COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

CONSORZIO:

SOCI:

ORSARA - BOVINO AV

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA ORSARA - BOVINO

GEOLOGIA

STUDIO IDROGEOLOGICO

GENERALE

Relazione idrogeologica

APPALTATORE	DIRETTORE DELLA PROGETTAZIONE	PROGETTISTA
Consorzio ORSARA - BOVINO AV Il Direttore Tecnico Ing. P. M. Gianvecchio	II Responsabile integrazione fra le varie prestazioni specialistiche Ing. G. Cassani	S.P.A.
19/05/2022		Dott. Geol. F. Pennino

COMMESSA

LOTTO FASE ENTE TIPO DOC.

OPERA/DISCIPLINA

PROGR.

REV.

SCALA:

GE010

0 0 1

В	
_	ı

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
^	C08.00 – Emissione 180gg	F. Pennino	40/04/0000	F. Pennino	40/04/0000	M. Gatti	10/04/0000	Ing C Cocconi
Α	Cos.oo – Emissione 180gg		18/01/2022		18/01/2022		18/01/2022	Ing. G. Cassani
В	C08.01 – A valle del contraddittorio	F. Pennino	40/05/0000	F. Pennino	40/05/0000	M. Gatti	40/05/0000	
Ь	Cos.o i – A valle del contradditiono		19/05/2022		19/05/2022		19/05/2022	
								19/05/2022

File: IF2O00EZZRGGE0102001B n. Elab.: -	
---	--

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI

GCF ELETTRI-FER
TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA ORSARA - BOVINO

COMMESSA LOTTO (

CODIFICA E ZZ RG DOCUMENTO GE0102 001 REV. FO

FOGLIO 2 di 69

Indice

1	INT	TR(DDUZIONE	4
	1.1	DE	ESCRIZIONE SINTETICA DEL PROGETTO	4
	1.2	FI	ENCO ELABORATI	8
	1.3		TIVITÀ SVOLTE	
2	DA	IT	DI BASE	15
2	2.1	DA	ATI CARTOGRAFICI DISPONIBILI	15
4	2.2	UE	BICAZIONE INDAGINI IN SITO	15
4	2.3	IN	DAGINI IN SITO	16
	2.3.	.1	CAMPAGNA INDAGINI ITALFERR 2017	16
	2.3.	2	CAMPAGNA ITALFERR 2018 - RADDOPPIO TRATTA ORSARA – BOVINO E TRATTA HIRPINIA - ORSARA	19
	2.3.	.3	CAMPAGNA INDAGINI CONSORZIO ORSARA – BOVINO AV 2021 – 2022	22
2	2.4	DA	ATI DI MONITORAGGIO	25
	2.4.	.1	MONITORAGGIO INCLINOMETRICO DEL PROGETTO DEFINITIVO	25
	2.4.	.2	MONITORAGGIO PIEZOMETRICO DEL PROGETTO DEFINITIVO	26
	2.4.	.3	MONITORAGGIO INCLINOMETRICO DEL PROGETTO ESECUTIVO	30
	2.4.	4	MONITORAGGIO PIEZOMETRICO DEL PROGETTO ESECUTIVO	33
3	INC	QU	ADRAMENTO IDROGEOLOGICO GENERALE DELL'AREA	34
4	СО	MF	PLESSI IDROGEOLOGICI	37
	4.1	PF	REMESSA	37
	4.2	CL	ASSIFICAZIONE DEI COMPLESSI	38
	4.2.		COMPLESSI DEI TERRENI DI COPERTURA	
	4.2.	.2	COMPLESSI DELLE UNITÀ DEL SUBSTRATO	39
	4.3	PE	ERMEABILITÀ DELLE FORMAZIONI	42
	4.3.	1	DISTRIBUZIONE STATISTICA DELLE PERMEABILITÀ DELLE FORMAZIONI	42
	4.3.	2	PERMEABILITÀ DELLA FORMAZIONE DELLE ARGILLE SUBAPPENNINE - ASP	44
	4.3.	.3	PERMEABILITÀ DELLA FORMAZIONE DI SIDONE - SID	45
	4.3.	4	PERMEABILITÀ DELLE UNITÀ DELLA FORMAZIONE DEL FLYSCH DI FAETO – FAE/C-FAE/MA-FAE/AM	46
	4.3.	.5	PERMEABILITÀ DELLA FORMAZIONE DELLE ARENARIE E CONGLOMERATI DI CASTELLO SCHIAVO - BVNA.	47
	4.3.	6	PERMEABILITÀ DELLA FORMAZIONE DELLE ARGILLE E SABBIE DEL VALLONE MERIDIANO - BVNB	48
	4.3.	.7	PERMEABILITÀ DELLA FORMAZIONE DELLE MARNE ARGILLOSE DEL TOPPO CAPUANA - TPC	
	4.3.	8.	PERMEABILITÀ DEI TERRENI DI COPERTURA – RPL1A E RPL1B	50
	4.3.	.9	PERMEABILITÀ DELLA DEI TERRENI DI COPERTURA – B2/B3	51
5.	DE	SC	RIZIONE DEL MODELLO IDROGEOLOGICO GENERALE	53

APPALTATORE: Consorzio Soci ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE:

<u>Mandanti</u>

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA ORSARA - BOVINO**

NET ENGINEERING PINI GCF TUNNELCONSULT **ELETTRI-FER**

PROGETTO ESECUTIVO Relazione idrogeologica

<u>Mandataria</u>

ROCKSOIL S.P.A

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ RG GE0102 001 3 di 69

5.1	MONITORAGGIO PIEZOMETRICO	53
6. S	TIMA DELLE PORTATE DRENATE DALLE OPERE IN SOTTERRANEO	56
6.1	PREMESSA	56
6.2	PRINCIPI GENERALI SUL FLUSSO AL CONTORNO DI UN TUNNEL DRENANTE	56
6.	.2.1 DERIVAZIONE DELLE PORTATE IN REGIME TRANSITORIO (FASE DI SCAVO)	58
6.	.2.2 DERIVAZIONE DELLE PORTATE IN REGIME STABILIZZATO (FASE DI ESERCIZIO)	58
6.3	STIMA DELLE PORTATE IN FASE DI SCAVO	59
7. V	'ALUTAZIONE DEL RISCHIO DI ISTERILIMENTO DELLE ACQUE SOTTERRANEE	62
7.1	PREMESSA	62
7.2	METODOLOGIA	62
8. B	BIBLIOGRAFIA	69

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ΔΠΩΡΙ	ΡΙΟ ΤΡΑΤΤ	A ORSARA –	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>		.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110 110111		501	
ROCKSOIL S.P.A	NET ENGINEERING GCF EL TUNNELCONSULT	PINI ETTRI-FER						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idrogeologica	1		IF2O	00	E ZZ RG	GE0102 001	В	4 di 69

1 INTRODUZIONE

1.1 DESCRIZIONE SINTETICA DEL PROGETTO

La relazione illustra i risultati dello studio geologico ed idrogeologico a supporto della progettazione esecutiva (di seguito PE) del raddoppio della tratta Orsara – Bovino nell'ambito dell'itinerario Napoli Bari.

La tratta Orsara - Bovino interessa il tratto terminale della direttrice Napoli – Bari e risulta strategica nel riassetto complessivo dei collegamenti metropolitani, regionali e a lunga percorrenza previsto con la realizzazione di tutto il potenziamento. Si colloca in territorio campano attraversando, per la provincia di Avellino, il comune di Montaguto, e principalmente in territorio pugliese attraversando, i comuni di Orsara di Puglia e Bovino della provincia di Foggia.

La tratta in esame si sviluppa prevalentemente in galleria con una velocità compresa tra 200 e 250 Km/h ed ha una lunghezza complessiva L = 11,8 km. Il collegamento provvisorio, a doppio binario, è progettato con una velocità di 90 Km/h ed ha una lunghezza complessiva L = 1,08 km.

Ricade all'interno del progetto in oggetto la demolizione del corrispondente tratto di Linea Storica.

Nell'ambito dell'Itinerario Napoli - Bari si inserisce il Raddoppio della Tratta Bovino – Orsara (Figg. 1-1 e 1-2) che rappresenta l'ultimo tratto in variante prima della riconnessione sulla linea Bovino- Foggia- Bari già attiva dal 2017.

APPALTATORE:								
<u>Consorzio</u>	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	4RI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA –	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>						2010	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELETUNNELCONSULT	PINI FTRI-FER						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idrogeologica	1		IF2O	00	E ZZ RG	GE0102 001	В	5 di 69

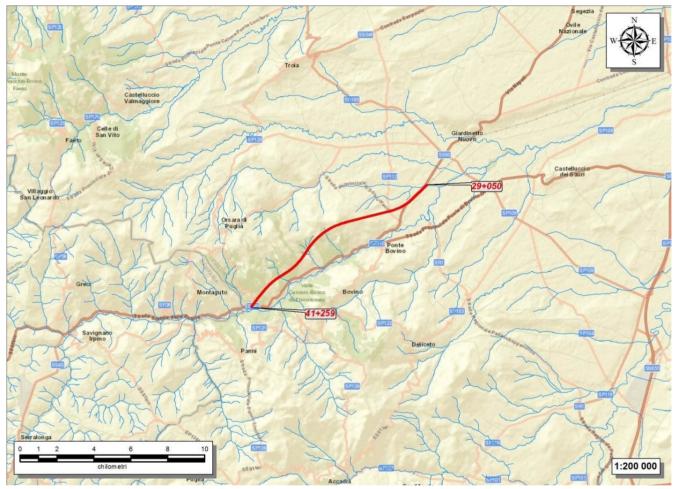


Figura 1-1 - Inquadramento geografico della galleria Orsara (linea rossa).

APPALTATORE:								
Consorzio	<u>Soci</u>				_	_		
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A		PINI RI-FER						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	6 di 69

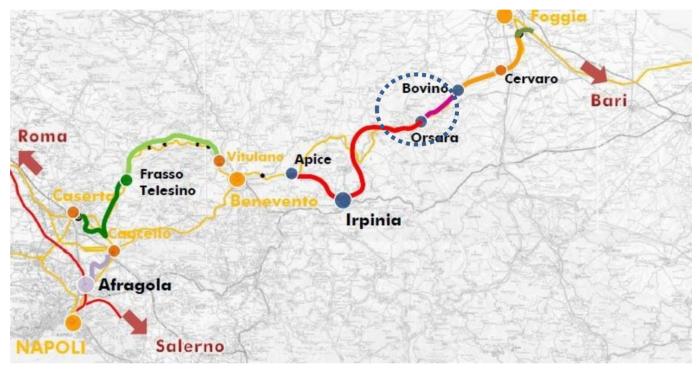


Figura 1-1 - Corografia dell'intera tratta Napoli Bari

La riqualificazione e lo sviluppo dell'itinerario Roma - Napoli – Bari prevede interventi di raddoppio delle tratte ferroviarie a singolo binario e varianti agli attuali scenari perseguendo la scelta delle migliori soluzioni che garantiscano la velocizzazione dei collegamenti e l'aumento dell'offerta generalizzata del servizio ferroviario, elevando l'accessibilità al servizio medesimo nelle aree attraversate.

I primi 2km di tracciato si sviluppano in tratta all'aperto, dapprima in rilevato fino alla pk 30+950 quindi in trincea fino all'imbocco della galleria, all'incirca alla pk 31. In questo ambito sono previsti prima la deviazione della SS90, per la quale si realizza un nuovo sottovia stradale che sotto-attraversa la ferrovia alla pk 30+639, successivamente il piazzale tecnologico e di sicurezza alla pk 30+872 ed infine i marciapiedi FFP di lunghezza L=410 m.

Nella prima parte del tracciato l'interasse dei binari è di 4m poi gli assi divergono fino all'imbocco della galleria Orsara lato Bari per la quale è previsto l'imbocco a canne separate (pk 31+044).

Nella galleria di Orsara, dopo l'imbocco, le canne separate continuano a divergere fino a raggiungere la distanza di interasse massima, pari a 50 m (per esigenze geomorfologiche); dalla pk 36+600 circa si avvicinano e si portano ad un interasse di 40 m.

Lungo l'intera tratta in galleria sono presenti by-pass trasversali di collegamento tra canna pari e canna dispari, a passo 500 m; i by-pass possono essere carrabili e pedonali e sono funzionali all'esodo dei passeggeri.

La galleria si sviluppa complessivamente per 9877 m circa, nel tratto finale la doppia canna confluisce in un camerone di lunghezza L=320 m ca, che consente ai binari di riavvicinarsi e di portarsi all'interasse di 4m.

L'imbocco della galleria lato Napoli è alla pk 40+915.41 e si presenta con una canna singola a doppio binario.

La tratta può essere così sintetizzata:

- I primi 2 km di tracciato sono all'aperto, prima in rilevato fino alla pk 30+955, poi in trincea fino all'imbocco della galleria.

APPALTATORE:								
<u>Consorzio</u>	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI ETTRI-FER						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idrogeologica	1		IF2O	00	E ZZ RG	GE0102 001	В	7 di 69

- Successivamente (pk 31+043) inizia la galleria di Orsara con un imbocco a canne separate;
- dopo l'imbocco, le canne continuano a divergere fino a raggiungere la distanza l=50 m (per esigenze geologico-geomorfologiche); dalla pk 36+600 circa si avvicinano e si portano alla distanza di 40 m.
- L'imbocco della galleria lato Napoli è alla pk 40+920 e si presenta con una canna singola a doppio binario.
- In prossimità di questa uscita è previsto il collegamento con la linea storica, infatti al km 40+918 (BD) ha inizio l'allaccio provvisorio di 1^ fase.

La galleria sviluppa complessivamente 9877 m circa; nel tratto finale la doppia canna confluisce in un camerone di lunghezza L=320 m che consente ai binari di riavvicinarsi e di portarsi all'interasse di 4m.

Lo studio è stato articolato nel modo seguente:

- nel capitolo 1 sono elencati in maniera sintetica gli elaborati cartografici prodotti a supporto della progettazione, i
 dati di base utilizzati per la redazione dello studio, sono descritti il tracciato e le attività svolte per la redazione
 degli elaborati di PE
- nel capitolo 2 sono citati sinteticamente i dati di base derivanti dalle campagne geognostiche a supporto delle diverse fasi progettuali, con particolare attenzione alla campagna di indagini e monitoraggio realizzata nell'anno 2021 relativa alla progettazione esecutiva;
- i capitoli 3 e 4 definiscono i criteri utilizzati per la suddivisione in complessi idrogeologici;
- il capitolo 5 descrive il modello idrogeologico di riferimento dell'area in cui ricade l'opera di linea;
- il capitolo 6 fornisce una descrizione dei modelli analitici utilizzati per effettuare una stima delle portate drenate in fase di scavo e in fase di esercizio della galleria. Per le diverse tratte della galleria di linea e delle finestre vengono fornite le stime delle portate drenate;
- il capitolo 7 riporta gli esiti della valutazione del rischio di isterilimento delle acque sotterranee eseguita con metodologia DHI.

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING PINI GCF TUNNELCONSULT ELETTRI-FER PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO FOGLIO COMMESSA REV. Relazione idrogeologica IF2O 00 E ZZ RG GE0102 001 В 8 di 69

1.2 ELENCO ELABORATI

L'elenco completo degli elaborati prodotti è riportato nella seguente tabella.

Tabella 1-1 – Elenco elaborati prodotti

i abelia 1-1 – Elenco elaborati prodotti								
Relazione geologica generale	IF2O00EZZRGGE0101001B.ZIP	A4						
Carta geologica con elementi geo-strutturali - Tavola 1/8	IF2O00EZZN6GE0101001B.ZIP	A0						
Carta geologica con elementi geo-strutturali - Tavola 2/8	IF2O00EZZN6GE0101002B.ZIP	A0						
Carta geologica con elementi geo-strutturali - Tavola 3/8	IF2O00EZZN6GE0101003B.ZIP	A0						
Carta geologica con elementi geo-strutturali - Tavola 4/8	IF2O00EZZN6GE0101004B.ZIP	A0						
Carta geologica con elementi geo-strutturali - Tavola 5/8	IF2O00EZZN6GE0101005B.ZIP	A0						
Carta geologica con elementi geo-strutturali - Tavola 6/8	IF2O00EZZN6GE0101006B.ZIP	A0						
Carta geologica con elementi geo-strutturali - Tavola 7/8	IF2O00EZZN6GE0101007B.ZIP	A0						
Carta geologica con elementi geo-strutturali - Tavola 8/8	IF2O00EZZN6GE0101008B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 1/8	IF2O00EZZF6GE0101001B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 2/8	IF2O00EZZF6GE0101002B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 3/8	IF2O00EZZF6GE0101003B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 4/8	IF2O00EZZF6GE0101004B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 5/8	IF2O00EZZF6GE0101005B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 6/8	IF2O00EZZF6GE0101006B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 7/8	IF2O00EZZF6GE0101007B.ZIP	A0						
Profilo geologico in asse al Binario Pari - Tavola 8/8	IF2O00EZZF6GE0101008B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 1/8	IF2O00EZZF6GE0101009B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 2/8	IF2O00EZZF6GE0101010B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 3/8	IF2O00EZZF6GE0101011B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 4/8	IF2O00EZZF6GE0101012B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 5/8	IF2O00EZZF6GE0101013B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 6/8	IF2O00EZZF6GE0101014B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 7/8	IF2O00EZZF6GE0101015B.ZIP	A0						
Profilo geologico in asse al Binario Dispari - Tavola 8/8	IF2O00EZZF6GE0101016B.ZIP	A0						

Consorzio <u>Soci</u>

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

NET ENGINEERING PINI GCF ELETTRI-FER TUNNELCONSULT ROCKSOIL S.P.A

PROGETTO ESECUTIVO

Relazione idrogeologica IF2O

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA ORSARA – BOVINO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
COMMISSION	LOTTO	OODII IOM	DOCOMENTO	1 (L V .	1 OOLIO
IF2O	00	E ZZ RG	GE0102 001	В	9 di 69
20			020102 001	_	0 u. 00

Profilo geologico - Tratta all'aperto - Lato Bari	IF2O00EZZF6GE0201001B.ZIP	A0
Profilo geologico - Tratta all'aperto - Lato Napoli	IF2O00EZZF6GE0201002B.ZIP	A0
Profilo geologico - Tratta all'aperto - Collegamento linea storica	IF2O00EZZF6GE0201003B.ZIP	A0
Sezioni geologiche trasversali - Tratta all'aperto - Lato Bari	IF2O00EZZW6GE0201001B.ZIP	A0
Sezioni geologiche trasversali - Tratta all'aperto - Lato Napoli	IF2O00EZZW6GE0201002B.ZIP	A0
Sezioni geologiche trasversali - Tratta all'aperto - Collegamento linea storica	IF2O00EZZW6GE0201003B.ZIP	A0
Profilo geologico - Tratta all'aperto - Lato Bari	IF2O00EZZF6GE0201001B.ZIP	A0
Profilo geologico - Tratta all'aperto - Lato Napoli	IF2O00EZZF6GE0201002B.ZIP	A0
Profilo geologico - Tratta all'aperto - Collegamento linea storica	IF2O00EZZF6GE0201003B.ZIP	A0
Sezioni geologiche trasversali - Tratta all'aperto - Lato Napoli	IF2O00EZZW6GE0201002B.ZIP	A0
Profilo geologico galleria Orsara - Binario Pari - Tavola 1/7	IF2O00EZZF6GE0301001B.ZIP	A0
Profilo geologico galleria Orsara - Binario Pari - Tavola 2/7	IF2O00EZZF6GE0301002B.ZIP	A0
Profilo geologico galleria Orsara - Binario Pari - Tavola 3/7	IF2O00EZZF6GE0301003B.ZIP	A0
Profilo geologico galleria Orsara - Binario Pari - Tavola 4/7	IF2O00EZZF6GE0301004B.ZIP	A0
Profilo geologico galleria Orsara - Binario Pari - Tavola 5/7	IF2O00EZZF6GE0301005B.ZIP	A0
Profilo geologico galleria Orsara - Binario Pari - Tavola 6/7	IF2O00EZZF6GE0301006B.ZIP	A1
Profilo geologico galleria Orsara - Binario Pari - Tavola 7/7	IF2O00EZZF6GE0301007B.ZIP	A2
Profilo geologico galleria Orsara - Binario Dispari - Tavola 1/7	IF2O00EZZF6GE0301008B.ZIP	A3
Profilo geologico galleria Orsara - Binario Dispari - Tavola 2/7	IF2O00EZZF6GE0301009B.ZIP	A4
Profilo geologico galleria Orsara - Binario Dispari - Tavola 3/7	IF2O00EZZF6GE0301010B.ZIP	A4
Profilo geologico galleria Orsara - Binario Dispari - Tavola 4/7	IF2O00EZZF6GE0301011B.ZIP	A4
Profilo geologico galleria Orsara - Binario Dispari - Tavola 5/7	IF2O00EZZF6GE0301012B.ZIP	A4
Profilo geologico galleria Orsara - Binario Dispari - Tavola 6/7	IF2O00EZZF6GE0301013B.ZIP	A4
Profilo geologico galleria Orsara - Binario Dispari - Tavola 7/7	IF2O00EZZF6GE0301014B.ZIP	A4
Sezioni geologiche galleria Orsara	IF2O00EZZW6GE0301001B.ZIP	A4
Sezioni geologiche galleria Orsara	IF2O00EZZW6GE0301002B.ZIP	A4
Sezioni geologiche galleria Orsara	IF2O00EZZW6GE0301003B.ZIP	A4
Monografia imbocco - Orsara Lato Bari	IF2O00EZZL7GE0301001B.ZIP	A0
Monografia imbocco - Orsara Lato Napoli	IF2O00EZZL7GE0301002B.ZIP	A0

Consorzio <u>Soci</u>

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF ELETTRI-FER
TUNNELCONSULT

PROGETTO ESECUTIVO

Relazione idrogeologica

Carta censimento delle risorse idriche - Tavola 8/8

Schede risorse idriche

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA ORSARA - BOVINO

DOCUMENTO

GE0102 001

IF2O00EZZN6GE0102021A.ZIP

IF2O00EZZSHGE0102001A.ZIP

Α0

A4

FOGLIO

10 di 69

REV.

