REGIONE LAZIO

Comune di Viterbo

PROGETTO DEFINITIVO

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO SITO NEL COMUNE DI VITERBO DELLA POTENZA DI PICCO PARI A 28.584,0 kWp E POTENZA IN IMMISSIONE PARI A 23.868 kW E DELLE RELATIVE OPERE DI CONNESSIONE NEI COMUNI DI VITERBO E TUSCANIA (VT)

TITOLO

Relazione di impatto elettromagnetico

PROGETTAZIONE

STUDIO RINNOVABILI

SR International S.r.l.
C.so Vittorio Emanuele II, 282-284 - 00186 Roma
Tel. 06 8079555 - Fax 06 80693106
C.F e P.IVA 13457211004

PROPONENTE

FRV 2201 S.r.l.

FRV 2201 S.r.l.
Con sede legale a Torino (TO)
Via Assarotti 7 - 10122
C.F. e P.IVA 12696040018
PEC: frv2201@hyperpec.it

DocuSigned by:

A368684FD1C04C6...

00	01/05/2022	Lauretti	Bartolazzi	FRV 2201 S.r.l.	Relazione di impatto elettromagnetico
Revisione	Data	Elaborato	Verificato	Approvato	Descrizione)

N° DOCUMENTO SCALA FORMATO A4

INDICE

11	NDICE	DELLE FIGURE
1.	OGGE	TTO DEL DOCUMENTO 4
2.	INTR	ODUZIONE 4
	2.1	I CAMPI ELETTRICI E MAGNETICI
	2.2	EFFETTI BIOLOGICI E LIMITI DI ESPOSIZIONE
3.	RIFE	RIMENTI LEGISLATIVI NAZIONALI8
4.	DESC	RIZIONE DELL'IMPIANTO FOTOVOLTAICO11
5.	POSS	IBILI EMISSIONI DERIVANTI DALL'IMPIANTO FOTOVOLTAICO 12
	5.1	MODULI FOTOVOLTAICI
	5.2	MULTI-MPPT STRING INVERTER 12
6.	CABI	NE DI TRASFORMAZIONE BT/MT13
7.	CABI	NA DI CONSEGNA14
8.	CAVI	DOTTI IN MEDIA TENSIONE
9.	ESPO	SIZIONE POST-OPERAM DEL PROGETTO18
	9.1	CAVIDOTTI INTERNI ALL'AREA D'IMPIANTO
	9.1.1	TIPOLOGIA DEI CAVI IN MT
	9.1.2	TIPOLOGIA DI SCAVO
	9.1.3	CAMPO MAGNETICO B INTERNO ALLE AREE D' IMPIANTO 22
	9.2 SAN S	CAVIDOTTO ESTERNO DI CONNESSIONE TRA LE CABINE DI CONSEGNA E LA CF AVINO24
	9.2.1	TIPOLOGIA DEI CAVI IN MT24
	9.2.1	TIPOLOGIA DI SCAVO24
	9.2.2	CAMPO B GENERATO DAL CAVIDOTTO ESTERNO
1 (D. CON	CLUSIONI

INDICE DELLE FIGURE

ICNIRP e CENELEC, e indicazione della SAE
Figura 2 – Valori della Distanza di prima approssimazione per una cabina di consegna con trasformatore
Figura 3 – Andamento dell'induzione magnetica B generata da un tratto rettilineo di terna trifase, per diverse configurazioni geometriche della terna stessa
Figura 4 – Andamento del campo B generato da una terna piana trifase percorsa da corrente di 300 A (blu), 600 A (ciano) e 900 A (arancio) e indicazione delle distanze dalla linea necessarie per rientrare nei limiti di legge e nella SAE.
Figura 5 – Caratteristiche tecniche del cavo in MT direttamente interrato
Figura 6 – Caratteristiche tecniche del cavo in MT da 185 mmq protetto da tubazione 20
Figura 7 – Sezione di scavo per i cavidotti interrati in MT interni all'area d'impianto 21
Figura 8 – Inquadramento dell'area d'impianto su ortofoto – Ricettori (R1) 22
Figura 9 – Disposizione degli scavi MT nelle aree d'impianto
Figura 10 – Sezione di scavo per i cavidotti interrati in MT interni all'area d'impianto 25
Figura 11 – Inquadramento su ortofoto – percorso del cavidotto di evacuazione in MT 26
Figura 12 – Ricettore R2
Figura 13 – Ricettore R3
Figura 14 – Ricettori R4 e R5
Figura 15 – Ricettore R6
Figura 16 – Ricettore R7
Figura 17 - Ricettore R8
Figura 18 – Ricettore R9
Figura 19 – Ricettori R10 e R11
Figura 20 – Ricettore R12
Figura 21 – Ricettori R13 e R14
Figura 22 – Campo di induzione magnetica B (μ T) generato dal cavidotto interno MT del progetto fotovoltaico in relazione ai limiti di esposizione e obiettivo di qualità

FRV 2201 S.r.l.

INDICE DELLE TABELLE

Tabella 1 – Limiti della normativa italiana sull'esposizione a campi elettromagnetici a 50 Hz
indicati nel DPCM dell'8 Luglio 200310
Tabella 2 – Induzione magnetica B generata da comuni elettrodomestici a 50 Hz 10
Tabella 3 – Caratteristiche tecniche dell'impianto
Tabella 4 – Distanze tra i ricettori ed il percorso del cavidotto interrato in MT
Tabella 5 – Valori del campo B in relazione alla variazione della distanza dalla proiezione
ortogonale del cavo sull'asse stradale

FRV 2201 S.r.l.

1. OGGETTO DEL DOCUMENTO

Il presente documento ha lo scopo di descrivere i possibili campi elettromagnetici generati dall'impianto fotovoltaico da realizzare nel territorio comunale di Viterbo, localizzato nella regione Lazio, in provincia di Viterbo (VT) prendendo in considerazione tutti gli elementi che potrebbero esserne una fonte. In particolare, si porrà maggiore attenzione alle linee elettriche in cavo interrato:

- in MT a 20 kV, interne al campo fotovoltaico, che collegano le cabine di trasformazione BT/MT tra di loro e con la rispettiva cabina di consegna (CC);
- in MT a 20 kV, esterno all'area d'impianto, che collega le cabine di consegna con la Cabina primaria "San Savino", ubicata nel comune di Tuscania (VT).

Si rimanda alla Relazione tecnica degli impianti elettrici FRV-VTB-RTE, per l'esposizione dettagliata delle caratteristiche tecniche ed elettriche dei cavidotti di connessione dell'impianto fotovoltaico in oggetto.

2. INTRODUZIONE

Lo sviluppo economico di un paese è strettamente collegato ai consumi e alla disponibilità di energia, la cui fonte primaria oggi è il petrolio.

I combustibili fossili però, oltre al fatto che vengono consumati con una velocità milioni di volte superiore a quella con la quale si sono accumulati naturalmente, essendo quindi destinati ad una progressiva rarefazione, sono anche i principali responsabili del degrado dell'ambiente, con gravi conseguenze sulla salute dell'uomo, sulla flora, sulla fauna e sul patrimonio artistico.

Con il protocollo di Kyoto (dicembre 1997) le maggiori potenze mondiali, tra le quali l'Italia, si sono impegnate a diminuire le emissioni dei gas-serra per prevenire i cambiamenti climatici, e a Johannesburg (dicembre 2001) i Paesi sottoscrittori, esclusi gli USA ma con l'aggiunta di Russia e Cina, hanno riconfermato la loro adesione a tale accordo. Nel settembre 2004 poi la Russia ha deciso di ratificare il Protocollo, rendendolo così operativo. Il 12 dicembre 2008 è stato approvato dagli Stati Membri della UE il "Pacchetto cambiamenti climatici ed energia", già definito 20-20-20, che prevede il raggiungimento di una quota del 20% di energie rinnovabili nel totale dei consumi energetici entro il 2020. La strada da percorrere nell'ottica di uno sviluppo sostenibile è dunque quella dello sfruttamento delle fonti di energia non soggette ad un esaurimento nel tempo e non impattanti sull'ambiente.

