

ELABORATO:

RELAZIONE MONITORAGGIO PARAMETRI METEO

				IDENTIF	ICAZIONE E	LABORATO)			
Livello Prog.	Codice Rintracciabilità		Tipo Doc.	Sez. Elaborato	N° Foglio	Tot. Fogli	١	l° Elaborato	DATA	SCALA
PD	201900646		RT	03	1	11	03.RMM		09/2021	-:-
REVISIONI										
REV	DATA	DESCRIZIONE					ESEGUITO	VERIFICATO	APPROVATO	
01	[]	[]					IVC	N/A	N/A	

PROGETTAZIONE

MAYA

Engineering

MAYA ENGINEERING SRLS C.F./P.IVA 08365980724 Dott. Ing. Vito Caliò

Amministratore Unico 4, Via San Girolamo 70017 Putignano (BA) M.: +39 328 4819015

E.: v.calio@maya-eng.com PEC: vito.calio@ingpec.eu MAYA ENGINEERING SRLS 4, Via San Girolamo 70017 Putignano (BA) C.F./P.IVA 08365980724

(TIMBRO E FIRMA)

TECNICO SPECIALISTA

Prof. Dott. Francesco Magno Geologo

38, Via Colonne 72100 Brindisi (BR) M.: +39 337 825366 E.: frmagno@libero.it (TIMBRO FIRMA)

SPAZIO	RISERVATO	AGLI	ENTI
--------	------------------	-------------	-------------

RICHIEDENTE

BRINDISI ENERGIA8 SRL

C.F./P.IVA 02729310025 Corso Libertà n. 17 13100 Vercelli (VC)

(TIMBRO E FIRMA PER BENESTARE)

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

SOMMARIO

1.	Premessa.	2
	Monitoraggio dell'irraggiamento solare (solarimetri e piranometri)	
	Il Solarimetro.	
	3.1 Il piranometro.	
	Sensori per il rilevamento dei raggi ultravioletti.	
5.	Stazione meteorologica.	9

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

1. Premessa.

La Società Brindisi Energia 8 S.r.l., ha affidato allo scrivente, prof. dott. Francesco Magno, iscritto all'Ordine Regionale dei Geologi al n. 105, l'incarico di effettuare uno studio relativo al "*monitoraggio dei parametri meteo*" da installare nell'ambito dell'impianto fotovoltaico "a terra", da realizzare nell'ambito della Contrada "*Masseria Trullo*", nel territorio del Comune di Brindisi (BR).

Di seguito si riporteranno gli elementi essenziali che verranno a costituire il "sistema di monitoraggio ambientale" dell'impianto da realizzare, nella convinzione che la principale limitazione esogena al rendimento ottimale di un impianto in fase di esercizio è costituita dalle reali **condizioni ambientali** in cui esso si trova ad operare.

A partire dall'irraggiamento, che costituisce la "materia prima" del sistema, passando per le "temperature", che influenzano in modo determinante le prestazioni dei principali componenti e le reali condizioni in cui l'impianto si trova a operare e ne determinano, a parità di altri fattori, la "produttività" effettiva.

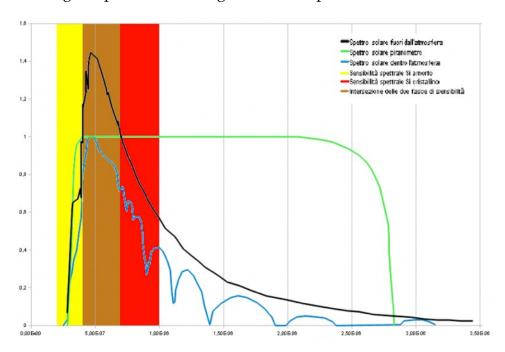
Misurare con precisione le variabili meteorologiche che influenzano le prestazioni dell'impianto è l'unica maniera che hanno gli operatori per controllare il proprio investimento.

