Regione Siciliana

Comune di Nicosia

Libero Consorzio Comunale di Enna

PROGETTO DEFINITIVO

PROGETTO DI UN IMPIANTO AGRO-FOTOVOLTAICO COLLEGATO ALLA RETE ELETTRICA DI DISTRIBUZIONE MT CON COD. PRATICA 284329167 E 284329981, AVENTE UNA POTENZA COMPLESSIVA DC 12.992,40 kWp E UNA POTENZA COMPLESSIVA AC 11.700 kW DA REALIZZARSI NEL COMUNE DI NICOSIA (EN) - C/DA PARRIZZO

Elaborato:	CALCOLO) producibilità in	MPIANTO
Relazione:	Redatto:	Approvato:	Rilasciato:
DEL 06		AP ENGINEERING	AP ENGINEERING
REL_06		Foglio A4	Prima Emissione
Progetto: IMPIANTO SALOMONE 1	Data: 26/04/2022	SALOMOI	vittente: NE 1 S.R.L. 30 - Modena
SALON	tiere: 10NE 1 ARRIZZO	Proge AP e	ngineening

INDICE

1. PREMESSE	2
2. DEFINIZIONI	4
3. DATI DI PROGETTO	
3.1. Sito di installazione	
3.2. Radiazione solare media	8
3.3. Caratteristiche elettriche del modulo fotovoltaico	9
3.4. Caratteristiche dei gruppi di conversione CC/CA e Trasformatori elevatori	11
3.5. Dimensionamento elettrico del sistema	14
3.6 Dimensionamento meccanico del sistema	15
4. CALCOLO DELLE PRESTAZIONI E DELLA PRODLICIRILITA' ATTESA	17

1. PREMESSE

La Società Salomone 1 S.r.l. (o "la Società") intende realizzare nel Comune di Nicosia (EN), in Contrada Parrizzo, un impianto per la produzione di energia elettrica con tecnologia fotovoltaica, combinato con l'attività di coltivazione agricola e zootecnica. L'area di impianto è stata opzionata tramite la stipula di un contratto preliminare unilaterale di compravendita e patto d'opzione con il proprietario dei terreni in cui è prevista la realizzazione campo agro-fotovoltaico, in data 11/10/2021.

L'impianto avrà una potenza DC complessiva installata di 12.992,40 kWp sdoppiato in due sottoimpianti identificati tramite due codici POD diversi (IT001E938544255 e IT001E938544191). La Società, in data 29 novembre 2021, ha ottenuto da e-distribuzione S.p.A. la Soluzione Tecnica Minima Generale per la connessione (STMG), la STMG prevede che l'energia prodotta dall'impianto sarà immessa nella rete e-distribuzione tramite la realizzazione di due nuove cabine di consegna collegate in antenna da cabina primaria AT/MT NICOSIA. La connessione è vincolata al potenziamento della suddetta cabina primaria e alle seguenti opere RTN: rimozione della derivazione rigida SE 150 KV Castel di Lucio, inoltre, sarà necessario procedere con la progettazione del potenziamento / rifacimento della stessa linea. Tale soluzione prevede la realizzazione di un nuovo impianto di rete per la connessione, di seguito si riportano i dettagli dei lavori:

- MONTAGGIO ELETTROMECCANICO ULTERIORE SCOMPARTO,1
- CAVO INTERRATO AL 185 MM2 (TERRENO), m 40
- MONTAGGIO ELETTROMECCANICI CON SCOMPARTO DI ARRIVO+CONSEGNA,2
- UP E MODULO GSM,2

OPERE COMUNI:

- CAVO INTERRATO AL 185 mm² (ASFALTO), m 14
- CAVO INTERRATO AL 185 mm² (TERRENO), m 49
- LINEA CAVO AEREO AL 150 mm², m 2110
- FIBBRA OTTICA –POSA AEREA, m 2110
- FIBBRA OTTICA-POSA SOTTERRANEA, m 63

A seguito del ricevimento della STMG è stato possibile definire puntualmente le opere progettuali da realizzare, che si possono così sintetizzare:

- 1. Impianto agro-fotovoltaico con sistema fisso, della potenza complessiva installata di 12.992,40 kWp, ubicato in Contrada Parrizzo, Comune di Nicosia(EN), l'impianto come prima descritto sarà diviso in due sottoimpianti aventi una potenza DC per singolo blocco di 6.496,20 kWp.
- 2. *n.2 Cabine Utente DG 2092* ubicate in un'area esterna al campo ma sempre nella disponibilità della Società;
- 3. *n.2 Cabine di consegna DG 2092 (punto di connessione)* ubicate nella stessa area dove saranno posizionate le due Cabine Utente;
- 4. *Dorsale di collegamento aerea*, in media tensione (20 kV), per il vettoriamento dell'energia elettrica prodotta dall'impianto alla CP di Nicosia Il percorso dell'elettrodotto si svilupperà per una lunghezza di circa 2 km.

SALOMONE 1 S.R.L.

Progettista:

Pag. 2 | 17

Le opere di cui ai precedenti punti 1) e 2) costituiscono il Progetto Definitivo del Campo agrofotovoltaico ed il presente documento si configura come la Relazione Descrittiva del medesimo progetto. Le opere di cui ai precedenti punti 3) e 4) costituiscono il Progetto Definitivo dell'Impianto di Rete per la connessione.

Il campo agro-fotovoltaico si svilupperà su una superficie complessiva di circa **25 Ha**; i terreni attualmente sono utilizzati come seminativi. La Società, nell'ottica di riqualificare le aree da un punto di vista agronomico e di produttività dei suoli, ha scelto di adottare la soluzione impiantistica con sistema fisso.

Con la soluzione impiantistica proposta, si tenga presente che:

- su 25 Ha di superficie totale, quella effettivamente occupata dai moduli è pari a 5,56 Ha (pari del 20%);
- la superficie occupata da altre opere di progetto (strade interne all'impianto, cabine di conversione e trasformazione, locale servizi) è di circa 1,6 Ha;
- impianto di olive da olio;
- impianto di alberi di noce per la produzione di frutta a guscio;
- Copertura permanente con leguminose da granella per la realizzazione di superfici destinate al pascolo apistico.

Committente:

2. DEFINIZIONI

Si riportano di seguito le definizioni di alcuni termini correntemente utilizzati per gli impianti fotovoltaici ed, in particolare, la terminologia utilizzata nelle procedure di calcolo delle prestazioni degli stessi:

