COMMITTENTE:

PROGETTAZIONE:

LINEA FERROVIARIA CATANIA C.LE - GELA TRATTA FERROVIARIA CALTAGIRONE - GELA

PROGETTO DI FATTIBILITA' TECNICO ECONOMICA

S.O. OPERE CIVILI

RIPRISTINO TRATTA CALTAGIRONE - GELA
LOTTO 2: RIPRISTINO TRATTA NISCEMI - GELA

VIADOTTI VI03 - VIADOTTO AL KM 342+542

	SCALA:
Relazione geotecnica	-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS6K 00 R 09 RB V10300 001 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	MP&A	Mag. 2022	A.Ferri	Mag. 2022	P. Mosca	Mag. 2022	A.Vittozzi
		<u> </u>						ile varianti ezzi incia di Ror
					_			RR S.p.A. setione de spele viro delle Prov
								ITALPE oct. ing. A ingegneri N° A.
								U.O. Opere Do dine degli i
					-			8 Mag. 2022

File: RS6K00R09RBVI0300001A.dwg n. Elab.: 35

	LINEA FASE PROGETTO - TRATTA / INTERVENTO LOTTO					
NOME ELABORATO	COMMESSA RS3K	LOTTO 01	CODIFICA D 09 RB	DOCUMENTO VI 01 00 001	REV.	FOGLIO 2 di 36

INDICE

1	PR	REM	ESSA	4
2	DO	OCU.	MENTI DI RIFERIMENTO	5
	2.1	N	ORMATIVA E STANDARD DI RIFERIMENTO	5
3	DI	ESCI	RIZIONE DELLE CAMPAGNA DI INDAGINE	6
	3.1	C	AMPAGNA DI INDAGINI GEOGNOSTICHE (VINCENZETTO S.R.L.) - 2019	7
4	DI	ESCI	RIZIONE DELL'OPERA	8
5	QI	J AD	RO DI RIFERIMENTO GEOLOGICO	10
6	Uì	NITA	A' GEOTECNICHE INTERCETTATE	12
7	CF	RITE	RI PER LA CARATTERIZZAZIONE GEOTECNICA	14
	7.1	G	ENERALITÀ	14
	7.2	M	IATERIALI A GRANA GROSSA (SABBIE PIÙ O MENO LIMOSE)	14
	7.2	2.1	Introduzione	14
	7.2	2.2	Stato iniziale del deposito	14
	7.2	2.3	Angolo di resistenza al taglio	15
	7.2	2.4	Caratteristiche di deformabilità	16
	7.2	2.5	Coefficienti di permeabilità	18
	7.3	M	IATERIALI A GRANA FINE (LIMI E ARGILLE) SATURI	19
	7.3	3.1	Introduzione	19
	7.3	3.2	Classificazione dei materiali	19
	7.3	3.3	Resistenza al taglio non drenata	19
	7.3	3.4	Parametri di resistenza al taglio in termini di sforzi efficaci	21
	7.3	3.5	Caratteristiche di deformabilità	21
8	CA	ARA'	TTERIZZAZIONE DELLE UNITA' GEOTECNICHE	23
	8.1	In	VTRODUZIONE	23

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	3 di 36

	Unità 1 – Depositi eluvio colluviali di natura sabbioso-limosa e Sabbie limose argillose – limi sabbio osi	
8.3	UNITÀ 2 – ARGILLE LIMOSE SABBIOSE E/O LIMI SABBIOSI ARGILLOSI	.26
8.4	ANDAMENTO DELLA FALDA	.29
8.5	Sismicità	.29
8.5.1	Down-Hole S7bis	.30
8.5.2	MASW S7	.30
8.6	Liquefazione	.32
8.6.1	Verifica a liquefazione sulla base delle prove SPT	.32
8.6.2	Valutazione del rapporto di tensione ciclica CSR	.33
8.6.3	Valutazione del rapporto di resistenza ciclica CRR	.34
8.6.4	Risultati delle verifiche	.36
8.7	SCHEMI GEOTECNICI DI CALCOLO	.36

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 4 di 36

1 PREMESSA

Lungo la Linea ferroviaria Caltagirone-Gela alla pk 342+498 è previsto l'adeguamento sismico di un viadotto ad archi.

Nella presente Relazione vengono descritti e commentati i risultati delle indagini eseguite per il presente adeguamento. Sulla base di questi risultati è stata sviluppata la caratterizzazione geotecnica dei terreni e la definizione dei modelli geotecnici di sottosuolo.

L'impostazione dello studio geotecnico ha previsto prima la determinazione delle caratteristiche fisico-meccaniche delle unità ritenute omogenee dal punto di vista geologico e geotecnico. E' stato dunque definito lo schema in termini di profilo stratigrafico e parametri geotecnici di progetto (modello geotecnico) da adottarsi per le verifiche di sicurezza e funzionalità dell'opera.

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS6K 00 R 09 RB VI 03 00 001 A 5 di 36

DOCUMENTI DI RIFERIMENTO

2

Si riporta di seguito l'elenco dei documenti sulle indagini allegati al progetto definitivo cui si è fatto riferimento per l'elaborazione dei complessivi dati geotecnici:

- [1] Indagini geognostiche eseguite per l'adeguamento sismico dei viadotti ai Km 342+542 e 346+911 (Doc. rif. RS3K02D69SGGE0005002A)
- [2] Indagini geofisiche eseguite per l'adeguamento sismico dei viadotti ai Km 339+401, 340+688, 342+542, 346+911, 347+990, 350+282 e 350+757 (Doc. rif. RS3K02D69IGGE0005001A)
- [3] Adeguamento sismico del viadotto al Km 342+542 Prove di laboratorio eseguite sui campioni del sondaggio S7 (Doc. rif RS3K02D69PRGE0005003A)
- [4] Carta geologica con elementi di geomorfologia e profilo geologico Adeguamento sismico del viadotto al km 342+542 (Doc. rif. RS3K02D69NZGE0001003A)
- [5] Carta idrogeologica e profilo idrogeologico Adeguamento sismico del viadotto al km 342+542 (Doc. rif. RS3K02D69NZGE0002003A)
- [6] Relazione geologica, geomorfologica, idrogeologica e sismica Lotto 2, Niscemi-Gela, adeguamento sismico dei viadotti ai Km 339+401, 340+688, 342+542, 346+911, 347+990, 350+282 e 350+757 (Doc. rif RS3K02D69RGGE0001001A)

2.1 Normativa e standard di riferimento

Si riporta di seguito l'elenco delle normative a cui si è fatto riferimento per la stesura della presente relazione:

- [7] Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle «Norme tecniche per le costruzioni»", G.U. n.8 del 20 febbraio 2018.
- [8] Circolare 21 gennaio 2019, n. 7 Istruzioni per l'applicazione dell' «Aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018.

VI03 - Relazione geotecnica

RIPRISTINO LINEA CALTAGIRONE-GELA

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 6 di 36

3 DESCRIZIONE DELLE CAMPAGNA DI INDAGINE

Si riporta un'immagine satellitare indicante l'ubicazione del viadotto oggetto della presente relazione.

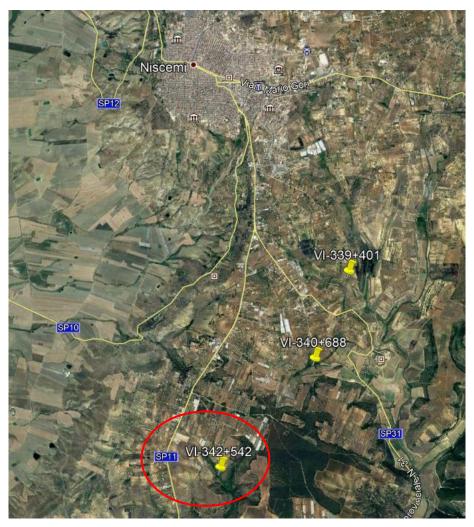


Fig. 1: Ubicazione viadotto

Nel presente capitolo viene fornita la sintesi delle indagini in sito e di laboratorio effettuate.