В

CODIFICA

E ZZ RG

LOTTO

00

COMMESSA

IF2O

Profilo geologico in asse al cunicolo disconnessione fumi	IF2O00EZZF6GE0401001B.ZIP	A0
Monografia imbocco - cunicolo disconnessione fumi	IF2O00EZZL7GE0401001B.ZIP	A0
Relazione geomorfologica generale	IF2O00EZZRGGE0103001B.ZIP	A4
Relazione di compatibilità geomorfologica	IF2O00EZZRGGE0103002B.ZIP	A4
Carta geomorfologica - Tavola 1/8	IF2O00EZZN6GE0103001B.ZIP	A0
Carta geomorfologica - Tavola 2/8	IF2O00EZZN6GE0103002B.ZIP	A0
Carta geomorfologica - Tavola 3/8	IF2O00EZZN6GE0103003B.ZIP	A0
Carta geomorfologica - Tavola 4/8	IF2O00EZZN6GE0103004B.ZIP	A0
Carta geomorfologica - Tavola 5/8	IF2O00EZZN6GE0103005B.ZIP	A0
Carta geomorfologica - Tavola 6/8	IF2O00EZZN6GE0103006B.ZIP	A0
Carta geomorfologica - Tavola 7/8	IF2O00EZZN6GE0103007B.ZIP	A0
Carta geomorfologica - Tavola 8/8	IF2O00EZZN6GE0103008B.ZIP	A0
Relazione idrogeologica	IF2O00EZZRGGE0102001B.ZIP	A4
Carta idrogeologica - Tavola 1/8	IF2O00EZZN6GE0102001B.ZIP	A0
Carta idrogeologica - Tavola 2/8	IF2O00EZZN6GE0102002B.ZIP	A0
Carta idrogeologica - Tavola 3/8	IF2O00EZZN6GE0102003B.ZIP	A0
Carta idrogeologica - Tavola 4/8	IF2O00EZZN6GE0102004B.ZIP	A0
Carta idrogeologica - Tavola 5/8	IF2O00EZZN6GE0102005B.ZIP	A0
Carta idrogeologica - Tavola 6/8	IF2O00EZZN6GE0102006B.ZIP	A0
Carta idrogeologica - Tavola 7/8	IF2O00EZZN6GE0102007B.ZIP	A0
Carta idrogeologica - Tavola 8/8	IF2O00EZZN6GE0102008B.ZIP	A0
Carta censimento delle risorse idriche - Tavola 1/8	IF2O00EZZN6GE0102014A.ZIP	A0
Carta censimento delle risorse idriche - Tavola 2/8	IF2O00EZZN6GE0102015A.ZIP	A0
Carta censimento delle risorse idriche - Tavola 3/8	IF2O00EZZN6GE0102016A.ZIP	A0
Carta censimento delle risorse idriche - Tavola 4/8	IF2O00EZZN6GE0102017A.ZIP	A0
Carta censimento delle risorse idriche - Tavola 5/8	IF2O00EZZN6GE0102018A.ZIP	A0
Carta censimento delle risorse idriche - Tavola 6/8	IF2O00EZZN6GE0102019A.ZIP	A0
Carta censimento delle risorse idriche - Tavola 7/8	IF2O00EZZN6GE0102020A.ZIP	A0
Conto consimonato della vicana idviaba. Tavala 0/0	JE0000E77N00E0400004A 7JD	40

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI – BARI ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> GCF ELETTRI-FER
TUNNELCONSULT ROCKSOIL S.P.A PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

00

E ZZ RG

GE0102 001

В

11 di 69

Relazione idrogeologica

Profilo idrogeologico in asse al Binario Pari - Tavola 1/8	IF2O00EZZF6GE0102001B.ZIP	A0
Profilo idrogeologico in asse al Binario Pari - Tavola 2/8	IF2O00EZZF6GE0102002B.ZIP	A0
Profilo idrogeologico in asse al Binario Pari - Tavola 3/8	IF2O00EZZF6GE0102003B.ZIP	A0
Profilo idrogeologico in asse al Binario Pari - Tavola 4/8	IF2O00EZZF6GE0102004B.ZIP	A0
Profilo idrogeologico in asse al Binario Pari - Tavola 5/8	IF2O00EZZF6GE0102005B.ZIP	A0
Profilo idrogeologico in asse al Binario Pari - Tavola 6/8	IF2O00EZZF6GE0102006B.ZIP	A0
Profilo idrogeologico in asse al Binario Pari - Tavola 7/8	IF2O00EZZF6GE0102007B.ZIP	A0
Profilo idrogeologico in asse al Binario Pari - Tavola 8/8	IF2O00EZZF6GE0102008B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 1/8	IF2O00EZZF6GE0102009B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 2/8	IF2O00EZZF6GE0102010B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 3/8	IF2O00EZZF6GE0102011B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 4/8	IF2O00EZZF6GE0102012B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 5/8	IF2O00EZZF6GE0102013B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 6/8	IF2O00EZZF6GE0102014B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 7/8	IF2O00EZZF6GE0102015B.ZIP	A0
Profilo idrogeologico in asse al Binario Dispari - Tavola 8/8	IF2O00EZZF6GE0102016B.ZIP	A0
Profilo idrogeologico - Tratta all'aperto - Lato Bari	IF2O00EZZF6GE0202001B.ZIP	A0
Profilo idrogeologico - Tratta all'aperto - Lato Napoli	IF2O00EZZF6GE0202002B.ZIP	A0
Profilo idrogeologico - Tratta all'aperto - Collegamento linea storica	IF2O00EZZF6GE0202003B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Pari - Tavola 1/7	IF2O00EZZF6GE0302004B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Pari - Tavola 2/7	IF2O00EZZF6GE0302005B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Pari - Tavola 3/7	IF2O00EZZF6GE0302006B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Pari - Tavola 4/7	IF2O00EZZF6GE0302007B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Pari - Tavola 5/7	IF2O00EZZF6GE0302008B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Pari - Tavola 6/7	IF2O00EZZF6GE0302009B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Pari - Tavola 7/7	IF2O00EZZF6GE0302010B.ZIP	A0

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI ELETTRI-FER GCF TUNNELCONSULT PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO FOGLIO COMMESSA REV. Relazione idrogeologica IF2O 00 E ZZ RG GE0102 001 В 12 di 69

one idiogeologica				
Profilo idrogeologico galleria Orsara - Binario Dispari - Tavol	la 1/7	IF2O00EZZF6GE03	302011B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Dispari - Tavol	la 2/7	IF2O00EZZF6GE03	302012B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Dispari - Tavol	la 3/7	IF2O00EZZF6GE03	302013B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Dispari - Tavol	la 4/7	IF2O00EZZF6GE03	302014B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Dispari - Tavol	la 5/7	IF2O00EZZF6GE03	302015B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Dispari - Tavol	la 6/7	IF2O00EZZF6GE03	302016B.ZIP	A0
Profilo idrogeologico galleria Orsara - Binario Dispari - Tavol	IF2O00EZZF6GE03	302017B.ZIP	A0	
Profilo idrogeologico in asse al cunicolo disconnessione fumi	IF2O00EZZF6GE04	102001B.ZIP	A0	
INE	DAGINI PREGRESSI	Ξ.		
Sondaggi geognostici e prove in foro		IF2O00EZZSGGE00	005001A.ZIP	A4
Indagini geofisiche		IF2O00EZZIGGE00)05001A.ZIP	A4
Prove di laboratorio	IF2O00EZZPRGE00	005001A.ZIP	A4	
IND	AGINI INTEGRATIV	E		
Planimetria - Tav. 1/8		IF2O00EZZP6GE01	05001B.ZIP	A0
Planimetria - Tav. 2/8		IF2O00EZZP6GE01	05002B.ZIP	A0
Planimetria - Tav. 3/8		IF2O00EZZP6GE01	05003B.ZIP	A0
Planimetria - Tav. 4/8		IF2O00EZZP6GE01	05004B.ZIP	A0
Planimetria - Tav. 5/8		IF2O00EZZP6GE01	05005B.ZIP	A0
Planimetria - Tav. 6/8		IF2O00EZZP6GE01	05006B.ZIP	A0
Planimetria - Tav. 7/8		IF2O00EZZP6GE01	05007B.ZIP	A0
Planimetria - Tav. 8/8		IF2O00EZZP6GE01	05008C.ZIP	A0
Relazione generale illustrativa		IF2O00EZZRGGE02	205002B.ZIP	A4
Sondaggi e prove in situ - Documentazione tecnica		IF2O00EZZSGGE02	205001B.ZIP	A4
Indagini geofisiche - Documentazione tecnica		IF2O00EZZIGGE02	205001B.ZIP	A4
Prove di laboratorio - Documentazione tecnica		IF2O00EZZPRGE02	205001B.ZIP	A4
Monitoraggio geotecnico - Documentazione tecnica		IF2O00EZZRHGE02	205001B.ZIP	A4

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI ETTRI-FER						
PROGETTO ESECUT Relazione idrogeologica			COMMESSA IF2O	LOTTO 00	CODIFICA E ZZ RG	DOCUMENTO GE0102 001	REV.	FOGLIO 13 di 69

1.3 ATTIVITÀ SVOLTE

Il lavoro svolto è stato articolato in fasi successive che hanno consentito un progressivo approfondimento delle conoscenze.

In sintesi, si dettagliano le fasi di lavoro:

- 1. reperimento e analisi di pubblicazioni scientifiche relative al settore di catena sud-appenninica in cui ricade il tracciato della galleria Orsara;
- 2. analisi e reinterpretazione di tutto quanto prodotto nell'ambito del Progetto Definitivo (PD) della galleria Orsara (relazione geologica, geomorfologica, idrogeologica e sismica; relazione di compatibilità geomorfologica; relazione geotecnica; sondaggi geognostici; indagini geofisiche; misure piezometriche; misure inclinometriche).
- 3. rilievi geologici e geomorfologici di campo;
- 4. analisi ed interpretazione delle prime risultanze dei nuovi sondaggi geognostici ancora in corso nell'ambito del Progetto Esecutivo (PE);
- 5. aggiornamento della carta geologica in seguito all'integrazione dei dati pregressi e raccolti ex-novo dettagliati negli step 1-4 e successivo aggiornamento della carta idrogeologica;
- 6. redazione dei profili geologici di previsione del sottosuolo, lungo il binario dispari, il binario pari, il cunicolo fumi, e la linea storica:
- 7. redazione di sezioni geologiche trasversali rappresentative in corrispondenza delle progressive chilometriche di interesse progettuale e/o in corrispondenza di particolari criticità geologico stratigrafiche;
- 8. redazione di sezioni geologiche in corrispondenza del settore di versante in frana in prossimità dell'imbocco della galleria Orsara lato Napoli;
- 9. redazione dei profili idrogeologici in base alla definizione dei complessi idrogeologici
- 10. realizzazione di uno schema geologico rappresentativo delle litofacies che saranno intercettate durante lo scavo della galleria; in particolare l'approfondimento eseguito ha consentito il riconoscimento all'interno della litologia del Flysch di Faeto di tre distinte litofacies:
 - FAE/C, litofacies prevalentemente calcarea
 - FAE/ma, litofacies a componente marnosa prevalente
 - FAE/am, litofacies a componente argillosa prevalente.

Rilevamenti geologici. I nuovi rilievi geologici realizzati in fase di PE costituiscono un approfondimento di quanto precedentemente eseguito per il Progetto Definitivo dell'opera; questo approfondimento è stato necessario sia per adeguare le interpretazioni ai nuovi dati scientifici e cartografici disponibili, sia per caratterizzare in dettaglio l'assetto geologico-strutturale delle aree interessate dalle singole WBS che compongono il progetto. Ci si è inoltre posto l'obiettivo di approfondire le conoscenze geologiche su alcune aree ritenute di importanza strategica, ai fini di un affinamento delle conoscenze sull'assetto litostratigrafico del settore interessato dal tracciato, nell'ottica di fornire:

- un modello geologico quanto più affidabile possibile su cui basare la caratterizzazione geotecnica;
- una caratterizzazione di dettaglio dei fenomeni di versante attivi o attivi in passato e adesso stabilizzati o quiescenti, in relazione alla loro interazione con il tracciato ferroviario.

In sintesi, sono stati eseguiti rilevamenti sistematici in scala 1: 2.000 per la revisione e l'approfondimento generale dell'assetto geologico sul tracciato di linea. Nelle aree critiche, quali gli imbocchi della galleria di linea e del cunicolo fumi

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI ETTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	14 di 69

o i settori in cui sussistono delle criticità geologiche (versante lato Napoli), sono stati realizzati dei rilevamenti sistematici in scala più dettagliata.

Analisi dei dati derivanti dalle indagini geognostiche. Non è stato possibile visionare direttamente le carote di sondaggio relative alle campagne geognostiche precedenti al Progetto Esecutivo (anni 2017 e 2018). Tuttavia, è stata realizzata una revisione completa di tutte le schede di sondaggio disponibili.

Inoltre, è stata realizzata un'analisi in situ delle cassette catalogatrici inerenti alla nuova campagna di sondaggi geognostici, per tutti i sondaggi eseguiti. I sondaggi hanno consentito di confermare la distinzione delle tre differenti litofacies all'interno della formazione del Flysch di Faeto, differenziazione che implica un differente comportamento anche a livello geotecnico – geomeccanico.

Indagini geofisiche. Sono stati revisionati criticamente i risultati delle campagne di indagini geofisiche realizzate sulle tratte all'aperto e sulle tratte in sotterraneo derivate dal PD e dalle sismiche integrative eseguite per il PE. I profili sismici e le tomografie elettriche sono stati confrontati con il modello geologico di dettaglio relativo al settore in cui tali indagini sono state effettuate: in alcuni casi tale confronto ha consentito di dettagliare in maniera più specifica i profili e le sezioni geologiche di riferimento.

<u>Analisi dei dati di monitoraggio geotecnico (inclinometrico e piezometrico)</u>. Sono stati analizzati i dati derivati dal monitoraggio inclinometrico e piezometrico realizzati nella campagna di Progetto Definitivo.

Analisi delle prove idrauliche. È stata effettuata una revisione critica dei risultati delle prove idrauliche realizzate nei fori di sondaggio di PD e nei fori di sondaggio integrativi di PE.

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA –	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>		• • • • • • • • • • • • • • • • • • • •					
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	15 di 69

2 DATI DI BASE

Per la realizzazione del presente lavoro sono stati consultati gli elaborati prodotti in fase di Progetto Definitivo (2017 e 2018) e i dati disponibili in bibliografia. Per quanto riguarda le indagini in situ utilizzate nell'ambito del presente studio fare riferimento ai paragrafi 2.2 e 2.3.

2.1 DATI CARTOGRAFICI DISPONIBILI

La base documentale del presente studio è costituita dai seguenti elaborati cartografici:

- Elaborati del Progetto Definitivo
- Carta Geologica d'Italia
- Bibliografia scientifica per il settore della Daunia
- Piano Stralcio per l'Assetto Idrogeologico (P.S.A.I) della Regione Campania.
- Piano di Gestione del Rischio da Alluvione (P.G.R.A.) dell'Autorità di Bacino Distrettuale dell'Appennino Meridionale

Le varie fonti consultate, così come le pubblicazioni scientifiche a cui si fa riferimento nel testo sono riportate in bibliografia.

2.2 UBICAZIONE INDAGINI IN SITO

Planimetria - Tav. 8/8

Tutte le indagini eseguite nelle fasi pregresse e quelle eseguite nella fase di PE sono ubicate nelle Planimetrie indagini, negli elaborati di seguito elencati in Tabella 2-1:

Planimetria - Tav. 1/8 IF2O00EZZP6GE0105001B.ZIP Α0 Planimetria - Tay 2/8 IF2O00EZZP6GE0105002B.ZIP A۸ Planimetria - Tav. 3/8 IF2O00EZZP6GE0105003B.ZIP Α0 Planimetria - Tav. 4/8 IF2O00EZZP6GE0105004B.ZIP Α0 Planimetria - Tay 5/8 IF2O00EZZP6GE0105005B.ZIP ΔΛ Planimetria - Tav. 6/8 IF2O00EZZP6GE0105006B.ZIP Α0 Planimetria - Tav. 7/8 IF2O00EZZP6GE0105007B.ZIP Α0

IF2O00F77P6GF0105008C 7IP

ΑO

Tabella 2-1 - Elenco delle planimetrie di indagine

APPALTATORE:								
<u>Consorzio</u>	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110 110111		5010	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica	1		IF2O	00	E ZZ RG	GE0102 001	В	16 di 69

2.3 INDAGINI IN SITO

Nel presente paragrafo verranno descritte tutte le indagini in sito disponibili nell'area di studio, costituite da sondaggi geognostici, prove penetrometriche dinamiche, prove in foro, prove geofisiche e l'installazione di strumentazione di monitoraggio geotecnico (inclinometri e piezometri).

In particolare, le indagini disponibili, per la cui ubicazione si rimanda ai documenti "Planimetrie e profili di ubicazione indagini" allegata al presente studio (cfr. **Errore. L'origine riferimento non è stata trovata.**), sono state eseguite nelle seguenti campagne indagine:

- campagna Italferr 2017 Raddoppio tratta Hirpinia Orsara Bovino;
- campagna Italferr 2018 Raddoppio tratta Orsara Bovino e tratta Hirpinia Orsara;
- campagna di indagine integrativa di PE 2021

2.3.1 Campagna indagini Italferr 2017

Durante la campagna indagini Italferr realizzata nel 2017 a supporto del progetto di fattibilità, lungo la tratta in oggetto di studio sono stati eseguiti 10 sondaggi stratigrafici a carotaggio continuo, spinti sino a profondità variabili tra 40 m e 295 m dal piano di campagna, attrezzati con verticali piezometriche o inclinometriche; sono inoltre state eseguite n 5 prospezioni sismiche tipo MASW e n. 3 tomografie elettriche. In Tabella 4 si riporta il quadro riassuntivo dei sondaggi disponibili con l'indicazione, per ogni sondaggio, di:

- codice identificativo del sondaggio;
- progressiva chilometrica di riferimento;
- coordinate del punto nel sistema Gauss-Boaga;
- quota del boccaforo in metri s.l.m.;
- eventuale strumentazione di monitoraggio geotecnico installata;
- profondità del sondaggio;
- altre prove in foro (campioni, SPT, prove di permeabilità, prove dilatometriche / pressiometriche)

Tabella 2-2 – Elenco dei sondaggi eseguiti nella campagna Italferr 2017 – Raddoppio tratta Orsara - Bovino

Sigla	pk	Est	Nord	Quota m s.l.m.	Strumentazione	Profondità (m)	Campioni	SPT	Lefranc/ Lugeon	Dilatometriche	Pressiometriche
BO-S10	29+354	2552986	4572203	229.4	piezometro Norton	50	10	15	1	0	0
BO-S9	30+458	2552161	4571476	238.5	piezometro Norton	50	10	7	1	0	0
BO-S8	30+711	2552019	4571226	241.4	2 piez. Casagrande	40	8	8	2	2	0
BO-S7	31+549	2551213	4570935	280.0	inclinometro	40	8	12	2	4	0
BO-S6	32+847	2549923	4570743	392.3	piezometro Norton	120	11	0	2	3	0
BO-S11	34+986	2547848	4570129	582.0	piezometro Norton	295	11	0	2	2	0
BO-S5bis	37+117	2546455	4568493	447.0	piezometro Norton	160	15	0	2	2	0

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI – BARI ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> GCF ELETTRI-FER
TUNNELCONSULT ROCKSOIL S.P.A PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica 00 E ZZ RG GE0102 001 В 17 di 69

BO-S5	37+260	2546419	4568340	438.7	piezometro Norton	80	8	0	2	4	0
BO-S4	38+100	2545795	4567763	468.1	piezometro Norton	120	11	0	2	2	0
BO-S3	40+775	2543835	4565988	440.1	piezometro Norton	100	10	0	2	2	0
						Totale	102	42	18	21	0

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

Nella seguente Tabella 2-3 si riporta la sintesi delle indagini sismiche e geoelettriche disponibili, con indicazione dei principali dati tecnici relativi ad ogni singola indagine.

E ZZ RG

GE0102 001

18 di 69

Relazione idrogeologica

Tabella 2-3 – Sintesi delle indagini sismiche di superficie realizzate nell'ambito della campagna ItALFERR 2017 – Raddoppio tratta Orsara - Bovino

Sigla	pk	Est	Nord	Tipologia indagine	Lunghezza (m)
BO-MASW3	29+366	2552975	4572198	MASW	48
BO-MASW7	30+025	2552491	4571750	MASW	48
BO-MASW4	30+571	2552100	4571366	MASW	48
BO-EF	31+416	2551347	4570958	Geoelettrica	240
BO-CD	31+530	2551232	4570942	Geoelettrica	240
BO-MASW5	31+550	2551211	4570939	MASW	48
BO-MASW2	40+757	2543866	4565986	MASW	48
BO-AB	40+833	2543752	4565976	Geoelettrica	140

Di seguito si elencano inoltre le indagini realizzate nel 2017 a supporto del Progetto Preliminare per il raddoppio della tratta Hirpinia – Orsara ricadenti nei pressi dell'area di studio e di interesse per le ricostruzioni geologiche del presente studio.

Si tratta di n. 3 sondaggi a rotazione e carotaggio continuo, spinti a profondità comprese tra 48 m e 1000 m da p.c., n. 2 tomografie elettriche e n. 3 prospezioni sismiche tipo MASW.

Nella Tabella 2-4 si riporta il quadro riassuntivo dei sondaggi disponibili, con il dettaglio, per ciascun sondaggio, dei principali dati tecnici : sigla, ubicazione, strumentazione installata e prove in foro.

Tabella 2-4 – Elenco dei sondaggi eseguiti nella campagna Italferr 2017 – Raddopppio tratta Hirpinia - Orsara

Sigla	pk	Est	Nord	Quota m s.l.m.	Strumentazione	Profondità (<i>m)</i>	Campioni	SPT	Lefranc/ Lugeon	Dilatometriche	Pressiometriche
BO-S2	41+044	2543658	4565784	352.8	sismica in foro	48	10	4	1	0	0
BO-S1	41+117	2543603	4565734	353.5	piezometro	50	10	6	1	0	0
IO-S1	41+975	2543165	4564992	450.5	piezometro	100	9	0	2	2	0
	4	•	***************************************	***************************************		Totale	29	10	4	2	0

Nella seguente Tabella 2-5 si riporta la sintesi delle indagini sismiche e geoelettriche disponibili, con indicazione dei principali dati tecnici relativi ad ogni singola indagine.

APPALTATORE: Consorzio Soci

ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI**

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI

ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ RG GE0102 001 19 di 69

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA ORSARA - BOVINO

Tabella 2-5 - Sintesi delle indagini sismiche di superficie realizzate nell'ambito della campagna italferr 2017 - Raddoppio tratta Hirpinia - Orsara

Sigla	pk	Est	Nord	Tipologia indagine	Lunghezza (<i>m)</i>
BO-MASW1	41+139	2543583	4565720	MASW	48
IO-UV	41+241	2543563	4565609	Geoelettrica	115
IO-WX	41+254	2543557	4565597	Geoelettrica	140
BO-MASW6	41+324	2543495	4565555	MASW	48
IO-MASW1	41+998	2543131	4565000	MASW	48

2.3.2 Campagna Italferr 2018 - Raddoppio tratta Orsara – Bovino e tratta Hirpinia - Orsara

Durante la campagna indagini Italferr realizzata nel 2018, nell'area in oggetto di studio sono stati eseguiti n.26 sondaggi a carotaggio continuo, spinti a profondità massima di 220 metri dal piano di campagna, con installazione di strumentazione geotecnica in foro, oltre a n.3 prove penetrometriche dinamiche DPSH.

In aggiunta a tali indagini, ai fini del presente studio si è fatto riferimento anche alle risultanze di n.3 sondaggi qeognostici a carotaggio continuo eseguito nell'ambito del Progetto Definitivo della tratta Hirpinia - Orsara, eseguiti sul fondovalle del Fiume Cervaro, in area adiacente alla pk di fine intervento e di interesse per le ricostruzioni dell'assetto geologico dell'area.

In Tabella 2-6 si riporta il quadro riassuntivo delle indagini geognostiche e geotecniche realizzate con indicazione, per ciascuna prova, di;

- codice identificativo del sondaggio;
- progressiva chilometrica di riferimento;
- coordinate del punto nel sistema Gauss-Boaga:
- quota del boccaforo in metri s.l.m.;
- eventuale strumentazione di monitoraggio geotecnico installata;
- profondità del sondaggio;
- altre prove in foro (campioni, SPT, prove di permeabilità, prove dilatometriche / pressiometriche).

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A

GCF TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

NET ENGINEERING PINI **ELETTRI-FER** RADDOPPIO TRATTA ORSARA - BOVINO

REV.

