

a١	
~	
3	
⊏	
⋋	
·	

COMUNE DI PICERNO (PZ)

Valutazione di Impatto Ambientale (Art. 23 D.lgs. 152/06)

COSTRUZIONE DI IMPIANTO FOTOVOLTAICO E DELLE OPERE DI RETE Pn 12,559 MWp in località "Serralta"

Localizzazione

Foglio 50 P.lle 55, 81, 126, 129, 136, 215, 218, 220 Foglio 52 P.lle 53, 91, 120, 121, 128, 261, 360, 361, 362, 363, 364, 365, 366, 367, 368, 370

Committente

SOLAR ORIENTALIS S.R.L.

ENERGY PROJECT SYSTEM

EPS ENGINEERING SRL

P.I. 03953670613 | R.E.A. CE-286561 Via Vito do Jasi 20 | 81031 Aversa (Ce) T. +39 081503-14.00 | www.epsnet.it

Società certificata

ESCo UNI CEI 11352:2014 EGE UNI CEI 11339:2009 QMS UNI EN ISO 9001:2015

Direttore Tecnico: ing. Giuseppe ZANNELLI

EPS ENGINEERING SRL

P.I. 03953670613 | R.E.A. CE - 286561

T. +39 081 503 1400 | service@epsnet.it | www.epsnet.it

Via Vito di Jasi 20 | 81031 Aversa (Ce)

Team di Progetto:

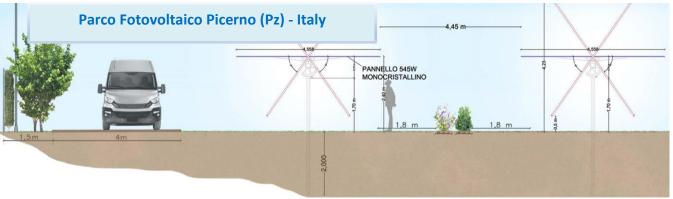
ing. Arduino ESPOSITO arch. Emiliano MIELE arch. Massimiliano MAFFEI geol. Franco GIANCRISTIANO

Oggetto

Progettazione

RELAZIONE TECNICA DELLE OPERE ARCHITETTONICHE

	Rev.	Descrizione	Data	CRI	Scala	Relazione
000	00	Prima emissione	07.07.2022	FTV00491		D 02
()						R.02
engineering				DELL	A	Questo documento è di nostra proprietà secondo termini di legge e ne è vietata la
				CARL MILES		riproduzione anche parziale senza nostra autorizzazione scritta
				for Donate	V. E)
				E STATE	The state of	Š)
				2430 M	THE THERE	
VIRIDI				A Transcription	mornia	9
VIKIDI				No.	SER	
				* O*	CA	

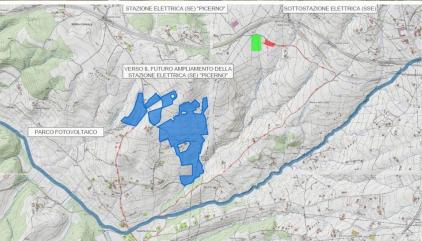


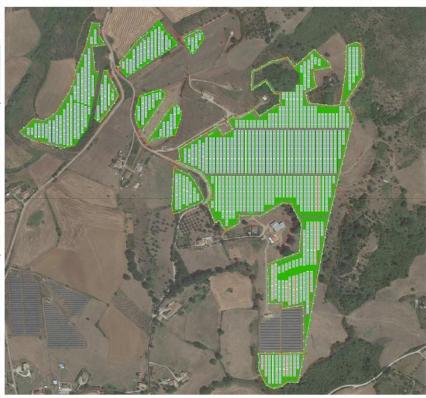
ABACO DELLA VEGETAZIONE COLTURE ARBOREE ED ARBUSTIVE AUROCERASO (Prunus Laurocerasus)

aspetto decisamente gradevole. FIORITURA E FRUTTIFERAZIONE

COLTURE LEGUMINOSE

VECCIA COMUNE (Vicia Sativa)





