

REGIONE SICILIA PROVINCIA DI CATANIA

COMUNE DI RAMACCA COMUNE DI PATERNÒ **COMUNE DI BELPASSO**

OGGETTO

PROGETTO DI UN IMPIANTO AGRO-FOTOVOLTAICO PER UNA POTENZA NOMINALE DI 16,315 MWp (13 MW IN IMMISSIONE) INTEGRATO DA UN SISTEMA DI ACCUMULO DA 6,66 MW E RELATIVE OPERE DI CONNESSIONE DA REALIZZARSI NEI COMUNI DI RAMACCA, PATERNÒ E BELPASSO (CT)

PROGETTO DEFINITIVO

PROPONENTE

TITOLO

RELAZIONE TECNICA E CALCOLO PRELIMINARE **DEGLI IMPIANTI**

PROGETTISTA

Dott. Ing. Girolamo Gorgone

Collaboratori

Dott. Carmelo Danilo Pileri

Ing. Gioacchino Ruisi

Dott. Haritiana Ratsimba All. Arch. Flavia Termini Dott. Giuseppina Brucato

CODICE ELABORATO

XL_R_03_A_D

SCALA

n°.Rev	DESCRIZIONE REVISIONE	DATA	ELABORATO	VERIFICATO	APPROVATO

Rif. PROGET	TO
-------------	----

NOME FILE DI STAMPA

SCALA DI STAMPA DA FILE

Pagina | 1

XL_R_03_A_D

Sommario

1.	. PREMESSA	3
2.	. DESCRIZIONE GENERALE DELL'IMPIANTO	4
3.	. RIFERIMENTI NORMATIVI GENERALI	6
	3.1 Normativa di riferimento	6
4.	. TERMINOLOGIA	8
5.	. CRITERI GENERALI DI PROGETTAZIONE	9
	5.1 Ambito degli impianti trattati	9
6.	. COMPONENTI IMPIANTO FV	9
	6.1 Moduli fotovoltaici	9
	6.2 Power Station SUN e STORAGE	13
	6.3 Quadri di parallelo BT	28
	6.4 Quadri servizi ausiliari	28
	6.5 String-box	28
7.	. VERIFICHE ELETTRICHE DI ACCOPPIAMENTO MODULI/BATTERIE CON INVERTER	31
	7.1 Verifiche stringhe con <i>inverter</i> solari "SUN"	31
	7.2 Verifiche Container Storage System con inverter "STORAGE"	31
	7.3 Verifiche sezione cablaggi e perdite nei cavi DC.	32
8.	. CAVI DC UTILIZZATI	33
	8.1 Cavi solari di stringa	33
	8.2 Cavi cablaggio string-box/inverter	33
9.	. PROTEZIONE IMPIANTI ELETTRICI	37
	9.1 Protezione delle condutture elettriche	37
	9.2 Misure di protezione dalle scariche atmosferiche	38
	9.3 Protezione contro i contatti indiretti	38
	9.4 Coordinamento dell'impianto di terra con dispositivi di interruzione dell'alimentazione	39
	9.5 Protezione mediante doppio isolamento	39
	9.6 Classificazione degli impianti in sistemi TN-S e IT	39

XL_R_03_A_D

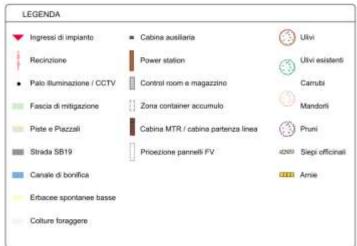
Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 2

9.7 Protezione contro i contatti indiretti porzione impianto IT	40
9.8 Protezione contro i contatti indiretti porzione impianto TN-S	41
10. IMPIANTO DI TERRA DEL CAMPO FOTOVOLTAICO	42
10.1 Conduttore di protezione (PE)	42
10.2 Correnti di corto circuito lato BT	44
10.3 Calcolo del conduttore di protezione PE – collettore / quadro generale cabina:	46
10.4 Conduttori equipotenziali	47
10.5 Consistenza impianto di terra	48
10.6 Dimensionamento dell'impianto di terra	48

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)


Pagina | 3

1. PREMESSA

Il presente documento costituisce la Relazione Tecnica impianti lato BT relativo alla realizzazione di un impianto di generazione di energia da fonte solare di tipo agro-fotovoltaico; il progetto interessa i territori comunali di Ramacca, Paternò e Belpasso (CT).

L'iniziativa in questione prevede la realizzazione di un impianto agro-fotovoltaico con potenza nominale di picco di 16,315 MWp (13 MW in immissione). L'impianto è integrato da un sistema di accumulo da 6,66 MW con capacità di accumulatori pari a 27,6 MWh. Nell'immagine sottostante, si illustra il layout generale dell'impianto, estratto dalla tavola XL_T_13_A_D.

(Layout generale di impianto)

XL_R_03_A_D

Pagina | 4

La presente relazione ha lo scopo di illustrare le opere necessarie per la realizzazione del parco fotovoltaico denominato "Lembiso", da installare a terra su strutture di tipo ad inseguimento monoassiale, nonché quello di individuare in modo univoco i materiali di cui si farà uso e le specifiche lavorazioni previste, conformemente alle direttive e alla normativa vigente.

In merito alla connessione dello stesso alla rete elettrica RTN si veda apposito elaborato.

2. DESCRIZIONE GENERALE DELL'IMPIANTO

L'impianto nel suo complesso è costituito dalle seguenti componenti:

- Una connessione elettrica dell'impianto fotovoltaico alla rete di trasmissione di alta tensione, come da STMG TERNA, con schema di allacciamento alla RTN in antenna a 150 kV con la sezione a 150 kV di una nuova stazione elettrica (SE) RTN 380/150 kV da inserire in entra esce sulla linea RTN a 380 kV "Chiaramonte Gulfi Paternò". Secondo l'allegato A alla deliberazione Arg/elt 99/08 e s.m.i. dell'Autorità di Regolazione per Energia, Reti e Ambiente, risulta che il nuovo elettrodotto in antenna a 150 kV per il collegamento dell'impianto di produzione fotovoltaica alla citata SE costituisce impianto di utenza per la connessione, mentre lo stallo a 150 kV nella suddetta stazione costituisce impianto di rete per la connessione.
- una sottostazione di utente di trasformazione AT/MT 150/30 kV, con la realizzazione con stallo "TR1" con trasformatore AT/MT 15MVA e i relativi dispositivi di protezione e sezionamento;
- una linea interrata di collegamento fra il punto di connessione utente e l'impianto fotovoltaico di lunghezza di circa 6 km.
- Una cabina di ricezione MT "CABINA UTENTE o MTR" esercita a 30kV ubicata in ingresso al campo fotovoltaico con barra MT e relative protezioni, da cui si dipartono le varie linee alle parti di impianto come partenza e arrivo anello *Power station*, linea storage, linea per ausiliari e quant'altro, così come riportato negli elaborati relativi agli schemi elettrici;
- n. 3 *Power Station* SUN denominate "PW1-2-3". Le Power Station, o cabine di campo, avranno la duplice funzione di convertire l'energia elettrica da corrente continua a corrente alternata ed elevare la tensione da bassa a media tensione. Essenzialmente queste sono composte da 4 (o 3 in un solo caso) Inverter di potenza

Pagina | 5

XL_R_03_A_D

nominale pari a 1,5MW le cui uscite saranno collegate alla sezione BT di un trasformatore BT/MT a doppio avvolgimento lato BT. Esse saranno collegate ad anello alla cabina "MTR" tramite un entra-esce. Due delle Power Station avranno una potenza nominale di uscita del trasformatore pari a 7,2 MW ed una pari a 5,4 MW, mentre la potenza totale installate degli inverter sarà pari a 16,5 MW;

- agli inverter delle *Power Station* saranno collegati i cavi provenienti dalle *String Box* (in numero di 55) che a loro volta raggruppano i cavi provenienti delle stringhe del campo fotovoltaico;
- n. 24.720 moduli fotovoltaici, a formare stringhe da 30 moduli in serie (in numero di 824), saranno installati su apposite strutture metalliche di sostegno del tipo ad inseguimento monoassiale (trackers), fissate al terreno attraverso pali infissi e/o trivellati. Per semplificare il cablaggio la lunghezza dei *Traker* è stata scelta in modo tale che su ognuno stiano due stringhe affiancate lungo il lato corto dei moduli stessi;
- n. 1 Power Station "STORAGE". Analogamente alle Power Station SUN, avranno la duplice funzione di convertire l'energia elettrica da corrente continua, proveniente dagli accumulatori, a corrente alternata e viceversa, ed elevare la tensione da bassa a media tensione. Essenzialmente questa è composta da 2 Inverter di tipo STORAGE bidirezionali di potenza nominale pari a 3,33 MW, per un totale di 6,66 MW, le cui uscite saranno collegate alla sezione BT di un trasformatore BT/MT a doppio avvolgimento lato BT. Suddetta Power station, potenza nominale di uscita dal trasformatore pari a 6,66MW, sarà collegata in antenna alla cabina "MTR".
- n. 12 "Battery Container", con accumulatori agli ioni di litio, collegati opportunamente in serie e parallelo dal costruttore stesso, di capacità nominale pari a 2,3MWh cadauno per un totale di 27,6MWh. Ogni inverter di cui sopra ne avrà in ingresso 6.
- Un sistema di controllo e monitoraggio delle potenze erogate, assorbite ed immesse dai vari sistemi. Tale sistema sarà in grado di limitare la potenza immessa in rete a 13MW conformemente a quanto richiesto, ed ottenuto in STMG.

XL R 03 A D

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 6

3. RIFERIMENTI NORMATIVI GENERALI

Gli impianti devono essere realizzati a regola d'arte, come prescritto dalla Legge n. 186 del 1° marzo 1968 e ribadito dalla Legge n. 46 del 5 marzo 1990 ora sostituito dal D.M. 37/08. Rimane tuttora valido, sotto il profilo generale, quanto prescritto dal DPR 547/55 "Norme per la prevenzione degli infortuni sul lavoro" e le successive 626 e 494/96 con relativi aggiornamenti e circolari di riferimento.

Le caratteristiche dell'impianto, nonché di tutte le componenti l'impianto, dovranno essere in accordo con le norme di legge e di regolamento vigenti ed in particolare essere conformi:

- alle prescrizioni di autorità locali, comprese quelle dei VVF;
- alle prescrizioni ed indicazioni delle Società Distributrice di energia elettrica;
- alle norme CEI (Comitato Elettrotecnico Italiano).

3.1 Normativa di riferimento

Per la realizzazione del presente progetto si è fatto riferimento, tra l'altro, alle seguenti normative:

- D.Lgs. 387/2003
- D.Lgs. 28/2011
- Regio Decreto 11 dicembre 1933, n. 1775 "Testo unico delle disposizioni di legge sulle acque e impianti elettrici;
- D.P.R. 18 marzo 1965, n. 342 "Norme integrative della legge 6 dicembre 1962, n. 1643 e norme relative al coordinamento e all'esercizio delle attività elettriche esercitate da enti ed imprese diversi dall'Ente Nazionale per l'Energia Elettrica";
- Legge 28 giugno 1986, n. 339 "Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne";
- Decreto legislativo 31 marzo 1998, n. 112 "Conferimento di funzioni e compiti amministrativi dello Stato alle regioni ed enti locali, in attuazione del capo I della legge 15 marzo 1997, n. 59";
- Norma CEI 11-32: Impianti di produzione di energia elettrica collegati a reti di III categoria;
- Norma CEI 0-16 Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT e MT delle imprese distributrici di energia elettrica;
- Norma CEI 11-27 Lavori su impianti elettrici;
- Norma CEI EN 50110-1-2 Esercizio degli impianti elettrici;
- Norma CEI 11-1 Impianti elettrici con tensione superiore a 1 kV in corrente alternata;
- Norma CEI 11-4 Esecuzione delle linee elettriche aeree esterne;
- Norma CEI 11-17 Impianti di produzione, trasmissione e distribuzione di energia elettrica Linee in cavo;

XL_R_03_A_D

Pagina | 7

- Norma CEI 11-20 Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria;
- Norma CEI 11-37: Guida per l'esecuzione degli impianti di terra nei sistemi utilizzatori di energia alimentati a tensione maggiore di 1 kV;
- -Norma CEI 20-13 Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV;
- Norma CEI EN 60721-3-3 Classificazioni delle condizioni ambientali;
- Norma CEI EN 60721-3-4 Classificazioni delle condizioni ambientali;
- Norma CEI EN 60068-3-3 Prove climatiche e meccaniche fondamentali Parte 3: Guida –
 Metodi di prova sismica per apparecchiature;
- Norma CEI 64-2 Impianti elettrici in luoghi con pericolo di esplosione;
- Norma CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e 1500 V in corrente continua;
- Norma CEI EN 62271-100 Interruttori a corrente alternata ad alta tensione;
- Norma CEI EN 62271-102 Sezionatori e sezionatori di terra a corrente alternata per alta tensione;
- Norma CEI EN 61009-1 Interruttori differenziali con sganciatori di sovracorrente incorporati per installazioni domestiche e similari;
- Norma CEI EN 60898-1 Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari;
- Norma CEI 33-2 Condensatori di accoppiamento e divisori capacitivi;
- Norma CEI 36-12 Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V;
- Norma CEI EN 60044-1 Trasformatori di corrente;
- Norma CEI EN 60044-2 Trasformatori di tensione induttivi;
- Norma CEI EN 60044-5 Trasformatori di tensione capacitivi;
- Norma CEI 57-2 Bobine di sbarramento per sistemi a corrente alternata;
- Norma CEI 57-3 Dispositivi di accoppiamento per impianti ad onde convogliate;
- Norma CEI EN 60076-1 Trasformatori di potenza;
- Norma CEI EN 60137 Isolatori passanti per tensioni alternate superiori a 1 kV;
- Norma CEI EN 60099-4 Scaricatori ad ossido di zinco senza spinterometri per reti a corrente alternata:
- Norma CEI EN 60099-5 Scaricatori Raccomandazioni per la scelta e l'applicazione;
- Norma CEI EN 60507 Prove di contaminazione artificiale degli isolatori per alta tensione in sistemi a corrente alternata;
- Norma CEI EN 60694 Prescrizioni comuni per l'apparecchiatura di manovra e di comando ad alta tensione;

X-ELI⊕

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 8

XL_R_03_A_D

- Norma CEI EN 60529 Gradi di protezione degli involucri (Codice IP)
- Norma CEI EN 60168 Prove di isolatori per interno ed esterno di ceramica e di vetro per impianti con tensione nominale superiore a 1000 V;
- Norma CEI EN 60383-1 Isolatori per linee aeree con tensione nominale superiore a 1000 V –
 Parte 1 Isolatori in materiale ceramico o in vetro per sistemi in corrente alternata;
- Norma CEI EN 60383-2 Isolatori per linee aeree con tensione nominale superiore a 1000 V –
 Parte 2 Catene di isolatori e equipaggiamenti completi per reti in corrente alternata;
- Norme CEI EN 61284 Linee aeree Prescrizioni e prove per la morsetteria;
- Norma CEI EN 61000-6-2 Immunità per gli ambienti industriali;
- Norma CEI EN 61000-6-4 Emissione per gli ambienti industriali;
- Norma CEI-UNEL 35027: Cavi di energia per tensione nominale U da 1 kV a 30 kV

4. TERMINOLOGIA

Di seguito si riporta un glossario della terminologia di impianto fotovoltaico:

Cella fotovoltaica: dispositivo fotovoltaico fondamentale che provvede alla generazione di energia elettrica se esposto alla radiazione solare;

Modulo fotovoltaico: insieme di celle fotovoltaiche interconnesse fra loro e assemblate in supporti idonei dalle case produttrici, protette dall'ambiente circostante attraverso opportuni involucri. Il modulo fotovoltaico, con le sue caratteristiche elettriche (tensione e corrente nominali), costituisce l'unità elementare per la progettazione elettrica dell'impianto fotovoltaico.

