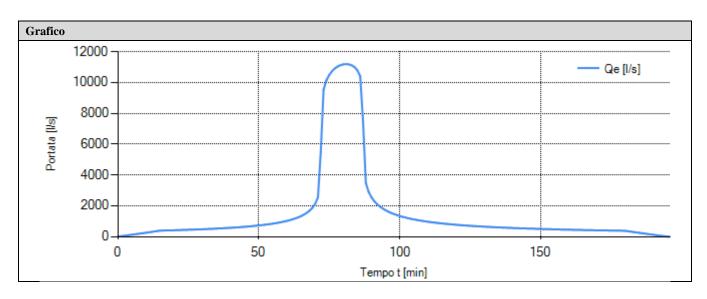
ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

129	9,55	9,55
130	9,42	9,42
131	9,30	9,30
132	9,17	9,17
135	8,83	8,83
140	8,31	8,31
145	7,86	7,86
150	7,46	7,46
155	7,11	7,11
160	6,79	6,79
165	6,50	6,50
170	6,24	6,24
175	6,00	6,00
180	5,78	5,78

Definizione ietogramma di pioggia - Superficie suolo agricolo					
Durata pioggia di progetto (θ)	3,00	ore			
Coefficiente di posizione (r)	0,40 -				
Metodo di depurazione delle piogge	Metodo percentuale				

Iotogramma di ni	oggio Digultati taballari							
	Ietogramma di pioggia - Risultati tabellari							
Tempo [min]	Intensità di pioggia [mm/h]	Int. di pioggia netta [mm/h]						
0	5,73	0,00						
5	6,06	0,00						
10	6,43	0,00						
13	6,69	0,00						
14	6,77	0,00						
15	6,87	0,00						
16	6,96	0,00						
17	7,06	0,00						
18	7,16	0,00						
19	7,26	0,00						
20	7,37	0,00						
21	7,48	0,00						
22	7,60	0,00						
23	7,72	0,00						
24	7,84	0,00						
25	7,97	0,00						
26	8,10	0,00						
27	8,24	0,00						
28	8,39	0,00						
29	8,54	0,00						
30	8,69	0,00						
31	8,86	0,00						
32	9,03	0,00						
33	9,20	0,00						
34	9,39	0,00						
35	9,58	0,00						
36	9,79	0,00						
37	10,00	0,00						
38	10,23	0,00						
39	10,47	0,00						
40	10,72	0,00						
41	10,98	0,00						
42	11,26	0,00						
43	11,56	0,00						
44	11,87	0,00						
45	12,21	0,00						
46	12,57	0,00						
47	12,95	0,00						

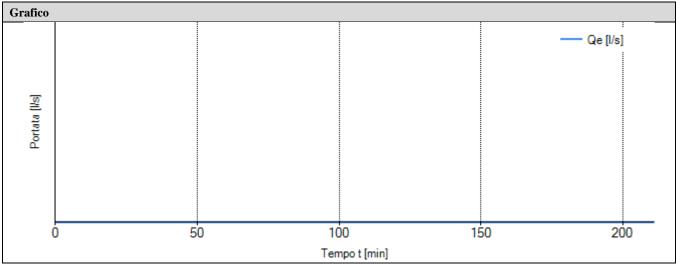
ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)


V17(17)(E)(E)(V1 Z 7		00 6/12//11/13/32/1//(62)
48	13,36	0,00
49	13,80	0,00
50	14,28	0,00
51	14,79	0,00
52	15,35	0,00
53	15,96	0,00
54	16,63	0,00
55	17,37	0,00
56	18,19	0,00
57	19,09	0,00
58	20,12	0,00
59	21,27	0,00
60	22,59	0,00
61	24,11	0,00
62	25,88	0,00
63	27,99	0,00
64	30,53	0,00
65	33,66	0,00
66	37,65	0,00
67	42,92	0,00
68	50,24	0,00
69	61.02	
	61,23	0,00
70	79,98	0,00
71	121,24	0,00
	,	
72	735,30	0,00
73	1010,37	0,00
74	166,33	0,00
75	109,73	0,00
76	84,01	0,00
77	68,92	0,00
78	58,88	0,00
79	51,66	0,00
80	46,19	0,00
81	41,88	0,00
82	38,40	0,00
83	35,51	0,00
84	33,07	0,00
85	30,99	0,00
		1
86	29,18	0,00
87	27,60	0,00
88	26,20	0,00
89	24,95	0,00
90	23,83	0,00
91	22,82	0,00
92	21,90	0,00
93	21,06	0,00
94		
	20,29	0,00
95	19,59	0,00
96	18,93	0,00
97	18,33	0,00
98	17,76	0,00
99	17,24	0,00
100		0,00
	16,75	
101	16,29	0,00
102	15,86	0,00
103	15,45	0,00
104	15,06	0,00
105	14,70	0,00
	14,36	0,00
106		
107	14,03	0,00
108	13,72	0,00
109	13,43	0,00
110	13,15	0,00
111	12,88	0,00
112		
	12,63	0,00
113	12,38	0,00
114	12,15	0,00
**1	12,10	0,00

ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

VIA TALADINI 24	O CALTANISSETTA - 9310	OU CALTANISSETTA (CL)
115	11,93	0,00
116	11,71	0,00
117	11,51	0,00
118	11,31	0,00
119	11,12	0,00
120	10,93	0,00
121	10,76	0,00
122	10,59	0,00
123	10,42	0,00
124	10,27	0,00
125	10,11	0,00
126	9,97	0,00
127	9,82	0,00
128	9,68	0,00
129	9,55	0,00
130	9,42	0,00
131	9,30	0,00
132	9,17	0,00
133	9,05	
		0,00
134	8,94	0,00
135	8,83	0,00
136	8,72	0,00
137	8,61	0,00
138	8,51	0,00
139	8,41	0,00
140	8,31	0,00
141	8,22	0,00
142	8,13	0,00
143	8,04	0,00
144	7,95	0,00
145	7,86	0,00
146	7,78	0,00
147	7,70	0,00
148	7,62	0,00
149	7,54	0,00
150	7,46	0,00
151	7,39	0,00
152	7,32	0,00
153	7,25	0,00
154	7,18	0,00
155	7,11	0,00
	7,04	
156		0,00
157	6,98	0,00
158	6,91	0,00
159	6,85	0,00
160	6,79	0,00
161	6,73	0,00
162	6,67	0,00
163	6,61	0,00
164	6,56	0,00
165	6,50	0,00
166	6,45	0,00
167	6,39	0,00
168	6,34	0,00
169	6,29	0,00
170	6,24	0,00
171	6,19	0,00
172	6,14	0,00
173		
	6,09	0,00
174	6,05	0,00
175	6,00	0,00
176	5,96	0,00
177	5,91	0,00
178	5,87	0,00
179	5,82	0,00
180		
100	5,78	0,00

IDROGRAMMA DI PIENA


Area Superficie Pannelli Fotovoltaici						
Tipo area	Area impermeabile					
Superficie	221338,0	m²				
Coefficiente di afflusso φ	1,00	-				
Tempo corrivazione t _c	15	min				

Risultati tabella	ari									
Tempo [min]	0	5	10	15	20	25	30	35	40	43
Portata Q _e [l/s]	0,00	121,51	250,27	387,49	412,88	442,50	477,41	519,45	571,14	608,35
Tempo [min]	44	45	46	47	48	49	50	51	52	53
Portata Q _e [l/s]	622,01	636,45	651,66	667,74	684,81	702,90	722,18	742,69	764,64	788,14
Tempo [min]	54	55	56	57	58	59	60	61	62	63
Portata Q _e [l/s]	813,41	840,69	870,27	902,39	937,50	976,06	1018,64	1065,98	1119,02	1179,03
Tempo [min]	64	65	66	67	68	69	70	71	72	73
Portata Q _e [l/s]	1247,66	1327,16	1420,94	1534,03	1674,65	1857,61	2114,44	2537,17	5475,16	9537,29
Tempo [min]	74	75	76	77	78	79	80	81	82	83
Portata Q _e [l/s]	10132,35	10489,81	10735,52	10912,08	11038,79	11125,47	11176,87	11194,22	11175,68	11115,26
Tempo [min]	84	85	86	87	88	89	90	91	92	93
Portata Qe [l/s]	10999,74	10798,78	10421,14	7518,06	3480,86	2900,90	2548,53	2297,52	2104,64	1949,50
Tempo [min]	94	95	96	97	98	99	100	101	102	103
Portata Q _e [l/s]	1820,81	1711,70	1617,55	1535,22	1462,41	1397,47	1339,06	1286,18	1238,02	1193,93
Tempo [min]	104	105	106	107	108	109	110	111	112	113
Portata Qe [l/s]	1153,36	1115,90	1081,20	1048,91	1018,81	990,66	964,25	939,43	916,05	893,98
Tempo [min]	114	115	116	117	118	119	120	121	122	123
Portata Q _e [l/s]	873,10	853,33	834,54	816,69	799,71	783,55	768,08	753,32	739,20	725,67
Tempo [min]	124	125	126	127	128	129	130	131	132	135
Portata Q _e [l/s]	712,70	700,23	688,30	676,77	665,69	655,03	644,73	634,85	625,25	598,42
Tempo [min]	140	145	150	155	160	165	170	175	180	185
Portata Q _e [l/s]	559,08	525,28	495,78	469,90	446,80	426,17	407,55	390,73	375,43	245,35
Tempo [min]	190	195								
Portata	120,36	0,00								