Alla produzione e al trasporto di energia elettrica, siano essi basati su fonti tradizionali fossili sia su fonti rinnovabili, si associano delle emissioni elettromagnetiche, dovute in massima parte alla corrente elettrica che scorre nei cavidotti aerei e/o interrati. Nella progettazione di nuovi impianti di produzione di energia elettrica risulta dunque necessario assicurarsi che da tali opere non scaturiscano situazioni possibilmente dannose per la popolazione legate all'esposizione a campi elettromagnetici. L'interazione tra campi elettromagnetici e sistemi biologici è governata in generale dalle equazioni di Maxwell, che descrivono la propagazione, riflessione e assorbimento dei campi elettromagnetici in tutti i mezzi, tra cui anche i tessuti biologici. In particolare, lo studio di possibili effetti legati all'esposizione a campi elettromagnetici è affrontato da una disciplina scientifica che prende il nome di bioelettromagnetismo, che in sintesi è basata sull'analisi di due aspetti:

- **Dosimetria**: valutazione quantitativa del campo elettromagnetico a cui è esposto un soggetto in presenza di una data sorgente elettromagnetica.
- **Effetti biologici**: valutazione di possibili effetti biologici legati all'esposizione a una certa dose di campo.

Quest'ultimi possono essere sia dannosi che positivi (nel caso di applicazioni biomedicali) e sono strettamente legati alle caratteristiche dei campi elettromagnetici cui si è esposti ovvero frequenza, intensità, polarizzazione e forma d'onda.

Il parametro di maggior interesse è la frequenza, poiché campi a bassa frequenza agiscono sui sistemi biologici secondo meccanismi sostanzialmente diversi da quelli ad alta frequenza. Nel caso della bassa frequenza, come quello di elettrodotti a 50 Hz quali quello in esame, è possibile dimostrare che campi elettrici e magnetici sono sostanzialmente indipendenti (o disaccoppiati), per cui possono essere trattati separatamente.

2.1 I CAMPI ELETTRICI E MAGNETICI

Il **campo elettrico** è legato in maniera direttamente proporzionale alla tensione della sorgente; esso si attenua, allontanandosi da un elettrodotto, come l'inverso della distanza dai conduttori. Dal momento che i valori efficaci delle tensioni di linea variano debolmente con le correnti che le attraversano, l'intensità del campo elettrico può considerarsi, in prima approssimazione, costante. La presenza di alberi, oggetti conduttori o edifici in prossimità delle linee riduce l'intensità del campo elettrico, e in particolare all'interno degli edifici, si possono misurare intensità di campo fino a 10 (anche 100) volte inferiori a quelle rilevabili all'esterno.

L'intensità maggiore del campo elettrico in elettrodotti aerei si misura generalmente al centro della campata, ossia nel punto in cui i cavi si trovano alla minore distanza dal suolo. L'andamento e il valore massimo delle intensità dei campi dipenderanno anche dalla disposizione e dalle distanze tra i conduttori della linea. Nel caso di **elettrodotti interrati**, il campo elettrico è ridotto dai rivestimenti dei cavi e soprattutto dall'interramento, tanto che già a brevissima distanza dal cavo il campo è sostanzialmente trascurabile. Si pensi infatti che date le caratteristiche dielettriche del terreno, il piano di terra costituisce un riferimento elettrico equipotenziale, a potenziale nullo. Per tale motivo, il campo elettrico non è generalmente di interesse per la valutazione di effetti biologici legati alla presenza di elettrodotti in bassa frequenza, e le normative che fissano i limiti di esposizione a bassa frequenza sono incentrate sul campo magnetico.

Il **campo magnetico** generato dalla corrente che scorre in un elettrodotto è invece la grandezza di maggiore interesse per la valutazione di possibili effetti biologici. Infatti, si presenta come un'onda di bassa impedenza, quindi in grado di penetrare facilmente all'interno della quasi totalità dei materiali (solo quelli ferromagnetici possono ostacolarla). L'interazione con i tessuti organici si esplica prevalentemente con la generazione di correnti indotte dalle variazioni del campo magnetico nel tessuto stesso. Quando tali correnti sono superiori a determinate soglie, possono indurre degli effetti acuti dannosi.

Le grandezze che determinano l'intensità del campo magnetico indotto da un elettrodotto sono principalmente le seguenti:

FRV 2201 S.r.l.

- 1) Intensità delle sorgenti (correnti di linea);
- 2) Distanza dalle sorgenti (conduttori);
- 3) Disposizione e distanza tra sorgenti (distanza mutua tra i conduttori di fase);
- 4) Presenza di sorgenti compensatrici;
- 5) Suddivisione delle sorgenti (terne multiple).

I metodi di controllo del campo magnetico si basano principalmente sulla riduzione della distanza tra le fasi, sull'installazione di circuiti addizionali (spire) nei quali circolano correnti di schermo, sull'utilizzazione di circuiti in doppia terna a fasi incrociate e sull'utilizzazione di linee interrate. Campi a bassa frequenza sono emessi anche da alcuni strumenti elettromedicali e dalle apparecchiature domestiche o industriali alimentate da energia elettrica.

2.2 EFFETTI BIOLOGICI E LIMITI DI ESPOSIZIONE

Si è precedentemente anticipato che gli effetti biologici indotti dall'esposizione a campi elettromagnetici sono legati a meccanismi di accoppiamento sostanzialmente diversi a seconda che i campi siano ad alta o bassa frequenza.

Ad **alta frequenza** (telefonia cellulare, emissioni radiotelevisive ecc.), il meccanismo di interazione di base è quello dell'orientamento dei dipoli che costituiscono un tessuto secondo le polarità del campo, che oscillano ad alta frequenza: ciò induce una dissipazione di energia che viene assorbita dal tessuto, riscaldandolo. Tale riscaldamento, oltre una certa soglia, comporta degli effetti dannosi sul tessuto stesso fino anche alla morte cellulare per esposizioni acute. La grandezza di interesse con cui caratterizzare l'esposizione ad alta frequenza è la **Specific Absorbtion Rate** (SAR) [W/Kg], che rappresenta l'energia per unità di tempo e di massa assorbita dal tessuto. Numerosi studi sperimentali condotti nell'ultimo ventennio hanno permesso l'individuazione dei livelli di SAR responsabili di effetti dannosi. Sulla base di tali livelli si sono quindi definiti dei limiti di esposizione, cui fanno riferimento le normative nazionali ed internazionali. Non si approfondiranno ulteriormente tali aspetti, concentrando l'attenzione sulla bassa frequenza, che include il caso degli elettrodotti.

A **bassa frequenza**, l'interazione con i tessuti organici si esplica prevalentemente con la generazione di **correnti indotte** dalle variazioni nel tempo del campo magnetico.

Tali correnti sono la principale conseguenza dell'esposizione e la loro intensità J è definita mediante la seguente espressione:

$$J \approx \pi \frac{L}{2} \sigma f B$$

in cui L e σ sono rispettivamente la dimensione caratteristica e la conducibilità del tessuto, f e B sono la frequenza e l'intensità dell'induzione magnetica indotta dall'esposizione nel tessuto biologico. Studi sperimentali hanno messo in evidenza l'esistenza di livelli di correnti indotte alle quali si manifestano effetti biologici dannosi. Questi ultimi partono dalla stimolazione nervosa e la contrazione neuro-muscolare, fino alla fibrillazione ventricolare e la folgorazione per esposizioni acute.

Sulla base dei livelli sperimentalmente individuati si definiscono quindi dei limiti di base di esposizione e, con opportuni coefficienti di sicurezza (10 o 50) si definiscono i livelli di

riferimento per la normativa di protezione dai campi elettromagnetici. Allo stato dell'arte l'istituzione più autorevole per la revisione degli studi di ricerca e la definizione dei limiti è costituito dalla International Commission on Non Ionizing Radiation Protection (ICNIRP), che gode del riconoscimento ufficiale dell'OMS e della IARC (International Agency for Research on Cancer). La definizione dei limiti di base secondo la guida ICNIRP (1998) si basa solo sugli effetti biologici della cui pericolosità per la salute si abbia una accertata evidenza scientifica.

È possibile differenziare due tipi di rischi:

- Il rischio da esposizione (anche istantanea) a livelli elevati, per i quali sono noti gli effetti avversi da un punto di vista medico (effetti acuti).
- Il rischio da esposizione prolungata a livelli inferiori, per i quali non è ancora possibile trarre conclusioni definitive.

Per quanto riguarda gli effetti cancerogeni, allo stato dell'arte non c'è evidenza sperimentale della loro esistenza, anche se alcuni studi epidemiologici evidenziano una correlazione statistica tra i casi di leucemia infantile e la vicinanza agli elettrodotti che trasportano elevate correnti e valori di induzione magnetica superiori a $0.2~\mu T$. La IARC ha invece deciso di classificare l'esposizione ambientale a campi magnetici ELF come possibilmente cancerogena con riferimento alla leucemia infantile.