FOGLIO

20 di 69

ITINERARIO NAPOLI - BARI

COMMESSA LOTTO CODIFICA DOCUMENTO E ZZ RG GE0102 001

Tabella 2-6 – Elenco delle indagini eseguite nella campagna Italferr 2018 – Raddoppio tratta Orsara – Bovino e tratta Hirpinia - Orsara

Sigla	pk	Est	Nord	Quota m s.l.m.	Strumentazione	Profondità (<i>m</i>)	Campioni	νo	Lefranc/ Lugeon	Dilatometriche	Pressiometrich e
BO-PD-S16	29+224	2553087	4572267	226,6	tubo per Down-Hole	50	10	15	2	0	0
BO-PD-S15	29+565	2552838	4572006	231,4 piez. Casagrande 50		50	11	7	2	0	0
BO-PD-S14	30+088	2552488	4571658	237,2	piezometro Norton	50	10	6	2	0	1
BO-PD-S13	30+541	2552043	4571493	241,3	tubo per Down-Hole	50	11	6	2	1	0
DPSH1	30+632	2551916	4571139	244,8		3,4	0	0	0	0	0
BO-PD-S12	30+633	2551984	4571426	241,5	piezometro Norton	50	11	6	2	0	0
DPSH2	30+808	2551976	4571420	241,6		3,6	0	0	0	0	0
BO-PD-S11	30+831	2551911	4571140	244,6	tubo per Down-Hole	50	11	6	2	1	0
BO-PD-S17	30+950	2551730	4571253	253,0	tubo per Down-Hole	50	10	9	2	0	0
DPSH3	31+025	2551670	4571171	260,6		18,4	0	0	0	0	0
BO-PD-S9	31+044	2551666	4571166	260,8	piez Casagrande	60	11	2	3	3	0
BO-PD-S10	31+089	2551772	4570784	254,8	piezometro Norton	50	10	4	2	0	0
BO-PD-S8	32+116	2550647	4570823	336,4	piezometro elettrico	90	9	5	3	3	0
BO-PD-S6	33+466	2549330	4570530	452,5	tubo per Down-Hole	80	10	0	2	0	4
BO-PD-S7	33+635	2549163	4570502	473,8	piezometro Norton	220	14	3	3	0	0
BO-PD-S4	37+446	2546236	4568260	476,0	piezometro Norton	170	14	3	3	3	0
BO-PD-S3	38+356	2545513	4567729	496.3	piezometro Norton	170	15	3	0	0	0
BO-PD-S2	39+432	2544675 5	4567050	481,6	piezometro Norton	160	15	0	3	3	0
BO-PD-S1	40+678	2543858	4566109	466,9	piezometro Norton	130	8	2	3	3	0
BO-PD-S5	40+911	2543807	4565857	377,7	piezometro Norton	40	8	1	2	2	0
BO-PD-S23	40+970	2543676	4565884	361,9	inclinometro	50	10	5	2	0	1
BO-PD-S22	40+988	2543722	4565826	348,8	piezometro Norton	50	10	5	2	0	0
BO-PD-S24	41+053	2543614	4565808	357,6	tubo per Down-Hole	50	7	6	2	0	1
IF16R25	41+078	2543383	4565972	400,5	inclinometro	40	0	10	2	0	0
IF16V01	41+203	2543595	4565655	349,9	piezometro Norton	50	8	9	2	2	0
BO-PD-S21	41+229	2543365	4565788	364,1	piezometro Norton	50	7	5	2	1	1
BO-PD-S19	41+250	2543444	4565704	357,3	tubo per Down-Hole	50	5	6	2	0	1
IF16V02	41+315	2543518	4565581	353.4	piezometro Norton	50	7	11	2	2	0
BO-PD-S18	41+333	2543324	4565689	361,1	piezometro Norton	50	6	5	2	0	0
IF16V03	41+362	2543463	4565543	352,5	tubo per Down-Hole	50	9	9	2	2	0
BO-PD-S25	41+538	2542915	4565735	383,3	piezometro Norton	50	8	6	2	0	0
BO-PD-S26	41+627	2542702	4565782	402,2	inclinometro	30	5	4	1	1	0
BO-PD-S20	41+756	2542689	4565628	377,2	inclinometro	50	9	5	2	0	0

Consorzio Soci

WEBUILD ITALIA ORSARA - BOVINO AV **PIZZAROTTI**

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING PINI

ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ RG GE0102 001 21 di 69 Relazione idrogeologica

BO-PD-S27	 2543119	4568417	710,6	piezometro Norton	30	5	3	2	0	0
BO-PD-S28	 2542802	4568021	634,0	piezometro Norton	30	4	2	2	0	0
		•			Totale	288	169	67	27	9

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA ORSARA - BOVINO

Nell'ambito della medesima campagna indagini sono inoltre state realizzate numerose prospezioni geofisiche di varia tipologia (rifrazione, riflessione, MASW, Down-Hole), come dettagliato nella seguente Tabella 2-7.

Tabella 2-7 - Elenco delle indagini geofisiche eseguite, campagna Italferr 2018 - Raddoppio tratta Orsara - Bovino e tratta Hirpinia -Orsara

Sigla	pk	Est	Nord	Tipologia indagine	Lunghezza (<i>m)</i>
SRT EST 1		2551597	4571136	Sismica a rifrazione	300
SRT EST 2		2551639	4571161	Sismica a rifrazione	200
SRT OVEST 1		2543754	4565965	Sismica a rifrazione	220
SRT OVEST 2		2543892	4566083	Sismica a rifrazione	240
SRT_1 A		2542675	4565781	Sismica a rifrazione	250
SRT_2B		2542667	4565792	Sismica a rifrazione	384
SRT_3 C		2543552	4565826	Sismica a rifrazione	480
SRT_4 D		2543473	4565872	Sismica a rifrazione	430
Riflessione 1		2547639	4569817	Sismica a riflessione	530
DH BO-PD-S16	29+224	2553087	4572267	Down-Hole	50
BO-PD-S15	29+565	2552838	4572006	Masw	79
BO-PD-S14	30+088	2552488	4571658	Masw	79
DH BO-PD-S13	30+541	2552043	4571493	Down-Hole	50
BO-PD-S12	30+633	2551984	4571426	Masw	79
DH BO-PD-S11	30+831	2551911	4571140	Down-Hole	50
DH BO-PD-S17	30+950	2551730	4571253	Down-Hole	50
BO-PD-S10	31+089	2551772	4570784	Masw	79
Rifrazione L1	33+300	2549459	4570504	Sismica a rifrazione	1372
BO-PD-S6	33+466	2549330	4570530	Down-Hole	80
BO-PD-S23	40+970	2543676	4565884	Masw	48
BO-PD-S22	40+988	2543722	4565826	Masw	72
DH BO-PD-S24	41+053	2543614	4565808	Down-Hole	50
DH BO-PD-S19	41+250	2543444	4565704	Down-Hole	50
BO-PD-S18	41+333	2543324	4565689	Masw	72
BO-PD-S25	41+538	2542915	4565735	Masw	72
BO-PD-S20	41+756	2542689	4565628	Masw	72

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI **WEBUILD ITALIA** ORSARA - BOVINO AV **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO GE0102 001 Relazione idrogeologica 22 di 69

2.3.3 Campagna indagini Consorzio Orsara – Bovino AV 2021 – 2022

Tutte le indagini eseguite nelle fasi pregresse e quelle previste per la fase di PE sono ubicate nelle Planimetrie indagini, negli elaborati di seguito elencati in Tabella 2-1.

Durante la campagna indagini integrative per la redazione del PE, attualmente in corso, 2021 – 2022, nell'area in oggetto sono previsti ed in fase di realizzazione le seguenti indagini:

- sondaggi stratigrafici a carotaggio continuo e/o parzialmente a distruzione di nucleo ed a carotaggio continuo nell'intorno del cavo, con installazione di strumentazione in foro (dove previsto);
- rilievo dei gas in foro.
- prove geofisiche dalla superficie (indagine geo-elettrica, indagine sismica a riflessione, indagine sismica a rifrazione in onde Vp-Vs).

Per definire le caratteristiche geologiche e stratigrafiche sono stati previsti n.19 sondaggi a carotaggio continuo/distruzione, spinti sino alla profondità massima di 235 metri dal piano di campagna.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

Tabella 2-8 - Sintesi Sondaggi e strumentazione installata nei fori di sondaggio – Campagna indagini 2021/2022

E ZZ RG

GE0102 001

23 di 69

ID Sondaggio	Tipologia indagine	Strumentazione in foro	Lunghezza [m]
PE_SL01	sondaggio a carotaggio continuo		20
PE_SL02	sondaggio a carotaggio continuo		20
PE_PO01	sondaggio a carotaggio continuo		30
PE_PO02	sondaggio a carotaggio continuo		30
PE_S01-Imb	sondaggio a carotaggio continuo		15
PE_S02-Imb	sondaggio a carotaggio continuo		15
PE_S03-Imb	sondaggio a carotaggio continuo		40
IV04	sondaggio a carotaggio continuo		40
PE_INT1	sondaggio carotaggio/distruzione di nucleo	PIEZOMETRO	190
PE_INT2	sondaggio carotaggio/distruzione di nucleo	PIEZOMETRO	270
PE_INT3	sondaggio carotaggio/distruzione di nucleo		130
PE_INT4	sondaggio carotaggio/distruzione di nucleo		190
PE_INT5	sondaggio a carotaggio continuo		120
PE_INT6	sondaggio carotaggio/distruzione di nucleo		140
PE_SID1	sondaggio carotaggio/distruzione di nucleo	PIEZOMETRO	195
PE_SID2	sondaggio a carotaggio continuo	PIEZOMETRO	205
PE_SID3	sondaggio carotaggio/distruzione di nucleo		235
INCL01_NA	sondaggio a carotaggio continuo	INCLINOMETRO	50
INCL02_NA	sondaggio a carotaggio continuo	INCLINOMETRO	50

Durante l'esecuzione dei sondaggi sono state eseguite le seguenti attività:

- rilievo della stratigrafia con esecuzione di fotografie a colori del materiale depositato in cassetta;
- esecuzione di misure speditive di consistenza mediante pocket penetrometer;
- esecuzione di prove geotecniche in foro di tipo SPT;
- esecuzione di prove di permeabilità in foro di tipo Lefranc e prove di permeabilità in foro di tipo Lugeon;
- esecuzione di prove pressiometriche;
- · esecuzione di prove dilatometriche;

Relazione idrogeologica

- esecuzione di prove di fratturazione idraulica;
- esecuzione di prove scissometriche;
- prelievo di campioni indisturbati e rimaneggiati;
- rilievo del livello di falda in corso di perforazione.

Con particolare riferimento alla strumentazione di monitoraggio, nella campagna 2021/2022 sono stati installati n.5 piezometri a tubo aperto, n.3 piezometri elettrici, n.2 tubi inclinometrici.

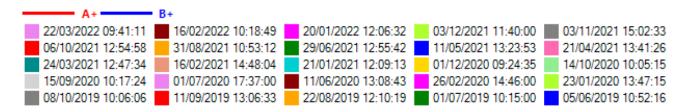
Per quanto riguarda il monitoraggio piezometrico ed inclinometrico, le letture sono iniziate in corrispondenza della realizzazione della singola verticale, e sono tuttora in corso, alla data di emissione del presente report.

Allo scopo di caratterizzare dal punto di vista sismico i terreni sono state realizzate le seguenti indagini geofisiche:

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF TUNNELCONSULT **ELETTRI-FER** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO GE0102 001 24 di 69 Relazione idrogeologica

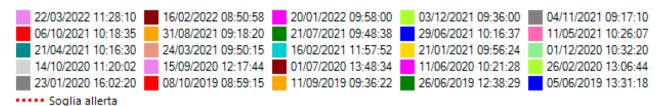
- n. 3 profili sismici a rifrazione in onde P e onde S
- n. 3 profili geoelettrici
- n. 3 profili sismica a riflessione
- n. 5 profili integrativi di sismica a rifrazione in onde P e onde S, in corrispondenza della zona di imbocco lato Napoli.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. FOGLIO COMMESSA Relazione idrogeologica E ZZ RG GE0102 001 25 di 69

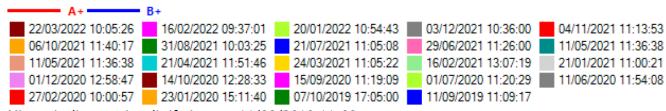

2.4 DATI DI MONITORAGGIO

2.4.1 Monitoraggio inclinometrico del Progetto Definitivo

A partire dal giugno 2019 è stato attivato il monitoraggio sui tubi inclinometrici di PD, tuttora attivi e le cui ultime letture risalgono al 22/03/2022.

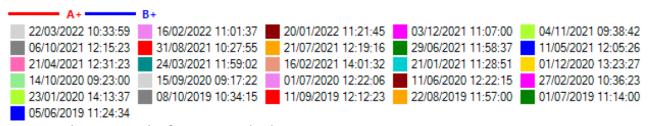

Di seguito si riassumono gli inclinometri del PD con il dettaglio, per ciascuno, delle letture eseguite.

Inclinometro BO PD S20

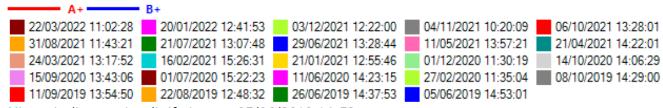

Misura inclinometrica di riferimento 05/06/2019 10:52

- Inclinometro BO PD S23

Misura inclinometrica di riferimento 05/06/2019 13:31


Inclinometro BO PD S25

Misura inclinometrica di riferimento 11/09/2019 11:09


- Inclinometro BO PD S26

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI **WEBUILD ITALIA** ORSARA - BOVINO AV **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica E ZZ RG GE0102 001 26 di 69

Misura inclinometrica di riferimento 05/06/2019 11:24

Inclinometro IF 15 R25

Misura inclinometrica di riferimento 05/06/2019 14:53

2.4.2 Monitoraggio piezometrico del Progetto Definitivo

A partire da aprile 2018 è stato attivato il monitoraggio sui tubi piezometrici di PD, tuttora attivi e le cui ultime letture risalgono al 22/03/2022.

Di seguito si riassumono le letture dei piezometri del PD con il dettaglio, per ciascuno, delle letture eseguite, disponibili alla data di emissione del presente elaborato.

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI

GCF ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA ORSARA – BOVINO

CODIFICA

E ZZ RG

DOCUMENTO

GE0102 001

REV.

FOGLIO

27 di 69

Tabella 2-9 – Piezometri di PD

COMMESSA

LOTTO

						Bovino - Orsara					
Denomi	inazione	BO-S3	BO-S4	BO-S5	BO-S5-bis	BO-S6	BO-S8 (1)	BO-S8 (2)	BO-S9	BO-S10	BO-S11
	o prof. cella	100	120	80	160	120	40	40	50	50	295
Tipo str	umento	Norton	Norton	Norton	Norton	Norton	Casagrande	Casagrande	Norton	Norton	Norton
Quota bocca	foro m s.l.m							·			
Profondità se	ondaggio (m)										
Ubicazione	X Y	41°14'41.59"N 15°17'3.62"E		41°15'59.63"N 15°18'56.84"E			41°17'30.42"N 15°22'56.09"E	41°17'30.42"N 15°22'56.09"E		41°18'1.94"N 15°23'38.05"E	41°16'55.50"N 15°19'57.03"E
No	ote '	13 17 3.02 L	15 10 51.51 L	13 10 30.04 L	13 10 37.04 L	13 21 20.04 L	13 22 30.03 L	13 22 30.03 L	13 23 2.20 L	13 23 30.03 L	15 15 37.03 L
N letture	Data Rilievo	falda m da P.C	falda m da P.C	falda m da P.C	falda m da P.C	falda m da P.C	falda m da P.C	falda m da P.C	falda m da P.C	falda m da P.C	falda m da P.C
1° LETTURA	25/07/2018	ostruito	-79,97	-4,07	-3,53	0,00	-3,08	-3,08	-2,90	-6,44	-6,36
2° LETTURA	07/09/2018	-	-80,53	-3,95	-4,10	0,00	-3,10	-3,10	-2,87	-6,40	-6,60
3° LETTURA	26/09/2018	-	-80,76	-4,45	-4,40	0,00	-3,08	-3,08	-2,85	-6,47	-6,75
4° LETTURA	17/10/2018	-	-80,93	-4,50	-4,58	0,00	-3,15	-3,15	-2,92	-6,50	-6,90
5° LETTURA	15/11/2018	-	-81,25	-4,10	-4,70	0,00	-3,00	-3,00	-2,70	-6,35	-6,20
6° LETTURA	12/12/2018	-	-81,55	-1,60	-0,80	0,00	-2,84	-2,84	-1,34	-6,16	-5,12
7° LETTURA	18/01/2019	-	-81,63	-0,60	-0,40	0,00	-3,87	-3,87	-1,00	-6,17	Irraggiungibile
8° LETTURA	09/03/2019	-	-81,00	-1,98	-1,00	0,00	-2,92	-2,92	-1,25	-6,15	-3,80
9° LETTURA	06/06/2019	-	-80,60	-2,78	-1,22	distrutto	-3,10	-3,16	-2,89	-6,40	accesso chiuso
10° LETTURA	02/07/2019	=	-81,30	-3,55	-2,47	-	-3,15	-3,15	-2,80	-6,45	-5,11
11° LETTURA	19/07/2019	-	-82,40	-4,20	-3,85	-	-3,25	-3,25	-3,00	-6,50	-5,65
12° LETTURA	11/09/2019	-	-82,60	-4,40	-4,10	-	-3,20	-3,20	-0,95	-6,56	-5,70
13° LETTURA	08/10/2019	=	-82,85	-4,45	-4,20	-	-3,10	-3,10	-2,92	-6,50	-6,00
14° LETTURA	22/01/2020	-	-83,90	-3,29	-5,57	-	-3,12	-3,12	-2,92	-6,42	-5,97
15° LETTURA	27/02/2020	-	-84,00	-3,70	-5,76	-	-3,13	-3,13	-2,94	-6,43	-6,00
16° LETTURA	11/06/2020	-	-84,00	-3,7	-3,50	-	-3,1	-3,1	-3,18	-6,5	-6,06
17° LETTURA	31/07/2020	-	-84,03	-4,43	-3,55	-	-3,13	-3,13	-3,20	-6,48	-6,10
18° LETTURA	15/09/2020	-	-84,00	-4,70	distrutto	-	-3,15	-3,15	distrutto	-6,55	-5,60
19° LETTURA	13/10/2020	=	-84,20	-4,80	-	-	-3,15	-3,15	-	-6,55	-5,65
20° LETTURA	01/12/2020	=	-84,00	-4,70	-	-	-3,10	-3,10	-	-6,50	-5,10
21° LETTURA	21/01/2021	-	-82,00	-0,90	-	-	-2,50	-2,50	-	-5,30	-3,90
22° LETTURA	16/02/2021	-	-78,70	-0,40	-	-	-2,45	-2,45	-	-5,40	-3,00
23° LETTURA	24/03/2021	-	-79,00	-0,80	-	-	-2,30	-2,30	-	-5,30	-3,90
24° LETTURA	21/04/2021	-	-80,86	-0,94	-	-	-2,40	-2,40	-	-5,36	-4,20
25° LETTURA	11/05/2021	-	-81,60	-1,04	-	-	-3,02	-3,02	-	-5,80	-5,20
26° LETTURA	29/06/2021	-	-81,90	-2,00	-	-	-3,20	-3,20	-	-5,90	-7,20
27° LETTURA	21/07/2021	-	-80,50	-3,00	=	-	-3,20	-3,20	-	-6,30	-7,30
28° LETTURA	01/09/2021	-	-78,45	-3,90	=	-	-3,25	-3,25	-	-6,70	-7,35
29° LETTURA	06/10/2021	-	-80,10	-3,85	-	-	-3,16	-3,16	-	-6,50	-7,10
30° LETTURA	03/11/2021	-	-79,80	-3,70	-	-	-3,07	-3,07	-	-5,95	-6,80
31° LETTURA	02/12/2021	-	-78,95	-3,30	-	-	-3,20	-3,20	-	-6,50	-5,80
32° LETTURA 33° LETTURA	20/01/2022 16/02/2022	-	-79,70 -79,00	distrutto -	-	-	-3,10 -3,15	-3,10 -3,15	-	-6,00 -5,50	-2,20 -2,00
34° LETTURA	22/03/2022	-	-79,50	-	-	-	-2,96	-2,96	-	-5,25	-0,20
34" LETTURA	22/03/2022	-	-79,50	-	-	-	-2,96	-2,96	-	-5,25	-0,20

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI

GCF ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA ORSARA – BOVINO

COMMESSA IF20 LOTTO 00 CODIFICA E ZZ RG DOCUMENTO GE0102 001 REV. FO

FOGLIO 28 di 69

Tabella 2-10 - Piezometri di PD

Denomi	inazione	BO-PD-S1	BO-PD-S2	BO-PD-S3	BO-PD-S4	BO-PD-S5	BO-PD-S7	BO-PD-S9	BO-PD-S10	BO-PD-S12	BO-PD-S14
Fenestratura	o prof. cella										
	rumento	Norton	Norton	Norton	Norton	Norton	Casagrande	Casagrande	Norton	Norton	Norton
	aforo m s.l.m	120.00	150.00	100.00	170.00	50.00	220.00	50.00	50.00	50.00	50.00
	ondaggio (m)	130,00 41°14'45.11"N	160,00 41°15'14.96"N	180,00 41°15'37.33"N	170,00 41°15'55.08"N	50,00 41°14'38.57"N	220,00 41°17'6.94"N	60,00 41°17'28.32"N	50,00 41°17'14.31"N	50,00 41°17'36.36"N	50,00 41°17'43.23"N
Ubicazione	Y	15°17'5.80"E	15°17'40.01"E	15°18'16.76"E	15°18'47.29"E	15°17'0.59"E	15°20'53.31"E	15°22'40.99"E	15°22'44.91"E	15°22'54.86"E	15°23'14.70"E
No	ote										
	18/04/2018	falda m da P.C	-56,90	-48,00	falda m da P.C	falda m da P.C	-38,00	falda m da P.C -7,10	falda m da P.C	falda m da P.C	falda m da P.C -4,20
1° LETTURA	16/05/2018	-40,60	-90,30	-50,08	-18,05	-18,50	-37,80	-7,10	-2,43 -2,20	-2,90	-4,03
2° LETTURA	16/05/2018	-40,60					·			,	,
3° LETTURA			-88,60	-52,15	-18,15	-18,50	-38,85	-7,50	-2,50	-3,10	-4,56
4° LETTURA	24/07/2018	-43,87	-90,60	-54,40	-18,10	-19,50	-37,95	-7,70	-3,10	-2,90	-4,10
5° LETTURA	07/09/2018	-44,80	-90,56	-55,80	-19,05	-18,80	-37,60	-7,75	-3,25	-3,90	-4,15
6° LETTURA	25/09/2018	-45,10	-90,56	-56,00	-19,37	-20,00	-38,52	-7,00	distrutto	-4,05	-4,20
7° LETTURA	17/10/2018	-45,53	-90,80	-58,00	-19,73	-19,63	-38,47	-7,73	distrutto	-4,03	-4,25
8° LETTURA	14/11/2018	-45,92	-90,80	-58,88	-20,10	-22,55	-38,33	-7,10	distrutto	-4,05	-4,10
9° LETTURA	12/12/2018	-46,45	-90,60	-57,24	-19,61	-19,09	-38,23	-6,95	-	-1,15	-3,80
10° LETTURA	18/01/2019	-46,94	-88,6	-59,6	-19,12	-18,64	-38,25	-0,90	-	-0,44	-3,38
11° LETTURA	09/03/2019	-41,30	-90,40	-60,50	-19,60	-19,50	-38,23	-3,20	-	-0,50	-3,60
12° LETTURA	05/06/2019	-41,40	-90,30	-61,75	-19,95	-19,20	-38,10	-6,90	-	-3,17	-4,00
13° LETTURA	01/07/2019	-42,15	-90,20	-61,50	-20,30	-20,37	-38,10	-7,30	-	-4,00	-4,15
14° LETTURA	19/08/2019	-42,90	-90,75	-63,00	-20,90	-22,87	-38,50	-8,10	-	-4,10	-4,30
15° LETTURA	11/09/2019	-43,17	-90,87	-63,30	-21,00	-20,50	-38,55	-8,20	-	-4,05	-4,30
16° LETTURA	08/10/2019	-43,45	-91,00	-63,60	-21,44	-19,98	-38,60	-8,00	-	-4,05	-4,43
17° LETTURA	22/01/2020	-45,75	-91,00	-67,20	-22,90	-19,20	-37,90	-7,60	-	-3,90	-4,05
18° LETTURA	27/02/2020	-46,50	-91,20	-68,03	-23,08	-22,90	-38,00	-7,85	-	-3,00	-4,16
19° LETTURA	11/06/2020	-42,35	-90,90	-69,20	ostruito	-22,20	-38,04	-7,88	-	-4,20	-4,30
20° LETTURA	01/07/2020	-42,70	-91,00	-69,35	ostruito	-22,07	-38,00	-7,90	-	-4,28	-4,35
21° LETTURA	15/09/2020	-43,10	-91,10	-70,40	ostruito	-22,58	-38,10	-7,70	-	-4,10	-4,30
22° LETTURA	14/10/2020	-45,70	-91,30	-71,30	ostruito	-22,50	-38,00	-8,20	-	-4,10	-4,30
23° LETTURA	01/12/2020	-45,80	-91,80	-70,80	ostruito	-21,90	-38,00	-8,00	-	-2,90	-4,10
24° LETTURA	21/01/2021	-40,10	-91,00	-72,00	ostruito	sepolto	-37,80	-7,60	-	0,00	distrutto
25° LETTURA	16/02/2021	-38,30	-91,00	-71,30	ostruito	sepolto	-37,94	-7,74	-	-2,00	-
26° LETTURA	24/03/2021	-39,68	-90,20	-72,20	ostruito	sepolto	-37,90	-6,50	-	0,00	-
27° LETTURA	21/04/2021	-40,00	-90,75	-72,18	ostruito	sepolto	-38,00	-6,10	-	-1,17	-
28° LETTURA	11/05/2021	-41,24	-91,00	-68,25	ostruito	sepolto	-38,10	-7,90	-	-1,30	-
29° LETTURA	29/06/2021	-41,25	-90,90	-68,00	ostruito	sepolto	-37,80	-8,50	-	-2,90	-
30° LETTURA	21/07/2021	-42,30	-91,20	-70,50	ostruito	sepolto	-38,50	-9,00	-	-3,00	-
31° LETTURA	01/09/2021	-43,96	-91,80	-76,50	ostruito	sepolto	-38,90	-9,30	-	-3,15	-
32° LETTURA	06/10/2021	-45,00	-91,40	-72,10	ostruito	sepolto	-36,70	-8,30	-	-4,10	-
33° LETTURA	03/11/2021	-44,60	-91,00	-68,70	ostruito	sepolto	-36,00	-7,90	-	-3,75	-
34° LETTURA	02/12/2021	-44,80	-90,80	-69,00	ostruito	sepolto	-35,95	-7,50	-	-1,34	-
35° LETTURA	20/01/2022	-40,37	-90,95	-70,30	ostruito	sepolto	-36,00	-7,85	-	-2,20	-
36° LETTURA	16/02/2022	-40,00	-90,20	-71,80	ostruito	sepolto	-36,20	-7,00	-	-3,10	-
37° LETTURA	22/03/2022	-40,50	-89,80	-67,20	ostruito	sepolto	-35,80	-6,10	-	-2,80	-
	,,,		IL.			1				1	