Stringa fotovoltaica: insieme di moduli fotovoltaici collegati in serie per raggiungere la tensione di uscita desiderata;

Generatore FV: insieme di stringhe fotovoltaiche collegate in parallelo per raggiungere la potenza desiderata;

Impianto fotovoltaico: impianto di produzione di energia elettrica mediante conversione diretta della luce, cioè della radiazione solare, in energia elettrica (effetto fotovoltaico); pertanto, esso rientra nella categoria degli impianti alimentati da fonti rinnovabili non programmabili (cioè la cui produzione di energia elettrica risulta aleatoria in funzione del regime meteorologico istantaneo. L'impianto è essenzialmente costituito dal generatore fotovoltaico, dal gruppo di conversione e dal sistema di interfacciamento alla rete elettrica di distribuzione;

Inverter: dispositivo che provvede alla trasformazione dell'energia elettrica prodotta dal generatore fotovoltaico da corrente continua a corrente alternata;

X-ELI⊕

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL_R_03_A_D
Pagina | 9

Interfaccia rete: dispositivo che provvede all'interfacciamento dell'impianto fotovoltaico all'impianto elettrico dell'utilizzatore e, quindi, alla rete elettrica locale;

Potenza di picco Wp: potenza generata da un dispositivo fotovoltaico (modulo, stringa o generatore) misurata ai morsetti in corrente continua e rimostrata alle condizioni di prova standard (abbr. STC) che risultano le seguenti: Air Mass = 1.5, irraggiamento solare sul piano dei moduli pari a 1 kW/m², temperatura di lavoro della cella fotovoltaica pari a 25°C;

Gestore della rete: soggetto che presta il servizio di distribuzione e vendita dell'energia elettrica ai clienti utilizzatori (es. AEM, ENEL, TERNA);

Cliente utilizzatore: persona fisica o giuridica titolare di un contratto di fornitura di energia elettrica.

5. CRITERI GENERALI DI PROGETTAZIONE

Il dimensionamento dei principali componenti d'impianto è stato sviluppato tenendo conto delle caratteristiche specifiche del sito, nonché delle specifiche richieste ed esigenze del Committente Sulla base di tali indicazioni è stata perseguita l'attività di progettazione.

5.1 Ambito degli impianti trattati

Come già esposto sopra l'impianto in esame è composto da diverse tipologie d'impianti caratterizzate in primis dal livello di tensione a cui vengono esercite.

La parte in Media ed Alta tensione infatti è stata eviscerata in apposito elaborato. Qui viene trattata la parte di impianto in bassa tensione (I^ Categoria) quindi dai moduli/batterie agli inverter/trasformatori BT/MT.

6. COMPONENTI IMPIANTO FV

6.1 Moduli fotovoltaici

Il presente progetto si basa su moduli tutti della medesima tipologia e taglia. Si tratta dei moduli di tipo bifacciali della RISEN modello RSM132-8-660BMDG, in silicio monocristallino bifacciale a 132 celle, la cui potenza di picco è pari a 660 Wp. Il numero di moduli in serie che compongono una

Pagina | 10

XL_R_03_A_D

stringa è pari a 30 e le tensioni di stringa limite che si ottengono sono Voc 1498V alla temperatura di -10°C e Vmpp di 1061 alla temperatura ambiente di 30°C. Di seguito si riporta la relativa scheda tecnica.

XL_R_03_A_D

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 11

HIGH PERFORMANCE
BIFACIAL PERC MONOCRYSTALLINE MODULE

RISEN ENERGY CO., LTD.

Risen Energy is a leading, global tier 1 manufacturer of high-performance solar photovoltaic products and provider of total business solutions for residential, commercial and utility-scale power generation. The company, founded in 1986, and publicly listed in 2010, compals value generation for its chosen global customers. Techno-commercial innovation, underpinned by consummate quality and support, encircle Risen Energy's total Solar PV business solutions which are among the most powerful and cost-effective in the industry. With local market presence and strong financial bankability status, we are committed, and able, to building strategic, mutually beneficial collaborations with our partners, as together we capitalise on the rising value of green energy.

Tashan Industry Zone, Meilin, Ninghal 315609, Ningbo | PRC Tal: +86-574-59953239 Fax: +86-574-59953599 E-mail: marketing@risenenergy.com Website: www.risenenergy.com

Preliminary For Global Market

Draft

RSM132-8-635BMDG-660BMDG

132 CELL 635-660Wp

Mono PERC Module Power Output Range

1500VDC 21.2%

Maximum System Voltage Maximum Efficiency

KEY SALIENT FEATURES

Global, Tier 1 bankable brand, with independently certified state-of-the-art automated manufacturing

Bifacial Bifacial technology enables additional energy harvesting from rear side (up to 30%)

Industry leading lowest thermal co-efficient of power

12 Industry leading 12 years product warranty

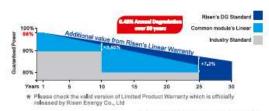
Excellent low irradiance performance

PID Excellent PID resistance

Positive tight power tolerance

2 Dual stage 100% EL Inspection warranting defect-free product

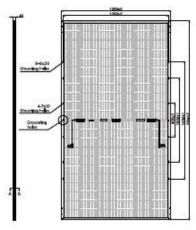
Module Imp binning radically reduces string mismatch losses

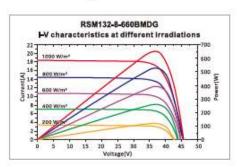

Warranted reliability and stringent quality assurances well beyond certified requirements

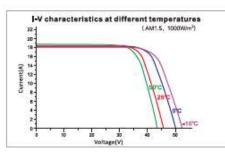
Certified to withstand severe environmental conditions

- Anti-reflective & anti-soiling surface minimise power loss from dirt and dust
- Severe salt mist, ammonia & blown sand resistance, for seaside, farm and desert environments
- Excellent mechanical resistance: wind load 2400Pa & snow load 5400Pa

LINEAR PERFORMANCE WARRANTY


12 year Product Warranty / 30 year Linear Power Warranty




XL R 03 A D Pagina | 12

Dimensions of PV Module

ELECTRICAL DATA (STC)

Model Number	RSW132-8-635BMDG	RSM132-8-640BMDG	RSM132-8-6458MDG	RSW132-8-650BMDG	RSW132-8-8558WDG	RSW132-8-8908WDG
Rated Power in Watts-Pmax(Wp)	635	640	645	650	655	660
Open Circuit Voltage-Voc(V)	44.89	45.09	45,29	45.49	45,69	45.89
Short Circuit Current-Isc(A)	18.03	18.08	18,13	18.18	18,23	18,28
Maximum Power Voltage-Vmpp(V)	37.32	37.51	37.69	37.87	38.05	38,23
Maximum Power Current-Impp(A)	17.02	17.07	17.12	17,17	17,22	17.27
Module Efficiency (%) ★	20.4	20.6	20.8	20.9	21.1	21.2

STC: Irradiance 1000 W/m², Cell Temperature 25°C, Air Mass AM1.5 according to EN 60904-3.

Bifacial factor; 70%±5 *Module Efficiency (%): Round-off to the nearest number

Electrical characteristics with 10% rear side power gain

Total Equivalent power -Pmax (Wp)	699	704	710	715	721	726
Open Circuit Voltage-Voc(V)	44.89	45.09	45.29	45.49	45.69	45.89
Short Circuit Current-Iso(A)	19.83	19.89	19.94	20.00	20.05	20.11
Maximum Power Voltage-Vmpp(V)	37.32	37.51	37.69	37.87	38.05	38.23
Maximum Power Current-Impp(A)	18.72	18.78	18.83	18.89	18.94	19.00

Rear side power gain: The additional gain from the rear side compared to the power of the front side at the standard test condition. It depends on mounting (structure, height, tilt angle etc.) and albedo of the ground.

ELECTRICAL DATA (NMOT)

Model Number	RSW132-4-635BWDG	RSM132-8-6408WDG	RSN132-8-6458VDG	RSW132-8-8508WDG	RSV132-8-6558WDG	RSM132-8-6608WDG
Maximum Power-Pmax (Wp)	481.0	484.9	488,6	492.4	496,2	500.0
Open Circuit Voltage-Voc (V)	41.75	41.93	42.12	42,31	42,49	42,68
Short Circuit Current-Isc (A)	14.78	14.83	14.87	14,91	14.95	14.99
Maximum Power Voltage-Vmpp (V)	34.63	34.81	34.98	35.14	35.31	35.48
Maximum Power Current-Impp (A)	13.89	13.93	13.97	14.01	14.05	14.09

NMOT: Irradiance at 800 W/m², Ambient Temperature 20°C, Wind Speed 1 m/s.

MECHANICAL DATA

MEDITAMOREDA	
Solar cells	Monocrystalline
Cell configuration	132 cells (6×11+6×11)
Module dimensions	2384×1303×40mm
Weight	40kg
Superstrate	High Transmission, Low Iron, Tempered ARC Glass
Substrate	Tempered Glass
Frame	Anodized Aluminium Alloy type 6005-2T6, Silver Color
J-Box	Potted, IP68, 1500VDC, 3 Schottky bypass diodes
Cables	4.0mm² (12AWG), Positive(+)350mm, Negative(-)350mm (Connector Included)
Connector	Risen Twinsel PV-SY02, IP68

TEMPERATURE & MAXIMUM RATINGS

The state of the s	
Nominal Module Operating Temperature (NMOT)	44°C±2°C
Temperature Coefficient of Voc	-0.25%/°C
Temperature Coefficient of Isc	0,04%/°C
Temperature Coefficient of Pmax	-0.34%/°C
Operational Temperature	-40°C~+85°C
Maximum System Voltage	1500VDC
Max Series Fuse Rating	35A
Limiting Reverse Current	35A

PACKAGING CONFIGURATION

	40ft(HQ)	
Number of modules per container	459	
Number of modules per pallet	27	
Number of pallets per container	17	
Box gross weight[kg]	1130	

CAUTION: READ SAFETY AND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT. 92021 Risen Energy, All rights reserved, Specifications included in this datasheet are subject to change without notice,

Pagina | 13

XL R 03 A D

6.2 Power Station SUN e STORAGE

Le Power Station (o cabine di campo) hanno la duplice funzione di convertire l'energia elettrica dal campo fotovoltaico da corrente continua (CC) a corrente alternata (CA) e di elevare la tensione da bassa (BT) a media tensione (MT).

L'energia prodotta dal sistema di conversione CC/CA (inverter) sarà immessa nel lato BT di un trasformatore MT/BT.

La Power Station è costituita da elementi prefabbricati di tipo containerizzati, progettati per garantire la massima robustezza meccanica e durabilità nell'ambiente in cui verranno installati. Tutte le componenti sono idonee per l'installazione in esterno (inverter e trasformatore MT/BT), mentre i quadri MT e BT verranno installati all'interno di apposito shelter metallico IP54, con differenti compartimenti per le diverse sezioni di impianto.

Le pareti e il tetto dello shelter sono isolati al fine di garantire una perfetta impermeabilità all'acqua e un corretto isolamento termico.

Tutte le apparecchiature saranno posate su un basamento in calcestruzzo di adeguate dimensioni, ove saranno predisposti gli opportuni cavedi e tubazioni per il passaggio dei cavi di potenza e segnale.

Ciascuna Power Station conterrà al suo interno un numero di 3 o 4 inverter collegati in parallelo ad un quadro in bassa tensione per la protezione dell'interconnessione tra gli inverter e il trasformatore. Nella stessa sarà presente un impianto elettrico completo di cavi di alimentazione, di illuminazione, di prese elettriche di servizio, dell'impianto di messa a terra adequatamente dimensionato e quanto necessario al perfetto funzionamento della power station. Saranno inoltre presenti le protezioni di sicurezza e il sistema centralizzato di comunicazione con interfacce in rame e fibra ottica.

Per tutte le componenti esterne saranno presi provvedimenti tali a garantire la massima protezione all'ambiente di installazione.

Per una completa accessibilità ai vari comparti, saranno adottati tutti quei provvedimenti che rendano immediatamente accessibili tutti i dispositivi installati, rendendo più agevole l'ispezione, la manutenzione e la riparazione.

Lo shelter di installazione quadri MT-BT è un cabinato metallico realizzato interamente in acciaio zincato a caldo, con rifiniture esterne che assicurano la minore manutenzione durante la vita utile dell'opera. Il box è costituito da un mini skid realizzato ad hoc per contenere materiale di natura elettrica. Il box è realizzato per garantire una protezione verso l'esterno secondo la normativa EN60529.

