REGIONE LAZIO PROVINCIA DI VITERBO COMUNE DI TESSENNANO - COMUNE DI ARLENA DI CASTRO

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI ARLENA DI CASTRO E TESSENNANO

Denominazione impianto:

EOLICO ARLENA

Committente:

-

Wind Energy 1 s.r.l. Via della Stazione, 36 01033 - Civita Castellana (VT)

WIND ENERGY 1 S.r.l. Via della Stazione / 36 01033 Civita Castellane (VT) R.vale C.F.: 62376816566

vita Castellana (VT) /

Progettazione:

Progettazione impianti progettazione e sviluppo energie da fonti rinnovabili P.I. Lamberto Chiodi P.I. Danilo Rocco Dott. Geol. Emma Bernardini Dott. Agr. Alberto Cardarelli Dott. Ing. Enzo Alessandroni Restituzione Grafica AnnaLisa Chiodi

Documento:

TAV. R4

PIANO UTILIZZO TERRE E ROCCE DA SCAVO

Revisione:

REV.	DATA	DESCRIZIONE	REDATTO	APPROVATO
00	29/06/2021	Prima emissione		
01	03/03/2023	Revisione layout		

PROVINCIA DI VITERBO COMUNE DI TESSENNANO E ARLENA DI CASTRO

Committente: Wind Energy 1 s.r.l. – Via della Stazione, 36 – 01033 Civita Castellana (VT)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI ARLENA DI CASTRO E TESSENNANO

DENOMINAZIONE DELL'IMPIANTO: EOLICO ARLENA

PIANO PRELIMINARE DI UTILIZZO IN SITU DELLE
TERRE E ROCCE DA SCAVO ESCLUSE DALLA
DISCIPLINA DEI RIFIUTI

Tavola n.: R.4

Data: 03.03.2023

Dott. Geol. Emma Bernardini Str. Riello 18/A – 01100 Viterbo

Cell: 347 6256318

C.F. BRN MME 59D50 M082C

P.IVA 01423840568

Geol. Emma Bernardini Str. Riello 18/A – 01100 Viterbo Tel: 0761 354104 Cell:347 6256318 C.F. BRN MME 59D50 M082C P.IVA 01423840568

INDICE

- 1. PREMESSA
- 2. INQUADRAMENTO NORMATIVO
- 3. UBICAZIONE GEOGRAFICA
- 4. INQUADRAMENTO GEOLOGICO
- 5. ASSETTO MORFOLOGICO ED IDROGRAFICO BACINI DISTRETTUALI APPENNINICI
- 6. INQUADRAMENTO IDROGEOLOGICO
- 7. DESCRIZIONE DELLE ATTIVITA' PREGRESSE DEL SITO
- 8. DESCRIZIONE DELLE OPERE DA REALIZZARE E MODALITA' DI SCAVO
- 9. STIMA DEI VOLUMI DI SCAVO
- 10. MODALITA' ESECUTIVE DEGLI SCAVI
- 11. PIANO DI ANALISI E CARATTERIZZAZIONE AMBIENTALE

1. PREMESSA

Su incarico e per conto della Wind Energy 1 s.r.l., con sede in Via della Stazione n° 36 – 01033 Civita Castellana –Viterbo, io sottoscritta Geol. Emma Bernardini (polizza UNIPOLSAI Mondo Professionista n. 122/180593731), iscritta all'Ordine dei Geologi della Regione Lazio al n. 718, ho redatto il presente *Piano Preliminare di Utilizzo in Situ delle Terre e Rocce da Scavo* escluse dalla disciplina dei rifiuti a corredo del progetto per la realizzazione di un parco eolico nel territorio comunale di Arlena di Castro e Tessennano.

Gli aerogeneratori sono collegati tra loro per mezzo di un cavidotto interrato M.T. fino alla S.E. utente 30/150kV in loc. "Cioccatello" nel Comune di Arlena di Castro da dove parte un cavidotto interrato A.T. che raggiunge la S.E. Terna 150/380kV in loc. "Campo Villano" nel Comune di Tuscania.

2. <u>INQUADRAMENTO NORMATIVO</u>

Lo scopo del presente studio è quello di illustrare la procedura da adottare per la gestione delle terre e rocce da scavo prodotte dalle attività inerenti al progetto per la realizzazione dell'impianto eolico e relativo cavidotto di connessione.

Come verrà esposto nel dettaglio nella presente relazione a seguito di sopralluoghi eseguiti dallo scrivente successivamente alla consegna del progetto, unitamente agli altri progettisti è stato definito che il volume di terreno derivante dagli scavi necessari alla realizzazione dell'impianto fotovoltaico e relativo cavidotto di connessione sarà interamente riutilizzato in sito ovvero nessuna parte sarà conferita a discarica autorizzata.

In particolare le terre prodotte, come computate nei paragrafi successivi, verranno riutilizzate per il riempimento degli scavi dei cavidotti, per rimodellamenti puntuali, areali e livellamenti dei fondi stradali.

Saranno realizzati cumuli temporanei del terreno scavato lungo il bordo del cavidotto in attesa di essere riutilizzato e verranno individuate specifiche zone all'interno dell'area di cantiere per la collocazione delle terre eventualmente eccedenti.

Pag.3

La normativa di riferimento per la gestione delle terre e rocce da scavo non esclude a priori il materiale prodotto da scavi dall'ambito dei rifiuti, ma considerandoli come sottoprodotti, ne prevede il riutilizzo secondo precisi criteri e nel rispetto di determinati requisiti tecnici e ambientali. Nella fattispecie, salvaguardando le caratteristiche di "non contaminazione" e le modalità di riutilizzo, uno dei punti cruciali del disposto normativo ad oggi vigente, è il sito di riutilizzo.

L'operatore infatti può scegliere di gestire i materiali di risulta dagli scavi, secondo i seguenti scenari (che possono anche coesistere nel medesimo intervento, per quantità distinte di materiali):

- in caso di gestione del materiale attraverso lo smaltimento in qualità di rifiuto, si fa riferimento al Titolo III del DPR 120/2017;
- in caso di riutilizzo nello stesso sito di produzione si fa riferimento al Titolo IV del DPR 120/2017; l'articolo di pertinenza risulta essere l'art. 24, richiamante l'art. 185 del D.Lgs 152/2006 e ss.mm.ii. che regolamenta la gestione dei progetti con produzione di terre e rocce da scavo non contaminate, riutilizzate in sito allo stato naturale;
- in caso di riutilizzo al di fuori del sito di produzione e in caso di riutilizzo in sito con necessità di deposito temporaneo, per piccoli cantieri e grandi cantieri non soggetti a VIA o AIA, si fa riferimento al Capo III e Capo IV del DPR 120/2017;
- in caso di riutilizzo in sito di produzione, oggetto di bonifica, si fa riferimento al Capo IV, Titolo V del DPR 120/2017.

Nel caso specifico, per le quantità di materiale scavato e riutilizzato in loco, l'articolo di pertinenza risulta essere l'art. 24.

L'art. 2, comma 1, lettera c) del DPR 120/2017 definisce come "terre e rocce da scavo": il suolo escavato derivante da attività finalizzate alla realizzazione di un'opera, tra le quali: scavi in genere (sbancamento, fondazioni, trincee); perforazione, trivellazione, palificazione, consolidamento; opere infrastrutturali (gallerie, strade); rimozione e livellamento di opere in terra. Le terre e rocce da scavo possono contenere anche i seguenti materiali: calcestruzzo, bentonite, polivinilcloruro (PVC), vetroresina, miscele cementizie e additivi per scavo meccanizzato, purchè le terre e rocce contenenti tali materiali non presentino concentrazioni di inquinanti superiori ai limiti di cui alle colonne A e B, Tabella 1, Allegato 5, al Titolo V, della Parte IV, del decreto legislativo 3 aprile 2006, n. 152, per la specifica destinazione d'uso.

Sempre in riferimento al Decreto del Presidente della repubblica 13 giugno 2017, n. 120 "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo, ai sensi dell'articolo 8 del decreto-legge 12 settembre 2014, n. 133, convertito, con modificazioni, dalla legge 11 novembre 2014, n.164" si riporta quanto indicato al comma 3 dell'art. 24 – "Utilizzo nel sito di produzione delle terre e rocce escluse dalla disciplina rifiuti":

Nel caso in cui la produzione di terre e rocce da scavo avvenga nell'ambito della realizzazione di opere o attività sottoposte a valutazione di impatto ambientale, la sussistenza delle condizioni e dei requisiti di cui all'articolo 185, comma 1, lettera c), del decreto legislativo 3 aprile 2006, n. 152, è effettuata in via preliminare, in funzione del livello di progettazione e in fase di stesura dello studio di impatto ambientale (SIA), attraverso la presentazione di un Piano preliminare di utilizzo in sito delle terre e rocce da scavo escluse dalla disciplina dei rifiuti che contenga:

- a) Descrizione dettagliata delle opere da realizzare, comprese le modalità di scavo;
- b) Inquadramento ambientale del sito (geografico, geomorfologico, geologico, idrogeologico, destinazione d'uso delle aree attraversate, ricognizione dei siti a rischio potenziale di inquinamento);
- c) Proposta di caratterizzazione delle terre e rocce da scavo da eseguire nella fase di progettazione esecutiva o comunque prima dell'inizio dei lavori, che contenga almeno:
 - 1. Numero e caratteristiche dei punti di indagine;
 - 2. Numero e modalità dei campionamenti da effettuare;
 - 3. Parametri da determinare:
- d) Volumetrie previste delle terre e rocce da scavo;
- e) Modalità e volumetrie previste delle terre e rocce da scavo da riutilizzare in sito.

Come previsto al comma 4 dello stesso articolo *in fase di progettazione esecutiva o comunque* prima dell'inizio dei lavori, in conformità alle previsioni del Piano preliminare di utilizzo in situ delle terre e rocce da scavo escluse dalla disciplina dei rifiuti il proponente o l'esecutore:

- a) Effettua il campionamento dei terreni, nell'area interessata dai lavori, per la loro caratterizzazione al fine di accertarne la non contaminazione ai fini dell'utilizzo allo stato naturale, in conformità con quanto pianificato in fase di autorizzazione;
- b) Redige, accertata l'idoneità delle terre e rocce da scavo all'utilizzo ai sensi e per gli effetti dell'articolo 185, comma 1, lettera c), del decreto legislativo 3 aprile 2006, n. 152, un apposito progetto in cui sono definite:
 - 1. Le volumetrie definitive di scavo delle terre e rocce;

- 2. La quantità delle terre e rocce da riutilizzare;
- 3. La collocazione e durata dei depositi delle terre e rocce da scavo;
- 4. La collocazione definitiva delle terre e rocce da scavo
- 5. Gli esiti delle attività eseguite ai sensi del comma 3 sono trasmessi all'autorità competente e all'Agenzia di protezione ambientale territorialmente competente, prima dell'avvio dei lavori
- 6. Qualora in fase di progettazione esecutiva o comunque prima dell'inizio dei lavori non venga accertata l'idoneità del materiale scavato all'utilizzo ai sensi dell'articolo 185, comma 1, lettera c), le terre e rocce sono gestite come rifiuti ai sensi della Parte IV del decreto legislativo 3 aprile 2006, n. 152.

3. <u>UBICAZIONE GEOGRAFICA</u>

Il progetto prevede l'installazione di 14 aerogeneratori tripala WTG ad asse orizzontale ciascuno di potenza nominale pari a 6 MW, per una potenza elettrica complessiva pari a 84 MW.

Essi saranno dislocati sul territorio dei comuni di Arlena di Castro e Tessennano nella Provincia di Viterbo, come indicato di seguito.

Nella planimetria si possono individuare tre gruppi di aerogeneratori disposti secondo degli allineamenti in direzione circa Nord – Sud, sub paralleli tra loro.

Dei 14 aerogeneratori quattro ricadono nel territorio di Tessennano ed i restanti dieci nel territorio di Arlena di Castro.

Nel Comune di Tessennano ricadono gli aerogeneratori denominati: AC01, AC12, AC13 e AC14. Nel Comune di Arlena di Castro ricadono gli aerogeneratori denominati: AC02, AC03, AC04, AC05, AC06, AC07, AC08, AC09, AC10, AC11.

La distribuzione sul territorio è la seguente:

- un gruppo da 4 aerogeneratori (AC01 AC12 AC13 AC14) è posto ad ovest dei territori comunali di Tessennano e Arlena di Castro, rispettivamente in località Camporile, in località Capo Terzo e in località Poggio del Terzo;
- un altro gruppo di 4 aerogeneratori (AC06 AC07 AC08) è posto a nord del territorio comunale di Arlena di Castro, in località Mandrioncino;
- gli aerogeneratori AC02 AC03 AC11 sono posti rispettivamente in località Le Mandrie ed in località Pianacce ad est del territorio comunale di Arlena di Castro
- un gruppo di aerogeneratori AC04 AC05 AC09 AC10 sono posti nel territorio comunale di Arlena di Castro, ad est del centro abitato, in località Spiniccio e Linetti.

Gli aerogeneratori sono collegati tra loro per mezzo di un cavidotto interrato M.T. fino alla S.E. utente 30/150kV in loc. "Cioccatello" nel Comune di Arlena di Castro da dove parte un cavidotto interrato A.T. che raggiunge la S.E. Terna 150/380kV in loc. "Campo Villano" nel Comune di Tuscania.

Negli elaborati grafici di progetto sono riportati, in scala adeguata, su base cartografica IGM, CTR e Catastale sia l'esatta ubicazione dei singoli aerogeneratori che il tracciato dei cavidotti.

