COMMITTENTE:

PROGETTAZIONE:

LINEA FERROVIARIA CATANIA C.LE - GELA TRATTA FERROVIARIA CALTAGIRONE - GELA

PROGETTO DI FATTIBILITA' TECNICO ECONOMICA

S.O. OPERE CIVILI

RIPRISTINO TRATTA CALTAGIRONE - GELA
LOTTO 2: RIPRISTINO TRATTA NISCEMI - GELA

VIADOTTI VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

SCALA:	
_	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.

RS6K 00 R 09 CL V10500 002 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	MP&A	Mag. 2022	A.Ferri	Mag. 2022	P. Mosca	Mag. 2022	A.Vittozzi
		<u> </u>		A		9		a di Rom
								A. Wittozzi
								FERR S. P. Gettion Aires of Ai
								ITALI Preta Civilia Dott. Ing. gli ingegn N'
			-					U.O. Opere Do dine degli !
			_					Mag. 2022

File: RS6K00R09CLVI0500002A.dwg n. Elab.:69

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 CL
 VI 05 00 002
 A
 2 di 105

INDICE

1	INT	RODUZIONE	. 5
2	DES	RCIZIONE DEGLI INTERVENTI	. 7
	2.1	INTERVENTI SUGLI ARCHI	. 7
	2.2	INTERVENTI SULLE PILE	. 7
	2.3	INTERVENTI SULLE SPALLE	. 8
	2.4	ALTRI INTERVENTI DI FINITURA E COMPLETAMENTO	. 8
3	NOF	RMATIVA E BIBLIOGRAFIA DI RIFERIMENTO	. 9
4	MO	DELLAZIONE DELL'OPERA E METODI DI ANALISI	10
	4.1	MODELLAZIONE	10
	4.1.1	l Il modello di calcolo	10
	4.1.2	2 Caratteristiche dei materiali	13
	4.2	TIPO DI ANALISI	16
5	ANA	ALISI DEI CARICHI	17
	5.1	PESI PROPRI STRUTTURALI (G1)	17
	5.2	PESI PERMANENTI NON STRUTTURALI (G2)	17
	5.3	AZIONI DA TRAFFICO FERROVIARIO (QTRENI)	18
	5.4	AZIONE DEL VENTO (Q _{VENTO})	20
	5.5	CEDIMENTO FONDAZIONALE (E _{CED})	20
	5.6	AZIONI SISMICHE (E)	20
6	ANA	ALISI MODALE	24
7	ANA	ALISI SISMICA	26
	7.1	SISMA X - GRUPPO 1	29
	7.2	SISMA X - GRUPPO 2	33
	7.3	SISMA Y - GRUPPO 1	36
	7.4	SISMA Y - GRUPPO 2	41

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 CL
 VI 05 00 002
 A
 3 di 105

	7.5	SINTESI DEI RISULTATI	45
8	VER	RIFICA DELL'INTERVENTO DI RINFORZO DEGLI ARCHI	46
	8.1	SOLLECITAZIONI ELEMENTARI	46
	8.2	COMBINAZIONI DI CARICO	47
	8.3	VERIFICHE STRUTTURALI	49
	8.3.1	l Verifiche pressoflessione	49
	8.3.2	2 Verifiche taglio	52
9	VER	RIFICA DELL'INCAMICIATURA DELLE PILE	55
	9.1	SOLLECITAZIONI ELEMENTARI	55
	9.2	COMBINAZIONI DI CARICO	56
	9.2.1	l Verifiche Sezione di spiccato	59
10	VER	RIFICA DELLE IMPOSTE	65
	10.1	SOLLECITAZIONI ELEMENTARI	65
	10.2	VERIFICHE STRUTTURALI	66
	10.2.	.1 Verifiche a taglio	69
11	VER	RIFICA DEGLI ANGOLARI METALLICI DI RINFORZO DELLE PILE	72
12	VER	RIFICA DEGLI INTERVENTI IN FONDAZIONE	75
	12.1	CARATTERIZZAZIONE GEOTECNICA	75
	12.1.	.1 Unità geotecniche	75
	12.1.	.2 Falda	75
	12.1.	.3 Parametri geotecnici di calcolo	75
	12.2	COMBINAZIONI DI CARICO	76
	12.3	SOLLECITAZIONI	78
	12.4	Verieiche	81

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	4 di 105

	12.4.1 Verifiche geotecniche	. 83
	12.4.2 Verifiche strutturali	. 99
13	CONCLUSIONI	105
14	INCIDENZA ARMATURE	105

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PEI L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA			JRALI PER	CONSEGUIRE	
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	5 di 105

1 INTRODUZIONE

La presente relazione ha per oggetto l'analisi degli interventi di rinforzo strutturale in relazione alla risposta statica e sismica del ponte ad archi individuato alla kilometrica 347+996 della linea ferroviaria Gela-Caltagirone, a valle delle analisi dello stato di fatto (per le quali si rimanda al documento "Relazione sullo stato di fatto dell'opera" RS3K02D09CLVI0500001A).

L'opera è stata sottoposta ad un rilievo geometrico completo, a una campagna di indagini strutturali e geotecniche e, infine, ad uno studio di valutazione della sicurezza statica e sismica in relazione allo stato attuale di conservazione.

Il viadotto, a binario singolo, sviluppa una lunghezza complessiva di circa 232 m (spalla-spalla). Il tracciato che attraversa l'opera è planimetricamente in curva; altimetricamente il ponte presenta una pendenza discendente secondo le progressive crescenti ($i\approx1.6\%$).

La struttura è costituita da 9 pile e due spalle che scandiscono 10 arcate con luce netta di circa 20m.

Gli archi sono realizzati con elementi in calcestruzzo magro di spessore variabile tra 1.0m e 1.2m rispettivamente in chiave e alle reni. Sopra di essi si poggiano i muri andatori (o timpani) realizzati in muratura di pietra con spessore circa 1.2m, internamente è presente un riempimento in materiale sciolto.

Le pile sono realizzate in muratura di pietra, esternamente è presente una cortina di limitato spessore con pietrame squadrato e di dimensioni piuttosto regolari, mentre il nucleo risulta essere composto da elementi naturali di pezzatura molto disomogenea e il cui grado di compattezza, ossia la presenza di legante, è risultato molto variabile dalle indagini effettuate in situ.

Le fondazioni sono realizzate con plinti massicci in calcestruzzo (è ignota l'eventuale presenza di armature) a pianta rettangolare con dimensioni di circa 8.8 m in direzione longitudinale e 16.3 m in direzione trasversale. La geometria delle fondazioni è stata ricostruita in analogia ai risultati dei sondaggi conoscitivi effettuati per la pila 6 del viadotto.

Figura 1: Restituzione laser-scanner dell'opera

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER C L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA				COI	CONSEGUIRE	
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	6 di 105	

Figura 2: Vista dell'opera

2 DESRCIZIONE DEGLI INTERVENTI

Ai fini del recupero della funzionalità dell'opera, che presuppone la rispondenza agli standard di sicurezza delle vigenti normative in materia di costruzioni esistenti (NTC2018), sono previsti interventi di natura strutturale che coinvolgono vari elementi dell'opera, come appresso specificato.

2.1 Interventi sugli archi

È prevista la realizzazione di una struttura in cemento armato a forma di cassone aperto internamente all'impalcato. Tale struttura continua ha lo scopo di realizzare una sorta di catena che colleghi tutte le arcate del viadotto, impedendo di fatto meccanismi di disarticolazione locali dell'opera.

Come intuibile, la sezione tipo della struttura di rinforzo ha forma di "U" ad altezza variabile, minima in corrispondenza della chiave degli archi e massima in asse pila (da 0.8m a 4.7 m), e larghezza di circa 3.5m. Le pareti risultano gettate direttamente a ridosso dei paramenti in muratura delle arcate (timpani) e presentano uno spessore di 40 cm. Queste verranno collegate alle murature mediante inghisaggi diffusi di inserti metallici. La soletta inferiore (contro-soletta) presenta invece uno spessore corrente di 30 cm che si riduce a circa 20 cm nella zona di chiave dell'arco. È previsto il collegamento con la struttura esistente dell'arco in calcestruzzo, impiegando la medesima tecnica summenzionata per gli elementi verticali.

La parte interna della nuova struttura sarà successivamente riempita con calcestruzzo alleggerito al fine di ristabilire il piano di posa per la sovrastruttura ferroviaria.

2.2 Interventi sulle pile

Si prevedono due ordini di interventi per le elevazioni delle pile in muratura del viadotto:

- 1) Il nucleo interno degli elementi, il quale dalle analisi stratigrafiche effettuate presenta una notevole variabilità nella composizione con rilevamenti di ampie zone con materiale non legato, verrà interessato da un massiccio interventi di iniezione di malta. La cui natura (di calce, cementizia o resine) sarà scelta sulla base delle risultanze di analisi chimiche dei leganti preesistenti.
- 2) Esternamente è previsto il cerchiaggio attivo delle murature e la successiva incamiciatura mediante pareti in c.a. Il primo intervento si concretizza con l'apposizione di angolari metallici ai quattro vertici della sezione delle pile, intercalati con passo di circa 3m da barre dywidag orizzontali che saranno tensionate per fornire un confinamento laterale attivo alla muratura. Tali strutture metalliche verranno poi inglobate in pareti di cemento armato le quali avranno spessore 25cm nella direzione trasversale e spessore variabile tra 25 cm e 45 cm (rispettivamente ad imposta arco e base pila) nella direzione longitudinale.

Le fondazioni delle pile saranno poi rinforzate mediante la realizzazione di un cordolo sommitale che raccoglie la preesistente fondazione e che mette in continuità le nuove strutture di elevazione con le nuove fondazioni su pali. È prevista, infatti, la realizzazione di pali di medio diametro (D600) perimetralmente alla fondazione esistente su un'unica fila. I pali spaziati, l'uno coll'altro di circa 85cm, avranno lunghezza di 14m.

VI05 - VIADOTTO AL KM 347+996	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	CON	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	8 di 105

2.3 Interventi sulle spalle

Le spalle, le cui analisi non evidenziato particolari criticità, saranno comunque precauzionalmente interessate da un intervento atto a prevenire fenomeni di cedimento fondazionale. È stata prevista dunque la realizzazione di due limitate palificate lungo i muri andatori del manufatto, collegate in testa da un cordolo che a sua volta viene solidarizzato alla fondazione esistente. Saranno impiegati pali del medesimo diametro impiegato per le pile (D600) e lunghezza pari a 10 m.

2.4 Altri interventi di finitura e completamento

A completamento degli interventi riguardanti le opere civili, è prevista la realizzazione dei nuovi marciapiedi lungo tutto il viadotto, la sostituzione dei parapetti, la realizzazione delle impermeabilizzazioni dell'impalcato e del sistema di scolo delle acque meteoriche.

3 NORMATIVA E BIBLIOGRAFIA DI RIFERIMENTO

Ai fini del presente studio sono stati presi a riferimento i seguenti documenti tecnici:

- D.M. 17 gennaio 2018 (G.U. 20 febbraio 2018 n. 42) Aggiornamento delle «Norme tecniche per le costruzioni».
- Circolare 21 Gennaio 2019 n. 7 C.S.LL.PP. (G.U. n. 35 del 11 febbraio 2019) Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- RFI DTC SI PS MA IFS 001 C Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Progetto DOC-Reluis 2005-2008 linea 3: Valutazione e riduzione del rischio sismico di ponti esistenti "linee guida e manuale applicativo per la valutazione della sicurezza sismica e il consolidamento dei ponti esistenti in c.a.", Marzo 2009.
- FEMA 440 "Improvement of Non-Linear static Seismic Analysis Procedures", June 2005.
- ATC 40 "Seismic Evaluation and Retrofit of Concrete Buildings. Vol.1", Applied Technology Council, November 1996.
- Chopra, A.K., and Goel, R.K. (1999). "Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems". Report No. PEER-1999/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley, California.
- Fajfar P. "Capacity spectrum method based on inelastic demand spectra" Earthquake Engineering and Structural Dynamics, 1999 (28).
- Albanesi T., Biondi S., Petrangeli M., "Pushover Analysis: an energy-based approach", Elsevier Science Ltd 12th European Conference on Earthquake Engineering, London England, 2002.

4 MODELLAZIONE DELL'OPERA E METODI DI ANALISI

4.1 Modellazione

L'opera è stata analizzata a mezzo di modelli di calcolo agli elementi finiti tridimensionali, impiegando elementi solidi "brick", infatti la particolarità dell'opera non consente una modellazione attraverso elementi finiti tipo mono ("beam") o bidimensionali ("shell") se non accettando una perdita significativa di accuratezza della risposta strutturale, specialmente in relazione alle azioni orizzontali quali quelle di natura sismica.

Inoltre, in considerazione dei materiali di costruzione (muratura e calcestruzzo magro), caratterizzati dall'assenza (o quasi) di resistenza a trazione, si è altresì optato per l'assunzione di un comportamento di materiale (legame costitutivo) non lineare.

Mentre la non linearità di materiale è abbastanza diffusa nei software commerciali di analisi strutturale per quanto riguarda gli elementi monodimensionali, nella modellazione con elementi 2D e 3D essa risulta disponibile solo in software specialistici, tendenzialmente orientati alla ricerca piuttosto che alla professione. Fra di essi certamente un posto di rilievo è occupato da MIDAS FEA NX, il cui ambito di applicazione è specificatamente rivolto alla modellazione solida lineare e non.

Tale software ha nella sua libreria di legami costitutivi (LC) il cosiddetto *Concrete Smeared Crack*. Tale legame, di natura isotropa, appartiene ai cosiddetti modelli costitutivi *smeared crack* ossia ai modelli con plasticità diffusa. Questo legame nasce per simulare il comportamento del calcestruzzo non armato, ma esistono già diverse applicazioni che applicano con successo il *Concrete Smeared Crack* su strutture in muratura. Questo perché il legame simula la parte in compressione del materiale usando un tipico modello isotropico elastoplastico, e la parte in trazione con un modello a fessurazione diffusa. Questo permette di simulare la fessurazione regolando la tensione e la rigidezza al punto di integrazione, senza riconfigurare la mesh.

In corrispondenza della formazione della fessura, la direzione della massima deformazione principale è la direzione della fessura stessa. Tale direzione è conservata per simulare l'anisotropia dovuta alla fessurazione negli step successivi. Le fessure successive andranno nella direzione ortogonale alla fessura esistente, tenendo in conto della tridimensionalità del modello. Se, a seguito della formazione della fessura, la deformazione elastica nella direzione della fessura è di trazione, essa viene considerata come un danneggiamento di tipo elastico per cui la fessura sarà considerata richiusa quando si manifesta la compressione.

4.1.1 <u>Il modello di calcolo</u>

La non linearità di materiale è stata impiegata sugli elementi strutturali predominanti la risposta strutturale dell'opera, in particolare è stato usato il *Concrete Smeared Crack* per i seguenti componenti strutturali (con le dovute differenze nei parametri caratteristici tra elemento ed elemento illustrate in seguito):

- Archi realizzati in calcestruzzo non armato;
- Pile realizzate in muratura di pietra disomogenea;

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CO L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA				COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	11 di 105

- Muri andatori (o timpani) realizzati in muratura di pietra.
- Elementi di rinforzo in c.a. (camicie esterne pile e interne archi)

Per gli altri elementi costituenti il ponte, ossia i riempimenti delle arcate e le fondazioni sono stati impiegati elementi con materiali elastico lineare. Tali elementi sono stati modellati per raggiungere sia una migliore definizione delle masse in gioco (riempimenti) che anche di possibili effetti di interazione col suolo (fondazioni). Tuttavia, con riferimento al riempimento, sono stati adottati gli accorgimenti opportuni per far sì che esso non collabori alla resistenza strutturale dell'opera (modulo elastico adeguatamente basso).

Per quanto riguarda le condizioni vincolari, si specifica che sono stati impediti tutti i gradi di libertà dei nodi all'intradosso dei plinti di fondazione. Si è preferito, poi, non vincolare le superfici verticali di contatto col terreno delle spalle, principalmente per due motivi: da un lato la definizione della reale geometria della spalla è ignota (vale a dire quanto essa si estende all'interno del terreno rispetto al rilievo del manufatto che chiaramente restituisce solo quanto fuori-terra), dall'altro, data anche l'indisponibilità di dati al riguardo non ritenendo opportuno scendere nel dettaglio di un'analisi valutativa del grado di interazione della spalla col terreno, si è preferito dare all'opera una capacità di deformazione maggiore. Infatti, specialmente in direzione longitudinale, l'eventuale blocco delle spalle impediva lo svilupparsi di cinematismi apprezzabili che potessero mobilitare gli elementi strutturali dell'opera.

Di seguito si riportano le immagini estratte del modello relative alle definizioni dei succitati elementi strutturali e delle rispettive caratterizzazioni del materiale associato.

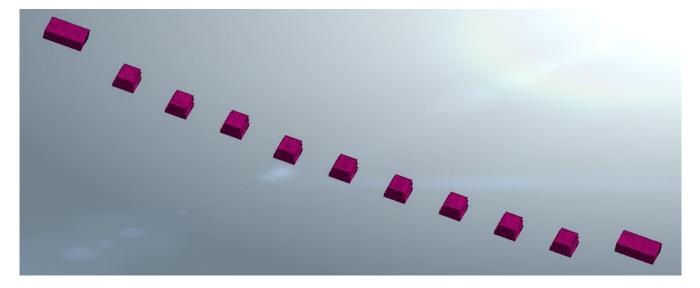


Figura 3: Plinti di fondazione

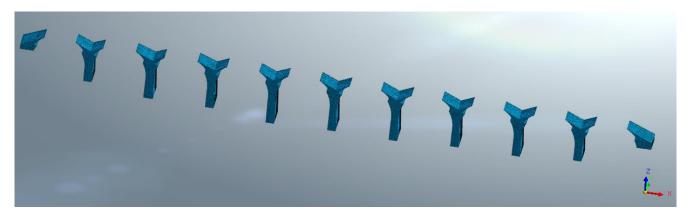


Figura 4: Pile e Spalle

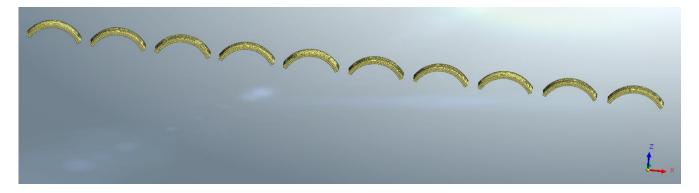


Figura 5: Archi

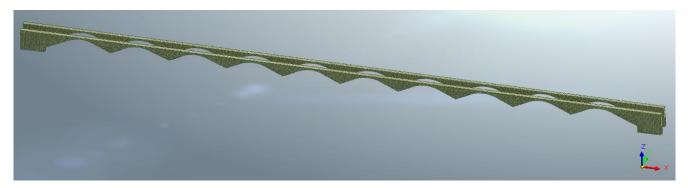


Figura 6: Timpani

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIR MIGLIORAMENTI STRUTTI L'ADEGUAMENTO SISMICO DI LOTTO 2: NISCEMI - GELA			JTTURALI PER O DEI VIADOTTI		NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	13 di 105

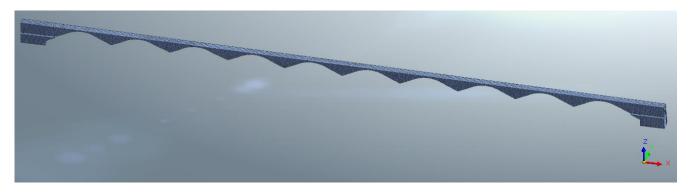


Figura 7: Riempimento

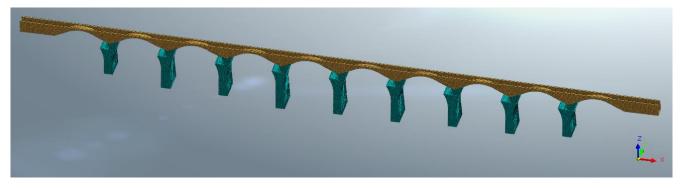


Figura 8: Strutture di rinforzo (camicia esterna pile e interna archi)

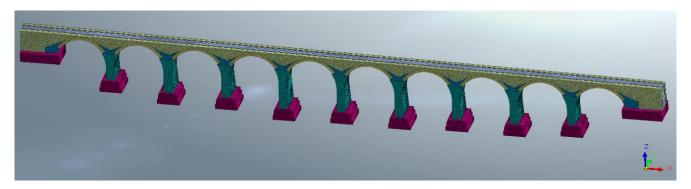


Figura 9: Modello completo

4.1.2 <u>Caratteristiche dei materiali</u>

La tabella seguente riassume infine i principali parametri dei materiali impiegati, dove anche per i materiali non lineari sono specificate le caratteristiche in quanto esse sono impiegate sia nelle analisi modali sia per la definizione del ramo iniziale della risposta *stress-strain* del legame costitutivo non lineare.

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 CL
 VI 05 00 002
 A
 14 di 105

Elemento Struttura Esistente	Arco	Pile	Timpani	Plinti
Descr. Materiale	Cls Magro	Muratura	Muratura	Cls
Modulo di Young E [Mpa]	6000	9000	8300	6000
Modulo di Poisson v [-]	0.2	0.25	0.25	0.2
Peso Specifico [kN/m3]	21	22	22	0
Tipo di Risposta	Non Lineare	Non Lineare	Non Lineare	Lineare
Resistenza a trazione ft [Mpa]	0.8	0.2	0.2	-
Resistenza a compr. Fc [Mpa]	9	4	4	-

Elemento Nuova Struttura	Strutture in c.a.	Rinforzi Metallici	Armatura Pila	Riempimento
Descr. Materiale	Cls C32/40 (a)	Acciaio S355	Acciaio B450C	Cls Alleggerito
Modulo di Young E [Mpa]	30000	206000	210000	120
Modulo di Poisson v [-]	0.2	0.3	0.3	0.2
Peso Specifico [kN/m3]	25	78.5	70	18
Tipo di Risposta	Non Lineare	Non Lineare	Non Lineare	Lineare
Resistenza a trazione ft [Mpa]	1.7	338	391	-
Resistenza a compr. Fc [Mpa]	17	338	391	-

⁽a) In sede di modellazione, analisi e verifiche strutturali si sono utilizzate le caratteristiche meccaniche relative alla classe C30/37, tuttavia non è risultato necessario l'aggiornamento dei valori adottati essendo questi cautelativi rispetto a quelli del calcestruzzo C32/40 previsto per la realizzazione di tali opere.

Per le strutture in muratura si è optato per mantenere i medesimi parametri di resistenza e rigidezza dello stato di fatto. Non sono stati considerati gli effetti dell'intervento di consolidamento mediante iniezioni di malta e del confinamento operato dai profili metallici e dalla camicia di c.a., anche in relazione all'oggettiva difficoltà di quantificare in maniera analitica e realistica le nuove caratteristiche del materiale in termini di resistenze e duttilità, in quanto le indicazioni reperibili nel quadro normativo attuale non risultano esaustive per le modellazioni qui impiegate. In definitiva, dunque, le iniezioni ed il confinamento della muratura vengono considerate dal progettista come un'ulteriore riserva di sicurezza strutturale di cui l'opera è dotata.

Nel modello non si è tenuto conto del peso del plinto per evitare la sovrapposizione dell'inerzia dello stesso con la risposta della sovrastruttura, peso e inerzia orizzontale sono stati poi considerati a posteriori in sede di verifica delle fondazioni.

Sebbene il progetto preveda una sostituzione del riempimento esistente con calcestruzzo alleggerito (con peso di volume paragonabile), in via conservativa, tale nuovo elemento non è stato tenuto in conto ai fini della rigidezza e resistenza strutturale dell'opera. Pertanto, sono stati mantenuti i medesimi parametri meccanici associati al riempimento sciolto impiegato per la valutazione dell'esistente.