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 14

XL R 03 A D

Le pareti e la pavimentazione sono sufficientemente isolati attraverso dei pannelli che garantiscono anche l'impermeabilizzazione dell'intero impianto. In più, dal punto di vista strutturale, sarà realizzato un collegamento tra lo shelter e la sua fondazione al fine di prevenire qualsiasi tipo di spostamento verticale dello shelter.

In corrispondenza del pavimento sono presenti alcune aperture per il passaggio dei cavi (coperte con fibrocemento compresso), e aperture per accesso alla fondazione.

Tutti i componenti metallici sono trattati prima dell'assemblaggio. Le pareti esterne sono, invece, trattate mediante l'uso di rivestimento impermeabile e additivi che consentono di garantire la completa aderenza alla struttura e resistenza massima agli agenti atmosferici anche in ambienti industriali e/o marini fortemente aggressivi, come quelli in questione.

Tutti gli ambienti del cabinato sono attrezzati con porte con apertura esterna.

Nel suo complesso, la *Power Station* avrà dimensioni in pianta pari a 8,10 x 5,50 m, e altezza pari a circa 3,00 m.

Le *Power Station* previste sono così composte:

- INGECON SUN POWER STATION 7200 FSK B SERIES 0,578/30kV 7,12MVA equipaggiato con n. 4 inverter INGECON SUN POWER B SERIES 1500Vdc 1500TL B578 1.502kVA @30°, e trasformatore MT/BT 30/0,578 kV da 7,172MVA;
- INGECON SUN POWER STATION 5400 FSK B SERIES 0,578/30kV 5,379MVA equipaggiato con n. 3 inverter INGECON SUN POWER B SERIES 1500Vdc 1500TL B578 1.502kVA @30°, e trasformatore MT/BT 30/0.578 kV da 5.379MVA;
- INGECON SUN STORAGE POWER STATION FSK HV C SERIES 7770 0,720/30kV 7,274 MVA equipaggiato con n.2 inverter INGECON SUN STORAGE 3POWER HV C SERIES 1500V C720 3,33MVA @1.300Vdc&30°, e trasformatore MT/BT 30/0,720 kV da 7,274 MVA. Il sistema STORAGE è alimentato tramite n. 12 (n. 6 per ciascun inverter) BATTERY CONTAINER INTENSIUM MAX 20 H E di capacità nominale pari a 2,3MWh 1,1M 1040V-400V 900A.

Di seguito gli estratti delle schede tecniche.

X-ELI®

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL_R_03_A_D Pagina | 15

INGECON

SUN

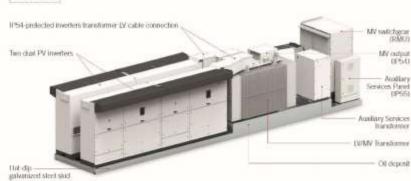
PowerStation R Series 1 500 Vac

CONSTRUCTION

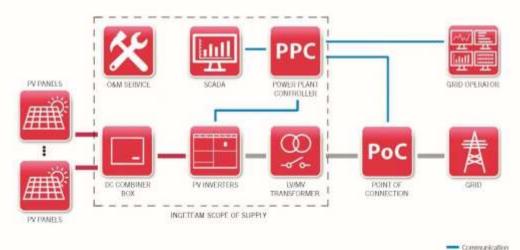
- Steel base frame.
- Suitable for slab or piers mounting.
- Compact design, minimizing freight costs.

OPTIONAL ACCESORES

- Auxiliary services transformer (up to 50 kVA, Dyn11).
- LIPS for monitoring (1.5 kVA, 30 min).
- = 1V Surge arresters type I+II.
- MV Surge arresters.
- Low voltage distribution panel (IPS5).
- Power plant commissioning,
- High-speed Filhernel / fibre optic communication infrastructure for Plug & Play connection in the Power Plant Controller and/or SCADA systems.
- INGECON® SUN StringBox with 16 / 24 / 32 input channels, trite-ligent or passive string combiner box.
- Energy meter for auxiliary services and/or energy production.
- Insulation monitoring relay for continuous monitoring of IS systems insulation.
- Reactive power regulation when there is no PV power available.
- Ground connection of the PV array.


DC Power

AC Power


STANDARD EQUIPMENT

- Up to four inverters with an output power of 7,2 MVA.
- Liquid-filled hermetically scaled transformer up to 36 kV.
- 1i.1A MV switchquar (2L1A optional).
- Oil retention tank.
- Frame for installation of EV equipment.
- Minimum installation at project site.

COMPONENTS.

FV PLANT CONFIGURATION

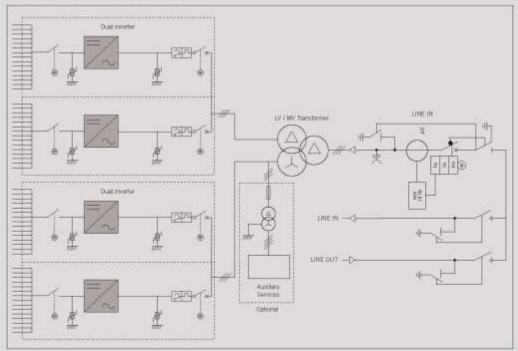
Ingeteam

XL_R_03_A_D

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 16


INGECON

SUN

	1800 FSK B Series	3600 FSK B Series	5400 FSK B Series	7200 FSK B Series			
General data							
Number of inverters	1	2		4			
Max. power @30 °C / 95°PT0	1,797 yvx	3.506 kVA	E,079 kW	7,172 HW			
Operating femperature range		Fore-301	C 10 460 °C				
Relative humidity aron-condensing)		(0)1	100%				
Microsom attitude		3,000 m asil grower dynat	ing starting of 1,000 in a sti				
LV / MV Transformer							
Medium voltage		Fron 10kV up t	18 W, 80-60 Hz				
Coding system		CF CF	IAN .				
Wrimum PEI (Feat Efficiency Index) ²⁶		99.40%					
Protection degree	rotection degree IAS4						
MV Switchgear							
Medium voltage		24 KV / 96 I	(V /40 5 kV				
Saled correct		63	0.6				
Coding system		Natural in	revitation.				
Protection degree			54				
Equipment							
D/-ALIX Switchgear		Standard version (option	Unebyr grudenii kes				
U/ / MV Transformer		OiF-immersed Nermete	oly selections former				
MV Switchgalor		TLTA cets (2	STA optional				
Mechanical information							
Virushure type		Hot day golver	Cand stant skid				
Demanta on a Full-Skid (W x D x H)	8,570 x 2,100 x 2,460 mm	11,390 x 2,100 x 2,460 mm	11.360 x 2,100 x 2.460 mm	11,390 x 2;100 x 2;460 mm			
Far Skid	131	16.7	127	251			
Standards	HEC-62271-212, HEC-62271-200, HEC-60076, HEC-63439-1						

Nees ** Manager power opticidated with the precise model INSCONTSUM 1800FL BISTO For other unsertar models, pagase contact ingetown it follows described models and the production of the EU SHEVENS and EU 2019/1783 danders.

Configuration with four B Series PV inverters

Ingeteam

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 17

INGECON

SUN

Power B Series 1,500 Va

Up to 1800 kVA at 1500 V

Long-lasting design

The inverters have been designed to guarantee a long life expectancy, as demonstrated by the stress tests they are subjected to Standard 5 year warranty, extendable for up to 25 years.

Grid support

The INGECON®SUN Power B Series has been designed to comply with the grid connection requirements in different countries, contributing to the quality and stability of the electric system. These inverters therefore feature a low voltage ride-through capability, and can deliver reactive power and control the active power delivered to the grid. Moreover,

PROTECTIONS

- DC Reverse polarity.
- Short-circuits and overloads at the output.
- Anti-Islanding with automatic disconnection,
- Insulation failure DC.
- Up to 15 pairs of fuse-holders.
- Lightning induced DC and AC surge arresters, type II.
- Motorized DC switch to automatically disconnect the inverter from the PV array.
- Materized AC circuit breaker
- Low-voltage ride-through capability.
- Hardware protection via firmware
- Additional protection for the power electronics, as it is air-cooled by a plosed loop.

they can operate in weak power grids with a low short-circuit ratio (SCR).

Ease of maintenance

All the elements can be removed or replaced directly from the inverter's front side, thanks to its new design.

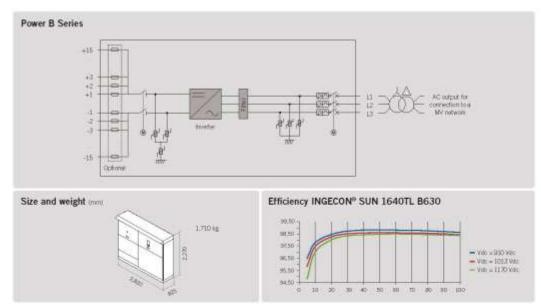
Easy to operate

The INGECON* SUN Power inverters feature an LCD screen for the simple and convenient monitoring of the inverter status and a range of internal variables.

The display also includes a number of LEDs to show the inverter operating status with warning lights to indicate any incidents. All this helps to simplify and facilitate maintenance tasks.

OPTIONAL ACCESSORIES

- Auxiliary services feeder.
- Grounding kit.
- Heating lift, for operating at an ambient temperature of down to -30 °C.
- Lightning induced DC surge arresters, ture ILB
- → DiC fuses.
- Monitoring of the DC currents.
- Sand trap kit.
- Wattmeter on the AC side.
- PID prevention kit (PID: Potential Induced Degradation).
- füghtlime reactive power injection.
- Integrated DC combiner box.


Monitoring and communication

Ethernet communications supplied as standard. The following applications are included at no extra cost. INGECON® SUN Manager, INGECON® SUN Monitor, available on the App. Store. These applications are used for monitoring and recording the inverter's internal operating variables through the Internet (alarms, real time production, etc.), in addition to the historical production data.

Two communication ports available (one for monitoring and one for plant controlling), allowing fest and simultaneous plant control.

ADVANTAGES OF THE 8 SERIES

- Higher power density.
- Latest generation electronics
- More efficient electronic protection.
- Night time supply to communicate with the inverter at night.
- Enhanced performance.
- Easier maintenance thanks to its new design and enclosure.
- Lightweight spales
- It allows to ground the PV array.
- Components easily replaceable

XL_R_03_A_D

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 18

INGECON

	1170TL B450	1400TL B540	1500TL B578	1560TL 8600	1600TL B615		
Input (DC)							
Recommended PV array power rangets	1,157 - 1530 lwp	1,389 - 1,834 swp	1,487 - 1,952 kWp	3,543 - 2,026 kWp	1582-2077 kwp		
Voltage Flange MPPH	645-1,300V	769 - 1,300 V	822 (1,300 V	383 - 1.300 V	873 - 1.300 V		
Masamum voltage ^{rth}			1,800Y				
Maximum current			1,870 A				
N° inputs with fase holders		5up to 15 jup to 12 with the combiner box?					
Fine diversions			500 V to 500 A / 1,500 V to se				
Type of corine dials			Connection to appear bars.				
Power blocks			1				
MPFT							
Max current at each input		: From 40	A 10350 A for positive and me	Whe pides			
Input protections							
		*	Water Company of the Company	tion of the same o			
Overvidtage protestions D.C. switch			 If surge arresters (type 1+8 op otonzed DC load break discorr 				
Other protections	AVEC SECON		lation failure monitoring (Anti-				
une proposes	op to to part	and the state of the state of the state of	man and the same of the same	manage production is consign	K.y SAMMARIAN		
Output (AC)							
Power IF54 @30°C / @50°C	1369 WW /1092 KW	1.403 NW / 1.263 NW	1,502 NW / 1,352 NW	3.559 kW / 1,403 kW	1,508 svx /1,438 kV		
Current #54 63010 / 65010			1,500 A / 1,380 A				
Provid IPS6 @ 27 15 7 @50 10**	1,100 NW /1.035 NA	1,403 N/A / 1,242 N/A	1302 WW / 1330 WA	1560 kW /1380 kW	1,568 kVA / 1,415 kV		
Current IF56 @ 37°C / @ 50°CP			1,900 A / 1,235 A				
Rated voltage ^{NI}	450 Y IT System	640.9 If System	578 V 11 System	600 V If System	615 V IT System		
Friquency			30 / 60 Hz	220100100000000000000000000000000000000			
Power Pactor adjustable			Yet: O-1 (leading / lagging)				
THD (Total Harmonic Sisterborg ⁶⁶			+278				
Output protections							
Overvottage protections			Type U surge arrestors				
AC treaker			Motorized AC resoult breaker				
Anti-Islanding protection		.y	es, with outomatic discovrect				
Other protections			AC great creats and dwnload				
Features							
Massmum efficiency			98.9%				
Euroefficiency			G8.5%				
Max consumption aux services			4.700 W (25.A)				
Stand-by or right consumption ⁽¹⁾			SGW				
Average power consumption per day			2,000 W				
General Information							
Ampient temperature			201C10-4571C				
Relative humidity (non-condensing)			D+300%				
Protection dissu		7	P54 (IP56 with the mild trap)	itt.			
Corrotton protection			Editional correspondence or				
Macenum attitude	4	500 m (No immahatoris payor	nd 1,000 m, please contact in	gebeen's solar selex departme	(10)		
Cooling system		Air forcest with temps	ensture control (200 V phase +	constrat power supply)			
Air flow range			0-7880m/m.				
Average or 50e			4.200 m/m				
Acoustic emergion (100% / b(7% load)		450	(88A) at 10m / (545 dB(A))	(10m			
Mailing		70.00	OŁ.	W-1-1-1			
EMC and security standards	EC 62920, EC 61000-6-7	FC F0000-6-2, IFC S1000-6-4	ED 61000-8-11, IED 61000-8-1	2. EC62100-L (EC62100-2 E	N 50179, FOC Purt 15, 85%		
Grid connection standards	IEC 62116, EN 50530 Mescan Grid Code, Chi	en 61683 Eu 631/2016 (E ean Gnd Code, Equational Si NBR 16150, IEEE 1647, IEEE	N B0548-0, F O 12 2, OE O-0-1 nd Code: Perusian Grid code 1547-1, DEWA (Dubori Grid co a Grid Code; RETE Colombia.	5. VBE AR N 4520), 629, 5 Trissand PEA requirements. I So. Albu Bristo Sind Code, Juno	outh Amoon Grid ende, EC60727, UNE 2060074,		

Nation III Depending on the type of endulation and geographical roution. Data has STC conditions. Witness must be rated conditions (Vac-Lipux, and Power Factor 41) and finaling system.