EPS ENGINEERING SRL P.I. 03953670613 | R.E.A. CE - 286561 Via Vito di Jasi 20 | 81031 Aversa (Ce) T. +39 081 503 1400 | service@epsnet.it | www.epsnet.it Società certificata ESCo UNI CEI 11352:2014 EGE UNI CEI 11339:2009 QMS UNI EN ISO 9001:2015

1.	INTRODUZIONE	2
1.1.	IL SOGGETTO PROPONENTE	2
1.2.	IL SITO DI PROGETTO	2
1.3.	SINTESI DI PROGETTO	2
1.4.	QUADRO SINOTTICO DI PROGETTO	5
2.	STRUTTURE AD INSEGUIMENTO MONOASSIALE PER I MODULI	7
3.	VIABILITA' DI SERVIZIO PER IL PARCO FOTOVOLTAICO	9
4.	RECINZIONI E MITIGAZIONE DEL PARCO FOTOVOLTAICO 1	.1
5.	ILLUMINAZIONE E VIDEOSORVEGLIANZA 1	.5
6.	TRACCIATI E CAVIDOTTI PER LA CONNESSIONE DELL'IMPIANTO ALLA RETE 1	.7
7.	CABINE DI CAMPO 1	.8
8.	SOTTOSTAZIONE ELETTRICA D'UTENZA 1	.9
9.	LINEE ELETTRICHE DI CONNESSIONE	<u>2</u>
10.	OPERE DI MITIGAZIONE	25

1. INTRODUZIONE

1.1. IL SOGGETTO PROPONENTE

La società proponente è Solar Orientalis S.r.l. con sede in Campodarsego (Pd) alla via Antoniana 220/E, P.IVA 05394340284 iscritta al registro delle imprese della Camera di Commercio Industria Artigianato e Agricoltura (CCIAA) di Padova sezione ordinaria con REA PD - 464428 in persona di CARLO ANGELO ALBERTI, nato a Friburgo Germania il 09/06/1948, codice Fiscale LBRCLN48H09Z112O, in qualità di Amministratore Unico.

1.2. IL SITO DI PROGETTO

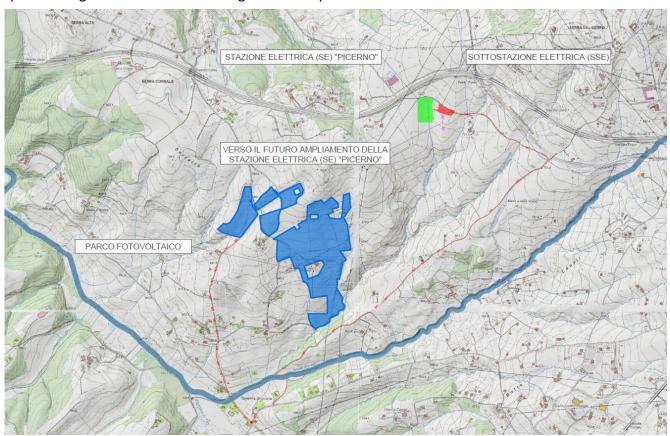
Località	"Serralta" – 85055 Picerno (Pz)	
Quota altimetrica media	633 m s.l.m. con pendenze	
Coordinate geografiche	40° 36′ 10.24″ N	
WGS84 (baricentriche)	15° 39′ 41.74″ E	
Parco Fotovoltaico		
Coordinate geografiche	40° 36′ 37.30″ N	
WGS84 (baricentriche)	15° 40′ 18.83″ E	
Sottostazione Elettrica (SSE)		
Riferimenti catastali	Foglio 50 P.lle 55, 81, 126, 129, 136, 215, 218, 220	
	Foglio 52 P.lle 53, 91, 120, 121, 128, 261, 360, 361, 362, 363, 364, 365, 36	
	367, 368, 370	