Le camicie in calcestruzzo attorno alle pile sono state modellate come elementi tridimensionali, con il loro effettivo spessore. È stato quindi generato un solido che, oltre a rappresentare il reale ingombro volumetrico, potesse ospitare degli elementi monodimensionali rappresentanti le barre al suo interno.

Si è scelto infatti di modellare le barre longitudinali posizionate all'interno della camicia delle pile, assegnando ad ognuna di esse un diametro equivalente, in modo che nella loro totalità rappresentassero l'effettiva percentuale di armatura presente nel rinforzo in calcestruzzo. Ciò è stato possibile attraverso una modellazione "embedded" che permette ad elementi monodimensionali di essere annegati all'interno di solidi. Tale funzione permette che i due elementi comunichino tra di loro senza che questi siano collegati tramite nodi in comune.

GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	COM	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di	RS6K	00	R 09 CL	VI 05 00 002	Α	16 di 105

4.2 Tipo di Analisi

Per le analisi finalizzate alla definizione della sicurezza in fase sismica è stato applicato il metodo statico non lineare (analisi di spinta o Push-Over), il quale prevede l'applicazione di un predeterminato profilo di forze incrementale fino al raggiungimento della resistenza della struttura, ottenendo così la cosiddetta "curva di capacità" della struttura.

Il raggiungimento del carico massimo della struttura è stato individuato con criteri basati sui parametri meccanici dei materiali:

- Lato muratura, considerato che la normativa fornisce esclusivamente criteri di rottura della muratura applicabili a modelli discreti (pannelli murari e fasce di piano) che non risultano direttamente applicabili ad un modello continuo come quello adottato, si è optato di individuare quale condizione limite della capacità del materiale il raggiungimento di una deformazione di compressione pari allo ε_c muratura =0.30%. Si osserva un incremento del valore limite rispetto a quanto impiegato nelle valutazioni ante operam, giustificabile col fatto che la muratura è iniettata e confinata dalle strutture di rinforzo previste dal progetto.
- Lato rinforzo in calcestruzzo, la condizione limite del materiale è stabilita nel raggiungimento di una deformazione di compressione pari allo ε_c calcestruzzo=0.35%. in conformità al §4.1.2.1.1.4 delle NTC2018.
- Lato rinforzi metallici, essendo esclusi a priori fenomeni di instabilità dei profili angolari, si è assunto come limite del materiale il raggiungimento di una deformazione di trazione/compressione pari a $\varepsilon_s^{\text{acciaio}}=1.0\%$.

5 ANALISI DEI CARICHI

5.1 Pesi propri strutturali (g1)

I carichi permanenti strutturali sono stati considerati implicitamente nel modello di calcolo a partire dai volumi degli elementi e dai lori pesi unitari.

Di seguito vengono riportati i pesi degli elementi principali dell'opera:

- Peso arco in cls: $145 \text{ m}^3 * 21 \text{ kN/m}^3 \approx 3045 \text{ kN}$
- Peso timpani: 965 m³ * 22 kN/m³ \approx 21230 kN
- Peso medio pila: $398 \text{ m}^3 * 22 \text{ kN/m}^3 \approx 8756 \text{ kN}$
- Peso struttura rinforzo archi: 768 m³ * 25 kN/m³ ≈ 19200 kN
- Peso medio camicia pila: $68 \text{ m}^3 * 25 \text{ kN/m}^3 \approx 1700 \text{ kN}$

5.2 Pesi permanenti non strutturali (g2)

Di seguito i pesi permanenti non strutturali indicati dalle NTC18:

- Sovrastruttura ferroviaria (Armamento e ballast): 0.8m *3.35 m* 20 kN/m³ = 53.6 kN/m
- Nuovo marciapiede e parapetto: 5.0 kN/m (x2)

Come nel caso precedente, si riporta il valore del peso del riempimento in calcestruzzo alleggerito:

• Peso cls alleggerito: 1749 m³ * 18 kN/m³ \approx 31482 kN

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONS L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	18 di 105

5.3 Azioni da traffico ferroviario (q_{TRENI})

La circolazione sul ponte è limitata al traffico del treno reale C3, che ha la seguente conformazione:

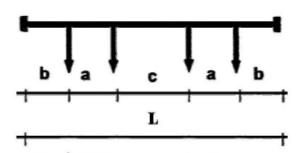


Figura 1: Schema geometrico di un carro

Tabella 3: Carri ferroviari suddivisi per categoria di linea

	Carico					
Categoria	per asse Pa [kN]	per ml p [kN/m]	a [m]	b [m]	c [m]	L [m]
A	160	48	1.8	1.5	6.75	13.35
B1	180	50	1.8	1.5	7.80	14.40
B2	180	64	1.8	1.5	4.65	11.25
C2	200	64	1.8	1.5	5.90	12.50
C3	200	72	1.8	1.5	4.50	11.10
C4	200	80	1.8	1.5	3.40	10.00
D2	225	64	1.8	1.5	7.45	14.05
D3	225	72	1.8	1.5	5.90	12.50
D 4	225	80	1.8	1.5	4.65	11.25
E4	250	80	1.8	1.5	5.9	12.50
E5	250	88	1.8	1.5	4.75	11.35

Coefficiente dinamico (carichi reali):

Si considera la linea sottoposta a standard manutentivo NORMALE.

$$\varphi_{\text{reale}} = 1 + \varphi' + \varphi''^*$$

Quale lunghezza caratteristica l_{ϕ} è stata preso il doppio della luce netta dell'arco (caso 5.6 manuale progettazione).

Manutenzione	Standard
V _{progetto} [Km/h]	80.0
V _{progetto} [m/s]	22.2
L ⊕ [m]	40.0
n0 [Hertz]	8.356
n0 [Hertz]	8.356
K	0.033
φ'	0.034
α	1.010
φ''	0.029
φ	1.064

Frenatura/avviamento

Quale azione di frenatura /avviamento si è fatto riferimento alla massima forza di trazione esercitata dal locomotore C3 =pari a 292 kN.

Serpeggio

È stata considerata un'azione di serpeggio agente a livello della rotaia pari a +/-100 kN.

Forza centrifuga

Considerando un raggio di curvatura pari a circa 480 m e prendendo in considerazione quanto riportato al §5.2.2.3.1 del Manuale di progettazione, la forza centrifuga assume il seguente valore di calcolo.

$$\begin{split} Q_{tk} &= \frac{v^2}{g \cdot r} (f \cdot Q_{vk}) = \frac{V^2}{127 * r} (f \cdot \alpha Q_{vk}) \\ q_{tk} &= \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{V^2}{127 * r} (f \cdot \alpha q_{vk}) \end{split}$$

Forza Centrifuga		
V	80	km/h
r	480	m
qvk	72	kN/m
f (fattore di riduzione)	1	v<120km/h
α	1	
qtk	7.56	kN/m

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	20 di 105

La forza centrifuga si considera agente verso l'esterno curva, in direzione orizzontale applicata alla quota 1.80m dal p.f.

5.4 Azione del vento (q_{VENTO})

Ai fini del calcolo delle azioni indotte dal vento, è stato preso a riferimento un valore di pressione incidente alla superficie dell'opera pari a 1.5 kPa; si considera che detta pressione agisca anche su una fascia di altezza H 4,0m al di sopra del p.f. (sagoma convenzionale del treno).

5.5 Cedimento fondazionale (ε_{ced})

Conformemente al p. 2.5.1.6 del Manuale di Progettazione, considerato che il ponte è continuo, si è tenuto in considerazione di un cedimento differenziale della fondazione, individuato nella posizione più sfavorevole e valutato pari a 1/5000 della luce media delle campate adiacenti (L= $20 \text{ m} \rightarrow \epsilon_{ced} = 4 \text{ mm}$).

5.6 Azioni Sismiche (E)

Nell'opera in oggetto, alla luce dei risultati ottenuti dalle prove geofisiche down-hole (per le quali si rimanda al documento "Relazione geotecnica" RS3K02D09RBVI0500001A) si è ritenuto opportuno eseguire un'analisi di risposta sismica locale (documento "Analisi di risposta sismica locale" RS3K02D09RHVI0500001A).

Tuttavia, gli spettri ottenuti a valle di tale analisi risultano meno cautelativi di quelli di norma, pertanto non sono stati considerati ai fini delle analisi.

Lo spettro sismico di riferimento è stato ricavato a partire dai seguenti parametri:

Coordinate geografiche: 37.073056 Nord; 14.370000 Est

• Vita Nominale: Vn=50 anni (opera su infrastruttura progettata prima delle NTC08)

• Classe d'uso: II (Cu=1)

• Vita di riferimento: Vr= Vn x Cu= 50 anni

Categoria di sottosuolo:

• Categoria Topografica T1

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 CL
 VI 05 00 002
 A
 21 di 105

Datı			
V_N	50.00	anni	Vita nominale
CLASSE	2		Classe d'uso
C_{U}	1	anni	Coefficiente d'uso
V_R	50.0	anni	Vita di riferimento
P_{VR}	10%		Prob. di sup. nel periodo di riferimento
T_R	475	anni	Periodo di ritorno
f	0.0021	1/anno	Frequenza di annuale di superamento

Punto	ID	LONG	LAT	a_{g}	F_0	T_C^*
1	49853	14.36473	37.08144	0.131	2.359	0.426
2	49854	14.42713	37.08092	0.154	2.387	0.373
3	50075	14.36409	37.03145	0.126	2.367	0.426
4	50076	14.42646	37.03092	0.148	2.336	0.418
		LONG	LAT	a_{g}	F_0	T_C^*
P		14.370000	37.073056	0.135	2.362	0.418

Terr. Tipo	C			
Cat. Topog.	ì			
ξ	5%			
η	1			
a_{g0}	0.135	g		
F_0	2.362			
T_C^*	0.418	S		
$\gamma_{\rm I}$	1			
a_g	0.135	g		
q	1			1
β	0.2		Ss	St
			1.500	1.000
Cc	S	ТВ	TC	TD
1.400	1.500	0.195	0.586	2.138

Stato limite salvaguardia della vita (SLV, Tr=475 anni)

 $PGA_{orizzontale:} = 0.202 g$

 $PGA_{verticale} = 0.067 g$

TALFERR GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUIRE L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA							
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	22 di 105		

I grafici seguenti rappresentano l'azione sismica orizzontale di progetto attesa con periodo di ritorno Tr=475 anni.

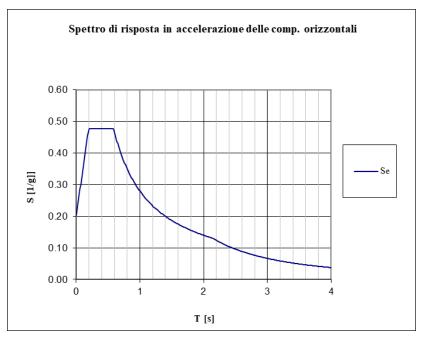


Figura 10: Spettro accelerazioni orizzontali

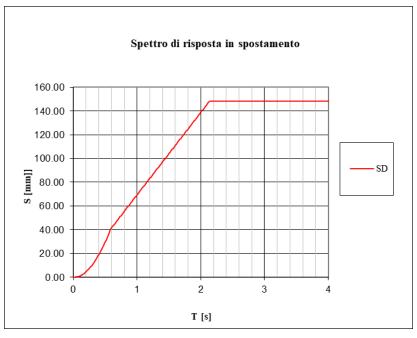


Figura 11: Spettro spostamenti orizzontali

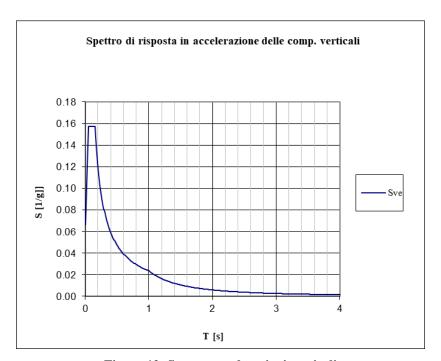


Figura 12: Spettro accelerazioni verticali

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUII L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	24 di 105	

6 ANALISI MODALE

Preliminarmente all'analisi sismica, il modello di calcolo è stato sottoposto ad un'analisi modale onde ricavare utili informazioni circa il comportamento dinamico dell'opera in campo elastico-lineare.

Le immagini seguenti riportano le principali deformate modali dell'opera.

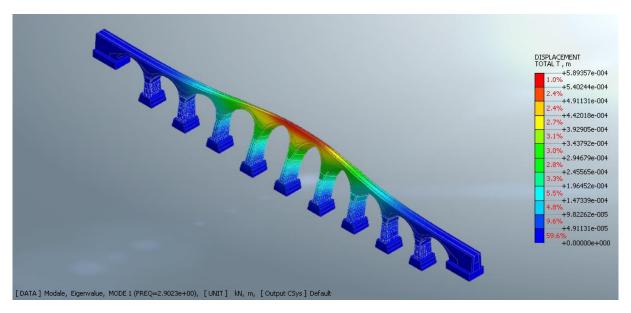


Figura 13: 1° Modo di vibrare

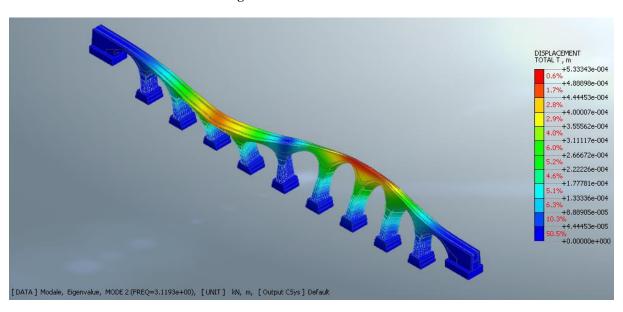


Figura 14: 2° Modo di vibrare

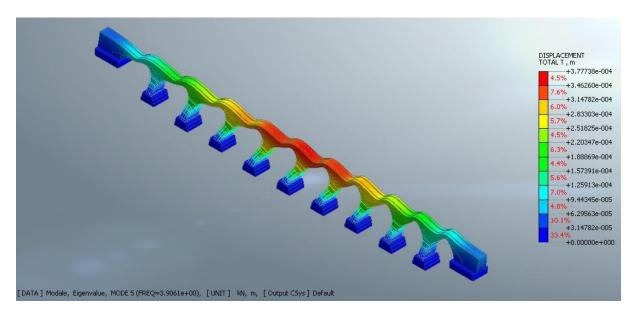


Figura 15: 5° Modo di vibrare

MODO	PERIODO	MX	MY	MZ
1	0.345	0.00%	38.84%	0.00%
2	0.321	0.00%	0.77%	0.00%
3	0.296	0.00%	17.52%	0.00%
4	0.271	0.00%	0.31%	0.00%
5	0.256	67.74%	0.00%	0.00%
6	0.239	0.00%	5.27%	0.00%
7	0.210	0.00%	0.00%	0.00%
8	0.184	0.00%	2.97%	0.00%
9	0.165	0.04%	0.00%	0.00%
10	0.161	0.00%	0.01%	0.00%
11	0.142	0.00%	5.12%	0.00%
12	0.132	0.00%	0.15%	0.00%
13	0.127	0.00%	4.24%	0.00%
14	0.125	7.17%	0.00%	0.00%
15	0.121	0.00%	2.73%	0.00%
16	0.120	0.02%	0.00%	0.00%
17	0.113	0.04%	0.00%	0.00%
18	0.109	0.00%	0.00%	0.00%
19	0.107	0.04%	0.00%	0.00%
20	0.105	0.17%	0.00%	0.00%

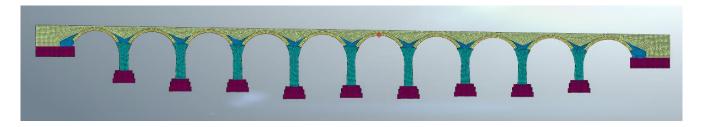
7 ANALISI SISMICA

Lo studio della risposta sismica del viadotto è stato condotto attraverso il metodo della Analisi Statica Non Lineare, altrimenti conosciuta come analisi di Push-Over. Il metodo prevede l'applicazione incrementale di un prefissato profilo di forzanti statiche fino al raggiungimento della capacità ultima dell'opera. Essendo la risposta alle azioni orizzontali influenzata dalle presollecitazioni della struttura, la forzante orizzontale viene fatta agire successivamente all'applicazione dei carichi gravitazionali.

A tale scopo si è fatto uso della funzione *construction stages*, che permette la combinazione degli effetti dell'applicazione di specifici carichi su modelli parziali dell'opera.

Fase	Modello	Carichi
1	Strutture esistente (ad eccezione del riempimento)	Pesi propri
2	Struttura esistente + Interventi + Riempimento (Struttura completa)	Pesi propri degli interventi + pesi permanenti portati
3	Struttura completa	Azione sismica

Sono stati presi inconsiderazione 4 profili di forze orizzontali, due per ciascuna direzione principale di applicazione del sisma (longitudinale, X, e trasversale Y):


- Gruppo 1: profilo di forze proporzionali al modo fondamentale nella direzione considerata;
- Gruppo 2: profilo di forze proporzionali alle masse.

Pertanto, sono state condotte quattro analisi distinte, così denominate:

- 1) SISMA X GRUPPO 1 (FX-GR1)
- 2) SISMA X GRUPPO 2 (FX-GR2)
- 3) SISMA Y GRUPPO 1 (FY-GR1)
- 4) SISMA Y GRUPPO 2 (FY-GR2)

Ciascuna analisi permette di costruire la curva di capacità della struttura, la quale descrive l'andamento dello spostamento di un punto di controllo in funzione del carico applicato. Generalmente come punto di controllo viene assunto il punto sulla struttura che presenta i maggiori spostamenti. Nel caso in esame il punto di controllo è posizionato sulla chiave dell'arco della campata 6 centrale del viadotto.

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEG L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	27 di 105	

La verifica sismica del ponte viene condotta secondo le modalità indicate al § C7.3.4.2 della circolare n.7/2019.

In sintesi il metodo prevede la trasformazione della risposta strutturale del sistema globale in quella di un sistema equivalente ad un grado di libertà, attraverso degli opportuni coefficienti quali il fattore di partecipazione e la massa partecipante mutuati dalla analisi modale della struttura.

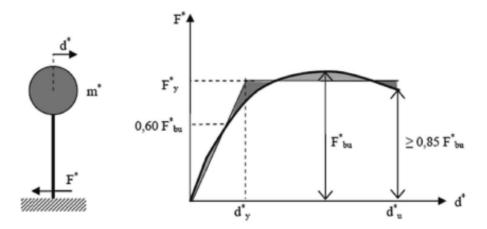
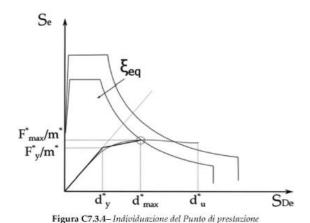



Figura C7.3.1 - Sistema e diagramma bilineare equivalente

Infine, il metodo di verifica sismica si risolve nell'individuazione del Performance Point della struttura vale a dire la coincidenza in termini di spostamento tra la *domanda* sismica e la *capacità* della struttura.

In particolare, fornendo la normativa due distinti metodi per raggiungere tale obiettivo, si specifica che nel caso in esame si è fatto riferimento al **metodo B**, che si basa sulla individuazione di uno spettro di capacità (Capacity Spectrum Method, CSM), in funzione dell'energia dissipata dalla struttura.

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUIR L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	28 di 105	

Detto smorzamento assume un ruolo fondamentale nell'individuazione della capacità sismica della struttura. esso viene calcolato tramite la formula seguente:

$$\xi_{eq}^{(1)} = k \frac{63.7 \left(F_y^{*(0)} d_{\text{max}}^{*(0)} - F_{\text{max}}^{*(0)} d_y^{*(0)} \right)}{F_{\text{max}}^{*(0)} d_{\text{max}}^{*(0)}} + 5 \quad \text{[C7.3.10]}$$

Dove i termini asteriscati rappresentano i valori di forza e spostamento del sistema ad 1GL, bilinearizzato sulla curva di capacità della struttura secondo criteri di equivalenza energetica. Mentre il parametro k rappresenta un opportuno coefficiente correttivo che tiene conto della natura della costruzione e delle sue capacità dissipative.

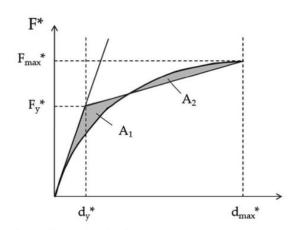


Figura C7.3.3- Bilinearizzazione equivalente

Nel caso in esame è stato adottato il valore più conservativo k=0.33 (bassa capacità dissipativa). Inoltre, considerata la natura dell'opera e i materiali della struttura esistente, si è ritenuto opportuno limitare lo smorzamento equivalente a $\xi_{eq} \le 10\%$.

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUI L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	29 di 105	

7.1 Sisma X - Gruppo 1

Individuazione dello step di collasso della struttura:

STOP STEP	0.053	101141
LF: 1.33	spost. (m)	Forza (KN)

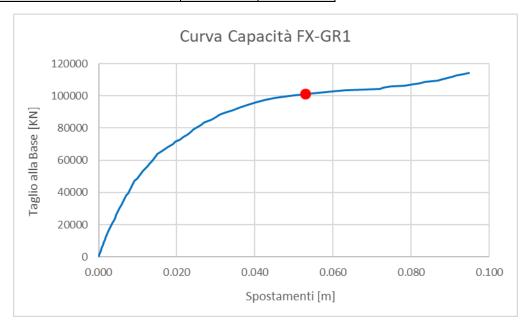


Figura 16: Curva di capacità

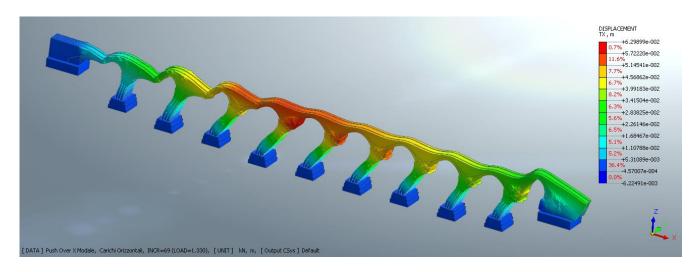


Figura 17: Mappa cromatica spostamento DX step di collasso

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUII L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	30 di 105	

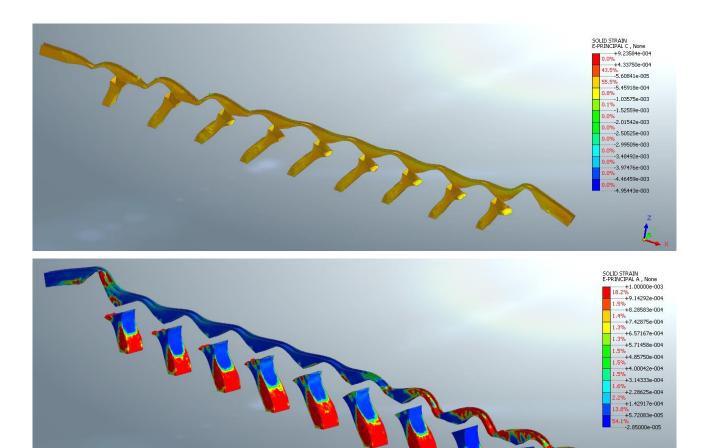


Figura 18: Deformazione principali (compressione sopra, trazione sotto) negli elementi in c.a. di rinforzo allo step collasso

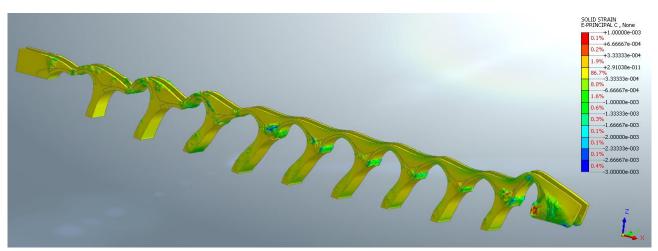


Figura 19: Deformazione principale di compressione nelle murature allo step di collasso

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSE L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	31 di 105

Il punto ultimo viene definito per raggiungimento della deformazione massima di compressione sia all'intradosso dell'arco dell'ultima campata compressa sia nei muri di risvolto delle spalle, come evidenziato nella figura seguente.