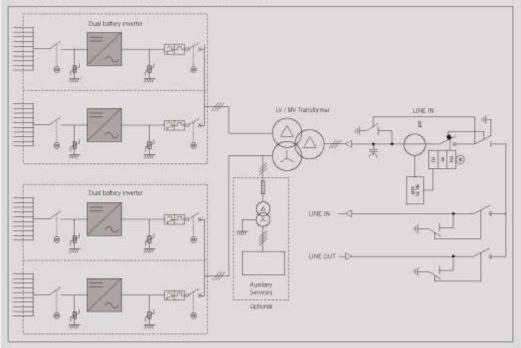
If Consider the voltage discesses of the "Not" of low temperatures. III With the sand triplet III Other AC voltages and power sessable upon request. III For Aux-25% of the rated prover an accordance with ICC 50000-2-4. III Companytion from PV field when there is PV power available.

XL_R_03_A_D

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 19


INGECON

SUN STORAGE

	1715 FSK	3430 FSK	5145 FSK	6860 FSK			
General data							
Number of inverters	1	2	3	. 4			
Max. power @30 °C / 95°P th	1,716 kW	2,400 kVA	5,145 kVA	6.880 kW			
Operating temperature range		Yom -20 h	C10-450 °C				
Telative frumidity (tron-condensing)		0+1	00%				
Mornum affiliate		3,000 may (power death	ng starting at 1,000 month				
LV / MV Transformer							
Wedum voltage		From 20 KV up to	25 (V, 50-60 Hz				
Toding system		Of Chi	IKN .				
Writing PE) (Feet Efficiency Index! ²⁸		994	IOL.				
Profection degree		(1)	64				
MV Switchgear							
Wickern voltage		24KV/36KV/40KKV					
Metal current		63	0.6				
Coding system		Naturalian	settation				
Protection degree		#	54				
Equipment							
X-ALIX Switchgear		Standard version (opti-	Unebyt gradenii kes				
3/ / MV Transformer		OiF-immersed Nermete	oly seled bankhore				
WY Switchgeor		TLTA cets (2	116 optionali				
Mechanical information							
Virushure type		Hot day gakes	Cand stant skid				
Denuma on a Full-Skid (W x D x H)	8,570 x 2,100 x 2,460 mm	11,390 x 2,100 x 2,460 mm	11.360 x 2,100 x 2.460 mm	11,390 x 2,100 x 2,460 mm			
Addisid	131	16.7	197	257			
Randards		HEC 62271-212, HIC 62271-0	00. IEC 00076, IEE 65439-1				

Name In Mississis power calculated with the battery inverter model (INGECOM SUN STORAGE 1725T), BOXO For other battery inverter models, please contact linguishmins (RESS select department = For Burgosian installations, ECO design according to the EUD-48/2004 and EU 2015/91700 standards.

Example of configuration with four B Series battery inverters

Ingeteam

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 20

XL R 03 A D

INGECON

SUN STORAGE

3Power HV C Series 1,500 Vac

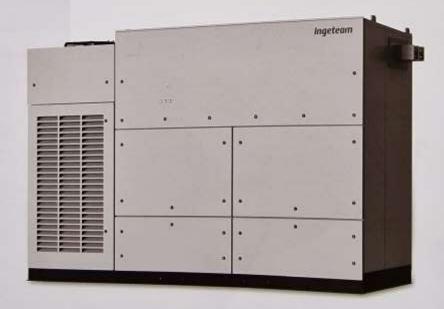
THREE-PHASE
TRANSFORMERLESS
BATTERY INVERTER
WITH AN EXTRA
THERMAL STABILITY
AND A GREATER
POWER DENSITY

Up to 3.88 MVA at 1,500 V

The INGECON® SUN STORAGE 3Power HV C Series is a three-phase bidirectional battery inverter that can be used in grid-connected and stand-alone systems. This one-of-a-kind battery inverter achieves a market-leading power density of 499 kW/m³, as it provides up to 3,884 kVA in just one power stack.

Latest generation electronics

The INGECON® SUN STORAGE 3Power HV C Series battery inverter features an innovative control unit that performs a more efficient and sophisticated inverter control, as it uses a last-generation digital signal processor.


Liquid Cooling System (LCS)

Ingeleam has already supplied +54 GW of liquid -cooled wind power converters worldwide. It offers a greater thermal stability and a more optimized component usage. The LCS has been designed to refrigerate the IGBTs, the power phases and the IP65 compartment. It features less moving components, so it consumes a lower amount of power and it requires less maintenance works.

The LCS is a closed circuit supplied totally filled and purged, equipped with fast connectors with an anti-dripping system, so it offers zero risk of particle entrance. It has been designed to avoid siphons in order to easily purge it if necessary. The coolant used is a biodegradable glycol water mixture. There is no need of emptying the LCS in order to replace the phases, nor the sensors.

IP65 protection

A secondary liquid cooling system is used to refrigerate the air inside the IP65-protected compartment. A water-air heat exchanger is used for that. This compartment contains the power and control electronics, the DC fuses, the DC and AC protections, the busbars and the power phases.

www.ingeteam.com

Ingeteam

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL_R_03_A_D Pagina | 21

INGECON

SUN STORAGE

3Power HV C Series 1,500 Vac

Power converter stands both, grid-following and grid forming operating modes:

Real power related functionalities

- Renewable resources integration:
- Ramp limits.
- Power smoothing / firming / curtailment.
- Time shifting.
- Micro grids.
- Grid support / Ancillary services:
- Frequency regulation.
- Synthetic inertia.
- Black start.
- Frequency control / protection.
- Virtual "Synchronous Machine".

- Investment deferral:
- Peak shaving.
- Load shifting / Load following.
- Real power response improvement of conventional power plants.
- Power efficiency:
- Time shifting.
- Price arbitrage.
- Real power response improvement of conventional power plants.
- Peak shaving.

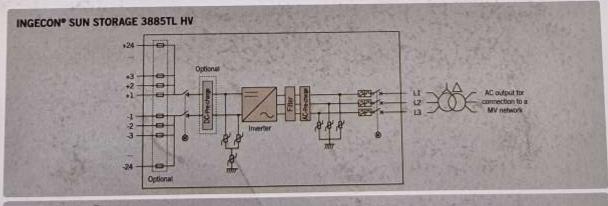
- Safety and quality:
- "Un-interruptible" Power.
- Grid code compliance.
- Transmission congestion relief / Power quality - reliability.

Reactive power related functionalities

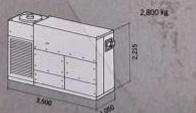
- Voltage control (Q/V).
- Voltage control / protection.
- Fixed power factor (QPF).
- Fixed reactive power output (Qref).
- Limitation of response of Reactive Power.

Standard 5 year warranty, extendable for up to 25 years.

PROTECTIONS


- DC Reverse polarity.
- Short-circuits and overloads at the output.
- Anti-islanding with automatic disconnection.
- Insulation failure DC.
- Up to 24 pairs of fuse-holders.
- Lightning induced DC and AC surge arresters, type II.
- Motorized DC switch.
- Motorized AC circuit breaker.
- Hardware protection via firmware.
- Additional protection for the power stack, liquid cooled, IP65 rated and air cooled by a closed loop.

OPTIONAL ACCESSORIES


- Heating kit, for operating at an ambient temperature of down to -30 °C.
- DC surge arresters type I+II.
- AC surge arresters type I+II.
- DC fuses.
- Monitoring of the DC currents.
- Grounding kit.

LIQUID COOLING SYSTEM

- LCS to refrigerate the IGBTs.
- More optimized component usage: greater thermal stability.
- Less moving components: lower power consumption and less maintenance works.
- No risk of particle entrance.
- Anti-corrosion protection with stainless steel components
- LCS is used in many industries.
 Thus, it is very reliable, as its components are subject to many validation tests.
- Fast connectors with anti-dripping system
- Biodegradable glycol water mixture.
- No need of emptying the LCS in order to replace the phases, nor the sensors.

Size and weight (mm and kg)

Ingeteam

XL_R_03_A_D

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 22

IN			

SUN STORAGE

3Power HV C Series 1,500 Voc

	INGECON* SUN STORAGE 3885TL HV							
	C600	C650	C690	C720	C750	C800	C840	
Input (DC)			1000000	III INDUST	32000000		2000000	
Battery voltage range for off-grid mode	850-1,500 V	920 - 1,500 V	976 - 1,500 V	1.017 - 1.500 V	1.059 - 1.500 V	1,129 - 1,500 V	1185-15007	
Battery voltage for grid-tied model*	934 - 1,500 V	1.011 - 1.500 V	1,072-1,500 V	1.118 1,500 V	1,154 1,500 V	1,241 - 1,500 V	1,302-1,500)	
Maximum voltage		Contract Contract Co.	Harz Lawy	1.500 V	EARSON LABOUR.	19694 - 49894 7	\$1908 C \$190V /	
Maximum current				3,328 A				
N° inputs with fune-holders				Up to 24				
Fise dimensions			Unio Etto a de la	ACCOUNT OF THE PARTY OF THE PAR	es and the same			
Type of connection			The state of the s	onnection to copper to				
Power blocks				T T	100			
				- 37				
Input protections								
Overvoltage protections		THE PERSON	Type II s	urge arrestors (type I+	6 optional):	V III	200	
DC switch			Motor	and DC load break dis	connect			
Other protections	Up to 24 pain	of OC fuses (optional		Insulation failure mon		g protection / Emerge	ncy poshbutton	
200000000				-				
Output (AC)								
Power #1,300 Vdc & 30 °C / 50 °C	2,774 KVA /	3,005 kWA7	3,190 kWA /	3,329 KVA /	3,468 KVA /	3,699 kVA /	3,884 kVA /	
Common 80 202 (64 - 8 20 80) Co. 60	2,171 KVA	2,352 kVA	2,497 kVA	2,606 kWA	2,714 KVA	2,895 kVA	3,040 KVA	
Current @1,300 Vdc & 30 °C / 50 °C				2,670 A / 2,090 A				
Power @1,500 Vac & 30 °C / 50 °C	2,598 kVA / 2,016 kVA	2,814 kVA / 2,184 kVA	2,587 kVA / 2,318 kVA	3,117 kVA / 2,419 kVA	3,247 KVA 7 2,520 KVA	3,464 kVA / Z,688 kVA	3,637 KVA / 2,822 KVA	
Current @1,500 Visc & 30 °C / 50 °C				2,500 A / 1,940 A				
Rated voltage ¹⁷	900 V IT System	650 V IT System	690 V IT System	7204 IT System	750 V IT System	800 V IT System	840 V IT System	
Fraquency				50/60 Hz				
Power Factor®				1				
Power Factor adjustable			W	n, 0-1 (leading / lugs	ing)			
THD (Total Harmonic Distortion)*				<3%	0.00			
Output protections	100000000000000000000000000000000000000	3143 1454	Marie Land		A STATE OF THE PARTY OF THE PAR	1 69-16-3		
Overvistage protections			Type # 4	urge amesters (type I+	E optional)			
AC breaker			M	olbrised AC circuit bre	mer			
Anti-Islanding protection			Yes.	with automatic discon	rector			
Other protections			AC.	short circuits and over	foads			
Features								
Operating efficiency		-		98.9%				
CEC				98.5%				
Max consumption aux services				9,000 W				
Stand-by or right comumption ^(b)				<180 W				
Average power consumption per day				2,500 W				
General Information		-						
Arither's temperature				-20°C to +60°C				
Relative humidity (non-condensing)				D-100% (Outdoor)				
Profestion class				1P65**				
Corresion protection			Ð	ternal corrusion protes	tion			
Maximum atitude		4,500 m (for in	statutions beyond I.	000 m. piease contac	t Ingotoam's BESS sa	sies department)		
Cooling system	Liquid co	sing system and force	ed air cooling system	with temperature con	(400V 3 phase +	neutral power supply	50/60 Hz	
Air flow range				0 - 18,000 mVh				
Aurrage at flow				12,000 m5h				
Accustic emission (200% / 50% load)			<57 dB	A) at 10m / < 49.7 dBi	A) at 10m			
Marking			10000000	CE	Manager 1			
EMC and security standards	IEC 625	120, IEC 61000-6-1, I	EC 61000-6-2, IEC 6	1000-6-4, IEC 63000 0178; FCC Part 15, A	-3-11, EC 61000-3- \$3100	12, €C 62109-1, €C	62109-2,	
Grid connection standards	Termo A680 CC	9 South African God	531/2016 (EN 50545 I Code, Mexican Grid X. EEE 1547, IEEE 15	-2, CEI 0-16, NTS Spi code, Chilean Grid Cr 47 I. DEWA (Dubai). A ode, RETIE Colombia.	an, VDE-AR-N 4120, ode, Ecuadorian Grid bu Dhabi Grid Code,	Jordan Grid Code, E.	Cade, (EDb1/27	

for Vigits, max. — 1.1 p.u. and Power Facture1. If Vigits, max is higher than this value, the minimum voltage should be corrected as VDC stripes, please contact fragilisers is BESS series deportment. © Other AC voltages and powers available upon request. © Yor Pub-025% of the rate and voltage in accordance with EC 61000-3-4. © Consumption from Battery. © Except for the LC fifter and the six water heat exchange; this

XL R 03 A D

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 23

INGECON

SUN STORAGE

PowerStation FSK HV C Series 1,500 Vdc

MEDIUM VOLTAGE POWER STATION CUSTOMIZED UP TO 7.7 MVA. WITH ALL THE COMPONENTS SUPPLIED ON TOP OF THE SAME SKID PLATFORM

This medium-voltage solution integrates all the devices required for a multi-megawatt battery energy storage system.

Maximize your investment

with a minimal effort

Ingeteam's FSK power station is a compact, customizable and flexible solution that can be configured to suit each customer's requirements. It is supplied together with up to two battery inverters. All the equipment is suitable for outdoor installation, so there is no need of any kind of housing.