1.3. SINTESI DI PROGETTO

La presente Relazione Specialistica viene redatta a corredo del progetto definitivo per la costruzione di un impianto per la produzione di energia fotovoltaica di potenza pari a 12,559 MWp e delle opere connesse, che la società Solar Orientalis S.r.l. propone di realizzare nel comune di Picerno nella Provincia di Potenza. L'Impianto proposto si compone di n. 23.044 moduli fotovoltaici ubicati al suolo ognuno di potenza di picco pari a 545 Wp, per una potenza complessiva di 12,559 MWp, da ubicarsi in località "Serralta", in agro di Picerno, che prevede la connessione alla Sottostazione Elettrica di Trasformazione (SSE) a 20/36 kV del Produttore mediante cavidotto interrato MT 20 kV, con collegamento in antenna su stallo a 36 kV del futuro ampliamento della Stazione Elettrica di Smistamento (SE) a 150 kV "Picerno", di proprietà di Terna S.p.A. e individuata nel catasto terreni al foglio 51 p.lla 303 del comune di Picerno (Pz).

L'opera proposta rientra nell'ambito della competenza statale dei procedimenti sottoposti a Valutazione di Impatto Ambientale ai sensi dell'Art. 23 del D.lgs. 152/06 relativi a impianti fotovoltaici di potenza superiore a 10 MW, così come modificato dal Decreto Semplificazioni bis - Decreto-legge 31 maggio 2021, n. 77 (in G.U. n. 129 del 31 maggio 2021 in vigore dal 1° giugno 2021; convertito dalla legge 29 luglio 2021, n. 108, in G.U. n. 181 del 30 luglio 2021, in vigore dal 31 luglio 2021) recante "Governance del Piano nazionale di rilancio e resilienza e prime misure di rafforzamento delle strutture amministrative e di accelerazione e snellimento delle procedure, che modifica l'allegato II alla Parte Seconda del D. Lgs. 152/2006.

La proposta progettuale è stata sviluppata attraverso un processo metodologico iterativo, teso a conciliare esigenze produttive, tecnologiche ed ambientali, così da pervenire alla definizione di una soluzione progettuale caratterizzata da un livello di sostenibilità coerente con le capacità di assorbimento del territorio in cui essa ricade.



Si riporta di seguito lo stralcio ortofotografico di inquadramento:

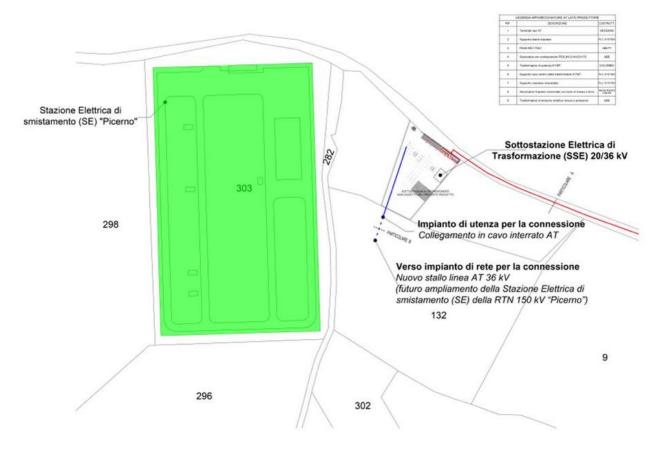
Ortofoto con indicazione del Parco Fotovoltaico e del cavidotto di connessione alla Sottostazione Elettrica di Trasformazione (SSE) a 20/36 kV del Produttore in Picerno (Pz)

Il cavidotto MT di collegamento alla Sottostazione Elettrica di Trasformazione (SSE) del Produttore sarà interrato su strada pubblica parte asfaltata e parte sterrata, ubicato nei limiti amministrativi dei Comuni di Tito (Pz) e di Picerno (Pz), con lunghezza complessiva pari a circa 4.950 m, così di seguito partizionato:

- circa 4.365 m in agro, località "Serralta" nei confini del comune di Picerno (Pz), fino al confine con il territorio di Tito (Pz);
- circa 585 m in agro di Tito (Pz) per connettersi alla Sottostazione Elettrica di Trasformazione (SSE) a 20/36 kV del Produttore e quindi al futuro ampliamento della Stazione Elettrica di Smistamento (SE) a 150 kV di "Picerno" di proprietà di Terna S.p.A.