In **Figura 1** si riassumono i valori di induzione magnetica individuati come limiti di riferimento per le normative secondo l'ICNIRP e il CENELEC (European Committee for Electrotechnical Standardization). Si riporta anche la soglia di attenzione epidemiologica (SAE), relativa a possibili correlazioni epidemiologiche con casi di leucemia infantile.

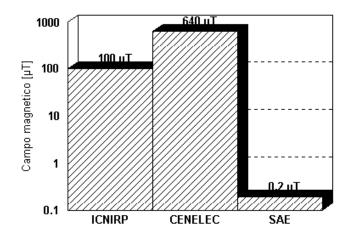


Figura 1 – Limiti di riferimento di esposizione ai campi magnetici di bassa frequenza secondo ICNIRP e CENELEC, e indicazione della SAE.

Riassumendo dunque, l'ICNIRP prescrive come limite di riferimento per l'esposizione a campi elettromagnetici di bassa frequenza il valore di induzione magnetica B pari a 100 μ T, mentre il CENELEC considera un valore più elevato, pari a 640 μ T.

3. RIFERIMENTI LEGISLATIVI NAZIONALI

Numerosi paesi come ad esempio la Germania adottano come limiti di legge relativi all'esposizione ai campi elettromagnetici i livelli di riferimento individuati dalla commissione ICNIRP.

L'Italia anche in seguito a pressioni mediatiche ha provveduto a emanare norme via via più restrittive in materia di protezione dai campi elettromagnetici, anche in assenza di studi sperimentali che suggeriscano tale direzione. Attualmente, l'esposizione ai campi elettromagnetici è regolamentata dalla Legge quadro 22/02/2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", pubblicata sulla G.U. 7 marzo 2001, n.55, che stabilisce il quadro normativo per gli impianti esistenti e per quelli costruendi. Tale quadro ha fissato i criteri e il contesto di riferimento per l'esposizione ai campi elettromagnetici ed è stata seguita nel 2003 da decreti attuativi che indicano i valori limite da rispettare. Dall'articolo 3 della Legge suddetta si riportano le definizioni delle grandezze di interesse per la caratterizzazione dell'esposizione a campi elettromagnetici:

- a) **esposizione**: è la condizione di una persona soggetta a campi elettrici, magnetici, elettromagnetici, o a correnti di contatto, di origine artificiale;
- b) limite di esposizione: è il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, definito ai fini della tutela della salute da effetti acuti, che non deve essere superato in alcuna condizione di esposizione della popolazione e dei lavoratori per le finalità di cui all'articolo 1, comma 1, lettera a);
- c) valore di attenzione: è il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, che non deve essere superato negli ambienti abitativi, scolastici e nei luoghi adibiti a permanenze prolungate per le finalità di cui all'articolo 1, comma 1, lettere b) e c). Esso costituisce misura di cautela ai fini della protezione da possibili effetti a lungo termine e deve essere raggiunto nei tempi e nei modi previsti dalla legge;
- d) **obiettivi di qualità** sono:
 - 1) i criteri localizzativi, gli standard urbanistici, le prescrizioni e le incentivazioni per l'utilizzo delle migliori tecnologie disponibili, indicati dalle leggi regionali secondo le competenze definite dall'articolo 8;
 - 2) i valori di campo elettrico, magnetico ed elettromagnetico, definiti dallo Stato secondo le previsioni di cui all'articolo 4, comma 1, lettera a), ai fini della progressiva miticizzazione dell'esposizione ai campi medesimi;
- e) elettrodotto: è l'insieme delle linee elettriche, delle sottostazioni e delle cabine di trasformazione;
- f) esposizione dei lavoratori e delle lavoratrici: è ogni tipo di esposizione dei lavoratori e delle lavoratrici che, per la loro specifica attività lavorativa, sono esposti a campi elettrici, magnetici ed elettromagnetici;
- g) esposizione della popolazione: è ogni tipo di esposizione ai campi elettrici, magnetici ed elettromagnetici, ad eccezione dell'esposizione di cui alla lettera f) e di quella intenzionale per scopi diagnostici o terapeutici.

Successivamente due D.P.C.M. dell'8 luglio 2003 hanno fissato i limiti di esposizione, i valori di attenzione e gli obiettivi di qualità per la protezione della popolazione. I due decreti disciplinano separatamente le basse (elettrodotti) e le alte frequenze (impianti radiotelevisivi, stazioni radio base, ponti radio). In particolare, si riportano di seguito gli articoli 3 e 4, in cui sono presenti i valori limite per elettrodotti esistenti (art. 3) e per la progettazione di nuovi elettrodotti (art. 4).

Articolo 3

Limiti di esposizione e valori di attenzione

- Nel caso di esposizione a campi elettrici e magnetici alla frequenza di 50 Hz generati da elettrodotti, non deve essere superato il limite di esposizione di 100 μT per l'induzione magnetica e 5 kV/m per il campo elettrico, intesi come valori efficaci.
- 2) A titolo di misura di cautela per la protezione da possibili effetti a lungo termine, eventualmente connessi con l'esposizione ai campi magnetici generati alla frequenza di rete (50 Hz), nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere, si assume per l'induzione magnetica il valore di attenzione di $\mathbf{10}~\mu T$, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio.

Articolo 4

Obiettivi di qualità

Nella progettazione di nuovi elettrodotti in corrispondenza di aree gioco per l'infanzia, di ambienti abitativi, di ambienti scolastici e di luoghi adibiti a permanenze non inferiori a quattro ore e nella progettazione dei nuovi insediamenti e delle nuove aree di cui sopra in prossimità di linee ed installazioni elettriche già presenti nel territorio, ai fini della progressiva minimizzazione dell'esposizione ai campi elettrici e magnetici generati dagli elettrodotti operanti alla frequenza di 50 Hz, è fissato l'obiettivo di qualità di $3~\mu T$ per il valore dell'induzione magnetica, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio. Riassumendo dunque i limiti di legge in vigore in Italia relativi all'esposizione a campi elettromagnetici alla frequenza di 50 Hz sono quelli riportati in **Tabella 1**.

Campi a 50 Hz

	Campo Elettrico [kV/m]	Campo Magnetico [μΤ]
Lim. di esp.	5	100
Valori di att.	-	10
Ob. di qual.	-	3

Tabella 1 – Limiti della normativa italiana sull'esposizione a campi elettromagnetici a 50 Hz, indicati nel DPCM dell'8 Luglio 2003.

A titolo esemplificativo si riportano in **Tabella 2** i livelli di induzione magnetica generati da comuni elettrodomestici alimentati dalla rete elettrica a 50 Hz. Si noti che in prossimità degli stessi si raggiungono valori ben superiori ai limiti di legge, anche se l'uso di tali strumenti non comporta tipicamente esposizione di tipo prolungato.

Fonte	Induzione magnetica μT			
	vicino	30 cm		
Apriscatole	2000	16		
Asciugacapelli	2500	7		
Aspirapolvere	800	20		
Coperta elettrica	30	-		
Ferro da stiro	30	0.4		
Forno elettrico	1000	20		
Frullatore	700	10		
HiFi	5	5		
Lampada 325 W	2500	-		
Lampada alogena	12	12		
Lampada a incandescenza	400	4		
Caffettiera elettrica	2.5	0.15		
Monitor computer	0.25	0.25		
Radiosveglia	5	5		
Rasoio elettrico	1500	9		
Saldatore	800	20		
Sega elettrica	1000	25		
Trapano	800	16		
TV color	500	4		
Ventilatore	180	40		

Tabella 2 – Induzione magnetica B generata da comuni elettrodomestici a 50 Hz.

Successivamente, in esecuzione della Legge 36/2001 e del suddetto il D.P.C.M. 08/07/2003, è stato emanato il D.M. ATTM del 29/05/2008, che ha definito i criteri e la metodologia per la determinazione delle fasce di rispetto, introducendo inoltre il criterio della "distanza di prima approssimazione (DPA)" e delle connesse "aree o corridoi di prima approssimazione".

In particolare, si ricorda che con esso sono state date le sequenti definizioni:

- portata in corrente in servizio normale: è la corrente che può essere sopportata da un conduttore per il 100% del tempo con limiti accettabili del rischio di scarica sugli oggetti mobili e sulle opere attraversate e dell'invecchiamento;

FRV 2201 S.r.l.