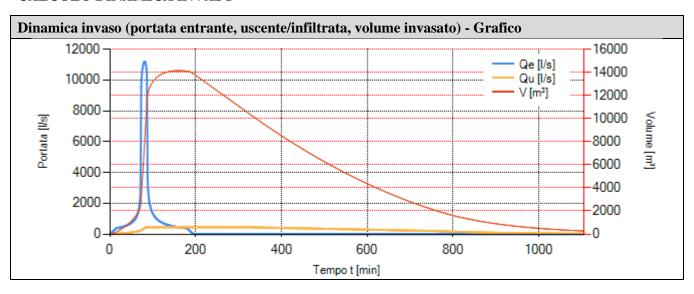
						_
Oe []/s]						l

Area Superficie suolo agricolo						
Tipo area	Area permeabile					
Superficie	402501,0	m²				
Coefficiente di afflusso φ	0,00	-				
Tempo corrivazione t _c	30	min				

Risultati tabella	ari									
Tempo [min]	0	5	10	13	14	15	16	17	18	19
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	20	21	22	23	24	25	26	27	28	29
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	30	31	32	33	34	35	36	37	38	39
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	40	41	42	43	44	45	46	47	48	49
Portata Qe [1/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	50	51	52	53	54	55	56	57	58	59
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	60	61	62	63	64	65	66	67	68	69
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	70	71	72	73	74	75	76	77	78	79
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	80	81	82	83	84	85	86	87	88	89
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	90	91	92	93	94	95	96	97	98	99
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	100	101	102	103	104	105	106	107	108	109
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	110	111	112	113	114	115	116	117	118	119
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	120	121	122	123	124	125	126	127	128	129
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	130	131	132	133	134	135	136	137	138	139
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	140	141	142	143	144	145	146	147	148	149

ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	150	151	152	153	154	155	156	157	158	159
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	160	161	162	163	164	165	166	167	168	169
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	170	171	172	173	174	175	176	177	178	179
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	180	181	182	183	184	185	186	187	188	189
Portata Qe [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tempo [min]	190	191	192	195	200	205	210			
Portata Q _e [l/s]	0,00	0,00	0,00	0,00	0,00	0,00	0,00			


DIMENSIONAMENTO SISTEMA D'INVARIANZA

Metodo delle sole piogge							
Durata critica	Dw	2,26	ore				
Volume invaso minimo W ₀ 12738,1 m ³							
$D_{w} = \left(\frac{1000 \cdot Q_{umax}}{2,78 \cdot \varphi_{m} \cdot a \cdot n \cdot A}\right)^{\frac{1}{n-1}}$							
	$W_0=10\cdot\varphi_m$	$\cdot a \cdot D_w^n \cdot A - 3.6 \cdot Q_{umax} \cdot D_w$					

Metodo analitico di dettaglio						
Durata critica	Dw	3,00	ore			
Battente idrico massimo	H _{max}	1,57	m			
Volume invaso minimo	W	14146,22	m^3			
Metodologia: Modello cinematico, mediante	integrale d	li convoluzione, con curva area tempi lineare e ie	togramma tipo			