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI

GCF ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA ORSARA - BOVINO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2O 00 E ZZ RG GE0102 001 B 29 di 69

Tabella 2-11 – Piezometri di PD

Denomi	nazione	BO-PD-S15	BO-PD-S15	BO-PD-S18	BO-PD-S21	BO-PD-S22	BO-PD-S27	BO-PD-S28
Fenestratura	o prof. cella							
Tipo str	umento	Casagrande	Casagrande	Norton	Norton	Norton	Norton	Norton
	foro m s.l.m							
Profondità so	ondaggio (m) X	50,00 41°17'55.64"N	50,00 41°17'55.64"N	50,00 41°14'31.81"N	50,00 41°14'35.05"N	50,00 41°14'35.92"N	50,00	50,00
Ubicazione	Y	15°23'31.33"E	15°23'31.33"E	15°16'43.28"E	15°16'42.30"E	15°16'59.28"E		
No	te							
N° LETTURE	18/04/2018	falda m da P.C -4,30	falda m da P.C -4,30	falda m da P.C	-11,70	falda m da P.C -3,58	falda m da P.C	falda m da P.C
1° LETTURA 2° LETTURA	16/05/2018	-3,87	-3,87	-9,65	-12,27	-3,78		
3° LETTURA	16/06/2018	-4,15	-4,15	-10,10	-12,70	-3,90		
4° LETTURA	24/07/2018	-4,34	-4,34	-11,40	-14,56	-4,50		
5° LETTURA	07/09/2018	-4,30	-4,30	-12,04	-14,75	-4,74		
6° LETTURA	25/09/2018	-4,20	-4,20	-12,13	-14,97	-4,85		
7° LETTURA	17/10/2018	-4,48	-4,48	-12,20	-15,07	-4,92		
8° LETTURA	14/11/2018	-4,30	-4,30	-12,15	-15,15	-4,87		
9° LETTURA	12/12/2018	-4,35	-4,25	-11,00	-14,23	-4,15	-5,98	-16,60
10° LETTURA	18/01/2019	-3,97	-3,97	-8,15	-11,6	-3,15	-5,13	-17,35
11° LETTURA	09/03/2019	-4,10	-4,10	-9,77	-12,65	-3,20	-6,05	-17,42
12° LETTURA	05/06/2019	-4,27	-4,27	-10,22	-13,12	-3,92	-6,07	-16,82
13° LETTURA	01/07/2019	-4,50	-4,50	-10,67	-13,80	-4,00	-6,80	-16,65
14° LETTURA	19/08/2019	-4,75	-4,75	-11,90	-15,10	-4,70	-7,00	-17,35
15° LETTURA	11/09/2019	-4,62	-4,62	-12,10	-15,20	-4,80	-7,35	-17,45
16° LETTURA	08/10/2019	-4,74	-4,78	-12,18	-15,27	-4,95	-7,50	-17,60
17° LETTURA	22/01/2020	-4,30	-4,34	-11,00	-14,75	-4,18	-6,83	-18,60
18° LETTURA	27/02/2020	-4,35	-4,40	-11,60	-15,10	-4,50	-7,03	-18,92
19° LETTURA	11/06/2020	distrutto	distrutto	-11,15	-13,72	-4,20	-7,00	-18,40
20° LETTURA	01/07/2020	-	-	-11,14	-13,80	-4,47	-7,08	-18,52
21° LETTURA	15/09/2020	-	-	-12,20	-15,55	-4,90	-7,20	-18,50
22° LETTURA	14/10/2020	-	-	-12,65	-15,60	-5,10	-7,25	-18,25
23° LETTURA	01/12/2020	-	=	-9,90	-12,75	-4,00	-6,80	-18,00
24° LETTURA	21/01/2021	-	-	-9,25	-12,30	-3,50	-5,45	-18,10
25° LETTURA	16/02/2021	-	-	-9,36	-13,6	-4,00	-6,70	-18,8
26° LETTURA	24/03/2021	-	-	-9,80	-12,50	-3,57	-5,60	-16,00
27° LETTURA	21/04/2021	-	-	-9,94	-12,86	-3,88	-6,22	-16,94
28° LETTURA	11/05/2021	-	-	-10,35	-12,95	-4,00	-6,45	-17,00
29° LETTURA	29/06/2021	-	-	-11,20	-13,40	-4,60	-7,00	-17,20
30° LETTURA	21/07/2021	-	-	-12,10	-13,60	-4,80	-7,60	-17,10
31° LETTURA	01/09/2021	-	-	-14,30	-14,05	-5,00	-8,10	-18,30
32° LETTURA	06/10/2021	-	-	-13,20	-15,57	-5,10	-7,70	-17,83
33° LETTURA	03/11/2021	-	-	-12,70	-15,60	-4,80	-7,00	-17,96
34° LETTURA	02/12/2021	-	-	-12,25	-15,30	-4,90	-7,05	-17,78
35° LETTURA	20/01/2022	-	-	-9,55	-11,90	-3,50	-5,60	-18,10
36° LETTURA	16/02/2022	-	-	-9,30	-12,00	-3,70	-5,40	-18,00
37° LETTURA	22/03/2022	-	-	-9,70	-12,45	-3,60	-5,50	-17,90

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO GE0102 001 Relazione idrogeologica E ZZ RG 30 di 69

2.4.3 Monitoraggio inclinometrico del Progetto Esecutivo

Nel corso della redazione del Progetto Esecutivo sono stati installati n. 2 inclinometri integrativi nel settore a valle dell'imbocco lato Napoli, tra le progressive 40+950 e 41+100, in corrispondenza dei settori di fondovalle, nella zona di raccordo tra il lotto "Orsara – Bovino" ed il lotto "Orsara – Hirpinia". In quest'area il tracciato lambisce il piede di un'estesa frana complessa in terra e detrito, che si sviluppa tra la parte sommitale del rilievo di Monte Preisi e il fondovalle del Torrente Cervaro.

I n. 2 inclinometri installati sono: INCL01 e INCL02.

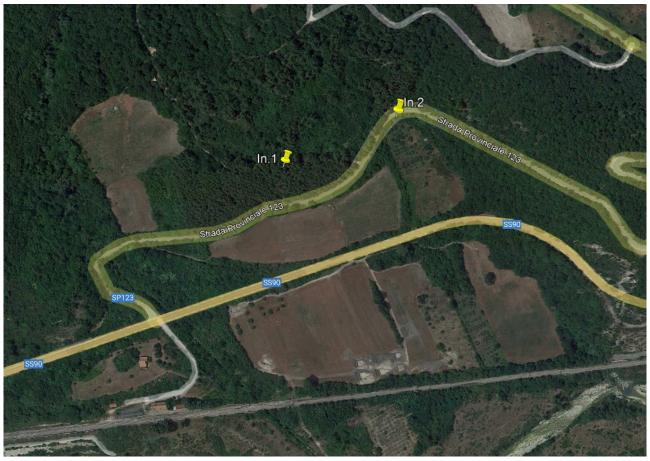


Figura 2-1 - Ubicazione degli inclinometri INCL01 e INCL02

Di seguito si riportano gli inclinometri le risultanze delle letture disponibili alla data di emissione del presente documento:

- Le letture di "0" sono state eseguite il 22/12/2021
- L'ultima lettura disponibile è aggioirnata al 04/05/2022.

Le letture disponibili alla data di emissione della presente revisione sono ancora "immature" anche se segnalano la presenza di modeste deformazioni coerenti con la direzione longitudinale del corpo di frana.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF ELETTRI-FER TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ RG GE0102 001 31 di 69 Relazione idrogeologica 00

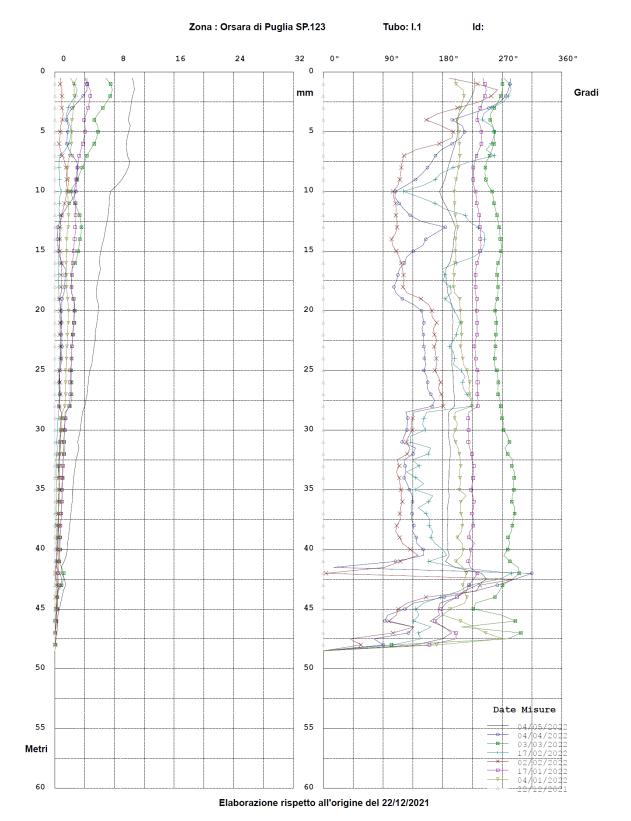


Figura 2-2 - Risultanze inclinometro INCL01

Consorzio Soci

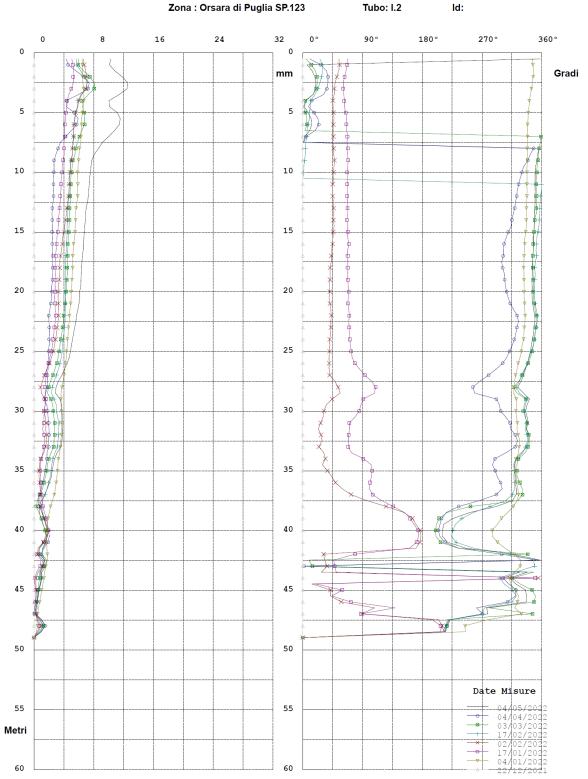
ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI

GCF ELETTRI-FER TUNNELCONSULT


PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA ORSARA - BOVINO

COMMESSA LOTTO

CODIFICA E ZZ RG DOCUMENTO GE0102 001 REV. FOGLIO B 32 di 69

Elaborazione rispetto all'origine del 22/12/2021

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI **WEBUILD ITALIA** ORSARA - BOVINO AV **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO GE0102 001 Relazione idrogeologica 33 di 69

Figura 2-3 – Risultanze inclinometro INCL02

2.4.4 Monitoraggio piezometrico del Progetto Esecutivo

E' stata prevista una riattivazione del monitoraggio sui tubi piezometrici disponibili realizzati durante le precedenti campagne d'indagine.

Il monitoraggio sui nuovi tubi piezometrici è stato attivato nel corso della realizzazione della campagna di indagini.

Di seguito si riassumono le letture dei piezometri realizzati nella fase di PE, con il dettaglio, per ciascuno, delle letture eseguite, disponibili alla data di emissione del presente elaborato.

			MONITO	DRAGGIO	LIVELLI	DI FALD	A (SOGG	IACENZ/	A)				
ID Sondaggio	Strumentazione in foro	lettura del 22/12/2021 misura testa tubo	lett. del 05/01/2022 (misura da testa tubo)	lett.del 17/01/2022 (misura da testa tubo)	١,	lett. del 04/02/2022 (misura da testa tubo)	(misura da	(misura da	,	(misura da	(misura da	lett. del 04/05/2022 (misura da testa tubo)	(misura da
		m	m	m	m	m	m	m	m	m	m	m	m
PE-INT-01	PIEZ. NORTON	5,22	5,2	5,28	5,3	5,31	6,19	6,01	5,92	5,88	5,97	5,85	6,7
PE-INT-02	PIEZ. NORTON											6,7	8,09
PE-INT03	PIEZ. NORTON									1,9	1,99	2,02	3,5
PE-INT04	PIEZ. ELET.(-143)R200									31,12	31,2	33,02	33,5
PE-INT-05	PIEZ. ELET. (-64)R100					57,6	57,61	57,52	57,45	57,62	57,7	57,7	57,9
PE-SID-01	PIEZ. NORTON					0,25	0,3	0,26	0,22	0,19	0,24	0,26	0,09
PE-SID-02	PIEZ. NORTON										9,2	9,22	15,25
PE-SID-03	PIEZ. ELET. (-80,35) R100											30,07	30,1

Le letture sono iniziate a partire da dicembre 2021, in base alla data di realizzazione dei singoli sondaggi per i quali era prevista l'installazione della strumentazione piezometrica e, alla data della emissione della presente relazione sono aggiornati alla data del 20/05/2022, all'incirca confermano i valori degli strumenti del PD.

Consorzio Soci

WEBUILD ITALIA ORSARA - BOVINO AV **PIZZAROTTI**

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A **NET ENGINEERING** PINI

ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA ORSARA - BOVINO

COMMESSA

LOTTO

CODIFICA E ZZ RG

DOCUMENTO GE0102 001

REV.

FOGLIO 34 di 69

INQUADRAMENTO IDROGEOLOGICO GENERALE DELL'AREA 3

La galleria Orsara si sviluppa lungo il fronte esterno dell'Appennino Meridionale, al confine tra le regioni Campania e Puglia. L' Appennino meridionale è una catena a pieghe e sovrascorrimenti ("fold and thrust belt") con vergenza adriatica formatasi per la collisione, a partire dal Miocene, tra la placca africana e la placca euro-asiatica.

La complessa evoluzione geodinamica dell'Appennino Meridionale ha portato alla sovrapposizione di diverse unità tettoniche. Il prisma di accrezione è costituito da depositi carbonatici meso-cenozoici in facies di piattaforma carbonatica e di scarpata (Piattaforma Appenninica), da depositi oceanici di provenienza interna (Unità Liguridi) e da depositi di ambiente pelagico (Bacino Molisano-Lagonegrese), su cui si sovrappongono depositi neogenici di avanfossa e di bacini di wedge-top. L'intero prisma orogenico è tettonicamente sovraimposto a depositi carbonatici meso-cenozoici in facies di mare basso, che affiorano verso est (Piattaforma Apula) e, localmente, in finestra tettonica in alcuni settori interni, tra i quali l'area del Monte Alpi. Il passaggio tra il prisma di accrezione e la Piattaforma Apula sepolta è marcato da un melange pliocenico con spessori fino a un migliaio di metri.

Le successioni sedimentarie affioranti nel settore di catena in cui ricade il tracciato della galleria Orsara sono riferibili a tre distinte unità strutturali, di differente provenienza paleogeografica, denominate rispettivamente Unità della Daunia, Unità del Fortore e Unità di Frigento. Tali unità sono costituite essenzialmente da depositi marini in facies di bacino e di scarpata, con un'età compresa tra il Cretacico inferiore e il Miocene superiore.

Questo settore rappresenta pertanto una fascia di transizione tra il Subappennino Dauno e il Tavoliere delle Puglie ed è caratterizzato da una morfologia pianeggiante o debolmente ondulata nel settore nord-orientale (parte medioalta del T. Cervaro), che assume connotati decisamente collinari all'estremità sud- occidentale, in corrispondenza dei rilievi del Subappennino Dauno.

L'intero settore è pertanto caratterizzato da una notevole complessità idrogeologica, strettamente connessa alla presenza delle differenti successioni sedimentarie e numerose strutture tettoniche sopra descritta (Ciaranfi et al. 2011 - CARG "Ascoli Satriano"). Tali settori presentano infatti un motivo idrogeologico tipico dell'Appennino meridionale, quale la giustapposizione laterale e verticale di unità calcareo-marnose e arenaceo-conglomeratiche di elevata permeabilità con successioni sedimentarie a scarsa permeabilità (Celico et al. 2007; Ciaranfi et al. 2011 - CARG "Ascoli Satriano").

I termini carbonatici e silicoclastici più permeabili sono spesso sede di un importante deflusso idrico di base che, in corrispondenza del contatto con terreni a permeabilità più bassa, viene a giorno formando grandi sorgenti basali (Celico 1978, 1983, 1986; Celico et al. 2007). All'interno dei termini lapidei e pseudo-lapidei, le variazioni dello schema di circolazione idrica sotterranea sono associabili a elementi strutturali o locali intercalazioni pelitiche, che possono costituire un ostacolo al deflusso delle acque di falda per una riduzione della permeabilità intrinseca dell'acquifero (Celico et al. 2007). Inoltre, nei settori dove le unità del substrato sono in contatto laterale con i depositi continentali quaternari sono possibili importanti travasi idrici sotterranei verso le piane alluvionali, con conseguente alimentazione dei corpi idrici superficiali (Celico et al. 2007; Ciaranfi et al. 2011 – CARG "Ascoli Satriano").

L'unità idrogeologica principale, in termini di estensione e di utilizzo della risorsa idrica, è rappresentata dai depositi di copertura quaternari, costituiti da una successione di terreni sabbioso-ghiaioso-ciottolosi, permeabili ed acquiferi, con intercalazioni di livelli argilloso-siltosi a minore permeabilità, con ruolo di acquitardi. In questa unità l'acqua si rinviene essenzialmente in condizioni di falda libera. Essa, infatti, coincide con la parte alta, nonché con APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

E ZZ RG

GE0102 001

35 di 69

la zona di preferenzialericarica del più ampio sistema acquifero a cui, nel suo complesso, si dà il nome di acquifero poroso superficiale.

Relazione idrogeologica

L'unità impermeabile di base è rappresentata dalle argille grigio-azzurre (argille subappennine) che diffusamente affiorano nell'area.

Le principali depressioni morfostrutturali dell'area, come la piana del Torrente Cervaro e i settori esterni del Tavoliere delle Puglie, sono invece caratterizzate da una circolazione idrica per falde sovrapposte, che si verifica all'interno dei depositi alluvionali più permeabili che le riempiono (Maggiore et al. 1996, 2004; Ciaranfi et al. 2011 – CARG "Ascoli Satriano"). I diversi livelli idrici sono spesso in comunicazione mediante soluzioni di continuità che contraddistinguono i litotipi meno permeabili e che spesso, non permettono un reale frazionamento della circolazione idrica sotterranea all'interno dei settori di piana (Ciaranfi et al. 2011 – CARG "Ascoli Satriano").

Figura 3-1 - Stralcio della Carta idrogeologica dell'Italia Meridionale (da Celico et al. 2007), con indicazione delle principali strutture idrogeologiche e del tracciato ferroviario in progetto (in magenta).

Legenda: 1 Complesso alluvionale-costiero, 3 Complesso dei depositi epiclastici continentali, 9 Complesso sabbioso-conglomeratico, 10 Complesso argilloso, 11 Complesso Molassico, 12 Complesso delle evaporiti messiniane, 13 Complesso arenaceo-conglomeratico, 14 Complesso delle successioni arenaceo-calcareo-pelitiche, 36 Complesso argilloso-calcareo delle Unità Sicilidi.

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI**

PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI

ELETTRI-FER

TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA ORSARA - BOVINO

COMMESSA

LOTTO

CODIFICA E ZZ RG

DOCUMENTO GE0102 001

REV.

FOGLIO 36 di 69

I dati provenienti dal monitoraggio piezometrico delle strumentazioni appositamente installate nei fori sondaggio e dalle numerose prove di permeabilità condotte in fase di perforazione hanno consentito di ricostruire l'andamento della superficie piezometrica in specifiche zone di interesse lungo il tracciato.

Infine, lo studio geologico condotto ha permesso di definire lo stato di alterazione/fessurazione/carsismo degli ammassi rocciosi e le caratteristiche granulometriche dei terreni interessati dalle opere in progetto che, come noto, influenzano in maniera diretta il coefficiente di permeabilità dei vari corpi geologici e, quindi, la circolazione idrica sotterranea dell'area di studio.