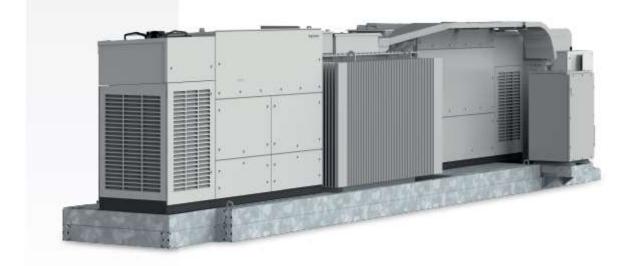
Higher adaptability and power density

This power station is now more versatile, as it presents the MV transformer integrated into a steel platform together with the LV and MV components, including the battery inverters. Moreover, it features one of the market's greatest power densities.

Plug & Play technology

This MV solution integrates power conversion equipment (up to 7.7 MVA), liquid-filled hermetically sealed transformer up to 38 kV and provision for low voltage equipment. The MV

Skid is delivered pre-assembled for a fast onsite connection with up to two battery inverters from Ingeteam's INGECON® SUN STORAGE 3Power HV C Series battery inverter family. The full skid is lifted as an single block and it is transported within an open top 40 ft container.


Complete accessibility

Thanks to the lack of housing, the inverters, the switchgear and the transformer can have immediate access. Furthermore, the design of the 3Power HV C Series battery inverters has been conceived to facilitate maintenance and repair works.

Maximum protection

Ingeteam's 3Power HV C Series battery inverters feature an IP65 protection class for their power stacks thanks to a combined water and air cooling system that optimises the operating temperature of the power electronics.

Apart from that, they feature the main electrical protections and they deploy grid support functionalities, such as low voltage ridethrough capability, reactive power deliverance and active power injection control.

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL R 03 A D Pagina | 24

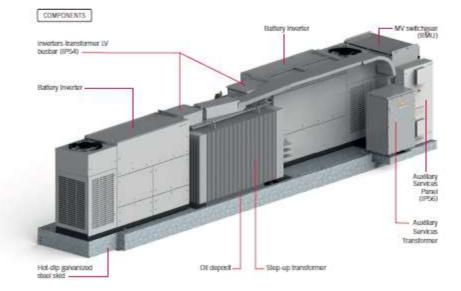
INGECON

SUN STORAGE

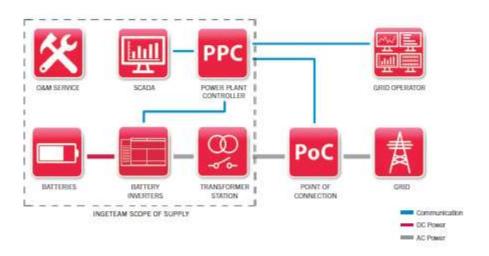
PowerStation FSK HV C Series 1,500 vdc

CONSTRUCTION

- Steel base frame.
- Suffable for slab or piers mounting.
- Compact design, minimising freight costs.
- Minimum Installation at project site.


OPTIONAL ACCESSORIES

- Auxiliary services transformer (up to 60 kVA, Dyn11).
- MV Surge arresters.
- Low voltage distribution panel (IP56).
- High-speed Ethernet / flore optic Energy meter for auxiliary services and/or energy production. tor Plug & Play connection to the Power Plant Controller and/or SCADA systems.


 - Insulation monitoring relay for continuous monitoring of IS systems insulation.

STANDARD EQUIPMENT

- Up to two battery inverters with an output power of 7.77 MVA.
- Liquid-filled hermetically-sealed transformer up to 38 kV.
- 1L1A MV switchgear (2L1A optional).
- Oil-retention tank.
- Metal frame for Installation of LV equipment.

PLANT CONFIGURATION

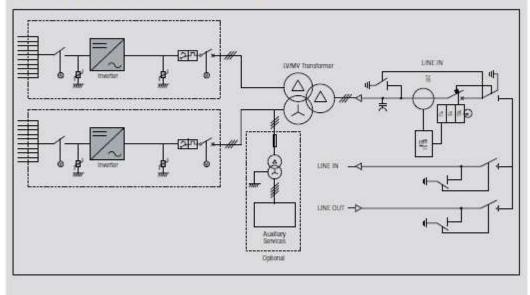
XL_R_03_A_D

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 25

INGECON


SUN STORAGE

PowerStation FSK HV C Series 1,500 vdc

	3885 FSK HV C Series	7770 FSK HV C Series		
General information				
Number of inverters	1			
Max. power #1,300 Voc & 30 1010	3,884 kVA	7,758 XVA		
Max. power @1,500 Voc & 30 °C	3,637 kW	7,274 xVA		
Operating temperature range	50m -20	C for ±60 °C		
Relative humidity then condensing?	5-1	100%		
Maximum attitude	3,000 mast (power detail	ing starting at 1,000 must)		
LV/MV Transformer				
Medium voltage	From 2/0 kV up ti	0 35 NV, 50-60 Hz		
Cooling system	CN	NAN .		
Minimum PET (Peak Efficiency Index) ⁽⁷⁾	99.	40%		
Profession degree	P	54		
MV Switchgear (RMU)				
Medium voltage	24 KV/36	NV/4D5AV		
Ratio current	630 A			
Cooling system	Natural air ventitation			
Protection degree	IF54 (P55 optimal)			
Equipment				
Acaditary services panel	Styrodard yersion (ophi	onal monthring system)		
Step-up transformer	Of-Immersed hormatic	cally scaled transformer		
MV Switchgare	11 TA DRIS G	71.1A replication A.1.13		
Mechanical information				
Structure type	Hot dip galace	biski skala bavin		
Dimensions Full Skid (W x D x H)	11,390 x 2,100 x 2,460 mm	11,300 x 2,100 x 2,460 mm		
Wight	16.7	21		
Standards	HC 52271-212, HC 52271-	200, EC 6007E, ED 61439-1		

calculated with the inverter model INSECONR SUN STORAGE SECUT. GEOD. For other ballery revertor models, please contact ingelearn's HESS sales departs, IEO design according to the EU S48/2004 and EU 2019/1783 standards.

Example of configuration with two HV C series battery inverters

Pagina | 26

Intensium® Max 20 High Energy

2.3 MWh high energy lithium-ion battery storage container

The Intensium® Max 20 High Energy is Saft's unmanned and ready to install Energy Storage System (ESS) in a 20-foot container, enabling utility-scale storage solutions for grids, renewables and industries.

Built with advanced Lithium Iron Phosphate (LFP) technology, the Intensium® Max 20 High Energy is a fully integrated storage system, combining high energy density with high levels of safety, operational reliability and compliance with international standards.

The design choices of the Intensium® Max 20 High Energy are leveraging 10 years of technology and operational experience in multiple applications and environments to maximize the value of your next battery Energy Storage System asset.

Benefits

High energy density building blocks, suitable for storage assets ranging up to several hundreds of MWh

Project de-risking

Quick and cost-effective installation of containers, 'plug and play' delivered and factory tested

Easy system integration

Compatible with most Power Conversion Systems available in the market

Maximized energy storage economics

- . Optimized energy and power availability over SoC
- · Multiple charge-discharge cycles per day with minimum auxiliary consumption
- . Long lifetime cells and optimum thermal management
- · High availability and serviceability

Low maintenance with Saft CUBE Real-time battery control, supervision and big-data publishing platform for enhanced analytics and

services.

Safety driven design

To guarantee safe behavior during operations and in case of an abusive event, protecting assets, operators and first responders

Applications

- · Integration of renewables: smoothing, shifting, minimizing curtailment
- · Peaking capacity
- Transmission & Distribution grid support
- Energy management in large C&I sites
- · Microgrids

Features

Advanced industrial design offering highest safety and robustness:

- · Unmanned container with external access, fully assembled and tested within Saft manufacturing hubs
- · Single, easy access distribution cabinet integrating all power and control interfaces, supervision and safety devices

Proven architecture for high availability:

- · Individually connectible strings with one Battery Management Module per string
- Master Battery Management for global charge and discharge management, auxiliary equipment monitoring and diagnostic
- CUBE platform for external communication, battery containers parallelization, remote monitoring and supervision, data management to lower operation and maintenance with a high cybersecurity level

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 27

Sophisticated battery management for enhanced operability:

- · Monitoring and control of voltage, current and temperature
- · Balancing of State of Charge (SoC) between cells and
- · Real-time indication of State of Charge (SoC)
- · Alarms and faults management
- . Indication of State of Health (SoH) integrating cycling and calendar aging

Advanced thermal management system based on air conditioning unit and controllable fans:

- · High cooling efficiency
- · Temperature homogeneity within containers

Safety driven design to guarantee safe behavior in case of abuse usage or cell thermal runaway at module, string and container levels:

- UL9540A tested Lithium Iron Phosphate (LFP) technology
- · Short-circuits, over-currents, over-temperature and over-voltages management
- . Stop push button, disconnect switch, ground fault detection
- Fire detection and two levels of suppression systems (gas, water) to fight fires in their initial stages and prevent collateral damages
- · Blast panels on the container roof
- · Safety features focus to protect first line intervention personnel

Specifications

Electrical

The state of the s	
Rated energy (C/5) 1	2.3 MWh
Discharge duration range	1 - 4 hours
Voltage range	1040 V - 1400 V
Rated DC power	1.1 MW charge/discharge
Rated current	900 A charge/discharge
Maximum DC power	2.2 MW charge/discharge
Maximum current	1800 A charge/discharge

Mechanical

Dimensions (L, H, W) without HVAC	6.1 m, 2.9 m, 2.4 m / 20ft, 9ft 6in, 8ft
Dimensions (L, H, W) with HVAC	6.7m, 2.9m, 2.4m / 22ft, 9ft 6in, 8ft
Weight	< 30,500 kg / 60,000 lbs
Container protection class	IP 54 (operation)

Operating & storage conditions

Ambient temperature	-25°C to +55°C
Design lifetime	≤ 20 years
Altitude above sea level	≤ 2000 m
Ambient relative humidity	Up to 100%
Storage temperature	-25°C to +55°C
Storage time	12 months (under conditions)

Saft CUBE platform

Features	Local HMI and cloud interface
External controllers	Sunspec MESA, Modbus TCP/IP

Standards

Safety	IEC 62619, IEC 62477
	UL 1973, UL 9540, UL 9540A
Marking	CE, UL
Directives	REACH
Manufacturing hubs	ISO 9001, QS 9000, ISO 14000
Cybersecurity	IEC 62443-4-2
Transport (fully populated)	UN3536

Saft CUBE: energy and asset performance

CUBE is Saft's real-time battery control, supervision and big-data publishing platform for enhanced analytics and services; it enables storage asset owners access to highly granular system data. Saft CUBE has a high level of cybersecurity ensuring data confidentiality, product availability and safety.

Saft

Energy Storage Solutions 26 qual Charles Pasqua 92300 Levallols-Perret - France Tel. :+33 1 58 63 16 00 Fax :+33 1 58 63 16 18 www.saftbatterles.com

Document H*, II183-MIN-I Edition April IIII Photo criedity , Suft BISAN-Sociale per Actions Simplifie au capital de 31 NIA 000C RCG Hameire 303 YOJ BTT

XL R 03 A D

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 28

6.3 Quadri di parallelo BT

Presso ciascuna PS sarà presente un quadro di parallelo in bassa tensione per la protezione dell'interconnessione tra gli inverter e il trasformatore; prefabbricato dal produttore delle power station.

Il quadro consentirà il sezionamento delle singole sezioni di impianto afferenti al trasformatore e le necessarie protezioni dei circuiti.

6.4 Quadri servizi ausiliari

Ciascuna power station sarà equipaggiata con quadri di servizi ausiliari necessari al corretto funzionamento degli impianti. Il quadro servizi ausiliari sarà diviso in due sezioni:

- sezione ordinaria, nella quale sono presenti tutte le utenze ordinarie e non essenziali per il funzionamento della PS. In essa confluiscono due distinte linee (una proveniente dal trafo e l'altra da G.E., entrambe idoneamente protette con interruttori automatici e con scaricatori di sovratensione SPD;
- sezione privilegiata, le cui utenze sono alimentate sotto UPS.

Suddetti quadri saranno alimentati da apposito trasformatore BT/BT dedicato ai servizi ausiliari delle power station ed all'alimentazione dei driver dei trackers con le seguenti caratteristiche:

- Potenza 50kVA;
- tensioni: 578V/400V e 578V/400V;
- fregunza:50Hz;
- Gruppo Dyn;
- Vcc%: 6%

La sezione privilegiata verrà alimentata tramite un UPS dotato di DSP *microprocessor control*.

Il sistema è costituito da un UPS base da 6000VA, al quale viene collegato un battery back di espansione, per garantire la necessaria copertura in termini di autonomia dei servizi ausiliari di base.

6.5 String-box

Data la scelta fatta in merito agli inverter centralizzati si rende necessaria l'installazione dei cosiddetti string-box che consentono di effettuare il parallelo di piccoli gruppi di stringhe, nel nostro caso tipicamente 15 stringhe, e la protezione da corto circuiti tramite fusibili a bordo opportunamente

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL_R_03_A_D
Pagina | 29

scelti, e comunque non inferiori a 25A. Inoltre, saranno presenti opportuni SPD tipo 1 per la protezione da sovratensioni da scariche atmosferiche. Gli *string-box* a 16 ingressi minimo (M16) saranno equipaggiati altresì con sistema di monitoraggio delle correnti di stringhe con protocollo di comunicazione MODBUS RTU per una gestione e manutenzione ottimale del parco. Di seguito è riportata la relativa scheda tecnica.

SUN

StringBox

SIMPLE AND SAFE CONNECTION OF PHOTOVOLTAIC STRINGS, 1500 V, WITH CURRENT DETECTION

M12 / M16 / M18 / M20 / M24 / M32

The new INGECON® SUN StringBox M is a device for measuring each PV generator string current and detecting defective string current through INGECON® SUN Manager software, INGECON® SUN SCADA and/or other monitoring system. String currents can be monitored through the RS485 serial port.

The new INGECON® SUN StringBox M is a cost-effective PV string monitoring box series designed for central inverter-based PV systems. The INGECON® SUN StringBox M features efficient input and output DC wiring with fully rated DC disconnect switches for safe maintenance.

A complete range of equipment for all types of projects

Available in models ranging from 12 to 32 inputs and 1,500 V max. DC voltage, the INGECON® SUN StringBox M provide the maximum flexibility and expandability in system design. The compact and rugged IP65 enclosure is designed for installation in outdoor environments, such as roof-mounted systems and large-scale solar farms.