La campagna di indagini è stata eseguita dalla ditta Vincenzetto s.r.l., per conto di Italferr, nell'Ottobre del 2019 ed include l'esecuzione di 2 sondaggi a carotaggio continuo ed un sondaggio a distruzione di nucleo spinti fino alla profondità compresa tra 20m e 55m. Nel corso delle perforazioni sono state effettuate prove in foro di sondaggio (di tipo SPT, di permeabilità Lefranc, dilatometriche) e prelevati campioni di terreno indisturbati e rimaneggiati. Nel sondaggio S7 è stato installato un piezometro a tubo aperto per la rilevazione del livello di falda, mentre il sondaggio S7bis è stato attrezzato per l'esecuzione di una prova geofisica di tipo Down-Hole. Inoltre sono state eseguite prove HVSR e MASW in prossimità del sondaggio S7.

I campioni prelevati durante le perforazioni sono stati successivamente sottoposti a prove geotecniche di laboratorio. Per i campioni rimaneggiati, l'attività di laboratorio è consistita essenzialmente nella descrizione delle

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

CODIFICA DOCUMENTO FOGLIO 7 di 36 RS6K 00 R 09 RB VI 03 00 001

VI03 - Relazione geotecnica COMMESSA LOTTO REV.

caratteristiche dei campioni pervenuti e nell'esecuzione di prove di classificazione con analisi granulometriche. Sui campioni indisturbati, di qualità idonea, sono state eseguite prove di classificazione (fisiche, limiti di Atterberg e granulometria), prove di taglio diretto, prove edometriche e prove triassiali UU e CU.

3.1 Campagna di indagini geognostiche (Vincenzetto s.r.l.) - 2019

Indagini in sito:

- n. 1 sondaggio geognostico a carotaggio continuo (S06) eseguito sulla spalla del viadotto lato Caltagirone con lo scopo di indagarne la struttura;
- n. 1 sondaggio geognostico a carotaggio continuo (S07) spinto fino alla profondità di m 55,00 dal piano campagna, eseguito in prossimità della spalla lato Gela ed attrezzato con piezometro Norton. Nel corso della perforazione del S07 sono state eseguite prove SPT, prove di permeabilità tipo Lefranc, prove dilatometriche e sono stati prelevati campioni rimaneggiati e indisturbati;
- n. 1 sondaggio a distruzione di nucleo (S07bis) eseguito nell'intorno della spalla lato Gela, spinto fino alla profondità di m 40,00 dal piano campagna ed attrezzato con tubazione per indagini geofisiche;
- n. 1 prove sismica HVSR eseguita in prossimità del sondaggio S07;
- n. 1 prova sismica MASW eseguita in prossimità del sondaggio S07;
- n.1 prova sismica Down-Hole eseguita nel foro di sondaggio S07bis.

Di seguito si riporta l'elenco dei sondaggi eseguiti, indicando la profondità, la quota sondaggio e le coordinate cartesiane (UTM – WGS84):

Sigla	Coord. UTM (E)	Coord. UTM (N)	Perforazione	Strumentazione/ Prova	Quota s.l.m.	Profondità (m)	SPT	Campioni disturbati	Campioni Indisturbati
S06	445729.431	4106330.381	Carotaggio continuo	-	200.052	20	-	-	-
S07	445670,752	4106298,031	Carotaggio continuo	Piezometro t.a. Prove Lefranc e dilatometriche	200.302	55	13	12	8
S07bis	445665,352	4106296,231	Distruzione di nucleo	Tubazione per geofisica/Prova Down-Hole	200.305	40	-	-	-

Per il dettaglio delle prove si rimanda ai Doc. di Rif. [1] e [2].

Prove di laboratorio:

- apertura, descrizione e prove di classificazione sui campioni rimaneggiati prelevati.
- apertura, descrizione e prove di classificazione, prova di compressione edometrica, prova di taglio diretto, prova di compressione triassiale consolidata isotropa non drenata (TXCU) e non consolidata non drenata (TXUU) sui campioni indisturbati prelevati.

Per il dettaglio delle prove si rimanda al Doc. di Rif. [3].

4 DESCRIZIONE DELL'OPERA

Il viadotto, a binario singolo, sviluppa una lunghezza complessiva di circa 24.5 m (spalla-spalla). Il tracciato che attraversa l'opera è planimetricamente in rettifilo; l'andamento altimetrico è pressoché pianeggiante.

La struttura è costituita da unica arcata di circa 20m di luce. Gli archi sono realizzati con elementi in calcestruzzo magro di spessore circa pari a 1.0m. I muri andatori (o timpani) sono realizzati in muratura di pietra con spessore circa 1.2m, internamente è presente un riempimento in materiale sciolto debolmente cementato.

Su entrambi i muri andatori delle spalle sono presenti due varchi passanti con copertura cilindrica.

La geometria dell'opera e delle fondazioni è stata ricostruita a partire da un rilievo 2D della planimetria e del profilo longitudinale della stessa.

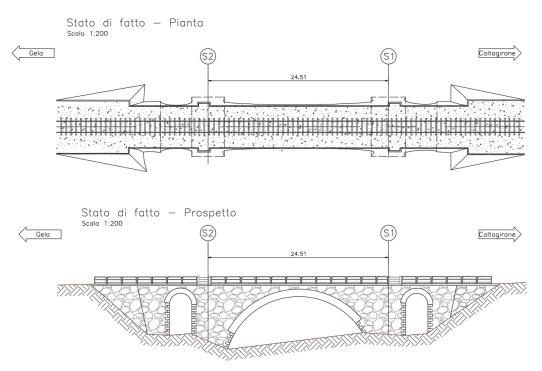


Fig. 2: Ricostruzione opera

Le fondazioni sono state ipotizzate a plinto massiccio in calcestruzzo per entrambe le spalle, in analogia a quanto riscontrato sui viadotti adiacenti.

VI03 - Relazione geotecnica

RIPRISTINO LINEA CALTAGIRONE-GELA

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER

CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 9 di 36

Fig. 3: Viste dell'opera

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 10 di 36

VI03 - Relazione geotecnica

5 QUADRO DI RIFERIMENTO GEOLOGICO

La successione esposta nel settore analizzato è costituita dai depositi di due distinti cicli sedimentari, rispettivamente di età Pleistocene inferiore e Pleistocene inferiore terminale, che ricoprono le unità del fronte della catena (Falda di Gela; Lentini, 1982), essenzialmente composte dalla successione evaporitica messiniana con al tetto i Trubi e le marne discordanti del Pliocene medio-superiore (AA.VV., 1984).

Nella figura seguente si riporta uno stralcio del Foglio 272 – Gela della Carta Geologica d'Italia, in scala 1:100.000 (anno 1955), dal quale si evince che nell'area di studio dei 7 viadotti è possibile riconoscere in affioramento il ciclo sedimentario del Pleistocene inferiore (**Q1s** e **Q1a**). Tale ciclo è costituito da sabbie con intercalazioni di areniti e calcari sabbiosi che sono diffuse nella parte alta di questa unità (**Q1s**). Le sabbie sono generalmente a grana molto fine stratificate in livelli di spessore decimetrico e poggiano su marne e argille grigiastre più o meno sabbiose (**Q1a**).