Il Parco Fotovoltaico prevede la connessione alla Sottostazione Elettrica di Trasformazione (SSE) a 20/36 kV del Produttore mediante cavidotto interrato MT 20 kV, con collegamento in antenna su stallo a 36 kV del futuro ampliamento della Stazione Elettrica di Smistamento (SE) a 150 kV "Picerno", individuata nel catasto terreni al foglio 51 p.lla 303 del comune di Picerno (Pz).

Segue lo stralcio su base catastale dove è localizzata la Sottostazione Elettrica di Trasformazione (SSE) del Produttore con relativa connessione su stallo AT 36 kV al futuro ampliamento della Stazione Elettrica di Smistamento (SE) a 150 kV "Picerno".



COMUNE DI PICERNO

Stralcio su base catastale della Sottostazione Elettrica di Trasformazione (SSE) del Produttore con relativa connessione AT al futuro ampliamento della Stazione Elettrica di Smistamento (SE) "Picerno"

1.4. QUADRO SINOTTICO DI PROGETTO

Soggetto proponente	Società Solar Orientalis S.r.l. , p. iva 05394340284 , con sede in Campodarsego (Pd) alla via Antoniana 220/E	
Progetto FER	Progetto definitivo per la realizzazione di un Impianto Fotovoltaico a terra di potenza nominale pari a 12,559 MWp e relative opere connesse, in località "Serralta", nel Comune di Picerno (Pz)	
Tipologia Impianto FER	Impianto Fotovoltaico con strutture ad inseguimento monoassiale Est-Ovest in direzione Nord-Sud	
Estensione totale	25,76 ha	
Aree di progetto		
Superficie recintata	17,85 ha	
Parco Fotovoltaico		
Superficie complessiva moduli fotovoltaici	58.953,23 m ²	
Superficie cabine di campo e locali inverter	686,59 m ²	
Superficie fascia verde di mitigazione impianto	3.389,40 m ²	
Superficie viabilità	20.746,43 m ²	
interna di servizio		
Vita utile Parco Fotovoltaico	30 ÷ 40 anni	
Preventivo di connessione alla Rete di Trasmissione Nazionale (RTN)	Codice pratica TERNA 202101637	
Tipo di modulo	545 Wp monocristallino, 2.254 x 1.135 x 35 mm	
Strutture di supporto	Modulari ad inseguimento monoassiale con telaio in acciaio	
Qty moduli previsti	23.044	
Inverter previsti	110 (potenza nominale cad. 92 kVA)	
Numero di stringhe	823 (28 moduli per stringa)	
Potenza nominale	12.558,98 kWp	
Producibilità energetica stimata (da PVSYST V7.2.14)	21 GWh/anno	
Emissione CO ₂ evitate	10.416 t/anno	
Risparmio di Tonnellate Equivalenti di Petrolio (TEP)	3.927,00 Tep/anno	
Lunghezza del cavidotto interrato MT 20 kV di collegamento alla Sottostazione Elettrica di Trasformazione (SSE) a 20/36 kV del Produttore	4.950 m	

La viabilità interna al Parco Fotovoltaico, necessaria per le opere di costruzione e manutenzione dell'Impianto, sarà utilizzata anche per il passaggio dei cavidotti interrati in BT e MT necessari per la connessione degli inverter di sottocampo, nonché per i collegamenti di segnale e di illuminazione delle aree. L'impianto di rete per la connessione sarà costituito da un nuovo stallo linea AT 36 kV in aria in SE con arrivo linea Produttore in cavo interrato, mentre l'Impianto di Utenza per la Connessione sarà costituito dalla linea elettrica AT in uscita dalla Stazione Elettrica di Smistamento (SE) a 150 kV "Picerno" incluso il sostegno porta terminali cavo AT, comprensivo di Sottostazione Elettrica d'Utenza (SSE) per la trasformazione AT/MT 36/20 kV ubicata in prossimità della Stazione Elettrica di Smistamento (SE) e di elettrodotto interrato MT 20 kV fino all'area dove sarà ubicato il Parco Fotovoltaico.