Ulteriori informazioni dovranno essere raccolte dalle indagini ancora in corso di realizzazione, per l'affinamento dell'assetto idrogeologico, soprattutto del settore occidentale prossimo all'imbocco della galleria, lì dove sono presenti calcari fratturati e i sondaggi del PD evidenziano la presenza di una falda che potrebbe interferire con lo scavo della galleria, così come risulterà importante procedere con l'esecuzione delle letture piezometriche per una definizione più puntuale dei livelli di falda.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA** ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica GE0102 001 37 di 69

4 COMPLESSI IDROGEOLOGICI

4.1 PREMESSA

La distribuzione della permeabilità nel sottosuolo interessato dalle opere e nelle aree circostanti è stata sintetizzata seguendo il criterio di suddivisione in complessi idrogeologici adottato nell'ambito del Progetto Definitivo

I complessi idrogeologici individuati si distinguono per avere comportamento idrogeologico omogeneo e per essere caratterizzati da un tipo di permeabilità prevalente (primario o secondario) e da un grado di permeabilità relativa che si mantiene in un campo di variazione piuttosto ristretto (Civita, 2005).

L'attribuzione delle caratteristiche ai diversi complessi è avvenuta sia in base alla revisione critica dei test di permeabilità eseguiti nell'ambito del Progetto Definitivo e del Progetto Preliminare, nonché in base alle prove condotte in foro nei sondaggi integrativi della campagna di PE (2021/2022).

L'area di studio è stata suddivisa in diversi complessi idrogeologici a grado di permeabilità differente, distinguendo poi negli ammassi rocciosi e nei terreni attraversati dalle opere settori con comportamento idrogeologico omogeneo. I sistemi di flusso idrico sotterraneo possono svilupparsi all'interno di un solo complesso idrogeologico, quando questo è limitato lateralmente da complessi meno permeabili, oppure possono attraversare più complessi permeabili adiacenti

In generale sono stati così distinti:

- complessi permeabili per porosità
- complessi permeabili per fratturazione.

I primi sono essenzialmente i complessi costituiti da depositi sciolti superficiali (depositi quaternari) dove, essendo assenti fenomeni di cementazione, è presente una porosità primaria significativa. I secondi sono i complessi sviluppati in litotipi del substrato pre-quaternario, che essendo caratterizzati da fenomeni di consolidamento e/o cementazione possiedono una permeabilità primaria per porosità non significativa e comunque di numerosi ordini di grandezza inferiore rispetto alla permeabilità per fratturazione e/o fenomeni di dissoluzione chimica (carsismo s.l.).

L'attribuzione del grado di permeabilità ad ogni complesso idrogeologico attraversato dal tracciato di progetto è basata sui dati di permeabilità misurati nei sondaggi e disponibili in letteratura. Laddove non sono disponibili valori misurati o quando i dati disponibili non garantiscono adeguate affidabilità e rappresentatività statistica, la stima della permeabilità è stata basata su un'analisi critica dei dati geologici di terreno e sull'analogia con formazioni con caratteristiche idrodinamiche simili. Durante le fasi di rilevamento di terreno è stata prestata particolare attenzione alla descrizione dello stato di fratturazione e del grado di cementazione.

Va altresì specificato che i valori di conducibilità idraulica forniti si riferiscono ad una scala decametrica o pluridecametrica, significativa per la dimensione delle opere in progetto. A piccola scala (metrica o pluri-metrica) potrebbero essere incontrati valori anche più elevati di quelli indicati nel presente rapporto e negli elaborati correlati, dal momento che a tale scala la permeabilità potrebbe essere governata dalle caratteristiche idrauliche di singole fratture. Questi elementi tuttavia spesso risultano poco interconnessi a scala maggiore, risultando ininfluenti per considerazioni idrogeologiche a scala medio-grande quale quella di interesse per il presente lavoro.

Sempre per quanto riguarda gli ammassi rocciosi, o comunque i complessi ove è presente un elevato grado di cementazione, è altresì necessario fare una premessa a carattere più generale, poiché, indipendentemente dagli aspetti legati alla litologia, si possono distinguere due diversi contesti:

- ammasso roccioso in normale stato di fratturazione;
- zone di faglia.

Il primo contesto è quello largamente dominante; la permeabilità è indotta dalla presenza di un reticolo di fratture poco persistenti lateralmente (metri-decametri), o al più da faglie discrete con zona di tettonizzazione cataclastica di spessore modesto (dell'ordine del metro) e persistenza anch'essa modesta (metri-decametri). Ciò significa che a

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA** ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica GE0102 001 38 di 69

scala decimetrica o metrica talora si possono avere permeabilità anche piuttosto elevate, determinate dalla presenza di singole fratture aperte o faglie discrete, ma a scala decametrico-ettometrica la permeabilità media risulta perlopiù bassa, poiché le fratture hanno un grado d'interconnessione reciproca non molto elevato.

Il secondo contesto è subordinato e correlato alla presenza di zone di faglia cataclastiche principali di spessore plurimetrico fino a decametrico, in cui, oltre a una densità di fratturazione molto elevata, possono essere presenti anche livelli di brecce tettoniche (materiale pseudo-poroso). In questo contesto la permeabilità è generalmente piuttosto alta, poiché il grado di interconnessione tra le fratture è elevato e sovente le fratture presentano riempimenti granulari poco coesivi (brecce e microbrecce). Si deve comunque tenere conto del fatto che nelle zone di faglia le rocce cataclastiche più permeabili costituiscono due salbande dette "zone di danneggiamento" poste sui due lati di una fascia maggiormente deformata detta "zona di nucleo". In questa fascia può essere presente una maggior quantità di materiale a grana fine (gouge) poco permeabile. La zona di nucleo può pertanto costituire un setto poco permeabile più o meno potente, interno alla fascia permeabile.

L'attribuzione del grado di permeabilità ad ogni complesso idrogeologico attraversato dal tracciato di progetto è basata sui dati di conducibilità misurati nei sondaggi e disponibili in letteratura. Laddove non sono disponibili valori misurati o quando i dati disponibili non garantiscono adeguate affidabilità e rappresentatività statistica, la stima della conducibilità è stata basata su un'analisi critica dei dati geologici di terreno e sull'analogia con formazioni con caratteristiche idrodinamiche simili. Durante le fasi di rilevamento di terreno è stata prestata particolare attenzione alla descrizione dello stato di fratturazione e del grado di cementazione.

Va altresì specificato che i valori di conducibilità idraulica forniti si riferiscono ad una scala decametrica o pluridecametrica, significativa per la dimensione delle opere in progetto. A piccola scala (metrica o plurimetrica), come già ricordato in precedenza, potrebbero essere incontrati valori anche più elevati di quelli indicati nel presente rapporto e negli elaborati correlati, dal momento che a tale scala la permeabilità potrebbe essere governata dalle caratteristiche idrauliche di singole fratture. Questi elementi tuttavia spesso sono poco interconnessi a scala maggiore, risultando ininfluenti per considerazioni idrogeologiche a scala medio-grande quale quella di interesse per il presente lavoro.

4.2 CLASSIFICAZIONE DEI COMPLESSI

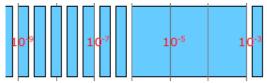
4.2.1 Complessi dei terreni di copertura

Complesso ghiaioso-sabbioso (CGL)

Unità interessate:

- b depositi alluvionali recenti
- ADL2 depositi continentali di conoide alluvionale costituiti da conglomerati a clasti poligenici ed eterometrici in matrice sabbiosa
- LSO Depositi continentali di conoide fluviale, costituiti da sabbie, sabbie limose e limi sabbiosi
- ORS1 depositi continentali di canale fluviale costituiti da conglomerati a clasti poligenici ed eterometrici in matrice sabbiosa, massivi o mal stratificati
- ORS2 depositi continentali di canale fluviale, costituiti da ghiaie poligeniche ed eterometriche in matrice sabbiosa
- RDG depositi continentali di canale fluviale, costituiti da sabbie, sabbie limose e limi sabbiosi
- RPL1 depositi continentali di canale fluviale, costituiti da silt argillosi, silt, sabbie siltose e lenti di ghiaie poligeniche ed eterometriche in matrice sabbiosa

È associato ai terreni alluvionali delle unità geologiche di copertura


È costituito da ghiaie poligeniche ed eterometriche, da angolose ad arrotondate, in matrice sabbiosa e sabbiosolimosa da scarsa ad abbondante; localmente si rinvengono passaggi di sabbie, sabbie limose e limi sabbiosi a

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOPI	PIO TRATT	A ORSARA –	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT Relazione idrogeologica			COMMESSA IF2O	LOTTO 00	CODIFICA E ZZ RG	DOCUMENTO GE0102 001	REV. B	FOGLIO 39 di 69

struttura indistinta o laminata, con locali ghiaie poligeniche da angolose ad arrotondate; talora sono presenti paleosuoli e livelli limoso-argillosi.

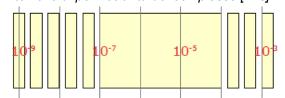
I depositi appartenenti a questo complesso costituiscono acquiferi porosi di buona trasmissività, piuttosto eterogenei ed anisotropi. La permeabilità, esclusivamente per porosità, è variabile da bassa ad alta. A questo complesso può essere attribuito un coefficiente di permeabilità k compreso tra $1\cdot10^{-6}$ e $1\cdot10^{-3}$ m/s.

Intervallo di permeabilità del complesso [m/s]

Complesso limoso-argilloso (CAL)

Unità interessate:

- b2 coltri eluvio-colluviali
- A, Q, S. TGF depositi detritico-colluviali, depositi continentali di canale fluviale e/o conoide fluviale
- frane depositi franosi derivanti da terreni argilloso-marnosi e in cui sono ricompresi fenomeni gravitativi quali i colamenti (co), gli scivolamenti rotazionali-traslativi (sc), i crolli (cr), i movimenti complessi (mc) e i soliflussi (sl)


È costituito dai terreni di copertura.

È costituito da argille limose e argille sabbiose a struttura caotica o indistinta, con abbondanti resti vegetali e frequenti ghiaie poligeniche da angolose a sub-arrotondate; localmente si rinvengono passaggi di sabbie argillose e limi argilloso-sabbiosi a struttura caotica o indistinta, con abbondanti resti vegetali e frequenti ghiaie poligeniche da angolose a sub-arrotondate.

I depositi appartenenti a questo complesso costituiscono acquicludi e acquitardi porosi e di scarsa trasmissività, piuttosto eterogenei ed anisotropi; sono privi di corpi idrici sotterranei di importanza significativa, a meno di piccole falde a carattere stagionale.

La permeabilità, esclusivamente per porosità, è variabile da molto bassa a bassa, con un coefficiente di permeabilità k compreso tra $1\cdot10^{-7}$ e $1\cdot10^{-4}$ m/s.

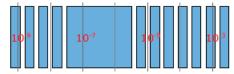
Intervallo di permeabilità del complesso [m/s]

4.2.2 Complessi delle unità del substrato

Complesso arenaceo-conglomeratico (CCA)

Unità interessate:

• BVNa – Arenarie quarzoso - felspatiche


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO MADOLI. DA DI					
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINE	ERARIO	NAPOLI – B	4RI	
PROGETTAZIONE:			R	ADDOPI	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI ITRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica	l		IF2O	00	E ZZ RG	GE0102 001	В	40 di 69

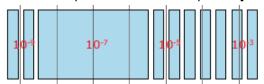
È costituito da microconglomerati ed a cementazione variabile, con frequenti passaggi di sabbie limose e limi argilloso-sabbiosi; conglomerati a clasti poligenici ed eterometrici, da sub-arrotondati ad arrotondati, mal-stratificati o in strati molto spessi, in matrice sabbiosa, sabbioso-limosa e calcareo-sabbiosa da scarsa ad abbondante; a luoghi si rinvengono si rinvengono intercalazioni di cineriti a composizione riolitica e passaggi di sabbie e sabbie limose

Costituiscono acquiferi misti di medio-alta trasmissività, eterogenei ed anisotropi. La permeabilità, per porosità e per fessurazione, è variabile da molto bassa a bassa.

La permeabilità, esclusivamente per porosità, è variabile da molto bassa a bassa, con un coefficiente di permeabilità k compreso tra $3\cdot10^{-8}$ e $3\cdot10^{-6}$ m/s.

Intervallo di permeabilità del complesso [m/s]

Complesso calcareo - marnoso (CCM)


Unità interessate:

- FAE/C Litofacies calcarea, costituita da calcari ben stratificati e compatti con interstrati di argille
- FAE/ma Litofacies marnoso-argillosa costituita da alternanze di argille, marne e calcareniti

È costituito da calciruditi, calcareniti, calcilutiti e calcari marnosi con locali intercalazioni di argille limose, argille marnose e marne, quindi calcari micritici e marne.

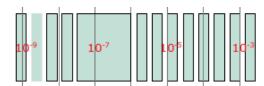
Costituiscono acquiferi di buona trasmissività, eterogenei e anisotropi. La permeabilità, essenzialmente per fessurazione, è variabile da molto bassa a bassa, con un coefficiente di permeabilità k compreso tra $3\cdot10^{-9}$ e $3\cdot10^{-6}$ m/s.

Intervallo di permeabilità del complesso [m/s]

Complesso argilloso-sabbioso (CAS)

Unità interessate:

• BVNb – Argille, argille limose e argille marnose


È costituito da depositi argilloso-sabbiosi: argille limose, argille marnose e marne con locali intercalazioni di sabbie e sabbie limose.

Costituiscono acquiferi misti di modesta trasmissività, piuttosto eterogenei ed anisotropi.

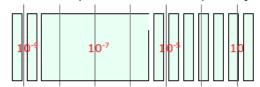
La permeabilità, per porosità e per fessurazione, è variabile da molto bassa a bassa, con un coefficiente di permeabilità k compreso tra $3\cdot10^{-8}$ e $1\cdot10^{-6}$ m/s.

Intervallo di permeabilità del complesso [m/s]

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica E ZZ RG GE0102 001 41 di 69

Complesso argilloso-marnoso (CAM)

Unità interessate:


- ASP Depositi marini di piattaforma costituiti da argille limose e limi argillosi
- SID Depositi torbiditici costituiti da alternanze di argilliti policrome, scagliose o laminate, intercalate a calcilutiti, calcareniti
- TPC depositi marini costituiti da argille limose, argille marnose e marne
- FAE/am litofacies argilloso marnosa costituita da argille grigie e sottili strati calcarenitici e marnosi

È costituito da argille, argille marnose e marne a struttura scagliosa o indistinta, talora stratificata, con rare intercalazioni di ghiaie, sabbie, sabbie limose.

Costituiscono acquicludi e acquitardi porosi e di scarsa trasmissività, piuttosto eterogenei ed anisotropi. Costituiscono degli elementi tamponanti per gli acquiferi giustapposti verticalmente o lateralmente.

La permeabilità, per porosità e fessurazione, è variabile da molto bassa a bassa, con un coefficiente di permeabilità k compreso tra 3·10-9 e 3·10-6 m/s.

Intervallo di permeabilità del complesso [m/s]

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ΔΠΩΡ	ΡΙΟ ΤΡΔΤΤ	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	501	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	42 di 69

4.3 PERMEABILITÀ DELLE FORMAZIONI

4.3.1 Distribuzione statistica delle permeabilità delle formazioni

L'insieme dei valori di permeabilità ottenuti dalle prove idrauliche effettuate nell'ambito dei sondaggi di Progetto Definitivo e di Progetto Esecutivo viene riportato in un grafico complessivo che riporta la distribuzione del coefficiente K delle differenti litofacies appartenenti alle diverse formazioni geologiche individuate lungo il tracciato.

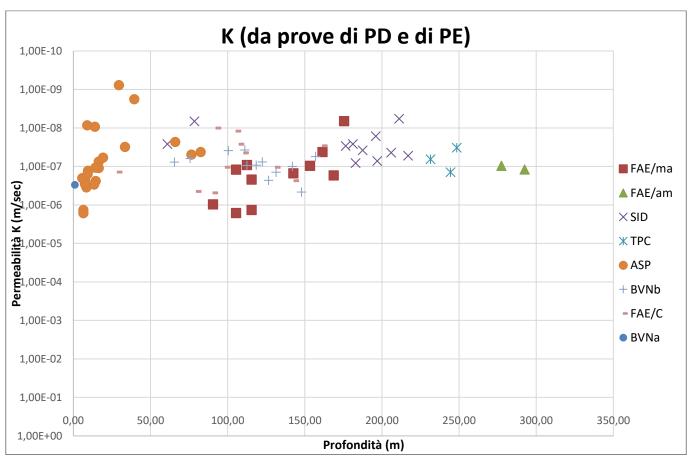


Figura 4-1 - Permeabilità litofacies

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO GE0102 001 Relazione idrogeologica 43 di 69

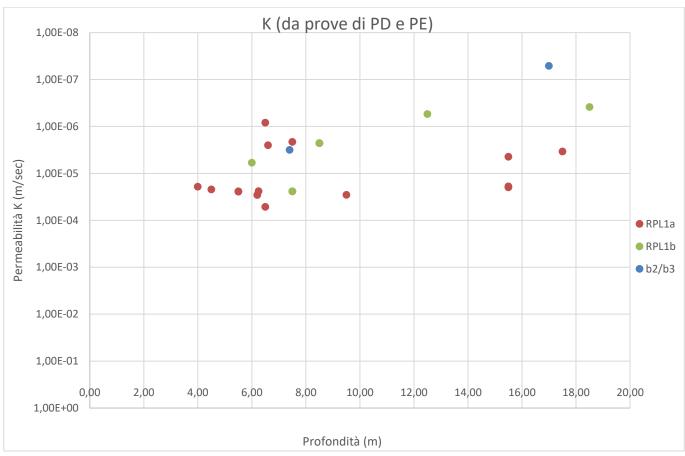


Figura 4-2 - Permeabilità depositi superficiali

Dall'esame dei valori ottenuti, per ogni formazione e/o deposito superficiale è stata identificata una permeabilità di riferimento ed un campo di variabilità che identifica il massimo e minimo valore ragionevolmente atteso, il valore medio e la mediana.

Come si può notare dall'esame del grafico generale delle litofacies, le prove di permeabilità disponibili per alcune di esse, sono limitate e/o (come per la litofacies BVNa), è disponibile solo 1 prova a profondità comprese tra 4 e 7 m ca.

Nel caso delle fasce tettonizzate si è fatto riferimento a valori derivati da studi in analoghi contesti geologicostratigrafico e si è assunto il valore di 5.4E-07 m/sec.

In sintesi, sulla base dei dati disponibili (cfr. Figura 4-1 e Figura 4-2) è possibile attribuire alle litofacies e depositi presenti lungo il tracciato delle opere a progetto, i valori riportati in **Tabella 4-1**.

La tabella riporta una sintesi derivata dall'analisi di tutte le prove eseguite, in PD e in PE; per le litofacies sono riportate le prove eseguite solo per la tratta in sotterraneo.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI **WEBUILD ITALIA** ORSARA - BOVINO AV **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO GE0102 001 Relazione idrogeologica E ZZ RG 44 di 69

Tabella 4-1 – Valori minimi, massimi e mediani relativi alle varie formazioni, comprese le faglie, determinati sulla base delle misure disponibili del PD

Sigla	Tipo di permeabilità	Permeabilità MED [m/s]	Permeabilità MEDIANA [m/s]	Permeabilità MIN [m/s]	Permeabilità MAX [m/s]
ASP	porosità/fessurazione	2.15-07	7.50E-08	0.00E-00	1.64E-06
SID	porosità/fessurazione	3.61-08	2.92E-08	5.74E-09	8.12E-08
FAE/C	porosità/fessurazione	1.48E-07	1.04E-07	1.00E-08	4.81E-07
FAE/ma	porosità/fessurazione	4.39E-07	1.50E-07	6.62E-09	1.62E-06
FAE/am	porosità/fessurazione	1.08E-07	1.08E-07	9.58E-08	1.20E-075
BVNa	porosità/fessurazione	2.8E-05	2.8E-05	1.56E-05	4.04E-05
BVNb	porosità/fessurazione	1.22E-07	8.45E-08	3.70E-08	4.60E-07
TPC	porosità/fessurazione	7.89E-08	6.44E-08	3.24E-08	1.40E-07
RPL1a	porosità	1.78E-05	1.98E-05	8.30E-07	5.18E-05
RPL1b	porosità	6.65E-06	2.27E-06	3.84E-07	2.41E-05
b2/b3	porosità		3.15	E-06	
Coltre frana	porosità	4.84E-06	3.81E-06	1.79E-07	1.08E-05
Fasce tettonizzate	Porosità/fessurazione		5,40E-0	7 m/sec	

4.3.2 Permeabilità della formazione delle Argille Subappennine - ASP

La Figura 4-3 riporta la distribuzione delle permeabilità delle argille limose e limi argillosi appartenenti alla formazione ASP ed appartenente al complesso argilloso-marnoso (CAM), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità.

Dai valori rilevati si osserva una modesta correlazione tra le profondità di indagine e una conseguente riduzione delle permeabilità.

Per questa litologia, dalle prove eseguite il valore medio è 2.15-07 m/s mentre i valori maggiormente ricorrenti nelle prove eseguite si distribuiscono all'incirca nell'intervallo compreso tra 10-08 e 10-07.

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – BA	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELETUNNELCONSULT	PINI ITRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	45 di 69

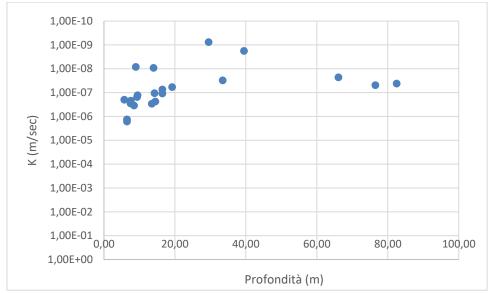


Figura 4-3 - Distribuzione delle permeabilità (m/s) dell'unità ASP in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

4.3.3 Permeabilità della Formazione di Sidone - SID

La Figura 4-4 riporta la distribuzione delle permeabilità all'interno della Formazione del Monte Sidone, appartenente al complesso argilloso-marnoso (CAM), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità.

La Formazione di Sidone (SID), di origine torbiditica, è costituita da argilliti policrome. Tale formazione appartiene al complesso idrogeologico argilloso-marnoso (AGM). La permeabilità è per porosità e fratturazione. Sebbene il numero di prove sia limitato si assume come valore medio quello derivante dalle prove, ovvero 3.61E-08 m/s, mentre i valori maggiormente ricorrenti nelle prove eseguite si distribuiscono all'incirca nell'intervallo compreso tra 10-07 e 10-08.

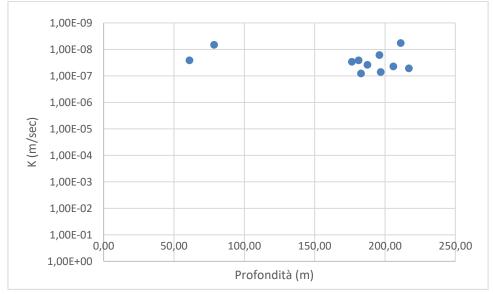


Figura 4-4 - Distribuzione delle permeabilità (m/s) della Formazione di Sidone in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ΔΠΩΡ	ΡΙΟ ΤΡΔΤΤ	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	501	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	46 di 69

4.3.4 Permeabilità delle unità della Formazione del Flysch di Faeto – FAE/C-FAE/ma-FAE/am

L'analisi completa di tutte le prove eseguite ha consentito di definire i valori medi di K a ciascuna delle tre differenti litofacies individuate per il Flysch del Faeto.