34

CALCOLO DINAMICA INVASO

isultati ta	bellari				
Tempo [min]	Portata entrante Q _e [l/s]	Portata scaricata/infiltrata Qu [l/s]	Vol. utile invasato W [m³]	Battente idrico H [m]	
0	0,00	0,00	0,00	0,00	
5	121,51	1,74	17,88	0,00	
10	250,27	7,04	72,23	0,01	
15	387,49	16,02	164,32	0,02	
20	412,88	27,09	277,83	0,03	
23	430,07	33,95	348,18	0,04	
24	436,18	36,27	372,06	0,04	
25	442,50	38,62	396,18	0,04	
26	448,98	41,00	420,53	0,05	
27	455,71	43,40	445,14	0,05	
28	462,68	45,82	470,01	0,05	
29	469,94	48,28	495,17	0,06	
30	477,41	50,76	520,62	0,06	
31	485,20	53,27	546,38	0,06	
32	493,28	55,81	572,46	0,06	
33	501,65	58,39	598,88	0,07	
34	510,39	61,00	625,66	0,07	
35	519,45	63,64	652,82	0,07	
36	528,93	66,33	680,37	0,08	
37	538,77	69,06	708,34	0,08	
38	549,07	71,83	736,75	0,08	
39	559,86	74,64	765,62	0,09	
40	571,14	77,51	794,99	0,09	
41	582,95	80,42	824,87	0,09	
42	595,34	83,39	855,31	0,10	
43	608,35	86,41	886,32	0,10	
44	622,01	89,49	917,96	0,10	
45	636,45	92,64	950,25	0,11	
46	651,66	95,86	983,23	0,11	
47	667,74	99,15	1016,97	0,11	
48	684,81	102,51	1051,49	0,12	
49	702,90	105,96	1086,87	0,12	

ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

	VI Z 10 CALIANISSET IA	33100 C/IE// IIVISSE/	(/	
50	722,18	109,50	1123,16	0,12
51	742,69	113,13	1160,43	0,13
52	764,64	116,87	1198,75	0,13
53	788,14	120,72	1238,20	0,14
54	813,41	124,68	1278,89	0,14
55	840,69	128,78	1320,91	0,15
56	870,27	133,02	1364,38	0,15
57	902,39	137,41	1409,45	0,16
58	937,50	141,97	1456,26	0,16
59	976,06	146,73	1505,01	0,17
60	1018,64	151,69	1555,90	0,17
61	1065,98	156,88	1609,18	0,18
62	1119,02	162,34	1665,15	0,19
63	1179,03	168,09	1724,18	0,19
64	1247,66	174,19	1786,71	0,20
65	1327,16	180,68	1853,31	0,21
66	1420,94	187,64	1924,70	0,21
67	1534,03	195,17	2001,87	0,22
68	1674,65	199,36	2086,29	0,23
69	1857,61	203,79	2180,17	0,24
70	2114,44	208,73	2286,95	0,25
71	2537,17	214,44	2413,81	0,27
72	5475,16	224,30	2641,01	0,29
73	9537,29	242,12	3077,39	0,34
74	10132,35	263,77	3652,31	0,41
75	10489,81	284,69	4254,52	0,47
76	10735,52	304,70	4873,59	0,54
77	10733,32	323,81	5504,17	0,61
77	110312,08	342,08		0,68
79	11038,79	359,56	6142,72 6786,60	0,75
80	11176,87			0,73
81	11176,87	376,31 392,37	7433,59	0,83
82	11175,68	407,78	8081,66	·
83	·		8728,75	0,97
84	11115,26	422,55	9372,57	1,04
85	10999,74	436,69	10010,25	1,11
	10798,78	442,68	10637,82	1,18
86 87	10421,14	442,68	11247,86	1,25
	7518,06	442,68	11759,47	1,31
88 89	3480,86	442,68	12062,88	1,34
	2900,90	442,68	12227,77	1,36
90	2548,53	442,68	12364,69	1,37
91	2297,52	442,68	12483,51	1,39
92	2104,64	442,68	12589,02	1,40
93	1949,50	442,68	12684,08	1,41
94	1820,81	442,68	12770,63	1,42
95	1711,70	442,68	12850,04	1,43
96	1617,55	442,68	12923,36	1,44
97	1535,22	442,68	12991,38	1,44
98	1462,41	442,68	13054,75	1,45
99	1397,47	442,68	13113,99	1,46
100	1339,06	442,68	13169,52	1,46
101	1286,18	442,68	13221,72	1,47
102	1238,02	442,68	13270,88	1,47
103	1193,93	442,68	13317,28	1,48
104	1153,36	442,68	13361,14	1,48

ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

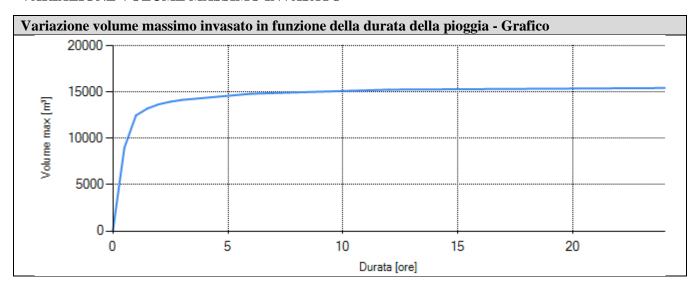
	VI 2 10 CALMINISSETTA	33100 C/IE// IIVI33E/	(/	
105	1115,90	442,68	13402,66	1,49
106	1081,20	442,68	13442,01	1,49
107	1048,91	442,68	13479,35	1,50
108	1018,81	442,68	13514,82	1,50
109	990,66	442,68	13548,55	1,51
110	964,25	442,68	13580,63	1,51
111	939,43	442,68	13611,18	1,51
112	916,05	442,68	13640,29	1,52
113	893,98	442,68	13668,03	1,52
114	873,10	442,68	13694,48	1,52
115	853,33	442,68	13719,71	1,52
116	834,54	442,68	13743,78	1,53
117	816,69	442,68	13766,76	1,53
118	799,71	442,68	13788,69	1,53
119	783,55	442,68	13809,63	1,53
120	768,08	442,68	13829,62	1,54
121	753,32	442,68	13848,70	1,54
122	739,20	442,68	13866,91	1,54
123	725,67	442,68	13884,30	1,54
124	712,70	442,68	13900,89	1,54
125	700,23	442,68	13916,72	1,55
126	688,30	442,68	13931,81	1,55
127	676,77	442,68	13946,20	1,55
128	665,69	442,68	13959,91	1,55
129	655,03	442,68	13972,98	1,55
130	644,73	442,68	13985,41	1,55
131	634,85	442,68	13997,23	1,56
132	625,25	442,68	14008,48	1,56
133	615,98	442,68	14019,15	1,56
134	607,03	442,68	14029,28	1,56
135	598,42	442,68	14038,88	1,56
136	590,05	442,68	14047,98	1,56
137	581,93	442,68	14056,58	1,56
138	574,09	442,68	14064,70	1,56
139	566,46	442,68	14072,35	1,56
140	559,08	442,68	14079,56	1,56
141	551,90	442,68	14086,33	1,57
142	544,97	442,68	14092,67	1,57
143	538,24	442,68	14098,61	1,57
144	531,68	442,68	14104,14	1,57
145	525,28	442,68	14109,29	1,57
146	519,04	442,68	14114,06	1,57
147	513,01	442,68	14118,46	1,57
148	507,15	442,68	14122,51	1,57
149	501,40	442,68	14126,20	1,57
150	495,78	442,68	14129,56	1,57
151	490,33	442,68	14132,58	1,57
152	485,04	442,68	14135,28	1,57
153	479,87	442,68	14137,67	1,57
154	474,82	442,68	14139,74	1,57
155	469,90	442,68	14141,53	1,57
156	465,06	442,68	14143,01	1,57
157	460,34	442,68	14144,21	1,57
158	455,71	442,68	14145,14	1,57
159	451,19	442,68	14145,78	1,57

ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

		33100 C/IE//IN133E/	(-)	
160	446,80	442,68	14146,16	1,57
161	442,50	442,68	14146,22	1,57
162	438,27	442,68	14146,14	1,57
163	434,13	442,68	14145,75	1,57
164	430,11	442,68	14145,12	1,57
165	426,17	442,68	14144,25	1,57
166	422,31	442,68	14143,14	1,57
167	418,50	442,68	14141,80	1,57
168	414,77	442,68	14140,24	1,57
169	411,12	442,68	14138,46	1,57
170	407,55	442,68	14136,45	1,57
175	390,73	442,68	14123,35	1,57
180	375,43	442,68	14105,44	1,57
185	245,35	442,68	14065,63	1,56
190	120,36	442,68	13987,56	1,55
195	0,00	442,68	13872,70	1,54
200	0,00	442,68	13739,90	1,53
205	0,00	442,68	13607,09	1,51
210	0,00	442,68	13474,29	1,50
215	0,00	442,68	13341,48	1,48
220	0,00	442,68	13208,68	1,47
225	0,00	442,68	13075,88	1,45
230	0,00	442,68	12943,07	1,44
235	0,00	442,68	12810,27	1,42
240	0,00	442,68	12677,46	1,41
245	0,00	442,68	12544,66	1,39
250	0,00	442,68	12411,86	1,38
255	0,00	442,68	12279,05	1,36
260	0,00	442,68	12146,25	1,35
265	0,00	442,68	12013,44	1,33
270	0,00	442,68	11880,64	1,32
275	0,00	442,68	11747,83	1,31
280	0,00	442,68	11615,03	1,29
285	0,00	442,68	11482,23	1,28
290	0,00	442,68	11349,42	1,26
295	0,00	442,68	11216,62	1,25
300	0,00	442,68	11083,81	1,23
305	0,00	442,68	10951,01	1,22
310	0,00	442,68	10818,21	1,20
315	0,00	442,68	10685,40	1,19
320	0,00	442,68	10552,60	1,17
325	0,00	442,68	10419,79	1,16
330	0,00	442,68	10286,99	1,14
335	0,00	439,82	10154,61	1,13
340	0,00	436,97	10023,10	1,11
345	0,00	434,11	9892,44	1,10
350	0,00	431,25	9762,63	1,08
355	0,00	428,39	9633,69	1,07
360	0,00	425,54	9505,60	1,06
365	0,00	422,68	9378,37	1,04
370	0,00	419,82	9251,99	1,03
375	0,00	416,96	9126,47	1,01
380	0,00	414,11	9001,81	1,00
385	0,00	411,25	8878,01	0,99
390	0,00	408,39	8755,07	0,97
		.00,00	3.00,01	· · · ·

ID&A S.R.L. VIA PALADINI 246 CALTANISSETTA - 93100 CALTANISSETTA (CL)

395	0,00	405,53	8632,98	0,96
400	0,00	402,68	8511,75	0,95
405	0,00	399,82	8391,37	0,93
410	0,00	396,96	8271,86	0,92
415	0,00	394,10	8153,20	0,91
420	0,00	391,25	8035,40	0,89
425	0,00	388,39	7918,45	0,88
430	0,00	385,53	7802,36	0,87
435	0,00	382,67	7687,13	0,85
440	0,00	379,82	7572,76	0,84
450	0,00	374,10	7346,59	0,82
480	0,00	356,96	6688,64	0,74
510	0,00	339,81	6061,55	0,67
540	0,00	322,67	5465,32	0,61
570	0,00	305,52	4899,95	0,54
600	0,00	288,38	4365,45	0,49
630	0,00	271,23	3861,80	0,43
660	0,00	254,09	3389,02	0,38
690	0,00	236,94	2947,09	0,33
720	0,00	219,80	2536,03	0,28
750	0,00	202,65	2155,83	0,24
780	0,00	176,59	1811,28	0,20
810	0,00	148,16	1519,76	0,17
840	0,00	124,32	1275,15	0,14
870	0,00	104,31	1069,91	0,12
900	0,00	87,52	897,71	0,10
930	0,00	73,43	753,22	0,08
960	0,00	61,61	631,98	0,07
990	0,00	51,70	530,27	0,06
1020	0,00	43,38	444,92	0,05
1050	0,00	36,39	373,31	0,04
1080	0,00	30,54	313,22	0,03
1106	0,00	26,23	269,03	0,03


VERIFICA SISTEMA D'INVARIANZA

Dimensioni invaso			
Superficie pianta invaso	Ainv	9000,00	m^2

Verifiche invaso							
		Valore Progetto		Valore Ammissibile		VERIFICA	
Altezza utile invaso	Н	1,60	≥	1,57	m	Positiva	
Volume utile invaso	W	14400,00	≥	14146,22	m^3	Positiva	
Tempo di svuotamento	T _{sv}	8,9	≤	9	ore	Positiva	
Portata massima scaricata	Q	442,68	≤	442,68	1/s	Positiva	

Sistema di scarico					
Tipologia di svuotamento	Luce a battente circolare tarata				
A[m²]					
Battente idrico utile massimo	Н	1,60	m		
Portata massima scaricabile	Q _{u,max}	442,68	1/s		
Area della bocca d'uscita	A	0,1558	m^2		