Il Parco Fotovoltaico sarà costituito da n. 5 cabine di media tensione, una per ogni area di campo, installate in prossimità dei percorsi di viabilità interna all'impianto e interconnesse con topologia lineare tramite elettrodotto interrato MT 20 kV fino alla connessione con la Sottostazione Elettrica di Trasformazione (SSE) a 20/36 kV del Produttore, ubicata in prossimità della Stazione Elettrica di Smistamento a 150 kV (SE) di "Picerno" di proprietà di Terna S.p.A.

Le caratteristiche dimensionali dei relativi Campi Fotovoltaici sono le seguenti:

DENOMINAZIONE	POTENZA NOMINALE	NUMERO MODULI FTV (NUMERO STRINGHE)	NUMERO INVERTER
CAMPO 1 (AREA 1)	kWp 4.623,78	8.484 (303)	40
CAMPO 2 (AREA 2)	kWp 4.669,56	8.568 (306)	40
CAMPO 3 (AREA 3)	kWp 549,36	1.008 (36)	6
CAMPO 4 (AREA 4)	kWp 1.083,46	1.988 (71)	10
CAMPO 5 (AREA 5)	kWp 1.632,82	2.996 (107)	14

Nelle cabine di campo MT saranno installati i componenti di gestione e controllo abbinati ai relativi sottocampi fotovoltaici costituiti dagli inverter di stringa per la conversione dell'energia prodotta da corrente continua in corrente alternata.

La viabilità interna al Parco Fotovoltaico, necessaria per le opere di costruzione e manutenzione dell'Impianto, sarà utilizzata anche per il passaggio dei cavidotti interrati in MT.

La scelta del sito è stata effettuata sulla base di una serie di parametri, uno dei quali è considerato requisito tecnico minimo per il conseguimento degli obiettivi di produzione di energia elettrica da fonti rinnovabili, l'irradianza giornaliera media annua valutata in KWh/m²/giorno di sole sul piano dei moduli non inferiore a 4.

Altre caratteristiche che hanno influenzato la scelta del sito sono:

- le caratteristiche orografiche e geomorfologiche;
- la assenza di aree vincolate o non idonee ai sensi della normativa vigente;
- la presenza di strade pubbliche, Stazioni elettriche MT per la connessione e altre infrastrutture.

Nelle diverse cabine saranno installati i componenti di gestione e controllo abbinati ai trasformatori per la conversione dell'energia prodotta da corrente continua in corrente alternata.

In prossimità delle aree di accesso al Parco Fotovoltaico saranno realizzate aree di stoccaggio di materiali, da definirsi in fase di progettazione esecutiva, qualora ritenute necessarie e funzionali al funzionamento degli stessi.

2. STRUTTURE AD INSEGUIMENTO MONOASSIALE PER I MODULI

Le strutture di sostegno dei moduli fotovoltaici saranno composte da un sistema di profili metallici trattati superficialmente, per una maggiore durata nel tempo, e un sistema di **inseguitori fotovoltaici monoassiali** che "inseguono" il Sole Est-Ovest ruotando attorno a un solo asse Nord-Sud, detto anche "inseguitore di Tilt". Il sistema a inseguimento consente di conseguire un incremento nella produzione di energia di almeno il 20% rispetto alle strutture fisse. Gli inseguitori di tilt hanno il vantaggio di essere particolarmente economici non avendo servomeccanismi eccessivamente onerosi sotto il profilo della manutenzione.