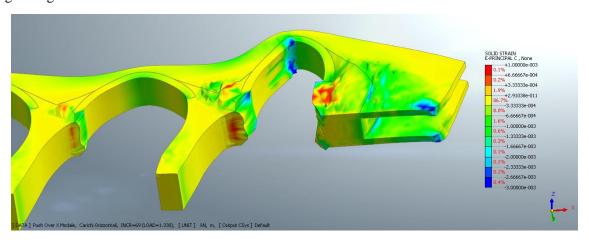


Figura 20: Deformazioni principali di compressione - particolare zone di raggiungimento deformazione massima di compressione

Massa partecipante m*=16359 ton

Fattore di Partecipazione $\Gamma^*=1.46$

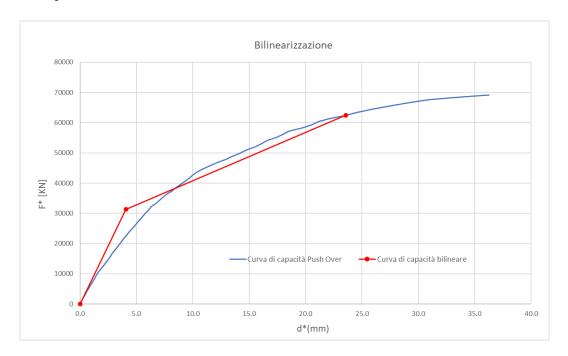


Figura 21: Bilinearizzazione curva di capacità 1GL

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUI L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	32 di 105	

Smorzamento equivalente secondo C7.3.10, Circ.7 del 21/1/2019:

ξeq=10%

Il grafico seguente sintetizza la verifica sismica nel piano accelerazioni/ spostamenti spettrali, risulta evidente che la capacità di spostamento dell'opera risulta superiore a quella richiesta dall'azione sismica di progetto allo SLV (Tr= 475 anni).

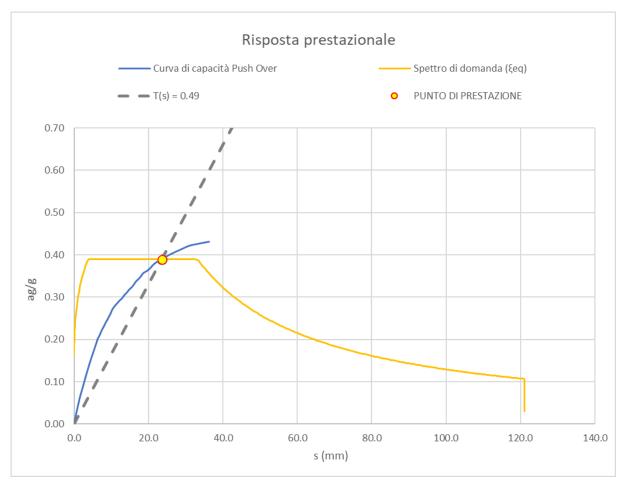


Figura 22: Verifica Domanda vs Capacità sul piano spettrale pseudo accelerazioni – pseudo spostamenti.

d* domanda	23.6	mm
d* capacità	36.3	mm
fattore sicurezza (>1)	1.5	-

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGU L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	33 di 105	

7.2 Sisma X - Gruppo 2

Individuazione dello step di collasso della struttura:

STOP STEP	0.024	107621
LF: 0.46	spost. (m)	Forza (KN)

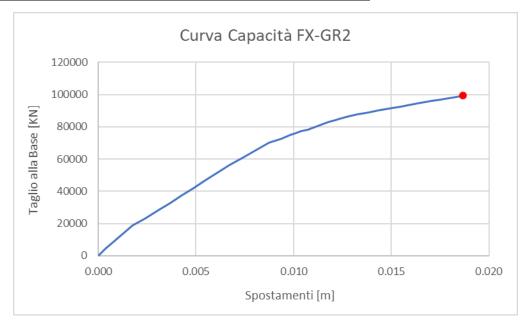


Figura 23: Curva di capacità

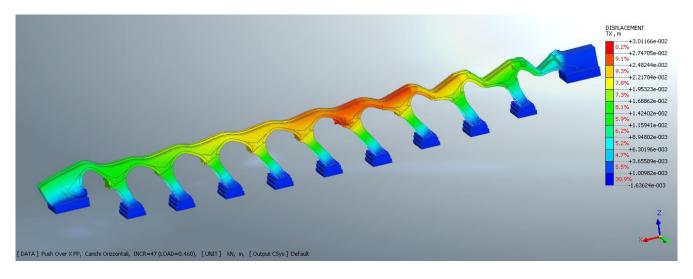


Figura 24: Mappa cromatica spostamento DX step di collasso

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUI L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	34 di 105

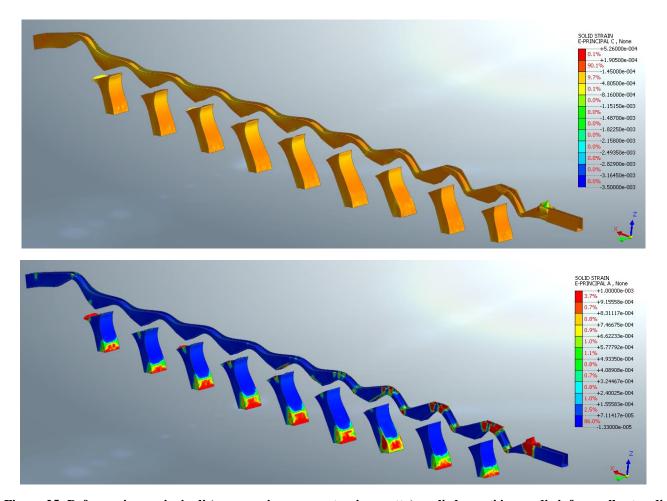


Figura 25: Deformazione principali (compressione sopra, trazione sotto) negli elementi in c.a. di rinforzo allo step di collasso

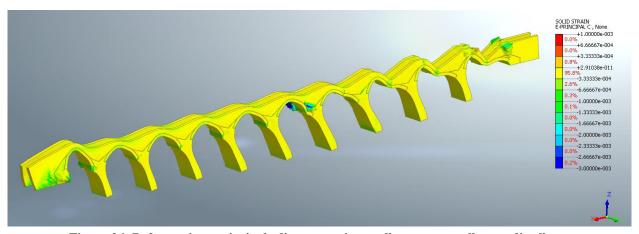


Figura 26: Deformazione principale di compressione nella muratura allo step di collasso

Massa partecipante: m*=24150 ton

Fattore di Partecipazione: $\Gamma^*=1.0$

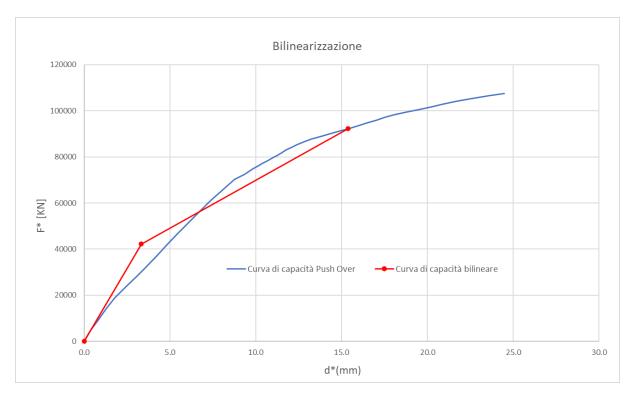


Figura 27: Bilinearizzazione curva di capacità 1GL

Smorzamento equivalente secondo C7.3.10, Circ.7 del 21/1/2019:

ξeq=10%

Il grafico seguente sintetizza la verifica sismica nel piano accelerazioni/ spostamenti spettrali, risulta evidente che la capacità di spostamento dell'opera risulta superiore a quella richiesta dall'azione sismica di progetto allo SLV (Tr= 475 anni).

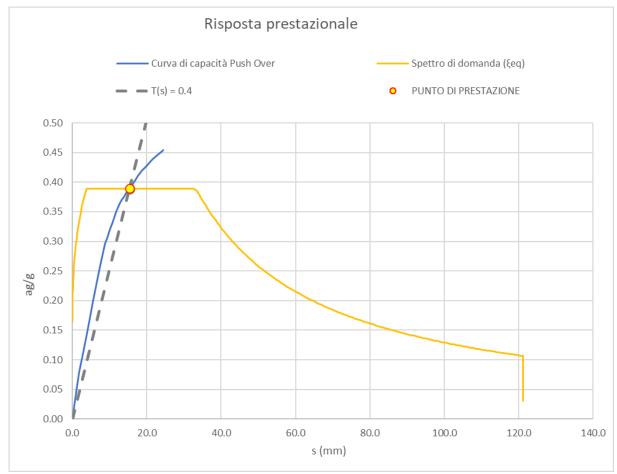


Figura 28: Verifica Domanda vs Capacità sul piano spettrale pseudo accelerazioni – pseudo spostamenti.

d* domanda	15.4	mm
d* capacità	24.5	mm
fattore sicurezza (>1)	1.6	

7.3 Sisma Y - Gruppo 1

Individuazione dello step di collasso della struttura:

STOP STEP	0.097	37176
(LF = 0.85)	spost. (m)	Forza (KN)

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEG L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	37 di 105

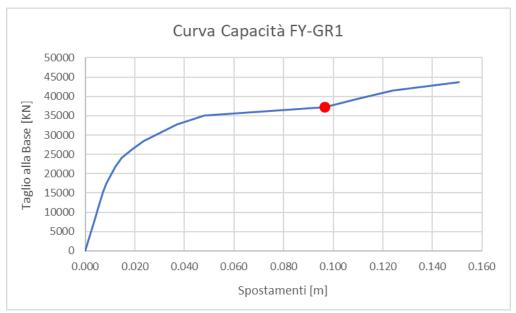


Figura 29: Curva di capacità

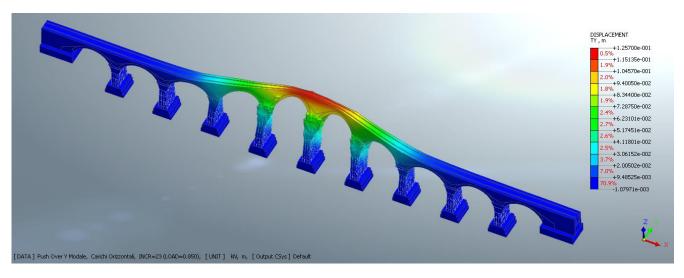


Figura 30: Mappa cromatica spostamento DY step di collasso

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUIF L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	38 di 105

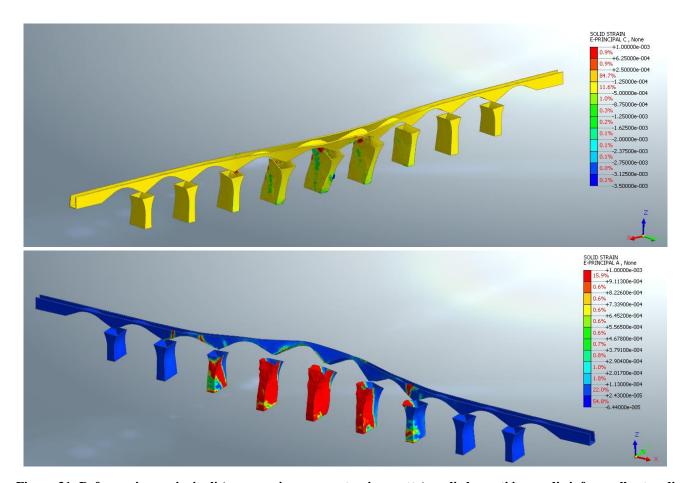


Figura 31: Deformazione principali (compressione sopra, trazione sotto) negli elementi in c.a. di rinforzo allo step di collasso

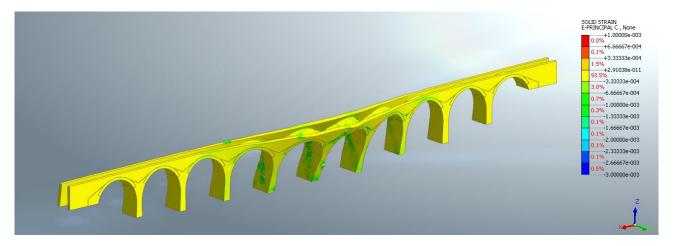


Figura 32: Deformazione principale di compressione nella muratura allo step di collasso

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSE L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	39 di 105

Il punto ultimo viene definito per raggiungimento della deformazione massima di compressione nel lato compresso della camicia di calcestruzzo, come mostrato nell'immagine seguente.

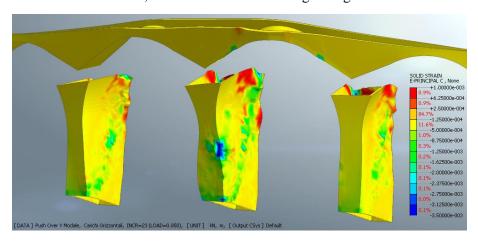


Figura 33: Deformazioni principali di compressione - particolare zone di raggiungimento deformazione massima di compressione

Massa partecipante: m*=9380 ton

Fattore di Partecipazione: $\Gamma^*=1.486$

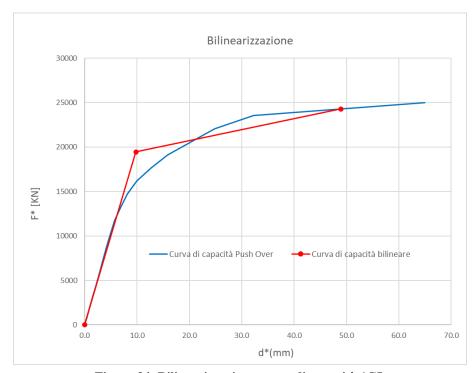


Figura 34: Bilinearizzazione curva di capacità 1GL

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGU L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	40 di 105

Smorzamento equivalente secondo C7.3.10, Circ.7 del 21/1/2019:

ξeq=10%

Il grafico seguente sintetizza la verifica sismica nel piano accelerazioni/spostamenti spettrali, risulta evidente che la capacità di spostamento dell'opera risulta superiore a quella richiesta dall'azione sismica di progetto allo SLV (Tr= 475 anni).

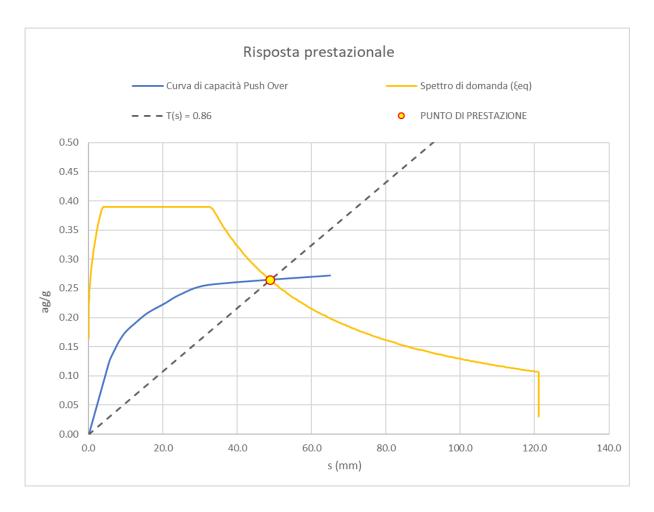


Figura 35: Verifica Domanda vs Capacità sul piano spettrale pseudo accelerazioni – pseudo spostamenti.

d* domanda	48.9	mm
d* capacità	64.9	mm
fattore sicurezza (>1)	1.3	-

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUIR L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	41 di 105	

7.4 Sisma Y - Gruppo 2

Individuazione dello step di collasso della struttura:

STOP STEP	0.056	107621
(LF 0.46)	spost. (m)	Forza (KN)

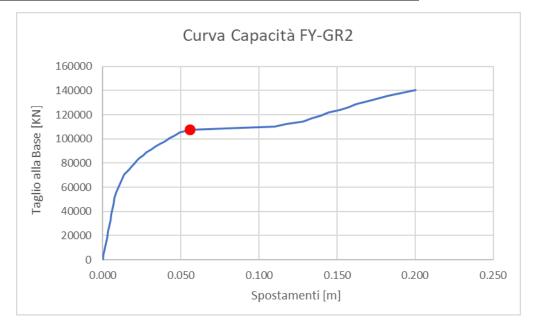


Figura 36: Curva di capacità

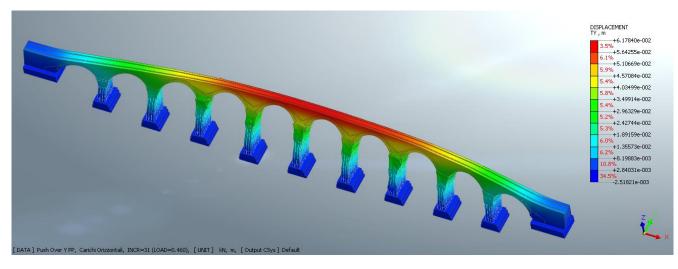


Figura 37: Mappa cromatica spostamento DY step di collasso

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGI L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	42 di 105

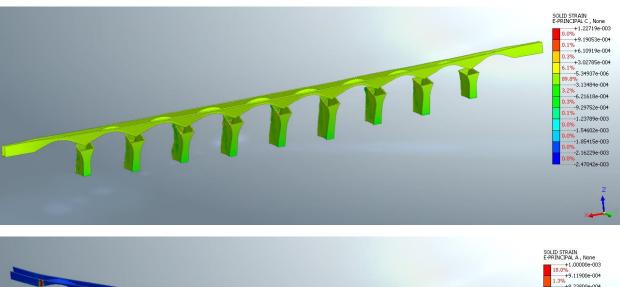


Figura 38: Deformazione principali (compressione sopra, trazione sotto) negli elementi in c.a. di rinforzo allo step collasso

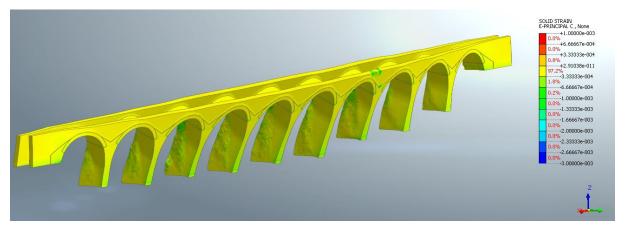


Figura 39: Deformazione principale di compressione nella muratura allo step di collasso

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGU L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	43 di 105

Nell'immagine seguente si riportano le deformazioni principali di compressione allo step successivo rispetto a quello definito come collasso. Il punto ultimo viene definito cautelativamente allo step precedente per raggiungimento della deformazione massima di compressione nel lato compresso della camicia di calcestruzzo per una zona molto diffusa.

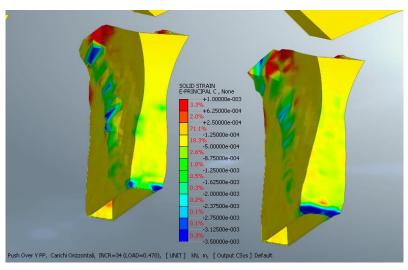


Figura 40: Deformazioni principali di compressione - particolare zone di raggiungimento deformazione massima di compressione allo step successivo dello step di collasso.

Massa partecipante: m*=24150 ton

Fattore di Partecipazione: $\Gamma^*=1.0$

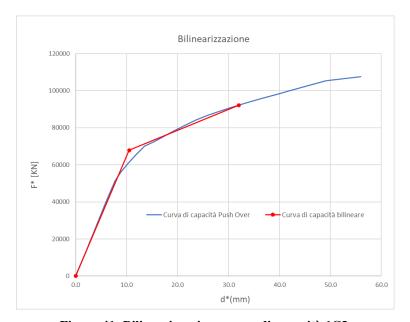


Figura 41: Bilinearizzazione curva di capacità 1GL

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGU L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	44 di 105

Smorzamento equivalente secondo C7.3.10, Circ.7 del 21/1/2019:

ξeq=10%

Il grafico seguente sintetizza la verifica sismica nel piano accelerazioni/spostamenti spettrali, risulta evidente che la capacità di spostamento dell'opera risulta superiore a quella richiesta dall'azione sismica di progetto allo SLV (Tr= 475 anni).

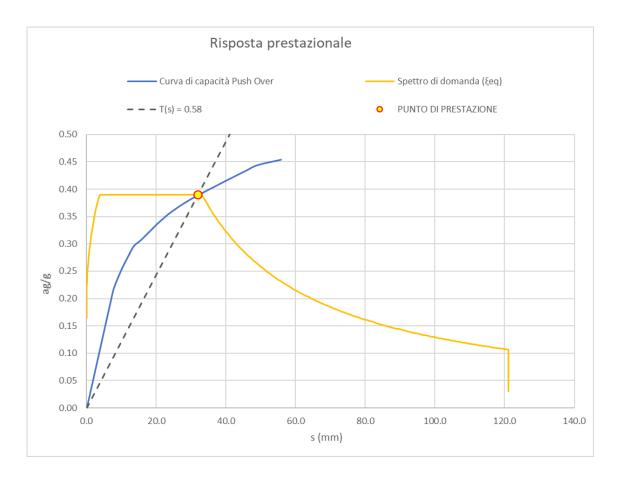


Figura 42: Verifica Domanda vs Capacità sul piano spettrale pseudo accelerazioni – pseudo spostamenti.

d* domanda	32.0	mm
d* capacità	55.9	mm
fattore sicurezza	1.7	-

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEGUIR L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA						
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	45 di 105	

7.5 Sintesi dei risultati

La tabella seguente riporta in formato sintetico i risultati dell'analisi globale dell'opera rapportata all'azione sismica di progetto allo SLV (Tr= 475 anni).

Il fattore di sicurezza FS rappresenta il rapporto tra lo spostamento richiesto alla struttura dal sisma di progetto (domanda) e lo spostamento limite della struttura (capacità).

	D*domanda	D*capacità	FS
FX-GR1	23.6	36.3	1.5
FX-GR2	15.4	24.5	1.6
FY-GR1	48.9	64.9	1.3
FY-GR2	32.0	55.9	1.7
		MIN FS	1.3

GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	46 di 105

8 VERIFICA DELL'INTERVENTO DI RINFORZO DEGLI ARCHI

L'analisi delle sollecitazioni in condizioni non sismiche dell'opera è stata condotta a partire dal modello globale descritto in precedenza disattivando le non linearità di materiale. In altre parole per i carichi non sismici, si assume che l'opera reagisca con un comportamento elastico lineare.

Ai fini dell'applicazione del carico da traffico ferroviario, il quale è stato considerato agente nel modello in maniera uniformemente distribuita, sono state caricate le campate in modo da massimizzare gli effetti nella sezione di verifica.

Le analisi sismiche, invece, sono state condotte mediante modelli non lineari, applicando una sequenza costruttiva che prevede prima l'applicazione di carichi verticali e successivamente quelli sismici.