Lungo il suo percorso il cavidotto interferisce, in alcune zone con il reticolo idrografico demaniale e con zone gravate da vincolo idrogeologico.

Il progetto interessa i seguenti fogli della Carta Tecnica Regionale Lazio:

Sezione n° 344100	Sezione n° 344110			
"Canino"	"Casale S. Savino"			
Sezione n° 344140	Sezione n° 344150			
"San Giuliano"	"Tuscania"			
Sezione n° 354020	Sezione n° 354030			
"Quarticciolo"	"La Rocca"			

e le seguenti Tavolette I.G.M.:

Foglio n. 136 – II N.O "Canino"	Foglio n. 136 – II N.E "Tuscania"
Foglio n. 136 – II S.O	Foglio n. 136 – II S.E
"San Giuliano"	"La Rocca"

Per completezza di documentazione e per una migliore lettura di quanto su descritto e di quanto verrà esposto nei paragrafi seguenti si allega:

- Stralcio corografia I.G.M;
- Stralcio cartografia C.T.R. Lazio

con indicazione degli aerogeneratori e del cavidotto di collegamento.

Inquadramento su corografia I.G.M.

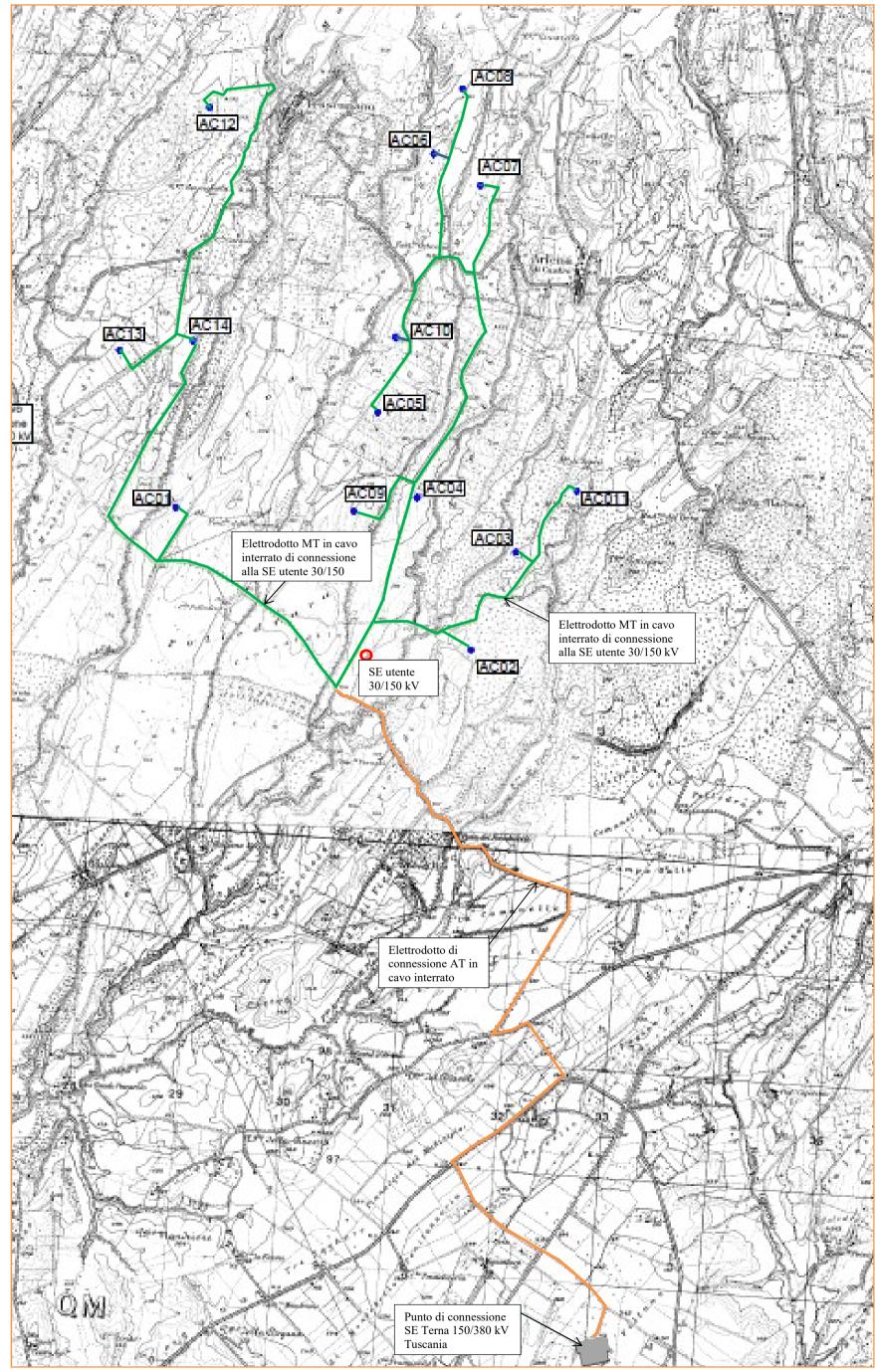


Figura 2: Stralcio Foglio n. 136: – II N.E. "Tuscania" - II N.O. "Canino" - II S.E. "La Rocca" - II S.O. "S. Giuliano"

Inquadramento su cartografia C.T.R. LAZIO

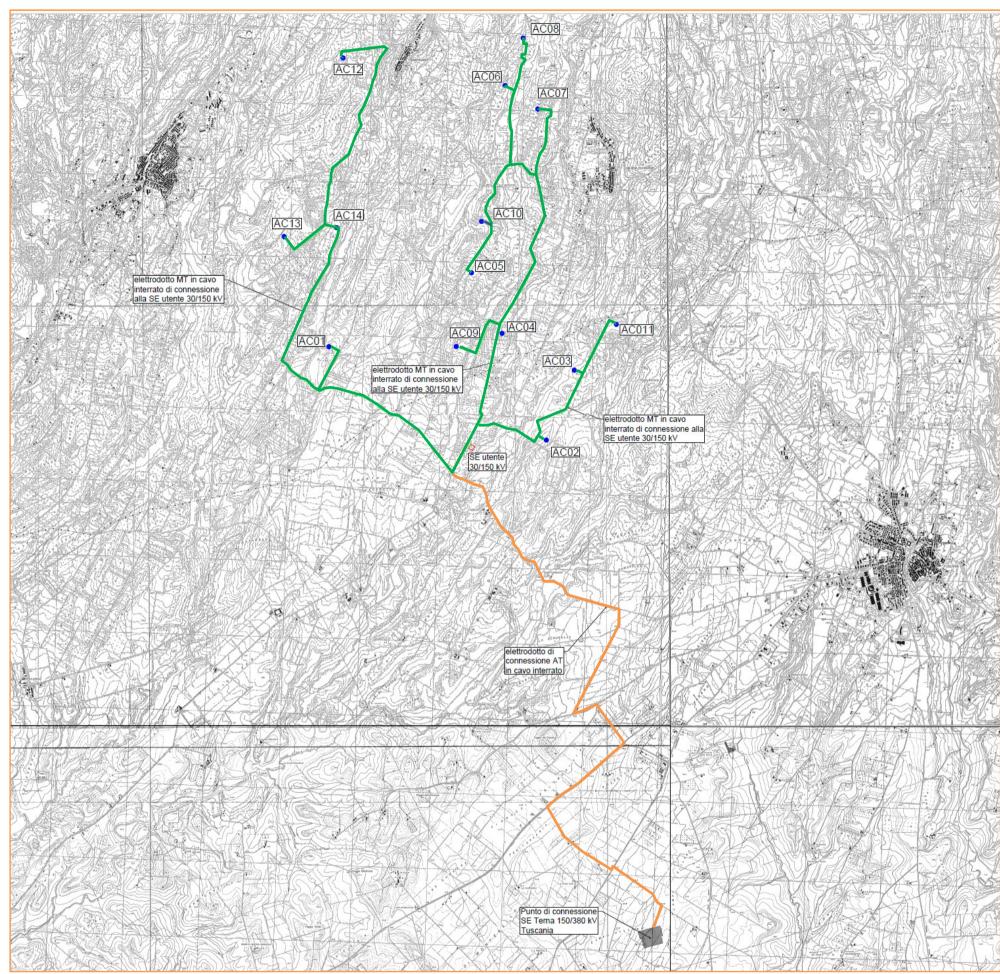
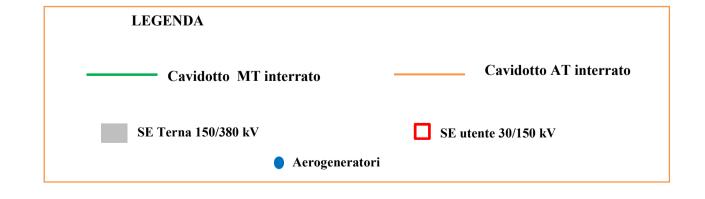



Figura 3: Stralcio Sezioni n. 344100 "Canino"; n. 344110 "Casale S. Savino"; n. 344140 "San Giuliano"; n. 344150 "Tuscania"; n. 354020 "Quartaccio"

4. INQUADRAMENTO GEOLOGICO

Il territorio del Comune di Arlena di Castro, di Tessennano e di Tuscania sono caratterizzati dall'affioramento, principalmente, di formazioni di origine vulcanica, legati all'attività dell'Apparato Vulsino, ma si rinvengono in superficie anche formazioni di origine sedimentaria.

Per meglio inquadrare l'intera area interessata dalla realizzazione del parco eolico da un punto di vista geologico si riporta di seguito una breve descrizione del vulcanismo laziale, con particolare riguardo per l'Apparato Vulsino.

Il Distretto Vulcanico Vulsino è caratterizzato da attività subaerea a carattere principalmente di natura esplosiva.

La principale struttura vulcanica del distretto è costituita dalla vasta conca del Lago di Bolsena che viene considerato un ampio bacino di collasso conformatosi in più fasi successive ed il cui sprofondamento è stato controllato da sistemi di faglie aventi carattere regionale (Carta schematica del Distretto Vulcanico dei Monti Vulsino – Profilo geologico Vulsino 1).

L'attività vulcanica del distretto si è originata da quattro centri principali sorti ai margini dell'area di collasso, con buona probabilità posti lungo principali sistemi di frattura.

L'attività iniziò circa 800.000 anni nel settore orientale dove colate laviche e coni di scorie furono emessi da fratture di importanza regionale.

Intorno a 600.000 anni fa l'attività si concentra in corrispondenza di un primitivo centro denominato Paleovulsino, la cui morfologia non è evidente, ma che era probabilmente localizzato in corrispondenza dell'attuale conca lacustre; a questa attività si riconducono i vulcani più antichi, affioranti sia ad est che a sud della conca lacustre.

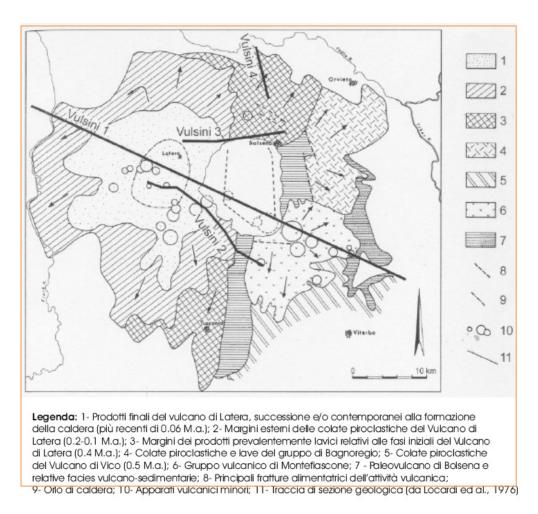
Un secondo ed importante centro di attività sorge nelle immediate vicinanze ed è detto Bolsena-Orvieto; a questo centro appartengono consistenti depositi di prodotti di ricaduta ed un'importante attività ignimbritica nota come "Tufo di Bagnoregio" o "Ignimbrite di Orvieto". La relativa eruzione avvenne circa 370.000 anni fa e causò il collasso della caldera di Bolsena, localizzata al margine nord-orientale della conca lacustre omonima.

Contemporaneamente al centro di Bolsena fu attivo quello di Montefiascone, posto sul margine sudorientale dell'attuale conca lacustre. Montefiascone ebbe un'attività complessa che include eruzioni di prodotti ignimbritici di ricaduta ed idromagmatiti, in un arco di tempo compreso tra i 300.000 ed i 150.000 anni. In questo stesso intervallo di tempo fu attivo il centro di Latera che costituisce uno degli edifici centrali del Distretto Vulcanico Vulsino. Le rocce di questo complesso appartengono alla serie potassica ed ultra potassica. Il vulcano si è impostato circa 400.000 anni fa, sul fianco occidentale del preesistente apparato di Bolsena i cui prodotti affiorano alla base delle ignimbriti di Latera, nelle profonde incisioni vallive e nelle zone più distanti del vulcano. Il vulcanismo inizia in questo settore con sporadiche manifestazioni effusive vicino a Farnese e nei pressi di Canino. L'attività principale del vulcano di Latera, di tipo prevalentemente esplosivo, è compresa tra 270.000 e 160.000 anni, durante questo intervallo di tempo vengono messe in posto le numerose coltri ignimbritiche che costituiscono l'edificio. È in questa fase che si forma la grande caldera poligenica con forma ellittica localizzata sul bordo occidentale della più vecchia caldera di Bolsena.