Il sistema di ancoraggio è pensato specificatamente per velocizzare e semplificare la problematica relativa alla installazione degli impianti a terra. Il fissaggio al suolo sarà effettuato mediante paletti infissi nel terreno, per una lunghezza, stimata in circa 2 metri, ma comunque variabile sulla base delle risultanze dei calcoli esecutivi sulle strutture, verificati sul campo con test di estrazione, pertanto privi di qualsiasi tipo di fondazione in calcestruzzo armato.

Anche la modalità di posa per le strutture (pali infissi al terreno mediante macchina battipalo) è tale da escludere qualsiasi forma di modifica all'assetto idrogeologico esistente.

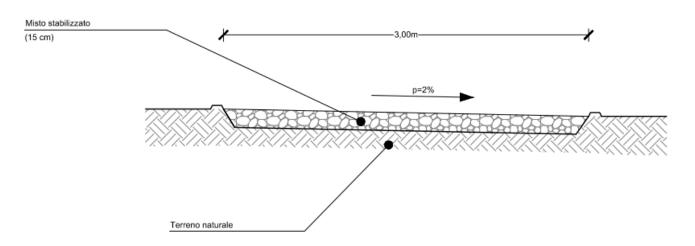
Il mancato utilizzo di fondazioni in c.a., ma esclusivamente di paletti infissi nel terreno, determina che queste strutture possano essere considerate ad **impatto ambientale zero** in quanto totalmente reversibili con una semplice operazione di sfilamento dei paletti dal terreno, quindi senza necessità di modifiche orografiche, scavi e eccessivi impatti ambientali per il ripristino allo stato ante-operam.

La parte in elevazione delle strutture è composta da pochi elementi da montare rapidamente in loco mediante fissaggi meccanici bullonati:

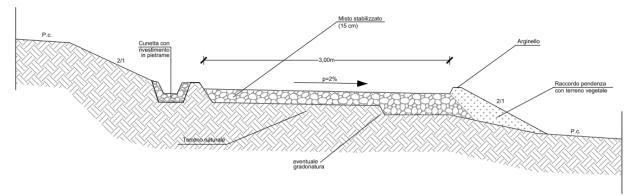
- elemento verticale completamente saldato per infissione nel terreno;
- giunti a elastomero con elevata flessibilità e ottima resistenza;
- albero di trasmissione (tracking) per inseguimento dell'angolo di Tilt;
- profili di supporto metallici per i moduli fotovoltaici;
- controventature perimetrali;
- inserti di ancoraggio.

Essendo i terreni ad orografia irregolare, con inclinazione variabili in tutte le direzioni sia Nord-Sud che Est-Ovest, al fine di produrre **IMPATTO ZERO** sulla modifica del terreno per adattarlo alle strutture, saranno utilizzati componenti speciali che, al contrario, adatteranno le strutture di supporto all'orografia dello stesso terreno, mediante l'utilizzo di prolunghe per le pendenze Nord-Sud e specifici snodi di profilo per i supporti di ancoraggio dei moduli fotovoltaici.

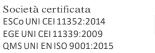
La durabilità dei materiali metallici è garantita dal trattamento superficiale di zincatura a caldo come da normativa EN ISO 1461:2009.



3. VIABILITA' DI SERVIZIO PER IL PARCO FOTOVOLTAICO

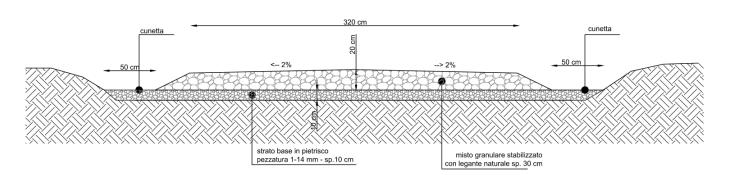

La viabilità interna di servizio, quella esterna di collegamento dei campi alla viabilità esistente e le piazzole delle cabine di campo, saranno realizzate al fine di ridurre al minimo i movimenti di terra e la costruzione di strade esterne ex novo.