8.1 Sollecitazioni elementari

Le sollecitazioni elementari sono state ottenute dal modello mediante l'integrazione su un prefissato piano di taglio (sezione) delle forze nodali associate ai vari elementi tridimensionali che costituiscono il modello di calcolo.

Il piano di taglio è stato individuato in corrispondenza della chiave dell'arcata in quanto la sezione dell'intervento di rinforzo ha altezza minima (80 cm).

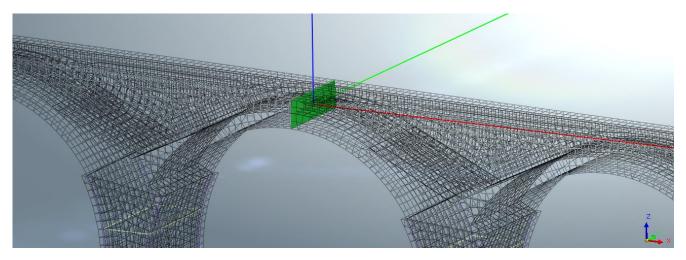


Figura 43: Sezione di integrazione delle forze nodali (Assi di riferimento: rosso=X, verde=Y, blu=Z)

Il piano di taglio è stato quindi effettuato su tutta la sezione, comprendendo anche la struttura esistente (in questo caso la sezione dell'arco, i timpani e il riempimento). La sezione a cui si farà riferimento per le verifiche strutturali sarà quella composta dalla soletta e dall'arco sottostante. Si precisa che a tale sezione composta è stata assegnata una classe di calcestruzzo più scadente, per tenere in conto della differenza prestazionale tra i calcestruzzi dei due elementi.

Si specifica che per i cedimenti sono stati considerati due casi di cedimento delle pile adiacenti alla sezione di verifica in modo da massimizzare/minimizzare le sollecitazioni generate.

Per le azioni sismiche sono stati riportati i valori per i due gruppi di azioni già citati nell'analisi push over, e la componente verticale SLV Z, andando a considerare l'effettiva accelerazione di sito per sisma verticale.

azioni elementari	N	Vz	Vy	Му	Mz
G1	-2114	118	1	-1322	113
G2	-66	4	0	-49	4
T1	-303	19	1	-463	34
T2	-336	27	1	-473	35
Vento	-17	0	-6	-7	-81
Frenatura	5	9	0	2	0
Cedimento inf.	-376	874	2	-109	15
Cedimento sup.	-434	-875	-1	-264	20
Serpeggio	0	0	-24	0	-70
FX GR1	-12525	2052	-3	-655	473
FX GR2	-8724	1738	-12	-513	-63
FY GR1	-7669	234	474	-885	-18307
FY GR2	-2855	174	-55	-504	-3424
SLV Z	-141	8	0	-88	8
Centrifuga	-2	1	-25	-1	-193

8.2 Combinazioni di carico

Come già indicato in precedenza in fase statica (non sismica), il modello di calcolo è elastico pertanto vale il principio di sovrapposizione degli effetti, quindi le varie sollecitazioni elementari vengono analizzate separatamente e poi assemblate secondo le varie combinazioni di riferimento.

Le analisi sismiche sono state condotte mediante modelli non lineari, applicando una sequenza costruttiva che prevede prima l'applicazione di carichi verticali poi quelli sismici. Il modello pertanto fornisce risultati complessivi (intesi come tensioni, deformazioni, sollecitazioni, etc.), su cui non è possibile applicare la regola della sovrapposizione degli effetti. Tuttavia ai fini delle verifiche strutturali onde soddisfare le richieste normative in merito di combinazione dei carichi, dell'elemento di rinforzo, si è optato per forzare la regola teorica summenzionata associando i risultati delle analisi sismiche non lineari con gli altri carichi eventualmente previsti dalle combinazioni da normativa e desunti dal modello di calcolo lineare (treni di carico, cedimenti etc..). Tale approccio è certamente conservativo in termini di sollecitazioni agenti sugli elementi strutturali. Diversamente, non risulta possibile combinare tra loro i risultati delle analisi sismiche, che sono state condotte separatamente per le direzioni principali dell'opera (longitudinale e trasversale). Pertanto le combinazioni di carico impiegate per la verifica contempleranno esclusivamente l'una o l'altra direzione di applicazione dell'azione sismica orizzontale, il sisma verticale invece è stato valutato come un'azione statica pertanto ricompreso nelle combinazioni.

GRUPPO FERROVIE DELLO STATO	RIPRISTING MIGLIORA L'ADEGUA LOTTO 2: I	NSEGUIRE				
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	48 di 105

La tabella seguente riporta il dettaglio delle combinazioni di carico impiegate nella verifica dell'elemento strutturale.

• Condizioni statiche

	G1	G2	Treno 1C	Treno 2C	Frenatura	Serpeggio	Centrifuga	Vento	Ced. inf.	Ced. sup.
SLU1	1.35	1.5	1.45	0	1.45	1.45	1.45	0.9	0	1.2
SLU2	1.35	1.5	0	1.45	1.45	1.45	1.45	0.9	0	1.2
SLU3	1.35	1.5	1.16	0	1.16	1.16	1.16	1.5	0	1.2
SLU4	1.35	1.5	0	1.16	1.16	1.16	1.16	1.5	0	1.2
SLU5	1.35	1.5	1.45	0	1.45	1.45	1.45	0.9	1.2	0
SLU6	1.35	1.5	0	1.45	1.45	1.45	1.45	0.9	1.2	0
SLU7	1.35	1.5	1.16	0	1.16	1.16	1.16	1.5	1.2	0
SLU8	1.35	1.5	0	1.16	1.16	1.16	1.16	1.5	1.2	0
SLU9	1.35	1.5	0	0	0	0	0	0	1.2	0
SLU10	1.35	1.5	0	0	0	0	0	0	0	1.2
SLU11	1	1	1.45	0	1.45	1.45	1.45	0.9	0	1.2
SLU12	1	1	0	1.45	1.45	1.45	1.45	0.9	0	1.2
SLU13	1	1	1.16	0	1.16	1.16	1.16	1.5	0	1.2
SLU14	1	1	0	1.16	1.16	1.16	1.16	1.5	0	1.2
SLU15	1	1	1.45	0	1.45	1.45	1.45	0.9	1.2	0
SLU16	1	1	0	1.45	1.45	1.45	1.45	0.9	1.2	0
SLU17	1	1	1.16	0	1.16	1.16	1.16	1.5	1.2	0
SLU18	1	1	0	1.16	1.16	1.16	1.16	1.5	1.2	0
SLU19	1	1	0	0	0	0	0	0	1.2	0
SLU20	1	1	0	0	0	0	0	0	0	1.2
SLE-K1	1	1	1	0	1	1	1	0.6	0	1
SLE-K2	1	1	0	1	1	1	1	0.6	0	1
SLE-K3	1	1	0.8	0	0.8	0.8	0.8	1	0	1
SLE-K4	1	1	0	0.8	0.8	0.8	0.8	1	0	1
SLE-K5	1	1	1	0	1	1	1	0.6	1	0
SLE-K6	1	1	0	1	1	1	1	0.6	1	0
SLE-K7	1	1	0.8	0	0.8	0.8	0.8	1	1	0
SLE-K8	1	1	0	0.8	0.8	0.8	0.8	1	1	0
SLE-K9	1	1	0	0	0	0	0	0	1	0
SLE-K10	1	1	0	0	0	0	0	0	0	1
SLE-QP1	1	1	0.2	0	0.2	0.2	0.2	0	0	1
SLE-QP2	1	1	0	0.2	0.2	0.2	0.2	0	0	1
SLE-QP3	1	1	0.2	0	0.2	0.2	0.2	0	1	0
SLE-QP4	1	1	0	0.2	0.2	0.2	0.2	0	1	0
SLE-QP5	1	1	0	0	0	0	0	0	1	0
SLE-QP6	1	1	0	0	0	0	0	0	0	1

SLE K: Combinazione caratteristica stati lime di esercizio

SLE QP: Combinazione quasi permanente stati lime di esercizio

Condizioni sismiche

	Treno 1C	Treno 2C	Frenatura	Centrifuga	Serpeggio	FX gr1	FX gr2	FY gr1	FY gr2	SLV Z
SLV1	0.2	0	0.2	0.2	0.2	1	0	0	0	0.3
SLV2	0.2	0	0.2	0.2	0.2	1	0	0	0	-0.3
SLV3	0.2	0	0.2	0.2	0.2	0	1	0	0	0.3
SLV4	0.2	0	0.2	0.2	0.2	0	1	0	0	-0.3
SLV5	0.2	0	0.2	0.2	0.2	0	0	1	0	0.3
SLV6	0.2	0	0.2	0.2	0.2	0	0	1	0	-0.3
SLV7	0.2	0	0.2	0.2	0.2	0	0	0	1	0.3
SLV8	0.2	0	0.2	0.2	0.2	0	0	0	1	-0.3
SLV9	0	0.2	0.2	0.2	0.2	1	0	0	0	0.3
SLV10	0	0.2	0.2	0.2	0.2	1	0	0	0	-0.3
SLV11	0	0.2	0.2	0.2	0.2	0	1	0	0	0.3
SLV12	0	0.2	0.2	0.2	0.2	0	1	0	0	-0.3
SLV13	0	0.2	0.2	0.2	0.2	0	0	1	0	0.3
SLV14	0	0.2	0.2	0.2	0.2	0	0	1	0	-0.3
SLV15	0	0.2	0.2	0.2	0.2	0	0	0	1	0.3
SLV16	0	0.2	0.2	0.2	0.2	0	0	0	1	-0.3

8.3 Verifiche strutturali

Come precedentemente detto, in via prudenziale, le sollecitazioni agenti in chiave dell'arco non sono state associate a tutta la struttura, vale a dire che sono state ignorate ai fini della resistenza alcune porzioni (parte dell'arco in calcestruzzo e murature dei timpani).

La nuova struttura è realizzata con un calcestruzzo C32/40 armato con ferri classe B450C tuttavia ai fini delle verifiche è stato utilizzato un calcestruzzo C20/25 per tenere in conto delle caratteristiche di resistenza dell'arco. Di seguito sono esplicitati i valori di calcolo impiegati per le verifiche:

CLS C20/25	Acciaio B450C
fcd = 11.3 Mpa	fyd= 391 MPa
εcu = 0.35%	εsu 5%

8.3.1 <u>Verifiche pressoflessione</u>

La sezione di verifica è rappresentata nell'immagine seguente, mentre i dati geometrici principali sono riportati nella tabella seguente.

dati sez	
B tot	3.30 m
H max	1.80 m

GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	50 di 105

B trave	0.40 m
Sp. soletta	0.20 m
ρ _s (Della soletta)	2.2%

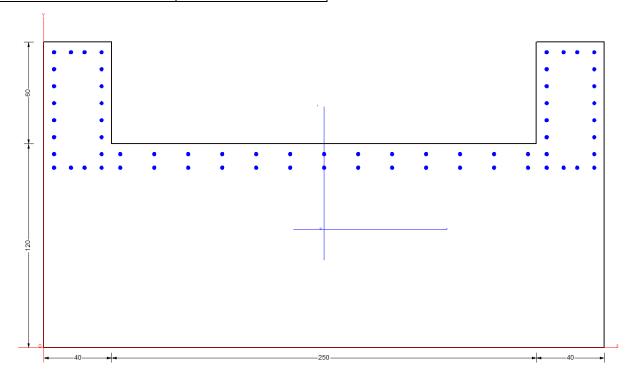


Figura 44: Sezione di verifica

Si riporta il riepilogo dei livelli di sicurezza ottenuti per ciascuna combinazione nei riguardi delle verifiche a pressoflessione eseguite.

• Condizioni statiche

	Combinazioni Statiche SLU											
Chiave Arco	N	Vz	Vy	Му	Mz	Rd/Ed						
comb	(kN)	(kN)	(kN)	(kNm)	(kNm)	-						
SLU1	-3926	-844	-77	-2851	-224	1.86						
SLU2	-3974	-831	-76	-2865	-222	1.86						
SLU3	-3849	-852	-66	-2721	-206	1.95						
SLU4	-3887	-842	-66	-2732	-204	1.95						
SLU5	-3855	1255	-73	-2665	-230	1.99						
SLU6	-3903	1268	-73	-2679	-227	2						
SLU7	-3778	1247	-63	-2535	-212	2.09						
SLU8	-3816	1257	-62	-2546	-210	2.09						

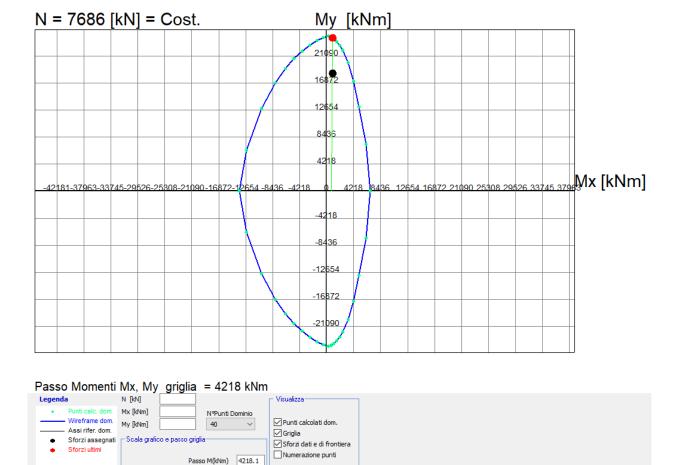
RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	51 di 105

SLU9	-3404	1213	4	-1988	177	2.65
SLU10	-3475	-886	0	-2175	182	2.4
SLU11	-3153	-887	-77	-2364	-265	2.08
SLU12	-3200	-874	-77	-2378	-263	2.08
SLU13	-3076	-895	-67	-2234	-247	2.2
SLU14	-3114	-885	-67	-2245	-246	2.2
SLU15	-3082	1212	-73	-2178	-271	2.27
SLU16	-3130	1224	-73	-2192	-269	2.26
SLU17	-3005.1	1204	-63	-2048	-253	2.41
SLU18	-3043.1	1214	-63	-2059	-251	2.4
SLU19	-2631.2	1170	3	-1501	135	3.28
SLU20	-2701.6	-929	0	-1688	141	2.89

Condizioni sismiche

	Comb	inazioni S	Sismich	e SLV		
Chiave Arco	N	Vz	Vy	Му	Mz	Rd/Ed
comb	(kN)	(kN)	(kN)	(kNm)	(kNm)	-
SLV1	-12627	2060	-13	-774	429	28.6
SLV2	-12543	2055	-13	-721	425	26.69
SLV3	-8827	1746	-21	-632	-106	65.27
SLV4	-8742	1741	-22	-579	-111	54.47
SLV5	-7771	242	464	-1003	-18351	1.3
SLV6	-7686	237	464	-951	-18355	1.3
SLV7	-2958	182	-64	-623	-3467	4.93
SLV8	-2873	178	-64	-570	-3472	5.03
SLV9	-12634	2062	-13	-776	430	28.7
SLV10	-12549	2057	-13	-723	425	26.71
SLV11	-8833	1747	-21	-634	-106	65.65
SLV12	-8749	1743	-22	-581	-111	54.77
SLV13	-7778	244	464	-1005	-18350	1.3
SLV14	-7693	239	464	-953	-18355	1.3
SLV15	-2964	184	-64	-625	-3467	4.93
SLV16	-2880	179	-64	-572	-3472	5.03

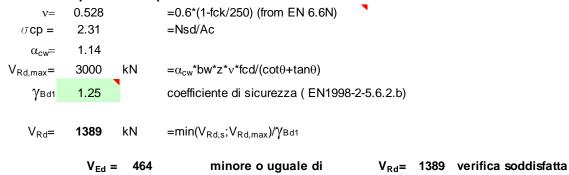
8.3.2 Verifiche taglio

La verifica a taglio è stata eseguita prendendo il taglio massimo tra le condizioni statiche e quelle sismiche.

• DIREZIONE TRASVERSALE (Y)

La sezione resistente è costituita dalla soletta inferiore, si prevede una armatura resistente a taglio costituita da 2 ϕ 12 passo 150 mm.

Verifica a taglio in accordo a EC2-2 Caratteristiche dei materiali


<u>Cls</u>			
Rck=	37	MPa	
fck=	30	MPa	
γc=	1.50		
fcm=	38	MPa	
αcc=	0.85		coefficiente che tiene conto degli effetti a lungo termine, var 0.8-1
fcd=	17.0	MPa	
fctm=	2.90	MPa	
fctk _{0.05} =	2.03	MPa	
fctk _{0.95} =	3.77	MPa	
αct=	1.00		coefficiente che tiene conto degli effetti a lungo termine, var 0.8-1
fctd=	1.35	MPa	
Acciaio c.a.			
fyk=	450	MPa	
γs=	1.15	MD	
fyd=	391	MPa	
Azioni di taglio		γ	404.131
Aed	464		464 kN
		V _{Ed} =	: 464 kN
Nsd=	2631	KN	sforzo normale
bw =	0.200	m	larghezza (6.16)
h=	3.330	m	altezza totale
C=	0.060	m	copriferro altezza utile
d = Ac=	3.270 1.140	m mq	area totale
AC=	1.140	IIIq	area totale

Resistenza delle staffe:

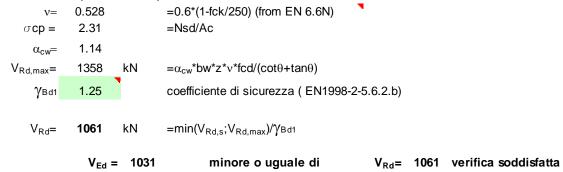
φ w =	12	mm	diametro staffa			
n=	2.00		numero braccia			
Asw=	2.26	cmq				
z=	2.94	m	=0.9*d			
senα=	1		α angolo tra le staffe e l'asse	della trave (α=	90° per	staffe verticali)
ρ w =	0.75	%	$=Asw/(s*bw*sin\alpha)*100>=$			
s=	0.15	m	=passo staffe <=	2.45	m	$=0.75*d*(1+cot\alpha)$
$\theta =$	45.0	0				
$V_{Rd,s} =$	1737	kN	=Asw/s*z* fywd *cotθ			

TALFERR GRUPPO FERROVIE DELLO STATO	MIGLIORA L'ADEGUA	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CO L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	54 di 105	

Resistenza del puntone compresso:

• DIREZIONE VERTICALE (Z)

La sezione resistente è costituita dalle due travi rettangolari laterali, si prevede una armatura resistente a taglio costituita da $2 \phi 14$ passo 150 mm.



Resistenza delle staffe:

φ w =	18	mm	diametro staffa			
n=	3.00		numero braccia			
Asw=	7.63	cmq				
z=	0.67	m	=0.9*d			
senα=	1		α angolo tra le staffe e l'asse della	a trave (α=	90° per s	staffe verticali)
ρ w =	1.27	%	=Asw/(s*bw*sin α)*100 >=			
s=	0.15	m	=passo staffe <=	0.56	m	$=0.75*d*(1+cot\alpha)$
θ =	45.0	0				
$V_{Rd,s}=$	1326	kN	=Asw/s*z* fywd *cotθ			

GRUPPO FERROVIE DELLO STATO	RIPRISTIN MIGLIORA L'ADEGUA LOTTO 2: I	COI	CONSEGUIRE			
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	55 di 105

Resistenza del puntone compresso:

9 VERIFICA DELL'INCAMICIATURA DELLE PILE

9.1 Sollecitazioni elementari

Le sollecitazioni elementari sono state ottenute dal modello mediante l'integrazione su un prefissato piano di taglio (sezione) delle forze nodali associate ai vari elementi tridimensionali che costituiscono il modello di calcolo.

Il piano di taglio è stato individuato in corrispondenza del pinto appartenente alla pila di maggiore altezza. Si è scelto di tagliare il plinto e non lo spiccato pila, a seguito di considerazioni sulla diffusione del carico operata dal programma. Una volta estratte, le sollecitazioni sono state poi riportate sul piano di interfaccia plinto - pila.

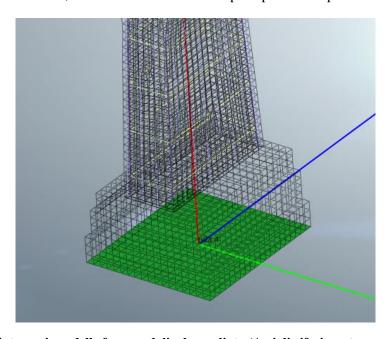


Figura 45: Sezione di integrazione delle forze nodali a base plinto (Assi di riferimento: rosso=Z, verde=X, blu=Y)

Il piano di taglio, come si evince dalla figura, è stato effettuato su tutta la sezione, comprendendo anche la struttura esistente. Si è scelto però di far portare tutte le sollecitazioni alla struttura di rinforzo, nella fattispecie la camicia in calcestruzzo.

Si specifica che per i cedimenti sono stati considerati due casi di cedimento delle pile adiacenti alla sezione di verifica in modo da massimizzare/minimizzare le sollecitazioni generate.

Per le azioni sismiche sono stati riportati i valori per i due gruppi di azioni già citati nell'analisi push over, e la componente verticale SLV Z, andando a considerare l'effettiva accelerazione di sito per sisma verticale.

Si precisa che la voce G1_anteoperam comprende i pesi propri della struttura esistente svuotata dal riempimento originario. Le sollecitazioni derivanti dalla differenza tra G1 e G1_anteoperam saranno quindi utilizzate per le verifiche, in modo da tenere in conto la aliquota di carico da peso proprio che la camicia di intervento deve portare.

Di seguito le azioni elementari riportate allo spiccato pila.

azioni elementari	N	Vx	Vy	Му	Mx	Т
G1	-22592	-39	-1	243	140	5
G2	-229	-1	0	2	-2	0
T1	-915	229	0	1120	-2	0
T2	-1831	-15	-1	-57	-6	0
Vento	-22	0	355	-2	-6361	75
Frenatura	0	14	0	128	0	0
Cedimento inf.	1771	-8	2	-140	-33	-1
Cedimento sup.	-1004	-493	-1	-2191	17	-7
Serpeggio	0	0	52	0	-1219	22
FX GR1	-23302	7246	-1	58276	-33	177
FX GR2	-23028	6747	-18	46161	575	-85
FY GR1	-22223	-344	7547	-1086	-134520	3407
FY GR2	-22736	-21	8712	636	-123980	2561
SLV Z	-1506	-3	0	16	9	0
G1_anteoperam	-16054	-37	-1	95	131	3
Centrifuga	0	0	941	0	-21458	243

9.2 Combinazioni di carico

Come già indicato in precedenza in fase statica (non sismica), il modello di calcolo è elastico pertanto vale il principio di sovrapposizione degli effetti, quindi le varie sollecitazioni elementari vengono analizzate separatamente e poi assemblate secondo le varie combinazioni di riferimento.

Le analisi sismiche sono state condotte mediante modelli non lineari, applicando una sequenza costruttiva che prevede prima l'applicazione di carichi verticali poi quelli sismici. Il modello pertanto fornisce risultati

complessivi (intesi come tensioni, deformazioni, sollecitazioni, etc.), su cui non è possibile applicare la regola della sovrapposizione degli effetti. Tuttavia ai fini delle verifiche strutturali onde soddisfare le richieste normative in merito di combinazione dei carichi, dell'elemento di rinforzo, si è optato per forzare la regola teorica summenzionata associando i risultati delle analisi sismiche non lineari con gli altri carichi eventualmente previsti dalle combinazioni da normativa e desunti dal modello di calcolo lineare (treni di carico, cedimenti etc..). Tale approccio è certamente conservativo in termini di sollecitazioni agenti sugli elementi strutturali. Diversamente, non risulta possibile combinare tra loro i risultati delle analisi sismiche, che sono state condotte separatamente per le direzioni principali dell'opera (longitudinale e trasversale). Pertanto le combinazioni di carico impiegate per la verifica contempleranno esclusivamente l'una o l'altra direzione di applicazione dell'azione sismica orizzontale, il sisma verticale invece è stato valutato come un'azione statica pertanto ricompreso nelle combinazioni.