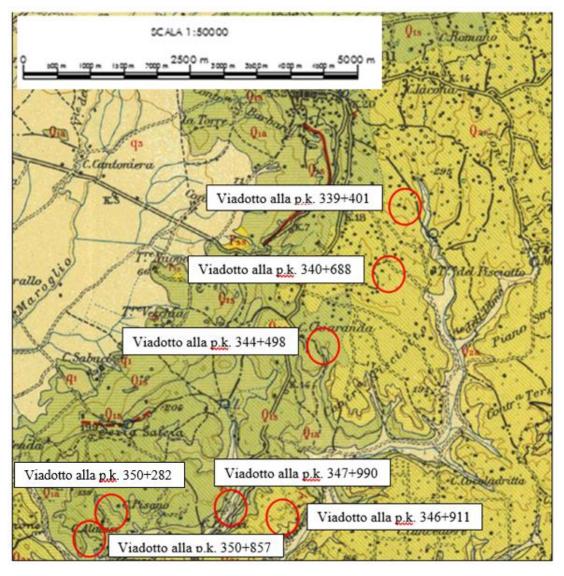


Fig. 4: Foglio 272 – Gela, Carta Geologica d'Italia

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

COMMESSA LOTTO REV. CODIFICA DOCUMENTO FOGLIO 00 R 09 RB VI 03 00 001 11 di 36

VI03 - Relazione geotecnica RS6K Α

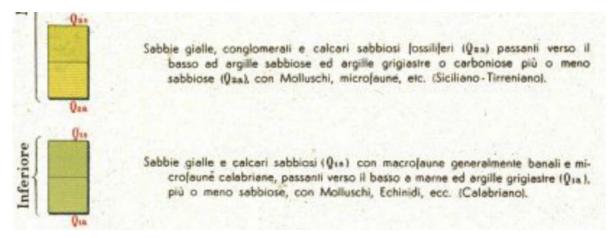


Fig. 5: Unità geologiche

Il rilevamento geologico di dettaglio eseguito in campagna alla scala 1:2.000 ha consentito, inoltre, di suddividere ulteriormente il ciclo sedimentario del Pleistocene in due membri:

- Qcs1: sabbie limose argillose-limi sabbiosi argillosi, saltuariamente conglomeratiche, fossilifere, di colore giallastro;
- Qcs2: sabbie limose argillose localmente quarzose, con intercalazioni di areniti-biocalcareniti, diffuse nella parte alta di questa unità.

Le sabbie sono generalmente a grana fine/molto fine, solitamente massive, saltuariamente stratificate. Le intercalazioni sono costitute da livelli arenitici ben cementati, a luoghi caratterizzati da una marcata stratificazione incrociata, di spessore variabile da pochi cm fino a strati di 1÷3 m qualche metro di spessore.

Oltre a quanto sopraindicato, sono presenti terreni di copertura olocenici, costituiti da depositi eluvio colluviali di natura sabbioso limosa con inclusi litoidi sub-angolari/angolari (q), derivanti dal disfacimento sottostante substrato pleistocenico.

Dal punto di vista geomorfologico il settore di studio è caratterizzato da una evoluzione legata ad un insieme di fattori geologici s.l. e geologico-strutturali che hanno agito, in maniera concomitante, nello sviluppo del paesaggio attuale. In particolare, la morfologia superficiale del territorio in esame risulta profondamente connessa all'evoluzione geodinamica della Catena Appenninico-Maghrebide e dell'Avanfossa Gela-Catania (Lentini et al. 1995; Finetti et al. 1996; Monaco et al. 2000), particolarmente intensa nel Pleistocene medio-superiore e nell'Olocene (Carbone et al. 2010).

Ad essa si aggiungono gli effetti geomorfologici dovuti al deflusso delle acque superficiali e ai fenomeni gravitativi agenti sui rilievi, oltre che locali elementi di genesi antropica connessi alle maggiori opere di comunicazione e ai sistemi di regimazione idraulica dei corsi d'acqua.

Inoltre la morfologia dell'area in oggetto è in stretta relazione con la natura dei terreni affioranti: in generale i processi erosivi fluvio - denudazionali sui depositi arenaceo - sabbiosi danno luogo a colline arrotondate alla sommità o spianate in dipendenza della giacitura degli strati, delimitate da versanti mediamente acclivi con locali rotture di pendenza, quale effetto morfologico dovuto all'affiorare delle testate di strati e banchi arenacei messi in

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	12 di 36

risalto dall'erosione selettiva. Le incisioni sono in genere marcate con un profilo a conca o a V svasata, spesso asimmetrica.

In particolare i territori compresi nelle aree esaminate presentano in superficie una variazione litologica e conseguente difformità morfologiche. I terreni offrono resistenze diversificate all'azione degli agenti erosivi in dipendenza del litotipo interessato, per cui le forme morfologiche ne risultano disomogenee: dove sono presenti le intercalazioni arenitiche-biocalcarenitiche si sviluppano morfologie con pareti subverticali, mentre dove è dominante la componente sabbiosa limosa sciolta sono presenti forme addolcite e smussate.

Pertanto i versanti vallivi sono ripidi nella zona sommitale, in coincidenza con una maggiore diffusione dei litotipi a più elevata consistenza geomeccanica e più dolci nella parte basale.

Il passaggio alle coltri del fondovalle, sempre di natura sabbiosa-limosa argillosa, è segnato da una ulteriore diminuzione delle pendenze.

Il paesaggio risulta inoltre profondamente segnato dall'attività antropica con diffusi terrazzamenti agricoli lungo i versanti.

Dal punto di vista idrogeologico, la permeabilità ed il comportamento idrogeologico dei terreni affioranti nel bacino in esame sono stati determinati prendendo in considerazione la loro natura litologico-sedimentologica.

Pur sottolineando l'estrema variabilità spazio-temporale che la permeabilità può presentare anche all'interno di una stessa unità, si è definito tale parametro sia qualitativamente (tipo) che quantitativamente (grado) per le formazioni presenti.

I litotipi a composizione prevalentemente sabbioso limosa – limosa sabbiosa argillosa (Q e Qcs) presenti nell'area sono caratterizzati da permeabilità per porosità e da un grado di permeabilità variabile in base alla componente limosa argillosa del deposito. In considerazione dell'elevata presenza di materiale fine si prevedono, ad ogni modo, bassi / medio - bassi valori di permeabilità.

I litotipi a composizione prevalentemente argillosa limosa – limosa argillosa (Qa), invece, sono caratterizzati da un grado di permeabilità scarso o quasi nullo (impermeabili).

6 UNITA' GEOTECNICHE INTERCETTATE

Per la definizione delle unità geotecniche si è seguito un approccio che, nella sostanza, accorpa, all'interno di una stessa unità, terreni analoghi in termini granulometrici ed in termini di caratteristiche meccaniche, anche se appartenenti a formazioni geologiche differenti.

Una volta definite le unità (o sub-unità) geotecniche, i risultati delle indagini (in sito e in laboratorio) sono stati catalogati nell'ambito di queste unità e interpretati con i criteri classici della Meccanica delle Terre.

Questa caratterizzazione ha portato, quindi, all'individuazione, per ogni unità geotecnica, di un campo di valori, cercando di limitare il più possibile il range di valori indicato, in modo da limitare il livello di aleatorietà della caratterizzazione e quindi dei calcoli di dimensionamento delle opere in progetto.

Con tale impostazione, nel capitolo seguente saranno descritti i criteri utilizzati per la caratterizzazione geotecnica, mentre in quello ancora successivo sarà esposta la caratterizzazione geotecnica delle varie unità. Infine seguirà il modello geotecnico e stratigrafico elaborato da utilizzare direttamente nei dimensionamenti.

Le unità geotecniche individuate sono rappresentate da:

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

 VI03 - Relazione geotecnica
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 13 di 36

- Unità 1: Depositi eluvio-colluviali di natura sabbioso-limosa e Sabbie limose argillose limi sabbiosi argillosi, di colore giallastro, localmente quarzose, con intercalazioni di areniti-biocalcareniti;
- Unità 2: Argille limose sabbiose e/o limi sabbiosi argillosi grigio-azzurre.