Per quanto riguarda le piste interne per la manutenzione degli impianti, comprese quelle perimetrali delle aree dei Campi Fotovoltaici, ci si limiterà alla realizzazione di uno scavo nel terreno di 4,00 metri di larghezza e 20 cm di profondità da riempire con misto di cava compattato con posa di uno strato di geotessile sul fondo dello scavo, soluzione che permette di rimuovere più facilmente il misto in fase di dismissione dell'Impianto. Si riportano di seguito le sezioni tipo delle piste interne per manutenzione:

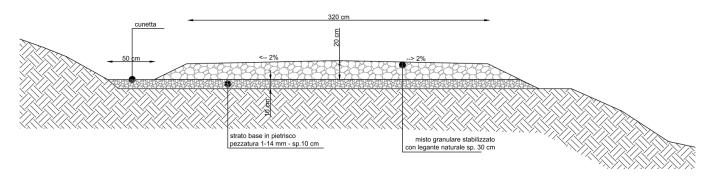

SEZIONE TIPO CORRENTE

SEZIONE TIPO DI MEZZA COSTA

Con lo stesso criterio di minimo impatto ambientale saranno realizzate le piazzole delle cabine di campo; nello specifico sarà realizzato uno scavo, di profondità massima 20 cm, nell'area circostante le cabine con successivo riempimento con misto compattato ed eventuale geotessile sul fondo dello scavo.


L'area di scavo sarà limitata a quella strettamente necessaria alla movimentazione dei mezzi di manutenzione e, se necessario, per un'area leggermente maggiore durante la fase di cantiere, per via dei mezzi d'opera, con successiva rimozione e sistemazione definitiva a fine lavori.

L'accesso di mezzi e personale alle aree di Campo avverrà tramite piste di collegamento realizzate a partire dalla strada pubblica interpoderale in località "Serralta" immediatamente a ridosso della viabilità esistente. Le piste di collegamento riguarderanno la sistemazione delle strade già esistenti che confinano con le aree interessate dall'Impianto Fotovoltaico; saranno realizzate con soluzioni leggermente più durature e resistenti di quelle interne per accesso ai sottocampi (inverter di distribuzione), tenendo sempre in considerazione il criterio del minimo impatto ambientale e totale reversibilità in fase di dismissione dell'Impianto.


Gli scavi saranno eseguiti per una larghezza massima pari a 4,20 m e profondità pari a circa $35 \div 40$ cm, con sede stradale realizzata con un primo strato di 10 cm di pietrisco, pezzatura $1 \div 14$ mm ed un secondo strato di circa 30 cm con misto granulare stabilizzato con legante naturale.

Si riportano di seguito le sezioni tipo delle strade di servizio esterne ai campi:

SEZIONE TIPO CORRENTE

SEZIONE TIPO DI MEZZA COSTA

Tutte le strade interne al Parco Fotovoltaico seguiranno l'andamento morfologico risultante dallo stato di fatto, così come i canali di scorrimento delle acque superficiali, come riportato negli elaborati di progetto. Le strade saranno realizzate previo scavo della parte superficiale per una profondità di circa 30 cm.

Il terreno di scavo sarà livellato lungo i bordi della strada interna e nelle zone leggermente depresse. La strada verrà realizzata con fondazione di materiale inerte e strato superficiale con misto frantumato proveniente da cave presenti in zona.

Le aree perimetrali dei Campi Fotovoltaici saranno sistemate mediante la realizzazione di strade in terra battuta al fine di garantire la viabilità, la manutenzione della recinzione perimetrale dall'esterno, l'accesso alle varie operazioni colturali condotte sugli alberi piantumati.

Non sarà necessario realizzare nuova viabilità esterna alle aree di Campo essendo le stesse già servite da infrastrutture viarie, benché le strade confinanti con il Parco Fotovoltaico saranno adeguate a consentire il transito di mezzi idonei sia per la fase di costruzione dell'opera che per la manutenzione stessa.