La Figura 4-5 riporta la distribuzione delle permeabilità all'interno della Formazione del Flysch di Faeto per la litofacies FAE/C, che appartiene al complesso idrogeologico calcareo-marnoso (CCM), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità. La permeabilità è per porosità e fratturazione. Si assume come valore medio quello derivante dalle prove, ovvero 1.48E-07 m/s, mentre i valori maggiormente ricorrenti nelle prove eseguite si distribuiscono all'incirca nell'intervallo compreso tra 10-06 e 10-08.

La Figura 4-6 riporta la distribuzione delle permeabilità all'interno della Formazione del Flysch di Faeto per la litofacies FAE/ma, che appartiene al complesso idrogeologico calcareo-marnoso (CCM), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità. La permeabilità è per porosità e fratturazione. Si assume come valore medio quello derivante dalle prove, ovvero 4.39E-07 m/s, mentre i valori maggiormente ricorrenti nelle prove eseguite si distribuiscono all'incirca nell'intervallo compreso tra 10-06 e 10-07.

Le 2 litofacies FAE/C e FAE/ma, sono costituite rispettivamente da calcari ben stratificati a cui si intercalano sottili starti di argille e da marne e calcari con frequenti intervalli argillosi

La Figura 4-7 riporta la distribuzione delle permeabilità all'interno della Formazione del Flysch di Faeto per la litofacies FAE/am, che appartiene al complesso idrogeologico argilloso-marnoso (CAM), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità. La permeabilità è per porosità e fratturazione. Si dispone di solo 2 prove, il valore medio risulta 1.08E-07 m/s. La litofacies FAE/am, appartiene al complesso argilloso-marnoso (CAM) ed è costituita da argille grigie e sottili strati calcarenitici e marnosi.

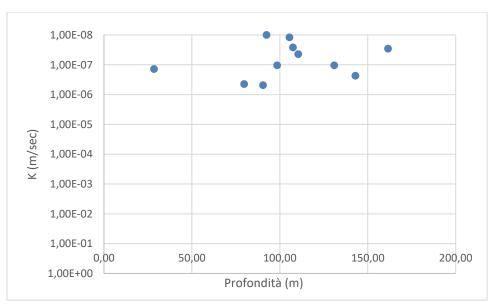


Figura 4-5 - Distribuzione delle permeabilità (m/s) della Formazione del Flysch di Faeto, FAE/C, in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ΔΠΩΡ	ΡΙΟ ΤΡΔΤΤ	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	501	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	47 di 69

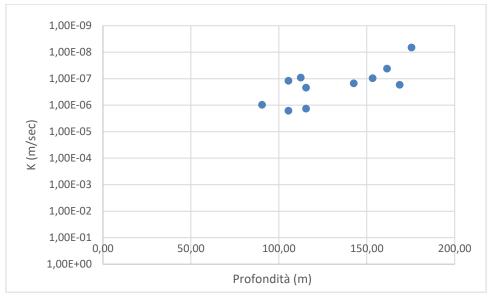


Figura 4-6 - Distribuzione delle permeabilità (m/s) della Formazione del Flysch di Faeto, FAE/ma, in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

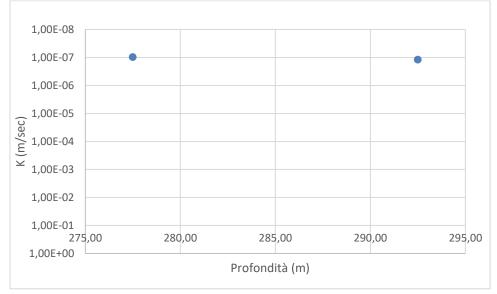


Figura 4-7 - Distribuzione delle permeabilità (m/s) della Formazione del Flysch di Faeto, FAE/am, in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

4.3.5 Permeabilità della Formazione delle Arenarie e Conglomerati di Castello Schiavo - BVNa

La Figura 4-8 riporta le uniche prove di permeabilità disponibili all'interno della Formazione BVNa appartenente al complesso arenaceo – conglomeratico (CCA).

La litofacies è costituita da microconglomerati ed a cementazione variabile, con frequenti passaggi di sabbie limose e limi argilloso-sabbiosi; conglomerati a clasti poligenici ed eterometrici, da sub-arrotondati ad arrotondati

Si assume come valore medio quello derivante dalle prove, ovvero 2.80E-05 m/s (il valore mediano è poco rappresentativo avendo solo n. 2 prove a disposizione).

APPALTATORE:								
Consorzio	Soci		ITINED A DIO MADOLI. DADI					
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – BA	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELET TUNNELCONSULT	PINI TRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	48 di 69

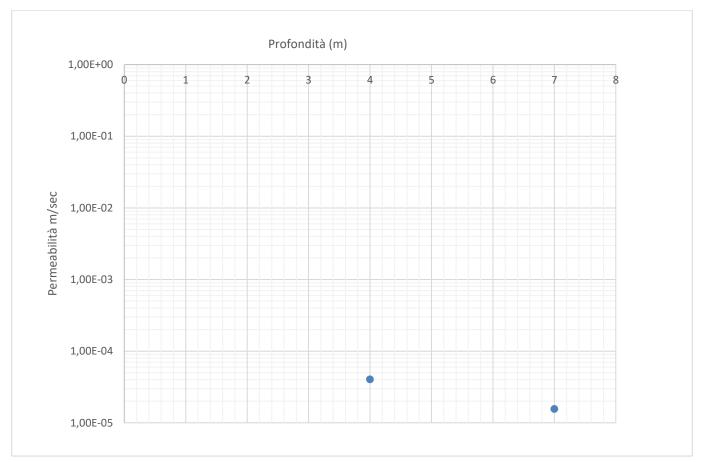


Figura 4-8 – Prove di permeabilità (m/s) della Formazione BVNa

4.3.6 Permeabilità della Formazione delle Argille e Sabbie del Vallone Meridiano - BVNb

La Figura 4-9 riporta la distribuzione delle permeabilità all'interno della Formazione BVNb, appartenente al complesso argilloso-sabbioso (CAS), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità.

La litofacies è costituita da depositi argilloso-sabbiosi: argille limose, argille marnose e marne con locali intercalazioni di sabbie e sabbie limose.

Si assume come valore mediano quello derivante dalle prove, ovvero 1.22E-07 m/s, mentre i valori maggiormente ricorrenti nelle prove eseguite si distribuiscono all'incirca nell'intervallo compreso tra 10-07 e 10-08.

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – BA	ARI	
PROGETTAZIONE:			R	ADDOPI	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELET TUNNELCONSULT	PINI TRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica	l .		IF2O	00	E ZZ RG	GE0102 001	В	49 di 69

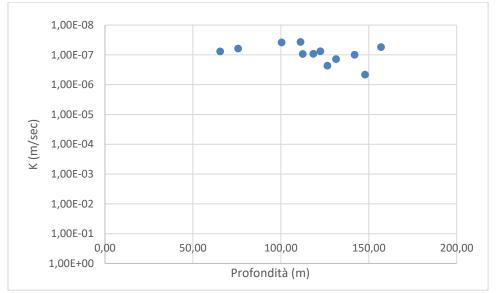


Figura 4-9 - Distribuzione delle permeabilità (m/s) della Formazione BVNb in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

4.3.7 Permeabilità della Formazione delle Marne argillose del Toppo Capuana - TPC

La Figura 4-10 riporta la distribuzione delle permeabilità all'interno della Formazione delle Marne Argillose del Toppo Capuana (TPC), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità. La litofacies è costituita da depositi marini costituiti da argille limose, argille marnose e marne, ed appartenente al complesso argilloso-marnoso (CAM) e presenta una permeabilità per porosità/fessurazione. Si dispone di sole 3 prove ed in base a queste si assume come valore medio 7.89E-08 m/s.

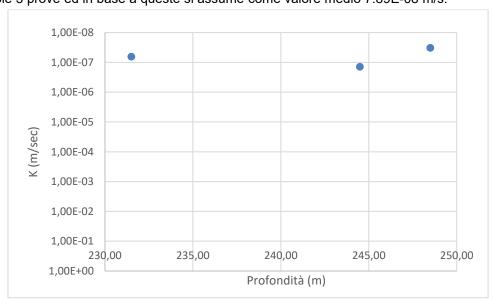


Figura 4-10 - Distribuzione delle permeabilità (m/s) della Formazione TPC in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINE	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOPE	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELETT TUNNELCONSULT	PINI RI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica	1		IF2O	00	E ZZ RG	GE0102 001	В	50 di 69

4.3.8 Permeabilità dei terreni di copertura – RPL1a e RPL1b

La Figura 4-11 e la Figura 4-12 riportano la distribuzione delle permeabilità all'interno dei terreni che costituiscono l'unità RPL1 (a e b), appartenente al complesso ghiaioso-sabbioso (CGL), in relazione alle profondità dei tratti delle prove idrauliche realizzate all'interno di questa unità.

La litofacies è costituita da depositi continentali di canale fluviale: silt argillosi, silt, sabbie siltose e lenti di ghiaie poligeniche ed eterometriche in matrice sabbiosa.

Si assume come valore mediano quello derivante dalle prove, ovvero 1.78E-05 m/s (RPL1a) e 6.65E-06 m/sec (RPL1b), mentre i valori maggiormente ricorrenti nelle prove eseguite si distribuiscono all'incirca nell'intervallo compreso tra 10-04 e 10-06.

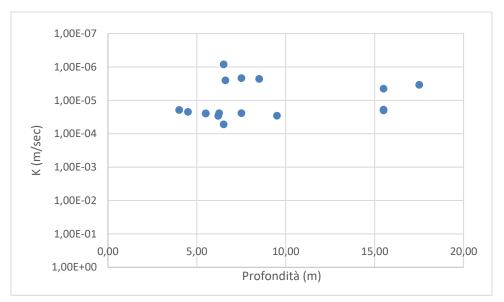


Figura 4-11 - Distribuzione delle permeabilità (m/s) della Formazione RPL1a in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

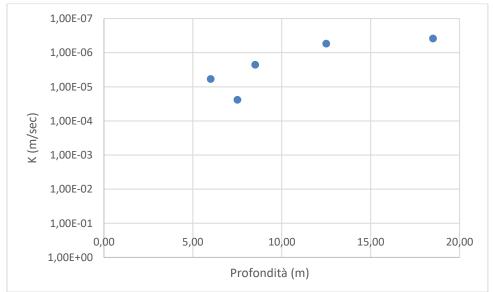


Figura 4-12 - Distribuzione delle permeabilità (m/s) della Formazione RPL1b in relazione alle profondità dei tratti di prova derivate dalle prove idrauliche.

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ΔΠΩΡ	ΡΙΟ ΤΡΔΤΤ	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	501	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	51 di 69

4.3.9 Permeabilità della dei terreni di copertura – b2/b3

La Figura 4-13 riporta le risultanze delle uniche 2 prove di permeabilità all'interno dei terreni che costituiscono le unità di coperture b2 e b3, appartenente al complesso idrogeologico limoso-argilloso (CAL).

La litofacies è costituita da coltri eluvio – colluviali (b2) e coltri argillose in frana (b3).

Si assume come valore medio quello derivante dalle prove, ovvero 3.15E-06 m/sec, anche se risulta poco rappresentativo avendo solo n. 2 prove a disposizione.

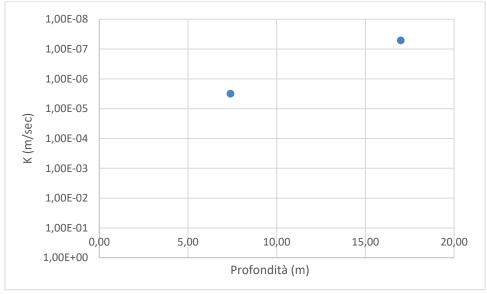


Figura 4-13 – Prove di permeabilità (m/s) dei terreni di copertura dell'unità b2.

APPALTATORE: Consorzio	Soci							
			ITINERARIO NAPOLI – BARI					
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		111111		IAI OLI – DA	~! \!	
PROGETTAZIONE:			R	ADDOPE	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELET TUNNELCONSULT	PINI TRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	52 di 69

La Tabella 4-2 riporta i valori medi di conducibilità idraulica, K, dedotti dalle SOLE prove eseguite in corrispondenza della tratta in sotterraneo. Questi valori sono stati utilizzati nella stima delle portate drenate in fase di scavo nella Galleria Orsara.

Tabella 4-2 -

Sigla	Tipo di permeabilità	Permeabilità MED [m/s]
ASP	porosità/fessurazione	2.15-07
SID	porosità/fessurazione	3.61-08
FAE/C	porosità/fessurazione	1.48E-07
FAE/ma	porosità/fessurazione	4.39E-07
FAE/am	porosità/fessurazione	1.08E-07
BVNa	porosità/fessurazione	2.8E-05
BVNb	porosità/fessurazione	1.22E-07
TPC	porosità/fessurazione	7.89E-08
b2/b3	porosità	3.16E-06
Fasce tettonizzate	Porosità/fessurazione	5,40E-07 m/sec

Tabella di sintesi dei valori di conducibilità idraulica, k, utilizzate nella stima delle portate drenate in fase di scavo nella Galleria Orsara Questi valori rappresentano i valori medi dedotti dalle SOLE prove eseguite in corrispondenza della tratta in sotterraneo

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA** ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica E ZZ RG GE0102 001 53 di 69

5. DESCRIZIONE DEL MODELLO IDROGEOLOGICO GENERALE

Il modello idrogeologico di riferimento è ricostruibile sulla base delle caratteristiche dei complessi idrogeologici descritti al precedente Capitolo 4 e sulla base di quanto è possibile definire in merito alla delineazione dei sistemi di flusso. Per gli acquiferi individuati sono state definite le aree di ricarica e di recapito dei sistemi di flusso profondi.

I sistemi di flusso profondi più importanti per estensione e per produttività sono i seguenti:

- i sistemi che si impostano in corrispondenza degli acquiferi porosi impostati nei depositi alluvionali di fondovalle appartenenti al complesso ghiaioso-sabbioso (CGL) e a quello limoso-argilloso (CAL);
- i sistemi che si impostano in corrispondenza degli acquiferi porosi e fratturati nelle litologie appartenenti al complesso arenaceo-conglomeratico (CCA) e a quello calcareo-marnoso (CCM).

Sistemi di flusso di ordine inferiore per importanza e produttività sono quelli che si impostano in corrispondenza degli acquiferi fratturati, molto discontinui a livello spaziale, e sviluppati nelle litologie afferenti al complesso calcareomarnoso (CCM) e al complesso arenaceo-marnoso (CAR).

I depositi appartenenti al complesso argilloso-limoso (CAS) e al complesso argilloso-marnoso (CAM) rappresentano acquicludi e acquitardi che delimitano verticalmente o lateralmente l'estensione degli acquiferi.

In corrispondenza delle due canne della Galleria di Linea Orsara, Binario Pari e Binario Dispari, i carichi idraulici massimi previsti ricavati rispetto alla calotta sono > 200 m e sono stati stimati in base alle letture dei piezometri a disposizione installati nelle precedenti fasi progettuali.

5.1 MONITORAGGIO PIEZOMETRICO

Il monitoraggio piezometrico eseguito nella fase di PD è proseguito fino a marzo 2022, ed ha consentito di definire le ipotesi dei livelli piezometrici massimi lungo il tracciato della galleria Orsara.

I dati si riferiscono ad un periodo compreso tra aprile 2018 (attivazione del monitoraggio) e marzo 2022.

Le tabelle di seguito riportano i valori minimi e massimi di soggiacenza rilevati.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI **WEBUILD ITALIA** ORSARA - BOVINO AV **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT

COMMESSA

LOTTO

CODIFICA

E ZZ RG

DOCUMENTO

GE0102 001

REV.

FOGLIO

54 di 69

PROGETTO ESECUTIVO

Relazione idrogeologica

						Pi	ezome	tri Bov	ino -	Orsa	ıra				•			•	
Denominazione		BO-S3	BO-S	4	BO-S	65 E	3O-S5-	bis B	O-S6	В	3O-S8 (1)	BO-S8	(2)	BO-S	9	BO-S10)	BO-S11
Fenestratura o pro	of.	100	120)	80		160		120		40		40		50		50		295
Tipo strumento	ı	Norton	Norte	on	Norto	on	Norto	n N	ortor	n Ca	asagrar	nde	Casagra	nde	Norto	n	Nortor	1	Norton
livello massimo	09	struito	-78	3,45		-0,4	-(0,4		0	-	2,3		-2,3	-0	,95	-5,2	25	-0,2
livello minimo	09	struito	-8	34,2		-4,8	-5,	,76		0	-3	,87	-	3,87	-	3,2	-6	,7	-7,35
Denom	ninazio	one		во-г	PD-S1	во-рі	D-S2 B	O-PD-S	з во	-PD-S	64 ВО-Г	D-S5	BO-PD	-S7	BO-PD-9	59 B	O-PD-S1	ОВО	O-PD-S12
N° LETTURE	Data	Rilievo			da m P.C	falda da F		alda m da P.C		lda m a P.C		la m P.C	falda da P		falda n da P.C		alda m d	fa	lda m da P.C
Tipo st	rumei	nto		Norton N		Nort	ton I	Norton	N	orton	No.	rton	Casagra	nde	Casagran	de	Norton		Norton
livello i	massi	mo			-38,3	-	56,9	-4	8	-18,0)5	-18,5	-3	5,8	-0	,9	-2,	2	0
livello	minin	no		-	46,94	-	91,8	-76,	5	-23,0)8	-22,9	-3	8,9	-9	,3	-3,2	5	-4,28
Denom	ninazio	one		BO-F	D-S14	во-г	PD-S15	во-ре	-S15	BO-P	PD-S18	во-г	PD-S21	BO-	PD-S22	BO-	PD-S27	во-	-PD-S28
N° LETTURE	N° LETTURE Data Rilievo				a m da P.C		a m da P.C	falda ı P.			a m da P.C		a m da P.C		a m da P.C		a m da P.C	falo	da m da P.C
Tipo st	rumer	nto		No	rton	Casa	grande	Casagr	ande	No	orton	No	rton	No	orton	No	orton	N	orton
livello r	livello massimo				-3,38		-3,87		-3,87		-8,15	-11,6			-3,15	-5,13			-16
livello	livello minimo				-4,56		-4,75		-4,78		-14,3		-15,6		-5,1		-8,1		-18,92

Per quanto riguarda il monitoraggio piezometrico di PE, sono state attrezzate a piezometro 8 verticali di sondaggio. Alla data di consegna del presente documento le letture sono aggiornate al 20/05/2022.

Di seguito si riassumono le letture dei piezometri realizzati nella fase di PE, con il dettaglio, per ciascuno, delle letture eseguite, disponibili alla data di emissione del presente elaborato.

	MONITORAGGIO LIVELLI DI FALDA (SOGGIACENZA)														
ID Sondaggio	Strumentazione in foro	lettura del 22/12/2021 misura testa tubo	lett. del 05/01/2022 (misura da testa tubo)	lett.del 17/01/2022 (misura da testa tubo)	(misura da	lett. del 04/02/2022 (misura da testa tubo)	17/02/2022 (misura da	(misura da	(misura da	(misura da	(misura da	lett. del 04/05/2022 (misura da testa tubo)	(misura da		
		m	m	m	m	m	m	m	m	m	m	m	m		
PE-INT-01	PIEZ. NORTON	5,22	5,2	5,28	5,3	5,31	6,19	6,01	5,92	5,88	5,97	5,85	6,7		
PE-INT-02	PIEZ. NORTON											6,7	8,09		
PE-INT03	PIEZ. NORTON									1,9	1,99	2,02	3,5		
PE-INT04	PIEZ. ELET.(-143)R200									31,12	31,2	33,02	33,5		
PE-INT-05	PIEZ. ELET. (-64)R100					57,6	57,61	57,52	57,45	57,62	57,7	57,7	57,9		
PE-SID-01	PIEZ. NORTON					0,25	0,3	0,26	0,22	0,19	0,24	0,26	0,09		
PE-SID-02	PIEZ. NORTON										9,2	9,22	15,25		
PE-SID-03	PIEZ. ELET. (-80,35) R100											30,07	30,1		

Le letture sono iniziate a partire da dicembre 2021, in base alla data di realizzazione dei singoli sondaggi per i quali era prevista l'installazione della strumentazione piezometrica e, alla data della emissione della presente relazione sono aggiornati alla data del 20/05/2022, all'incirca confermano i valori degli strumenti del PD.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI WEBUILD ITALIA ORSARA - BOVINO AV ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica E ZZ RG GE0102 001 55 di 69

I dati ottenuti dal monitoraggio piezometrico hanno consentito di indicare sui profili geologici, in corrispondenza dei sondaggi eseguiti, i livelli piezometrici massimi rilevati.

Sulla base dei dati derivati dal monitoraggio è stato possibile fare una stima dei carichi idraulici massimi, che, in sintesi, si possono così descrivere, a partire dall'imbocco della galleria Orsara lato Bari:

- A partire dalla zona di imbocco lato Bari, all'interno della litofacies "ASP", fino alla PK 31+790 ca, il carico idraulico sulla calotta è compreso tra 4 e 14 m ca
- Dalla PK 31+790 alla PK 32+514, sempre all'interno della litofacies "ASP", il carico idraulico sulla calotta è compreso tra 14 e 76 m ca
- Dalla PK 32+514 alla PK 32+787, all'interno della litofacies "BVNb", il carico idraulico sulla calotta è compreso tra 76 e 89 m ca
- Dalla PK 32+787 alla PK 33+570, all'interno della litofacies "FAE", il carico idraulico sulla calotta è compreso tra 89 e 170 m ca
- Dalla PK 33+570 alla PK 34+261, all'interno della litofacies "SID", il carico idraulico sulla calotta è compreso tra 170 e 213 m ca
- Dalla PK 34+261 alla PK 35+068, all'interno della litofacies "FAE", il carico idraulico sulla calotta è compreso tra 213 e 267 m ca
- Dalla PK 35+068 alla PK 35+838, all'interno della litofacies "TPC", il carico idraulico sulla calotta è compreso tra 267 e 220 m ca
- Dalla PK 35+838 alla PK 36+886, sempre all'interno della litofacies "FAE", il carico idraulico sulla calotta è compreso tra 220 e 64 m ca
- Dalla PK 36+886 alla PK 37+602, all'interno delle litofacies "BVNa" e "BVNb", il carico idraulico sulla calotta è compreso tra 64 e 110 m ca
- Dalla PK 37+602 alla PK 39+125, all'interno della litofacies "FAE", il carico idraulico sulla calotta è compreso tra 110 e 66 m ca
- Dalla PK 39+125 alla PK 39+953, all'interno delle litofacies "BVNb", il carico idraulico sulla calotta è compreso tra 66 e 51 m ca
- Dalla PK 39+953 all'imbocco lato Napoli, all'interno della litofacies "FAE", il carico idraulico sulla calotta è compreso tra 51 e 36 m ca

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA** ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica GE0102 001 56 di 69

6. STIMA DELLE PORTATE DRENATE DALLE OPERE IN SOTTERRANEO

6.1 PREMESSA

La stima del drenaggio esercitato dalle gallerie è uno degli aspetti idrogeologici più rilevanti, sia dal punto di vista progettuale che dal punto di vista di previsione degli impatti.

Di seguito si presenta una stima delle portate attese in fase di scavo per la Galleria Orsara, definite nell'ipotesi di drenaggio libero in galleria.

Questa tematica è stata affrontata quantitativamente tramite l'applicazione di formulazioni analitiche.