- o Angolo di inclinazione (o di tilt): Angolo di inclinazione del piano del dispositivo fotovoltaico rispetto al piano orizzontale (da IEC/TS 61836);
- \circ Angolo di orientazione (o di azimut): L'angolo di orientazione α del piano del modulo fotovoltaico rispetto al meridiano corrispondente. In pratica, esso misura lo scostamento del piano rispetto all'orientazione verso Sud (per i siti nell'emisfero terrestre settentrionale) o verso Nord (per i siti nell'emisfero meridionale). Valori positivi dell'angolo di azimut indicano un orientamento verso ovest e valori negativi indicano un orientamento verso est (CEI EN 61194);
- o Campo fotovoltaico/generatore fotovoltaico: Insieme di tutte le schiere fotovoltaiche di un sistema dato (CEI EN 61277);
- o Condizioni di Prova Standard o normalizzate (STC): Le Condizioni di Prova Standard o normalizzate (STC - Standard Test Conditions) di un qualsiasi dispositivo FV senza concentrazione solare, secondo la Norma CEI EN 60904-4 (par. A.1.2), nonchè la Norma CEI EN 61215 par. 10.6.1 e la Norma CEI EN 61646 par. 10.6.1, consistono in:
 - Temperatura di giunzione di cella: 25 °C ± 2 °C.
 - Irraggiamento sul piano del dispositivo: 1 000 W/m2.
 - Distribuzione spettrale di riferimento: AM 1,5 secondo la Norma CEI EN 60904-3.
- o Corrente di corto circuito in condizioni di prova normalizzate (Isc, STC): Corrente ai terminali in corto circuito di un dispositivo fotovoltaico, in condizioni di prova normalizzate;
- o Corrente massima in condizioni di prova normalizzate (Im, STC): Corrente ai terminali di un dispositivo fotovoltaico, nel punto di massima potenza, in condizioni di prova normalizzate;
- o Efficienza nominale di un modulo fotovoltaico: Rapporto fra la potenza nominale del modulo fotovoltaico e il prodotto dell'irraggiamento solare standard (1000 W/m2) per la superficie complessiva del modulo, inclusa la sua cornice;
- o Energia elettrica immessa in rete da un impianto fotovoltaico: Energia elettrica (espressa in kWh) misurata al punto di connessione con la rete del Gestore;
- o Gruppo di conversione della corrente continua in corrente alternata: Insieme di inverter installati in un impianto fotovoltaico impiegati per la conversione in corrente alternata della corrente continua prodotta dalle varie sezioni che costituiscono il generatore fotovoltaico;

Committente: *Progettista:* AP engineering

- Impianto (o Sistema) fotovoltaico a sistema fisso: Impianto (o Sistema) fotovoltaico i cui
 moduli, con o senza concentrazione solare, sono installati su strutture di sostegno a
 sistema fisso;
- o Indice di Rendimento PR (o efficienza operativa media) dell'impianto fotovoltaico: Il rapporto tra la resa energetica dell'impianto fotovoltaico (energia prodotta dall'impianto normalizzata secondo la potenza nominale dell'impianto fotovoltaico stesso) e la resa energetica incidente sulla superficie dei moduli fotovoltaici costituenti l'impianto (energia solare, normalizzata secondo il valore di irraggiamento standard 1000 W/m2);
- Inseguitore della massima potenza (MPPT): Dispositivo di comando dell'inverter tale da far operare il generatore fotovoltaico nel punto di massima potenza;
- o Irraggiamento solare: Intensità della radiazione elettromagnetica solare incidente su una superficie di area unitaria. Tale intensità e pari all'integrale della potenza associata a ciascun valore di frequenza dello spettro solare (CEI EN 60904-3), espresso in W/m2;
- Modulo fotovoltaico: Il piu piccolo insieme di celle fotovoltaiche interconnesse e protette dall'ambiente circostante (CEI EN 60904-3)
- Perdite per disaccoppiamento (o per mismatch): Differenza fra la potenza totale dei dispositivi fotovoltaici connessi in serie o in parallelo e la somma delle potenze di ciascun dispositivo, misurate separatamente nelle stesse condizioni. Deriva dalla differenza fra le caratteristiche tensione-corrente dei singoli dispositivi e viene misurata in W o in percentuale rispetto alla somma delle potenze (da IEC/TS 61836);
- Potenza immessa in rete da un impianto fotovoltaico: Potenza elettrica (espressa in kW)
 misurata al punto di connessione con la rete del distributore;
- o Potenza nominale (o massima, o di picco, o di targa) di un modulo fotovoltaico: Potenza elettrica (espressa in Wp) del modulo, misurata in Condizioni di Prova Standard (STC);
- Punto di connessione: Il punto sulla rete del TSO al quale, in relazione a parametri riguardanti la qualita del servizio elettrico che deve essere reso o richiesto, e connesso l'Impianto dell'Utente;
- Punto di misura: Il punto in cui e misurata l'energia elettrica immessa e/o prelevata dalla rete;
- Radiazione solare: Integrale dell'irraggiamento solare (espresso in kWh/m2), su un periodo di tempo specificato (CEI EN 60904-3);
- Schiera fotovoltaica: Complesso, integrato meccanicamente e collegato elettricamente, di moduli, pannelli e delle relative strutture di supporto;
- o STC: Standard Test Condition vedi Condizioni di Prova Standard o normalizzate;
- o Stringa fotovoltaica: Insieme di moduli fotovoltaici collegati elettricamente in serie;

AP engineering

Progettista:

CALCOLO DI PRODUCIBILITA' IMPIANTO

REL_06

- Tensione alla massima potenza di un dispositivo fotovoltaico in condizioni di prova normalizzate (Vm,STC): Tensione ai terminali di un dispositivo fotovoltaico, nel punto di massima potenza (MPP), in condizioni di prova normalizzate (STC);
- Tensione a vuoto in condizioni di prova normalizzate (VOC,STC): Tensione a circuito aperto di un dispositivo fotovoltaico, misurata in condizioni di prova normalizzate (STC);
- Tensione massima di sistema ammessa dal modulo fotovoltaico: La tensione massima di sistema (maximum system voltage) ammessa dal modulo fotovoltaico e la tensione massima di sistema indicata dal costruttore del modulo, come riportato sulla targhetta del modulo stesso (vedi CEI EN 50380, CEI EN 61215 e CEI EN 61646): questo valore viene verificato nel corso della prova di isolamento per la qualifica del progetto e l'omologazione di tipo del modulo, secondo la Norma CEI EN 61215 o CEI EN 61646.

3. DATI DI PROGETTO

3.1. Sito di installazione

L'area in cui è prevista la realizzazione del campo agro-fotovoltaico è ubicata interamente nel Comune di Nicosia (Provincia di Enna), in Contrada Parrizzo, in un'area tendenzialmente collinare avente una quota media di circa 745 mt s.l.m.

L'accessibilità all'area di intervento è consentita attraverso una strada comunale che confluisce sulla SS 120 che si sviluppa a sud. I punti di accesso all'impianto, invece, sono distribuiti lungo il perimetro mediante 4 passi carrai posizionati lungo stradine private che costeggiano e tagliano lo stesso.

Il baricentro dell'impianto è individuato dalle seguenti coordinate:

	Latitudine	Longitudine	h (s.l.m.)
Parco Agro-Fotovoltaico	37° 48′ 19.05" N	14° 18′ 13.97" E	745 mt

Tabella 1 – Coordinate assolute

Figura 1 – Ubicazione area di impianto

Il progetto ricade all'interno delle seguenti cartografie e Fogli di Mappa:

- Cartografia I.G.M. in scala 1:50.000, tavoletta n° 610 Castelbuono
- ➤ Cartografia I.G.M. in scala 1:25.000, tavoletta n° 610 II° quadrante Castel di Lucio
- Carta Tecnica Regionale CTR, scala 1:10.000, foglio n°610160

Committente:	Progettista:	
SALOMONE 1 S.R.L.	AP engineering	Pag. 7 17

3.2. Radiazione solare media

Figura 2: Mappa della radiazione solare (Italia)

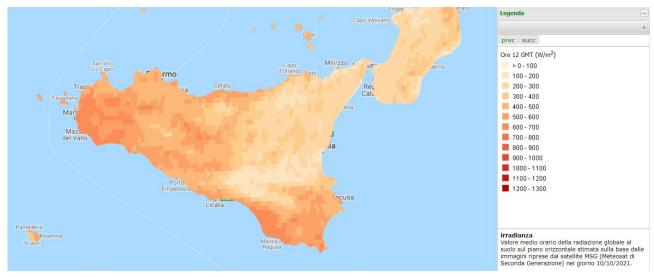


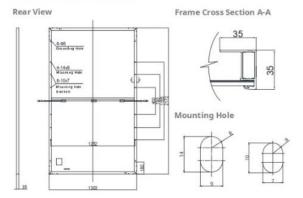
Figura 3: Mappa della radiazione solare (Sicilia)

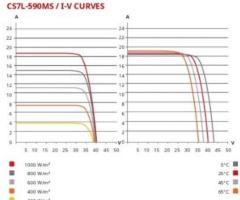
Figura 4: Mappa della radiazione solare (Sito di Installazione)

Il sito di installazione appartiene all'area siciliana che dispone di dati climatici storici riportati in molteplici database.