Nella convinzione che per la gestione di un impianto si debba sempre avere una buona/ottima ed accurata conoscenza del "dato ambientale" (radiazione solare, temperatura aria e del modulo FV, velocità e direzione del vento, ecc.) e dell'affidabilità e dell'integrabilità dei sistemi adottati, di seguito si elencano i vari componenti che verranno a costituire il "sistema di monitoraggio dei parametri meteo" dell'impianto che si propone:

- 1. Sensori per rilevamento dell'irraggiamento solare (solarimetro e piranometro);
- 2. Sensore per il rilevamento dei raggi ultravioletti;
- 3. Stazione metereologica.

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo


Di seguito si riporteranno succinte considerazioni in merito a ciascun componente che il "sistema di monitoraggio dei parametri meteo" prevede; altresì si fa esplicito riferimento alla relazione sul "monitoraggio ambientale" allegata al progetto.

2. Monitoraggio dell'irraggiamento solare (solarimetri e piranometri) .

La producibilità di una cella solare dipende da diversi fattori: prima di tutto, una cella solare non risponde in maniera costante a tutte le frequenze della radiazione solare incidente.

L'efficienza di una cella al silicio è massima in corrispondenza dell'intervallo di frequenze della luce visibile.

In secondo luogo, la producibilità di una cella solare e di conseguenza di un sistema fotovoltaico, dipende dalla "radiazione incidente" sulla sua superficie e la tabella che segue riporta il classico grafico dello spettro solare.

C'è un altro effetto che influenza le prestazioni di un sistema fotovoltaico: la "temperatura". Come tutti gli altri strumenti a semiconduttore, le celle solari sono

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

sensibili alla temperatura ed un aumento della temperatura riduce la "band gap" di un semiconduttore, influenzando quindi la maggior parte dei parametri dei semiconduttori. Valori alti della temperatura causano una riduzione nella produzione energetica di un sistema .

Poiché la producibilità energetica (ed economica) di un impianto è una funzione prevedibile di questi fattori, una sua diminuzione nella produzione di energia, fuori da quanto prevedibile da questa funzione, deve essere interpretata come sinonimo di anomalia o guasto, per il quale è necessario prendere provvedimenti.

Allora, per conoscere in un dato istante quanta energia dovrebbe produrre un impianto fotovoltaico, bisogna conoscere quanta energia sta giungendo sulla superficie dei moduli fotovoltaici in quell'istante.

Meglio, sarebbe conoscere quanta "radiazione solare" utile (lunghezze d'onda che attivano il processo fotovoltaico nelle celle di silicio sono 300 nm – 1100nm) giunge sui moduli fotovoltaici, così da sapere quanta energia dovrebbe produrre un impianto FV in ogni momento della giornata.

I "sensori" di irraggiamento solare sono in grado di rilevare quanta radiazione solare giunge sul sito ove essi sono installati.

Di tali sensori ve ne sono di 2 tipi.

3. Il Solarimetro.

Il "solarimetro" è uno strumento usato per la misurazione del flusso della radiazione solare ed usa l'effetto fotovoltaico per misurare la quantità di irraggiamento solare che colpisce una data superficie.

Un "solarimetro" che utilizzi l'effetto fotovoltaico ha lo stesso comportamento di un sistema fotovoltaico: produce un segnale elettrico in funzione della luce incidente, risponde in special modo alla luce visibile e la sua risposta dipende anche dalla temperatura della cella.

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

Più in particolare un solarimetro con cella al silicio è in grado di captare le onde luminose con uno spettro compreso approssimativamente da 330nm a 1100nm

Al fine di ottenere una misura scevra dall'effetto "temperatura", i valori misurati da un solarimetro che utilizzi l'effetto fotovoltaico devono essere corretti in base alla temperatura della cella fotovoltaica.

Questa misura può essere fatta grazie ad una **termocoppia**, mentre la correzione deve avere dei **livelli di precisione** non facili da raggiungere.

Lo strumento tende ad essere obsoleto e non verrà utilizzato nell'impianto fotovoltaico da realizzare nella Contrada "*Marfeo*".

3.1 Il piranometro.

Fatto salvo che l'irraggiamento solare incidente su di un "pannello" è il parametro climatico più importante per valutare le prestazioni di un impianto fotovoltaico, i piranometri, a norma ISO 9060, costituiscono, da lustri, i supporti più adeguati per la valutazione dell'irraggiamento e quindi del rendimento dell'impianto.