- portata di corrente in regime permanente: massimo valore della corrente che, in regime permanente e in condizioni specificate, il conduttore può trasmettere senza che la sua temperatura superi un valore specificato (secondo CEI 11-17 par. 1.2.05);
- fascia di rispetto: è lo spazio circostante un elettrodotto, che comprende tutti i punti, al di sopra e al di sotto del livello del suolo, caratterizzati da un'induzione magnetica di intensità maggiore o uguale all'obiettivo di qualità;
- distanza di prima approssimazione (DPA): per le linee è la distanza, in pianta sul livello del suolo; dalla proiezione del centro linea che garantisce che ogni punto la cui proiezione al suolo disti dalla proiezione del centro linea più di Dpa si trovi all'esterno delle fasce di rispetto. Inoltre, è stato definito il valore di corrente da utilizzare nel calcolo come la portata in corrente in servizio normale relativa al periodo stagionale in cui essa è più elevata ed in dettaglio:
 - per linee aeree con tensione superiore a 100 kV la portata di corrente in servizio normale viene calcolata ai sensi della norma CEI 11-60;
- per le linee in cavo la corrente da utilizzare nel calcolo è la portata in regime permanente così come definita nella norma CEI 11-17.

In base al D.M. Ambiente 29.05.2008, restano escluse dall'applicazione della metodologia le linee esercite a frequenze diverse da quella di rete (50 Hz), le linee definite di classe zero e di prima classe secondo il D.I. 21.03.1988 n.449, nonché le linee in MT in cavo cordato ad elica (interrate o aeree) in quanto, in tutti questi casi, le fasce associabili hanno ampiezza ridotta, inferiori alle distanze previste dal D.I. n.449/88 e dal D.M.LL.PP. del 16.01.1991.

4. DESCRIZIONE DELL'IMPIANTO FOTOVOLTAICO

L'impianto fotovoltaico di Viterbo, composto n.1 lotti da n.4 impianti, così definiti:

- Impianto 1, potenza di picco 7,2 MW;
- Impianto 2, potenza di picco 7,128 MW;
- Impianto 3, potenza di picco 7,11 MW;
- Impianto 4, potenza di picco 7,146 MW.

Verrà realizzato con moduli montati su strutture fisse al suolo, con tilt di 30° e azimuth a 0°, con una potenza nominale totale installata di circa 28.584 kWp. Di seguito si riporta la tabella riassuntiva con le principali caratteristiche tecniche dell'impianto FV necessarie per la redazione della relazione in oggetto:

Potenza nominale dell'impianto [MWp]	28.584
Potenza modulo fotovoltaico monocristallino bifacciale [Wp]	600
Numero di moduli totali	47.640
Area recintata d'impianto [ha]	33,6
N° impianti	4

N° Cabine Trasformazione BT/MT	8
N° Cabine Control Room	1
N° Cabine di consegna	4
Lunghezza totale cavi trifase in MT esterni da 185 mmq [m]	11.615

Tabella 3 – Caratteristiche tecniche dell'impianto

5. POSSIBILI EMISSIONI DERIVANTI DALL'IMPIANTO FOTOVOLTAICO

Un impianto fotovoltaico è costituito dei seguenti componenti principali:

- moduli fotovoltaici;
- quadri di parallelo stringhe;
- cablaggi in BT;
- inverter;
- cabine di trasformazione;
- cavidotti in MT interni ed esterni al campo FV.

Tali componenti o sistemi elettrici, percorsi da corrente, generano campi elettromagnetici di diversa intensità dei quali, ci occuperemo in maniera dettagliata nel proseguo dello studio.

5.1 MODULI FOTOVOLTAICI

Per il layout d'impianto sono stati scelti moduli fotovoltaici della Trina Solar, modello Vertex, in silicio monocristallino, della potenza nominale di 600 Wp (o similari) in condizioni STC. Ogni modulo dispone inoltre di diodi di by-pass alloggiati in una cassetta IP65 e posti in antiparallelo alle celle cosi da salvaguardare il modulo in caso di contro-polarizzazione di una o più celle dovuta ad ombreggiamenti o danneggiamenti. Tali moduli generano correnti continue la cui entità è variabile con la radiazione incidente sulla loro superficie captante. La corrente al punto di massima potenza che attraversa i cavi uscenti da un modulo fotovoltaico è pari a circa 17,30 A, decisamente irrilevante per la generazione di un campo elettromagnetico. Difatti, nella certificazione dei moduli fotovoltaici alla norma CEI 82-8 (IEC 61215) non sono assolutamente menzionate prove di compatibilità elettromagnetica, proprio perché assolutamente irrilevanti.

5.2 MULTI-MPPT STRING INVERTER

Per la conversione dell'energia elettrica prodotta da continua in alternata a 50 Hz sono previsti inverter multistringa, con elevato fattore di rendimento, posizionati a lato delle strutture di sostegno dei moduli. La tipologia dell'inverter utilizzato è il modello della Huawei SUN2000-215KTL (o similare) avente una potenza nominale in uscita in AC di 215 kVA ed tensione nominale fino a 1500 V.

Gli inverter sono apparecchiature costituite per loro natura da componenti elettronici operanti ad alte frequenze. D'altro canto il legislatore ha previsto che tali macchine, prima di essere immesse sul mercato, possiedano le necessarie certificazioni a garantirne sia l'immunità dai disturbi elettromagnetici esterni, sia le ridotte emissioni per minimizzarne l'interferenza elettromagnetica con altre apparecchiature elettroniche posizionate nelle vicinanze o con la rete elettrica stessa (via cavo). A questo scopo gli inverter prescelti possiedono la certificazione di rispondenza alle normative di compatibilità elettromagnetica (EMC): EN 62109-1/-2, IEC 62109-1/-2, IEC 62116, EN 50530, IEC 60068, IEC 61683. Gli inverter, viste le correnti in gioco, non emettono campi elettromagnetici rilevanti dannosi per la salute umana o recanti interferenze con altri componenti elettronici.

6. CABINE DI TRASFORMAZIONE BT/MT

Le cabine di trasformazione conterranno oltre ai quadri elettrici di protezione in BT ed MT anche n.2 trasformatori elevatori BT/MT, della potenza nominale di 2000 kVA ciascuna e l'eventuale trasformatore per l'alimentazione dei servizi ausiliari, avente una potenza minima di circa 10 kVA. Essi verranno alloggiati in appositi box metallici prefabbricati di opportune dimensioni. In base al DM del 29/05/2008, cap.5.2.1, l'ampiezza della Distanza di Prima Approssimazione per la valutazione dei campi elettromagnetici indotti (DPA) dai componenti elettrici della cabina, si determina considerando la corrente del lato in bassa tensione del trasformatore, tenendo conto di una distanza dalle fasi pari al diametro dei cavi reali in uscita dal trasformatore.

Per la determinazione della DPA cioè, si applica la seguente formula:

$$\frac{DPA}{\sqrt{I}} = 0.40942 * x^{0.5242}$$

dove:

- DPA, è la distanza di prima approssimazione (m);
- I, la corrente nominale in uscita dagli inverter (A);
- x, è il diametro dei cavi (m).

Considerando che il valore della corrente nominale sui lati BT di ciascuno dei n.2 trasformatori di potenza BT/MT all'interno di ogni cabina, ossia quella in uscita dagli inverter che vi si collegano, è pari a circa 1400 A alla tensione di 800 V e tenendo conto del diametro esterno dei cavi in BT (opportunamente dimensionati e pari a 4x(3x1x300) mmq) di circa 350 mm, si ottiene una DPA pari a circa 9 m.

La circonferenza avente il raggio pari al valore della DPA appena calcolata, centrata nel locale in cui è installato il trasformatore BT/MT all'interno delle cabine di trasformazione, è per la maggior parte posizionata internamente alla recinzione dell'area d'impianto. La parte esterna, di lunghezza di circa 4,5 m per alcune cabine, incontra terreni o superfici agricole non presiedute costantemente dalla presenza delle persone. Inoltre, tali cabine elettriche non sono permanentemente presidiate durante il periodo di produzione dell'impianto FV. Lo sarebbero solamente in fase di manutenzione o di controllo del personale formato, ma questo avverrà soltanto per brevi periodi di tempo.

FRV 2201 S.r.l.