La tabella seguente riporta il dettaglio delle combinazioni di carico impiegate nella verifica dell'elemento strutturale.

Condizioni statiche

	G1	G2	Treno 1C	Treno 2C	Frenatura	Serpeggio	Centrifuga	Vento	Ced. inf.	Ced. sup.
SLU1	1.35	1.5	1.45	0	1.45	1.45	1.45	0.9	0	1.2
SLU2	1.35	1.5	0	1.45	1.45	1.45	1.45	0.9	0	1.2
SLU3	1.35	1.5	1.16	0	1.16	1.16	1.16	1.5	0	1.2
SLU4	1.35	1.5	0	1.16	1.16	1.16	1.16	1.5	0	1.2
SLU5	1.35	1.5	1.45	0	1.45	1.45	1.45	0.9	1.2	0
SLU6	1.35	1.5	0	1.45	1.45	1.45	1.45	0.9	1.2	0
SLU7	1.35	1.5	1.16	0	1.16	1.16	1.16	1.5	1.2	0
SLU8	1.35	1.5	0	1.16	1.16	1.16	1.16	1.5	1.2	0
SLU9	1.35	1.5	0	0	0	0	0	0	1.2	0
SLU10	1.35	1.5	0	0	0	0	0	0	0	1.2
SLU11	1	1	1.45	0	1.45	1.45	1.45	0.9	0	1.2
SLU12	1	1	0	1.45	1.45	1.45	1.45	0.9	0	1.2
SLU13	1	1	1.16	0	1.16	1.16	1.16	1.5	0	1.2
SLU14	1	1	0	1.16	1.16	1.16	1.16	1.5	0	1.2
SLU15	1	1	1.45	0	1.45	1.45	1.45	0.9	1.2	0
SLU16	1	1	0	1.45	1.45	1.45	1.45	0.9	1.2	0
SLU17	1	1	1.16	0	1.16	1.16	1.16	1.5	1.2	0
SLU18	1	1	0	1.16	1.16	1.16	1.16	1.5	1.2	0
SLU19	1	1	0	0	0	0	0	0	1.2	0
SLU20	1	1	0	0	0	0	0	0	0	1.2

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	58 di 105

SLE-K1	1	1	1	0	1	1	1	0.6	0	1
SLE-K2	1	1	0	1	1	1	1	0.6	0	1
SLE-K3	1	1	0.8	0	0.8	0.8	0.8	1	0	1
SLE-K4	1	1	0	0.8	0.8	0.8	0.8	1	0	1
SLE-K5	1	1	1	0	1	1	1	0.6	1	0
SLE-K6	1	1	0	1	1	1	1	0.6	1	0
SLE-K7	1	1	0.8	0	0.8	0.8	0.8	1	1	0
SLE-K8	1	1	0	0.8	0.8	0.8	0.8	1	1	0
SLE-K9	1	1	0	0	0	0	0	0	1	0
SLE-K10	1	1	0	0	0	0	0	0	0	1
SLE-QP1	1	1	0.2	0	0.2	0.2	0.2	0	0	1
SLE-QP2	1	1	0	0.2	0.2	0.2	0.2	0	0	1
SLE-QP3	1	1	0.2	0	0.2	0.2	0.2	0	1	0
SLE-QP4	1	1	0	0.2	0.2	0.2	0.2	0	1	0
SLE-QP5	1	1	0	0	0	0	0	0	1	0
SLE-QP6	1	1	0	0	0	0	0	0	0	1

SLU: Combinazione stati limite ultimi

SLE K: Combinazione caratteristica stati lime di esercizio

SLE QP: Combinazione quasi permanente stati lime di esercizio

• Condizioni sismiche

	Treno 1C	Treno 2C	Frenatura	Centrifuga	Serpeggio	FX gr1	FX gr2	FY gr1	FY gr2	SLV Z
SLV1	0.2	0	0.2	0.2	0.2	1	0	0	0	0.3
SLV2	0.2	0	0.2	0.2	0.2	1	0	0	0	-0.3
SLV3	0.2	0	0.2	0.2	0.2	0	1	0	0	0.3
SLV4	0.2	0	0.2	0.2	0.2	0	1	0	0	-0.3
SLV5	0.2	0	0.2	0.2	0.2	0	0	1	0	0.3
SLV6	0.2	0	0.2	0.2	0.2	0	0	1	0	-0.3
SLV7	0.2	0	0.2	0.2	0.2	0	0	0	1	0.3
SLV8	0.2	0	0.2	0.2	0.2	0	0	0	1	-0.3
SLV9	0	0.2	0.2	0.2	0.2	1	0	0	0	0.3
SLV10	0	0.2	0.2	0.2	0.2	1	0	0	0	-0.3
SLV11	0	0.2	0.2	0.2	0.2	0	1	0	0	0.3
SLV12	0	0.2	0.2	0.2	0.2	0	1	0	0	-0.3
SLV13	0	0.2	0.2	0.2	0.2	0	0	1	0	0.3
SLV14	0	0.2	0.2	0.2	0.2	0	0	1	0	-0.3
SLV15	0	0.2	0.2	0.2	0.2	0	0	0	1	0.3
SLV16	0	0.2	0.2	0.2	0.2	0	0	0	1	-0.3

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONS L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	59 di 105

9.2.1 <u>Verifiche Sezione di spiccato</u>

Come già detto in precedenza, nelle pile di questo viadotto è stato necessario adottare una camicia di rinforzo con spessore 25 cm nella parete trasversale, e una di spessore variabile in quella longitudinale. Tale spessore varia da 25 cm ad imposta arco, fino ad arrivare a 45 cm nella base del plinto, con spessore medio quindi di 35 cm.

Verifiche pressoflessione SLU

La sezione di verifica è rappresentata nell'immagine seguente, mentre i dati geometrici principali sono riportati nella tabella seguente (l'armatura è costituita da una doppia maglia \$\phi20\$ passo 200mm.)

dati sez	BASE PILA		
B int	3.0 m		
H int	8.1 m		
Sp. Trasv.	0.25 m		
Sp. Long.	0.35 m		
ρ _s (%)	1.12%		

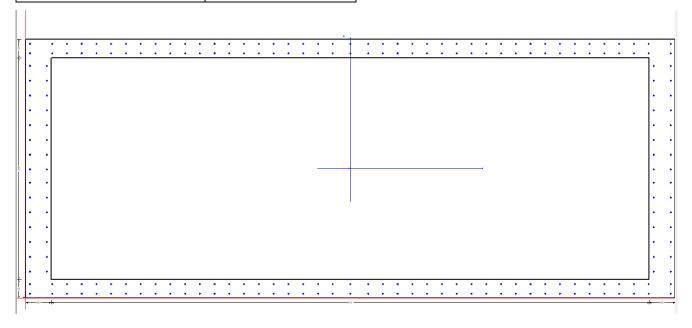


Figura 46: Sezione di verifica

Si riporta il riepilogo dei livelli di sicurezza ottenuti per ciascuna combinazione nei riguardi delle verifiche a pressoflessione eseguite.

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO

RS6K 00 R 09 CL VI 05 00 002 A 60 di 105

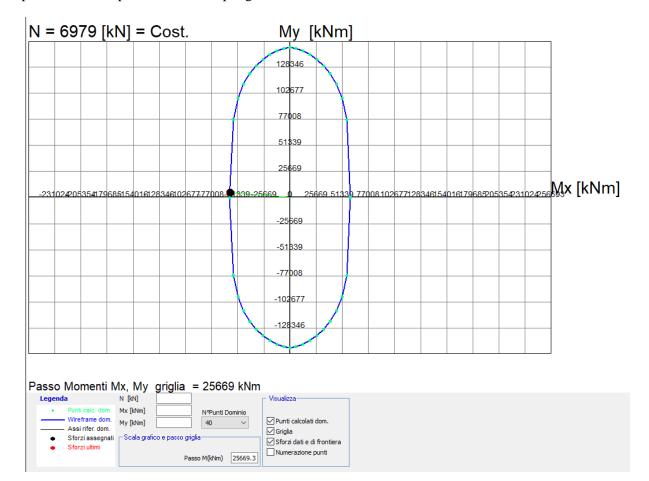
CONSEGUIRE

FOGLIO

REV.

• Condizioni statiche

	Co	mbinazi	oni Static	he SLU		
Spiccato	N	Vx	Vy	Му	Mx	Rd/Ed
comb	(kN)	(kN)	(kN)	(kNm)	(kNm)	-
SLU1	-11720	-242	1758	-618	-38579	4.23
SLU2	-13048	-596	1758	-2325	-38585	4.29
SLU3	-11468	-313	1684	-982	-35819	4.53
SLU4	-12531	-596	1683	-2347	-35824	4.55
SLU5	-8391	340	1763	1843	-38640	3.91
SLU6	-9719	-14	1762	137	-38646	4.06
SLU7	-8139	269	1688	1480	-35880	4.2
SLU8	-9202	-14	1687	115	-35885	4.32
SLU9	-7045	-13	3	35	-30	999
SLU10	-10374	-595	-1	-2427	30	26.62
SLU11	-9317	-241	1758	-671	-38582	4.02
SLU12	-10646	-595	1758	-2378	-38588	4.09
SLU13	-9065	-312	1684	-1035	-35822	4.3
SLU14	-10128	-595	1683	-2400	-35826	4.35
SLU15	-5988	341	1762	1791	-38643	3.69
SLU16	-7316	-13	1762	84	-38648	3.85
SLU17	-5735.8	270	1688	1427	-35882	3.96
SLU18	-6798.7	-13	1687	62	-35887	4.09
SLU19	-4642.2	-12	3	-18	-33	999
SLU20	-7971.4	-594	-1	-2479	28	24.52


• Condizioni sismiche

	Combinazioni Sismiche SLV									
Spiccato	N	Vx	Vy	Rd/Ed						
comb	(kN)	(kN)	(kN)	(kNm)	(kNm)	-				
SLV1	-7883	7331	199	58436	-4696	1.04				
SLV2	-6979	7332	200	58426	-4702	1.01				
SLV3	-7609	6831	182	46321	-4089	1.3				
SLV4	-6705	6833	182	46311	-4094	1.27				
SLV5	-6804	-260	7747	-926	-139184	1.05				
SLV6	-5900	-258	7747	-936	-139190	1.03				
SLV7	-7317	64	8912	795	-128644	1.16				
SLV8	-6413	66	8912	785	-128650	1.13				
SLV9	-8066	7282	199	58200	-4697	1.05				

SLV10	-7162	7284	199	58190	-4703	1.02
SLV11	-7792	6782	182	46085	-4090	1.31
SLV12	-6888	6784	182	46075	-4095	1.28
SLV13	-6987	-308	7747	-1162	-139185	1.06
SLV14	-6083	-307	7747	-1172	-139190	1.04
SLV15	-7500	15	8912	560	-128645	1.16
SLV16	-6596	17	8912	550	-128650	1.14

Si riporta la verifica per la condizione più gravosa identificata nella combinazione SLV 2.

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CON L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	62 di 105

Verifiche taglio SLU

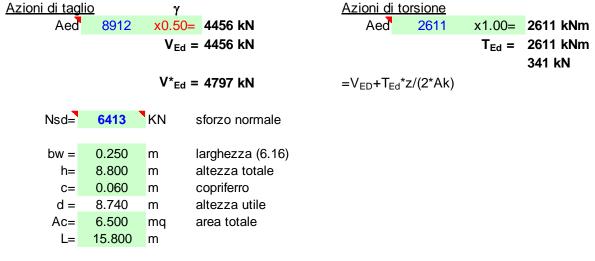
La sezione resistente è costituita dalle singole pareti costituenti la sezione cava in calcestruzzo. Trattandosi di una sezione chiusa è stata presa in considerazione anche la torsione. L'armatura resistente a taglio è costituita da barre orizzontali $2\phi20/150$ mm nella direzione longitudinale, e $2\phi14/150$ mm in quella trasversale.

• DIREZIONE LONGITUDINALE (X)

In tale direzione è stata individuata SLV 2 come la combinazione più gravosa.

Azioni di tagli	<u>0</u>	γ		<u>Azioni d</u>	torsione		
Aed	7332	x0.50=	3666 kN	Aed	227	x1.00=	227 kNm
		V _{Ed} =	3666 kN			T _{Ed} =	227 kNm 12 kN
		V* _{Ed} =	3678 kN	$=V_{ED}+T_{E}$	_{Ed} *z/(2*Ak)		
Nsd=	6979	KN	sforzo normale				
bw =	0.350	m	larghezza (6.16)				
h=	3.500	m	altezza totale				
C=	0.060	m	copriferro				
d =	3.440	m	altezza utile				
Ac=	6.500	mq	area totale				
L=	15.800	m					

Resistenza delle staffe:


φw=	20	mm	diametro staffa
n=	2.00		numero braccia
Asw=	6.28	cmq	
z=	3.10	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρ w =	1.20	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.15	m	=passo staffe <= 2.58 m = 0.75 *d*(1+cot α)
θ =	45.0	0	
$V_{Rd,s}=$	5075	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

• DIREZIONE TRASVERSALE (Y)

In tale direzione è stata individuata SLV 8 come la combinazione più gravosa.

Resistenza delle staffe:

φ w =	14	mm	diametro staffa
n=	2.00		numero braccia
Asw=	3.08	cmq	
z=	7.87	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρ w =	0.82	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.15	m	=passo staffe <= 6.56 m = 0.75 *d*(1+cot α)
$\theta =$	45.0	0	
$V_{Rd,s} =$	6318	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

 $V_{Ed} = 4797$ minore o uguale di $V_{Rd} = 5054$ verifica soddisfatta

Verifiche SLE

Nei confronti dello stato limite di esercizio si provvede a verificare la massima compressione nel calcestruzzo ed il controllo della fessurazione. In particolare, per lo spiccato pila, vista la presenza di barre pretensionate si verifica che nel calcestruzzo teso non si oltrepassi lo stato limite di formazione delle fessure.

• CONTROLLO COMPRESSIONE CALCESTRUZZO

Comb. rara : $\sigma_{c, limite} = 0.55$ fck =16.5 MPa

Comb. QP : $\sigma_{c, limite} = 0.40 \text{ fck} = 12.0 \text{ MPa}$

CONTROLLO APERTURA FESSURE

Comb. SLE : $\sigma_{t, limite} = fctm/1.2 = 2.42 \text{ MPa}$

Spiccato	N	Му	Mx	σC	σC lim	verifica	σΤ	σT lim	verifica
comb	(kN)	(kNm)	(kNm)	(MPa)	(MPa)	(-)	(MPa)	(MPa)	(-)
SLE-QP 1	-24007	-1696	-21546	5.36	12.0	ОК	-2.03	2.42	ок
SLE-QP 2	-24191	-1932	-21547	5.42	12.0	ОК	-2.03	2.42	ок
SLE-QP 3	-21233	355	-21597	4.76	12.0	ОК	-1.78	2.42	ОК
SLE-QP 4	-21416	120	-21598	4.75	12.0	ОК	-1.84	2.42	ок
SLE-QP 5	-21050	105	105	3.26	12.0	ОК	-3.22	2.42	ОК
SLE-QP 6	-23825	-1946	156	3.93	12.0	ОК	-3.40	2.42	ОК

GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	65 di 105

SLE-K 1	-24752	-699	-26340	5.66	16.50	ОК	-1.96	2.42	ок
SLE-K 2	-25668	-1876	-26344	5.96	16.50	OK	-1.94	2.42	ОК
SLE-K 3	-24578	-950	-24349	5.53	16.50	OK	-2.03	2.42	ОК
SLE-K 4	-25311	-1891	-24352	5.77	16.50	OK	-2.02	2.42	ок
SLE-K 5	-21978	1353	-26391	5.32	16.50	OK	-1.44	2.42	ок
SLE-K 6	-22894	175	-26395	5.31	16.50	ОК	-1.74	2.42	ОК
SLE-K 7	-21804	1102	-24400	5.13	16.50	OK	-1.58	2.42	ОК
SLE-K 8	-22537	160	-24403	5.12	16.50	ОК	-1.82	2.42	ок
SLE-K 9	-21050	105	105	3.26	16.50	OK	-3.22	2.42	ок
SLE-K 10	-23825	-1946	156	3.93	16.50	OK	-3.40	2.42	ок

10 VERIFICA DELLE IMPOSTE

Si è ritenuto opportuno verificare anche le sezioni di imposta degli archi che si intestano nella pila verificata, e le imposte dei due archi presenti sulle due spalle del viadotto.

Si riportano esclusivamente i risultati ottenuti per la sezione più gravosa di quelle indagate, ovvero quella relativa alla spalla destra.

10.1 Sollecitazioni elementari

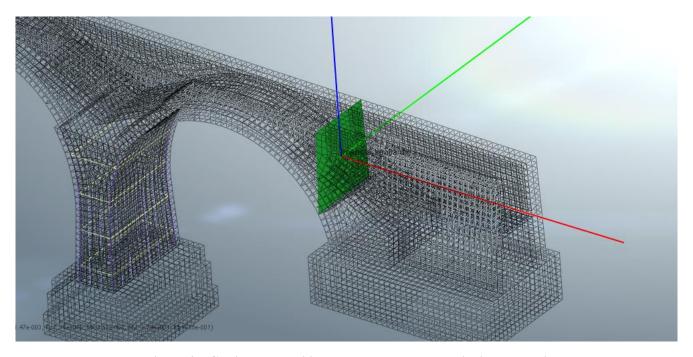


Figura 47: Cutting plane utilizzato per estrapolare le azioni elementari

azioni elementari	N	Vz	Vy	Му	Mz	Т
G1	-377	1221	-2	2754	39	0
G2	-68	87	0	253	2	0
T1	-391	681	0	2118	7	0
T2	-426	688	0	2130	8	0
Vento	-18	7	-159	18	1070	0
Frenatura	-67	10	0	-7	3	0
Cedimento inf.	271	-128	0	-630	-8	0
Cedimento sup.	-618	1057	2	8398	-11	0
Serpeggio	-3	0	-66	2	386	0
FX GR1	-30521	8228	-228	20047	1213	0
FX GR2	-19179	7256	11	18394	522	0
FY GR1	-4979	4194	60	9348	318	0
FY GR2	-2885	3872	-2308	7577	11466	0
SLV Z	-141	253	0	631	5	0
Centrifuga	-25	2	-581	13	4018	0

10.2 Verifiche strutturali

Verifiche pressoflessione SLU

La sezione di verifica è rappresentata nell'immagine seguente, mentre i dati geometrici principali sono riportati nella tabella seguente (l'armatura è costituita da una doppia maglia \$\phi22\$ passo 200mm).

dati sez.	Soletta spalla destra
B tot	3.27 m
H tot	3.5 m
sp	0.3 m
ρ _s (%)	1.14%

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEG L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	67 di 105

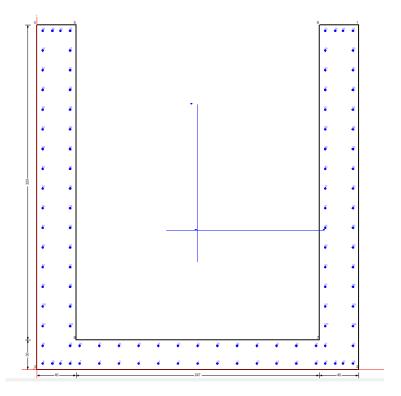


Figura 48: Sezione di verifica

Si riporta il riepilogo dei livelli di sicurezza ottenuti per ciascuna combinazione nei riguardi delle verifiche a pressoflessione eseguite.

• Condizioni statiche

	Combinazioni Statiche SLU							
Spalla dx	N	Vz	Vy	Му	Mz	Rd/Ed		
comb	(kN)	(kN)	(kN)	(kNm)	(kNm)	-		
SLU1	-2072	4058	-1081	17272	7404	1.26		
SLU2	-2124	4068	-1081	17289	7406	1.26		
SLU3	-1942	3861	-989	16666	6766	1.3		
SLU4	-1984	3869	-989	16680	6768	1.3		
SLU5	-1005	2637	-1084	6438	7408	2.63		
SLU6	-1057	2647	-1084	6456	7411	2.64		
SLU7	-875	2440	-992	5833	6771	2.88		
SLU8	-917	2448	-992	5847	6772	2.88		
SLU9	-286	1626	-3	3341	47	6.1		
SLU10	-1353	3048	0	14174	43	1.53		
SLU11	-1906	3587	-1080	16182	7389	1.33		

RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI

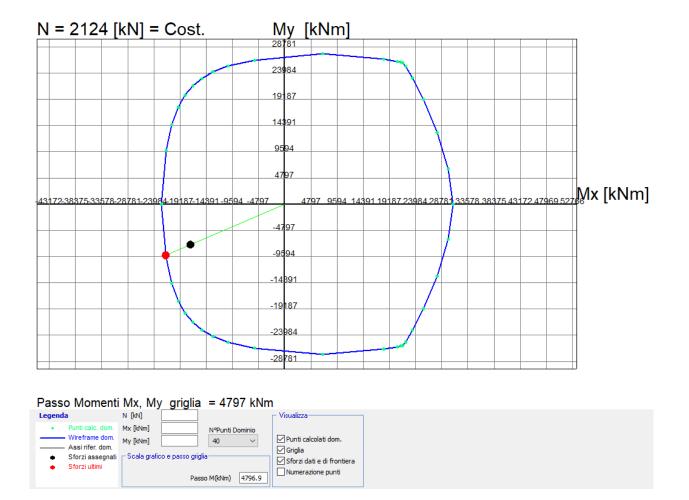
CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	68 di 105


	·		•	•		•
SLU12	-1958	3597	-1080	16199	7391	1.33
SLU13	-1776	3390	-988	15576	6751	1.38
SLU14	-1818	3398	-988	15590	6753	1.38
SLU15	-839	2166	-1083	5348	7394	2.84
SLU16	-891	2176	-1083	5366	7396	2.85
SLU17	-709.1	1969	-991	4743	6756	3.13
SLU18	-750.8	1977	-991	4757	6758	3.13
SLU19	-120.0	1155	-2	2251	32	8.96
SLU20	-1187.0	2577	0	13084	28	1.64

Condizioni sismiche

Combinazioni Sismiche SLV							
Spalla dx	N	Vz	Vy	Му	Mz	Rd/Ed	
comb	(kN)	(kN)	(kN)	(kNm)	(kNm)	-	
SLV1	-30660	8442	-358	20662	2097	2.18	
SLV2	-30576	8291	-358	20283	2094	2.22	
SLV3	-19318	7470	-118	19008	1406	2.15	
SLV4	-19234	7319	-118	18630	1403	2.19	
SLV5	-5119	4408	-69	9962	1203	2.63	
SLV6	-5034	4256	-69	9584	1199	2.72	
SLV7	-3024	4087	-2437	8192	12350	1.93	
SLV8	-2939	3935	-2437	7813	12347	1.96	
SLV9	-30668	8444	-358	20664	2098	2.18	
SLV10	-30583	8292	-358	20286	2095	2.22	
SLV11	-19326	7472	-118	19011	1406	2.15	
SLV12	-19241	7320	-118	18632	1403	2.19	
SLV13	-5126	4409	-69	9965	1203	2.63	
SLV14	-5041	4258	-69	9586	1200	2.72	
SLV15	-3031	4088	-2437	8194	12350	1.93	
SLV16	-2946	3936	-2437	7816	12347	1.96	

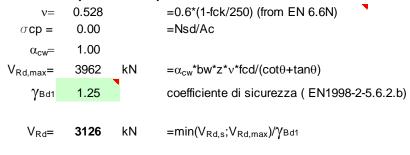
Si riporta la verifica per la condizione più gravosa identificata nella combinazione SLU 2.