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 14 di 36

7 CRITERI PER LA CARATTERIZZAZIONE GEOTECNICA

7.1 Generalità

Per la definizione dei parametri geotecnici sono stati utilizzati i dati acquisiti con le prove in sito e in laboratorio.

In generale le unità geotecniche prima evidenziate coprono un range di caratteristiche che variano da terreni granulari a terreni coesivi; per tale motivo i criteri con i quali vengono elaborati e interpretati i dati di indagine e gli approcci metodologici per la relativa caratterizzazione geotecnica devono quindi essere necessariamente differenziati in funzione delle caratteristiche delle singole unità.

I terreni prevalentemente granulari sono stati caratterizzati attraverso parametri geotecnici in condizioni drenate stimati con correlazioni empiriche a partire dai risultati di prove penetrometriche in foro (SPT). Nella definizione dei parametri caratteristici si è tenuto in conto della eventuale influenza delle frazioni granulometriche più grossolane sui risultati delle prove penetrometriche (resistenza alla penetrazione legata alla presenza di clasti piuttosto che allo stato di addensamento). Inoltre, per la definizione delle caratteristiche geotecniche di questi terreni, sono stati utilizzati i dati delle prove di laboratorio sui campioni indisturbati e rimaneggiati.

Per le unità più tipicamente coesive sono stati valutati i parametri geotecnici in condizioni drenate e non drenate facendo affidamento sia sulle prove di laboratorio (prove triassiali, di taglio e prove edometriche) sia sulle prove in sito (SPT).

7.2 Materiali a grana grossa (sabbie più o meno limose)

7.2.1 Introduzione

La caratterizzazione geotecnica è affidata sia all'interpretazione delle prove in sito (mediante correlazioni empiriche) sia delle prove di laboratorio effettuate su campioni indisturbati e rimaneggiati.

L'interpretazione delle prove è finalizzata a determinare principalmente i seguenti parametri:

- stato iniziale del deposito (grado di addensamento o densità relativa);
- resistenza al taglio;
- deformabilità;
- permeabilità.

7.2.2 Stato iniziale del deposito

In accordo a quanto indicato di seguito, la densità relativa D_r può essere correlata al valore di N_{SPT} con le seguenti relazioni.

Meyerhof (1957):

valida per tutti i tipi di terreni

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	15 di 36

$$Dr(\%) = 21\sqrt{\frac{N_{SPT}}{\sigma' + 0.7}}$$

essendo:

 σ_{v0} ' = pressione verticale efficace esistente in sito alla quota della prova SPT (kg/cm²)

 N_{SPT} = numero di colpi per 30 cm di infissione

 D_r = densità relativa (-)

Gibbs-Holtz (1957):

valida per tutti i tipi di terreni

$$D_r = \left\{ \left[1,5 \left(\frac{N}{F} \right)^{0,222} \right] - 0,6 \right\}$$

$$F = 0.0065 \cdot \sigma_{y0}^2 + 1.68 \cdot \sigma_{y0} + 14$$

essendo:

 σ_{v0} ' = pressione verticale efficace esistente in sito alla quota della prova SPT (t/m²)

N_{SPT} = numero di colpi per 30 cm di infissione

D_r= densità relativa (-)

7.2.3 Angolo di resistenza al taglio

L'angolo di resistenza al taglio di picco φ' può essere determinato facendo riferimento ai metodi seguenti:

Shioi & Fukuni – Road Bridge Specification (1982):

valida per tutti i tipi di terreni

$$\phi' = \sqrt{15N_{SPT}} + 15$$

Shioi & Fukuni – Japanese National Railway (1982):

valida per tutti i tipi di terreni

$$\phi = 0.3 \cdot N_{spt} + 27$$

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA LOTTO

RS6K 00

CODIFICA DOCUMENTO
R 09 RB VI 03 00 001

REV.

FOGLIO 16 di 36

Owasaki & Iwasaki (1959):

valida per sabbie da medie a ghiaiose

$$\phi = \sqrt{20 \cdot N_{spt}} + 15$$

Sowers (1961):

valida per sabbie

$$\phi = 28 + 0.28 \cdot N_{spt}$$

7.2.4 Caratteristiche di deformabilità

7.2.4.1 Moduli elastici iniziali

Generalità

I moduli iniziali di taglio (G_0) e di Young (E_0) possono essere ricavati dai valori delle velocità delle onde di taglio V_s utilizzando le seguenti equazioni:

$$G_0 = \frac{\gamma_t}{9.81} \cdot (V_s)^2 \, (\text{kPa})$$

$$E_0 = G_0 \cdot 2 \cdot (1 + \nu')$$
 (kPa)

essendo:

 γ_t = peso di volume naturale del terreno in kN/m³

v' = rapporto di Poisson del terreno = $0.15 \div 0.20$

 V_s = velocità di propagazione delle onde di taglio in m/s.

La velocità di propagazione delle onde S può essere determinata da prove geofisiche in sito o, in alternativa, da prove in sito di tipo SPT, attraverso la seguente:

Otha & Goto (1978):

$$V_{S} = 54.33 \cdot \left(N_{SPT}\right)^{0.173} \cdot \alpha \cdot \beta \cdot \left(\frac{Z}{0.303}\right)^{0.193}$$

Essendo:

V_s = velocità di propagazione delle onde di taglio in m/s

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 17 di 36

 N_{SPT} = numero di colpi SPT

Z = profondità (m)

 α = fattore d'età (Olocene = 1000, Pleistocene = 1.303)

 β = fattore geologico (argille = 1000, sabbie = 1.086)

Si specifica che, ove possibile, si è privilegiato l'uso dei valori di Vs ottenuti da prove geofisiche di tipo Down-Hole, in quanto ritenuti più affidabili.

7.2.4.2 Moduli elastici "operativi"

Generalità

Il comportamento dei terreni a grana grossa risulta non lineare; i moduli di deformazione risultano infatti funzione sia delle pressioni efficaci medie correnti p' sia del livello di deformazione indotto o del grado di mobilitazione della resistenza al taglio.

In relazione a quanto sopra la scelta dei moduli di deformazione per le analisi ingegneristiche viene a dipendere anche dal metodo di analisi adottato.

Nel caso di ricorso a metodi di calcolo elastico-lineari o elastico-lineari-plastici, per la stima dei moduli "operativi" da associare allo specifico problema verranno fatte le seguenti assunzioni "convenzionali":

- Nell'analisi di fondazioni profonde e dirette i moduli di Young "operativi" E_{op} sono pari a circa 1/5·E₀, ciò in considerazione del fatto che:
 - gli spostamenti totali e differenziali ammissibili per l'opera sono molto contenuti;
 - da ciò deriva che, in base alla normativa vigente e alla pratica corrente, tale tipo di opere è caratterizzato infatti da coefficienti di sicurezza nei confronti della rottura per capacità portante generalmente superiori a 2.5÷3.
- Nel calcolo dei cedimenti dei rilevati i moduli di Young "operativi" E_{op} sono pari a circa $(1/5 \div 1/10) \cdot E_0$ o, in alternativa, pari a quelli desumibili dalle correlazioni empiriche riportate precedentemente; per tali strutture in terra possono essere infatti ammessi cedimenti totali e differenziali maggiori di quelli delle fondazioni profonde.

Moduli elastici "operativi" da prove SPT in sabbia e ghiaia

Per la stima del modulo di deformazione sono disponibili numerose correlazioni tra le quali:

Schultze & Menzenbach (1961):

$$E = 0.517 N_{SPT} + 7.46$$

essendo:

 N_{SPT} = numero di colpi per 30 cm di infissione

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS6K	00	R 09 RB	VI 03 00 001	Α	18 di 36

E = Modulo elastico operativo (MPa)

Tornaghi et al. (1989):

$$E = B\sqrt{N_{SPT}}$$

essendo:

 N_{SPT} = numero di colpi per 30 cm di infissione

B = costante pari a 7

E = Modulo elastico operativo (MPa)

Si specifica che, ove possibile, si è privilegiato l'uso dei valori di modulo operativo ottenibili da prove geofisiche di tipo Down-Hole, in quanto ritenuti più affidabili.