6.2 PRINCIPI GENERALI SUL FLUSSO AL CONTORNO DI UN TUNNEL DRENANTE

Per quanto attiene alle gallerie a drenaggio libero che vengono scavate in una zona montano-collinare il flusso idrico al contorno dell'opera in sotterraneo è un fenomeno complesso che evolve nel tempo. Assumendo che il tunnel interferisca con acquiferi a falda libera, approssimazione generalmente corretta nel caso di gallerie scavate in un contesto quale quello considerato, e facendo riferimento a quanto descritto da Loew (2002), nel processo di drenaggio esercitato da un tunnel, se si ipotizza che una determinata tratta di tunnel venga scavata istantaneamente, si possono distinguere tre fasi (Figure 6-1).

In una prima fase, che nel seguito verrà definita di regime transitorio di breve termine, non si è ancora verificato un abbattimento della superficie piezometrica e il flusso nell'intorno del cavo è di tipo puramente radiale ovvero, su una sezione perpendicolare all'asse del tunnel le linee di flusso convergono verso il centro del tunnel in qualsiasi punto del suo intorno.

In una seconda fase che può iniziare da alcune ore ad alcuni giorni dopo l'apertura del tunnel e che verrà definita come regime transitorio di lungo termine, la superficie piezometrica al di sopra del cavo inizia a venire perturbata; in questa fase il flusso non è più perfettamente radiale, ma iniziano ad instaurarsi anche flussi lineari orizzontali, che al trascorrere del tempo tendono a divenire nettamente predominanti rispetto a quelli radiali.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA** ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica GE0102 001 57 di 69

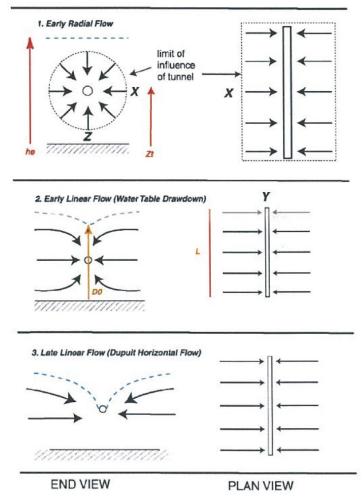


Figure 6-1 - Schema concettuale per il flusso nell'intorno di un tunnel e la sua evoluzione nel tempo (da Loew, 2002).

In una terza fase la superficie piezometrica risulta essere completamente abbattuta a quota tunnel sulla verticale del tunnel stesso e il flusso può essere approssimato ad un flusso puramente orizzontale. È importante sottolineare che questa terza fase si verifica solo molto raramente e solo per gallerie superficiali e/o per acquiferi molto permeabili, poiché in genere, per gallerie profonde e/o acquiferi con permeabilità da moderata a bassa, non si ha mai un abbattimento completo della superficie piezometrica, dal momento che il drenaggio innescato non è sufficiente ad ottenere tale effetto. In questi casi si rimane quindi sempre in un campo di flusso comparabile a quello della fase 2. In ogni caso, sia che si verifichi un abbattimento completo della superficie piezometrica a quota tunnel, sia che quest'ultima rimanga a una certa quota sopra la verticale della galleria, si raggiunge prima o poi una fase, che verrà qui definita di regime stabilizzato, in cui, a meno di oscillazioni stagionali legate alla ricarica dell'acquifero, la quota della superficie piezometrica sulla verticale dell'opera non varia più.

Ai fini progettuali non esiste un metodo applicabile con efficacia per prevedere l'evoluzione delle portate drenate da un tunnel, poiché sono troppi i fattori che governano il fenomeno. Ai fini pratici è però possibile ottenere delle stime almeno per la fase così detta di regime transitorio di breve termine e di regime stabilizzato. Le stime per la fase di regime transitorio di breve termine sono estremamente utili per pianificare gli impianti di aggottamento in fase di scavo, mentre le stime per la fase di regime stabilizzato sono importanti per dimensionare il sistema di smaltimento delle acque in fase di esercizio dell'opera.

APPALTATORE:								
<u>Consorzio</u>	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110 110111		5010	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	58 di 69

6.2.1 Derivazione delle portate in regime transitorio (fase di scavo)

Nel seguito si descrive in sintesi la soluzione analitica utilizzata per determinare le portate in fase di scavo, presupponendo quindi una dipendenza temporale delle portate. In generale tutte le funzioni analitiche impiegate non possono che fare riferimento a modelli semplificati che assumono condizioni poroso-equivalenti. La conducibilità idraulica in condizioni poroso-equivalenti è stata quantificata attraverso un'analisi critica delle prove idrauliche eseguite nei sondaggi realizzati lungo il tracciato nei diversi complessi idrogeologici, nella fase del PD.

Nel caso in esame è stata utilizzata la formulazione proposta da Jacob & Lohman (1952), che stabilisce che:

$$q_t = \frac{4\pi k L h_0}{2,3 \ln(2,25kLt/Sr^2)} \tag{1}$$

dove q_0 è la portata drenata (m3/s), k è la conducibilità idraulica (m/s), L è la lunghezza della tratta di tunnel presa in considerazione, h_0 è il carico idraulico in condizioni imperturbate (m), r è il raggio del tunnel (m), t è il tempo trascorso dall'inizio del drenaggio e SS è il coefficiente di immagazzinamento legato alla risposta elastica del mezzo acquifero.

La formulazione di Jacob & Lohman (1952) è una formulazione che origina da una modifica di un'espressione utilizzata per descrivere il flusso radiale in regime transitorio nell'intorno dei pozzi e per tale motivo implica l'introduzione di un fattore tempo. Ovviamente per stimare il flusso nei primi momenti dall'inizio del drenaggio è necessario scegliere un tempo breve; nel caso specifico è stato utilizzato un tempo pari a 1 giorno. Allo stesso tempo questa formulazione implica la stima del coefficiente di immagazzinamento legato alla risposta elastica, che è un parametro tipico degli acquiferi confinati, poiché in tali acquiferi l'immagazzinamento è legato all'espulsione di acqua per decompressione dello scheletro litologico. Sarebbe quindi improprio applicare questa formulazione al caso di acquiferi a falda libera, come nella maggior parte dei casi cui ci si trova di fronte nel presente lavoro.

Tuttavia, secondo Loew (2002) l'utilizzo di questa espressione è comunque appropriato, seppur per approssimazione, anche nel caso degli acquiferi a falda libera se il valore che si intende stimare è la portata nelle fasi iniziali di flusso radiale e senza abbattimento della falda, poiché in queste fasi la pressione dell'acquifero sostanzialmente non cambia ed il suo comportamento a breve termine può essere considerato comparabile a quello di un acquifero a falda confinata. Il parametro S è comunque difficile da stimare per un acquifero a falda libera, o comunque in assenza di prove di pompaggio; generalmente la maggior parte degli autori riferisce che il suo valore può essere di due o tre ordini di grandezza inferiore rispetto alla porosità efficace e come tale è stato gestito in questo lavoro.

Per applicare tale formula, ogni opera è stata suddivisa, lungo il suo sviluppo, in tratte con comportamento idrogeologico omogeneo e per ogni tratta è stato calcolato un valore di portata in l/s. Tale valore è stato riportato, mediato su una distanza di 10 m, nelle fincature dei profili idrogeologici delle gallerie di linea e delle finestre.

6.2.2 Derivazione delle portate in regime stabilizzato (fase di esercizio)

Il calcolo della portata drenata da una galleria in fase di esercizio può essere condotto mediante la formulazione analitica elaborata da Goodman et al (1965) per acquiferi infiniti, omogenei e isotropi e pressioni idrostatiche costanti lungo il contorno della galleria. Secondo tale formulazione il valore della portata drenata in galleria risulta pari a:

$$Q = \frac{2 \pi K L I}{\ln \left(\frac{2 L}{r_0}\right)}$$

dove

K = permeabilità dell'ammasso [m/s]

L = differenza tra carico idraulico H corrispondente allo stato indisturbato pre-scavo e carico idraulico agente sul rivestimento [m]

I = estensione della formula nel fuori piano, pari a 1m

r = raggio di estradosso della galleria, pari a 4.7 m

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINE	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA –	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT Relazione idrogeologica			COMMESSA IF2O	LOTTO 00	CODIFICA E ZZ RG	DOCUMENTO GE0102 001	REV. B	FOGLIO 59 di 69

Inoltre, qualora la soluzione progettuale preveda l'impiego di aste drenanti per l'abbattimento delle pressioni idrostatiche a tergo dei rivestimenti definitivi, occorrerà stimare l'afflusso da questi sistemi drenanti.

Per le valutazioni della portata in regione stabilizzato (in esercizio) si rimanda alle relazioni tecniche e di calcolo delle

gallerie.

6.3 STIMA DELLE PORTATE IN FASE DI SCAVO

La galleria Orsara verrà realizzata con scavo meccanizzato con fresa TBM-EPB, con contro bilanciamento delle pressioni idrauliche sul fronte dello scavo.

Nelle assunzioni progettuali in cui lo scavo avvenga con drenaggio libero, si sono stimate le portate attese, riepilogate nella Tabella 6-2.

Il coefficiente di immagazzinamento considerato per i calcoli è stato assunto 1E-06 1/m.

I valori di conducibilità idraulica, k, utilizzati nelle valutazioni, sono i valori medi derivate dalle prove di permeabilità eseguite limitatamente ai sondaggi che intercettano la galleria e riportati nella Tabella 6-1.

Nel caso delle fasce tettonizzate, si è fatto riferimento a valori derivati da studi in analoghi contesti geologicostratigrafico e si è assunto il valore di 5.4E-07 m/sec; il medesimo valore è stato utilizzato anche per le zone di contatto a differente litologia.

Tabella 6-1 -

Sigla	Tipo di permeabilità	Permeabilità MED [m/s]
ASP	porosità/fessurazione	2.15-07
SID	porosità/fessurazione	3.61-08
FAE/C	porosità/fessurazione	1.48E-07
FAE/ma	porosità/fessurazione	4.39E-07
FAE/am	porosità/fessurazione	1.08E-07
BVNa	porosità/fessurazione	2.8E-05
BVNb	porosità/fessurazione	1.22E-07
TPC	porosità/fessurazione	7.89E-08
b2/b3	porosità	3.16E-06
Fasce tettonizzate	Porosità/fessurazione	5,40E-07

Tabella di sintesi dei valori di conducibilità idraulica, k, utilizzate nella stima delle portate drenate in fase di scavo nella Galleria Orsara Questi valori rappresentano i valori medi dedotti dalle SOLE prove eseguite in corrispondenza della tratta in sotterraneo

APPALTATORE:

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI

GCF ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA ORSARA - BOVINO

GE0102 001

FOGLIO

60 di 69

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

E ZZ RG

Tabella 6-2 - Calcolo delle portate drenate in fase di scavo nella Galleria Orsara.

					Raggio tunnel	Carico idraulico	Cond. Idraulica	Coeff immag		Portate dren	nate
Scavo	Litotipo	Da	Α	Lunghezz a	r _o	s	k	s		r ortate urer	idic
		(m)	(m)	(m)	(m)	(m)	(m/s)	1/m	(I/s*m)	(I/s) su interv pk	(I/s) cumulativo
Drenaggio libero	ASP	31073	31287	214	4,96	4	2,15E-07	1,0E-06	0,00	0,24	0,2
Drenaggio libero	ASP	31287	31376	89	4,96	5	2,15E-07	1,0E-06	0,00	0,12	0,1
Drenaggio libero	ASP	31376	31553	177	4,96	8	2,15E-07	1,0E-06	0,00	0,39	0,4
Drenaggio libero	ASP	31553	31790	237	4,96	14	2,15E-07	1,0E-06	0,00	0,92	0,9
Drenaggio libero	ASP	31790	31914	124	4,96	23,5	2,15E-07	1,0E-06	0,01	0,81	0,8
Drenaggio libero	ASP	31914	32054	140	4,96	35	2,15E-07	1,0E-06	0,01	1,36	1,4
Drenaggio libero	ASP	32054	32465	411	4,96	56,5	2,15E-07	1,0E-06	0,02	6,44	6,4
Drenaggio libero	ASP+BVNb	32465	32514	49	4,96	75,5	5,40E-07	1,0E-06	0,05	2,34	2,3
Drenaggio libero	BVNb	32514	32787	273	4,96	88,5	2,76E-07	1,0E-06	0,03	8,41	8,4
Drenaggio libero	FAE/ma	32787	32869	82	4,96	100	2,78E-07	1,0E-06	0,03	2,86	2,9
Drenaggio libero	FAE/am	32869	33007	138	4,96	115	2,78E-07	1,0E-06	0,04	5,55	5,5
Drenaggio libero	FAE/ma	33007	33275	268	4,96	150	2,78E-07	1,0E-06	0,05	14,08	14,1
Drenaggio libero	FAE/am	33275	33396	121	4,96	150	2,78E-07	1,0E-06	0,05	6,34	6,3
Drenaggio libero	FAE/ma	33396	33523	128	4,96	165	2,78E-07	1,0E-06	0,03	7,37	7,4
Drenaggio libero	FAE/ma-SID	33523	33570	46	4,96	170	5,40E-07	1,0E-06	0,06	5,03	5,0
Drenaggio libero	SID	33523	34009	439	4,96	177,5	3,61E-08	1,0E-06 1,0E-06	0,11	4,45	4,4
	SID	34009	34034	26	4,96	182	5,40E-07		0,01	2,97	3,0
Drenaggio libero							,	1,0E-06	,		,
Drenaggio libero	SID	34034	34246	211	4,96	212,5	3,61E-08	1,0E-06	0,01	2,56	2,6
Drenaggio libero	FAE/ma-SID	34246	34261	15	4,96	212,5	3,61E-08	1,0E-06	0,01	0,18	0,2
Drenaggio libero	FAE/ma	34261	34907	647	4,96	262,5	2,78E-07	1,0E-06	0,09	59,39	59,4
Drenaggio libero	FAE/am	34907	35068	161	4,96	267	2,78E-07	1,0E-06	0,09	15,00	15,0
Drenaggio libero	TPC	35068	35752	684	4,96	232	7,89E-08	1,0E-06	0,03	18,04	18,0
Drenaggio libero	TPC/FAE/ma	35752	35838	85	4,96	219,5	5,40E-07	1,0E-06	0,14	11,96	12,0
Drenaggio libero	FAE/ma	35838	36258	421	4,96	166	2,78E-07	1,0E-06	0,06	24,42	24,4
	FAE/ma-/FAE/am	36258	36281	23	4,96	115	2,78E-07	1,0E-06	0,04	0,92	0,9
Drenaggio libero	FAE/am	36281	36439	158	4,96	90	2,78E-07	1,0E-06	0,03	4,97	5,0
	FAE/ma-/FAE/am	36439	36447	8	4,96	67	2,78E-07	1,0E-06	0,02	0,18	0,2
Drenaggio libero	FAE/ma	36447	36855	408	4,96	64	2,78E-07	1,0E-06	0,02	9,14	9,1
Drenaggio libero	FAE/ma/BVNa	36855	36886	31	4,96	64	3,00E-07	1,0E-06	0,02	0,73	0,7
Drenaggio libero	BVNa	36886	36971	85	4,96	67	3,00E-07	1,0E-06	0,03	2,14	2,1
Drenaggio libero	BVNa/BVNb	36971	37023	52	4,96	82	3,00E-07	1,0E-06	0,03	1,61	1,6
Drenaggio libero	BVNb	37023	37602	579	4,96	109,5	2,76E-07	1,0E-06	0,04	22,03	22,0
Drenaggio libero	FAE/ma	37602	37710	108	4,96	129	5,40E-07	1,0E-06	0,08	8,85	8,8
Drenaggio libero	FAE/ma	37710	37822	112	4,96	127	2,78E-07	1,0E-06	0,04	4,99	5,0
Drenaggio libero	FAE/am	37822	37908	85	4,96	124,5	2,78E-07	1,0E-06	0,04	3,72	3,7
Drenaggio libero	FAE/ma-/FAE/am	37908	37923	16	4,96	124	2,78E-07	1,0E-06	0,04	0,68	0,7
Drenaggio libero	FAE/ma	37923	37947	24	4,96	124	5,40E-07	1,0E-06	0,08	1,89	1,9
Drenaggio libero	FAE/ma	37947	38252	305	4,96	111	2,78E-07	1,0E-06	0,04	11,84	11,8
Drenaggio libero	FAE/am	38252	38339	87	4,96	96	2,78E-07	1,0E-06	0,03	2,91	2,9
Drenaggio libero	FAE/ma	38339	38436	97	4,96	89	2,78E-07	1,0E-06	0,03	3,02	3,0
Drenaggio libero	FAE/am	38436	38482	46	4,96	77	2,78E-07	1,0E-06	0,03	1,23	1,2
Drenaggio libero	FAE/ma	38482	38569	87	4,96	65,5	2,78E-07	1,0E-06	0,02	2,00	2,0
Drenaggio libero	FAE/ma-/FAE/am	38569	38577	9	4,96	57	2,78E-07	1,0E-06	0,02	0,17	0,2
Drenaggio libero	FAE/am	38577	38740	162	4,96	42,5	2,78E-07	1,0E-06	0,01	2,41	2,4
Drenaggio libero	FAE/ma	38740	38770	30	4,96	24	2,78E-07	1,0E-06	0,01	0,25	0,3
Drenaggio libero	FAE/ma	38770	38790	20	4,96	21	5,40E-07	1,0E-06	0,01	0,26	0,3
Drenaggio libero	FAE/ma	38790	39125	336	4,96	66	2,78E-07	1,0E-06	0,02	7,75	7,8
Drenaggio libero	BVNb	39125	39361	236	4,96	31	2,76E-07	1,0E-06	0,01	2,54	2,5
Drenaggio libero	BVNb	39361	39386	25	4,96	35	5,40E-07	1,0E-06	0,02	0,55	0,6
Drenaggio libero	BVNb	39386	39953	567	4,96	51	2,76E-07	1,0E-06	0,02	10,05	10,1
Drenaggio libero	FAE/C	39953	40063	110	4,96	70	5,40E-07	1,0E-06	0,04	4,93	4,9
Drenaggio libero	FAE/C(ma)	40063	40335	272	4,96	69	2,78E-07	1,0E-06	0,04	6,56	6,6
Drenaggio libero	FAE/C	40335	40360	24	4,96	68	3,36E-07	1,0E-06	0,02	0,69	0,7
Drenaggio libero	FAE/C		40913	553		35,5		· ·	-		
prenaggio libero	FAE/C	40360	40913	555	4,96	33,3	2,78E-07	1,0E-06	0,01	6,87	6,9

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO GE0102 001 61 di 69 Relazione idrogeologica

La tabella rappresenta i valori di drenaggio lungo l'intera galleria per le singole tratte. Va osservato che la portata emunta non deve essere cumulata complessivamente, in quanto lo scavo sarà eseguito per settori, seguiti dalla posa del rivestimento definitivo e relativo sistema di impermeabilizzazione. Inoltre, nel caso dello scavo meccanizzato, potrà essere applicata una contropressione al fronte di scavo che consente, anch'essa, una mitigazione delle portate emunte.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica GE0102 001 62 di 69

7. VALUTAZIONE DEL RISCHIO DI ISTERILIMENTO DELLE ACQUE SOTTERRANEE

7.1 PREMESSA

Nell'area interessata dall'opera in progetto le risorse idriche sotterranee sono oggetto di captazione principalmente mediante pozzi di profondità variabile, da pochi metri a ca 50-100 m (in alcuni casi questa informazione non è stata reperibile). L'utilizzo della risorsa prelevata mediante queste captazioni comprende sia l'uso potabile, sia quello irriguo o domestico. Sono inoltre presenti ca 40 di sorgenti.

Si rimanda all'elaborato specifico per l'elenco completo dei punti d'acqua censiti e delle informazioni disponibili relative ad essi (elaborato "Schede risorse idriche", IF2O00EZZSHGE0102001A).

Dato che la maggior parte dei pozzi e delle sorgenti è situata all'interno del corridoio di progetto, esteso circa 0.5 km ai lati delle opere (linea principale e finestre), risultata necessario effettuare una valutazione del potenziale rischio di disseccamento della risorsa. Tale valutazione è stata effettuata mediante il calcolo dell'indice DHI - *Drawdown Hazard Index*.

Rispetto a quanto già proposto nel Progetto Definitivo, si è ritenuto necessario aggiornare la determinazione di tale indice ricalcolandolo, a causa di alcune variazioni introdotte nel modello geologico-idrogeologico di riferimento in fase di progettazione esecutiva. Per il calcolo del DHI, dove possibile, sono comunque stati utilizzati gli stessi parametri applicati nel PD.

7.2 METODOLOGIA

La valutazione del potenziale impatto generato dallo scavo delle gallerie sui pozzi e sorgenti censiti è stata eseguita mediante l'applicazione del metodo *Drawdown Hazard Index* (Dematteis et al. 2001, Torri et al. 2007): questo metodo consiste nel calcolo di un indice che definisce in maniera qualitativa il rischio di disseccamento della risorsa idrica per effetto dello scavo.

Si precisa che, utilizzando un approccio cautelativo così come fatto per il calcolo delle stime di portata attese in galleria, nella determinazione dell'indice DHI si è assunto che i tunnel siano scavati con metodi tradizionali senza prevedere interventi di impermeabilizzazione o di riduzione del detensionamento o della fratturazione durante le fasi di scavo.

Di seguito si riporta una sintesi della metodologia, specificando i valori che sono stati utilizzati per i diversi parametri contestualizzandoli al progetto in esame. Per una più completa descrizione del metodo generale si rimanda alle pubblicazioni sopracitate.

Il metodo DHI consente si sviluppa sostanzialmente in due fasi. Nella prima fase si individua la probabilità di venute d'acqua in galleria (indice di potenziale deflusso o Potential Inflow, PI), definita sulla base di parametri caratteristici dell'ammasso in cui è scavata la galleria.

I parametri che caratterizzano l'ammasso roccioso sono quattro:

• Frequenza di fratturazione (FF): la presenza di fratture maggiori o minori che intersecano la galleria condiziona il potenziale effetto di drenaggio che questa esercita. Per attribuire in maniera ragionevoli i parametri si è considerato di attribuire un valore pari a 0.2 ai contesti in cui le faglie sono assenti (IF=1; vedi descrizione successiva) e 1 ai contesti in cui le faglie sono presenti e significative dal punto di vista idraulico (IF=2). È stata introdotta un'ulteriore distinzione che tiene conto dei casi in cui le faglie sono presenti ma il loro ruolo idraulico in termini di drenaggio esercitato è relativamente medio-basso (IF =1.5): in questo caso, per i terreni sciolti non litificati FF è stato posto pari a 0.3 in terreni sciolti non litificati (es. sabbie, argille), mentre per i materiali litificati (es. arenarie, calcari) FF è stato posto pari a 0.5.

APPALTATORE: Consorzio	Soci							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITIN	ERARIO I	NAPOLI – BA	ARI	
PROGETTAZIONE:			R	ADDOP	PIO TRATT	A ORSARA – I	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>						201	
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idrogeologica			IF2O	00	E ZZ RG	GE0102 001	В	63 di 69

- Permeabilità del massiccio (MK): definisce il grado di permeabilità assegnato ai complessi idrogeologici intersecati dalla galleria. Può assumere valori da 0.1, per complessi molto poco permeabili, a 0.9, per quelli caratterizzati da permeabilità molto elevata.
- Spessore della copertura (OV): è un elemento che influenza il potenziale drenaggio operato dalla galleria, poiché a maggior profondità le condizioni di pressione determinate dalla copertura comportano un minor grado di apertura delle fratture nell'ammasso. Assume valori da 0.1 a 0.9 con andamento inversamente proporzionali allo spessore della copertura.
- Ampiezza della zona plastica (PZ): la zona plastica rappresenta il volume di roccia in cui le caratteristiche di permeabilità che influenzano il potenziale drenante possono aumentare a causa delle operazioni di scavo della galleria, che generano un aumento della fratturazione in risposta alle variate condizioni di stress. Generalmente è una fascia di ampiezza variabile fra 0 e 2-3 volte il diametro della galleria. Questo parametro è sicuramente fortemente influenzato dalle tecniche di scavo adottate. Cautelativamente, si è considerato quasi sempre lo scenario in cui l'ampiezza della zona plastica è maggiore a quella del diametro del tunnel. Nelle zone in cui la galleria ha una bassa copertura, si è considerato che l'effetto dello scavo non modifichi sensibilmente lo stato di stress dell'ammasso, già ridotto a causa delle basse pressioni: in questi casi si è considerato un valore intermedio. Non sono state definite aree in cui la zona plastica è inferiore al diametro della galleria. Il valore teorico varia tra 0 (estensione della zona plastica inferiore al diametro del tunnel) a 1 (zona plastica superiore al diametro del tunnel).