I piranometri sono strumenti che servono a misurare la "radiazione globale" su di una superficie (radiazione diretta e diffusa); il principio di funzionamento è generalmente basato sulla misura di una differenza di temperatura tra una superficie chiara ed una scura.

Una superficie scura può assorbire la maggior parte della radiazione solare, mentre una superficie chiara tende a riflettere, assorbendo una minor quantità di calore. Questa differenza di temperatura viene misurata utilizzando una "*termopila*".

La differenza di potenziale che si genera nella "termopila", a causa del "gradiente di temperatura" tra le due superfici, permette di misurare il valore della radiazione solare globale incidente.

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

Una "termopila" è composta da "termocoppie" generalmente connesse in serie, dove una "termocoppia" è una giunzione tra due differenti metalli utilizzata per misurare la differenza di temperatura tra due punti.

Una termocoppia produce un potenziale che dipende dal gradiente di temperatura.

La risposta di un piranometro di questo tipo può coprire tutto il range di lunghezze d'onda dello spettro solare che va, approssimativamente, da 300nm a 2800nm.

È da notare che poiché l'intervallo spettrale rilevabile con un piranometro è più ampio rispetto a quello che può essere misurato da un "solarimetro" con cella al silicio, utilizzare un piranometro per testare il corretto funzionamento e le prestazioni di un impianto fotovoltaico potrebbe portare a credere che in talune condizioni ambientali l'impianto non funzioni correttamente.

Le nuove tecnologie hanno del tutto eliminato questo problema e la risposta di un piranometro è sempre più immediata, superando il gap che aveva nei confronti del "solarimetro".

Oggi in commercio ci sono "piranometri" con diverse classificazioni, sempre secondo la ISO 9060, in funzione del tipo di impianto nel quale si vanno ad inserire.

Per l'impianto del Foglio 93 – "Masseria Gambetta", considerate le dimensioni e per il quale solitamente verrebbe utilizzato un piranometro identificato come "Second Class", la cui accuratezza nelle misurazioni è inferiore alla "First Class", si ritiene utile utilizzare, comunque, un sensore che fornisca la migliore risposta possibile e la maggiore istantaneità, per cui verrà utilizzato il meglio della tecnologia esistente e quindi un sensore in "First Class".

Il mercato permette la scelta di diverse tipologie di "piranometri" che qui di seguito si elencano:

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

- **Piranometri con uscita diretta:** costituiscono sensori adatti alla connessione a sistemi in grado di leggere la sensitività del sensore (μV) e convertirla in W/mq.
- **Piranometri con uscita analogica**: diverse sono i range utilizzati, ma quelli più d'uso sono fra 420 mA, integrati ed alimentati in uno scarto di 930 Vcc/ca.;
- Piranometri con uscita "modbus": questi, oltre all'irraggiamento misurano la temperatura del corpo del sensore. I modelli "First Class" e "Second Class" hanno inoltre un ingresso per connettere una sonda esterna per la misura della temperatura a contatto dei moduli fotovoltaici.

Inoltre, negli impianti ad alta tecnologia, come quello presentato, vengono utilizzati ulteriori "sensori", connessi ai pironimetri, in grado di migliorare ulteriormente il "monitoraggio" climatico del pannello/stringa, quali:

- Sensori per correzione della temperatura: questi "piranometri" montano una sonda di temperatura interna e correggono l'uscita del valore di irraggiamento con una correzione in base alla temperatura misurata;
- Sensori per la misura della radiazione diffusa: questa è una semplice soluzione per la misura della "radiazione diffusa", in quanto la banda ombreggia continuamente il "duomo" del piranometro dalla radiazione diretta. Questa è solitamente realizzata in alluminio. Inoltre, la "banda" oscura anche una parte di cielo e per questo motivo solitamente si applica un "fattore di correzione" che deve essere applicato alle misure.