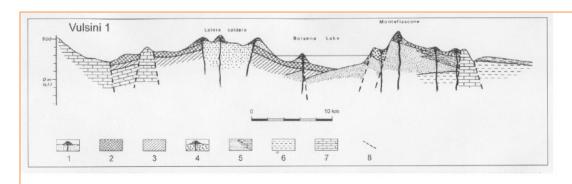
L'attività esplosiva di Latera inizia con due eruzioni di tipo pliniano che portano alla messa in posto di depositi di pomici di ricaduta, distribuiti principalmente nel settore meridionale e di numerosi depositi di flusso che si distribuiscono intorno al vulcano fino a distanze di 20-25 km. Al tetto, separati da uno spesso livello pedogenizzato, sono presenti i depositi di un'altra eruzione, anch'essi caratterizzati dall'assenza di leucite e ben riconoscibili per l'abbondanza di sanidino (eruzione di Rio Maggiore). Seguono tre importanti eruzioni (Farnese, Sovana, Sorano) separate da paleosuoli. Quello compreso tra Farnese e Sovana è caratteristico per il suo colore molto scuro e rappresenta un livello guida. Dopo l'eruzione di Sorano la stratigrafia si complica notevolmente per la presenza di numerose colate piroclastiche con caratteristiche molto simili. In generale si possono distinguere due importanti formazioni: "Grotte di Castro" e "Onano" con sequenze stratigrafiche relativamente simili che comprendono depositi di surge con impronte di albero alla base, seguite da diverse colate piroclastiche. Al tetto di quella di Onano, la formazione di Poggio Pinzo comprende una serie di depositi nel settore settentrionale della caldera. L'eruzione di Pitigliano chiude la fase esplosiva di Latera. Nella fase finale del vulcano l'attività torna ad essere di tipo prevalentemente effusivo ed è localizzata all'interno e sui bordi della depressione calderica.

La morfologia del letto delle formazioni vulcaniche è dominata in questo settore dalla vastissima depressione derivante dalla coalescenza delle caldere di sprofondamento di Latera e Bolsena che raggiungono rispettivamente i valori di – 1200 e – 800 metri s.l.m. (ENEL-VDAG-URM, 1994 "Profilo geologico Vulsino 2 Vulsini 3). I fenomeni di collasso vulcano – tettonico hanno prodotto l'interruzione della lunga dorsale di Castell'Azzara-Monte Razzano che si estende dall'Amiata al Lago di Bracciano, impostata su formazioni argilloso-calcareo-arenacee di facies ligure. Il substrato corona per un arco di cerchio di almeno 270° - 300° la depressione su menzionata secondo un PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI ARLENA DI CASTRO E TESSENNANO

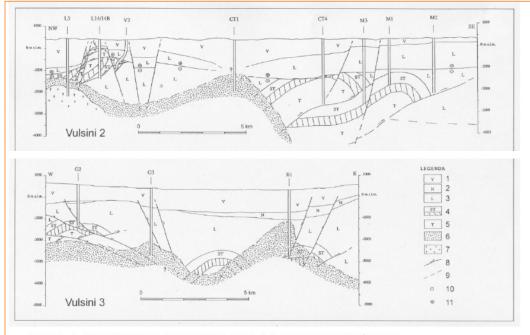
percorso ideale che congiunge: Tuscania, Arlena di Castro, Cellere, Ischia di Castro, Farnese, Sorano, Acquapendente, Torre Alfina, Castel Giorgio, Bagnoregio, Celleno, Monte Razzano.

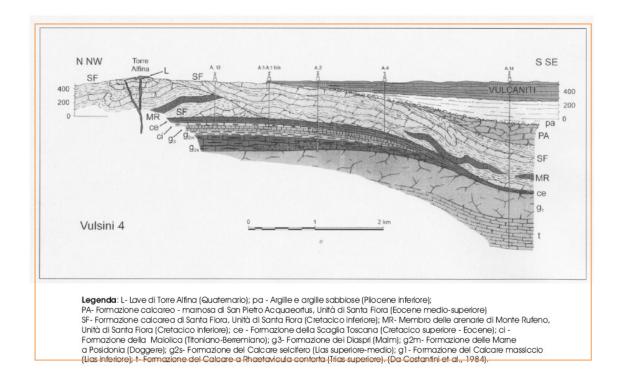

Questo rilievo sotterraneo, mascherato dalle vulcaniti, funge da spartiacque sotterraneo e da vero limite idrogeologico per l'Unità Vulsina; la sua quota oscilla, nei settori più elevati, dai 200 ad oltre 500 metri s.l.m.. esclusivamente verso sud, in corrispondenza dell'allineamento Marta-Tuscania, essa si deprime fino a 50 metri s.l.m., dando modo alla falda regionale di defluire verso mare.

Nel settore centro settentrionale dell'area è possibile individuare la continuazione, al di sotto della copertura vulcanica, delle depressioni tettoniche osservabili nella Toscana meridionale (ENEL-VDAG-URM, 1994 "Profilo geologico Vulsino 2 Vulsini 3). Queste strutture, assimilabili a dei graben o a degli half-graben, sono colmate da depositi sintettonici dei cicli autoctoni di età progressivamente più giovane procedendo da Ovest (Messiniano-Pliocene inferiore) ad Est (Pliocene inferiore medio). Questi sedimenti possono raggiungere spessori dell'ordine di diverse centinaia di metri, come documentato dall'esecuzione di pozzi profondi (ENEL-VDAG-URM, 1994).


In particolare procedendo da Ovest verso Est sono riconoscibili le prosecuzioni verso SSE delle seguenti strutture:

- Graben di Pitigliano, colmato da una coltre di sedimenti neoautoctoni che si ricollega con la depressione presente a NE di Tolfa.
- Dorsale di Castell'Azzara-Monte Razzano. Questa struttura, caratterizzata dalla presenza, al di sotto delle vulcaniti, delle unità Liguridi s.l., prosegue verso SSE sino a congiungersi con gli affioramenti presenti nella Tolfa. La sua continuità è interrotta verso SE da un importante motivo tettonico orientato SW-NE. A SE di questo lineamento non si trova più in affioramento nel Lazio settentrionale le Liguridi s.l..
- Graben di Radicofani: la continuità verso SSE di questa depressione è complicata dall'intersezione con un altro importante motivo appenninico presente a NW del Lago di Bolsena e della sovrapposizione degli effetti dell'attività vulcano-tettonica dei Distretti Vulsino e Cimino.
- Dorsale Monte Cetona-Torre Alfina. L'eventuale prosecuzione verso SE di questa struttura è stata interessata da una sedimentazione plio-pleistocenica, venendo così significativamente attenuata la caratterizzazione di un alto morfo-strutturale rilevabile più a nord. Tale fenomeno è da ricondurre alla progressiva inflessione verso SE della struttura in questione.


Nel Distretto Vulsino è possibile collegare con buona precisione la struttura del Monte Cetona con quella incontrata nel substrato carbonatico ad affinità toscana nel settore di Latera. È quindi possibile risalire ad una indicativa orientazione NNE-SSW degli assi compressivi. Perforazioni profonde hanno documentato raddoppi tettonici che confermano una configurazione strutturale caratterizzata da sovrascorrimenti e mega strutture plicativa. Lo scenario attuale è, a grandi linee caratterizzato, da una successione di orizzonti tufacei fortemente differenziati, intercalati da colate laviche, con locali concentrazioni di scorie e lapilli. Anche le ceneri e le pomici fanno parte di queste variazioni del chimismo dei processi effusivi visto che spesso si rinvengono in sacche e livelli di spessore variabile.

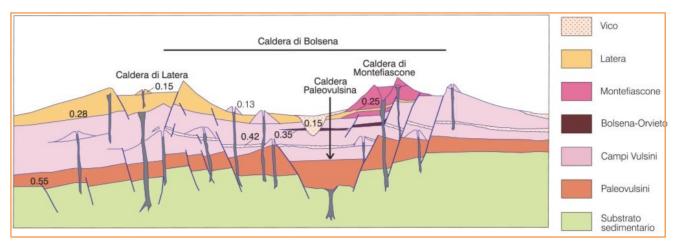

Schema del Distretto Vulcanico dei Monti Vulsini

Legenda: 1-Vulcanismo finale di Latera (0,1-0,3? M.a.); 2-Colate piroclastiche di Latera (0,2-0,1 M.a.); 3-Vulcano strato di Latera (0,3-0,2 M.a.); 4- Prima fase del vulcanismo di Montefiascone (0,7-0,5 M.a.); 5- Paleovulcanismo di Bolsena e facies vulcano-sedimentarie relative (0,9-0,7 M.a.); 6- Argille e sabbie (Pliocene-Pleistocene); 7- Flysch (pre-Neogene); 8- Faglie (da Locardi ed al., 1976).

Legenda: 1- Vulcaniti; 2- Neoautoctono; 3- Liguridi s.l.; 4- successione ad affinità toscana (a tratteggio il Calcare massiccio); 5- Formazioni triassiche; 6- Complesso termometamorfosato(comprende anche sistemi di dicchi); 7- Complesso intrusivo; 8- Faglie (la lunghezza della freccia è proporzionale alla componente del movimento parallela al piano del profilo); 9- Geometrie delle strutture riconosciute all'interno del Complesso metamorfosato; 10- Vettore di movimento uscente dal piano del profilo; 11- Vettore di movimento entrante nel piano del profilo (da ENEL-VDAG-URM, 1994).

Le formazioni riconoscibili in affioramento, come indicate nel *Foglio n. 344 – Tuscania e n. 354 Tarquinia della Carta Geologica d'Italia in scala 1:50.000 dell'I.S.P.R.A.*, che interessano i siti dove sono ubicati gli aerogeneratori sono:

- Formazione di Grotte di Castro;
- Unità di Fosso La Tomba;
- Formazione di Farnese;
- Formazione di Canino;
- Unità del Ciclo Neoautoctono Unità di Poggio Terzolo


delle quali viene di seguito riportata una breve descrizione:

• Formazione di grotte di Castro: la pare inferiore della formazione comprende un orizzonte basale di lapilli fini scoriacei grigio scuri passanti a lapilli pomicei biancastri trachitico – fonolitici, da caduta pliniana, cui seguono bancate cineritiche bruno verdognole, piuttosto coerenti, da massive a laminate e con struttura a duna, da *surge* piroclastico, contenenti lapilli fini scoriacei grigio scuri shoshonitici ed impronte di resti vegetali e di piante ad alto fusto. A tetto, separate da un paleosuolo, sono presenti bancate cineritiche gialloverdognole, più o meno zeolitizzate, da massive a laminate, da surge piroclastico, contenenti lapilli pomicei fini grigio scuri a leucite analcimizzata, lapilli accrezionari ed impronte di

resti vegetali, passanti superiormente ad un deposito massivo da colata piroclastica a matrice cineritica giallo – arancione zeolitizzata contenete sparsi lapilli e blocchi scoriacei grigio scuri e neri a chimismo tefrifonolitico, litici vulcanici, granulari olocristallini e sedimentari, localmente si intercalano livelli e lenti di brecce litiche grossolane.

- Unità di Fosso La Tomba: depositi vulcano clastici secondari sabbiosi sabbioso conglomeratici, stratificati e a laminazione incrociata, da incoerenti a cementati, ad elementi pomicei, lavici ed arenitici di ambinte fluviale a luoghi travertinizzati.
- Formazione di Farnese: comprende depositi massivi, incoerenti o debolmente coerenti, da colata piroclastica, a matrice cineritica grigio chiara, contenente pomici grigio chiare o scure anche decimetriche.
- Formazione di Canino: comprende depositi massivi, da incoerenti a zeolitizzati, a matrice cineritica, contenenti pomici grigio chiaro biancastre, rosate o nere e inclusi litici lavici e sedimentari, riferibili a diverse unità di flusso piroclastico; spessori massimi di qualche decina di metri; associati ad orizzonti di lapilli pomicei grigio chiaro biancastri da caduta primaria sia inferiormente che al tetto. Localmente (ESE di Piansano) la formazione include orizzonti di lapilli pomicei giallognoli da caduta di spesore decimetrico alternati a livelli e banchi cineritici massivi a lapilli fini pomicei, da corrente piroclastica. Le pomici, sia da caduta che da flusso, presentano chimismo trachitico.
- Unità del Ciclo Neoautoctono Unità di Poggio Terzolo: argille, argille sabbiose grigio giallastre, a luoghi a luoghi con cristalli di gesso; localmente (Bosco delle Cavalline) intercalate superiormente con arenarie prossimali. Passanti lateralmente ed inferiormente alla litofacies (PTZ₃) costituita da orizzonti conglomeratici moderatamente cementati, ad elementi della successione Toscana e/o del Dominio Ligure ("pietra paesina" in blocchi anche metrici), in bancate mal classate, a matrice sabbiosa.

Nello schema che segue sono riportate le relazioni stratigrafiche fra i principali litosomi vulcanici lungo una sezione Ovest – Est attraverso la porzione meridionale del distretto Vulcanico Vulsino. Sono rappresentati i seguenti litosomi: Paleovulsino, Latera, Campi Vulsini (comprendenti i Vulsini Meridionali di Vezzoli et alii, 1987), Montefiascone e Bolsena – Orvieto (appartenenti tutti al Distretto Vulcanico Vulsino) e Vico (Vulcano di Vico o Distretto Vulcanico Vicano). Sono riportati i vincoli geocronologici salienti in Ma (milioni di anni) tratti dalla letteratura.