Il database internazionale MeteoNorm (Rif. Meteonorm 7.1 - 1991-2009) rende disponibili i dati meteorologici che si basano su misure a terra registrate su un periodo di circa vent'anni. Inoltre modelli sofisticati di interpolazione all'interno del software consentono calcoli affidabili di radiazione solare, temperatura e parametri addizionali in ogni località del mondo.

Considerato che l'attendibilità dei dati contenuti nel database è riconosciuta internazionalmente, i dati estratti dal software menzionato sono stati usati per l'elaborazione statistica per la stima di radiazione solare per la località C/da Parrizzo del Comune di Nicosia (EN).


Nella tabella seguente si riportano i dati meteorologici assunti per la presente simulazione.


3.3. Caratteristiche elettriche del modulo fotovoltaico

I moduli fotovoltaici sono del tipo in silicio monocristallino ad alta efficienza (>20%) e ad elevata potenza nominale (600 Wp).

Questa soluzione permette di ridurre il numero totale di moduli necessari per coprire la taglia prevista dell'impianto, ottimizzando l'occupazione del suolo. La tipologia specifica sarà definita in fase di progettazione esecutiva, utilizzando la migliore tecnologia disponibile al momento della costruzione, cercando di favorire la filiera di produzione locale. Le caratteristiche preliminari dei moduli utilizzati per il dimensionamento dell'impianto sono riportate nella seguente tabella.

ENGINEERING DRAWING (mm)

ELECTRICAL DATA | STC*

CS7L	580MS	585MS	590MS	595MS	600MS
Nominal Max. Power (Pmax)	580 W	585 W	590 W	595 W	600 W
Opt. Operating Voltage (Vmp)	34.1 V	34.3 V	34.5 V	34.7 V	34.9 V
Opt. Operating Current (Imp)	17.02 A	17.06 A	17.11 A	17.15 A	17.20 A
Open Circuit Voltage (Voc)	40.5 V	40.7 V	40.9 V	41.1 V	41.3 V
Short Circuit Current (Isc)	18.27 A	18.32 A	18.37 A	18.42 A	18.47 A
Module Efficiency	20.5%	20.7%	20.8%	21.0%	21.2%
Operating Temperature	-40°C~	+85°C			
Max. System Voltage	1500V ()	EC) or 10	00V (IEC)		
Module Fire Performance	CLASS C	(IEC 617	30)		
Max. Series Fuse Rating	30 A				
Application Classification	Class A				
Power Tolerance	0~+10	W			
# Under Standard Test Conditions /CTC	of irradian	o of 1000 M	Ino2 constant	m 444 4 E as	d call

^{*} Under Standard Test Conditions (STC) of irradiance of 1000 W/m², spectrum AM 1.5 and cell temperature of 25°C.

ELECTRICAL DATA | NMOT*

580MS	585MS	590MS	595MS	600MS
433 W	437 W	441 W	445 W	448 W
31.9 V	32.0 V	32.2 V	32.4 V	32.6 V
13.60 A	13.66 A	13.70 A	13.74 A	13.76 A
38.2 V	38.4 V	38.6 V	38.7 V	38.9 V
14.74 A	14.77 A	14.82 A	14.87 A	14.90 A
	433 W 31.9 V 13.60 A 38.2 V	433 W 437 W 31.9 V 32.0 V 13.60 A 13.66 A 38.2 V 38.4 V	433 W 437 W 441 W 31.9 V 32.0 V 32.2 V 13.60 A 13.66 A 13.70 A 38.2 V 38.4 V 38.6 V	433 W 437 W 441 W 445 W 31.9 V 32.0 V 32.2 V 32.4 V 13.60 A 13.66 A 13.70 A 13.74 A

^{*} Under Nominal Module Operating Temperature (NMOT), irradiance of 800 W/m² spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

MECHANICAL DATA

Specification	Data
Cell Type	Mono-crystalline
Cell Arrangement	120 [2 x (10 x 6)]
Dimensions	2172 × 1303 × 35 mm
Dimensions	(85.5 × 51.3 × 1.38 in)
Weight	32.5 kg (71.6 lbs)
Front Cover	3.2 mm tempered glass
-	Anodized aluminium alloy,
Frame	crossbar enhanced
J-Box	IP68, 3 bypass diodes
Cable	4 mm² (IEC)
Connector	T4 series or H4 UTX or MC4-EVO2
Cable Length (Including Connector)	460 mm (18.1 in) (+) / 340 mm (13.4 in) (-) or customized length*
Per Pallet	30 pieces
Day Cantainas (40' 110)	490 pieses

Per Container (40' HQ) 480 pieces

* For detailed information, please contact your local Canadian Solar sales and technical representatives.

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.34 % / °C
Temperature Coefficient (Voc)	-0.26 % / °C
Temperature Coefficient (Isc)	0.05 % / °C
Nominal Module Operating Temperature	42 ± 3°C

PARTNER SECTION

Please be kindly advised that PV modules should be handled and installed by qualified people who have professional skills and please carefully read the safety and installation instructions before using our PV modules.

CANADIAN SOLAR INC. 545 Speedvale Avenue West, Guelph, Ontario N1K 1E6, Canada, www.csisolar.com, support@csisolar.com

October 2020. All rights reserved, PV Module Product Datasheet V1.3_EN

Figura 5: Scheda tecnica moduli Canadian 600 W

^{*} The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. Canadian Solar Inc. reserves the right to make necessary adjustment to the information described herein at any time without further

3.4. Caratteristiche dei gruppi di conversione CC/CA e Trasformatori elevatori

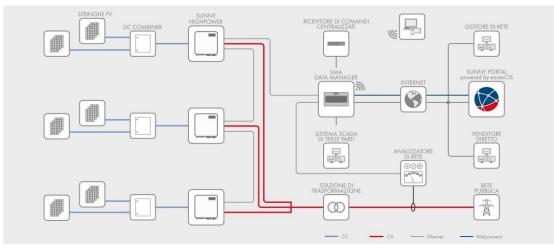
I gruppi di inverter hanno la funzione di riportare la potenza generata in corrente continua dai moduli fotovoltaici alla frequenza di rete, mentre il trasformatore provvede ad innalzare la tensione al livello della rete interna dell'impianto (20 kV).

I componenti del gruppo di conversione sono selezionati sulla base delle seguenti caratteristiche principali:

- Conformità alle normative europee di sicurezza;
- Funzionamento automatico, e quindi semplicità di uso e di installazione;
- Sfruttamento ottimale del campo fotovoltaico con la funzione MPPT;
- Elevato rendimento globale;
- Massima sicurezza, con il trasformatore di isolamento a frequenza di rete integrato;
- Forma d'onda d'uscita perfettamente sinusoidale.