7.2.5 Coefficienti di permeabilità

I coefficienti di permeabilità k verranno determinati sulla base dei risultati delle prove di permeabilità Lefranc in foro di sondaggio.

Per il calcolo della permeabilità si è fatto riferimento a quanto riportato nelle Raccomandazioni AGI (1977) utilizzando gli schemi applicabili nel caso di prove al di sopra o al di sotto della falda idrica.

I risultati ottenuti sono stati confrontati con quelli ottenibili da metodologie maggiormente speditive in funzione della descrizione litologica dei terreni interessati dalla prova. Uno di questi (Sommerville, 1986) fa riferimento alla tabella riportata di seguito. In alternativa alle prove in sito alternativa si possono usare le seguenti metodologie:

k (m/s)	Grado di permeabilità	Tipo di terreno
$k > 1 \cdot 10^{-3}$	Alta	Ghiaie
$1 \cdot 10^{-3} > k > 1 \cdot 10^{-5}$	Media	Sabbie ghiaiose e Ghiaie sabbiose
$1 \cdot 10^{-5} > k > 1 \cdot 10^{-7}$	Bassa	Sabbie fini
$1 \cdot 10^{-7} > k > 1 \cdot 10^{-9}$	Molto bassa	Limi e sabbie argillose
$1 \cdot 10^{-9} > k$	Bassissima (impermeabile)	Argille

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS6K 00 R 09 RB VI 03 00 001 A 19 di 36

7.3 Materiali a grana fine (limi e argille) saturi

7.3.1 Introduzione

La caratterizzazione geotecnica dei terreni a grana fine è affidata sia all'interpretazione delle prove di laboratorio sia all'interpretazione delle prove in sito in accordo ai criteri descritti nei paragrafi successivi.

L'interpretazione delle prove è finalizzata, oltre che a classificare i materiali, a determinare:

- i parametri di resistenza al taglio;
- i parametri di deformabilità;
- i coefficienti di permeabilità.

7.3.2 Classificazione dei materiali

La classificazione dei terreni a grana fine verrà effettuata facendo riferimento ai risultati delle prove di laboratorio in termini di:

- fusi granulometrici;
- limiti di Atterberg (limite liquido e limite plastico);
- pesi di volume naturale e secco;
- grado di saturazione;
- contenuti d'acqua naturale;
- indice dei vuoti iniziale.

7.3.3 Resistenza al taglio non drenata

7.3.3.1 Premesse di carattere generale

La resistenza al taglio non drenata c_u di materiali saturi sotto falda verrà valutata facendo riferimento sia ai risultati delle prove di laboratorio sia all'interpretazione delle prove penetrometriche dinamiche SPT.

Come noto la resistenza al taglio non drenata è funzione delle tensioni efficaci di consolidazione e del percorso di carico; in questa sede si farà riferimento a prove di laboratorio che forniscono valori di c_u corrispondenti a tensioni efficaci di consolidazione pari a quelle geostatiche e a percorsi di carico caratteristici di prove triassiali di compressione e carico.

7.3.3.2 Prove di laboratorio

In questa sede si farà principalmente riferimento ai risultati di prove triassiali non consolidate non drenate di compressione e carico (TX-UU) effettuate su campioni indisturbati, saturi. L'interpretazione di queste prove non richiede specifiche particolari. Quando si ricavano valori molto diversi di un provino rispetto agli altri due, in genere si interpreta la prova solo considerando i due valori più simili. In caso di 3 valori molto diversi tra loro si assume il valore medio o il valore medio dei due valori più simili.

LOTTO2: NISCEMI - GELA

LOTTO

00

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA RS6K CODIFICA R 09 RB DOCUMENTO VI 03 00 001 REV. F

FOGLIO 20 di 36

7.3.3.3 Valutazione di c_u da prove SPT

La stima della resistenza al taglio non drenata di materiali saturi sotto falda può essere fatta attraverso una delle varie correlazioni empiriche proposte da vari Autori, tutte del tipo:

$$c_u = \alpha \cdot N_{SPT} \quad (kPa)$$

Il valore di α varia (anche di molto) da autore ad autore:

Terzaghi e Peck

 $\alpha = 6.7$

DMT (design Manual for Soil Mechanics)

Argille media plasticità

 $\alpha = 3.8$

Argille media plasticità

 $\alpha = 7.4$

Argille alta plasticità

 $\alpha = 12.5$

Sanglerat

Argille media plasticità

 $\alpha = 12.5$

Argille limose

 $\alpha = 10$

Argille limo-sabbiose

 $\alpha = 6.7$

Shioi-Fukui

Argille media plasticità

 $\alpha = 2.5$

Argille alta plasticità

 $\alpha = 5$

Stroud-Clayton

 $\alpha = 4.5 \div 5.5$

Tenuto conto delle fortissime variazioni, è stato adottato per α un valore medio pari a 4.8, in accordo con la formulazione proposta da Stroud.

Tuttavia, si specifica che, ove possibile, si è privilegiato l'uso dei valori di Cu ottenuti da prove di laboratorio, in quanto ritenuti più affidabili.

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 21 di 36

7.3.4 Parametri di resistenza al taglio in termini di sforzi efficaci

I parametri di resistenza di picco in termini di sforzi efficaci verranno determinati sulla base dei risultati delle prove di laboratorio di taglio diretto (TD) e triassiali consolidate non drenate (TX-CIU).

7.3.5 Caratteristiche di deformabilità

7.3.5.1 Moduli elastici iniziali

Valgono le stesse considerazioni esposte per i terreni a grana grossa.

In alternativa i moduli elastici iniziali E_0 possono essere stimati pari a 1000 volte la resistenza al taglio non drenata c_u (vedi ad esempio Simpson et al., 1979).

7.3.5.2 Moduli elastici "operativi" in condizioni drenate

Il comportamento dei terreni a grana fine risulta non lineare; in relazione a quanto sopra la scelta dei moduli di deformazione per le analisi ingegneristiche viene a dipendere anche dal metodo di analisi adottato.

Nel caso in cui la progettazione faccia ricorso a metodi di calcolo elastico-lineari o elastico-lineari-plastici i moduli di Young "operativi" E_{op} saranno convenzionalmente assunti pari a:

- 1/3·E₀ o (300)·cu nel caso di problemi di scarico e/o di scarico-ricarico (esempio: fronti di scavo sostenuti con opere di sostegno tipo paratie tirantate e non);
- (150÷200)·c_u o quanto desumibile dai risultati delle prove edometriche nel caso di problemi di "primo carico" (esempio fondazioni dirette, profonde e rilevati). In questo caso si è ritenuto opportuno utilizzare la media tra i due, ovvero 175 Cu;
- 1/5 o 1/10 di E₀, dove E₀ è il valore determinato a partire dai valori di Vs da prove geofisiche o prove in sito del tipo SPT (relazione di Otha e Goto).

Si specifica che, ove possibile, si è privilegiato l'uso dei valori di modulo operativo ottenuti da prove geofisiche di tipo Down-Hole, in quanto ritenuti più affidabili.

7.3.5.3 Modulo di deformabilità non drenato (E_u)

Molti autori suggeriscono di stimare il modulo non drenato Eu attraverso la correlazione empirica con la coesione non drenata (s_u) .

$$E_n = n \cdot s_n$$

stimando quindi prima il valore della coesione non drenata da prove di laboratorio o da prove penetrometriche dinamiche come descritto in precedenza.

La costante n dipende dal livello di sollecitazione di taglio, dal grado di sovraconsolidazione, dalla sensitività delle argille e da altri fattori (Ladd, 1977). Poiché il comportamento del terreno non è lineare, la scelta del livello di tensione di taglio è molto importante.