Maximum protection

The INGECON® SUN StringBox M is an intelligent combiner box and are equipped with touch-safe DC fuse holders, DC fuses, lightning induced DC surge arresters and load disconnector switch.

PROTECTIONS

- Up to 32 pairs of DC fuses.
- Available fuses: 10A, 12A, 15A, 16A, 20A, 25A, 30A, 32A (15A standard).
- Lightning induced DC surge arresters, type 2.
- Manual DC isolating switch.

OPTIONAL ACCESSORIES

- Lightning induced DC surge arresters, type 1+2.
- Pole mounting kit.
- PV connectors

MAIN FEATURES

- Built to minimize system costs by providing the maximum flexibility.
- RS485 serial port for currents monitoring
- On-board temperature sensor
- Supervision of the DC isolating switch and SPD protection
- One analog input for external RTD
- Available in 12, 16, 18, 20, 24, 32 inputs versions.
- = Rated for 1,500 Vdc maximum voltage.
- Simplifies input and output wiring.
- Capability to connect up to 2 DC output cables per polarity (only for 12 and 16 inputs).
- IP 65 protection rating.
- Maximum protection to corrosion and pollution thanks to the isolating polyester enclosure reinforced with fiberglass.

Pagina | 30

XL_R_03_A_D

INGECON

		1,50	00 ¥	
	StringBox M 12	StringBox M 128	StringBox M 16	StringBox M 168
Input				
Maximum number of input sinners	127299	127300	16/32V	367320
Max number of measurable inputs	12	12	16	16
Maximum outsett per input (A)	12724	12724	12724	12724
Number of protection times	12	24	36	32
Type of fuses:		aPV fluoro, 10 s	185 mm; 30 kA	
Maximum DC voltage			0 Vac	
Cable yilet	M4	D rable glands in 4 cables entry dia	meter 6 to 10 mm for each coble g	Swidt
hist consolions	Di	ect connection to tuse noticers or dist	nbuton be, with gauge 1.5 to 16	moř
Output				
Rated total ourcent (ASP)	144 / 288	144 / 288	192 / 384	1927384
Cable outlet		Up to 2 pairs of MEC cable glan-	ts (coble dameter 27 to 35 mm)	
Datlet connections		rect connection on copper plates, w	ning gauge up to 2 x 340 mmFper.	DOM
DC switch disconnect rating (A)	3157400	9357400	3157400	3157400
SPD				
			000000	
Tipe			of fire 3+2	
Grounding connection	- 3	120 table gland toable diameter. I to	13 mm, winny gouge 2.5 to 35 m	nê)
Communication				
None and Associated		11.00	la management	
Type			JA, Stant GRC0	
Protocol	90		os HTU	Tarana and a same and
Connection	214	f16 cable gland (cable dameter 4.5	to II) tim_wring gauge U 34 to 21	i mmes
Others				
Digital inputs	Two digital inputs already	Instend to the equalory contact of DC-	colatery switch and to the surge or	striction device fault contact
Analogue inputs			870, preason higher than 1 8%	
Analogue inputs connection	M	6 copile gland (nable stameter 4.5 to		nn/41
Durrent measurement sensors			domun 25 A, accuracy 0 J%	
On-board sensor		One im-board sensor for interna	footempeature resourcenent	
E-1-10-10-2-2-10-10-10-10-10-10-10-10-10-10-10-10-10-				
General Information				
Enclosure type			olyester remiscoed with fiberglassi	
Protection rating			9	
Impact strongth			10	
Operating temperature range			0+05°C	
Relative humsolty (non-condensing)		Oto		
Maximum altitude ⁽¹⁾		2,000		
DC switch handle			in open postori	
Consumption (W)	- 3	15		诗
Sizu (mm)			(20 (W × H + D)	
Weight (kg)		- 4	41.	41
Marting			K.	
EMC and Safety standards			0.6-2, 50 60364-7-712	
D/ Switchguar standards			UNIS 61439-2, AUNIZS 5033	
Bestric shock protestion		Class II e	guipment.	
Nation 19 1013, esternat over-moding at his "Presse context nigotean for afficulties hig Size over		Over 50 % archard bergerature, if	on will be contained of the Townson on St. M. S. S. S. S. M. S. S. S. M. S. S. S. M. S. S. S. M. S. S. S. S. M. S.	le ((13.5% west) *C up35.55.*

7. VERIFICHE ELETTRICHE DI ACCOPPIAMENTO MODULI/BATTERIE CON INVERTER

Nel presente paragrafo verranno esaminati i valori estremi di funzionamento di tensione e corrente dei moduli/stringhe o batterie per verificare il corretto funzionamento degli *inverter* a cui sono collegati, verificando che tali valori siano nel *range* di funzionamento.

7.1 Verifiche stringhe con inverter solari "SUN"

Come descritto nei precedenti paragrafi, il campo fotovoltaico sarà costituito da 24.720 moduli bifacciali suddivisi in 824 stringhe omogenee di 30 moduli in serie. Ogni inverter, equipaggiato con un solo MTTP, si ritrova in ingresso quindi le stringhe provenienti da 5 string-box da 15 ossia un totale di 75 stringhe in parallelo. Pertanto, considerando i dati di targa dei moduli FV e degli inverter scelti, per ogni MTTP ossia ogni inverter avrà in ingresso:

	PARAMETRI TENSIONI/CORRENTI MPPT								
Tipo di verifica	Moduli in serie/parallelo	Tensione modulo (V)	Tensione stringa (V)	Corrente modulo (A)	Corrente parallelo (A)	Limite MTTP			
						822V-			
Vm a 60 °C	30	41,87	1256,1			1.300V	VERIFICATO		
						822V-			
Vm a STC	30	45,89	1376,7			1.300V	VERIFICATO		
Voc a -10 °C	30	49,91	1497,3			1.500V	VERIFICATO		
Im a STC	75 parall.			19A	1.425A	1.870A	VERIFICATO		

7.2 Verifiche Container Storage System con inverter "STORAGE"

Analogamente a quanto fatto sopra, il sistema *storage* è costituito da n.2 *inverter* che sottendono ciascuno n.6 *container storage* della INTENSIUM, pertanto avremo:

	PARAMETRI TENSIONI/CORRENTI MPPT							
Tipo di verifica	Container in serie/parallelo	Tensione nominale container (V)	Corrente erogata dal container alla potenza nominale dell'inverter (3,33MW) a 1300Vdc&30°C (A)	Corrente parallelo (A)	limite MTTP			

Relazione tecnica e calcolo preliminare degli impiant

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL_R_03_A_D Pagina | 32

Tensione di lavoro	1 serie	1040V-1400V			976V- 1.500V	VERIFICATO
Corrente di lavoro	6 parallelo		432	2.587	3.328A	VERIFICATO

7.3 Verifiche sezione cablaggi e perdite nei cavi DC

Il layout elettrico di cablaggio è stato progettato in modo tale che i componenti principali siano collocati in posizione più baricentrica possibile a tutte le scale di impianto. In tale prospettiva, lo string-box verrà installato in posizione baricentrica rispetto alle 15 stringhe, così come le power station contenenti i 4 o 3 inverter che verranno posizionati in maniera baricentrica rispetto agli stringbox sottesi.

Nela tabella che segue vengono riportati le sezioni dei cavi proposti, con le relative lunghezze scaturenti dalla schematizzazione appena descritta relativa al cablaggio completo di un inverter a uno string-box e da questo alle singole stringhe tipico della configurazione. Si noti che le correnti e le tensioni sono relative alle condizioni STC tenuto conto dell'extra guadagno del 10% dovuto alla caratteristica bifacciale dei moduli.

Da	а	+	-	Cable length pos. [m]	Cable lengt h neg. [m]	Total Lengh t of pos and neg (m)	Power (W)	String Voltage MPP (V)	Current MPP (A)	Max. Propose d mm-sq	Amount and size of multi- conductor cable	Material (Cu-Al)	V drop DC stringcabl e (V)	stringcabl		Total P loss (%)
String-box 1.1	Inverter	350	350	353,5	354	707	326866,5	1146,90	285,00	240,0	2 x 2 x 240 mm²	Al	11,99	1,42%	3418,22	1,42%
stringa 1.1.1	SB 1.1	17	57	17,85	59,9	77,7	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,39	0,38%	83,48	0,38%
stringa 1.1.2	SB 1.1	15	55	15,75	57,8	73,5	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,16	0,36%	78,97	0,36%
stringa 1.1.3	SB 1.1	7	47	7,35	49,4	56,7	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	3,21	0,28%	60,92	0,28%
stringa 1.1.4	SB 1.1	5	45	5,25	47,3	52,5	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	2,97	0,26%	56,41	0,26%
stringa 1.1.5	SB 1.1	17	57	17,85	59,9	77,7	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,39	0,38%	83,48	0,38%
stringa 1.1.6	SB 1.1	19	59	19,95	62	81,9	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,63	0,40%	87,99	0,40%
stringa 1.1.7	SB 1.1	28	68	29,4	71,4	100,8	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	5,70	0,50%	108,30	0,50%
stringa 1.1.8	SB 1.1	30	70	31,5	73,5	105	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	5,94	0,52%	112,81	0,52%
stringa 1.1.9	SB 1.1	17	57	17,85	59,9	77,7	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,39	0,38%	83,48	0,38%
stringa 1.1.10	SB 1.1	15	55	15,75	57,8	73,5	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,16	0,36%	78,97	0,36%
stringa 1.1.11	SB 1.1	7	47	7,35	49,4	56,7	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	3,21	0,28%	60,92	0,28%
stringa 1.1.12	SB 1.1	5	45	5,25	47,3	52,5	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	2,97	0,26%	56,41	0,26%
stringa 1.1.13	SB 1.1	17	57	17,85	59,9	77,7	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,39	0,38%	83,48	0,38%
stringa 1.1.14	SB 1.1	19	59	19,95	62	81,9	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	4,63	0,40%	87,99	0,40%
stringa 1.1.15	SB 1.1	28	68	29,4	71,4	100,8	21791,1	1146,90	19,00	6,0	2 x 1 x 6 mm²	Cu	5,70	0,50%	108,30	0,50%

XL R 03 A D Pagina | 33

8. CAVI DC UTILIZZATI

8.1 Cavi solari di stringa

Sono definiti cavi solari di stringa, i cavi che collegano le stringhe (i moduli in serie) ai quadri DC di campo o string-box; tali cavi hanno una sezione variabile da 6 a 10 mmq (in funzione della distanza del collegamento). I cavi solari di stringa sono locati all'interno del profilato della struttura o anche interrati per i tratti tra inizio vela e quadro DC di parallelo o string-box.

I cavi saranno del tipo FG21M21 o equivalenti (rame o alluminio) indicati per interconnessioni dei vari elementi degli impianti fotovoltaici. Si tratta di cavi unipolari flessibili con tensione nominale 1500 V c.c. per impianti fotovoltaici con isolanti e quaina in mescola reticolata a basso contenuto di alogeni testati per durare più di 25 anni. Essi sono adatti per l'installazione fissa all'esterno ed all'interno, senza protezione o entro tubazioni in vista o incassate oppure in sistemi chiusi similari, sono, inoltre, resistenti all'ozono secondo EN50396 e ai raggi UV secondo HD605/A1. Inoltre, sono testati per durare nel tempo secondo la EN 60216.

8.2 Cavi cablaggio string-box/inverter

I cavi in esame collegano gli string-box agli inverter e hanno una sezione tale da contenere le perdite (in funzione della distanza del collegamento). Tali cavi stringa sono collocati all'interno di condutture interrate.

I cavi in esame saranno con conduttore in alluminio del tipo AR16G16 0.6/1 kV unipolari flessibili con tensione nominale 1500 V c.c. guaina in PVC. Di seguito le schede tecniche.

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 34

BASSA TENSIONE / LOW VOLTAGE

Energia solare Solar energy

0,6/1 kV

Norma di riferimento

CEI 20-91 febbraio 2010; V1 ottobre 2010 e V2 marzo 2013

Descrizione del cavo

Conduttore

Flessibile rame stagnato secondo CEI 20-29 classe 5

Isolante

HEPR - tipo G21

Identificazione anima isolata

Colore naturale

Guaina

Mescola elastomerica reticolata senza alogeni tipo M21

Colori della guaina Nero, rosso, blu Marcatura

PRYSMIAN (*) P-Sun" FG21M21 - 1x sez. mm² anno IEMMEQU

(*) sigla sito produttivo

Applicazioni

Progettati per l'impiego e l'interconnessione dei vari elementi in impianti fotovoltaici per la produzione di energia. Possono essere installati sia all'interno che all'esterno in posa fissa o mobile (non gravosa), senza protezione. Posa possibile anche in canaline e tubazioni in vista o incassate. Adatti anche per posa direttamente interrata o in tubi interrati secondo le prescrizioni della norma CEI 11-17

Standard

CEI 20-91 february 2010; V1 october 2010 and V2 march 2013

Design features

Conductor

Tinned copper, flexible, according to CEI 20-29 class 5

Insulation HEPR - type G21

Core identification

Natural colour

Sheat

Cross-linked elastomeric halogen free compound type M21

Sheath-colours Black, red, blue

Markina

PRYSMIAN (*) P-Sun" FG21M21 -1 x sez. mm2 year **IEMMEOU**

(*) production site label

Applications

Intented for use in photovoltaic power supply systems and similar applications. Suitable for fixed and mobile installation (not heavy) both indoor and outdoor, without protection. Can also be installed in raceways and conduits either visible or covered.