Schema delle relazioni stratigrafiche fra i principali litosomi

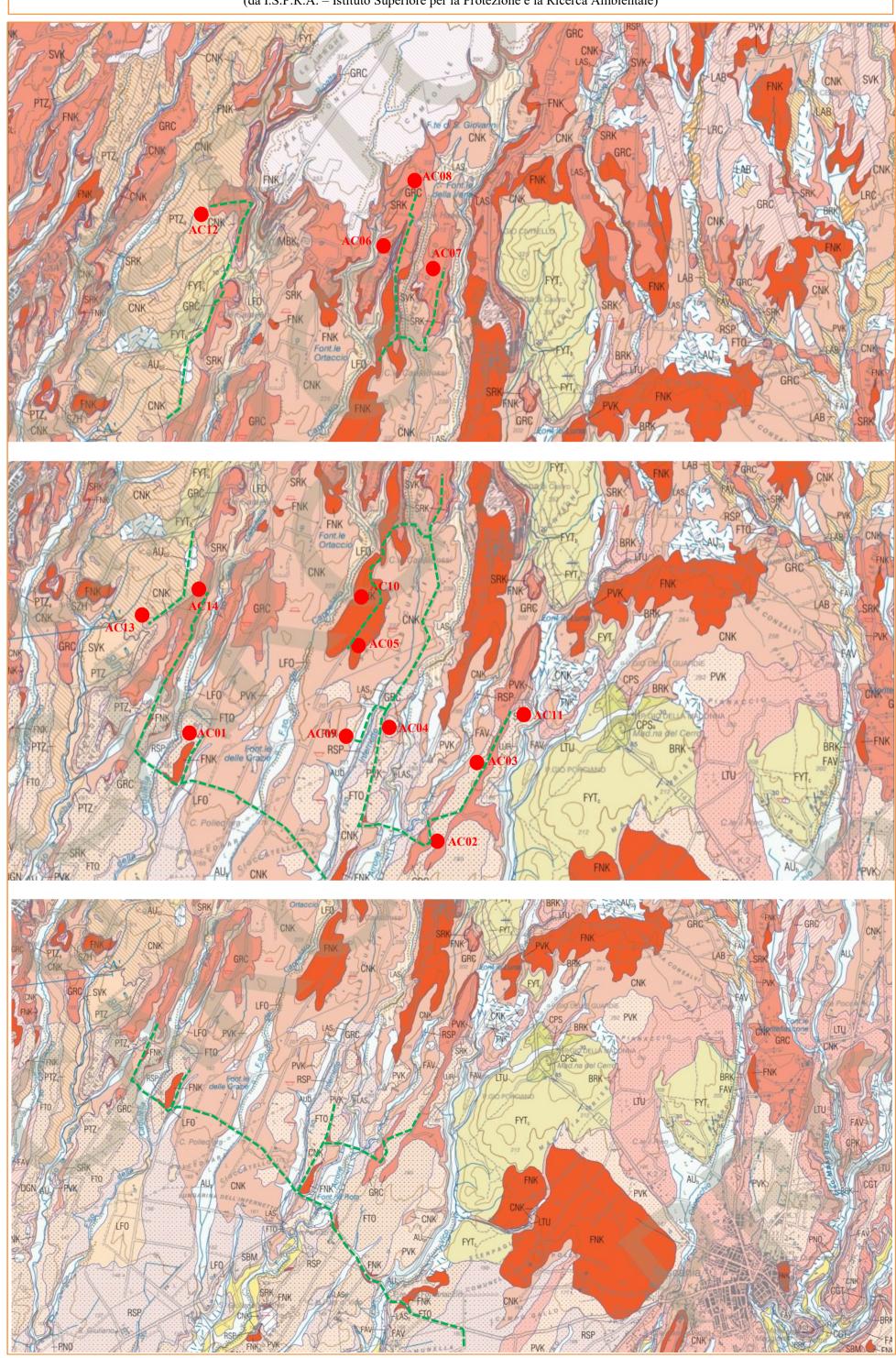
Nella tabella n° 1 è indicata la litologia affiorante in corrispondenza di ciascun aerogeneratore.

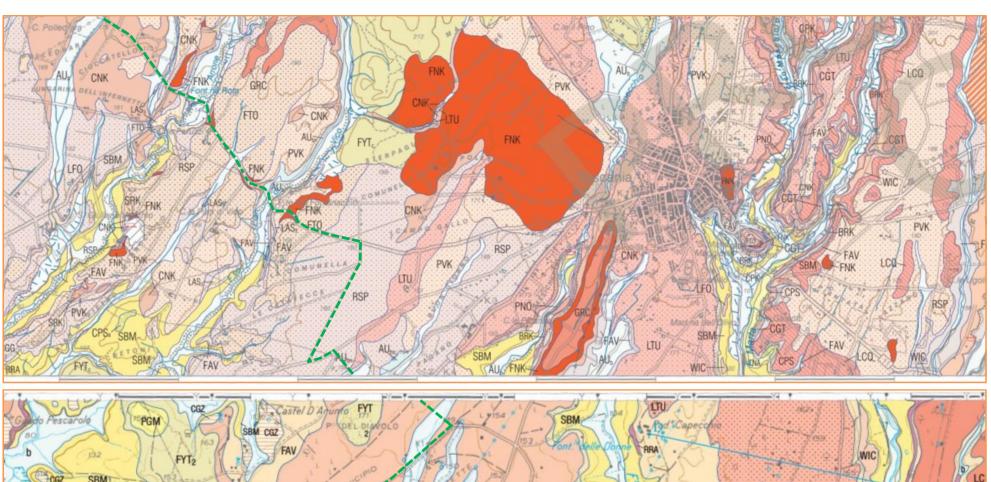
Tabella nº 1

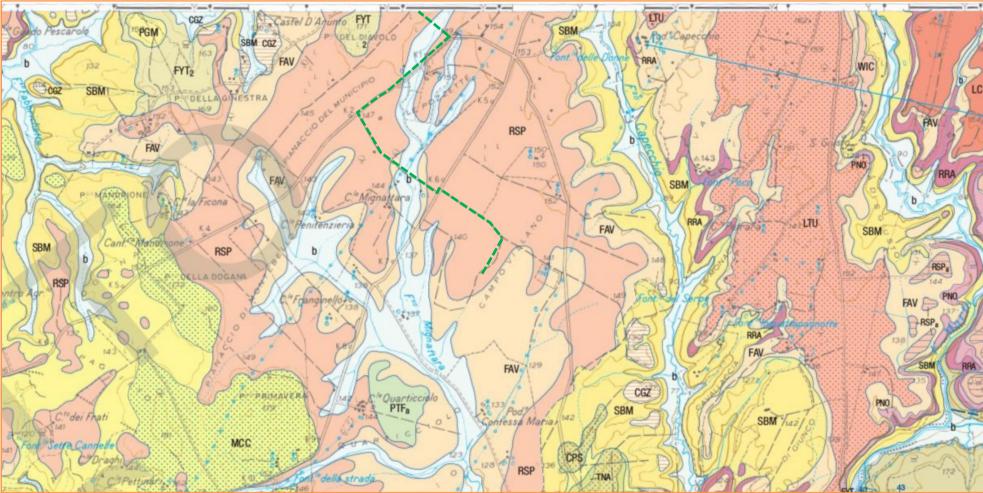
Denominazione aerogeneratore	Litologia in affioramento
AC06, AC07, AC08, AC14	Formazione di Grotte di Castro
	(Piroclastiti)
AC05, AC10	Formazione di Farnese
	(Colata piroclastica)
AC01, AC02, AC03, AC04, AC09, AC11	Unità di Fosso La Tomba
	(Agglomerati vulcanici)
AC12	Unità di Poggio Terzolo (Argille)
AC13	Formazione di Canino(Trachiti)

Il cavidotto di collegamento dei differenti aerogeneratori e di connessione alla sottostazione interferisce per la maggior parte con formazioni magmatiche, fatta eccezione di piccoli tratti che ricadono all'interno di depositi sedimentari.

La situazione litostratigrafia locale denota la presenza di ingenti spessori di vulcaniti sovrastanti le formazioni plio-pleistoceniche argillose.


Lungo il tracciato del cavidotto, oltre alle formazioni precedentemente indicate, si rinvengono in superficie anche:


- Depositi alluvionali
- Flysch della Tolfa.


delle quali viene di seguito riportata una breve descrizione:

- Depositi alluvionali: depositi di sabbie, limi e argille con intercalazioni ghiaiose e occasionali orizzonti torbosi.
- Flysch della Tolfa: alternanze di calcareniti, calcari marnosi, argille e silt di ambient marino di bacino torbiditico.

STRALCIO FOGLIO N. 344 "TUSCANIA" e 354 "TARQUINIA" della CARTA GEOLOGICA d'ITALIA 1:50.000 (da I.S.P.R.A. – Istituto Superiore per la Protezione e la Ricerca Ambientale)

Coperture boschive. OLOCENE derivanti dal disfacimento in situ di altre unità; localmente coperture

Depositi alluvionali

Sabble, limi e argille con intercalazioni ghiaiose e occasionali orizzonti torbosi; depositi di spiaggia del Lago di Bolsena. PLEISTOGENE SUPERIORE p.p.-OLOCENE

FORMAZIONE DI CANINO

MAZIONE DI CANINO
Comprende depositi massivi, da incoerenti a zeolitizzati, a matrice cineritica, contenenti
pomici grigio chiaro-biancastre, rosate o nere, anche decimetriche, a sanidino, generalmente
a gradazione inversa, e inclusi litici lavici e sedimentari (in prevalenza arentici), riferbili a
diverse unità di flusso pirociastico; spessori massimi complessivi nell'ordine di qualche
decina di metri; età: 278±8-260±6,5 ka (METZELTIN & VEZZOLI, 1983); 253±3 ka (NAPPI et desirita di rietiri. dei 27 de 200 35, 3 de 3 (Well ELELITI de 2022), 1983), 253 5 de (Well adii), 1985). Associati ad orizzonti di lapilil pomicei grigio chiarro-biancastri da caduta pliniana sia inferiormente (Pumice fall B, PALLADINO & AGOSTA, 1997; spessore fino a circa 2 m), che al tetto (Pumice fall C, PALLADINO & AGOSTA, 1997; o Boiceno fallout depositi 245,95-5,7 ka, BROCCHINI et alii, 2000; spessore massimo 2 m). Localmente (ESE di Piansano) la formazione include orizzonti di lapilili pomicei giallognoli da caduta di spessore decimetrico (Pumice fall A, PALLADINO & AGOSTA, 1997) alternati a livelli e banchi cinerito; massini il aprilli fini pomicei da compresi da compresi de compresi da compresi da compresi da caduta de fili seso. massivi a lapilli fini pomicei, da corrente piroclastica. Le pomici, sia da caduta che da flusso, presentano chimismo trachitico

GRC

FORMAZIONE DI GROTTE DI CASTRO IMAZIONE DI GHOTTE DI CASTHO

La pate infeliore della formazione comprende un orizzonte basale di lapilii fini scoriacei grigio
scuri, a chimismo shoshonitico, passanti a lapilii pomicai biancastri trachitico-fonolitici, da
caduta pliniana (spessore decimetrico), cui seguono bancate cineritiche bruno-verdognole,
piuttosto coerenti, da massive a laminate e con strutture a duna, da surge piroclastico,
contenenti lapilii fini scoriacei grigio scuri shoshonitici, diffusi lapilii accrezionari ed impronte di
resti vegetali e di piante ad alto fusto (spessore fino a 3 m). A tetto, separate da un paleosuolo, resti vegetali e di piante ad alto fusto (spessore fino a 3 m). A fetto, separate da un paleosuolo, sono presenti bancata cinertibiche giallo-verdognole, più o meno zeolitizzate, da massive a laminate (spessore di ordine metrico), da surge piroclastico, contenenti lapilli pomicei fini grigio scuri a leucrite analcimizzata, lapilli accrezionari ed impronte di resti vegetali, passanti superiormente ad un deposito massivo da colata piroclastica, a matrice cinertitica giallo-arancione zeolitizzata (sillari, contenente sparsi lapilli e biocchi scoriacei grigio scuri e neri a chimismo tetrifonolitico, litici vulcanici, granulari olocristallini e sedimentari (spessori anche superiori alla decina di metri). Localmente (es. fra il bordo orientale della Caldera di Latera e il Lago di Bolsena) si intercalano livelli e lenti di brecce litiche grossolane.

UNITÀ DI FOSSO LA TOMBA
Depositi vulcanociastici secondari sabbiosi e sabbioso-conglomeratici, stratificati e a laminazione incrociata, da incoerenti a cementati, ad elementi pomicei, lavici ed arenitici (spessore almeno 3 m), di ambiente fluviale, a luoghi travertinizzati o eteropici con DGN.

FORMAZIONE DI FARNESE

Deposito massivo, incoerente o debolmente coerente, da colata piroclastica, a matrice cineritica grigio chiara, contenente pomici grigio chiare o scure anche decimetriche, a gradazione inversa, a sanidino e leucite analcimizzata, inclusi lavici e sedimentari anche decimetrici, per lo più concentrati inferiormente; spessore massimo 8 m. Localmente al tetto affiorano depositi cineritici massivi o in banchi a laminazione piano-parallela e incrociata, con sciami di lapilli pomicei e diffusi lapilli accrezionari (spessore metrico). Al margine O del Foglio, alla base è presente un orizzonte di lapilli pomicei, a gradazione multipla e di spessore decimetrico, da caduta pliniana (*Pumice Fall F*, PALLADINO & AGOSTA, 1997). Presso Capodimonte l'unità poggia sull'orizzonte da caduta Pliniana *Ospedaletto Purnices* (po) del settore orientale vulsino (246,7±2,9 ka, NAPPI et alii, 1995). Il chimismo delle pomici cade a cavallo delle trachiti, fonoliti e latiti. Età: 231-233 ± 4 ka (TURBEVILLE, 1992)

UNITÀ DI ROCCARESPAMPANI

Depositi ghiaisos-abbiosi e limo-argillosi, con livelli diatomitici, in facies lacustri, palustri e fluviali, queste ultime contraddistinte da clasti vulcanici (pomici, scorie e litici lavici), sottile stratificazione e laminazione piano-parallela e incrociata; locale intercalazione di livelli pedogenizzati ed orizzonti di lapilii scoriacei o pomicei da caduta, in genere rimaneggiati. Spessore massimo circa 20 m in affioramento; almeno 30 m in sondaggio. Estensione stratigrafica fino alla base di CNK.