Nella figura seguente si illustrano i dati ricavati da Ladd (1977) per terreni normalconsolidati che mostrano la variazione del rapporto E_u/s_u con il livello di tensione per vari tipi di argille (15 < IP < 75).

Nella stessa figura si mostra la variazione di E_u/s_u con il grado di sovraconsolidazione OCR in corrispondenza di due livelli di tensione per lo stesso tipo di terreno.

La stima dell'indice di plasticità porta a significativi miglioramenti della stima.

Nei casi in esame, per i valori di IP che caratterizzano i materiali argillosi interessati dell'opera, una stima del valore di pari a 400 appare la più realistica.

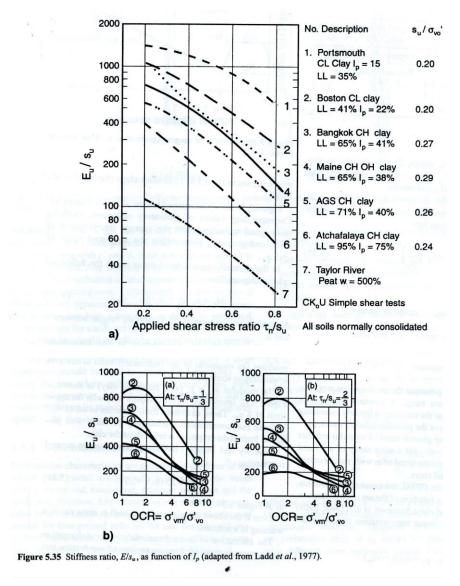


Fig. 6: Rapporto di rigidezza Eu/su in funzione di Ip (da Ladd, 1977 adattato in Lunne-Robertson)

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI03 - Relazione geotecnica

8 CARATTERIZZAZIONE DELLE UNITA' GEOTECNICHE

8.1 Introduzione

I risultati di tutte le indagini (in sito e in laboratorio) sono stati aggregati in tabelle che riportano i risultati relativi ad ognuna delle unità geotecniche individuate. Tali elenchi di dati sono stati utilizzati per la costruzione di grafici inseriti nei paragrafi relativi alle singole unità geotecniche.

Sono stati plottati in funzione della profondità:

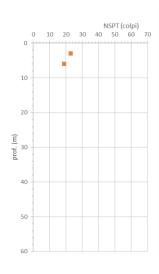
- Peso di volume;
- Composizione granulometrica;
- Contenuto naturale d'acqua;
- Permeabilità;
- Indice di consistenza;
- Risultati prove SPT (valori N_{SPT});
- Modulo di Young iniziale E₀;
- Modulo di Young operativo E_{op};
- Modulo di Young in condizioni non drenate E_u;
- Coesione non drenata C_u;
- Angolo di resistenza al taglio φ';
- Coesione efficace c'.

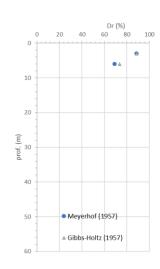
Sono riportati inoltre i risultati nella Carta di Plasticità di Casagrande.

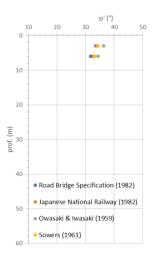
Seguendo i criteri esposti in precedenza, le unità geotecniche individuate sono le seguenti.

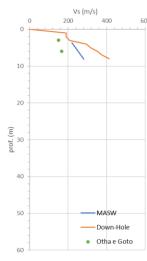
- Unità 1: Depositi eluvio-colluviali di natura sabbioso-limosa e Sabbie limose argillose limi sabbiosi argillosi, di colore giallastro, localmente quarzose, con intercalazioni di areniti-biocalcareniti;
- Unità 2: Argille limose sabbiose e/o limi sabbiosi argillosi grigio-azzurre.

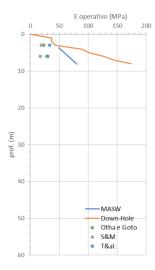
A seconda del viadotto considerato, sulla base delle schede di sondaggio e delle foto delle carote, il comportamento dell'Unità 1 verrà assimilato a quello di un terreno granulare o coesivo.


8.2 Unità 1 – Depositi eluvio colluviali di natura sabbioso-limosa e Sabbie limose argillose – limi sabbiosi argillosi


Lo spessore di tale unità che risulta in corrispondenza dei sondaggi è di circa 9 m da p.c.


Sulla base delle schede di sondaggio e delle foto scattate alle carote (Rif. [1]), si ipotizza per questa unità un comportamento prettamente attritivo.


Le rappresentazioni che seguono mostrano l'andamento in funzione della profondità ottenuto per le principali caratteristiche del materiale.


Si osserva come in questo strato vi sia carenza di informazioni, in particolare, oltre alle prove geofisiche, sono presenti solamente due prove in sito di tipo SPT. A tal proposito, per i parametri mancanti, si farà un'analogia con i viadotti circostanti.

VI03 - Relazione geotecnica

RIPRISTINO LINEA CALTAGIRONE-GELA

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER

CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

 DMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 25 di 36

Si valutano i seguenti range dei principali parametri geotecnici.

Parametri	Unità 1
γ (kN/m ³)	20
φ'(°)	30-34
c' (kPa)	0-5
C _u (kPa)	-
E _{op} (MPa)	40
E _u (MPa)	-
k (m/s)	8.85E-07

LOTTO2: NISCEMI - GELA

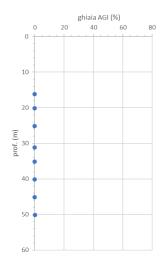
INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

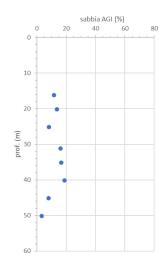
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	26 di 36

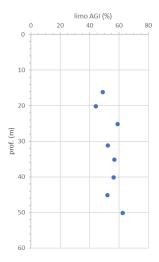
8.3 Unità 2 – Argille limose sabbiose e/o limi sabbiosi argillosi

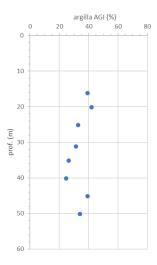
Tale unità viene intercettata ad una profondità di circa 9m dal piano di campagna.

Sulla base delle schede di sondaggio e delle foto scattate alle carote (Rif. [1]), si ipotizza per questa unità un comportamento prettamente coesivo.

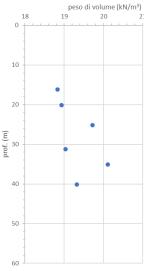

Le rappresentazioni che seguono mostrano l'andamento in funzione della profondità ottenuto per le principali caratteristiche del materiale.

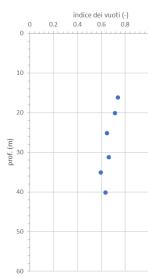

Si specifica che, nel grafico relativo alla coesione non drenata, si riporterà anche l'andamento di Cu per materiali normalmente consolidati, ottenuto dalla relazione di Koutsoftas e Ladd (1985):

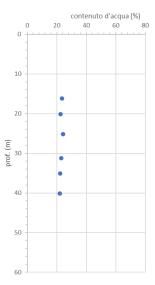

$$\frac{C_u}{\sigma'_{v0}} = 0.22 \ OCR^{0.8}$$

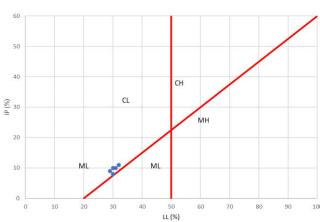

Il suddetto andamento è in questo caso particolarmente utile, in quanto le prove edometriche soffrono di un disturbo eccessivo e non forniscono una stima affidabile del grado di sovraconsolidazione del terreno.