7. CABINA DI CONSEGNA

In relazione alla specifica ubicazione degli impianti elettrici dei locali cabina di consegna, ubicata all'interno dell'area dell'impianto fotovoltaico, è applicabile il criterio basato sulla DPA, distanza di prima approssimazione. Questa è stata calcolata sulla base della tabella riportata nell'articolo 5.2.1 dell'allegato al D.M. 29 maggio 2008, considerando che il limite fissato dall'obiettivo di qualità di 3 µT di cui all'art. 4 del D.P.C.M. 08/07/2003 risulta rispettato per le aree ad una distanza superiore a quanto riportato nelle allegate rappresentazioni grafiche della fascia di rispetto e della D.P.A e cioè di 2,0 m dal fabbricato di pertinenza dell'edificio cabina se venisse installato un trasformatore BT/MT di potenza pari a 630 kVA (Figura 2). Se la cabina fosse priva di trasformatore, la DPA da considerare è quella della linea MT entrante/uscente e pertanto, si rimanda al capitolo successivo per la valutazione del campo elettromagnetico generato dai cavi in MT sui ricettori prossimi al percorso del cavidotto.

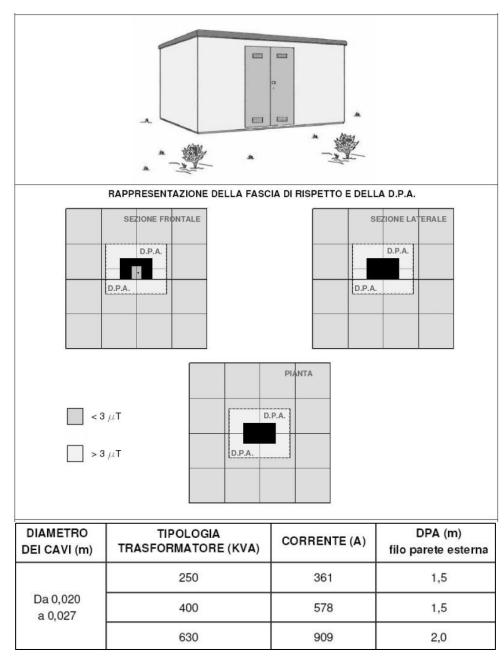


Figura 2 – Valori della Distanza di prima approssimazione per una cabina di consegna con trasformatore.

8. CAVIDOTTI IN MEDIA TENSIONE

Di maggiore interesse, come già accennato, è invece l'esposizione legata al passaggio di corrente sia nei cavidotti interni all' area degli impianti che di collegamento alla Cabina Primaria, in quanto esiste la possibilità che il percorso di tali cavidotti sia prossimo ad unità abitative (o ricettori). Sarà dunque necessario verificare che l'esposizione associata sia conforme ai limiti di legge.

La progettazione per la costruzione dell'elettrodotto di media tensione, viene redatta nel

rispetto del D.M. del 21 Marzo 1988 n.28 (Norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne di classe zero, prima e seconda) e la sua realizzazione avverrà in conformità agli articoli 3, 4 e 6 del DPCM 80.07.93 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alle frequenze di rete (50 Hz) generati dagli elettrodotti". Si precisa che, secondo quanto previsto dal Decreto 29 Maggio 2008 (G.U. n.156 del 5 luglio 2006) la tutela in merito alle fasce di rispetto di cui all'art.6 del DPCM 08 Luglio 2003 non si applica per le linee di media tensione in cavo cordato ad elica (interrato od aereo), in quanto le relative fasce di rispetto hanno un'ampiezza ridotta, inferiore alle distanze previste dal D.M. del 21 Marzo 1988 n.28 sopra citato e s.m.i.

Tipicamente, i cavidotti per il trasporto dell'energia prodotta da impianti fotovoltaici sono costituiti da sistemi trifase, per ragioni di efficienza elettrica. Dal punto di vista elettromagnetico, ciò costituisce un vantaggio poiché mentre il campo magnetico generato da un sistema unifilare decade linearmente con la distanza, quello relativo a sistemi trifase decade con il quadrato della distanza, per via dello sfasamento tra le correnti della terna. Più in particolare, come già precedentemente specificato, le grandezze che determinano l'intensità del campo magnetico indotto da un elettrodotto sono principalmente le seguenti:

- 1) Intensità delle sorgenti (correnti di linea);
- 2) Distanza dalle sorgenti (conduttori);
- 3) Disposizione e distanza tra sorgenti (distanza mutua tra i conduttori di fase);
- 4) Presenza di sorgenti compensatrici;
- 5) Suddivisione delle sorgenti (terne multiple).

Con riferimento ad un tratto rettilineo di linea di un cavidotto trifase, si riportano in Figura 3 le equazioni che descrivono l'andamento dell'induzione magnetica B con la distanza dal cavidotto, nel caso di tre possibili configurazioni geometriche della terna.

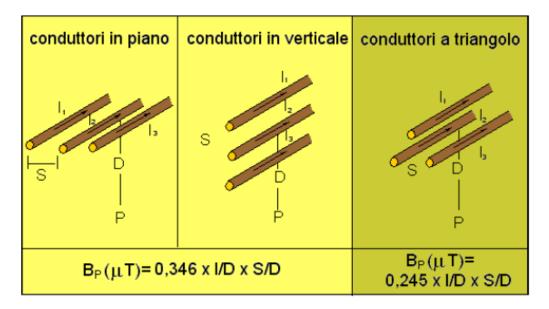


Figura 3 – Andamento dell'induzione magnetica B generata da un tratto rettilineo di terna trifase, per diverse configurazioni geometriche della terna stessa.

Si osserva dalle relazioni in Figura 3 che il campo B aumenta linearmente con la corrente di linea I e decade con il quadrato della distanza D dalla linea. Inoltre, il campo B aumenta linearmente con la distanza tra i conduttori S. Ciò rappresenta il motivo per cui cavidotti aerei, che presentano conduttori generalmente più distanti tra loro, generano campi che decadono più lentamente con la distanza rispetto a cavidotti interrati, a parità di corrente. Infine, si noti che la configurazione a triangolo è quella cui si associa minore generazione di campo B, per via dell'opposizione tra le fasi.

Attualmente è diffusa un'altra configurazione geometrica della terna, in cui si prevede una struttura elicoidale (cordata) dei conduttori. In tale configurazione la ridotta distanza tra i conduttori e la continua trasposizione delle fasi fornita dalla cordatura (ricordiamo che linee con le fasi trasposte, cioè ottimizzate, abbattono il campo magnetico), fa sì che l'obiettivo di qualità di 3 µT venga raggiunto a distanze brevissime (0.5 – 0.8 m) dall'asse del cavo. Pertanto, per cavidotti con tale configurazione, l'impatto elettromagnetico è da considerarsi sempre trascurabile. Da un punto di vista quantitativo, per avere un'idea del campo generato dai cavidotti interni ad un generico impianto, si considerino tre tipologie di cablaggi con portate in corrente di tre classi: 300 A, 600 A e 900 A. Nell'ipotesi di terna piana, si riporta in Figura 4 l'andamento del campo B generato al livello del suolo dal passaggio di corrente di 300, 600 e 900 A, supponendo una distanza tra i conduttori pari a 5 cm (tipica di un cavidotto MT) ed un interramento di 1 m.

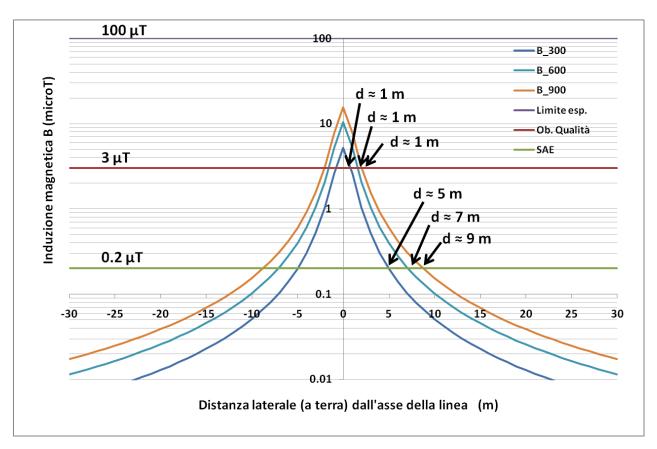


Figura 4 – Andamento del campo B generato da una terna piana trifase percorsa da corrente di 300 A (blu), 600 A (ciano) e 900 A (arancio) e indicazione delle distanze dalla linea necessarie per rientrare nei limiti di legge e nella SAE.