4. Sensori per il rilevamento dei raggi ultravioletti.

Fatto salvo che la gestione del monitoraggio dell'impianto fotovoltaico avviene tramite PC e che tutti i cavi di collegamento sono stati scelti in funzione di una elevata

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

"resistenza" ai raggi ultravioletti, il "monitoraggio" di questi raggi assume una adeguata rilevanza in virtù della "dose" di raggi "UV" che possono essere assunti da personale operante all'interno dell'impianto.

In generale, la capacità di penetrazione e quindi la "pericolosità" per l'uomo dei raggi UV aumenta al diminuire della lunghezza d'onda e, di conseguenza, all'aumentare della frequenza.

La maggior parte dei raggi UV che raggiungono la superficie terrestre sono UVA (315400 nm) e, in piccola parte, UVB (280315 nm), mentre gli UVC (100280 nm) sono totalmente assorbiti dall'atmosfera. Inoltre, i livelli di UV sono più alti al crescere dell'altitudine (ogni 1000 m di altezza i livelli di UV crescono del 1012%) e dell'altezza del Sole (specialmente verso mezzogiorno nei mesi estivi) e al diminuire della latitudine e della nuvolosità.

Altri fattori ambientali che influenzano i livelli di UV sono lo strato di ozono e la capacità riflettente della superficie terrestre (per esempio, la neve riflette circa l'80% delle radiazioni UV, la sabbia asciutta della spiaggia circa il 15% e la schiuma del mare il 25%).

Si conoscono gli effetti "negativi" dei raggi UV per l'uomo e non si riportano; appare opportuno evidenziare, invece, anche gli effetti "positivi" che tali raggi possono indurre all'uomo alla sintesi organica della "vitamina "D" che è una sostanza coinvolta nello sviluppo dello scheletro ed è in grado di proteggere le ossa da malattie quali il rachitismo, l'osteomalacia e l'osteoporosi; in generale, basta una minima esposizione ai raggi UV per ottenere questi effetti protettivi.

Testando nei limiti del "monitoraggio" dell'impianto fotovoltaico, questo sarà dotato di un sistema di "sensori" in grado di monitorare non solo le stringhe ma anche le cabine di trasformazione; il mercato offre notevoli e differenti possibilità di approvvigionamento e, di certo, si allocheranno nell'impianto quei sensori che saranno in grado di fornire le migliori performance.

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

5. Stazione meteorologica.

L'impianto ha la necessità di essere "gestito" con un "monitoraggio" che abbia la maggiore gamma possibile di "sensori" annessi.

Per tale ragione si prevede che il sistema di acquisizione dati sia collegato e completato ad una serie di sensori meteorologici oltre che a quelli precedentemente richiamati.

Tutte le misure rivenienti dai "sensori" saranno elaborate, memorizzate e rese disponibili per due utilizzi contemporanei:

- 1) connessione a PC locale o remoto (per mezzo di dispositivi di comunicazione) per analizzare e gestire serie storiche dei dati misurati;
- 2) inviare le letture istantanee al sistema di controllo dell'impianto tramite la definizione di un apposito "protocollo" da concordare e modulare con l'azienda fornitrice.

In definitiva, si ritiene che la "stazione metereologica", completa per l'applicazione fotovoltaica, con doppia misura di irraggiamento (orizzontale e sull'asse de moduli), data logger ed interfaccia a PC remoto con connessione GPRS, debba essere arredata e comprensiva di:

- n. 2 piranometri (inclinato ed orizzontale) in "First Class";
- n. 1 sensore per la misurazione dei raggi UV;
- n. 1 sensore di "temperatura" ed "umidità relativa" dell'aria;
- n. 1 sensore di temperatura superficiale del modulo;
- n. 1 sensore velocità e direzione vento;
- n. 1 pluviometro;
- n. 1 barometro.

COMUNE DI BRINDISI

03.RMM_ Relazione Monitoraggio Meteo

Una tale configurazione permette di avere un quadro completo del monitoraggio "microclimatico" dell'impianto e di trasmettere tali dati ed in tempo reale, ove richiesti, agli Enti di controllo (ARPA, Provincia, Comune, ecc.).