VARIAZIONE VOLUME MASSIMO INVASATO

Risultati tabellari	
Durata pioggia	Volume
[ore]	$[m^3]$
0,0	0,00
0,5	8997,49
1,0	12461,53
1,5	13222,01
2,0	13676,73
2,5	13953,58
3,0	14146,22
6,0	14809,11
12,0	15259,61
24.0	15436.08

10. MISURE COMPENSATIVE E/O DI MITIGAZIONE PROPOSTE

DESCRIZIONE DELLA SOLUZIONE PROGETTUALE PREVISTA

La soluzione progettuale di previsione prevede la realizzazione di n.03 vasche di laminazione con fondo permeabile e sponde in terra, opportunamente sagomata.

Le acque meteoriche saranno raccolte, in una rete interna la quale le scaricherà nelle vasche di laminazione.

Il dimensionamento della rete interna sarà eseguito nella eventuale fase esecutiva.

Gli invasi complessivamente dovranno avere capacità minima di 14400,0 m³.

Considerando la conformazione plani-altimetrica dell'area, si ritiene che l'altezza utile di ciascuna vasca non possa essere superiore a 1,60 m, per tener conto della quota di sbocco, nella vasca, della rete di raccolta interna e della quota di uscita della tubazione di scarico.

Il manufatto di scarico di ciascuna vasca di laminazione sarà costituito da un pozzetto prefabbricato in cui è alloggiato il dispositivo di regolazione dello scarico costituito da uno stramazzo dotato sul fondo da una bocca di taratura opportunamente dimensionata per permettere la portata prevista nei calcoli idraulici.

Lo scarico avverrà, tramite un collettore e l'opera di scarico dovrà prevedere la realizzazione di dispositivi di protezione per evitare l'erosione spondale.

L'organo di controllo del flusso sarà costituito da una tubazione avente diametro così determinato:

$$A = Q_{i \text{ max}}/(\mu\sqrt{2gh})$$

dove:

A = area sezione tubo [m²]

$$Q_{i \text{ max}} = Q_{u, \text{ max}}/3 = 442,68 \text{ l/s}/3 = 147,56 \text{ l/s} = 0,148 \text{ m}^3/\text{s}$$

 $\mu = 0.60$ coefficiente sperimentale di efflusso

 $g = 9.81 \text{ m/s}^2$ accelerazione di gravità

h = 1,60 m tirante utile

Si ricava:

A = 0.148/
$$(0.60(\sqrt{2.9.81 \cdot 1.60})) = 0.044 \text{ m}^2$$
 che corrisponde a 0.132 m²/3.

A tale vale dell'area corrisponde un diametro pari a:

$$\phi = \sqrt{(4A/\pi)} = \sqrt{(4.0,044/3,14) \times 100 = 23,67}$$
 cm

Si prevede quindi per ogni invaso la posa di un tubo DN 250 (diametro nominale interno).

Ciò determinerà un tempo di svuotamento di ciascun invaso, come da tabella, pari a circa 8,9 ore ≤ 9 ore.

Al fine di mantenere nel tempo l'efficacia del sistema sarà necessario svolgere le seguenti operazioni di manutenzione:

• controllo del funzionamento del sistema di scarico nei corpi recettori almeno 2 volte l'anno;

- verifica periodica, almeno 2 volte l'anno e comunque dopo eventi che hanno provocato l'invaso dei sistemi di raccolta, del funzionamento dei sistemi prima dello scarico nei corpi recettori;
- pulizia semestrale dei canali di scolo e dell'eventuale canaletta di scolo sul fondo della vasca;
- controllo, dopo ogni evento, dello stato del pozzetto in cui è posizionato il manufatto regolatore di scarico e rimozione, quando necessario, del materiale depositato in esso (pulizia della griglia, del fondo pozzetto e della bocca di taratura).

11. CONCLUSIONI DELLO STUDIO DI INVARIANZA IDRAULICA

In riferimento al progetto di realizzazione di un impianto agrivoltaico integrato ecocompatibile denominato "Lettiga" da realizzarsi in località Termini Imerese, dallo studio effettuato, si può affermare che l'adozione del dimensionamento proposto dei due volumi d'invaso in bacino di detenzione e organo di regolazione della portata in uscita, consente di non sovraccaricare il sistema di recapito esistente e modificare l'attuale assetto idraulico in condizioni di deflusso di piena.