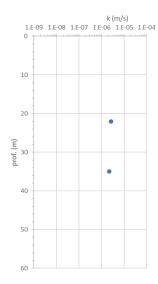
I valori di coesione efficace e di angolo di resistenza al taglio sono stati ottenuti da prove di taglio diretto alla Casagrande (TD-CD) e da prove triassiali consolidate non drenate (TX-CU).

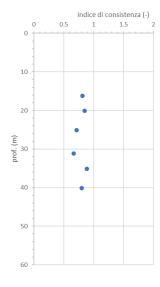


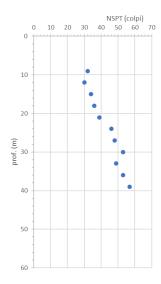

LOTTO2: NISCEMI - GELA

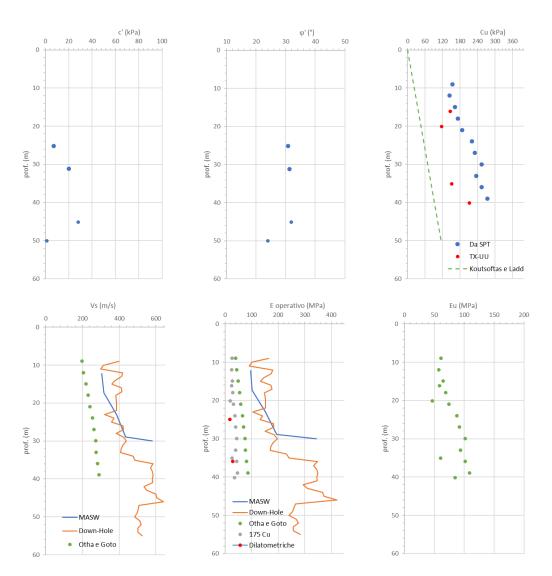

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.


VI03 - Relazione geotecnica


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	27 di 36






LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 28 di 36

Dall'insieme dei dati disponibili, si possono valutare i seguenti range dei principali parametri geotecnici.

Parametri	Unità 2
γ (kN/m ³)	19
φ'(°)	26-31
c' (kPa)	5-20
C _u 1 (kPa)	130
C _u 2 (kPa)	180
E _{op} 1 (MPa)	80
E _{op} 2 (MPa)	100
E _u 1 (MPa)	70
E _u 2 (MPa)	100
k (m/s)	2.45E-06

da tetto strato a 25 m da 25 m a 40 m da tetto strato a 25 m da 25 m a 40 m da tetto strato a 25 m da 25 m a 40 m

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	29 di 36

Tutte le profondità indicate in tabella sono misurate a partire dal piano di campagna.

8.4 Andamento della falda

Il livello di falda assunto in questa sede è stato definito principalmente sulla base delle misure in fase di monitoraggio dei piezometri installati nei fori di sondaggio. E' stato attrezzato il sondaggio S7.

	S7
LIVELLO FALDA	-4.7 m (+195.6 m s.l.m.)

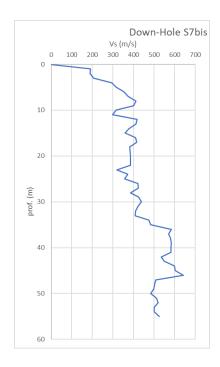
8.5 Sismicità

Nell'ambito della campagna di indagini sono state eseguite specifiche prove sismiche per la determinazione dell'andamento della velocità delle onde di taglio Vs con la profondità, utile per individuare la classe di sottosuolo ai sensi del DM 17/01/2018. Nel dettaglio sono disponibili i risultati di:

- 1 prova Down-Hole in corrispondenza del sondaggio S7bis
- 1 prova MASW in prossimità del foro di sondaggio S7

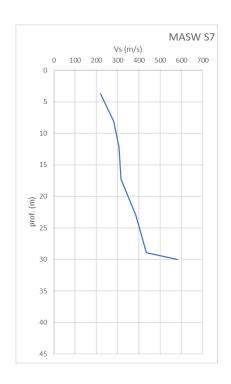
La velocità equivalente delle onde di taglio V_{S,eq}, ai sensi del DM 17/01/2018 definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$


con:

- hi spessore dell'i-esimo strato;
- V_{S,i} velocità delle onde di taglio nell'i-esimo strato;
- N numero di strati:
- H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da V_s non inferiore a 800 m/s.

Per le fondazioni su pali, in particolare, la profondità è riferita alla testa dei pali. Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro $V_{S,30}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.



8.5.1 Down-Hole S7bis

Sulla base dei dati riportati nella figura precedente, con riferimento a quanto riportato nel report delle indagini geofisiche (Rif. [2]), si ottiene un valore di $V_{S,eq}$ pari a 342.65 m/s, relativo ad una categoria di sottosuolo C.

8.5.2 MASW S7

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS6K 00 R 09 RB VI 03 00 001 A 31 di 36

Depth (m)	Density (t/mc)	S-velocity (m/s)	Gmax (Mpa)
3.70	1.65	220	80
8.10	1.72	281	136
12.20	1.75	306	164
17.30	1.75	316	175
23.00	1.83	386	272
28.90	1.86	435	351
30.00	1.92	580	647

 $V_{s,eq} = 325.23 \text{ m/s}$

Sulla base dei dati riportati nella figura precedente, con riferimento a quanto riportato nel report delle indagini geofisiche (Rif. [2]), si ottiene un valore di $V_{S,eq}$ pari a 325.23 m/s, relativo ad una categoria di sottosuolo C.

		Ss	Сс	S=S ₈ *S _T
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.			
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s			
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.	1.4	1.4	1.4
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fine scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.			
E	erreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.			

8.6 Liquefazione

In terreni saturi sabbiosi sollecitati, in condizioni non drenate, da azioni cicliche dinamiche, il termine liquefazione comprende una serie di fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche. L'avvenuta liquefazione si manifesta, in presenza di manufatti, attraverso la perdita di capacità portante e/o lo sviluppo di elevati cedimenti e rotazioni.

In base al D.M. 17/01/2018 §7.11.3.4.2, la verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze::

- accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0.1g;
- profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna suborizzontale e strutture con fondazioni superficiali;
- depositi costituiti da sabbie pulite, con resistenza penetrometrica normalizzata (N₁)₆₀>30 oppure q_{c1N}>180, dove (N₁)₆₀ è il valore della resistenza, determinata in prove penetrometriche dinamiche (SPT), normalizzata ad una tensione efficace verticale di 100 kPa, e q_{c1N} è il valore della resistenza, determinata in prove penetrometriche statiche (CPT), normalizzata ad una tensione efficace verticale di 100 kPa;
- distribuzione granulometrica esterna alle zone indicate nei grafici sottostanti a), nel caso di terreni con coefficiente di uniformità $U_c < 3.5$ e nel grafico b) nel caso di terreni con coefficiente di uniformità $U_c > 3.5$.

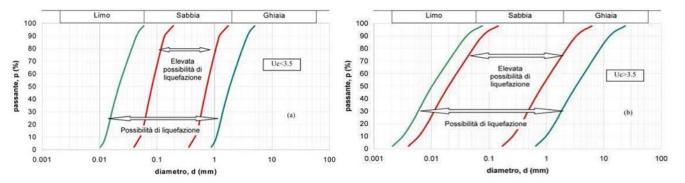


Fig. 7: Fusi granulometrici di terreni suscettibili di liquefazione

La suscettibilità nei confronti della liquefazione viene valutata attraverso metodologie di carattere semi-empirico sulla base dei risultati ottenuti da prove in sito di tipo SPT, le quali permettono di eseguire una verifica di tipo puntuale lungo la verticale indagata dall'indagine.