Nel caso specifico, per ogni sottocampo di generazione è previsto un gruppo di conversione CC/CA, per un totale di 78 Inverter da 150 kW, ogni 3 sottocampi verrà installata una cabina di controllo e monitoraggio dei sottocampi, per un totale di n. 2 cabine (P25)

I gruppi di conversione individuati in questa fase di progettazione, prevedono l'utilizzo di inverter da 150 kW e di trasformatori elevatori da 2000 kVA, inclusivi di compartimenti MT e BT, gli inverter saranno alloggiati all'interno di apposite cassette installate nella struttura portamoduli, mentre i trasformatori saranno posizionati all'interno dello loro cabine P57.


Tale soluzione è compatta, versatile ed efficiente, che ben si presta per il luogo di installazione e la configurazione dell'impianto.

Il sistema così configurate costituisce la soluzione ottimale per centrali fotovoltaiche predisposte per la fornitura di potenza reattiva nel periodo notturno, in accordo alle richieste del codice di rete.

Le caratteristiche preliminari dei componenti utilizzati per il dimensionamento dell'impianto sono riportate nella seguente tabella.

TIPO SUNNY HIGHPOWER PEAK3 150-20	N. Inverter	Potenza Inverter	Potenza AC Sottocampo	Potenza Trasformatore BT/MT
SOTTOCAMPO 1.A	13	150 kVA	1.950 kW	2.000 kVA
SOTTOCAMPO 2.A	13	150 kVA	1.950 kW	2.000 kVA
SOTTOCAMPO 3.A	13	150 kVA	1.950 kW	2.000 kVA
SOTTOCAMPO 1.B	13	150 kVA	1.950 kW	2.000 kVA
SOTTOCAMPO 2.B	13	150 kVA	1.950 kW	2.000 kVA
SOTTOCAMPO 3.B	13	150 kVA	1.950 kW	2.000 kVA
TOTALE	78		11.700 kW	12.000 kVA

Committente:	Progettista:
OMONE 1 S.R.L.	AP engineering

Dati tecnici	Sunny Highpower 100-20	Sunny Highpower 150-20
Ingresso (CC)		
Potenza max del generatore fotovoltaico	150000 Wp	225000 Wp
Tensione d'ingresso max	1000 V	1500 V
Range di tensione MPP / Tensione nominale d'ingresso	590 V a 1000 V / 590 V	880 V a 1450 V / 880 V
Corrente d'ingresso max / Corrente di cortocircuito max	180 A / 325 A	180 A / 325 A
Numero di inseguitori MPP indipendenti	1	1
Numero d'ingressi	1 o 2 (opzionale) per o	quadri di campo esterni
Uscita (CA)		10 at
Potenza nominale alla tensione nominale	100000 W	150000 W
Potenza apparente CA max	100000 VA	150000 VA
Tensione nominale CA / Range di tensione CA	400 V / 304 V a 477 V	600 V / 480 V a 690 V
Frequenza di rete CA / Range	50 Hz / 44 Hz a 55 Hz 60 Hz / 54 Hz a 66 Hz	50 Hz / 44 Hz a 55 Hz 60 Hz / 54 Hz a 66 Hz
Frequenza di rete nominale	50 Hz	50 Hz
Corrente d'uscita max	151 A	151 A
Fattore di potenza alla potenza nominale / Fattore di sfasamento regolabile	1 / Da 0 induttivo a 0 capacitivo	1 / Da 0 induttivo a 0 capacitiv
Distorsione armonica totale (THD)	< 3%	< 3%
Fasi di immissione / Collegamento CA	3 / 3-PE	3 / 3-PE
Grado di rendimento		
Grado di rendimento max / grado di rendimento europeo	98,8% / 98,6%	99,1% / 98,8%
Dispositivi di protezione		•
Monitoraggio della dispersione verso terra / Monitoraggio della rete / Protezione contro l'inversione della polarità CC	•/•/•	•/•/•
Resistenza ai cortocircuiti CA / Separazione galvanica	•/-	•/-
Unità di monitoraggio correnti di guasto sensibile a tutti i tipi di corrente		•
Scaricatori di sovratensioni (tipo II) CA/CC controllati	•/•	•/•
Classe di isolamento (secondo IEC 62109-1) / Categoria di sovratensione (secondo IEC 62109-1)	I / CA: III; CC: II	I / CA: III; CC: II
Dati generali		
Dimensioni (L / A / P)	770 mm / 830 mm / 444 r	mm (30,3" / 32,7" / 17,5")
Peso	98 kg (216 lb)
Range di temperature di funzionamento	−25 °C a +60 °C	-13 °F a +140 °F)
Rumorosità, valore tipico	< 69	dB(A)
Autoconsumo (notturno)	< 5	W
Topologia	Senza tras	formatore
Principio di raffreddamento	OptiCool, raffreddamento attiv	ro, ventole a regime controllato
Grado di protezione (secondo IEC 60529)	IPo	65
Valore massimo ammissibile per l'umidità relativa (senza condensa)	10	0%
Dotazione / Funzione / Accessori		
Collegamento CC / Collegamento CA	Capocorda (fino a 300 mm²)	/ Morsetto (fino a 150 mm²)
Indicatori LED (stato / errore / comunicazione)		
Interfaccia Ethernet	• (2	porte)
Interfaccia dati: SMA Modbus / SunSpec Modbus / Speedwire	•/•	•/•
Tipo di montaggio	Montaggi	o su telaio
OptiTrac / Integrated Plant Control / Q on Demand 24/7	•/•	•/•
Idoneità off-grid / Compatibile con SMA Fuel Save Controller	•,	/•
Garanzia: 5 / 10 / 15 / 20 anni	•/0	/0/0
Certificati e omologazioni (selezione)	IEC/EN 62109-1/-2, VDE-AR-N 4110/4 C10/11, CEI 0-16, G99/1 (>16	120, IEC 62116, IEC 61727, EN 505 A), PO 12.3, ABNT NBR 16149
● Dotazione di serie ○ Opzionale — Non disponibile		
Dati riferiti alle condizioni nominali Aggiornamento dei dati: 10/2020		

SMA-Italia.com

SMA Solar Technology

Tabella 1 – Datasheet Inverter SMA

Progettista:

AP engineening

	IKIFA				SSIDICA		101	0.000	2000 kV	Α.
Famiglia di perdite		AoAk-Re							indoor	
Gruppo vettoriale		Dyn1	1	Tipo	di raffreddar	nento			AN	
Frequenza	Hz	50		Altitudine di installazione			m.s.l		<1000	
Numero fasi		3		Disto	rsione armo	nica tot.	THDv		<5%	
		1	Avvol	gimen	to Primario	Avvolgimen	to Seconda	ario		
Potenza nominale serv.	Cont.			2000	kVA	200	0kVA			
Tensione nominale (a v	uoto)	-		201	κV	4	00V			
Variazione tensione				+-2X2	2.5%	0.020				
Collegamento				De	-	sta	ar+n			
Classe d'isolamento		~		241			,1kV			
AC				(50)			kV)	\neg		
BIL				L1 (9		,	-			
Materiale avvolgimenti				•	Á	L/AL				
Tipo di avvolgimento				obato i sotto v	n stampo /uoto	Impregnate	o sotto vuo	to		
CLASSE TERMICA	ISOL	AMENTI		•		Temperatura			4	0°C
			AVVOI		to Primario	Avvolgimen		ario		
Classe termica		°C		155			55°C	4		
Sovratemperatura		K		10	0	1	00			
Classe Amb.,Clim.,di C	•			C2 -	F1 (Type Te	est Certificat			•	
GARANZIE RIFERIT	E AL F			C2 -	F1 (Type To	V		20k\	V / 400V	
GARANZIE RIFERIT (Tolleranze secondo le	E AL F	RAPPORT	O:			V kVA		20k\ 20	V / 400V 00kVA	
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po	E AL F	RAPPORT	'O :	500	Tolleranza	V kVA		20k\ 20	V / 400V 00kVA 0%	
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo	E AL F norme)	RAPPORT	O :	600 1,5	Tolleranza Tolleranza	V kVA n, Po		20k\ 20 %	V / 400V 00kVA 0% +30%	
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12	E AL F norme)	RAPPORT	7 0 :	600 0,5 000	Tolleranza Tolleranza Tolleranza	V kVA n, Po n, Io n, Pk 120°C		20k\ 20 % %	V / 400V 00kVA 0% +30%	
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk	E AL F norme)	RAPPORT W % W %	7 0 :	600 1,5	Tolleranza Tolleranza	V kVA n, Po n, Io n, Pk 120°C	Ge CESI A9	20k\ 20 %	V / 400V 00kVA 0% +30%	
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa	E AL F norme)	W % W % pc	7 0 :	600 0,5 000	Tolleranza Tolleranza Tolleranza	V kVA n, Po n, Io n, Pk 120°C	e CESI A9	20k\ 20 % %	V / 400V 00kVA 0% +30%	
	E AL F norme)	RAPPORT W % W %	7 0 :	600 0,5 000	Tolleranza Tolleranza Tolleranza	V kVA n, Po n, Io n, Pk 120°C	Ge CESI A9	20k\ 20 % %	V / 400V 00kVA 0% +30%	
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa	E AL F norme)	W % W % pC dB(A)	26 0 16	600 1,5 000 6	Tolleranza Tolleranza Tolleranza Tolleranza	V kVA n, Po n, Io n, Pk 120°C	<5 70	20k\ 20 % % %	V / 400V 00kVA 0% +30% 0% +/-10%	
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa DIMENSIONI DI ING Lung x larg x altezza (IF	E AL F norme)	W % W % pC dB(A)	200: 00 16	600 1,5 000 6	Tolleranza Tolleranza Tolleranza Tolleranza	V kVA n, Po n, Io n, Pk 120°C	<5 70	20k\ 20 \ \ % \ % \ % \ \ % \ \ \ % \ \ \ \ \	V / 400V 00kVA 0% +30% 0% +/-10%	5600
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa DIMENSIONI DI ING Lung x larg x altezza (IF	E AL F norme)	W % W % pC dB(A)	200: 00 16	600 1,5 000 6	Tolleranza Tolleranza Tolleranza Tolleranza dicativi)	V kVA a, Po a, Io a, Pk 120°C a, Uk	<5 70	20k\ 20 % % %	V / 400V 00kVA 0% +30% 0% +/-10%	5600
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa DIMENSIONI DI ING Lung x larg x altezza (IF Lung x larg x altezza (IF)	E AL F norme)	W % W % pC dB(A) O E PESO mm	200: 00 16	600 1,5 000 6	Tolleranza Tolleranza Tolleranza Tolleranza dicativi)	V kVA a, Po a, Io a, Pk 120°C a, Uk	<5 70	20k\ 20 \ \ % \ % \ % \ \ % \ \ \ % \ \ \ \ \	V / 400V 00kVA 0% +30% 0% +/-10%	5600
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa DIMENSIONI DI ING Lung x larg x altezza (Ip. Interasse ruote	E AL F norme) 20°C arziali OMBR 200) xx)	W % W % pC dB(A) O E PESO mm mm mm mm	26 0 16 0 16 0 (Val	600 1,5 000 6 lori in	Tolleranza Tolleranza Tolleranza Tolleranza Tolleranza 1310	V kVA n, Po n, Io n, Pk 120°C n, Uk	<5 70 Peso Peso x 1070	20k\ 20 \ \ % \ % \ % \ \ % \ \ \ % \ \ \ \ \	V / 400V 00kVA 0% +30% 0% +/-10%	5600
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa DIMENSIONI DI ING Lung x larg x altezza (Ip Lung x larg x altezza (Ip Interasse ruote	E AL F norme) 20°C arziali OMBR 200) xx)	W % W % pC dB(A) O E PESO mm mm mm mm	26 00 16 0 (Val	600 1,5 000 6 lori in	Tolleranza Tolleranza Tolleranza Tolleranza Tolleranza 1310	V kVA n, Po n, Io n, Pk 120°C n, Uk	<5 70 Peso Peso x 1070	20k\ 20 \ \ % \ % \ % \ \ % \ \ \ % \ \ \ \ \	V / 400V 00kVA 0% +30% 0% +/-10%	5600
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa DIMENSIONI DI ING Lung x larg x altezza (Ip Lung x larg x altezza (Ip Interasse ruote VERNICIATURA (I ce Nucleo magnetico	E AL F norme) 20°C arziali OMBR 200) xx)	W W W BC GB(A) O E PESC mm mm mm mm	26 0 16 0 16 20 20	600 0,5 000 6 6	Tolleranza Tolleranza Tolleranza Tolleranza dicativi) 1310 esigenze t	V kVA n, Po n, Io n, Pk 120°C n, Uk	<5 70 Peso Peso x 1070	20k\ 20	V / 400V 00kVA 0% +30% 0% +/-10%	5600
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa DIMENSIONI DI ING Lung x larg x altezza (Ip Lung x larg x altezza (Ip Interasse ruote VERNICIATURA (I ce Nucleo magnetico	E AL F norme) 20°C arziali OMBR 200) xx)	W % W % pC dB(A) O E PESO mm mm mm mm mm mm mm	26 0 16 0 16 20 20	600 0,5 000 6 000 6	Tolleranza Tolleranza Tolleranza Tolleranza dicativi) 1310 esigenze t	V kVA n, Po n, Io n, Pk 120°C n, Uk	<5 70 Peso Peso x 1070	20k\ 20	V / 400V 00kVA 0% +30% 0% +/-10%	5600
GARANZIE RIFERIT (Tolleranze secondo le Perdite a vuoto, Po Corrente a vuoto, lo Perdite in c.c. Pk at 12 Tensione di c.c. Uk Valore delle scariche pa Livello acustico, Lwa	E AL F norme) 20°C arziali OMBR 200) xx)	W % W % pC dB(A) O E PESO mm mm mm mm mm mm mm	26 0 16 0 16 20 20	600 0,5 000 6 000 6	Tolleranza Tolleranza Tolleranza Tolleranza dicativi) 1310 esigenze t	V kVA n, Po n, Io n, Pk 120°C n, Uk	<5 70 Peso Peso x 1070	20k\ 20	V / 400V 00kVA 0% +30% 0% +/-10%	5600

Conforme al regolamento 548/2014

Frame antisismico (Picco acceleraz orizz): <=0,2g (sisma leggero)

Tabella 2 – Datasheet trasformatori BT/MT

3.5. Dimensionamento elettrico del sistema

L'impianto di Utenza comprende tutta la restante parte di impianto a valle della Sottostazione di Trasformazione Utente.

L'impianto ha una *potenza di DC di 12.992,40 kWp* intesa come somma delle potenze nominali dei singoli moduli fotovoltaici e una *potenza di AC di 11.700 kWp* intesa come somma degli inverter.

Per la realizzazione del generatore fotovoltaico, si è scelto di utilizzare moduli fotovoltaici Canadian da 600 Wp, premettendo che essi verranno acquistati in funzione della disponibilità e del costo di mercato in sede di realizzazione.