10.2.1 Verifiche a taglio

La verifica a taglio è stata eseguita prendendo il taglio massimo tra le condizioni statiche e quelle sismiche.

• DIREZIONE TRASVERSALE (Y)

La sezione resistente è costituita dalla soletta inferiore, si prevede una armatura resistente a taglio costituita da $2\phi18$ passo 150 mm.



Azioni di taglio		γ	
Aed	2437	x1.00=	2437 kN
		$V_{Ed} =$	2437 kN
Nsd=	-2869	KN	sforzo normale
bw =	0.300	m	larghezza (6.16)
h=	3.330	m	altezza totale
c=	0.060	m	copriferro
d =	3.270	m	altezza utile
Ac=	3.279	mq	area totale

Resistenza delle staffe:

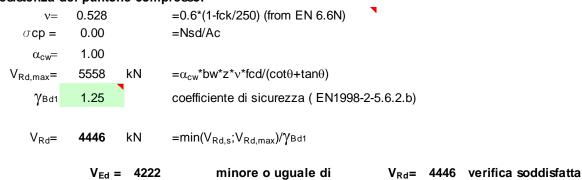
φ w =	18	mm	diametro staffa
n=	2.00		numero braccia
Asw=	5.09	cmq	
z=	2.94	m	=0.9*d
senα=	1		
ρ w =	1.13	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.15	m	=passo staffe <=
θ =	45.0	0	
$V_{Rd.s} =$	3907	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

 $V_{Ed} = 2437$ minore o uguale di $V_{Rd} = 3126$ verifica soddisfatta

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA			COI	CONSEGUIRE	
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	71 di 105

• DIREZIONE VERTICALE (Z)


La sezione resistente è costituita dalle due travi rettangolari laterali, si prevede una armatura resistente a taglio costituita da 3\phi18 passo 150 mm.

Azioni di taglio		γ	
Aed	8444	x0.50=	4222 kN
		$V_{Ed} =$	4222 kN
		News	
Nsd=	-2869	KN	sforzo normale
bw =	0.400	m	Jarahazza (6.16)
		m	larghezza (6.16)
h=	3.500	m	altezza totale
C=	0.060	m	copriferro
d =	3.440	m	altezza utile
Ac=	3.541	mq	area

Resistenza delle staffe:

φ w =	18	mm	diametro staffa			
n=	3.00		numero braccia			
Asw=	7.63	cmq				
z=	3.10	m	=0.9*d			
senα=	1		α angolo tra le staffe e l'asse	della trave (α =	90° per	staffe verticali)
ρw=	1.27	%	$=$ Asw/(s*bw*sin α)*100 >=			
s=	0.15	m	=passo staffe <=	2.58	m	$=0.75*d*(1+cot\alpha)$
θ =	45.0	0				
V _{Rds} =	6166	kN	=Asw/s*z* fywd *cotθ			

Resistenza del puntone compresso:

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA			COI	CONSEGUIRE	
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	72 di 105

11 VERIFICA DEGLI ANGOLARI METALLICI DI RINFORZO DELLE PILE

Ai quattro vertici della sezione delle pile sono posti degli angolari metallici con profilo ad ELLE a lati uguali di dimensioni 250x250x20 mm. Tali elementi si attivano principalmente in presenza di azioni orizzontali, funzionando come delle bielle tese o compresse e contribuendo alla resistenza flessionale della pila.

Si riportano le caratteristiche principali dell'elemento strutturale oggetto di verifica:

Acciaio	S355
fyd (Mpa)	338
Area (mm2)	100 E2
N _{Rd} (KN)	3380

L'elemento nel modello di calcolo è stato schematizzato come una biella elasto-plastica, il cui limite di elasticità è il valore di snervamento suindicato (N_{Rd}) . È esclusa la possibilità di instabilità in quanto ricoperto dalla camicia in cls, pertanto è garantito il suo funzionamento bidirezionale (trazione/compressione).

Quale verifica dell'elemento si riportano le immagini estrapolate dal modello di calcolo relative alle sollecitazioni massime a cui tali elementi sono sottoposti nelle quattro condizioni sismiche analizzate, come si potrà verificare tali elementi rimangono in campo elastico, pertanto risulta superflua qualsiasi verifica in termini di deformazione (allungamento massimo), nonché qualsiasi verifica per casi di carico non sismici.

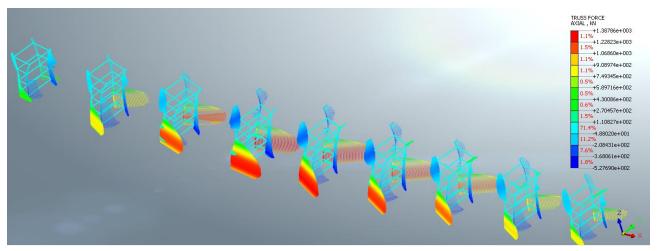


Figura 49: Analisi sismica FX-GR1 (NEd_max=1388 kN)

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CO L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA				COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	73 di 105

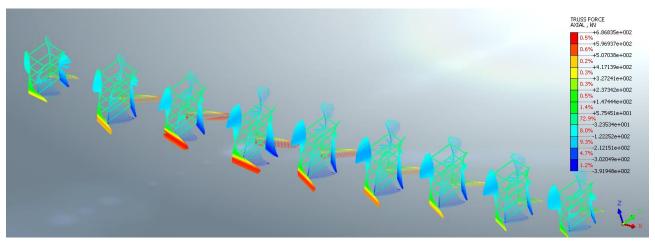


Figura 50: Analisi sismica FX-GR2 (NEd_max=687 kN)

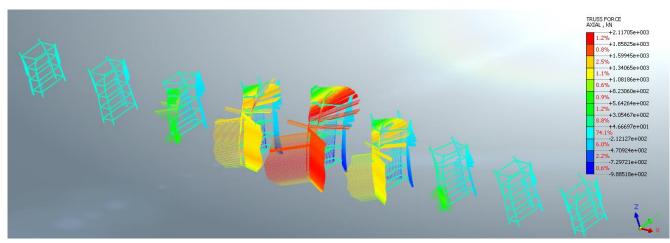


Figura 51: Analisi sismica FY-GR1 (NEd_max=2117 kN)

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GE MIGLIORAMENTI STRUTTURALI L'ADEGUAMENTO SISMICO DEI VIADO LOTTO 2: NISCEMI - GELA			JRALI PER	COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	74 di 105

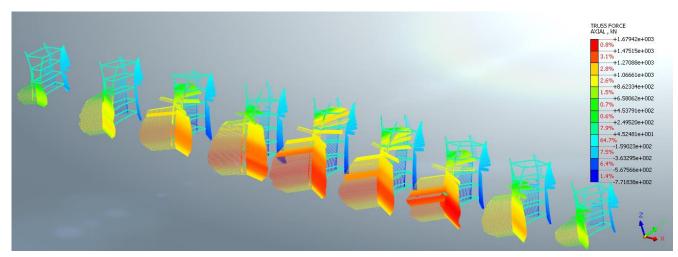


Figura 52: Analisi sismica FY-GR2 (NEd_max=1680 kN)

12 VERIFICA DEGLI INTERVENTI IN FONDAZIONE

12.1 Caratterizzazione geotecnica

12.1.1 Unità geotecniche

- Unità 1: Depositi eluvio-colluviali di natura sabbioso-limosa e Sabbie limose argillose limi sabbiosi argillosi, di colore giallastro, localmente quarzose, con intercalazioni di areniti-biocalcareniti. Lo spessore di tale unità in corrispondenza dei sondaggi risulta di circa 10÷14 m da p.c.;
- Unità 2: Argille limose sabbiose e/o limi sabbiosi argillosi grigio-azzurre, intercettate a partire dalla profondità di circa 10÷14 m da p.c. misurate in corrispondenza dei sondaggi.

12.1.2 Falda

Il livello di falda assunto in questa sede è stato definito principalmente sulla base delle misure in fase di monitoraggio dei piezometri installati nei fori di sondaggio. E' stato attrezzato il sondaggio S12.

	S12
LIVELLO FALDA	-2.6 m (+98.2 m s.l.m.)

12.1.3 Parametri geotecnici di calcolo

Nelle tabelle che seguono si sintetizzano gli schemi stratigrafici ed i parametri geotecnici caratteristici delle unità individuate, nel rispetto di quanto illustrato nella relazione geotecnica.

Parametri	Unità 1
γ (kN/m³)	20
φ' (°)	28-32
c' (kPa)	0-5
C _u (kPa)	-
E _{op} (MPa)	50
E _u (MPa)	-
k (m/s)	8.85E-07

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	76 di 105

Parametri	Unità 2	
γ (kN/m³)	19.5	
φ' (°)	26-30	
c' (kPa)	5-15	
C _u 1 (kPa)	150	da tetto strato a 25 m
C _u 2 (kPa)	200	da 25 m a 40 m
E _{op} 1 (MPa)	80	da tetto strato a 25 m
E _{op} 2 (MPa)	100	da 25 m a 40 m
E _u 1 (MPa)	80	da tetto strato a 25 m
E _u 2 (MPa)	100	da 25 m a 40 m
k (m/s)	1.28E-07	

12.2 Combinazioni di carico

Come già indicato in precedenza in fase statica (non sismica), il modello di calcolo è elastico pertanto vale il principio di sovrapposizione degli effetti, quindi le varie sollecitazioni elementari vengono analizzate separatamente e poi assemblate secondo le varie combinazioni di riferimento.

Le analisi sismiche sono state condotte mediante modelli non lineari, applicando una sequenza costruttiva che prevede prima l'applicazione di carichi verticali poi quelli sismici. Il modello pertanto fornisce risultati complessivi (intesi come tensioni, deformazioni, sollecitazioni, etc.), su cui non è possibile applicare la regola della sovrapposizione degli effetti. Tuttavia ai fini delle verifiche strutturali onde soddisfare le richieste normative in merito di combinazione dei carichi, dell'elemento di rinforzo, si è optato per forzare la regola teorica summenzionata associando i risultati delle analisi sismiche non lineari con gli altri carichi eventualmente previsti dalle combinazioni da normativa e desunti dal modello di calcolo lineare (treni di carico, cedimenti etc..). Tale approccio è certamente conservativo in termini di sollecitazioni agenti sugli elementi strutturali. Diversamente, non risulta possibile combinare tra loro i risultati delle analisi sismiche, che sono state condotte separatamente per le direzioni principali dell'opera (longitudinale e trasversale). Pertanto le combinazioni di carico impiegate per la verifica contempleranno esclusivamente l'una o l'altra direzione di applicazione dell'azione sismica orizzontale, il sisma verticale invece è stato valutato come un'azione statica pertanto ricompreso nelle combinazioni.

La tabella seguente riporta il dettaglio delle combinazioni di carico impiegate nella verifica dell'elemento strutturale, combinate considerando l'approccio A1.

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 CL
 VI 05 00 002
 A
 77 di 105

	G1	G2	Treno 1C	Treno 2C	Frenatura	Serpeggio	Vento	Ced. inf.	Ced. sup.
SLU1	1.35	1.5	1.45	0	1.45	1.45	0.9	0	1.2
SLU2	1.35	1.5	0	1.45	1.45	1.45	0.9	0	1.2
SLU3	1.35	1.5	1.16	0	1.16	1.16	1.5	0	1.2
SLU4	1.35	1.5	0	1.16	1.16	1.16	1.5	0	1.2
SLU5	1.35	1.5	1.45	0	1.45	1.45	0.9	1.2	0
SLU6	1.35	1.5	0	1.45	1.45	1.45	0.9	1.2	0
SLU7	1.35	1.5	1.16	0	1.16	1.16	1.5	1.2	0
SLU8	1.35	1.5	0	1.16	1.16	1.16	1.5	1.2	0
SLU9	1.35	1.5	0	0	0	0	0	1.2	0
SLU10	1.35	1.5	0	0	0	0	0	0	1.2
SLU11	1	1	1.45	0	1.45	1.45	0.9	0	1.2
SLU12	1	1	0	1.45	1.45	1.45	0.9	0	1.2
SLU13	1	1	1.16	0	1.16	1.16	1.5	0	1.2
SLU14	1	1	0	1.16	1.16	1.16	1.5	0	1.2
SLU15	1	1	1.45	0	1.45	1.45	0.9	1.2	0
SLU16	1	1	0	1.45	1.45	1.45	0.9	1.2	0
SLU17	1	1	1.16	0	1.16	1.16	1.5	1.2	0
SLU18	1	1	0	1.16	1.16	1.16	1.5	1.2	0
SLU19	1	1	0	0	0	0	0	1.2	0
SLU20	1	1	0	0	0	0	0	0	1.2

	Treno 1C	Treno 2C	Frenatura	Serpeggio	FX gr1	FX gr2	FY gr1	FY gr2	SLV Z
SLV1	0.2	0	0.2	0.2	1	0	0	0	0.3
SLV2	0.2	0	0.2	0.2	1	0	0	0	-0.3
SLV3	0.2	0	0.2	0.2	0	1	0	0	0.3
SLV4	0.2	0	0.2	0.2	0	1	0	0	-0.3
SLV5	0.2	0	0.2	0.2	0	0	1	0	0.3
SLV6	0.2	0	0.2	0.2	0	0	1	0	-0.3
SLV7	0.2	0	0.2	0.2	0	0	0	1	0.3
SLV8	0.2	0	0.2	0.2	0	0	0	1	-0.3
SLV9	0	0.2	0.2	0.2	1	0	0	0	0.3
SLV10	0	0.2	0.2	0.2	1	0	0	0	-0.3
SLV11	0	0.2	0.2	0.2	0	1	0	0	0.3
SLV12	0	0.2	0.2	0.2	0	1	0	0	-0.3
SLV13	0	0.2	0.2	0.2	0	0	1	0	0.3
SLV14	0	0.2	0.2	0.2	0	0	1	0	-0.3
SLV15	0	0.2	0.2	0.2	0	0	0	1	0.3
SLV16	0	0.2	0.2	0.2	0	0	0	1	-0.3

SLU: Combinazione stati limite ultimi

SLV: Combinazione Sismica

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	EQU(t)	A1	A2		
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali(2)	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	YΒ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli		1,50	1,50	1,30
Precompressione	favorevole	YΡ	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00%	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	ΥCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

12.3 Sollecitazioni

Le sollecitazioni elementari sono state ottenute dal modello mediante l'integrazione su un prefissato piano di taglio (sezione) delle forze nodali associate ai vari elementi bi e tri dimensionali che costituiscono il modello di calcolo.

Il piano di taglio è stato individuato in corrispondenza dell'estradosso della fondazione, in corrispondenza della pila più alta del viadotto.

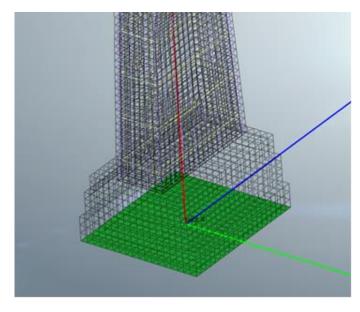


Figura 53: Sezione di integrazione delle forze nodali a base plinto (Assi di riferimento: rosso=z, verde=x, blu=y)

Nella tabella seguente si riportano le azioni elementari da modello:

azioni elementari	N	Vx	Vy	Му	Mx	T
G1 postoperam	-6538	-2	0	148	9	2
G2	-229	-1	0	2	-2	0
Cedimento inf.	1771	-8	2	-140	-33	-1
Cedimento sup.	-1004	-493	-1	-2191	17	-7
T1	-915	229	0	1120	-2	0
Frenatura	0	14	0	128	0	0
Centrifuga	0	0	941	0	-21458	243
T2	-1831	-15	-1	-57	-6	0
Serpeggio	0	0	52	0	-1219	22
Vento	-22	0	355	-2	-6361	75
FX GR1	-23302	7246	-1	58276	-33	177
FX GR2	-23028	6747	-18	46161	575	-85
FY GR1	-22223	-344	7547	-1086	-134520	3407
FY GR2	-22736	-21	8712	636	-123980	2561
SLV Z	-1506	-3	0	16	9	0
G1_anteoperam	-16054	-37	-1	95	131	3

Si riportano quindi le azioni combinate all'estradosso della fondazione:

Carrela	N	Vx	Vy	Му	Mx	Т
Comb	kN	kN	kN	kNm	kNm	kNm
_SLV1	-23936.5	7294.043	198.0317	58530.65	-4565.54	230.3539
_SLV2	-23033.2	7295.59	198.0813	58520.94	-4571.14	230.1382
_SLV3	-23662.5	6794.443	180.2316	46415.69	-3958.07	-32.1981
_SLV4	-22759.2	6795.99	180.2812	46405.98	-3963.66	-32.4138
_SLV5	-22857.5	-296.407	7745.492	-831.341	-139053	3460.054
_SLV6	-21954.2	-294.86	7745.541	-841.053	-139059	3459.838
_SLV7	-23370.5	27.34144	8910.792	890.1735	-128513	2614.054
_SLV8	-22467.2	28.8878	8910.841	880.4619	-128519	2613.838
_SLV9	-24119.8	7245.227	197.984	58295.21	-4566.36	230.4874
_SLV10	-23216.4	7246.773	198.0336	58285.5	-4571.95	230.2717
_SLV11	-23845.8	6745.627	180.1839	46180.25	-3958.88	-32.0646
_SLV12	-22942.4	6747.173	180.2336	46170.54	-3964.48	-32.2803
_SLV13	-23040.8	-345.223	7745.444	-1066.78	-139054	3460.187
_SLV14	-22137.4	-343.677	7745.494	-1076.5	-139060	3459.972
_SLV15	-23553.8	-21.4754	8910.744	654.7299	-128514	2614.187
_SLV16	-22650.4	-19.929	8910.794	645.0182	-128520	2613.972

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	80 di 105

Comb	N	Vx	Vy	Му	Mx	Т
Comb	kN	kN	kN	kNm	kNm	kNm
_SLU1	-33392.6	-291.714	1756.51	-489.912	-38402.7	451.0756
_SLU2	-34721.3	-645.636	1756.164	-2196.88	-38408.6	452.0435
_SLU3	-33140.7	-362.579	1681.636	-853.305	-35642.6	419.4941
_SLU4	-34203.7	-645.716	1681.36	-2218.88	-35647.3	420.2684
_SLU5	-30063.5	290.0634	1760.564	1971.876	-38463.7	458.4264
_SLU6	-31392.2	-63.8584	1760.218	264.9089	-38469.5	459.3943
_SLU7	-29811.6	219.1983	1685.69	1608.482	-35703.5	426.8448
_SLU8	-30874.5	-63.9392	1685.413	242.9088	-35708.2	427.6191
_SLU9	-28718	-62.793	0.914744	163.6572	146.1769	6.782274
_SLU10	-32047.2	-644.57	-3.13922	-2298.13	207.0941	-0.56847
_SLU11	-25370.8	-277.816	1756.957	-576.029	-38450.9	449.1348
_SLU12	-26699.5	-631.738	1756.611	-2283	-38456.7	450.1027
_SLU13	-25118.9	-348.682	1682.083	-939.422	-35690.7	417.5532
_SLU14	-26181.9	-631.819	1681.807	-2305	-35695.4	418.3275
_SLU15	-22041.7	303.9608	1761.011	1885.758	-38511.8	456.4855
_SLU16	-23370.4	-49.961	1760.665	178.7917	-38517.7	457.4534
_SLU17	-21789.8	233.0956	1686.137	1522.365	-35751.6	424.904
_SLU18	-22852.7	-50.0418	1685.861	156.7915	-35756.3	425.6783
_SLU19	-20696.2	-48.8956	1.361969	77.53994	98.06815	4.841404
_SLU20	-24025.4	-630.673	-2.69199	-2384.25	158.9853	-2.50934

Alle suddette azioni sono state poi aggiunte, nelle modalità che verranno specificate nei paragrafi successivi, le seguenti:

- Peso proprio del plinto esistente (stimato pari a 14925 kN), del nuovo cordolo di allargamento (stimato pari a 11387 kN) e del rinterro (stimato pari a 8106 kN);
- Inerzia del plinto esistente, del nuovo cordolo di allargamento e del rinterro (solo in condizioni sismiche);
- Momento dovuto al trasporto di Vx e Vy dallo spiccato della pila alla testa dei pali, calcolato con un braccio di 3.2 m;
- Momento generato dalle forze di inerzia.

Il valore dell'accelerazione impiegato per il calcolo delle forze di inerzia è $a_{max} = a_g S = 0.201g$.

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER C L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA				COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	81 di 105

12.4 Verifiche

L'intervento prevede la realizzazione di un ringrosso del plinto tramite un cordolo di cinta con una fila di pali di medio diametro D600, spaziati di circa 85cm e lunghezza 16m.

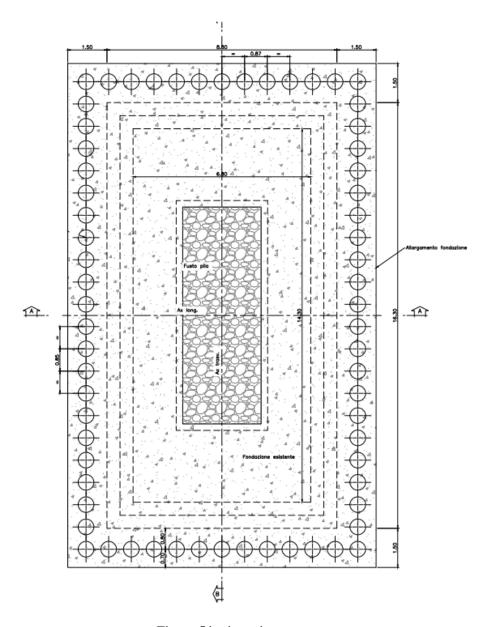


Figura 54: pianta intervento

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA			COI	NSEGUIRE	
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	82 di 105

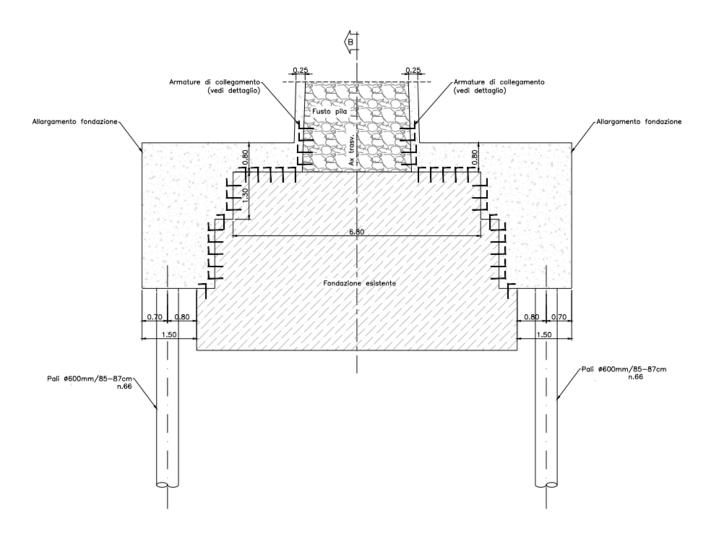


Figura 55: sezione intervento

La nuova struttura è realizzata con un calcestruzzo C25/30 armato con ferri classe B450C. Di seguito sono esplicitati i valori di calcolo impiegati per le verifiche del calcestruzzo armato:

CLS C25/30	Acciaio B450C
fcd = 14.2 Mpa	fyd= 391 MPa
εcu = 0.35%	εsu 5%

12.4.1 Verifiche geotecniche

Considerata la tipologia e la geometria della fondazione una volta realizzato l'intervento, si è optato per eseguire una verifica disaccoppiata, separando la verifica per carichi orizzontali da quella per carichi verticali.