LAVE DI ARLENA DI CASTRO

TE DI ARLENA DI CASTINO

Lave in colata separate da intervalli cineritici di spessore metrico. Lave inferiori grigio scure, compatte, scarsamente porfiriche per clinopirosseno e rara leucite analcimizzata, a chimismo da fonotefritico a terifronolitico (spessore metrico; LAS). Lave intermedie grigio scure, compatte, subalfiricho per raro clinopirosseno, a chimismo shoshonitico-fonotefritico (spessore metrico; LAS). Lave superiori grigio scure, compatte, porfiriche per fenocristalli di legisla sende per celiforetico e disperience per ell'interiori con establicatione. leucite anche centimetrica e clinopirosseno millimetrico; presentano localmente esfoliazione cipollare (spessori almeno 6 m); il chimismo è tefrifonolitico(LAS₃).

FLYSCH DELLA TOLFA (FYT)

Alternanze di calcarenti, calcari marnosi, argille e silt di ambiente marino di bacino torbiditico. Sono state distinte tre litofacies. Associazione arenaceo-calcareo-pelitica (FT₃). Costituita da calcari e calcari marnosi grigi e nocciola, in strati medi e sottili, con frequente paesinizzazione, da marne bianche e giallastre, in crizzonti metrici, con tipica frattruzione a "saponetta" de aclacarenti fini, sepsos orieristalizzate, con bande oracoreo. Sono interiore alternati orizzonti di torbiditi calcaree, in strati medi e sottili, di colore rossastro e marrone, con laminazioni piano-parallele e calcilutti di colore rossastro o ruggine o grigio verde in strati medi. Sono presenti livelli di microconglomerati, con matrice arenacea di colore nocciola. A Monte Carino Tassociazione mostra uno spessore in affioramento di circa 300 m. Associazione pelitico-calcareo-arenacea (FT), Argilliti grigio scuro, nerastre e rossicce, intercalate a strati decimetrici di arenarie finisime grigio scuro e di calcari verdognoli o nerastri. I lattorili sono fortemente tettorizzate i persentano abbondanti vene di calcite e patine di alterazione ocracee. Arenarie micacee (FT₁) da fini a grossolane, grigio piombo e marroni, in strati medi e spessi a gradazione normale e nella parte atla a a laminazione planare. In mancanza di dali biostratigrafici, tetà è genericamente attributa in analogia con i fogli limitrofi. CRETACICO SUPERIORE p.p. PALEOGENE

UNITÀ DI POGGIO TERZOLO

TA DI POGGIO TERZOLO

Agille, argille sabbiose grigio-giallastre, a luoghi con cristalli di gesso (PTZ); localmente (Bosco delle Cavalline)
intercalate superiormente con arenarie prossimali. Passanti laterarmente e inferiormente alla litofacies prevalente
nel Foglio (PTZ), costituta da orizzonti conglomeratici moderatamente cementali, ad elementi della Successione
Toscana e/o del Dominio Ligure ("pietra paesina" in blocchi anche metrici), in bancate mal classate, a matrice
sabbiosa arrossata. Attributbili ad ambienti continentali, conoidi prossimali o al più tipo alfuvial fan. L'analisi delle
porzioni argillose ha permesso di individuare la tipica associazione ad estracodi di età: MESSINIANO SUPERIORE "Lago-Mare"

Pag.18

5. <u>ASSETTO MORFOLOGICO ED IDROGRAFICO – BACINI DISTRETTUALI</u> <u>APPENNINICI</u>

L'attuale assetto morfologico della zona è il risultato dell'azione combinata di forze endogene ed esogene che hanno contribuito e continuano a contribuire al modellamento inarrestabile della superficie terrestre.

Mentre le forze endogene agiscono all'interno del pianeta le forze esogene agiscono sulla superficie; tra le prime vanno ricordate il vulcanismo, che nella zona in studio ha avuto una particolare ripercussione, i movimenti magmatici, i terremoti e il movimento delle placche continentali; tra le seconde ricordiamo gli agenti atmosferici, le acque correnti, i ghiacciai e i movimenti marini.

I vulcani laziali nel loro complesso presentano caratteristiche morfologiche particolari rispetto a quelle delle altre regioni vulcaniche italiane, infatti, la messa in posto di lave, piroclastiti di ricaduta e soprattutto di importanti colate piroclastiche, connesse ad un'attività altamente esplosiva, ha originato ampi plateau debolmente degradanti dalle aree centrali verso le zone periferiche.

I vulcani alcalino – potassici, interessati da un'attività di tipo areale, come nel caso del Distretto Vulsino, sono morfologicamente più ampi e più piatti di tutti gli altri; hanno la caratteristica di avere più centri di emissione distribuiti su una vasta area e depressioni vulcano – tettoniche occupate da specchi d'acqua (Lago di Bolsena).

Nell'area Vulsina si possono distinguere forme di modellamento negative e positive, tra le prime si possono riconoscere le grandi caldere di Latera e Montefiascone tra le seconde possono essere connessi i numerosi coni di scorie e ceneri e l'imponente colata lavica della Selva del Lamone.

L'azione modellatrice delle acque correnti superficiali ha fortemente inciso i rilievi e le ampie superfici strutturali debolmente inclinate generando valli fluviali strette e profonde.

Laddove la natura delle rocce è prevalentemente litoide, a causa della forte resistenza opposta all'erosione, le pareti vallive sono principalmente subverticali; laddove, invece, si osserva un'alternanza di colate piroclastiche e lave a piroclastiti di ricaduta le pareti vallive assumono un andamento quasi a gradoni.

In contrasto con la morfologia dei versanti i fondi vallivi si presentano spesso ampi e piatti; ciò è probabilmente una conseguenza di processi di sovralluvionamento delle valli strettamente collegato con il sollevamento eustatico del livello marino al ritiro dei ghiacciai wurmiani. L'andamento PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI ARLENA DI CASTRO E TESSENNANO

radiale e centrifugo delle valli rispetto ai centri vulcanici è spesso legato alla presenza di linee di frattura e/o faglie estremamente recenti che hanno interessato la copertura vulcanica.

Nell'area in studio non sono state riconosciute forme morfologiche di particolare interesse, ma è presente un reticolo idrografico secondario molto sviluppato, infatti a fronte di una rete idrografica dell'intera area settentrionale della regione Lazio caratterizzata dalla presenza di tre corsi d'acqua principali: il Torrente Arrone, il Fiume Marta e il Fiume Fiora nella superficie in studio sono presenti una serie di corsi d'acqua minori con direzione prevalente NE-SW le cui acque alimentano il Torrente Arrone, dove confluiscono a sud dell'area in studio e che rappresenta l'asta fluviale principale

Questi corsi d'acqua hanno inciso valli non eccessivamente profonde, sub-parallele tra loro; in alcuni casi l'azione erosiva esercitata nella fase di massima attività ha portato a giorno le rocce laviche profonde che ne costituisco il letto di scorrimento.

L'area in studio è compresa tra il Fosso della Tomba ad Ovest ed il Fosso di Pian di Vico ad Est; nell'intervallo compreso tra i su menzionati corsi d'acqua si individuano da Ovest verso Est: il Fosso della Cadutella, il Fosso Cappellaro, che segna il limite comunale tra Tessennano e Arlena di Castro, il Fosso dell'Infernetto, il Fosso della Vena, il Fosso Secco e il Fosso di Pian di Vico.

È presente anche un "reticolo idrografico" e compluvi senza denominazione che rappresenta il percorso preferenziale delle acque piovane, talvolta sono così poco profondi da venire periodicamente rimossi dalle operazioni di preparazione del terreno per le colture agricole.

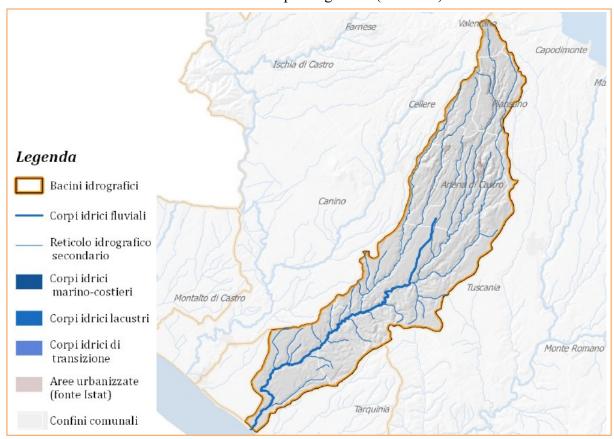
Il progetto oltre al parco eolico comprende un cavidotto di collegamento degli aerogeneratori e di connessione alla sottostazione esistente ubicata in loc. campo Villano nel Comune di Tuscania.

Mentre i singoli aerogeneratori non interferiscono con i corsi d'acqua l'intersezione tra cavidotto e reticolo idrografico demaniale dà origine a nove interferenze che sono state analizzate nel dettaglio nella *Relazione Idraulica Cavidotto*.

I corsi d'acqua interessati dagli attraversamenti sono:

- Fosso della Cadutella
- Fosso dell'Ortaggio
- Fosso Valle Cupa
- Torrente Arrone
- Fosso Secco
- Fosso Arroncino.

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI ARLENA DI CASTRO E TESSENNANO


La presenza di un reticolo idrografico ben sviluppato contribuisce a conferire all'area un tipico aspetto morfologico costituito da un'alternanza di "dossi", disposti parallelamente ai corsi d'acqua e valli fluviali, quindi, nell'insieme il paesaggio può essere definito di tipo collinare.

Le sommità dei "dossi" sono abbastanza ampi e sub-pianeggianti, principalmente adibiti ad attività agricola.


Le forme morfologiche riconosciute nella zona in studio e quelle limitrofe, evidenziate nella "Carta geomorfologica", allegata, sono:

- orli di scarpata;
- corsi d'acqua e compluvi
- displuvi.

L'area di progetto comprensiva anche del cavidotto di collegamento degli aerogeneratori e di connessione alla sottostazione esistente, ubicata in loc. campo Villano nel Comune di Tuscania, ricade all'interno dei Comuni di Tessennano, Arlena di Castro e Tuscania ed i bacini idrografici principali di riferimento sono rispettivamente: Arrone Nord e Marta di cui si riportano i perimetri come individuati nel Piano di Tutela delle Acque Regionale (P.T.A.R.).

Inquadramento territoriale Bacino "Arrone Nord"

Inquadramento territoriale Bacino "Marta"

Anche se le zone individuate per l'installazione degli aerogeneratori sono costituite da superfici topograficamente più elevate, caratterizzati da un andamento morfologico molto "dolce" e dove non si osservano fenomeni di erosione in atto e/o antichi va approfondito il concetto di "rischio idrogeologico" locale, ovvero il rischio per frane (rischio geomorfologico) e di inondazioni (rischio idrologico).

È di fondamentale importanza, infatti, individuare eventuali zone a maggior rischio idrogeologico per poter predisporre le dovute opere di difesa e di limitazione del danno.

La Regione Lazio si è dotata in passato, a seguito di una serie di attività conoscitive e di acquisizione dati, di un *Piano di Assetto Idrogeologico* (P.A.I.) che rappresenta lo strumento conoscitivo, normativo e tecnico – operativo mediante il quale l'Autorità dei Bacini Regionali del Lazio ha individuato, nell'ambito del proprio territorio, le aree da sottoporre a tutela per la prevenzione e la rimozione delle situazioni di rischio e pianificato e programmato sia gli interventi finalizzati alla tutela e alla difesa delle popolazioni, degli insediamenti, delle infrastrutture e del suolo dal rischio di frana e d'inondazione, sia le norme d'uso del territorio.

L'area in studio rientra all'interno del Bacino Distrettuale dell'Appennino Centrale.

Rappresentazione dei Distretti idrografici

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI ARLENA DI CASTRO E TESSENNANO

L'Autorità di Bacino Distrettuale dell'Appennino Centrale ha rivisto, predisposto e pubblicato le Mappe di Pericolosità e di Rischio aggiornate.

Nella redazione delle Mappe di Pericolosità sono state considerate: le alluvioni rare di estrema intensità; le alluvioni poco frequenti; le alluvioni frequenti.

Nella redazione delle Mappe di Rischio sono stati considerati diversi elementi quali il numero indicativo di abitanti potenzialmente interessati, le infrastrutture e strutture strategiche, i beni ambientali, storici e culturali di rilevante interesse, la distribuzione e tipologia delle attività economiche insistenti nell'area potenzialmente interessata, gli impianti di cui all'all. 1 al D. Lgs. 59/2005 e le Aree protette individuate all. 9 parte III del D. Lgs. 152/2006.

Il materiale di base, utilizzato per la redazione delle mappe, è costituito dal P.A.I. esistente, sul quale sono stati effettuati interventi di modificazione, integrazione e omogeneizzazione, secondo le specificità previste dal D. Lgs. 49/2010 e le linee di indirizzo rilasciate dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare.

Dalla consultazione di tali Mappe risulta che i siti di interesse all'interno del progetto di cui trattasi non ricadono in zone soggette a fenomeni di esondazione.