L'indice PI viene calcolato mediante la seguente formula (Dematteis et al. 2001):

Nella seconda fase, questo indice viene contestualizzato applicandolo ai punti d'acqua in esame, attraverso alcuni parametri che li caratterizzano e ne definiscono la posizione rispetto al tunnel.

Questi parametri sono:

- **Distanza di tunnel (DT)**: è inversamente proporzionale alla distanza assoluta del punto d'acqua rispetto al tunnel, derivata considerando la minima distanza in pianta e la differenza di quota. Varia tra 0 e 1.9.
- Effetto topografico (ET): si tratta di un parametro che descrive le posizioni reciproche del punto d'acqua e del tunnel tenendo conto dei loro rapporti con il contesto morfologico in cui si trovano. Considera quindi se punto d'acqua e galleria sono situati sullo stesso versante o su due versanti diversi (colonna slope nella figura seguente), e la loro reciproca posizione in quota (colonna altitude in figura). Il valore di ET è calcolato come somma dei due parametri slope e altitude.

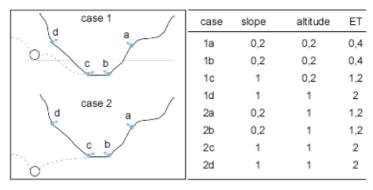


Figura 7-1. Effetto Topografico ET (da Torri et al, 2007).

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA** ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica E ZZ RG GE0102 001 64 di 69

- **Tipo di sorgente (TS)**: descrive specificatamente il punto d'acqua, definendo se la tipologia di acquifero che lo alimenta è superficiale, profondo o misto. Poiché nel caso in esame i punti d'acqua sono principalmente pozzi, la definizione del valore assegnato al parametro è funzione della profondità del pozzo, in accordo a quanto indicato nel Progetto Definitivo. Le sorgenti sono state considerate tutte come superficiali, poiché effimere. Cresce da 1 a 2 con l'aumentare della componente di acquifero profondo.
- Intersezione con faglie (IF): prende in considerazione quelle faglie che sono intersecate dalla galleria e che possono mettere idraulicamente in contatto quest'ultima con il punto d'acqua. È funzione della distanza tra il punto e la faglia: Vengono considerate solo le strutture tettoniche che vengono effettivamente intersecate dal tunnel a quota galleria. Assume valore compreso tra 1 (assenza di faglie) e 2 (presenza di faglie).

Nella tabella seguente si riportano i valori che sono stati utilizzati in questo lavoro per il valorizzare i diversi parametri e calcolare l'indice DHI.

PARAMETRO	Condizione	Valore	Condizione	Valore	Condizione	Valore	Condizione	Valore	Condizione	Valore	Condizione	Valore
FF	Alta	1	Media	0.8	Bassa	0.4	Molto bassa	0.2				
MK	Complesso arenaceo sabbioso CAS	0.5	Complesso calcareo CC	0.4	Complesso argilloso marnoso CAM	0.2						
OV	<50m	0.9	50 ÷ 100m	0.5	100 ÷ 500m	0.2	> 500m	0.1				
PZ	> diametro tunnel	1	= diametro tunnel (basse coperture)	0.5								
DT	<200 m	1.9	200 ÷ 500 m	1.5	500 ÷ 1000 m	1.2	>1000 m	1.1				
ET	rif. Figura 7-1											
TS	Profondità pozzo >100 m	2	Profondità pozzo 80 ÷ 100 m	1.8	Profondità pozzo 50 ÷ 80 m	1.6	Profondità pozzo 20 ÷ 50 m	1.4	Profondità pozzo 10 ÷ 20 m	1.2	Profondità pozzo <10 m; Sorgente	1.1
IF	Faglia a distanza <25 m	2	Faglia a distanza tra 25 e 50 m	1.5	Faglia a distanza tra 50 e 100 m	1.25	Faglia a distanza > 100m	1			_	

Tabella 7-1. Valorizzazione dei parametri per il calcolo dell'indice DHI

Il valore del DHI viene quindi calcolato moltiplicando l'indice PI, caratterizzante l'ammasso roccioso, con i parametri specifici dei punti d'acqua, mediante la seguente formula:

DHI (non normalizzato) =PI*DT*ET*TS*IF*100

Il risultato, specifico per ogni punto d'acqua, viene poi normalizzato al massimo teorico possibile, calcolato considerando i valori dei parametri nelle condizioni più sfavorevoli. Il risultato è l'indice DHI normalizzato, che rappresenta la probabilità di isterilimento del punto d'acqua, secondo la seguente tabella:

Indice DHI	Classe	Probabilità di isterilimento
0< DHI <0.1	1	Molto bassa o nulla
0.1< DHI <0.2	2	Bassa
0.2< DHI <0.3	3	Media
DHI >0.3	4	Alta

Tabella 7-2. Classi del DHI

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF TUNNELCONSULT **ELETTRI-FER** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ RG GE0102 001 65 di 69 Relazione idrogeologica

Come già anticipato in premessa, la determinazione dell'indice DHI è stata eseguita per i punti d'acqua situati nell'intorno dell'area di studio della galleria di linea per la presente fase progettuale.

La Tabella 7-3 riporta i dati di input e i risultati dei calcoli.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA ORSARA - BOVINO** <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF ELETTRI-FER TUNNELCONSULT PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Relazione idrogeologica E ZZ RG GE0102 001 66 di 69

Tabella 7-3 – Tabella di sintesi della definizione del DHI Index per ciascuna risorsa idrica

APPALTATORE:

Consorzio Soci

ORSARA - BOVINO AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI

GCF ELETTRI-FER TUNNELCONSULT

PROGETTO ESECUTIVO Relazione idrogeologica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA ORSARA - BOVINO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2O 00 E ZZ RG GE0102 001 B 67 di 69

ID	Tipo	DT	IF	TS	ET	PP	FF	MK	ov	PZ	PI	DHI CALCOLATO	DHI NORMALIZZATO	CLASSE	Probabilità di isterilimento
1	sorgente	1,9	1	1	1,2	2,28	0,2	0,2	0,9	0,5	0,379	86,412	0,059	1	molto bassa/nulla
2	sorgente	1,5	2	1	0,4	1,2	1	0,5	0,5	0,5	0,705	84,6	0,058	1	molto bassa/nulla
3*	sorgente	1,1	2	1	1,2	2,64	1	0,2	0,2	1	0,688	181,632	0,124	2	bassa molto bassa (nulla
4* 5*	sorgente pozzo	1,1	2	1,6	0,4	1,32 1,408	0,2	0,2 0,5	0,2 0,5	1 0,5	0,36 0,705	47,52 99,264	0,033 0,068	1	molto bassa/nulla molto bassa/nulla
6*	pozzo	1,1	1	1,6	0,4	0,704	0,2	0,5	0,5	0,5	0,703	26,5408	0,018	1	molto bassa/nulla
7*	sorgente	1,1	1	1	0,4	0,44	0,2	0,5	0,5	0,5	0,377	16,588	0,011	1	molto bassa/nulla
8*	sorgente	1,1	1	1	0,4	0,44	0,2	0,4	0,2	1	0,404	17,776	0,012	1	molto bassa/nulla
9*	sorgente	1,1	1	1	0,4	0,44	0,2	0,4	0,2	1	0,404	17,776	0,012	1	molto bassa/nulla
10*	sorgente	1,1	1	1	0,4	0,44	0,2	0,2	0,2	1	0,36	15,84	0,011	1	molto bassa/nulla
11*	pozzo	1,1	1	1,6	0,4	0,704	0,2	0,4	0,2	1	0,404	28,4416	0,019	1	molto bassa/nulla
12	pozzo	1,5	1	1	1,2	1,8	0,2	0,4	0,2	1	0,404	72,72	0,050	1	molto bassa/nulla
13 15	sorgente sorgente	1,9	1	1	1,2	2,28 3,8	0,2	0,4	0,2	1	0,404 0,36	92,112 136,8	0,063 0,094	1	molto bassa/nulla molto bassa/nulla
16	sorgente	1,9	1	1	1,2	2,28	0,2	0,4	0,2	1	0,404	92,112	0,063	1	molto bassa/nulla
17	sorgente	1,5	2	1	0,4	1,2	1	0,4	0,2	1	0,732	87,84	0,060	1	molto bassa/nulla
18	sorgente	1,5	1	1	0,4	0,6	0,2	0,4	0,2	1	0,404	24,24	0,017	1	molto bassa/nulla
19	sorgente	1,5	1	1	0,4	0,6	0,2	0,2	0,5	0,5	0,311	18,66	0,013	1	molto bassa/nulla
20*	sorgente	1,1	1	1	0,4	0,44	0,2	0,2	0,5	0,5	0,311	13,684	0,009	1	molto bassa/nulla
21*	sorgente	1,1	1	1	0,4	0,44	0,2	0,5	0,2	1	0,426	18,744	0,013	1	molto bassa/nulla molto bassa/nulla
22*	sorgente sorgente	1,1	2	1	0,4	0,88	1	0,5 0,5	0,2	1	0,754 0,754	66,352 66,352	0,045 0,045	1	molto bassa/nulla molto bassa/nulla
24*	sorgente	1,1	1	1	0,4	0,88	0,2	0,5	0,2	1	0,754	17,776	0,012	1	molto bassa/nulla
25*	sorgente	1,1	1	1	0,4	0,44	0,2	0,4	0,2	1	0,404	17,776	0,012	1	molto bassa/nulla
26	sorgente	1,1	2	1	1,2	2,64	1	0,4	0,2	1	0,732	193,248	0,132	2	bassa
27	sorgente	1,9	1	1	1,2	2,28	0,2	0,4	0,5	0,5	0,355	80,94	0,055	1	molto bassa/nulla
28	sorgente	1,5	1	1	2	3	0,2	0,2	0,2	1	0,36	108	0,074	1	molto bassa/nulla
29	sorgente	1,2	1	1	2	2,4	0,2	0,4	0,2	1	0,404	96,96	0,066	1	molto bassa/nulla
30	pozzo	1,2	1	1	2	2,4	0,2	0,5	0,2	1	0,426	102,24	0,070	1	molto bassa/nulla molto bassa/nulla
32*	sorgente sorgente	1,2	1	1	2	2,4	0,2	0,5 0,5	0,2	1	0,426 0,426	102,24 93,72	0,070 0,064	1	molto bassa/nulla
33*	sorgente	1,2	1	1	2	2,4	0,2	0,5	0,2	1	0,426	102,24	0,070	1	molto bassa/nulla
34*	sorgente	1,1	1	1	0,4	0,44	0,2	0,4	0,2	1	0,404	17,776	0,012	1	molto bassa/nulla
35	sorgente	1,2	2	1	0,4	0,96	1	0,4	0,2	1	0,732	70,272	0,048	1	molto bassa/nulla
36	sorgente	1,2	1	1	1,2	1,44	0,2	0,4	0,2	1	0,404	58,176	0,040	1	molto bassa/nulla
37	sorgente	1,9	2	1	1,2	4,56	1	0,4	0,2	1	0,732	333,792	0,228	3	media
38	sorgente	1,9	1	1	1,2	2,28	0,2	0,4	0,2	1	0,404	92,112	0,063	1	molto bassa/nulla
39 40*	sorgente	1,2	1	1	2	2,4	0,2	0,4	0,2	1	0,404 0,404	96,96	0,066 0,061	1	molto bassa/nulla
41*	sorgente pozzo	1,1	2	1,6	2	7,04	0,2	0,4	0,2	1	0,404	88,88 515,328	0,353	4	molto bassa/nulla alta
42*	sorgente	1,1	1	1	2	2,2	0,2	0,4	0,5	0,5	0,355	78,1	0,053	1	molto bassa/nulla
43	sorgente	1,2	1	1	1,2	1,44	0,2	0,4	0,5	0,5	0,355	51,12	0,035	1	molto bassa/nulla
44 (=P37)	pozzo	1,5	1	1	1,2	1,8	0,2	0,4	0,5	0,5	0,355	63,9	0,044	1	molto bassa/nulla
45	pozzo	1,5	1	1	2	3	0,2	0,4	0,5	0,5	0,355	106,5	0,073	1	molto bassa/nulla
46 (=P39)	pozzo	1,5	1	1	2	3	0,2	0,4	0,5	0,5	0,355	106,5	0,073	1	molto bassa/nulla
DA PD		_				1	ı			ı	1	1			
P12	pozzo	1,5	1	1	0,4	0,6	0,2	0,2	0,9	0,5	0,379	22,74	0,016	1	molto bassa/nulla
P13*	pozzo	1,2	1	1	0,4	0,48	0,2	0,2	0,9	0,5	0,379	18,192	0,012	1	molto bassa/nulla
P14 P15	pozzo pozzo	1,5	1	1	1,2	1,8 3,8	0,2	0,2	0,9	0,5 0,5	0,379 0,379	68,22 144,02	0,047 0,099	1	molto bassa/nulla molto bassa/nulla
P16	pozzo	1,5	1	1	0,4	0,6	0,2	0,2	0,9	0,5	0,379	22,74	0,016	1	molto bassa/nulla
P17*	pozzo	1,1	2	1	1,2	2,64	1	0,5	0,5	0,5	0,705	186,12	0,127	2	bassa
P18	pozzo	1,5	2	1	2	6	1	0,2	0,5	0,5	0,639	383,4	0,262	3	media
P19	pozzo	1,5	2	1	0,4	1,2	1	0,2	0,2	1	0,688	82,56	0,057	1	molto bassa/nulla
P20	pozzo	1,5	1	1	1,2	1,8	0,2	0,4	0,2	1	0,404	72,72	0,050	1	molto bassa/nulla
P21	pozzo	1,9	1	1	2	3,8	0,2	0,4	0,2	1	0,404	153,52	0,105	2	bassa
P22 P23	pozzo	1,5 1,5	1	1	0,4	0,6	0,2	0,2	0,2	1	0,36	21,6 21,6	0,015 0,015	1	molto bassa/nulla molto bassa/nulla
P23 P24*	pozzo pozzo	1,5	2	1	0,4	0,88	1	0,2	0,2	1	0,36 0,732	64,416	0,015	1	moito bassa/nulla molto bassa/nulla
P25*	pozzo	1,1	2	1	0,4	0,88	1	0,4	0,2	1	0,732	64,416	0,044	1	molto bassa/nulla
P26	pozzo	1,5	1	1	2	3	0,2	0,2	0,2	1	0,36	108	0,074	1	molto bassa/nulla
P27	pozzo	1,9	1,5	1	1,2	3,42	0,5	0,2	0,5	0,5	0,434	148,428	0,102	2	bassa
P28	pozzo	1,2	2	1	1,2	2,88	1	0,5	0,2	1	0,754	217,152	0,149	2	bassa
P29	pozzo	1,9	2	1	2	7,6	1	0,5	0,2	1	0,754	573,04	0,392	4	alta
P30	pozzo pozzo	1,2	2	1	0,4	0,48	0,2	0,5 0,5	0,2	1	0,426 0,754	20,448 72,384	0,014 0,050	1	molto bassa/nulla molto bassa/nulla
D21	pozzo	1,2	2	1	0,4	0,96	1	0,5	0,2	1	0,754	72,384	0,050	1	molto bassa/nulla
P31	 	1,2	2	1	2	4,8	1	0,5	0,2	1	0,754	361,92	0,248	3	media
P31 P32 P33	pozzo	_	2	1	0,4	0,88	1	0,4	0,2	1	0,732	64,416	0,044	1	molto bassa/nulla
P32	pozzo pozzo	1,1				4,56	1	0,2	0,5	0,5	0,639	291,384	0,199	2	bassa
P32 P33 P34* P35	· ·	1,9	2	1	1,2					1	0,426	93,72	0,064		molto bassa/nulla
P32 P33 P34* P35 P36*	pozzo pozzo pozzo	1,9 1,1	2	1	2	2,2	0,2	0,5	0,2					1	
P32 P33 P34* P35 P36* P37	pozzo pozzo pozzo pozzo	1,9 1,1 1,5	2 1 2	1	2 1,2	3,6	1	0,4	0,2	1	0,732	263,52	0,180	2	bassa
P32 P33 P34* P35 P36* P37 P38	pozzo pozzo pozzo pozzo pozzo	1,9 1,1 1,5 1,2	2 1 2 2	1 1 1	2 1,2 2	3,6 4,8	1	0,4 0,4	0,2 0,5	1 0,5	0,683	327,84	0,180 0,224	2	bassa media
P32 P33 P34* P35 P36* P37 P38	pozzo pozzo pozzo pozzo pozzo pozzo pozzo	1,9 1,1 1,5 1,2 1,5	2 1 2 2 2	1 1 1	2 1,2 2 2	3,6 4,8 6	1 1 1	0,4 0,4 0,4	0,2 0,5 0,5	1 0,5 0,5	0,683 0,683	327,84 409,8	0,180 0,224 0,280	3 3	bassa media media
P32 P33 P34* P35 P36* P37 P38 P39	pozzo pozzo pozzo pozzo pozzo pozzo pozzo pozzo	1,9 1,1 1,5 1,2 1,5 1,5	2 1 2 2 2 2	1 1 1 1	2 1,2 2 2 2	3,6 4,8 6 6	1 1 1 1	0,4 0,4 0,4 0,4	0,2 0,5 0,5 0,5	1 0,5 0,5 0,5	0,683 0,683 0,683	327,84 409,8 409,8	0,180 0,224 0,280 0,280	2 3 3 3	bassa media media media
P32 P33 P34* P35 P36* P37 P38	pozzo pozzo pozzo pozzo pozzo pozzo pozzo	1,9 1,1 1,5 1,2 1,5	2 1 2 2 2	1 1 1	2 1,2 2 2	3,6 4,8 6	1 1 1	0,4 0,4 0,4	0,2 0,5 0,5	1 0,5 0,5	0,683 0,683	327,84 409,8	0,180 0,224 0,280	3 3	bassa media media
P32 P33 P34* P35 P36* P37 P38 P39 P40 S01	pozzo sorgente	1,9 1,1 1,5 1,2 1,5 1,5 1,5	2 1 2 2 2 2 2	1 1 1 1 1	2 1,2 2 2 2 2 1,2	3,6 4,8 6 6 4,56	1 1 1 1	0,4 0,4 0,4 0,4 0,5	0,2 0,5 0,5 0,5 0,5	1 0,5 0,5 0,5 0,5	0,683 0,683 0,683 0,705	327,84 409,8 409,8 321,48	0,180 0,224 0,280 0,280 0,220	2 3 3 3 3	bassa media media media media

APPALTATORE:								
Consorzio	<u>Soci</u>							
ORSARA - BOVINO AV	WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			R	ADDOPI	PIO TRATT	A ORSARA –	BOVINO	
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE TUNNELCONSULT	PINI TTRI-FER						
PROGETTO ESECUT Relazione idrogeologica			COMMESSA IF2O	LOTTO 00	CODIFICA E ZZ RG	DOCUMENTO GE0102 001	REV. B	FOGLIO 68 di 69

NOTA: il simbolo * di fianco all'ID di pozzi e sorgenti, indica che la risorsa idrica si trova ad una distanza > 950 m rispetto al tracciato.

Il calcolo dell'indice DHI è stato realizzato su 79 punti d'acqua. La sintesi dei risultati è riportata nella tabella seguente.

Indice DHI	Classe	Probabilità di isterilimento	Numero punti
0< DHI <0.1	1	Molto bassa o nulla	61
0.1< DHI <0.2	2	Bassa	9
0.2< DHI <0.3	3	Media	7
DHI >0.3	4	Alta	2

Tabella 7-4. Sintesi dei risultati del DHI

Si precisa infine che, cautelativamente, il calcolo è stato eseguito considerando che lo scavo delle opere sia eseguito con tecniche tradizionali e con drenaggio libero della galleria, senza accorgimenti progettuali (es. iniezioni, impermeabilizzazioni, ecc.).

In realtà l'adozione dello scavo meccanizzato consente di poter operare una contropressione al fronte di scavo e quindi limitare lo squilibrio piezometrico che si manifesta in fase di scavo, mitigando gli aggottamenti e, di conseguenza, gli impatti sui punti esaminati. Una procedura da adottare durante gli avanzamenti, in caso di elevate venute d'acqua, è descritta nella relazione "Relazione scavo meccanizzato", documento IF2O00EZZRHGN0100003A.

La valutazione dei possibili impatti sui punti d'acqua censiti nell'intorno dell'area del tracciato ferroviario ha confermato la presenza di un modesto numero di punti d'acqua con un potenziale rischio isterilimento medio e alto.

Dal punto di vista idrogeologico i litotipi presenti nell'area, in generale, ed in particolare in corrispondenza dei settori interessati dai punti d'acqua, sono caratterizzati da bassi valori di permeabilità e, nel complesso la galleria è caratterizzata da coperture medio-elevate.

Sarà comunque previsto un monitoraggio dei punti d'acqua individuati a rischio medio/alto, oltre alla prosecuzione del monitoraggio di tutte le verticali attrezzate a piezometro, sia nella fase di PD sia nella attuale fase di PE.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI ORSARA - BOVINO AV **WEBUILD ITALIA PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA ORSARA - BOVINO <u>Mandataria</u> Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** TUNNELCONSULT PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione idrogeologica E ZZ RG GE0102 001 69 di 69

8. BIBLIOGRAFIA

- Elaborati Progetto Definitivo Italferr
- Aquino S., Allocca V., Esposito L., Celico P. (2006) Risorse Idriche della Provincia di Avellino (Appenninoi meridionale Italia). Alto Calore Servizi Spa. Avellino pp.120.
- Corniello A. Ducci D., Aquino A. Hydrogeological map of the Monti Picentini Regional Park (southern Italy) at 1: 50,000 scale. Bollettino di Geofisica Teorica ed Applicata. Vol. 51, n. 4, pp. 325-343. 2010.
- Dematteis A. Kalamaras G., Eusebio A., 2001. A Systems Approach for Evaluating Springs Drawdown Due to Tunneling. AITES/ITA World Tunnel Congress 2001 (Milan, 9-12 june 2001).
- Goodman RE, Moye DG, Schalkwyk AV, Javandel I (1965) Ground water inflows during tunnel driving. Bull Assoc Eng Geol 2:39–56.
- Jacob, C.E. and S.W. Lohman, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer, Trans. Am. Geophys. Union, vol. 33, pp. 559-569.
- Loew S (2002) Groundwater hydraulics and environmental impacts of tunnels in crystalline rocks. Paper presented at the IAEG, Durban, South Africa, December 2002.
- Piano di gestione delle acque, Ciclo 2015-2021 Relazione Generale. Autorità di Bacino Nazionale dei Fiumi Liri-Garigliano e Volturno, Distretto Idrografico dell'Appennino Meridionale. 2015.
- Torri R., Dematteis, A., Delle Piane L., Drawdown hazard of springs and wells in tunneling: predictive model and verification. XXXV IAH Congress: Groundwater and Ecosystems, Lisbona, 17-21 settembre 2007.