Nello specifico, nella verifica per carichi orizzontali, si è ipotizzato un comportamento a pozzo, mentre per quella a carichi verticali si è ipotizzato un comportamento a palificata.

Al pozzo sono stati assegnati, oltre ai carichi orizzontali dovuti al sisma (comprensivi delle inerzie di fondazione esistente, nuovo cordolo di allargamento e rinterro), anche i carichi presenti pre-intervento dopo aver "svuotato" il viadotto; viceversa, tutto l'incremento di sforzo assiale dovuto all'intervento e al sisma è stato assegnato alla palificata, compresi i momenti derivanti sia dal sisma che dalle forze di inerzia.

Di conseguenza, le azioni di interesse per il pozzo (da modello, estradosso fondazione) sono le seguenti:

Dozzo	N	Vx	Vy	Му	Mx	T
Pozzo	kN	kN	kN	kNm	kNm	kNm
_SLV1	-16054.00	7294.04	198.03	95.11	130.83	3.11
_SLV2	-16054.00	7295.59	198.08	95.11	130.83	3.11
_SLV3	-16054.00	6794.44	180.23	95.11	130.83	3.11
_SLV4	-16054.00	6795.99	180.28	95.11	130.83	3.11
_SLV5	-16054.00	-296.41	7745.49	95.11	130.83	3.11
_SLV6	-16054.00	-294.86	7745.54	95.11	130.83	3.11
_SLV7	-16054.00	27.34	8910.79	95.11	130.83	3.11
_SLV8	-16054.00	28.89	8910.84	95.11	130.83	3.11
_SLV9	-16054.00	7245.23	197.98	95.11	130.83	3.11
_SLV10	-16054.00	7246.77	198.03	95.11	130.83	3.11
_SLV11	-16054.00	6745.63	180.18	95.11	130.83	3.11
_SLV12	-16054.00	6747.17	180.23	95.11	130.83	3.11
_SLV13	-16054.00	-345.22	7745.44	95.11	130.83	3.11
_SLV14	-16054.00	-343.68	7745.49	95.11	130.83	3.11
_SLV15	-16054.00	-21.48	8910.74	95.11	130.83	3.11
_SLV16	-16054.00	-19.93	8910.79	95.11	130.83	3.11

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	84 di 105

Pozzo	N	Vx	Vy	Му	Mx	Т
1 0220	kN	kN	kN	kNm	kNm	kNm
_SLU1	-21672.90	-291.71	1756.51	128.39	176.61	4.19
_SLU2	-21672.90	-645.64	1756.16	128.39	176.61	4.19
_SLU3	-21672.90	-362.58	1681.64	128.39	176.61	4.19
_SLU4	-21672.90	-645.72	1681.36	128.39	176.61	4.19
_SLU5	-21672.90	290.06	1760.56	128.39	176.61	4.19
_SLU6	-21672.90	-63.86	1760.22	128.39	176.61	4.19
_SLU7	-21672.90	219.20	1685.69	128.39	176.61	4.19
_SLU8	-21672.90	-63.94	1685.41	128.39	176.61	4.19
_SLU9	-21672.90	-62.79	0.91	128.39	176.61	4.19
_SLU10	-21672.90	-644.57	-3.14	128.39	176.61	4.19
_SLU11	-21672.90	-290.70	1756.45	128.39	176.61	4.19
_SLU12	-21672.90	-644.63	1756.11	128.39	176.61	4.19
_SLU13	-21672.90	-361.57	1681.58	128.39	176.61	4.19
_SLU14	-21672.90	-644.71	1681.30	128.39	176.61	4.19
_SLU15	-21672.90	291.07	1760.51	128.39	176.61	4.19
_SLU16	-21672.90	-62.85	1760.16	128.39	176.61	4.19
_SLU17	-21672.90	220.21	1685.63	128.39	176.61	4.19
_SLU18	-21672.90	-62.93	1685.36	128.39	176.61	4.19
_SLU19	-21672.90	-61.78	0.86	128.39	176.61	4.19
_SLU20	-21672.90	-643.56	-3.20	128.39	176.61	4.19

A queste vanno sommati il peso del plinto esistente e le forze di inerzia.

Mentre quelle di interesse per la palificata (da modello, spiccato pila) sono:

Dalificata	N	Vx	Vy	Му	Mx	T
Palificata	kN	kN	kN	kNm	kNm	kNm
_SLV1	-7882.51	7330.87	199.47	58435.55	-4696.37	227.25
_SLV2	-6979.18	7332.41	199.52	58425.84	-4701.96	227.03
_SLV3	-7608.51	6831.27	181.67	46320.59	-4088.90	-35.30
_SLV4	-6705.18	6832.81	181.72	46310.88	-4094.49	-35.52
_SLV5	-6803.51	-259.58	7746.93	-926.45	-139184	3456.95
_SLV6	-5900.18	-258.04	7746.98	-936.16	-139190	3456.73
_SLV7	-7316.51	64.17	8912.23	795.07	-128644	2610.95
_SLV8	-6413.18	65.71	8912.28	785.36	-128650	2610.73
_SLV9	-8065.77	7282.05	199.43	58200.10	-4697.18	227.38
_SLV10	-7162.45	7283.60	199.48	58190.39	-4702.77	227.17
_SLV11	-7791.77	6782.45	181.63	46085.14	-4089.71	-35.17
_SLV12	-6888.45	6784.00	181.68	46075.43	-4095.30	-35.39
_SLV13	-6986.77	-308.40	7746.89	-1161.89	-139184.84	3457.08
_SLV14	-6083.45	-306.85	7746.94	-1171.60	-139190.44	3456.87
_SLV15	-7499.77	15.35	8912.19	559.62	-128644.87	2611.08
_SLV16	-6596.45	16.89	8912.24	549.91	-128650.47	2610.87

Palificata	N	Vx	Vy	My	Mx	Т
Tamicata	kN	kN	kN	kNm	kNm	kNm
_SLU1	-11719.72	-242.00	1758.46	-618.31	-38579.36	446.88
_SLU2	-13048.42	-595.92	1758.11	-2325.27	-38585.24	447.85
_SLU3	-11467.83	-312.87	1683.58	-981.70	-35819.22	415.30
_SLU4	-12530.78	-596.00	1683.31	-2347.27	-35823.93	416.07
_SLU5	-8390.56	339.78	1762.51	1843.48	-38640.28	454.23
_SLU6	-9719.26	-14.15	1762.16	136.52	-38646.16	455.20
_SLU7	-8138.67	268.91	1687.64	1480.09	-35880.14	422.65
_SLU8	-9201.62	-14.23	1687.36	114.51	-35884.84	423.43
_SLU9	-7045.13	-13.08	2.86	35.26	-30.44	2.59
_SLU10	-10374.29	-594.86	-1.19	-2426.52	30.48	-4.76
_SLU11	-9316.83	-240.99	1758.40	-671.14	-38581.68	446.03
_SLU12	-10645.52	-594.91	1758.05	-2378.10	-38587.56	447.00
_SLU13	-9064.93	-311.86	1683.53	-1034.53	-35821.54	414.45
_SLU14	-10127.89	-595.00	1683.25	-2400.10	-35826.25	415.22
_SLU15	-5987.67	340.78	1762.45	1790.65	-38642.60	453.38
_SLU16	-7316.36	-13.14	1762.11	83.69	-38648.48	454.35
_SLU17	-5735.77	269.92	1687.58	1427.26	-35882.46	421.80
_SLU18	-6798.73	-13.22	1687.30	61.68	-35887.16	422.57
_SLU19	-4642.23	-12.07	2.80	-17.57	-32.76	1.73
_SLU20	-7971.39	-593.85	-1.25	-2479.35	28.16	-5.62

GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	IRALI PER	COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	86 di 105

Tali azioni vengono trasportate alla testa dei pali e vengono addizionate con il peso del cordolo di allargamento ed i momenti generati dalle inerzie.

Le verifiche sono state eseguite secondo:

• Approccio 2 Combinazione A1+M1+R3 (§6.4.3.1)

Per i **pozzi**, il valore di progetto della resistenza R_d si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_r .

Il coefficiente γ_r da applicare alle resistenze caratteristiche vale:

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Per i **pali** invece, il valore di progetto della resistenza R_d del singolo palo si ottiene a partire dal valore caratteristico R_k applicando i seguenti coefficienti parziali:

 $extbf{Tab. 6.4.II}$ – Coefficienti parziali $extstyle \gamma_R$ da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Ϋ́s	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γst	1,25	1,25	1,25

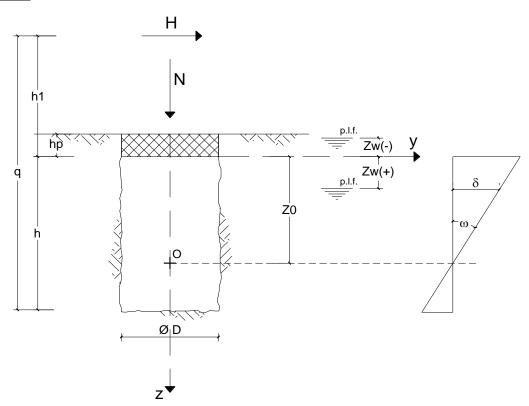
⁽¹) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) è dato dal minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze calcolate $R_{c,cal}(R_{t,cal})$ i fattori di correlazione ξ riportati nella seguente tabella, in funzione del numero n di verticali di indagine.

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA				COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	87 di 105


Per la verifica del **gruppo di pali** si sfrutterà la procedura descritta nell'Eurocodice 7 al §7.6.1.2, nella quale il gruppo di pali viene considerato come un blocco e la resistenza di quest'ultimo viene calcolata con modalità analoghe a quelle di un palo di grande diametro.

Verifica del pozzo

Sulla base delle ipotesi esposte e delle combinazioni riportate, risulta evidente come la combinazione più sfavorevole per la verifica geotecnica del pozzo sia quella sismica con taglio risultante maggiore. Il taglio risultante è definito come la somma vettoriale di Vx e Vy.

CALCOLO DEI POZZI DI FONDAZIONE (Metodo di Jamiolkowski)

OPERA: VI-347+990

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	88 di 105

CONSEGUIRE

TRATTAZIONE TEORICA

Formule utilizzate nei calcoli:

$$z_{0} = (\beta Dh^{2}(4q-h) + 6WD) / (2\beta Dh(3q-h))$$

$$\beta = k_{h} / k_{v}$$

$$tg\omega = 6H / Rm_{h}h$$

$$R = (\beta Dh^{3} + 18DW) / (2\beta (3q - h))$$

$$\sigma_{h}(z) = (6H / Rh)z(z_{0} - z)$$

$$(\sigma_{h}(z)max \ per z = z_{0}/2)$$

$$\sigma_{zmax(min)} = Nt / A \pm (3DH) / (\beta R)$$

$$M(z) = (h_1 + z(1 - ((Dz^2)/(2Rh))(2z_0 - z))))$$

$$\delta_h = (z_0 - z)^* tg\,\omega$$

Verifica della condizione di fondazione infinitamente rigida:

$$2.5 / h > ((m_h *D) / (Ep*Jp))^{1/5}$$
 (Silin e Zavrijev)

DATI DI INPUT:

Caratteristiche geometriche del pozzo

D = diametro del pozzo di fondazione =	13.60	(m) equivalenza su ine	rzia
hp = spessore del plinto di fondazione =	3.20	` '	I QUESTO FOGLIO IL PESO DEL PLINTO E' STATO POSTO A ZEF ANTO AGGIUNTO IN N. QUESTA CELLA SERVE QUINDI SOLAMEI
h = profondità del pozzo di fondazione =	16.00	(m) A DEF	INIRE LA QUOTA DELL'ESTRADOSSO, IN CORRISPONDENZA
A_b = Area di base $(\pi D^2/4)$ =	145.27	(m ²)	
$Jp = Momento di inerzia (\pi D^4/64) =$	1679.29	(m ⁴)	
Wp = Modulo di resistenza ($\pi D^3/32$) =	246.95	(m ³)	
Ep = Modulo di elasticità del pozzo =	15000.00	(MPa)	

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	89 di 105

coefficienti parziali

		az	ioni	propri	età del terre	eno
Metodo di calcolo		permanenti	permanenti temporanee variabili		c'	Cu
Stato limite ultimo	0	1.00	1.30	1.25	1.25	1.40
Tensioni ammissibili	0	1.00	1.00	1.00	1.00	1.00
definiti dall'utente	•	1.00	1.00	1.00	1.00	1.00

Parametri geotecnici

Terreno al contorno del fusto

	condizioni	● d	Irenate		0	non drenate	
peso spec	rifico del terreno			γ	(kN/m³)	Valori caratteris 20.00	tici Valori di progetto 20.00
coesione	efficace		(c'	(kPa)	0.00	0.00
angolo di a	attrito interno del terre	eno	¢	p'	(°)	30.00	30.00

Terreno di base

condizioni

	:6		(kN/m³)	Valori caratteristici	Valori di progetto
peso spec	ifico del terreno	γ	(KIWIII)	19.50	19.50
resistenza	al taglio non drenata	cu	(kPa)	150.00	150.00

non drenate

profondità della falda

 z_w = profondità della falda = -3.20 (m)

drenate

coefficienti di reazione

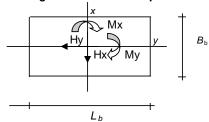
 m_h =modulo di reazione orizzontale = 514.7 (kN/m⁴) pari ad nh/D. Con nh=7000 kN/m3 per terreni granulari mediamente addensati k_h = coefficiente di reazione orizzontale alla base = k_v = coefficiente di reazione verticale = 514.7 (kN/m⁴) pari ad nh/D. Con nh=7000 kN/m3 per terreni granulari mediamente addensati k_h = coefficiente di reazione verticale = 514.7 (kN/m³) k_h = rapporto tra le cost. di reazione = 1.60 (-)

Verifica della condizione di fondazione infinitamente rigida

2,5 / h > ((m _h *D) / (Epozzo*J))""	(Silin e Zavrijev)	
2,5 / h =	0.16	(-)
$((m_h*D) / (Ep*Jp))^{1/5} =$	0.05	(-)

condizione di fondazione infinitamente rigida verificata

LOTTO 2: NISCEMI - GELA


VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS6K 00 R 09 CL VI 05 00 002 Α 90 di 105

CONSEGUIRE

Sollecitazioni massime agenti alla base della pila:

AZIONI

	valori di input		Valori di	
	permanenti	temporanee	calcolo	
N [kN]	26102.20	0.00	26102.20	aggiunto peso p
Mx [kNm]	130.80	0.00	130.80	
My [kNm]	95.10	0.00	95.10	
Hx [kN]	28.90	0.00	28.90	
Hy [kN]	16719.88	0.00	16719.88	aggiunte inerzie

ggiunto peso plinto esistente

Dimensioni in pianta del plinto di fondazione

hp = 3.20 (m)

Ap = 145.27 (m)

Pplinto = 0.00 (kN) Vedi quanto riportato sopra

Sollecitazioni massime agenti alla testa del pozzo:

Nt = N + Pplinto26102.20 (kN)

 $Ht = (Hx^2 + Hy^2)^{0.5}$ 16719.90 (kN)

 $Mt = (Mxx^2 + Myy^2)^{0.5} =$ 53599.18 (kNm)

dove:

 $Mxx = Mx + Hy * h_p$

 $Myy = My + Hx * h_p$

e = Mt / Nt (eccentricità) = 2.05 (m) (riferita alla testa del pozzo)

h₁ (quota di applicazione Ht) = 3.21 (m) $(h_1 = Mt / Ht)$

q (somma di h e di h1) 19.21 (m)

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

00

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA LOTTO

RS6K

CODIFICA R 09 CL DOCUMENTO VI 05 00 002 REV. FOGLIO

Α

91 di 105

Profondità del centro di rotazione del pozzo

$$z_0 = (\beta Dh^2(4q-h) + 6WD) / (2\beta Dh(3q-h))$$

 $\beta = k_h / k_v$

 $z_0 = 12.39$ (m)

Rotazione del pozzo

$$R = (\beta Dh^3 + 18DW) / (2\beta(3q - h))$$

$$tg\omega = 6H/Rk_hh$$

$$\omega = arctg(6H / Rm_h h)$$

$$\omega = 0.01084$$
 (rad)

$$v = 0.6214$$
 (°)

Profondità alla quale si verifica la massima pressione orizzontale

 σ_h (z)max

$$z = z_0/2$$

$$z = 6.19$$

$$\sigma_h (z)_{max} = 214.14$$

(kN/m^2)

Raggio di Nocciolo della sezione del pozzo

r = D/8

$$r = 1.70$$
 (m)

Sollecitazioni lungo il fusto del pozzo

Pressioni laterali

$$\sigma_h(z)_{lim} = kp^*\sigma'_v(z) + 2^*c'(kp)^{0.5}$$

(tensioni efficaci)

$$\sigma_h(z)_{lim} = \sigma_v(z) + 2^*cu$$

(tensioni totali)

$$kp = (1+\sin\varphi')/(1-\sin\varphi')$$
 = 3.00

Caratteristiche di sollecitazione

$$N = Nt + A_b * \gamma_{cls}$$

$$M = H ((h_1 + z(1 - (Dz^2/(2Rh))*(2z_0 - z)))$$

$$T = H (1 - (Dz^2/(Rh))*(3z_0 - 2z))$$

$$\sigma_h(z) = ((6H)/(Rh))z(z_0-z)$$

$$\delta_h = (z_0 - z)^* tg \, \omega$$

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	92 di 105

z	N	М	Т	е	σ _h (z)	σ _v (z)	$\sigma_h(z)_{lim}$	δ_{h}
(m)	(kN)	(kNm)	(kN)	(m)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(cm)
0	26102.20	53599.18	16719.90	F.Ń.	0.00	32.00	96.00	13.43
0.53	27651.72	62493.20	16590.00	F.N.	35.29	37.33	112.00	12.86
1.07	29201.23	71251.72	16215.63	F.N.	67.41	42.67	128.00	12.28
1.60	30750.75	79750.50	15619.83	F.N.	96.35	48.00	144.00	11.70
2.13	32300.27	87877.60	14825.64	F.N.	122.11	53.33	160.00	11.12
2.67	33849.79	95533.34	13856.09	F.N.	144.70	58.67	176.00	10.54
3.20	35399.30	102630.35	12734.22	F.N.	164.11	64.00	192.00	9.96
3.73	36948.82	109093.52	11483.05	F.N.	180.35	69.33	208.00	9.39
4.27	38498.34	114860.05	10125.63	F.N.	193.41	74.67	224.00	8.81
4.80	40047.86	119879.39	8684.98	F.N.	203.30	80.00	240.00	8.23
5.33	41597.37	124113.32	7184.14	F.N.	210.01	85.33	256.00	7.65
5.87	43146.89	127535.88	5646.15	F.N.	213.54	90.67	272.00	7.07
6.40	44696.41	130133.38	4094.04	F.N.	213.90	96.00	288.00	6.49
6.93	46245.92	131904.44	2550.84	F.N.	211.08	101.33	304.00	5.92
7.47	47795.44	132859.96	1039.59	F.N.	205.09	106.67	320.00	5.34
8.00	49344.96	133023.11	-416.68	F.N.	195.92	112.00	336.00	4.76
8.53	50894.48	132429.36	-1794.94	F.N.	183.58	117.33	352.00	4.18
9.07	52443.99	131126.47	-3072.15	F.N.	168.06	122.67	368.00	3.60
9.60	53993.51	129174.46	-4225.28	F.N.	149.37	128.00	384.00	3.02
10.13	55543.03	126645.66	-5231.29	F.N.	127.50	133.33	400.00	2.44
10.67	57092.55	123624.66	-6067.15	F.N.	102.45	138.67	416.00	1.87
11.20	58642.06	120208.37	-6709.83	F.N.	74.23	144.00	432.00	1.29
11.73	60191.58	116505.96	-7136.28	F.N.	42.83	149.33	448.00	0.71
12.27	61741.10	112638.87	-7323.49	F.N.	8.26	154.67	464.00	0.13
12.80	63290.61	108740.87	-7248.41	F.N.	-29.49	160.00	480.00	-0.45
13.33	64840.13	104957.96	-6888.00	1.62	-70.41	165.33	496.00	-1.03
13.33	64840.13	104957.96	-6888.00	1.62	-70.41	165.33	496.00	-1.03
13.87	66389.65	101448.48	-6219.25	1.53	-114.51	170.67	512.00	-1.60
14.40	67939.17	98383.01	-5219.10	1.45	-161.79	176.00	528.00	-2.18
14.93	69488.68	95944.44	-3864.54	1.38	-212.24	181.33	544.00	-2.76
15.47	71038.20	94327.94	-2132.51	1.33	-265.87	186.67	560.00	-3.34
16.00	72587.72	93740.96	0.00	1.29	-322.67	192.00	576.00	-3.92

 $N_b = 72587.72$ (kN)

 $M_b = 93740.96$ (kNm)

Sottospinta idrostatica alla base del pozzo

 $N_w = 27891.31$ (kN)

Pressioni verticali alla base del pozzo

$$\sigma_{zmax} = (N_b \text{-} N_w) / \, A_b \, + \, (3DH) \, / \, (\beta \, R)$$

 $\sigma_{zmin} = (N_b \text{-} N_w) / A_b \text{ - (3DH)} / (\beta R)$

 $\sigma_{zmax} = 687.27 \quad (kN/m^2)$

 $\sigma_{zmin} = -71.90 (kN/m^2)$

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	93 di 105

Valori Massimi delle caratteristiche di sollecitazione

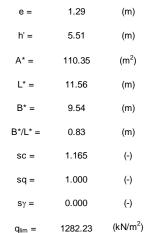
Nmax =	72587.72	(kN)	zNmax =	12.80	(m)
Mmax =	133023.11	(kNm)	zMmax =	8.00	(m)
Tmax =	16719.90	(kN)	zTmax =	0.00	(m)

VERIFICHE GEOTECNICHE

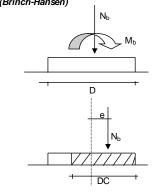
Capacità portante limite

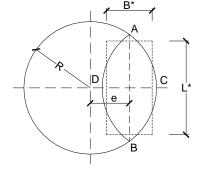
$$\begin{aligned} q_{lim} &= c'N_{csc} + qN_{qsq} + 0.5\gamma BN\gamma s\gamma \\ q_{lim} &= c_uN_c sc + q \end{aligned}$$

q =	192.00	(kN/m ²)
$N_q =$	1.00	(-)
N _c =	5.14	(-)
$N_{\gamma} =$	0.00	(-)
sc =	1 + 0,2*(B/L)	
sq=	1	


sγ =

$$AB = \sqrt{R^2 - e^2}$$


$$\frac{\mathsf{AB}}{\mathsf{CD}} = \frac{\mathsf{L}^{\, \star}}{\mathsf{B}^{\, \star}}$$


$$h' = R - e$$

$$B^* \cdot L^* = A^* = 2 \left(R^2 \cos^{-1} \left(\frac{R - h'}{R} \right) - \left(R - h' \right) \sqrt{\left(2Rh' - h'^2 \right)} \right)$$

(Brinch-Hansen)

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

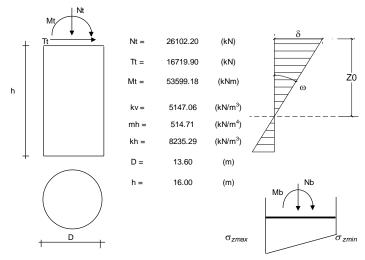
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	94 di 105

Sforzo Verticale limite nel terreno

 $N_{lim} = q_{lim} *A*$

 $N_{lim} = 141498.05$ (kN)

Sforzo Verticale massimo nel terreno


 $N_b - N_w = 44696.41$ (kN

Coefficiente di Sicurezza

 $F_s = N_{lim} / (N_b - N_w)$

Fs = 3.17

Tabella Riepilogativa

Riepilogo Caratteristiche di sollecitazione in corrispondenza dei valori Max di ciascuna

			N (kN)	M (kNm)	T (kN)
zMmax =	8.00	(m)	55155.65	133023.11	-416.68
zNmax =	12.80	(m)	72587.72	93740.96	0.00
zTmax =	0.00	(m)	26102.20	53599.18	16719.90

Caratteristiche di sollecitazione alla base

 $N_b = 72587.72$ (kN) $M_b = 93740.96$ (kNm)

Tensioni alla base

 $\sigma_{zmax} = 687.27$ (kN/m²) $\sigma_{zmin} = -71.90$ (kN/m²)

Spostamento in testa e rotazione

δ = 13.43 (cm) ω = 0.01084 (rad) ω = 0.621 (°)

Profondità del centro di rotazione

 $z_0 = 12.39$ (

Coefficiente di Sicurezza

 $F_s = N_{lim} / N_b$ Fs =

3.17 ≥ 2.3 =γ_R

rs _R 1.38

Fs

TALFERR GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	95 di 105

Verifica a carico limite del palo più caricato

Al fine di calcolare il carico di compressione agente sul palo più caricato, si è proceduto con una ripartizione rigida delle azioni mediante la seguente relazione:

$$E_{i} = \frac{F}{n} \pm \frac{m_{x}}{\Sigma_{1,i}^{n} dy_{i}^{2}} d_{yi} \pm \frac{m_{y}}{\Sigma_{1,i}^{n} dx_{i}^{2}} dx_{i}$$

Si specifica che, analogamente a quanto fatto per il pozzo, le azioni ottenute dal modello in condizioni sismiche sono state amplificate secondo il coefficiente 1.1 nel rispetto del §7.2.5 NTC18.