Dalla consultazione della Tavola 2.03 Nord delle "Aree Sottoposte a Tutela per Dissesto Idrogeologico" dell'Autorità di Bacino Distrettuale dell'Appennino Centrale - Piano Stralcio per l'Assetto Idrogeologico (P.A.I.) – Bacini Regionali del Lazio approvato con Deliberazione del Consiglio Regionale n. 17 del 04.04.2012 (BURL 21 del 07.06.2012 S.O. n° 35) e s.m.i. si evince che l'intera area di intervento non ricade in zona di tutela per dissesto idrogeologico.

Del resto il reticolo idrografico, come già detto, è caratterizzato da aste fluviali che per la maggior parte mostrano forti approfondimenti di alveo ed un regime pluviometrico che è caratterizzato da una piovosità media annua di circa 900 mm, con precipitazioni concentrate nel periodo ottobre – marzo con medie giornaliere anche molto elevate.

Tali situazioni, unitamente a quelle geo-litologiche ed idrogeologiche, determinano un regime prevalentemente torrentizio dei corsi d'acqua senza far prevedere fenomeni di inondazione.

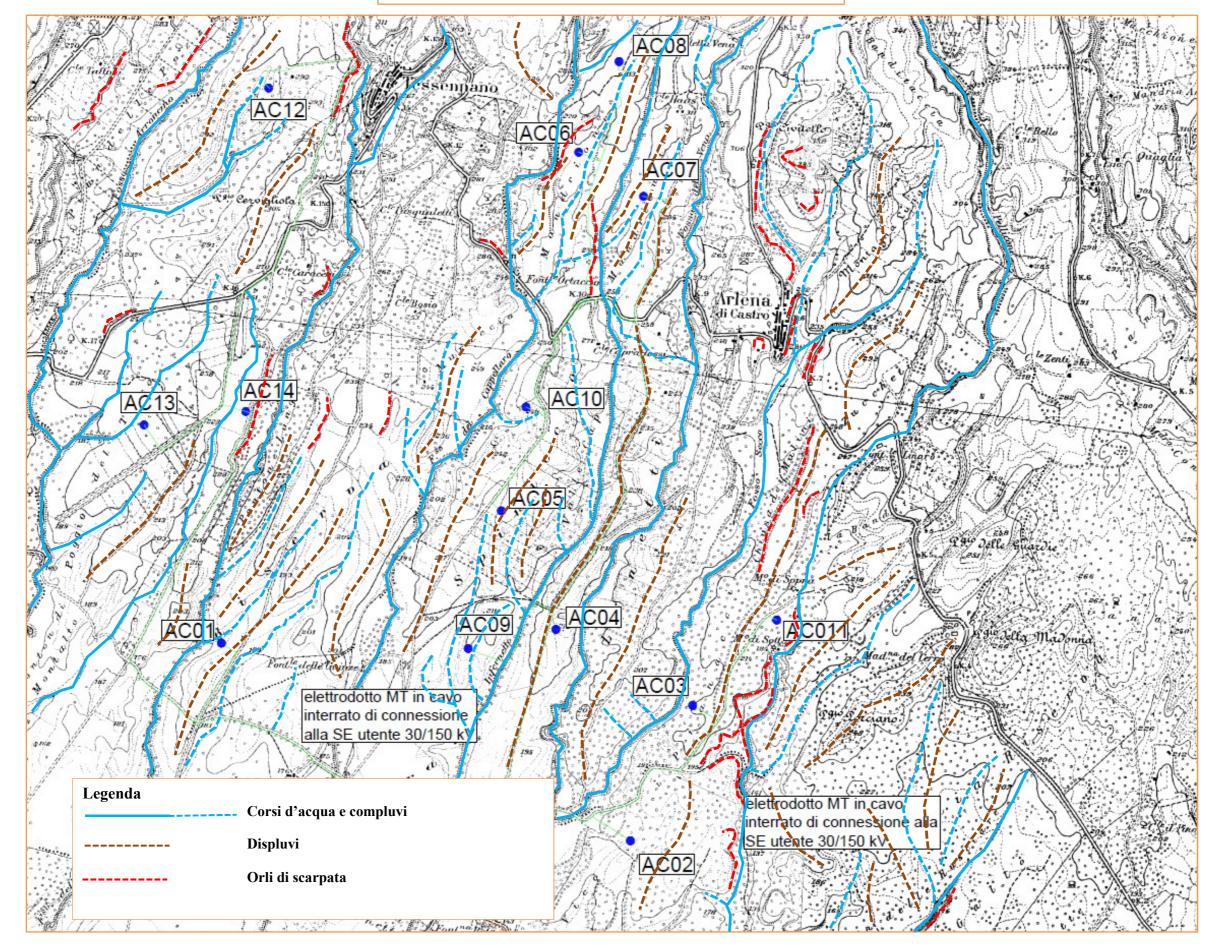
Laddove si rendono necessari attraversamenti di corsi d'acqua per la messa in opera del cavidotto si dovrà operare in modo da non ridurre la sezione utile al deflusso.

La difesa del suolo e la tutela dell'assetto idrogeologico viene applicata a tutto il territorio provinciale, ma in particolare alle aree sottoposte a vincolo idrogeologico e alle aree vulnerabili caratterizzate localmente da condizioni geomorfologiche, idrauliche e di uso del suolo che possono

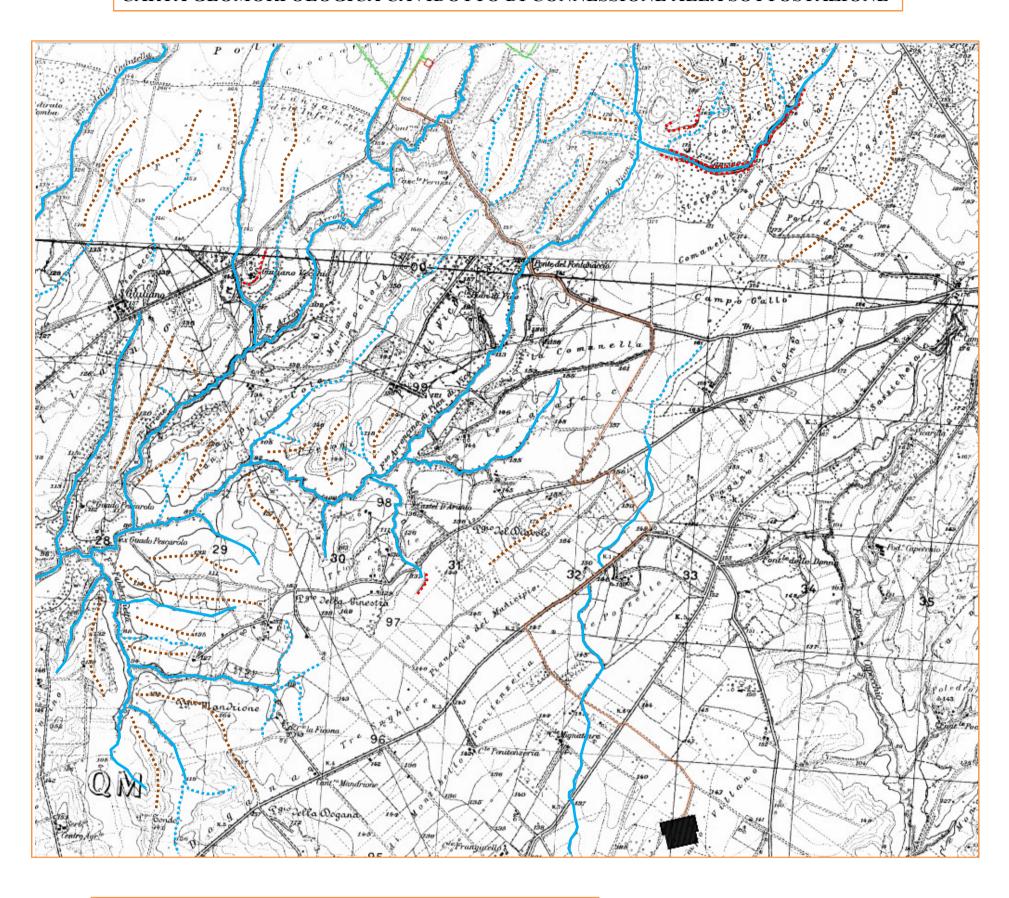
Per quanto riguarda la provincia di Viterbo la sensibilità del territorio al dissesto idrogeologico è principalmente dovuta alle condizioni morfologiche locali; infatti, da un punto di vista idrogeologico, il territorio della Regione Lazio non presenta situazioni di pericolosità particolarmente diffuse e la Provincia di Viterbo presenta il numero di aree a rischio frana e inondazione più basso dopo la provincia di Rieti. L'attenzione è rivolta particolarmente all'intenso grado di antropizzazione del territorio.

Sulla base del catalogo delle frane sul territorio nazionale contenuta nel PROGETTO AVI del Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche (GNDCI) del C.N.R., si può constatare che i dissesti si concentrano in maggior parte nelle porzioni occidentali del territorio della provincia, lungo le valli del Tevere e del Paglia, mentre in minima parte sono ubicate ad Ovest del Lago di Bolsena.

I comuni con la superficie in frana maggiore sono quelli posti nel bacino idrografico del Tevere e del Paglia e precisamente: Acquapendente, Bagnoregio, Fabbrica di Roma, Soriano, Orte, Celleno, Proceno, Lubriano, Civitella D'Agliano e Castiglione in Teverina; sono queste, infatti, le zone dove affiorano in maggiore quantità le argille plioceniche che, profondamente erose, scalzano gli speroni tufacei sovrastanti, dando vita a fenomeni di dissesto dei versanti.

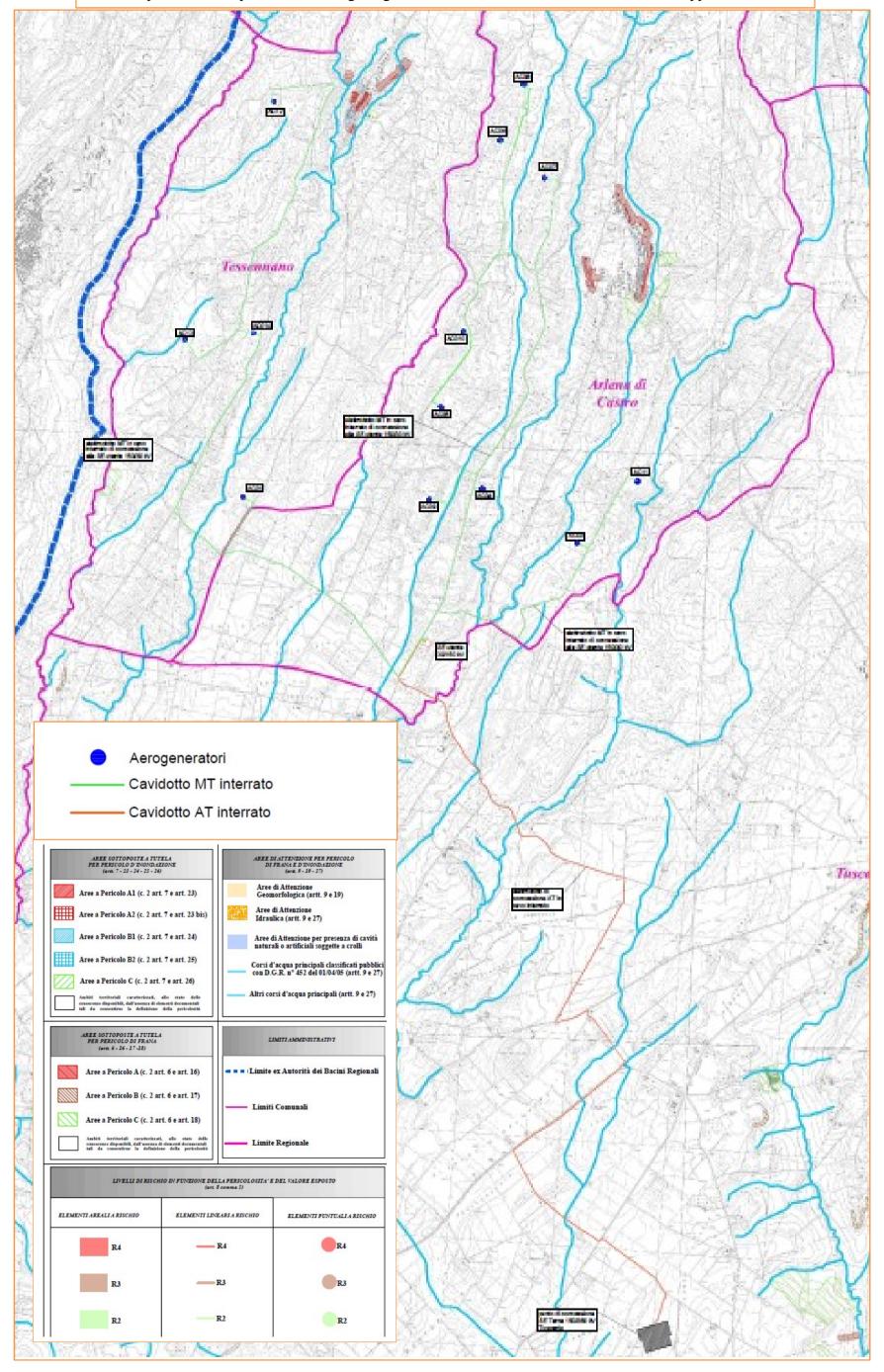

Nella Tabella viene messo a confronto il territorio soggetto a vincolo idrogeologico ed il corrispondente numero di frane per kmq.