Si osservi dalla stessa figura come il campo magnetico assuma il valore massimo in corrispondenza della minima distanza dei conduttori dal suolo, ossia in corrispondenza (sopra) l'asse della linea, e decada molto rapidamente con la distanza laterale. Nella stessa figura sono indicati i valori di riferimento indicati dalla normativa: limite di esposizione ($100~\mu T$) e Obiettivo di Qualità per la progettazione di nuovi elettrodotti ($3~\mu T$). È anche indicata la Soglia di Attenzione Epidemiologica (SAE) di $0.2~\mu T$, seppure essa non sia un limite di legge. Con riferimento a tali valori, si sono indicate le distanze oltre le quali il campo B è al di sotto di tali limiti. In particolare, il limite di esposizione di $100~\mu T$ non viene mai raggiunto. L'obiettivo di qualità di $3~\mu T$, che è il principale riferimento normativo per i cavidotti del presente progetto, è superato solo nelle immediate vicinanze del cavidotto, ma già entro 1~m di distanza il campo B è inferiore a $3~\mu T$. Infine, la SAE di $0.2~\mu T$ è raggiunta a distanza di 5, 7~e~9~m. In generale, si può osservare come tali distanze siano molto ridotte, per via della bassa distanza tra i conduttori e delle correnti non molto elevate. Già in questa fase appare quindi evidente come l'esposizione legata ai cavidotti di impianto non comporti situazioni critiche dal punto di vista elettromagnetico, salvo casi particolari.

9. ESPOSIZIONE POST-OPERAM DEL PROGETTO

Date le suddette premesse metodologiche, si descrivono di seguito i risultati dello studio del campo elettromagnetico generato sia dai cavidotti interni all'impianto fotovoltaico in MT a 20 kV (che collegano le cabine di trasformazione (CT) alla rispettiva cabina di consegna (CC)) sia dal cavidotto di connessione in MT a 20 kV, tra le quattro cabine elettriche di consegna (CC) e la Cabina Primaria "San Savino". Inoltre, esiste un terzo tipo di collegamento, a lobo tra le quattro cabine di consegna mediante cavidotto interrato a 20 kV che in parte si sviluppa internamente alle aree d'impianto ed in parte esternamente.

9.1 CAVIDOTTI INTERNI ALL'AREA D'IMPIANTO

9.1.1 TIPOLOGIA DEI CAVI IN MT

Generalmente, la scelta della sezione del conduttore dei cavi dipende dalla corrente d'impiego e dalla portata effettiva del cavo in relazione al suo regime di funzionamento (regime permanente, ciclico o transitorio) ed alle sue condizioni di installazione (temperatura ambientale, modalità di posa, numero di cavi e loro raggruppamento, etc.) (CEI 11-17). I collegamenti in MT saranno realizzati in conformità allo schema elettrico unifilare mediante cavi in alluminio con tensione d'isolamento 12/20 KV. All'interno delle aree d'impianto verranno posizionati cavidotti di connessione tra le cabine di trasformazione e le cabine di consegna e alcuni collegamenti a lobo tra le cabine di consegna. I primi verranno interrati ad una profondità di circa 1 m dal livello del suolo, mentre gli altri verranno posati ad una profondità di 1,2 m.

I cavi in MT cui si prevede l'utilizzo nell'impianto sono del tipo:

ARP1H5(AR)EX, cordati tripolari ad elica visibile per sezioni calcolate comprese tra 50 fino e 185 mmq, direttamente interrati nello scavo con protezione meccanica in materiale polimerico (air bag), per le connessioni tra cabine di trasformazione e cabine di consegna;

 ARE4H5EX, tripolari, cordati ad elica visibile e disposti a trifoglio, aventi sezioni nominali pari a 185 mmq, protetti da tubazione, per le connessioni a lobo tra le cabine di consegna.

Di seguito le caratteristiche costruttive e tecniche delle due tipologie di cavo adottate nella progettazione

Cavo ARP1H5(AR)EX:

sezione	diametro	diametro	diametro	peso	raggio	sezione	posa in aria	posa ir	nterrata
nominale	conduttore	sull'isolante	esterno nominale	del cavo	minimo di curvatura	nominale		p=1°C m/W	p=2 °C m/W
conductor cross-section	conductor diameter	diameter over insulation	nominal outer diameter	weight	minimum bending radius	conductor cross-section	open air installation	undergroun p=1°C m/W	d installation p=2 °C m/W
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(mm)	(mm²)	(A)	(A)	(A)
50	8,2	24,8	38	3180	800	50	194	173	133
70	9,7	25,1	38	3340	800	70	240	212	163
95	11,4	26,0	39	3610	820	95	293	254	195
120	12,9	26,9	40	3900	840	120	338	290	223
150	14,0	27,6	41	4180	870	150	382	325	250
185	15,8	29,0	42	4620	890	185	439	369	283
240	18,2	31,4	45	5380	950	240	519	429	325
300	20,8	34,6	49	6500	1030	300	599	486	373

Figura 5 - Caratteristiche tecniche del cavo in MT direttamente interrato

Cavo ARE4H5EX:

Conduttore di alluminio / Aluminium conductor - ARE4H5EX									
sezione nominale	diametro conduttore	diametro sull'isolante	diametro esterno nominale	massa indicativa del cavo	raggio minimo di curvatura	sezione nominale	portata di corrente in aria	posa interr p=1 °C m/W	ata a trifoglio p=2 °C m/W
conductor cross-section	conductor diameter	diameter over insulation	nominal outer diameter	approximate weight	minimum bending radius	conductor cross-section	open air installation	underground p=1°C m/W	d installation trefoil p=2°C m/W
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(mm)	(mm²)	(A)	(A)	(A)
Dati cost	ruttivi / (Construct	ion cha	ract 12/	20 kV	Caratt. e	lettriche / Elec	trical charact.	- 12/20 kV
50	8.2	19.9	28	1730	550	50	186	175	134
70	9,7	20,8	29	1940	570	70	230	214	164
95	11,4	22,1	30	2230	590	95	280	256	197
120	12,9	23,2	32	2510	630	120	323	291	223
150	14,0	24,3	33	2800	660	150	365	325	250
405	15,8	26,1	35	3260	700	185	421	368	283
185	,-	20,1							203
240	18,2	28,5	37	3930	740	240	500	427	328

Figura 6 - Caratteristiche tecniche del cavo in MT da 185 mmq protetto da tubazione

9.1.2 TIPOLOGIA DI SCAVO

Per quanto riguarda la media tensione è prevista l'esecuzione di scavi per la posa dei cavidotti che riguarderanno i collegamenti, già indicati nel paragrafo seguente, tra le cabine di trasformazione e la cabina di consegna e tra le cabina di consegna a lobo. Di seguito la Figura 7 fornisce una rappresentazione grafica della sezione di scavo per i cavidotti interrati in MT con profondità di posa pari a 1 m, ampiezza di 50-60 cm e distanza di posa tra i cavi corrispondente a 7 cm.

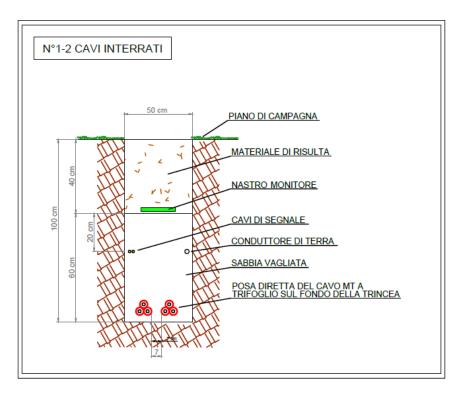


Figura 7 – Sezione di scavo per i cavidotti interrati in MT interni all'area d'impianto

9.1.3 CAMPO MAGNETICO B INTERNO ALLE AREE D' IMPIANTO

Nella Figura 8 sottostante sono riportati: i perimetri delle quattro aree d'impianto e la posizione del ricettore R1 più prossimo alle aree.

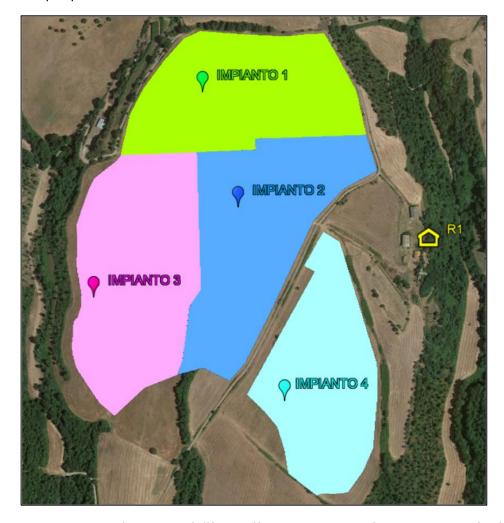


Figura 8 – Inquadramento dell'area d'impianto su ortofoto – Ricettori (R1)

Nella figura 9 successiva sono invece riportati i percorsi dei cavi in MT interni ed esterni alle aree d'impianto: in magenta i cavidotti di collegamento tra le cabine di trasformazione e la rispettiva cabina di consegna, mentre in rosso i percorsi di richiusura a lobo tra le cabine di consegna. In blu è anche evidenziato un tratto dello scavo, composto da n.4 terne di cavi da 185 mmq ciascuno, che collegano le cabine di consegna con la CP. Tale cavidotto di evacuazione (in blu) esterno all'area d'impianto ha origine nel punto CI (evidenziato in figura 9) dal quale, lo scavo conterrà n.4 cavi fino alla CP San Savino.