Sono state prese in considerazione tutte le combinazioni (sia SLV che SLU), il carico risultante sul palo più caricato è quindi di 1021 kN.

La stessa relazione verrà utilizzata anche per il calcolo della massima trazione (ove presente).

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	96 di 105

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI MEDIO DIAMETRO

1.35

1.15

VI-347+990 OPERA:

DATI DI INPUT:

definiti dall'utente

Diametro del Palo (D): 0.60 (m) Area del Palo (Ap): Quota testa Palo dal p.c. (z_p): 5.35 Quota falda dal p.c. (z_w): (m) Carico Assiale Permanente (G): 1021 (kN) Carico Assiale variabile (Q): 2 🛊 Numero di strati Lpalo = 16.00 azioni resistenza laterale e di base coefficienti parziali variabili permanenti Metodo di calcolo γ_b γ_{s} Stato limite ultimo 1.00 1.30 1.30 1.60 \bigcirc Tensioni ammissibili 1.00 1.00 1.00 1.00

	-	Zp		- XIII
				Zw
0.283	(m ²)			p.l.f.
2.10	(m)			Ē
0	(kN)			
		L		
		\		
			D	

_										
	n	1	2	3	4	50	7	10	T.A.	ut 💿
ĺ	ξ3	1.40	1.35	1.33	1.31	1.29	1.27	1.25	1.00	1.65
I	ξ₄	1.40	1.27	1.23	1.20	1.15	1.12	1.08	1.00	1.55

1.00

1.00

Strato	Spess		Parametri del terreno						
Sirato	opess	Tipo di terreno	γ	C' med	C' min	φ' _{med}	φ' _{min}	C _{u med}	C _{u min}
(-)	(m)		(kN/m^3)	(kPa)	(kPa)	(°)	(°)	(kPa)	(kPa)
1	8.00	Unità 1	20.00			30.0	30.0		
2	8.00	Unità 2	19.50					150.0	150.0

C	Coefficienti di Calcolo					
k	μ	а	α			
(-)	(-)	(-)	(-)			
0.70	0.58		0.4			
			0.4			

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

Strato	Spess	Tipo di terreno
(-)	(m)	
1	8.00	Unità 1
2	8.00	Unità 2

media				
Qsi	Nq	Nc	qb	Qbm
(kN)	(-)	(-)	(kPa)	(kN)
697.8				
904.8	0.00	9.00	1773.0	501.3

minima				
Qsi	Nq	Nc	ф	Qbm
(kN)	(-)	(-)	(kPa)	(kN)
697.8				
904.8	0.00	9.00	1773.0	501.3

CARICO ASSIALE AGENTE

 $Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$

Nd = 1021.0 (kN)

CAPACITA'	PORTANTE	MEDIA
OAI AOITA	I OILIZATIE	IVILLE

alla base 501.3 (kN) R_{b;cal med} = laterale 1602.6 (kN)

totale 2103.9 (kN) R_{c:cal med} =

CAPACITA' PORTANTE MINIMA

alla base 501.3 (kN) R_{b;cal min} = laterale 1602.6 (kN) $R_{s;cal\ min}$ = 2103.9 (kN) totale R_{c:cal min} =

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal med}/\xi_3; R_{b,cal min}/\xi_4) = 303.8 (kN)$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 971.3 (kN)$

CAPACITA' PORTANTE DI PROGETTO

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$

Fs = Rc,d/Nd

 $R_{c,d} = 1069.6 (kN)$

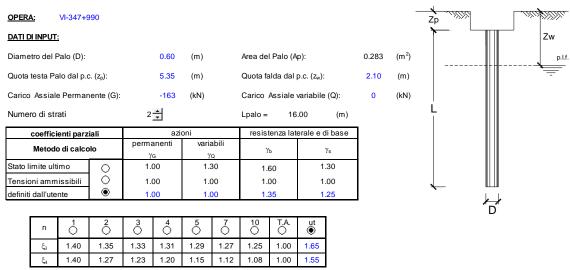
Fs = 1.05

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 1275.1 (kN)

CONSEGUIRE

LOTTO 2: NISCEMI - GELA

VI05 - VIADOTTO AL KM 347+996


Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	97 di 105

Verifica a carico limite del palo in trazione

Dalla ripartizione rigida emerge un valore massimo di trazione sul singolo palo pari a 163 kN.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI MEDIO DIAMETRO

Ctroto	Spess				Param	etri del	terreno		
Strato	opess	Tipo di terreno	γ	C' med	C' min	φ' _{med}	φ' _{min}	C _{u med}	C _{u min}
(-)	(m)		(kN/m^3)	(kPa)	(kPa)	(°)	(°)	(kPa)	(kPa)
1	8.00	Unità 1	20.00			30.0	30.0		
2	8.00	Unità 2	19.50					150.0	150.0

Coefficienti di Calcolo				
k	μ	а	α	
(-)	(-)	(-)	(-)	
0.50	0.58		0.4	
			0.4	

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

Strato	Spess	Tipo di terreno	
(-)	(m)	-	
1	8.00	Unità 1	
2	8.00	Unità 2	

media				
Qsi	Nq	Nc	qb	Qbm
(kN)	(-)	(-)	(kPa)	(kN)
498.4 904.8	0.00	9.00	1773.0	501.3

minima				
Qsi	Nq	Nc	qb	Qbm
(kN)	(-)	(-)	(kPa)	(kN)
498.4 904.8	0.00	9.00	1773.0	501.3
904.8	0.00	9.00	1773.0	501.3
			i	l

$\frac{\text{CARICO ASSIALE AGENTE}}{\text{Nd} = \text{Na} \cdot \gamma_a + \text{Na} \cdot \gamma_a}$
Nd = Na · v. + Na · v.

Nd = -163.0 (kN)

 $R_{c,k} = R_{b,k} + R_{s,k}$

CAPACIT	A' POR	TANTE	MEDIA		
alla bas	se	R _{b;cal m}	ed =	.0 (kN)	
laterale		R _{s;cal m}	ed =	1403.2 (I	

CAPACITA' PORTANTE DI PROGETTO

1403.2 (kN)

CAPACITA' P	ORTANTE MINIMA	
alla base	R _{b;cal min} =	.0 (kN)
laterale	R _{s;cal min} =	1403.2 (kN)
totale	R _{c;cal min} =	1403.2 (kN)

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3 ; R_{b,cal\ min}/\xi_4) = .0 \text{ (kN)}$ $R_{s,k} = Min(R_{s,cal\ med}/\xi_3 ; R_{s,cal\ min}/\xi_4) = .850.4 \text{ (kN)}$

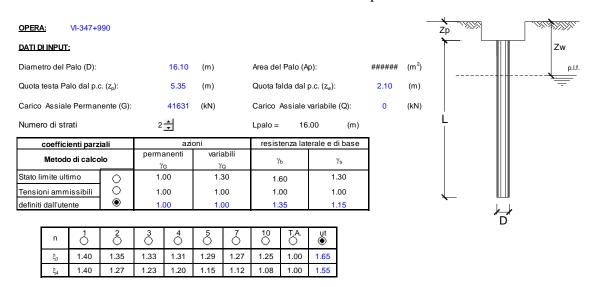
= 850.4 (kN)

$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$
R _{od} = 680.3 (kN)

Fs = Rc,d / Nd
Fs = 4.17

CONSEGUIRE

LOTTO 2: NISCEMI - GELA


VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS6K	00	R 09 CL	VI 05 00 002	Α	98 di 105

Verifica a carico limite del blocco

L'azione agente sul blocco è la compressione massima agente sulla palificata. In questo caso risulta dimensionante la combinazione SLU che fornisce un carico pari a 41631 kN.

Strato	Spess		Parametri del terreno						
Strato	opess	Tipo di terreno	γ	C' med	C' min	φ' _{med}	φ' _{min}	C _{u med}	C _{u min}
(-)	(m)		(kN/m ³)	(kPa)	(kPa)	(°)	(°)	(kPa)	(kPa)
1	8.00	Unità 1	20.00			30.0	30.0		
2	8.00	Unità 2	19.50					150.0	150.0
/ - l l-		a deali etreti è comentete delle anete di i		del electe	`				

Coefficienti di Calcolo					
k μ a α					
(-)	(-)	(-)			
0.58		0.4			
		0.4			
	μ (-)	μ a (-) (-)			

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

Strato	Spess	Tipo di terreno	
(-)	(m)		
1	8.00	Unità 1	
2	8.00	Unità 2	

	media					
Qsi	Nq	Nc	qb	Qbm		
(kN)	(-)	(-)	(kPa)	(kN)		
#####						
#####	0.00	9.00	1773.0	######		
I						

minima						
Qsi	Qsi Nq Nc qb Qbm					
(kN)	(-)	(-)	(kPa)	(kN)		
#####						
#####	0.00	9.00	1773.0	######		

CARICO ASSIALE AGENTE	
$Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$	
Nd = 41631.0 (kN)	

CAPACITA' PORTANTE MEDIA					
alla base	R _{b;cal med} =	360952.8 (kN)			
laterale	R _{s;cal med} =	43002.7 (kN)			
totala	в _	4020EE 4 (LN)			

CAPACITA F	CAPACITA FORTANTE MINIMA				
alla base	R _{b;cal min} =	360952.8 (kN)			
laterale	R _{s;cal min} =	43002.7 (kN)			
totale	R _{c:cal min} =	403955.4 (kN)			

$R_{c,k} = R_{b,k} + R_{s,k}$ = 244821.5 (kN)		
$R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 26062.2 (kN)$	$R_{c,d} = 184706.7 \text{ (kN)}$	Fs = 4.44
$R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4) = 218759.2 (kN)$	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$	Fs = Rc,d / Nd
CAPACITA' PORTANTE CARATTERISTICA	CAPACITA' PORTANTE DI PROGETTO	

12.4.2 Verifiche strutturali

Oggetto delle verifiche strutturali è il palo D600 e la sua armatura a flessione e taglio.

Le sollecitazioni di taglio agenti sul singolo palo sono state stimate adottando una ripartizione rigida secondo la seguente formulazione:

$$V_{palo} = \frac{\sqrt{V_x^2 + V_y^2}}{n_{pali}} + M_t W_t$$

Per tener conto dell'effetto gruppo della palificata il valore del modulo di reazione orizzontale k_h è stato moltiplicato per 0.25 (come riportato in *Fondazioni*, Viggiani).

Nell'ipotesi di palo incastrato in testa, tramite la teoria della linea elastica si è ottenuta la lunghezza libera di inflessione del palo, λ , e la stima del momento massimo a cui l'elemento è sottoposto:

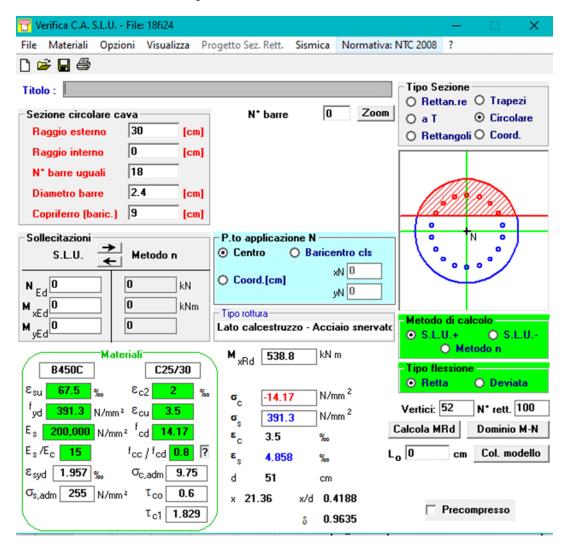
$$M_{max} = \frac{\lambda}{2} V_{palo}$$

Si riportano in tabella le grandezze di interesse:

Wt	0.0024	1/m
λ	2.82	m
kh ridotto	16667	kN/m3
kh	66667	kN/m3
Еор	40000	kPa
J	0.006	m4
D	0.6	m
E cls	25000000	kPa
n.ro pali	66	

Si specifica in ultimo che le sollecitazioni di taglio in fase sismica sono state amplificate secondo il coefficiente 1.3, nel rispetto delle prescrizioni al §7.2.5 NTC18.

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER CONSEG L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA					
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione	RS6K	00	R 09 CL	VI 05 00 002	Α	100 di 105


Le sollecitazioni di progetto sono quindi le seguenti:

Comb.	Sollecitazioni progetto palo			
Comb.	V	M		
_SLV1	295.90	417.83		
_SLV2	295.93	417.88		
_SLV3	284.18	401.29		
_SLV4	284.22	401.34		
_SLV5	315.79	445.92		
_SLV6	315.79	445.92		
_SLV7	338.14	477.49		
_SLV8	338.14	477.49		
_SLV9	294.84	416.34		
_SLV10	294.87	416.39		
_SLV11	283.13	399.80		
_SLV12	283.16	399.85		
_SLV13	315.81	445.95		
_SLV14	315.81	445.95		
_SLV15	338.14	477.48		
_SLV16	338.14	477.48		
_SLU1	27.94	39.46		
_SLU2	29.18	41.20		
_SLU3	26.92	38.02		
_SLU4	28.03	39.59		
_SLU5	28.26	39.91		
_SLU6	27.77	39.21		
_SLU7	26.89	37.97		
_SLU8	26.56	37.51		
_SLU9	0.21	0.30		
_SLU10	9.00	12.71		
_SLU11	27.94	39.45		
_SLU12	29.17	41.19		
_SLU13	26.92	38.01		
_SLU14	28.03	39.58		
_SLU15	28.26	39.91		
_SLU16	27.77	39.21		
_SLU17	26.89	37.97		
_SLU18	26.56	37.50		
_SLU19	0.19	0.27		
_SLU20	8.98	12.69		

GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	со	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	101 di 105

• Armature longitudinali

Per il calcolo del momento resistente del palo si considera una sezione armata con 18Φ24.

GRUPPO FERROVIE DELLO STATO	RIPRISTINO LINEA CALTAGIRONE-GELA MIGLIORAMENTI STRUTTURALI PER L'ADEGUAMENTO SISMICO DEI VIADOTTI LOTTO 2: NISCEMI - GELA				CO	CONSEGUIRE	
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	102 di 105	

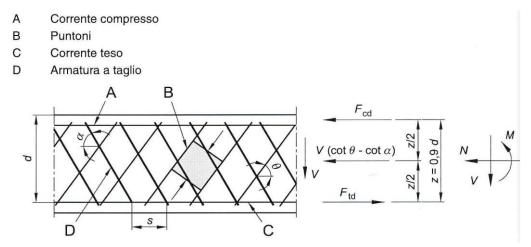
• Armature trasversali

Il palo, di diametro 600 mm, risulta essere armato a taglio con staffe Φ 14 passo 120mm.

Verifica a taglio in accordo a EC2-2 Caratteristiche dei materiali

<u>Cls</u>			
Rck=	30	MPa	
fck=	25	MPa	
γc=	1.50		
fcm=	33	MPa	_
αcc=	0.85		coefficiente che tiene conto degli effetti a lungo termine, var 0.8-1
fcd=	14.11	MPa	
fctm=	2.56	MPa	
fctk _{0.05} =	1.79	MPa	
fctk _{0.95} =	3.33	MPa	
αct=	1.00		coefficiente che tiene conto degli effetti a lungo termine, var 0.8-1
fctd=	1.19	MPa	g ,
Acciaio c.a.			
fyk=	450	MPa	
γs=	1.15		
fyd=	391	MPa	
Azioni di tagli		γ	
Gk	0	x1.00=	
Pk	0	x1.00=	
Qk And	0 0	x1.00= x1.30=	
Aed	U	V _{Ed} =	
		V Ed =	URIN
Nsd=	0	KN	sforzo normale
bw =	0.471	m	larghezza (6.16)
h=	0.600	m	altezza totale
C=	0.090	m	copriferro
d =	0.510	m	altezza utile
Ac=	0.283	mq	area

LOTTO 2: NISCEMI - GELA


VI05 - VIADOTTO AL KM 347+996

Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS6K
 00
 R 09 CL
 VI 05 00 002
 A
 103 di 105

elementi CA e CAP armati a taglio

Resistenza delle staffe:

φ W =	14	mm	diametro staffa			
n=	2.00		numero braccia			
Asw=	3.08	cmq				
z=	0.38	m	=0.75*d			
senα=	1		α angolo tra le staffe e l'asse della tra	ve (α=9	90° per	staffe verticali)
ρW=	0.54	%	$=Asw/(s*bw*sin\alpha)*100>=$			
s=	0.12	m	=passo staffe <=	0.38	m	$=0.75*d*(1+cot\alpha)$
θ=	45.0	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*l	cd))		
			inclinazione puntone compresso, varia	abile tra	a 45° to	21.8°
tanθ=	1.00		valore tra 1 (for θ =45°) e 0.4			
cotθ=	1.00		valore tra 1 (for θ =45°) and 2.5			
ρw,max=	2.13	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd =	3.81		verifica soddisfatta
$V_{Rd,s}$ =	384	kN	=Asw/s*z* fywd *cotθ			

Resistenza del puntone compresso:

GRUPPO FERROVIE DELLO STATO	MIGLIORA	MENTI MENTO	CALTAGIRO STRUTTU SISMICO DE - GELA	JRALI PER	COI	NSEGUIRE
VI05 - VIADOTTO AL KM 347+996	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di vulnerabilità sismica dell'opera e di calcolo degli interventi in fondazione ed elevazione		00	R 09 CL	VI 05 00 002	Α	104 di 105

• <u>Verifiche</u>

Si riportano a seguire i valori dei coefficienti sicurezza ottenuti nelle verifiche a taglio e flessione.

	Sollecitazioni	progetto palo	Resistenze	di progetto	Ver	ifiche
Comb.	V	M	Vrd	Mrd	FS taglio	FS momento
_SLV1	295.90	417.83	384.0	538.8	1.30	1.29
_SLV2	295.93	417.88	384.0	538.8	1.30	1.29
SLV3	284.18	401.29	384.0	538.8	1.35	1.34
_SLV4	284.22	401.34	384.0	538.8	1.35	1.34
_SLV5	315.79	445.92	384.0	538.8	1.22	1.21
_SLV6	315.79	445.92	384.0	538.8	1.22	1.21
_SLV7	338.14	477.49	384.0	538.8	1.14	1.13
_SLV8	338.14	477.49	384.0	538.8	1.14	1.13
_SLV9	294.84	416.34	384.0	538.8	1.30	1.29
_SLV10	294.87	416.39	384.0	538.8	1.30	1.29
_SLV11	283.13	399.80	384.0	538.8	1.36	1.35
_SLV12	283.16	399.85	384.0	538.8	1.36	1.35
_SLV13	315.81	445.95	384.0	538.8	1.22	1.21
_SLV14	315.81	445.95	384.0	538.8	1.22	1.21
_SLV15	338.14	477.48	384.0	538.8	1.14	1.13
_SLV16	338.14	477.48	384.0	538.8	1.14	1.13
_SLU1	27.94	39.46	384.0	538.8	13.74	13.65
_SLU2	29.18	41.20	384.0	538.8	13.16	13.08
_SLU3	26.92	38.02	384.0	538.8	14.26	14.17
_SLU4	28.03	39.59	384.0	538.8	13.70	13.61
_SLU5	28.26	39.91	384.0	538.8	13.59	13.50
_SLU6	27.77	39.21	384.0	538.8	13.83	13.74
_SLU7	26.89	37.97	384.0	538.8	14.28	14.19
_SLU8	26.56	37.51	384.0	538.8	14.46	14.36
_SLU9	0.21	0.30	384.0	538.8	1837.67	1826.00
_SLU10	9.00	12.71	384.0	538.8	42.66	42.39
_SLU11	27.94	39.45	384.0	538.8	13.74	13.66
_SLU12	29.17	41.19	384.0	538.8	13.16	13.08
_SLU13	26.92	38.01	384.0	538.8	14.27	14.18
_SLU14	28.03	39.58	384.0	538.8	13.70	13.61
_SLU15	28.26	39.91	384.0	538.8	13.59	13.50
_SLU16	27.77	39.21	384.0	538.8	13.83	13.74
_SLU17	26.89	37.97	384.0	538.8	14.28	14.19
_SLU18	26.56	37.50	384.0	538.8	14.46	14.37
_SLU19	0.19	0.27	384.0	538.8	2001.57	1988.86
_SLU20	8.98	12.69	384.0	538.8	42.74	42.47

CONSEGUIRE

FOGLIO

105 di 105

REV.

Α

13 INCIDENZA ARMATURE

calcolo degli interventi in fondazione ed elevazione

• Cordolo allargamento fondazione: 110 kg/m3

• Pali D600: 260 kg/m3

• Camicia rinforzo pile (incidenza media sull'altezza): 130 kg/m3

• Struttura interna rinforzo archi: 260 kg/m3

14 CONCLUSIONI

La presente relazione ha illustrato le analisi eseguite, in fase statica e sismica, attraverso cui sono stati progettati gli interventi di rinforzo strutturale dell'opera.

Gli interventi previsti, che interessano le fondazioni, i fusti pile e le arcate, consentono di raggiungere l'adeguamento sismico del viadotto, nonché migliorare la sicurezza strutturale nei confronti dei carichi di esercizio.

Lo studio numerico dell'opera nei confronti dell'evento sismico è stato condotto impiegando la metodologia dell'analisi statica non lineare (Push Over), questa prevede l'analisi e la verifica globale della struttura in termini di spostamenti. Sono state condotte verifiche di dettaglio dei vari elementi strutturali limitatamente alle parti più sollecitate dell'opera.