Comune	Sup.vinc.	%sup. vincolata	Sup.frane areali(ha)	%sup.in frana	N°frane areali	N°frane lineari	N°frane totali	N° frane/kmq
Arlena di Castro	208	9	0.0	0.00	0	0	0	0.00
Tessennano	300	21	0.0	0.00	0	0	0	0.42
Tuscania	8.030	39	8.3	0.04	5	82	87	0,18


Da quanto su esposto si può affermare che non sono stati rilevati fenomeni sorgentizi o di ristagno delle acque che risultano sufficientemente drenate dai terreni di copertura superficiali. L'interferenza tra le opere di progetto e i corsi d'acqua risulta di fatto trascurabile ai fini della fattibilità idraulica e geomorfologica dell'intervento.

Si ritiene, pertanto, di poter formulare un giudizio favorevole di fattibilità dell'opera in progetto, in riferimento alla stabilità morfologica del versante ed alle acque di scorrimento superficiali.

CARTA GEOMORFOLOGICA IMPIANTO EOLICO


CARTA GEOMORFOLOGICA CAVIDOTTO DI CONNESSIONE ALLA SOTTOSTAZIONE

Legenda	Corsi d'acqua e compluvi
	Displuvi
	Orli di scarpata

STRALCIO TAVOLA 2.03 NORD

Aree Sottoposte a Tutela per Dissesto Idrogeologico" dell'Autorità di Bacino Distrettuale dell'Appennino Centrale

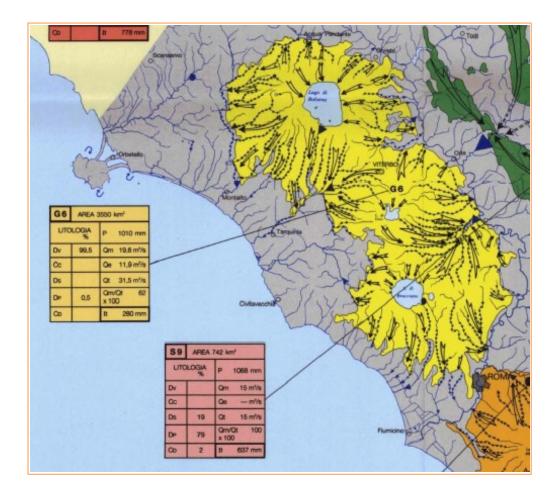
6. INQUADRAMENTO IDROGEOLOGICO

La circolazione idrica sotterranea è legata alla permeabilità dei terreni affioranti che consentono una infiltrazione efficace delle acque più o meno elevata, ma la capacità idrica di una falda sotterranea è soprattutto funzione dello scorrimento orizzontale sotterraneo. Quest'ultimo quasi mai rispecchia l'andamento morfologico superficiale ed è condizionato da eventuali presenze di barriere impermeabili dovute a locali risalite del substrato argilloso.

Le aree in studio rientrano nell'Unità Idrogeologica dei Monti Vulsini che è governata essenzialmente da motivi strutturali.

La morfologia del letto delle formazioni vulcaniche vulsine è dominata dalla vastissima depressione derivante dalla coalescenza delle caldere di sprofondamento di Latera e Bolsena che raggiungono rispettivamente i valori di – 1200 e – 800 m s.l.m. (ENEL – VDAG – URM, 1994). I fenomeni di collasso vulcano – tettonico hanno prodotto l'interruzione della lunga dorsale di Castell'Azzara-Monte Razzano che si estende dall'Amiata al Lago di Bracciano, impostata su formazioni argilloso-calcareo-arenacee di facies ligure. Il substrato corona la depressione suddetta secondo un ideale percorso che congiunge Tuscania, Arlena di Castro, Cellere, Ischia di Castro, Farnese, Sorano, Acquapendente, Torre Alfina, Castel Giorgio, Bagnoregio, Celleno, Monte Razzano. Questo rilievo, mascherato dalle vulcaniti, funge da spartiacque sotterraneo e da vero limite idrogeologico per l'Unità Vulsina la cui quota oscilla, nei settori più elevati, dai 200 agli oltre 500 metri s.l.m.

Esclusivamente verso Sud, in corrispondenza dell'allineamento Marta – Tuscania, essa si deprime fino a 50 metri s.l.m., dando modo alla falda regionale di defluire verso il mare.


Le culminazioni del substrato pre-vulcanico, solo in piccola parte affioranti, determinano la presenza e la disposizione degli alti piezometrici che coronano la depressione occupata dal Lago di Bolsena. Questi rilievi sepolti fungono da limiti a flusso nullo e indirizzano il drenaggio sotterraneo della falda basale verso i seguenti punti di recapito:

• Fiume Fiora. Il bacino di alimentazione è interregionale e comprende in riva sinistra i Comuni di Sorano, Pitigliano, Ischia di Castro, Cellere, Canino, Montalto di Castro. Nel bacino è presente il piccolo Lago di Mazzano.

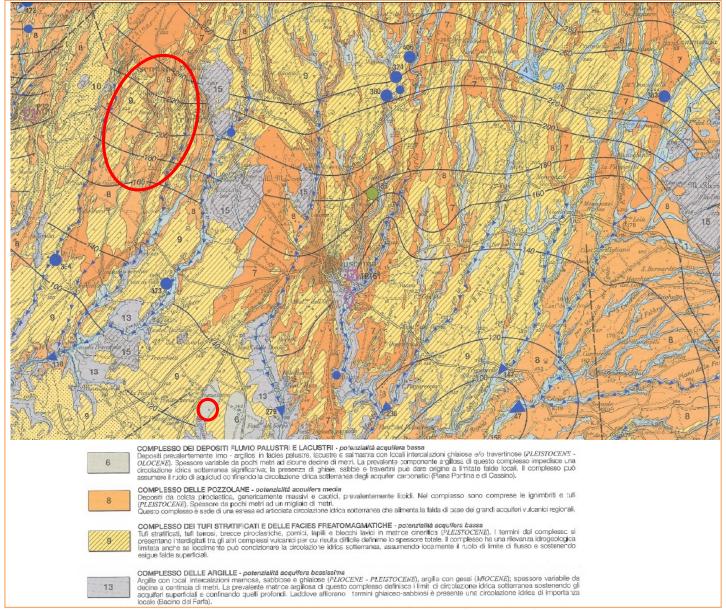
- Fiume Marta Lago di Bolsena. Il bacino del Fiume Marta è uno dei più importanti del Lazio ed ospita il Lago di Bolsena che è il più esteso dei laghi vulcanici italiani e non solo. Esso comprende i territori di molti comuni tra cui: Bolsena, Montefiascone, San Lorenzo Nuovo, Grotte di Castro, Tessennano, Tuscania, Onano. Gli spartiacque con il F. Fiora ed il F. Paglia si impostano spesso su culminazioni del substrato a bassa permeabilità.
- Torrente Rigo e Vezza sinistro. Sono alimentati dal bacino idrogeologico che comprende i territori dei Comuni di Fastello, Grotte santo Stefano, Sipicciano.
- Torrenti Torbido e Chiaro. Sono alimentati dal bacino idrogeologico che comprende i territori dei Comuni di Celleno, Graffignano e Civitella d'Agliano.
- Torrenti Romanella e Castiglione. Sono alimentati dal bacino dei Comuni di Bagnoregio, Porano, Castel Rubello, Castiglione in Teverina.
- Torrente Stridolone, Sabissone e F. Paglia. Sono alimentati dal bacino idrogeologico che comprende il territorio del Comune di Acquapendente. Il drenaggio di questo piccolo bacino contribuisce al sostegno della portata di magra del basso corso del F. Paglia.

Lo spessore della serie vulcanica raggiunge, nell'Unità Idrogeologica Vulsina, valori assai rilevanti; ciò si riflette sull'entità delle risorse e riserve idriche immagazzinate che sono da considerare tra le più importanti del dominio vulcanico laziale. L'analisi delle direttrici di drenaggio presenti nell'Unità Vulsina evidenziano che una notevole parte delle risorse confluisce verso la Regione Toscana e la Regione Umbria. Mentre nel settore meridionale l'assetto geologico – strutturale e la piezometrica basale evidenziano che i corsi d'acqua Marta e Vezza sono in parte alimentati dall'Unità dei Monti Cimini. La separazione in profondità tra Vulsini e Cimini è legata principalmente alla presenza degli alti strutturali di Monte Razzano e Monte Cimino.

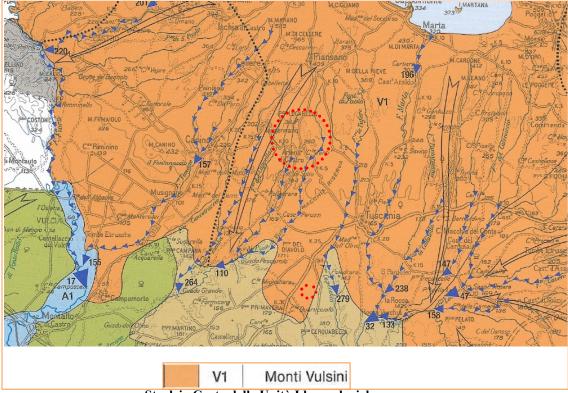
In Boni et al., 1986 l'area in studio è inserita all'interno della "struttura idrogeologica G6" (Gruppo dei Monti Vulsino, Cimini, Sabatini e Tolfetano-Ceriti).

Viene di seguito individuata l'area in studio anche nella cartografia relativa alla situazione idrogeologica e alle unità idrogeologiche della Regione Lazio redatto dalla Regione Lazio (Dipartimento Territorio – Direzione Regionale Ambiente – Area Difesa del Suolo), dalla Sapienza (Università di Roma – Centro di ricerca CERI) e da Roma Tre (Università degli Studi – Dipartimento di Scienze Geologiche) che è il risultato di anni di ricerca e catalogazione di dati e che rappresenta un supporto tecnico, senza dubbio, molto valido per la verifica delle caratteristiche idrogeologiche di tutta la regione.

In particolare lo studio ha prodotto due tipi di cartografie:


- ❖ CARTA IDROGEOLOGICA in scala 1:100.000
- ❖ CARTA DELLE UNITA' IDROGEOLOGICHE in scala 1:250.000.

Nella prima (CARTA IDROGEOLOGICA) sono stati riconosciuti 25 complessi idrogeologici costituiti da litotipi con caratteristiche idrogeologiche simili; le caratteristiche dei differenti complessi sono espressi in funzione del grado di potenzialità acquifera, ovvero della capacità di ciascun complesso di assorbire, immagazzinare e restituire acqua. Nel complesso sono state individuate 7 classi di potenzialità acquifera in funzione della permeabilità media e dell'infiltrazione efficace del complesso stesso.


Nella seconda (CARTA DELLE UNITA' IDROGEOLOGICHE) il territorio della Regione Lazio è stato suddiviso in 47 unità idrogeologiche. Ad ognuna corrisponde un sistema idraulicamente definito, in cui la presenza di limiti idraulici, di natura generalmente nota, delimita un'area di ricarica. Le differenti unità idrogeologiche sono distinte dalla natura litologica degli acquiferi contenuti e sono caratterizzate da un valore medio di infiltrazione efficace che è espressione della ricarica media annua. L'infiltrazione efficace, secondo i principi dell'idrogeologia quantitativa corrisponde alla valutazione delle risorse idriche sotterranee rinnovabili di ciascuna unità idrogeologica.

Si riportano gli stralci di entrambe le carte dalle quali si evince:

- Che l'area in studio ricade all'interno dell'unità idrogeologica "V1" Monti Vulsini" con una infiltrazione efficace media annua di circa 240mm
- Che l'area di parco eolico interessa il "Complesso delle pozzolane (8)" a potenzialità acquifera media e il "Complesso dei tufi stratificati e delle facies freato magmatiche (9)" a potenzialità acquifera bassa; mentre il cavidotto di connessione lungo il suo percorso intercetta anche il "Complesso delle argille (13)" a potenzialità acquifera bassissima ed infine la sottostazione esistente ricade nel "Complesso dei depositi fluvio-palustri (6)" a potenzialità acquifera bassa.

Stralcio Carta Idrogeologica

Stralcio Carta delle Unità Idrogeologiche

I dati bibliografici, integrati con le informazioni che è stato possibile reperire da una ricognizione di punti di captazione esistenti, hanno consentito di verificare che l'acquifero di basa è quasi esclusivamente contenuto all'interno delle vulcaniti costituite da alternanze di scorie, lave e tufi ed aventi come substrato impermeabile la formazioni delle argille plio-pleistoceniche che, ad ovest dell'abitato di Tessennano risalgono fino ad affiorare, condizionando la circolazione idrica sotterranea.

All'interno di tutto lo spessore delle vulcaniti possono essere presenti livelli quali lave altamente compatte, tufi argillificati, depositi lacustri, paleosuoli che fungono localmente da substrato impermeabile, dando origine a falde cosiddette sospese, superficiali ed aventi una capacità idrica ridotta, non sempre sfruttabili.

L'area interessata dalla realizzazione del campo eolico è compresa, procedendo da Nord verso Sud, tra l'isopieza 240 metri s.l.m. e l'isopieza 160 metri s.l.m., deprimendosi fino a 100 metri s.l.m. nella zona della sottostazione. In considerazione delle quote topografiche la piezometrica, in corrispondenza del campo eolico, si attesta ad una profondità compresa tra 40 e 70 metri dal piano di campagna.

I valori del coefficiente di permeabilità "K" possono essere individuati nel range 10^{-5} / 10^{-6} m/sec.