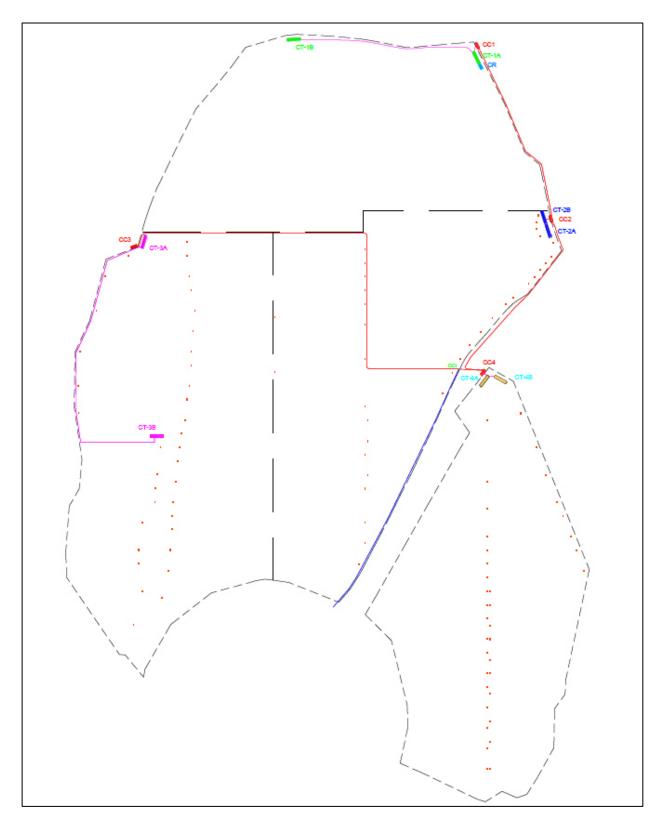


Figura 9 – Disposizione degli scavi MT nelle aree d'impianto

Poiché il ricettore R1 è quasi equidistante sia con il tratto di cavidotto interrato di evacuazione

composto da n.4 terne di cavi da 185 mmq ciascuna che con il tratto di scavo tra la CC2 e la CC4, contenente n.2 terne di cavi da 185 mmq, la verifica del campo elettromagnetico sul ricettore R1 verrà eseguita considerando il valore della portata dei cavi lungo il percorso in blu, cioè quello di evacuazione (figura 9).

9.2 CAVIDOTTO ESTERNO DI CONNESSIONE TRA LE CABINE DI CONSEGNA E LA CP SAN SAVINO

9.2.1 TIPOLOGIA DEI CAVI IN MT

La scelta della sezione del conduttore dipende dalla corrente d'impiego e dalla portata effettiva del cavo in relazione al suo regime di funzionamento ed alle sue condizioni di installazione (CEI 11-17). Il collegamento in MT tra le cabine di consegna e la CP San Savino in MT a 20 kV, avverrà in cavidotto interrato, con scavo a profondità massima di circa 1,4 m, medante n.4 terne di cavi con sezione di 185 mmq in alluminio, con isolante in XLPE, ad elica visibile, schermatura in alluminio e guaina esterna in polietilene e disposto a trifoglio nello scavo, come da prescrizioni di E-Distribuzione nel preventivo di connessione. Il cavo che verrà utilizzato sarà del tipo descritto nella Figura 6 precedente.

9.2.1 TIPOLOGIA DI SCAVO

I cavi saranno interrati, protetti da tubo in PVC opportunamente dimensionato con diametro massimo esterno di 35 mm, ed installati normalmente in una trincea della profondità di 1.2 m e 1.4 m con disposizione delle fasi a trifoglio. Nello stesso scavo, a distanza di almeno 0,3 m dai cavi di energia, potrà essere posato un cavo con fibre ottiche e/o telefoniche per trasmissione dati. Tutti i cavi verranno alloggiati in terreno di riporto, la cui resistività termica, se necessario, verrà corretta con una miscela di sabbia vagliata o con cemento 'mortar'. Saranno segnalati superiormente da un nastro segnaletico e potranno essere protetti anche da una rete in PVC.

Nella figura successiva sono rappresentati gli scavi in relazione al tipo di percorso stradale:

Di seguito si riportano i materiali di riempimento per le tipologie di scavi:

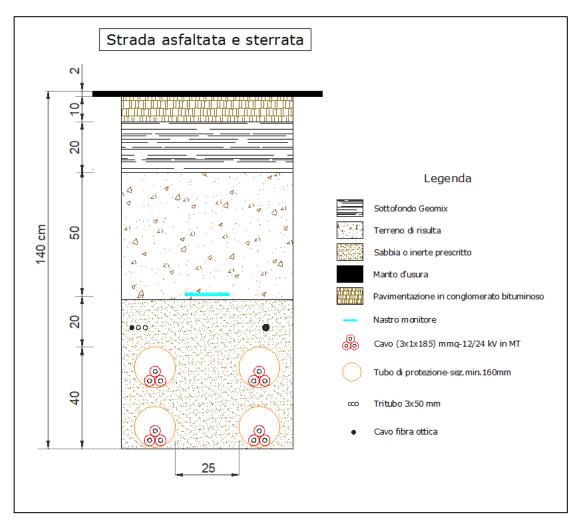


Figura 10 - Sezione di scavo per i cavidotti interrati in MT interni all'area d'impianto

9.2.2 CAMPO B GENERATO DAL CAVIDOTTO ESTERNO

Dal quadro in MT di ciascuna cabina di consegna, un cavidotto interrato in MT a 20 kV, con cavo della sezione di 185 mmq, trasporterà l'energia complessiva prodotta dal proprio impianto fotovoltaico, fino al quadro MT d'ingresso della Cabina Primaria "San Savino". La Figura 11 successiva mostra in dettaglio l'area d'impianto FV ed il percorso del cavidotto di evacuazione (in blu), avente una lunghezza di circa 11.6 km, avendo inizio dal punto CI di raccordo delle quattro terne di cavi provenienti dalle cabine di consegna fino alla CP. Nello stesso scavo, dunque, saranno contenuti quattro distinti cavi MT interrati, uno per ciascuna cabina dell'impianto fotovoltaico. In particolare, saranno disposti due cavi ad una profondità di 1.2 m, e due cavi ad una profondità 1.4m, protetti tutti da tubi in PVC.

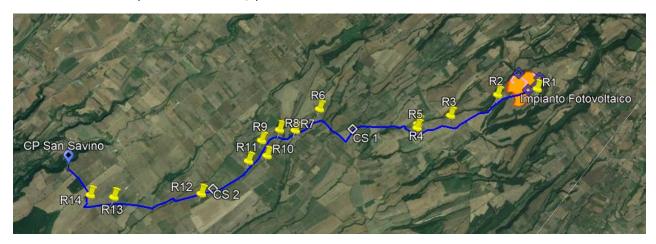


Figura 11 - Inquadramento su ortofoto - percorso del cavidotto di evacuazione in MT

Inoltre, la stessa figura in alto mostra i ricettori più prossimi al percorso del cavidotto, per i quali verrà riportata un'analisi approfondita sui possibili effetti dovuti al campo magnetico, considerando la sezione di 185 mmq del cavo ed un valore della portata corrispondente a 368 A. Nelle figure successive sono riportati in dettaglio i ricettori individuati lungo il percorso del cavidotto.