Also suitable for installation directly underground, or buried in tubes underground according to CEI 11-17

Condizioni di posa / Laying conditions

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL R 03 A D Pagina | 35

Energla solare Solar energy

FG21M21 7-5un"

0,6/1 kV

Parametri elettrici / Electrical parameters

Tensione massima in r.a. (U_) / Hoted voltage in a.c. Uq/U (U_)

Tensione massima in r.r. (U_) / Maximum premissible operating voltage in DC systems Tensione di prova / Test volto ge Attro provo / Tests

1800 V anche verso terra / otto to earth 6,5 W

1200 V

Resistenza del conduttore, spark test, prova di tensione sui cavi finiti, resistenza superficiale della guaina, resistenza d'isolamento a 20 °C e 90 °C, stabilità in comente continua CETEN 50305 parte 67

Conductor resistance, test voltages AC and DC, electric strength, surface resistance, spark test on insulation, insulation nesistance 20 Tand 90 T, DE stability according to GH EN 90305 part 6.7

Parametri termici / Thermal parameters

Temperatura ambiente / Ambient temperature Min. - 40 T; max. + 90 T Max temperatura del conduttore / Maximum permis sitric operating temperature of the conductor + 120 °E (in condizioni di sovraccarico) / (in overload conditions) Temperatura di cortocinculto / Short-circult temperature + 250 °C (sul conduttors, max. 5 sec.) / (on the conductor, max 5 sec.) Resistenza freddo / Resistance to cold Prove di piegatura e allungamento a - 40 °C, secondo EN 608TI-1-4 Resistenza all'impatto a -25 °C, secondo EN 60811-1-4 Bending and elangation test at -40° C, according to EN 608TH-1-4 impact test at -25° C according to EN 608TH-1-4 Verifica comportamento a lungo tarmine / Long term tiche visur + 120 °C - 20.000 h, sucondo EN 60216-1/ EN 60216-2 +120 T - 20.000 h, according to EN 602161 / EN 60216-2

Parametri meccanici / Mechanical parameters

Sforzo di trazione durante la posa /Tensile lond during installation	50 N/mm²/max:
Sforzo di trazione in esercizio /Ternile lond in operation	15 N/mm² max.
Raggio di curvatura minimo / Minimum bending redius	s B mm pasa fissa 3 x D, movimento libero 4 x D > B mm pasa fissa 4 x D, movimento libero 6 x D > 8 mm fixed installation 3 x Ω free movement 4 x Ω > 8 mm fixed installation 4 x Ω free movement 6 x D

Parametri chimici / Chemical parameters

Resistenza all'ollo minurale / Minerol oli resistence	4 h, 100 °C prova secondo EN 60811-2-1 4 h, 100 °C according to EN 60811-2-1
Resistenza agli agenti atmosferici / Weather resistance	Resistanza azono secondo EN 50396 art. 8.1.3 Resistanza UV, metodo secondo HD 605 par. 2.4.20 Assorbimento acqua (metodo gravimento) secondo EN 60811-1-3 Dzone resistance according to EN 50396 art. 8.1.3 UV-resistance according to HD 605 par. 2.4.20 Attorption of water (gravimentic) according to EN 60811-1-3
Comportamento in caso di incendio / Belevil our in case of fire	Non propagazione della fiarmina, prova su singolo cavo secondo EN 60332-1-2 Basse emissioni di fiumi secondo CEI EN 61034-2 Corresività secondo CEI EN 50267-2. Tossicità secondo CEI 20-37/4 Fiorme propagation, single code according to EN 60332-1-2 Lows muse emission according to CEI EN 61034-2 Corresivity according to CEI EN 50267-2. Toricity according to CEI 20-37/4
Eompatibilità ambientale / Ambient composibility	In accords alle norme sulla nicitabilità e lo smaltimento (in assenza di sestanos inquinanti ed alogene) Given in terms of recycling deposal and energy-swing production (free of pollutants and hologens)

XL R 03 A D Pagina | 36

7RG16R16 Ø.6/1KV

CONFORME CPR REG.305/2011/UE CPR COMPLIANT REG.305/2011/UE

CARATTERISTICHE TECNICHE

TECHNICAL FEATURES

CONDUTTORE CONDUCTOR

Corda di alluminio rigida, classe 2 Aluminium stranded wire, class 2

TENSIONE HOMINALE NOMINAL VOLTAGE

0.6/1KV

ISOLAMENTO INSULATION

Gomma HEPR di qualità G16 Rubber HEPR G16 quality

TENSIONE DI PROVA TEST VOLTAGE

4600 V

COLORAZIONE COMDUTTORI CORES COLORATION Normativa HD 308 HD 308 standard

TEMPERATURE DI ESERCIZIO TEMPERATURES RANGE

- 15° C / + 90° C

GUAINA ESTERNA OUTER SHEATH

PVC, qualità R16, colore grigio PVC, quality R16, color grey

RAGGIO DI CURVATURA BENDING RADIUS

NORMATIVE NORMS

COMPORTAMENTO AL FUOCO FIRE PERFORMANCE

CEI EN 60332-1-2 | EN 50399 | EN 60754-2

CONFORME CPR REGOLAMENTO 305/2011/UE

C_{CA}-S3,D1,A3

MARCATURA

ARG16R16 0.6/1KV [FORMAZIONE] CCA-S3,D1,A3 IEMMEQU [METRICA]

REFEREMENTI STANDARD STANDARD REFERENCE CEI 20-13 | EN 50675-2014+A1:2016 | EN 13501-6:2014 | EN 50267-2-1 | 2014/35/EU | 2011/65/EU

 $XL_R_03_A_D$

Pagina | 37

9. PROTEZIONE IMPIANTI ELETTRICI

9.1 Protezione delle condutture elettriche

I conduttori che costituiscono gli impianti saranno protetti contro le sovracorrenti causate da sovraccarichi o da corto circuiti.

La protezione contro i sovraccarichi sarà effettuata in ottemperanza alle prescrizioni delle norme CEI 64-8 cap. 433.

In particolare i conduttori saranno scelti in modo che la loro portata (Iz) sia superiore o almeno uguale alla corrente di impiego (Ib) (valore di corrente calcolato in funzione della massima potenza da trasmettere in regime permanente). I dispositivi di protezione da installare a loro protezione avranno una corrente nominale (In) compresa fra la corrente di impiego del conduttore (Ib) e la sua portata nominale (Iz) ed una corrente di funzionamento del dispositivo di protezione (If) minore o uguale a 1,45 volte la portata (Iz).

In tutti i casi saranno soddisfatte le seguenti relazioni:

$$\begin{split} &I_{b} \leq I_{n} \leq I_{z} \\ &I_{f} \leq 1,45 \times I_{z} \end{split}$$

La seconda delle due disuguaglianze sopra indicate è automaticamente soddisfatta nel caso di impiego di interruttori automatici, di portata adeguata, conformi alle norme CEI 23-3 e CEI 17-5.

I dispositivi di protezione devono interrompere tutte le correnti provocate da un corto circuito che possono verificarsi in un punto qualsiasi del circuito in tempi sufficientemente brevi per garantire che nel conduttore protetto non si raggiungano temperature pericolose.

Essi avranno un potere di interruzione almeno uguale alla corrente di corto circuito presunta nel punto di installazione.

È tuttavia ammesso l'impiego di un dispositivo di protezione con potere di interruzione inferiore a condizione che a monte via sia un altro dispositivo avente il necessario potere di interruzione (art. 434.3.1 delle norme CEI 64-8). In questo caso, le caratteristiche dei due dispositivi devono essere coordinate in modo che l'energia specifica passante, l²t, lasciata passare dal dispositivo a monte non risulti superiore a quella che può essere sopportata senza danno dal dispositivo a valle e dalle condutture protette da questi dispositivi.

Per i cortocircuiti di durata non superiore a 5 secondi, deve essere verificata la seguente condizione:

 $I^2t < k^2S^2$

dove:

- l²t è l'energia specifica passante, lasciata passare dal dispositivo di protezione per la durata del cortocircuito; in (A2xS);
- S è la sezione del conduttore in mmg
- k è una costante che varia in base all'isolamento dei cavi e vale:
 - per i conduttori in rame isolati in PVC;
 - 135 per i conduttori in rame isolati con gomma ordinaria o gomma butilica;
 - 143 per i conduttori in rame isolati con gomma etilenpropilenica e propilene reticolato.

9.2 Misure di protezione dalle scariche atmosferiche

L'installazione dell'impianto fotovoltaico nell'area, prevedendo mediamente strutture di altezza contenuta e omogenee tra loro, non altera il profilo verticale dell'area medesima. Ciò significa che le probabilità della fulminazione diretta non sono influenzate in modo sensibile. Considerando inoltre che il sito non sarà presidiato, la protezione della fulminazione diretta sarà realizzata soltanto mediante un'adeguata rete di terra che garantirà l'equipotenzialità delle masse.

Per quanto riguarda la fulminazione indiretta, bisogna considerare che l'abbattersi di un fulmine in prossimità dell'impianto può generare disturbi di carattere elettromagnetico e tensioni indotte sulle linee dell'impianto, tali da provocare guasti e danneggiarne i componenti. Per questo motivo gli inverter sono dotati di un proprio sistema di protezione da sovratensioni, sia sul lato in corrente continua, sia su quello in corrente alternata. Infatti, saranno presenti idonei SPD (Surge Protective Device – scaricatori di sovratensione) nella sezione DC delle cassette di giunzione (String Box), agli ingressi DC e all'uscita lato AC degli inverter.

9.3 Protezione contro i contatti indiretti

Saranno protette contro i contatti indiretti tutte le parti metalliche accessibili dell'impianto elettrico e gli apparecchi utilizzatori, normalmente non in tensione ma che, per cedimento dell'isolamento principale o per altre cause accidentali, potrebbero trovarsi sotto tensione (masse).

Per la protezione contro i contatti indiretti ogni impianto elettrico utilizzatore, o raggruppamento di impianti contenuti in uno stesso impianto e nelle sue dipendenze sarà collegato all'impianto di terra.

Relazione tecnica e calcolo preliminare degli impianti

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

XL_R_03_A_D
Pagina | 39

A tale impianto di terra saranno collegati tutti i sistemi di tubazioni metalliche accessibili destinati ad adduzione, distribuzione e scarico delle acque nonché tutte le masse metalliche accessibili di notevole estensione esistenti nell'area dell'impianto elettrico utilizzatore stesso.

9.4 Coordinamento dell'impianto di terra con dispositivi di interruzione dell'alimentazione

Una volta verificato l'impianto di messa a terra, la protezione contro i contatti indiretti dovrà essere eseguita coordinando fra loro l'impianto di messa a terra e i dispositivi di protezione per l'interruzione automatica dell'alimentazione.

Questo tipo di protezione richiede l'installazione di un impianto di terra coordinato con un dispositivo di protezione che interrompa automaticamente l'alimentazione al circuito o al componente elettrico, che lo stesso dispositivo protegge contro i contatti indiretti in modo che, in caso di guasto nel circuito o nel componente elettrico, tra una parte attiva ed una massa o un conduttore di protezione non possa persistere, per una durata sufficiente a causare un rischio di effetti fisiologici dannosi in una persona in contatto con parti simultaneamente accessibili, una tensione di contatto presunta superiore a 50V, valore efficace in c.a. od a 120V in c.c. non ondulata.

9.5 Protezione mediante doppio isolamento

In alternativa al coordinamento fra impianto di messa a terra e dispositivi di protezione attiva, la protezione contro i contatti indiretti può essere realizzata adottando macchine e apparecchi elettrici con isolamento doppio o rinforzato per costruzione o installazione (componenti elettrici di Classe II). In uno stesso impianto la protezione con apparecchi di Classe II può coesistere con la protezione mediante messa a terra; tuttavia è vietato collegare intenzionalmente a terra le parti metalliche accessibili delle macchine, degli apparecchi e delle altre parti dell'impianto di Classe II.

Questo tipo di protezione viene adottata nella parte DC a valle degli inverter avendo adottato moduli, cavi e *string-box* di classe II.

9.6 Classificazione degli impianti in sistemi TN-S e IT

L'impianto fotovoltaico in esame presenta la convivenza tra due sistemi di distribuzione del neutro. Infatti abbiamo il sistema TN-S per tutte le utenze a valle dei trasformatori ausiliari e sistema IT a

XL_R_03_A_D

Pagina | 40

valle dei trasformatori delle *power station*, per cui la protezione dai contatti indiretti avverrà secondo modalità diverse in base a dove avviane il guasto verso massa.

9.7 Protezione contro i contatti indiretti porzione impianto IT

Un guasto a terra in un sistema con neutro isolato da terra provoca la circolazione di una piccola corrente di guasto dovuta principalmente all'accoppiamento capacitivo dei cavi ed in misura minore ai motori e agli altri componenti dell'impianto. La tensione limite UL può essere facilmente contenuta entro valori non pericolosi in quanto, visto generalmente il modesto valore della corrente di guasto è facile soddisfare la condizione:

$$R_T \times I_{\mathbf{g}} \leq U_L$$

dove:

- R_T è la resistenza, espressa in ohm, del dispersore al quale sono collegate le masse;
- I_{α} è la corrente di guasto, espressa in ampere, fra un conduttore di fase e una massa;
- U_L è il massimo valore ammissibile per la tensione di contatto in seguito ad un guasto a massa (U_L=50 V per ambienti ordinari, U_L=25 V per ambienti particolari).

La protezione dai contatti indiretti in tali sistemi viene realizzata tramite il controllo continuo dell'impedenza verso terra dei conduttori attivi tramite isoltester o funzione integrate negli inverter stessi. Un'eventuale abbassamento dell'impedenza determina l'emissione di un allarme agli addetti alla manutenzione che devono provvedere al ripristino del corretto isolamento verso terra nel più breve tempo possibile per evitare un possibile doppio guasto a terra il quale potrebbe essere molto dannoso e pericoloso.

Il doppio guasto interessa due fasi come se si trattasse di un sistema TN con una tensione uguale a $\sqrt{3} \times U_0$. Purtroppo l'anello di guasto e la relativa impedenza non sono noti in quanto il guasto può avvenire in due punti qualsiasi dell'impianto. La Norma stabilisce convenzionalmente che l'impedenza dell'anello di guasto debba essere la metà di quella permessa per un sistema TN. In questo modo dovrebbe essere possibile l'apertura di almeno uno dei due circuiti guasti in un tempo stabilito come da tabella sotto (neutro non distribuito). La condizione da soddisfare quando il neutro non è distribuito diventa:

$$Z_s^1 \le \frac{\sqrt{3} \times U_0}{2 \times I_a} = \frac{U}{2 \times I_a}$$

Pagina | 41

Dove:

- I_a è la corrente che provoca l'intervento del dispositivo di protezione del circuito entro il tempo t specificato nella tabella per i circuiti terminali che alimentano apparecchi trasportabili, mobili o portatili ed entro 5s per gli altri circuiti come per i sistemi TN;
- Z_s¹ è l'impedenza dell'anello di guasto costituito dal conduttore di fase e dal conduttore di protezione:
- U₀ è la tensione nominale tra fase e neutro;
- U è la tensione nominale tra fase e fase.