Decisamente impermeabile può essere considerato invece il substrato argilloso con valori di "K" compresi tra 10⁻⁶ e 10⁻⁹ cm/sec.

7. <u>DESCRIZIONE DELLE ATTIVITA' PREGRESSE DEL SITO</u>

I siti di installazione dei singoli aerogeneratori sono aree a vocazione agricola; il cavidotto è stato posizionato lungo strade sterrate interpoderali e strade asfaltate.

Per tale area non si evidenzia l'esistenza di studi e/o certificazioni effettuati da Enti ambientali nazionali e/o regionali competenti che riguardano i valori di fondo naturale dell'area in cui è inserita l'opera in esame.

Non si hanno notizie in merito ad eventi particolari che abbiano potuto causare inquinamenti; non è situata in prossima ad attività industriali e/o artigianali da ritenersi pericolose, non è stata osservata la presenza di scarichi di acque reflue industriali e/o urbane, serbatoi o cisterne interrate, sia dismesse che rimosse che in uso, contenenti idrocarburi o sostanze etichettate pericolose.

8. DESCRIZIONE DELLE OPERE DA REALIZZARE E MODALITA' DI SCAVO

Per quanto riguarda la descrizione dettagliata delle opere da realizzare si rimanda alle relazioni specifiche.

In questa sede ci si sofferma sulle attività che produrranno inevitabilmente terre e rocce da scavo: .

- Realizzazione strade temporanee per necessità di cantiere;
- Adeguamento delle strade sterrate esistenti, ma non funzionali alle necessità di cantiere;
- Sistemazione livellamento piazzole singoli aerogeneratori;
- Realizzazione fondazioni:
- Messa in opera del cavidotto AT e MT.

Per la realizzazione delle su indicate opere si prevede l'esecuzione di diverse tipologie di scavo:

- scavi a sezione ampia;
- scavi a sezione ristretta.

Gli scavi a sezione ampia riguarderanno in particolare la messa in opera del plinto di fondazione, saranno eseguiti con mezzi meccanici evitando scoscendimenti e franamenti.

I materiali rinvenuti dagli scavi realizzati per l'esecuzione delle fondazioni:

- potranno essere utilizzati per il rinterro di ciascuna fondazione;
- potranno essere impiegati per il ripristino dello stato dei luoghi, relativamente alle opere temporanee di cantiere;
- potranno essere impiegati per la realizzazione/adeguamento delle strade e/o piste nell'ambito del cantiere.

Qualora si dovesse verificare un eccesso rispetto alla possibilità di reimpiego dell'ambito del cantiere le terre saranno gestiti quale rifiuto ai sensi della parte IV del D.lgs 152/2006 e ss.mm.ii. e trasportati presso un centro di recupero autorizzato e/o in discarica autorizzata.

Gli scavi a sezione ristretta, necessari per la posa dei cavidotti, avranno ampiezza ridotta, i materiali prodotti saranno momentaneamente depositati in prossimità dello scavo o in appositi siti individuati all'interno del cantiere per poi essere riutilizzati in fase di rinterno.

Gli scavi saranno effettuati con mezzi meccanici, evitando scoscendimenti, franamenti ed in modo tale che le eventuali acque di scorrimento superficiale non vadano a riversarsi nei cavi.

Per la realizzazione dell'infrastruttura di canalizzazione dei cavi dovranno essere osservate le seguenti prescrizioni di carattere generale:

- attenersi alle norme, ai regolamenti e alle disposizioni nazionali e locali vigenti in materia di tutela ambientale, paesaggistica, ecologica, architettonico-monumentale e di vincolo idrogeologico;
- rispettare, nelle eventuali interferenze con altri servizi, le prescrizioni stabilite;
- collocare in posizioni ben visibili gli sbarramenti protettivi e le segnalazioni stradali necessarie;
- assicurare la continuità della circolazione stradale e mantenere la disponibilità dei transiti e degli accessi carrai e pedonali;
- organizzare il lavoro in modo da occupare la sede stradale e le sue pertinenze il minor tempo possibile.

Il disfacimento delle pavimentazioni dovrà essere limitato alla superficie strettamente indispensabile per l'esecuzione degli scavi, assicurando reimpiego degli elementi della pavimentazione rimossi.

Tutti i materiali riutilizzabili dovranno essere accatastati separati per specie e in ordine ai bordi dello scavo in modo da essere immediatamente riconoscibili e da non ostacolare la circolazione dei mezzi.

Nei casi in cui ciò non sia fattibile o per diverse disposizioni dell'Ente preposto tali materiali dovranno essere trasportati in opportuni depositi e riportati in sito al momento del reimpiego.

In presenza di pavimentazioni in manto bituminoso, calcestruzzo o simili, prima di procedere al disfacimento sarà necessario delimitare la superficie mediante tagli netti della pavimentazione stessa utilizzando appropriate macchine.

Anche nel caso di scavi a sezione ristretta qualora si dovesse verificare un eccesso rispetto alla possibilità di reimpiego dell'ambito del cantiere le terre saranno gestiti quale rifiuto ai sensi della parte IV del D.lgs 152/2006 e ss.mm.ii. e trasportati presso un centro di recupero autorizzato e/o in discarica autorizzata.

Gli scavi da realizzare in corrispondenza di terreno non pavimentato dovranno essere eseguiti con adeguati mezzi meccanici o a mano se la situazione particolare lo dovesse richiedere.

La canalizzazione dovrà essere messa in opera sul fondo dello scavo perfettamente spianato e privato di sassi o spuntoni di roccia e posato in un letto di sabbia o pozzolana. Il residuo volume di scavo dovrà essere riempito con terreno di risulta e opportunamente rullato e compattato.

9. STIMA DEI VOLUMI DI SCAVO

Vengono di seguito riportate le volumetrie delle terre prodotte con le attività di cantiere da eseguire.

Dalle tabelle che seguono si evince che complessivamente il volume di scavo totale è pari a 14.891,44 mc dei quali 11.454,95 mc verranno riutilizzati; la parte in eccesso sarà gestita quale rifiuto ai sensi della parte IV del D.lgs 152/2006 e ss.mm.ii. e trasportata presso un centro di recupero autorizzato e/o in discarica autorizzata.

TRATTO CAVIDOTTO	RIFERIMENTO WTG	LUNGHEZZA	CAVI	TIPOLOGIA	LARGHEZZA	PROFONDITA'	VOLUME totale	VOLUME riutilizzato	VOLUME in eccesso
1	AC12-S1	320	1 TERNA DI CAVI	TERRENO	0,45	1,3	187,20	144	43,20
2	S1-S2	1575	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	921,38	708,75	212,63
3	S2-S3	600	1 TERNA DI CAVI	STRADA ASFALTATA PROVINCIALE	0,45	1,3	351,00	270	81,00
4	S3-S4	817	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	477,95	367,65	110,30
5	S4-S5	440	2 TERNE DI CAVI	STRADA STERRATA	0,45	1,3	257,40	198	59,40
6	S5-AC13	200	2 TERNE DI CAVI	TERRENO	0,45	1,3	117,00	90	27,00
7	S4-AC14	150	1 TERNA DI CAVI	TERRENO	0,45	1,3	87,75	67,5	20,25
39	AC14-S6	90	2 TERNE DI CAVI	TERRENO	0,45	1,3	52,65	40,5	12,15
8	S6-S7	2447	2 TERNE DI CAVI	STRADA STERRATA	0,45	1,3	1.431,50	1101,15	330,35
9	S7-S8	560	4 TERNE DI CAVI	STRADA STERRATA	0,8	1,3	582,40	448	134,40
10	S8-AC01	118	4 TERNE DI CAVI	TERRENO	0,8	1,3	122,72	94,4	28,32
11	S7-S9	2130	2 TERNE DI CAVI	STRADA STERRATA	0,45	1,3	1.246,05	958,5	287,55
12	S9-S10	420	2 TERNE DI CAVI	STRADA ASFALTATA COMUNALE	0,45	1,3	245,70	189	56,70
13	S10-SE	60	8 TERNE DI CAVI	STRADA STERRATA	1,53	1,3	119,34	91,8	27,54
14	S10-S11	290	6 TERNE DI CAVI	STRADA ASFALTATA COMUNALE	1,14	1,3	429,78	330,6	99,18
15	S11-S12	1220	3 TERNE DI CAVI	STRADA ASFALTATA COMUNALE	0,6	1,3	951,60	732	219,60
16	S12-AC04	90	3 TERNE DI CAVI	TERRENO	0,6	1,3	70,20	54	16,20
17	S12-S13	133	4 TERNE DI CAVI	STRADA ASFALTATA COMUNALE	0,8	1,3	138,32	106,4	31,92
18	S13-S14	140	3 TERNE DI CAVI	STRADA STERRATA	0,6	1,3	109,20	84	25,20
19	S14-S15	360	3 TERNE DI CAVI	TERRENO	0,6	1,3	280,80	216	64,80
20	S15-AC09	225	3 TERNE DI CAVI	TERRENO	0,6	1,3	175,50	135	40,50
21	S13-S16	2135	3 TERNE DI CAVI	STRADA ASFALTATA COMUNALE	0,6	1,3	1.665,30	1281	384,30
22	S16-S17	805	3 TERNE DI CAVI	STRADA STERRATA	0,6	1,3	627,90	483	144,90

22									
23	S17-AC07	170	3 TERNE DI CAVI	TERRENO	0,6	1,3	132,60	102	30,60
24	S16-S18	490	2 TERNE DI CAVI	STRADA ASFALTATA PROVINCIALE	0,45	1,3	286,65	220,5	66,15
25	S18-S19	270	1 TERNA DI CAVI	STRADA ASFALTATA PROVINCIALE	0,45	1,3	157,95	121,5	36,45
26	S19-S20	530	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	310,05	238,5	71,55
27	S20-AC10	56	2 TERNE DI CAVI	TERRENO	0,45	1,3	32,76	25,2	7,56
40	S20-S27	360	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	210,60	162	48,60
28	S27-S21	430	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	251,55	193,5	58,05
29	S21-AC05	100	1 TERNA DI CAVI	TERRENO	0,45	1,3	58,50	45	13,50
30	S18-S22	1040	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	608,40	468	140,40
31	S22-AC06	135	2 TERNE DI CAVI	TERRENO	0,45	1,3	78,98	60,75	18,23
32	S22-S23	450	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	263,25	202,5	60,75
33	S23-AC08	290	1 TERNA DI CAVI	TERRENO	0,45	1,3	169,65	130,5	39,15
34	S11-S24	890	2 TERNE DI CAVI	STRADA STERRATA	0,45	1,3	520,65	400,5	120,15
35	S24-AC02	135	3 TERNE DI CAVI	TERRENO	0,6	1,3	105,30	81	24,30
41	S24-S25	1150	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	672,75	517,5	155,25
36	S25-AC03	105	2 TERNE DI CAVI	TERRENO	0,45	1,3	61,43	47,25	14,18
37	S25-S26	740	1 TERNA DI CAVI	STRADA STERRATA	0,45	1,3	432,90	333	99,90
38	S26-AC11	130	1 TERNA DI CAVI	TERRENO	0,45	1,3	76,05	58,5	17,55

TOTALE 14.891,44	11454,95 3.436,49
------------------	-------------------

10. MODALITA' ESECUTIVE DEGLI SCAVI

Per la realizzazione degli scavi, degli sbancamenti superficiali e per le successive operazioni (ad esclusione di tutte le operazioni eseguite direttamente a mano) verranno utilizzati principalmente i seguenti mezzi meccanici:

- Escavatori
- Pale e Minipale
- Terne (macchine combinate)
- Macchine per il trasporto.

Tali macchine consentiranno di eseguire tutte le operazioni previste quali: scavo, carico, trasporto, scarico, spandimento e compattazione.

11. PIANO DI ANALISI E CARATTERIZZAZIONE AMBIENTALE

Lo scopo principale della caratterizzazione ambientale è la verifica dello stato di qualità dei terreni nelle aree destinate alla realizzazione degli interventi.

In fase di progettazione esecutiva o comunque prima dell'inizio dei lavori si dovrà provvedere alla caratterizzazione delle terre e rocce da scavo:

- Il numero di campioni da prelevare dovrà essere rappresentativo di tutto l'areale interessato dagli scavi e dovrà essere definito secondo quanto previsto all'Allegato 2 del DPR 120/17, che rappresenta il set analitico minimale da verificare ed eventualmente concordando con le Autorità competenti. Lo scopo sarà quello di dimostrare che i valori dei parametri considerati siano al di sotto di quelli delle Concentrazioni Soglia di Contaminazione (CSC) e in particolare inferiori o uguali a quelli indicati nella Colonna A, Tabella 1, Allegato 5 al Titolo V Parte IV del D.L.vo n. 152/06 e ss.mm.ii;
- Le operazioni di campionamento dovranno essere eseguite rispettando criteri di base essenziali al fine di rappresentare correttamente la situazione esistente in sito; quali:
- ♣ nell'esecuzione degli scavi sarà adottata ogni cautela al fine di non provocare la diffusione di inquinanti a seguito di eventi accidentali ed evitare fenomeni di contaminazione indotta;
- ♣ le attrezzature utilizzate saranno lavate con acqua in pressione e/o vapore acqueo prima di ogni prelievo per evitare contaminazioni artefatte;

- # il campione prelevato sarà conservato con tutti gli accorgimenti necessari per ridurre al minimo ogni possibile alterazione;
- su di ogni campione dovrà essere verificato almeno il set analitico come indicato all'Allegato 4 del DPR 120/17, anche se la lista delle sostanze da ricercare potrà essere modificato ed esteso se ritenuto necessario in fase di iter istruttorio con le Autorità competenti.