Figura 12 – Ricettore R2

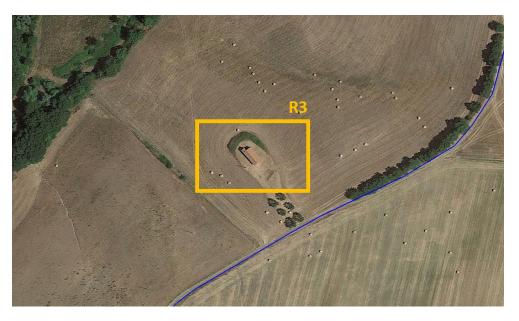


Figura 13 - Ricettore R3

Figura 14 - Ricettori R4 e R5

Figura 15 - Ricettore R6

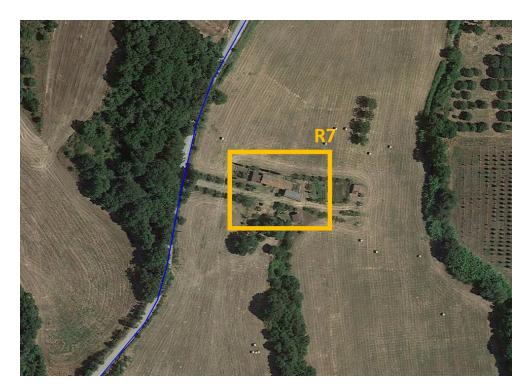


Figura 16 - Ricettore R7

Figura 17 - Ricettore R8

Figura 18 - Ricettore R9

Figura 19 - Ricettori R10 e R11

Figura 20 - Ricettore R12

Figura 21 - Ricettori R13 e R14

Di seguito la tabella in cui sono riportate le distanze tra i possibili ricettori ed il percorso del cavidotto, considerando come già specificato in precedenza, anche il ricettore R1:

Ricettore	Distanza [m]	Ricettore	Distanza [m]
R1	150	R14	4
R2	15.8	R5	9
R3	59	R13	10
R4	60	R2	15.8
R5	60	R8	18
R6	9	R11	30
R7	82	R7	38
R8	38	R3	59
R9	90	R4	60
R10	163	R6	82
R11	30	R9	90
R12	128	R12	128
R13	10	R1	150
R14	4	R10	163

Tabella 4 - Distanze tra i ricettori ed il percorso del cavidotto interrato in MT

Il calcolo del campo elettromagnetico generato dal cavidotto è stato effettuato utilizzando la formula analitica riportata al paragrafo 8, nell'ipotesi di terna di cavi a geometria triangolare. Ricordiamo che tale ipotesi dà luogo a una soluzione più conservativa rispetto al caso reale (geometria elicoidale) in cui l'ulteriore sovrapposizione delle fasi determina una maggiore attenuazione del campo.

Per completezza si riporta la suddetta espressione analitica:

$$B = 0.245 \cdot \frac{I \cdot S}{D^2}$$

essendo I la corrente di linea, S la distanza tra conduttori e D la distanza radiale dalla linea.

È possibile ed utile ricavare l'espressione della distanza dall'asse della linea a livello del suolo (distanza laterale), oltre la quale l'induzione magnetica scende al di sotto dell'obiettivo di qualità di $3 \mu T$ (d è la profondità di posa):

$$R_0 = \sqrt{0.082 \cdot I \cdot S - d^2}$$

Quanto all' intensità di corrente utilizzata nel calcolo, ai sensi del capitolo 5.1.1 "Corrente di calcolo" dell'allegato al DMATT 29 maggio 2008 (G.U. n. 156 del 5 luglio 2008): "Per le linee in cavo la corrente da utilizzare nel calcolo è la portata in regime permanente così come definita nella norma CEI 11-17". Quest'ultima definisce la portata in regime permanente come il massimo valore della corrente che, in regime permanente e in condizioni specificate, il conduttore può trasmettere senza che la sua temperatura superi un valore specificato. Per il cavo considerato nella progettazione, del tipo ARE4H5EX la portata di corrente ha un valore di 368 A per il cavo da 185 mmg (resistività del terreno pari ad 1°Cm/W, Temperatura 20°C).

Il campo di induzione magnetica B generato dalla terna di cavi interrati assume un andamento con la distanza laterale dall'asse della linea, secondo la curva riportata in figura 22. In quest'ultima sono in aggiunta indicati sia il limite di esposizione che l'obiettivo di qualità fissati dalla normativa.

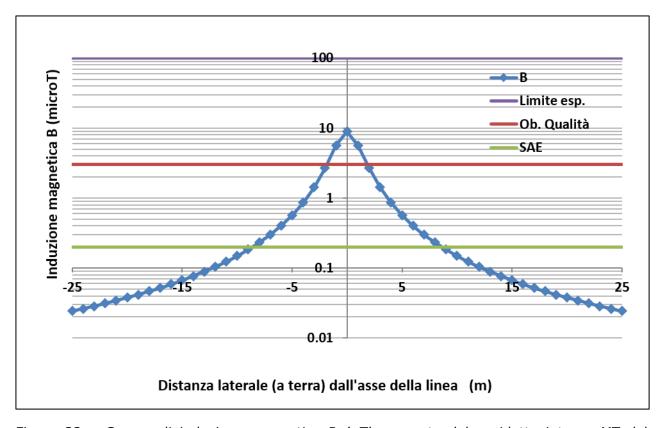


Figura 22 – Campo di induzione magnetica B (μT) generato dal cavidotto interno MT del progetto fotovoltaico in relazione ai limiti di esposizione e obiettivo di qualità.

Nella tabella 5 seguente sono riportati i valori puntuali del campo B di figura 22, al variare del raggio di una circonferenza centrata nel baricentro del cavidotto.

Distanza laterale (m)	Β (μτ)
0,0	8,97
1,0	5,69
2,0	2,69
3,0	1,43
4,0	0,86
5,0	0,57
6,0	0,40
7,0	0,30
8,0	0,23
9,0	0,18
10,0	0,15
11,0	0,12
12,0	0,10
13,0	0,09
14,0	0,08
15,0	0,07
16,0	0,06
17,0	0,05
18,0	0,05
19,0	0,04
20,0	0,04

Tabella 5 – Valori del campo B in relazione alla variazione della distanza dalla proiezione ortogonale del cavo sull'asse stradale.

In particolare, si sottolinea che il valore del campo magnetico pari all'obiettivo di qualità (3 μ T), si presenta ad una distanza laterale del cavidotto (cioè dalla sua proiezione ortogonale sul piano campagna) di circa 1,9 per poi mantenersi sempre al disotto di tale valore man mano che ci si distanzia dallo scavo.

Poiché il ricettore più vicino al percorso del cavidotto è l' R14, distante circa 4 m, si può concludere che il valore del campo elettromagnetico su di esso è decisamente basso (0,86 μ T) e ben lontano dai limiti di legge.

FRV 2201 S.r.l.

Si vuole far notare che per i calcoli relativi al campo di induzione magnetica si è utilizzato un valore di corrente pari alla portata di ciascuno dei quattro cavi (368 A) molto al di sopra di quella che si avrebbe in condizioni di reale funzionamento, ossia di massima produzione degli impianti fotovoltaici, che in questo caso assumerebbe un valore di circa 231 A. Inoltre, sono stati considerati i cavi come terne lineari, piuttosto che del tipo cordati ad elica visibile, la cui configurazione ad elica permette di abbattere il campo di induzione magnetica grazie alla particolare disposizione dei cavi. Con queste due ipotesi, a favore della sicurezza, si giungono comunque a risultati che rispettano i limiti di legge.

10. CONCLUSIONI

Nel presente documento si è descritto il quadro generale e normativo riferito all'esposizione ai campi elettromagnetici di bassa frequenza, quali quelli generati sia dai componenti elettrici principali che costituiscono un impianto fotovoltaico, che dagli elettrodotti interrati. Sono state esaminate le possibili sorgenti dei campi elettromagnetici, descrivendo attraverso opportuni modelli di calcolo, l'andamento del campo magnetico generato dalle configurazioni tipiche dei componenti elettrici e dei cavidotti MT.

Quindi, sotto opportune ipotesi cautelative, si è effettuato il calcolo post-operam dell'esposizione elettromagnetica, individuando in particolare per i cavidotti di progetto le distanze di rispetto per il soddisfacimento dei limiti di esposizione e degli obiettivi di qualità previsti dalla normativa vigente I risultati hanno indicato che per i principali componenti elettrici costituenti l'impianto FV e per il cavidotto interno all'impianto, il valore dell'induzione magnetica prodotta, non influenza alcun ricettore sensibile, essendo questi distanti dall'area d'impianto.

Anche l'impatto elettromagnetico generato del cavidotto interrato in MT esterno all'impianto a 20 kV, che collega la cabina di consegna alla CP "San Savino", è risultato trascurabile. Possiamo ritenere dunque che tutte le opere elettriche connesse al progetto fotovoltaico sono pertanto conformi ai parametri normativi relativi all' impatto elettromagnetico per l'obiettivo di qualità. Si specifica comunque che nel calcolo non è stato possibile tenere conto delle effettive caratteristiche del terreno, informazione necessaria in sede di progetto esecutivo.