	Tempo di interruzione (s)			
U_0 / U	Condizioni ordinarie (U _L =50V)		Condizioni particolari (U _{L=} 25V)	
(V)	Neutro non distribuito	Neutro distribuito	Neutro non distribuito	Neutro distribuito
120/240	0,8	5	0,4	1
230/400	0,4	0,8	0,2	0,4
400/690	0,2	0,4	0,06	0,2
580/1000	0,1	0,2	0,02	0,06

9.8 Protezione contro i contatti indiretti porzione impianto TN-S

Per attuare la protezione con dispositivi di massima corrente o differenziali in un sistema TN è richiesto che sia soddisfatta in qualsiasi punto del circuito la seguente condizione:

$$I_a \leq \frac{U_0}{Z_s}$$

Dove:

- U₀ è la tensione nominale in valore efficace tra fase e neutro in volt dell'impianto relativamente al lato in bassa tensione;
- Z_s indica l'impedenza totale in ohm dell'anello di guasto che comprende il trasformatore il conduttore di fase e quello di protezione tra il punto di guasto e il trasformatore;
- la è la corrente in ampere che provoca l'intervento del dispositivo di protezione entro il tempo indicato in tabella sottostante.

XL R 03 A D Pagina | 42

Se si impiega un dispositivo differenziale, la è la corrente Idn differenziale nominale, se invece si utilizza lo stesso dispositivo impiegato per la protezione contro le sovracorrenti si può usare, per la verifica della relazione, la corrente di intervento della protezione magnetica Im che fa intervenire la protezione in tempi inferiori a quelli prescritti dalla norma.

$U_0(V)$	Tempo di interruzione (s)			
	Ambienti normali Ambienti particolari			
120	0,8	0,4		
230	0,4	0,2		
400	0,2	0,06		
>400	0,1	0,02		

Per un guasto franco a terra le norme CEI richiedono l'intervento dei dispositivi di protezione entro un tempo tanto più piccolo quanto maggiore è la tensione di fase, con l'eccezione dei circuiti di distribuzione e dei circuiti terminali che alimentano apparecchi fissi per i quali è ammesso un tempo d'intervento non superiore ai 5s purché sia soddisfatta una delle seguenti condizioni enunciate dall'art, 413,3,5 delle Norme CEI 64-8:

- a) l'impedenza del conduttore di protezione che collega il quadro di distribuzione al punto nel quale il conduttore di protezione è connesso al collegamento equipotenziale principale (generalmente il collettore di terra) non deve essere superiore a ZPE=Zsx50/U0;
- b) esiste un collegamento equipotenziale supplementare che collega localmente al quadro di distribuzione gli stessi tipi di masse estranee indicati per il collegamento equipotenziale principale che soddisfa le prescrizioni riguardanti il collegamento equipotenziale principale di cui al Capitolo 54 delle Norme CEI 64-8.

10. IMPIANTO DI TERRA DEL CAMPO FOTOVOLTAICO

10.1 Conduttore di protezione (PE)

Col conduttore di protezione (è identificato dal colore giallo/verde e viene chiamato PE oppure, se svolge contemporaneamente anche la funzione di neutro, PEN) si realizza il collegamento delle masse con l'impianto di terra. Unitamente all'interruttore automatico garantisce la protezione dai contatti indiretti e deve essere dimensionato, come pure il conduttore di terra ed equipotenziale, sia per sopportare le sollecitazioni termiche dovute alla corrente di guasto verso terra (che in condizioni di regime è nulla) sia per sopportare eventuali sollecitazioni meccaniche. Il dimensionamento può essere effettuato, con un metodo semplificato, in funzione della sezione del conduttore di fase (vedi

Pagina | 43

tabella sotto) o in modo adiabatico con la formula sotto indicata, metodo che conduce a sezioni notevolmente inferiori rispetto a quelle ottenute col metodo semplificato.

Sezione	Sezione minima del conduttore di protezione (mm²)			
	Cu		Al	
di fase (mm²)	PE	PEN	PE	PEN
≤16	S _F	S _F	S _F	S _F
16÷35	16	16	16	25
> 35	S _F /2	S _F /2	S _F /2	S _F /2

$$S_{PF} = \sqrt{\frac{I^2 t}{{K_C}^2}}$$

dove:

- l²t è l'energia specifica lasciata passare dell'interruttore automatico durante l'interruzione del guasto;
- $K_{\mathbb{C}}$ è un coefficiente che dipende dal materiale isolante e dal tipo di conduttore impiegato.

Pagina | 44

Tipo conduttore		Tipo di isola	ante	
,		PVC	G2	EPR/XLPE
		³ 6 =30	³ 6 =30	^{J6} =30
		$\mathcal{I}_{f=160}$	$g_{f} = 250$	$g_{f=220}$
Cavo unipolare	Cu Al	143 95	166 110	176 116
Cavo nudo a contatto	Cu Al	143	166 110	176 116
con rivestimento	Fe	95 52	60	64
esterno di cavi isolati			4/4 - /4/ -4	
Valori del coefficient Tipo di conduttore	e K _C per d	Tipo di isol		n'anima di cavo multipolare
про агсопашноге		PVC	G2	EPR/XLPE
			GZ	LI IVALI L
		^J 6 =70	² 6 ₌₈₅	S _{0 =85}
		$g_{f=160}$	$g_{f=250}$	$g_{f=220}$
Anima di cavo	Cu	115	135	143
multipolare	ΑI	76	89	94
	e K _c per d			ontatto con materiali danneggiabili
Tipo conduttore		Condizioni	di posa	
		A (*)	B (*)	C (*)
		<i>3</i> ₀ ₌₃₀	³ =30	^I 0 =30
		$g_{f=500}$	9 _{f =200}	$g_{f=150}$
Cavo nudo non a	Cu	228	159	138
contatto con	AI	125	105	91
rivestimen di cavi isolati	Fe	82	58	50
(*) A: a vista in locali a	II ccessibili :	ll solo a perso	nale addestra	to
(*) B: in condizioni ordi	narie			
				crizioni delle Norme CEI 64-2
	e K _c per c			ivestimento metallico o dall'armatura del cavo
Tipo conduttore		Tipo di isol	G2	EPR/XLPE
		¹ =30	3 ₆ =80	S _{0 =75}
		$\mathcal{I}_{f=160}$	9, -250	$g_{f=220}$
Rivestimento o	Cu	122	140	=220 149
armatura del cavo	AI	79	90	96
	Fe	42	48	51
	Pb	22	19	19

10.2 Correnti di corto circuito lato BT

Nella seguente tabella vengono riassunte le formule per il calcolo delle correnti che interessano i trasformatori.

Formule di calcolo correnti trasformatore		
corrente nominale primaria	$I_{1n} = \frac{S_{nTR}}{\sqrt{3} \cdot V_{1n}}$	
corrente nominale secondaria	$I_{2n} = \frac{S_{nTR}}{\sqrt{3} \cdot V_{2n}} :$	

XL_R_03_A_D Pagina | 45

corrente di cortocircuito trifase al lato secondario	$I_{2k3F} = \frac{S_{nTR}}{V_{k\%}} \times 100 \times \frac{1}{\sqrt{3} \times V_{2n}}$
corrente di cortocircuito trifase passante al lato MT per guasto sul lato BT	$I_{1k3F} = \frac{I_{2k3F}}{V_{1n}} \cdot V_{2n}$

Per il trasformatore del *power station* con i seguenti dati:

tensione nominale primaria: V1n=30kV

tensione nominale secondaria: V2n=578V

potenza nominale: SnTR=3600kVA

tensione di cortocircuito: vk%=6%

otteniamo:

l1n	69A
I2n	3,6kA
I _{2k3F}	60kA
I _{1k3F}	1.154A

Per il trasformatore del power storage con i seguenti dati:

tensione nominale primaria: V1n=30kV

tensione nominale secondaria: V2n=720V

potenza nominale: SnTR=3600kVA

tensione di cortocircuito: vk%=6%

otteniamo:

l1n	69A
I2n	2,9kA
I _{2k3F}	72kA
I _{1k3F}	1.732A

Per il trasformatore dei servizi ausiliari in cabina con i seguenti dati:

tensione nominale primaria: V1n=30kV

Pagina | 46

tensione nominale secondaria: V2n=400V

potenza nominale: SnTR=100kVA tensione di cortocircuito: vk%=4%

otteniamo:

l1n	1,9A
l2n	144A
I _{2k3F}	3,6kA
I _{1k3F}	48A

10.3 Calcolo del conduttore di protezione PE – collettore / quadro generale cabina:

Il conduttore di protezione (PE) è calcolato in base alle sollecitazioni termiche (in condizioni adiabatiche) mediante la formula:

$$S_{PE} = \sqrt{\frac{I^2 t}{{K_C}^2}}$$

Dove:

- S = sezione del conduttore di protezione (mm²);
- I = valore efficace (I2k3F) della corrente di guasto che può percorrere il conduttore di protezione in caso di guasto (A);
- t = tempo di intervento delle protezioni (s);
- K = fattore che dipende dal materiale del conduttore di protezione K = 143 riferito a conduttore unipolare isolato in PVC (valore di norma CEI 64-8/5 543.1 tabella 54B).

Nel nostro caso otteniamo le seguenti sezioni commerciali più vicine:

	I _{2k3F}	t	Spe
Trafo power station	60kA	0,05	1x120mmq
Trafo storage	48kA	0,05	1x90mmq
Trafo ausiliari	3,6kA	0,05	1x25mmq

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pagina | 47

10.4 Conduttori equipotenziali

Sono conduttori che collegano fra di loro parti che normalmente si trovano al potenziale di terra garantendo quindi l'equipotenzialità fra l'impianto di terra e le masse estranee e consentendo di ridurre la resistenza complessiva dell'impianto di terra. Non essendo conduttori attivi e non dovendo sopportare gravose correnti di guasto, il loro dimensionamento non segue regole legate alla portata ma alla resistenza meccanica del collegamento.

Le Norme prescrivono le sezioni minime che devono essere rispettata per questi conduttori distinguendo tra conduttori equipotenziali principali (EQP) e supplementari (EQS). Sono detti principali se collegano le masse estranee al nodo o collettore principale di terra, sono detti supplementari negli altri casi.

Le sezioni minime prescritte sono raccolte nella tabella che segue.

Conduttori equipotenziali	Sezione del conduttore di protezione principale PE	Sezione del conduttore equipotenziale (mm²)
5: :	(mm²)	
Principale EQP	≤10	6
	= 16	10
	= 25	16
	> 35	25
Supplementare EQS:	In ogni caso la sezione essere:	e minore (1) one del corrispondente del conduttore EQS deve e protetto meccanicamente
(1) Quando lo duo masso appartengeno e	• ≥4 mm² se meccanicame	non protetto nte

⁽¹) Quando le due masse appartengono a circuiti con sezioni dei conduttori di protezione molto diverse, sul conduttore EQS (dimensionato in base alla sezione del conduttore di protezione minore), potrebbero verificarsi correnti di guasto tali da sollecitare termicamente in modo eccessivo il conduttore stesso. In questo caso è opportuno aumentare la sezione del conduttore EQS sulla base della corrente di guasto effettiva.

Relazione tecnica e calcolo preliminare degli impianti XL_R_03_A_D Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT) Relazione tecnica e calcolo preliminare degli impianti XL_R_03_A_D Pagina | 48

10.5 Consistenza impianto di terra

L'impianto di terra interno delle cabine sarà costituito da una bandella di rame 30x3 mm e da un collettore 50x10 mm; realizzato mediante la messa a terra di tutte le incastellature metalliche con cavo FS17 e morsetti capicorda a compressione di materiale adeguato.

L'impianto di terra esterno alle cabine è costituito da:

- un dispersore intenzionale che realizza un anello di corda di rame nudo da 35 mmq (ETP UNI 5649-71) o in acciaio con sezione non inferiore a 50 mmq, posato ad una profondità di 0,5-0,8 m completo di morsetti per il collegamento tra rame e rame;
- morsetti a compressione in rame per realizzare le giunzioni tra i conduttori trasversali alla maglia principale;
- dispersori verticali in acciaio zincato (o ramato) H=1,5 m;
- morsetti in rame stagnato o ottone per il collegamento ai dispersori in acciaio;
- pozzetti in calcestruzzo armato vibrato di tipo carrabile completi di chiusino.

L'impianto di terra sarà unico e rispondente alle norme vigenti (in particolare alla Norma CEI 99-3 "Impianti elettrici con tensione superiore a 1 kV in corrente alternata" ed alla Guida CEI 11-37 "Guida per l'esecuzione degli impianti di terra di stabilimenti industriali per sistemi di I, II e III categoria").

L'impianto di terra è stato dimensionato sulla base della corrente di guasto a terra sulla rete MT di alimentazione e del tempo di eliminazione del guasto a terra.

10.6 Dimensionamento dell'impianto di terra

In relazione all'art. 9.2.4 della norma CEI 99-3 in vigore, relativa agli impianti utilizzatori a tensione nominale maggiore di 1000V, il valore della resistenza dell'impianto di terra deve essere tale che non si verifichino tensioni di contatto e di passo pericolose per le persone.

La tabella C-3 dell'allegato C indica i limiti per le tensioni di contatto e di passo, e per la tensione totale di terra, secondo la norma CEI 99-3, fasc. 5025

Relazione tecnica e calcolo preliminare degli impianti

ti XL_R_03_A_D

5 MWp (13 | Pagina | 49

Progetto di un impianto agro-fotovoltaico per una potenza nominale di 16,315 MWp (13 MW in immissione) integrato da sistema di accumulo da 6,66 MW e relative opere di connessione da realizzarsi nei comuni di Ramacca, Paternò e Belpasso (CT)

Pertanto noti la corrente di guasto IF ≤ 80 A e il tempo di eliminazione del guasto tF < 1 sec, (vedi relazione SSE) è sufficiente che la resistenza di terra (RE) soddisfi la condizione

$$RE \le 100 / 80 = 1,25 \Omega$$

Pertanto l'impianto di terra sarà dimensionato in modo da ottenere una resistenza di terra non maggiore, per sicurezza, di 1 Ω

La resistenza di terra prima della messa in esercizio verrà misurata con metodo voltamperometrico.