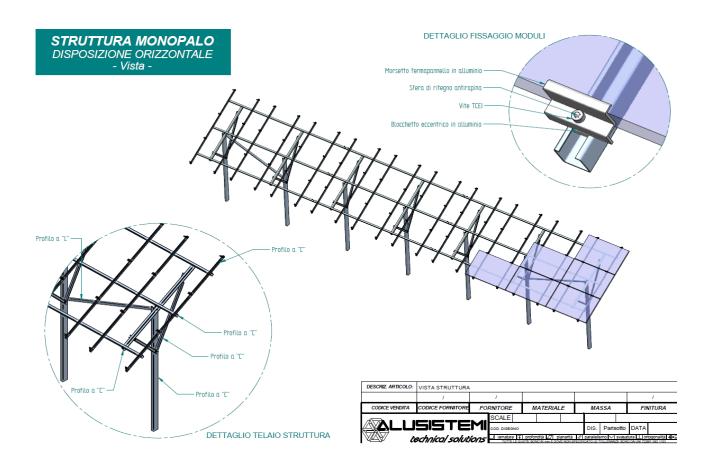
Il dimensionamento del generatore fotovoltaico è stato eseguito tenendo conto della superficie utile disponibile, dei distanziamenti da mantenere tra filari di moduli per evitare fenomeni di auto-ombreggiamento e degli spazi necessari per l'installazione dei locali di conversione e trasformazione, di consegna e ricezione.

Il numero di moduli necessari per la realizzazione del generatore è pari a 21.654 ed è stato calcolato applicando la seguente relazione:

N moduli =
$$\frac{\text{Pn generatore}}{\text{Pn modulo}}$$

L'impianto sarà suddiviso in 2 sottoimpianti, a loro volta divisi in 3 sottocampi fotovoltaici, per ognuno dei quali si dovrà installare un **locale di trasformazione**, all'interno del quale sarà installato il trasformatore BT/MT, i quadri elettrici di media e bassa tensione e il gruppo di misura dell'energia prodotta.

Definito il layuot di impianto, il numero di moduli della stringa e il numero di stringhe da collegare in parallelo, sono stati determinati coordinando opportunamente le caratteristiche dei moduli fotovoltaici con quelle degli inverter scelti, rispettando le seguenti 4 condizioni:


- la massima tensione del generatore fotovoltaico deve essere inferiore alla massima tensione di ingresso dell'inverter;
- la massima tensione nel punto di massima potenza del generatore fotovoltaico non deve essere superiore alla massima tensione del sistema MPPT dell'inverter;
- la minima tensione nel punto di massima potenza del generatore fotovoltaico non deve essere inferiore alla minima tensione del sistema MPPT dell'inverter;
- la massima corrente del generatore fotovoltaico non deve essere superiore alla massima corrente in ingresso all'inverter.

3.6 Dimensionamento meccanico del sistema

L'impianto in progetto, del tipo fisso, prevede l'installazione di strutture di supporto dei moduli fotovoltaici (realizzate in materiale metallico), saranno disposte in file parallele con l'asse principale rivolto perfettamente verso Sud ed avranno un angolo tilt di 30° in modo da massimizzare la produzione dei pannelli fotovoltaici, l'interasse medio (pitch) sarà di 7,3 m, in modo da ridurre gli effetti degli ombreggiamenti.

Le strutture di supporto sono costituite essenzialmente da due componenti:

- Pali in acciaio zincato, direttamente infissi nel terreno per le fondazioni (nessuna fondazione prevista);
- Struttura porta moduli, montata sulla testa dei pali, composta da profilati in alluminio, sulla quale viene posata una fila di moduli fotovoltaici (in totale 27moduli disposti su tre file in orizzontale).

Committente: Progettista: AP engineering

Figura 6 – Layout impianto agro-fotovoltaico

4. CALCOLO DELLE PRESTAZIONI E DELLA PRODUCIBILITA' ATTESA

Per il calcolo dell'energia producibile dall'impianto fotovoltaico si è tenuto conto dei seguenti fattori:

- Radiazione solare incidente sulla superficie dei moduli fotovoltaici (che è legata a sua volta alla latitudine del sito ed alla riflettanza della superficie antistante i moduli fotovoltaici, e dipende dall'angolo di inclinazione e di orientazione dei moduli stessi);
- Temperatura ambiente (media giornaliera su base mensile);
- o Perdite di ombreggiamento ombre vicine;
- o Perdite di basso irraggiamento;
- Caratteristiche dei moduli fotovoltaici (perdite per qualità modulo e LID) e prestazioni delle stringhe fotovoltaiche (n. di moduli collegati in serie e numero di stringhe collegate in parallelo);
- Perdite per disaccoppiamento (o "mismatch");
- Perdite ohmiche di cablaggio (cavi DC);
- Perdite inverter (conversione per superamento Pmax);
- o Perdite consumi ausiliari e di trasmissione energia (perdite ohmiche AC e trasformatori).

Il calcolo delle prestazioni è stato eseguito utilizzando un software specifico (PVSYST), realizzato dall'università di Ginevra e comunemente utilizzato dalle primarie società operanti nel settore delle energie rinnovabili.

PVsyst - Rapporto di simulazione

Sistema connesso in rete

Progetto: SALOMONE 1

Variante: Nuova variante di simulazione sheds al suolo Potenza di sistema: 12.99 MWc Sperlinga - Italy

Variante: Nuova variante di simulazione

AP ENGINEERING SRLS (Italy)

VC0, Simulato su 28/04/22 20:48 con v7.2.8

Sommario del progetto

Luogo geografico Ubicazione

Latitudine 37.81 °N Sperlinga Italia Longitudine 14.31 °E Altitudine 758 m

Fuso orario UTC+1 Albedo 0.20

Parametri progetto

Dati meteo

Sperlinga

Meteonorm 8.0 (1986-2005), Sat=100% - Sintetico

Sommario del sistema

sheds al suolo Sistema connesso in rete

Orientamento campo FV **Ombre vicine** Bisogni dell'utente Carico illimitato (rete)

Piano fisso Ombre lineari

Inclinazione/azimut 30/0°

Informazione sistema

Campo FV Inverter

Numero di moduli 21654 unità Numero di unità 78 unità Pnom totale 12.99 MWc Pnom totale 11.70 MWac

> Rapporto Pnom 1.110

Sommario dei risultati

Energia prodotta 19576 MWh/anno Prod. Specif. 1507 kWh/kWc/anno Indice rendimento PR 82.68 %

Indice dei contenuti Sommario del progetto e dei risultati Parametri principali, Caratteristiche campo FV, Perdite sistema 3 Definizione ombre vicine - Diagramma iso-ombre 6 Risultati principali 7 Diagramma perdite 8 Grafici speciali 9

Variante: Nuova variante di simulazione

AP ENGINEERING SRLS (Italy)

PVsyst V7.2.8 VC0, Simulato su 28/04/22 20:48 con v7.2.8

Parametri principali

Circumsolare

separare

Sistema connesso in rete sheds al suolo

Orientamento campo FV

Orientamento Configurazione sheds Modelli utilizzati

Piano fisso N. di shed 802 unità Trasposizione Perez Inclinazione/azimut $30/0^{\circ}$ Campo (array) identico Diffuso Perez, Meteonorm

Dimensioni

Spaziatura sheds 7.32 m Larghezza collettori 3.95 m Fattore occupazione (GCR) 54.0 % Angolo limite ombreggiamento Angolo limite profilo 26.9 °