8.6.1 Verifica a liquefazione sulla base delle prove SPT

Il coefficiente di sicurezza alla liquefazione (FS) è calcolato localmente, a diverse profondità, attraverso il rapporto tra la resistenza ciclica alla liquefazione (Cyclic Resistance Ratio) $CRR = \tau_f/\sigma'_{v0}$, e la sollecitazione ciclica indotta dall'azione sismica (Cyclic Stress Ratio) $CSR = \tau_{media}/\sigma'_{v0}$.

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	33 di 36

FS=CRR/CSR

I risultati delle analisi saranno presentati riportando l'andamento con la profondità del fattore di sicurezza (FS) alla liquefazione per ciascuna delle verticali indagate. Inoltre è stato determinato l'indice del potenziale di liquefazione I_L, definito dalla seguente relazione:

$$I_L = \int\limits_0^{z_{crit}} F(z) \cdot w(z) \cdot dz$$

 z_{crit} è la profondità critica, ovvero la profondità massima entro la quale può verificarsi la liquefazione, che di norma si assume pari a 20.0 m.

w(z) è una funzione peso di tipo lineare che vale 10 in z=0m e 0 in z=zcrit=20m

La variabile F(z) vale:

$$F(z) = 1 - F_L \quad se \, F_L \leq 1$$

$$F(z) = 0$$
 se $F_L > 1$

A partire dal valore dell'indice del potenziale di liquefazione IL, sono definite le seguenti classi di pericolosità (Sonmez, 2003):

- $I_L = 0$ Non liquefacibile (FL ≥ 1.2);
- $0 < I_L \le 2$ Potenziale basso;
- $2 < I_L \le 5$ Potenziale moderato;
- $5 < I_L \le 15$ Potenziale alto;
- $I_L > 15$ Potenziale molto alto.

Le procedure per la verifica a liquefazione di un sito con i metodi semplificati si basano sul lavoro originariamente proposto da Seed e Idriss (1971) e successivamente soggetto a varie modifiche e integrazioni fino alla formulazione riportata nelle Linee Guida del NCEER (National Center for Earthquake Engineering Research)(Youd et al., 2001) e nella più recente monografia dell'Earthquake Engineering Research Institute (Idriss e Boulanger, 2008).

8.6.2 Valutazione del rapporto di tensione ciclica CSR

Il rapporto di tensione ciclica, ad una determinata profondità, può essere valutato attraverso la seguente espressione (Seed e Idriss, 1971):

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS6K	00	R 09 RB	VI 03 00 001	Α	34 di 36

$$CSR = 0.65 \cdot \frac{\sigma_{v}}{\sigma_{v}} \cdot \frac{a_{max}}{g} \cdot r_{d}$$

dove:

- a_{max} è l'accelerazione massima del terremoto di progetto;
- $\sigma_v e \sigma'_v$ sono rispettivamente la tensione totale verticale e la tensione efficace verticale;
- r_d è un coefficiente correttivo che dipende dalla profondità e tiene conto della deformabilità del sottosuolo.
 Può essere assunto pari a:

$$r_d = 1 - 0.0015z$$

8.6.3 Valutazione del rapporto di resistenza ciclica CRR

Il rapporto di resistenza ciclica può essere stimato sulla base di prove SPT, CPT e da misura della velocità delle onde di taglio. Poiché le procedure semplificate sono state elaborate sulla base di osservazioni sul comportamento dei depositi durante eventi sismici con magnitudo M=7.5, per eventi di magnitudo diversa si introduce un coefficiente correttivo MSF (Idriss e Boulanger, 2004) così definito:

MSF = min
$$\begin{cases} 6.9 \exp\left(-\frac{M}{4}\right) - 0.058 \\ 1.8 \end{cases}$$

Il calcolo del valore del rapporto di resistenza ciclica CRR a partire da prove SPT si basa su 3 step principali

• Step 1: Correzione del valore di colpi SPT

Il numero di colpi N_{SPT} viene normalizzato mediante la seguente espressione:

$$(N_1)_{60} = N_{SPT}C_NC_EC_BC_RC_S$$

dove:

$$C_N = \sqrt{\frac{100}{\sigma_v}}$$
 fattore correttivo della profondità;

CE = fattore correttivo per considerare il rendimento energetico;

CB = fattore correttivo per le dimensioni del foro di sondaggio;

CR = fattore correttivo per la lunghezza delle aste;

CS = fattore correttivo per il tipo di attrezzo campionatore.

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

VI03 - Relazione geotecnica

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 RB	VI 03 00 001	Α	35 di 36

Nella tabella seguente sono riportati i valori di riferimento.

Factor	Equipment Variable	Term	Correction
Overburden Pressure		Cn	See Figure 4.3
Energy Ratio	Safety Hammer	Ce	0.60 to 1.17
	Donut Hammer		0.45 to 1.00
	Automatic Trip		0.9 to 1.6
	Hammer		See Table 4.2
			for details
Borehole Diameter	65 mm to 115 mm	C _b	1.0
	150 mm		1.05
	200 mm		1.15
Rod Length**	3 m to 4 m	C_{r}	0.75
	4 m to 6 m		0.85
	6 m to 10 m		0.95
	10 m to 30 m		1.0
	>30 m		<1.0
Sampling Method	Standard sampler	Cs	1.0
	Sampler without		1.2
	liners		

^{*} The Implementation Committee recommends using a minimum of 0.4.

• Step 2: Correzione del numero di colpi SPT in base al contenuto di fine

In accordo con Idriss e Boulanger (2004) la resistenza penetrometrica normalizzata (N_1)₆₀ è riportata al valore equivalente per sabbie pulite con la relazione:

$$(N_1)_{60cs} = (N_1)_{60} + \exp\left(1.63 + \frac{9.7}{F_c} - \left(\frac{15.7}{F_c}\right)^2\right)$$

Dove Fc rappresenta la frazione fine passante al setaccio 200 ASTM (d=0.074 mm).

• Step 3: Calcolo di CRR_{7.5}

In accordo con Idriss e Boulanger (2004) la resistenza ciclica relativa ad una magnitudo M=7.5 viene determinata con la relazione seguente:

$$CRR = \exp\left[\frac{(N_1)_{60cs}}{14.1} + \left(\frac{(N_1)_{60cs}}{126}\right)^2 - \left(\frac{(N_1)_{60cs}}{23.6}\right)^3 + \left(\frac{(N_1)_{60cs}}{25.4}\right)^4 - 2.8\right]$$

^{**} Actual total rod length, not depth below ground surface

LOTTO2: NISCEMI - GELA

INTERVENTO DI MIGLIORAMENTO STRUTTURALE PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 RB
 VI 03 00 001
 A
 36 di 36

Risultati delle verifiche

VI03 - Relazione geotecnica

8.6.4

Con riferimento alla relazione geologica (Rif.[6]), non è necessario eseguire verifiche nei confronti della liquefazione, in quanto nessuna delle curve granulometriche ricade all'interno dei fusi definiti dalle NTC18.

8.7 Schemi geotecnici di calcolo

Nelle tabelle che seguono si sintetizzano gli schemi stratigrafici ed i parametri geotecnici caratteristici delle unità individuate.

Parametri	Unità 1
$\gamma (kN/m^3)$	20
φ'(°)	30-34
c' (kPa)	0-5
C _u (kPa)	-
E _{op} (MPa)	40
E _u (MPa)	-
k (m/s)	8.85E-07

Parametri	Unità 2	
γ (kN/m ³)	19	
φ'(°)	26-31	
c' (kPa)	5-20	
C _u 1 (kPa)	130	da tetto strato a 25 m
C _u 2 (kPa)	180	da 25 m a 40 m
E _{op} 1 (MPa)	80	da tetto strato a 25 m
E _{op} 2 (MPa)	100	da 25 m a 40 m
E _u 1 (MPa)	70	da tetto strato a 25 m
E _u 2 (MPa)	100	da 25 m a 40 m
k (m/s)	2.45E-06	

Tutte le profondità sono misurate a partire dal piano di campagna.