OrizzonteOmbre vicineBisogni dell'utenteOrizzonte liberoOmbre lineariCarico illimitato (rete)

Caratteristiche campo FV

	———— Caratteristi	cne campo rv —	
Modulo FV		Inverter	
Costruttore	Canadian Solar Inc.	Costruttore	SMA
Modello MS-600 HIKU7		Modello	Sunny Highpower SHP150-20-PEAK3
(definizione customizza	ta dei parametri)	(PVsyst database orig	ginale)
Potenza nom. unit.	600 Wp	Potenza nom. unit.	150 kWac
Numero di moduli FV	21654 unità	Numero di inverter	78 unità
Nominale (STC)	12.99 MWc	Potenza totale	11700 kWac
Campo #1 - SOTTOCAN	/IPI 1.A		
Numero di moduli FV	3591 unità	Numero di inverter	13 units
Nominale (STC)	2155 kWc	Potenza totale	1950 kWac
Moduli	133 Stringhe x 27 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamen	to 855-1450 V
Ртрр	1973 kWc	Rapporto Pnom (DC:AC)	1.10
U mpp	861 V		
I трр	2292 A		
Campo #2 - SOTTOCAN	/IPO 2.A		
Numero di moduli FV	3618 unità	Numero di inverter	13 units
Nominale (STC)	2171 kWc	Potenza totale	1950 kWac
Moduli	134 Stringhe x 27 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamen	to 855-1450 V
Ртрр	1987 kWc	Rapporto Pnom (DC:AC)	1.11
U трр	861 V		
I трр	2309 A		
Campo #3 - SOTTOCAN	MPO 3.A		
Numero di moduli FV	3618 unità	Numero di inverter	13 units
Nominale (STC)	2171 kWc	Potenza totale	1950 kWac
Moduli	134 Stringhe x 27 In serie		
In cond. di funz. (50°C)		Voltaggio di funzionamen	to 855-1450 V
Ртрр	1987 kWc	Rapporto Pnom (DC:AC)	1.11
U mpp	861 V		
I трр	2309 A		

Variante: Nuova variante di simulazione

AP ENGINEERING SRLS (Italy)

VC0, Simulato su 28/04/22 20:48 con v7.2.8

Caratteristiche campo FV

	Caralleris				
Campo #4 - SOTTOCAM	PO 1.B				
Numero di moduli FV 3591 unità		Numero di inverter	13 units		
Nominale (STC) 2155 kWc		Potenza totale	1950 kWac		
Moduli	133 Stringhe x 27 In serie				
In cond. di funz. (50°C)		Voltaggio di funzionamento	855-1450 V		
Ртрр	1973 kWc	Rapporto Pnom (DC:AC)	1.10		
U трр	861 V				
I трр	2292 A				
Campo #5 - SOTTOCAM	PO 2.B				
Numero di moduli FV 3618 unità		Numero di inverter	13 units		
Nominale (STC)	2171 kWc	Potenza totale	1950 kWac		
Moduli	134 Stringhe x 27 In serie				
In cond. di funz. (50°C)		Voltaggio di funzionamento	855-1450 V		
Pmpp 1987 kWc		Rapporto Pnom (DC:AC)	1.11		
U трр	861 V				
I трр	2309 A				
Campo #6 - SOTTOCAMI	PO 3.B				
Numero di moduli FV 3618 unità		Numero di inverter	13 units		
Nominale (STC)	2171 kWc	Potenza totale	1950 kWac		
Moduli	134 Stringhe x 27 In serie				
In cond. di funz. (50°C)		Voltaggio di funzionamento	855-1450 V		
Ртрр	1987 kWc	Rapporto Pnom (DC:AC)	1.11		
U трр	861 V				
I трр	2309 A				
Potenza PV totale		Potenza totale inverter			
Nominale (STC)	12992 kWp	Potenza totale	11700 kWac		
Totale	21654 moduli	N. di inverter	78 unità		
Superficie modulo	61283 m²	Rapporto Pnom	1.11		
Superficie cella	31753 m²				

con v7.2.8

Progetto: SALOMONE 1

Variante: Nuova variante di simulazione

AP ENGINEERING SRLS (Italy)

Perdite campo

Fatt. di perdita termica Perdite per sporco campo

1.0 % Fraz. perdite Temperatura modulo secondo irraggiamento

29.0 W/m2K Uc (cost) 0.0 W/m2K/m/s

Uv (vento)

Fraz. perdite 1.5 % a STC

6.1 mO

 $1.0~m\Omega$

Perdite DC nel cablaggio

Res. globale campo

Res. globale di cablaggio

Perdita di qualità moduli Perdite per mismatch del modulo

Fraz. perdite -1.3 % 2.0 % a MPP Fraz. perdite

Perdita disadattamento Stringhe Fraz. perdite 0.1 %

Fattore di perdita IAM

Effetto d'incidenza, profilo definito utente (IAM): Profilo definito utente

10°	20°	30°	40°	50°	60°	70°	80°	90°
0.998	0.998	0.995	0.992	0.986	0.970	0.917	0.763	0.000

Perdite sistema

indisponibilità del sistema

frazione di tempo

Perdite ausiliarie Ventilatori costanti

5 00 kW

3.7 giorni, 0.0 kW dalla soglia di potenza

3 periodi Cons. aus. notturno 5.00 kW

Perdite cablaggio AC

Linea uscita inv. sino al trasformatore MT

Tensione inverter 600 Vac tri

Fraz. perdite 0.00 % a STC

Inverter: Sunny Highpower SHP150-20-PEAK3

Rame 78 x 3 x 70 mm² Sezione cavi (78 Inv.) Lunghezza media dei cavi 0 m

Linea MV fino alla iniezione

20 kV Voltaggio MV

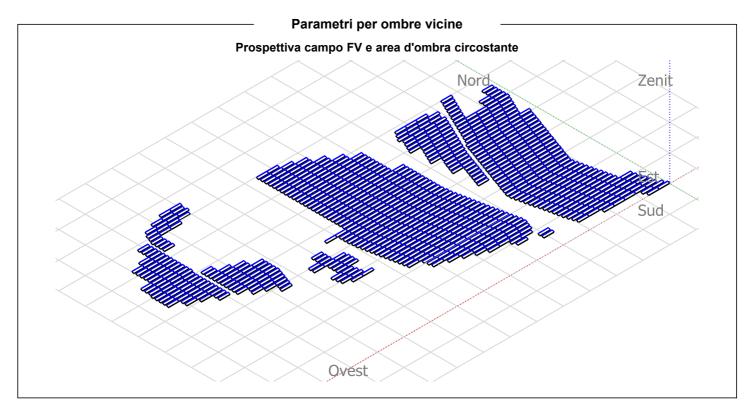
Media ciascun inverter

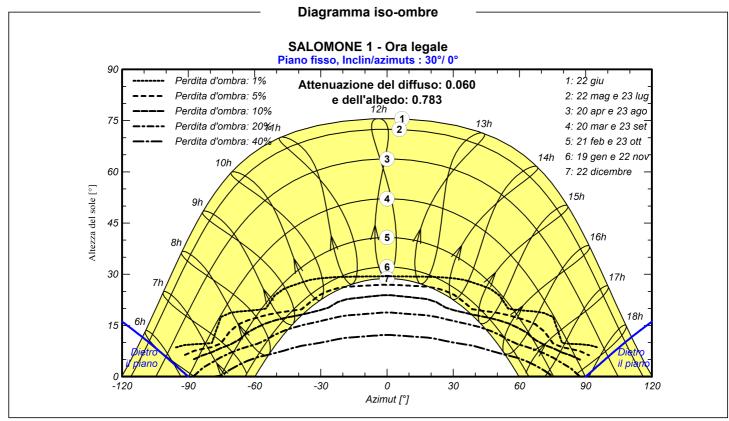
Conduttori Rame 3 x 185 mm² 500 m Lunghezza 0.03 % a STC Fraz. perdite

Perdite AC nei trasformatori

Trafo MV

Tensione rete 20 kV


Perdite di operazione in STC


Potenza nominale a STC 12778 kVA Perdita ferro (Connessione 24/24) 2.13 kW/Inv. Fraz. perdite 0.10 % a STC Resistenza equivalente induttori $3 \times 1.69 \text{ m}\Omega/\text{inv}$. Fraz. perdite 1.00 % a STC

Variante: Nuova variante di simulazione

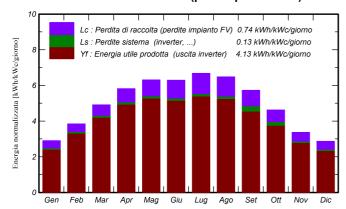
AP ENGINEERING SRLS (Italy)

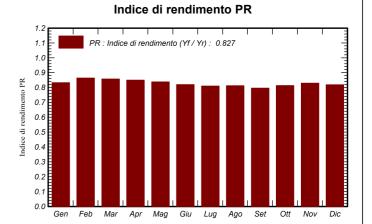
Variante: Nuova variante di simulazione

AP ENGINEERING SRLS (Italy)

Risultati principali

Produzione sistema


Energia prodotta 19576 MWh/anno


Prod. Specif.
Indice di rendimento PR

1507 kWh/kWc/anno

82.68 %

Produzione normalizzata (per kWp installato)

Bilanci e risultati principali

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
Gennaio	60.3	30.59	8.02	90.1	82.4	1004	974	0.833
Febbraio	79.3	39.06	7.94	107.7	101.6	1241	1209	0.864
Marzo	127.1	54.40	10.14	152.2	144.7	1740	1696	0.858
Aprile	162.0	64.06	12.42	174.6	165.3	1977	1929	0.850
Maggio	199.3	75.94	16.67	195.6	185.1	2181	2129	0.838
Giugno	202.3	75.22	20.75	188.9	178.6	2060	2012	0.820
Luglio	217.1	72.68	23.89	207.1	196.2	2231	2178	0.810
Agosto	193.4	68.59	24.17	201.0	190.8	2172	2120	0.812
Settembre	146.1	50.99	20.50	171.9	163.4	1892	1779	0.796
Ottobre	107.9	45.52	17.38	143.3	135.8	1599	1515	0.814
Novembre	68.3	31.79	12.90	101.2	93.8	1121	1090	0.830
Dicembre	55.8	25.47	9.53	88.9	80.4	974	945	0.818
Anno	1618.9	634.31	15.41	1822.3	1718.0	20191	19576	0.827

Legenda

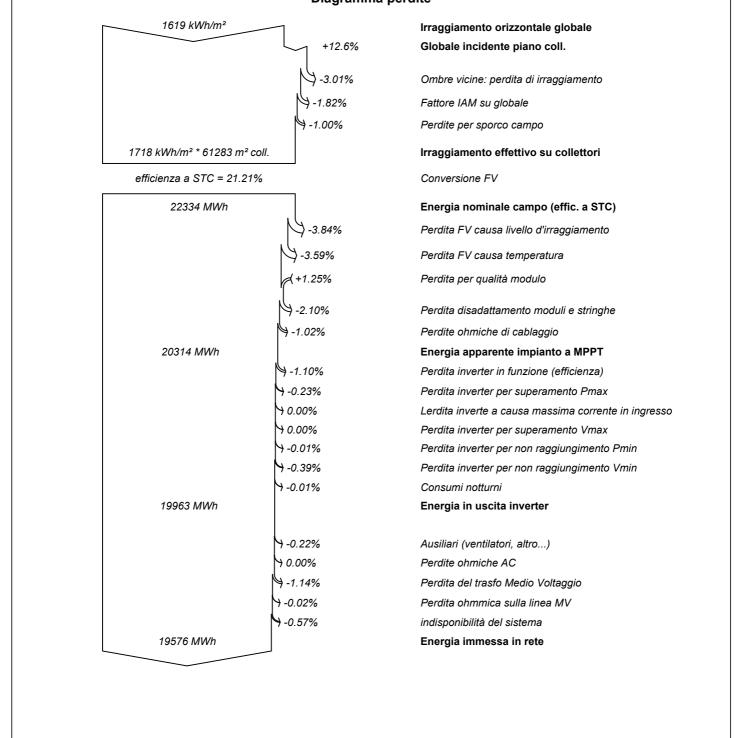
GlobHor Irraggiamento orizzontale globale

DiffHor Irraggiamento diffuso orizz.

T_Amb Temperatura ambiente
GlobInc Globale incidente piano coll.

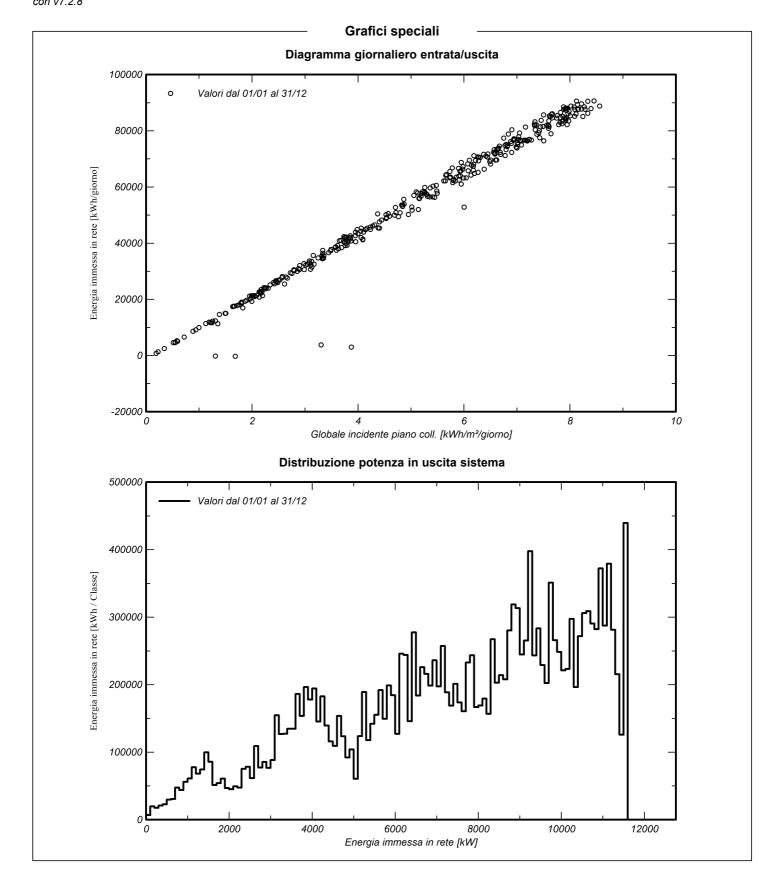
GlobEff Globale "effettivo", corr. per IAM e ombre

EArray Energia effettiva in uscita campo


E_Grid Energia immessa in rete
PR Indice di rendimento

Variante: Nuova variante di simulazione

AP ENGINEERING SRLS (Italy)


Diagramma perdite

Variante: Nuova variante di simulazione

AP ENGINEERING SRLS (Italy)