4. RECINZIONI E MITIGAZIONE DEL PARCO FOTOVOLTAICO

Nei confronti del verde ornamentale e spontaneo ai fini della mitigazione del Campo Fotovoltaico e di garantire il minore impatto possibile per il paesaggio circostante, saranno utilizzati criteri a forte valenza ambientale ed ecologica; in particolare:

- uso di essenze autoctone o perfettamente ambientate in quanto specie meglio resistenti alle avversità ambientali e fitopatologiche del territorio. Tra queste si darà prevalenza a quelle già diffuse a livello locale ed inserite nel paesaggio rurale circostante;
- elevata biodiversità con l'impiego di numerose specie sia arboree che arbustive, con portamenti vegetativi diversificati e fioriture scalari al fine di favorire lo sviluppo del maggior numero di specie animali;
- prevenzione delle problematiche fisiologiche e patologiche attraverso corretti criteri d'impianto nel rispetto delle caratteristiche vegetative delle essenze.

Gli interventi di mitigazione riguardano sia i Campi Fotovoltaici che i mascheramenti per le cabine di campo quando le stesse sono ubicate in prossimità delle strade pubbliche per gli accessi all'area del Parco Fotovoltaico.

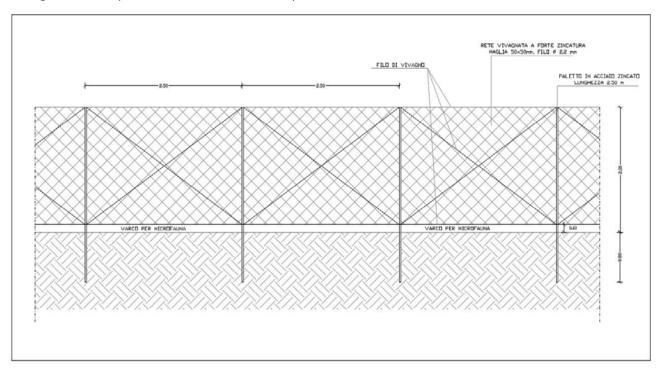
Al fine di contenere la visibilità del Parco Fotovoltaico da strade comunali e provinciali limitrofe alle aree di interesse, verrà realizzata una fascia di rispetto larga 1,5 metri mediante la piantumazione di filari di specie arboree e arbustive autoctone col fine di caratterizzare l'opera con interventi di mitigazione ambientale. Le essenze selezionate, inoltre, sono pensate con lo scopo di ricavare una produzione agricola tramite il raccolto dopo i periodi di fruttificazione delle stesse.

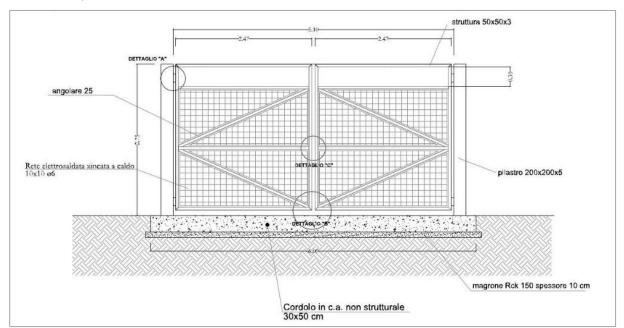
La proposta progettuale predispone quindi un filare di noccioli disposti con una distanza dagli astoni di quest'ultimi pari a 4 metri, per agevolarne la piantumazione, coltura, raccolta e manutenzione, l'arbusto selezionato produrrà nocciole della varietà "mortarella", tipologia di nocciola molto richiesta sia dall'industria alimentare, sia da altri settori industriali.

Il progetto di inserimento dei suddetti corpi arborei sarà tale da ricreare composizioni di siepi o di formazioni vegetazionali spontanee già presenti nelle aree contermini il Parco Fotovoltaico.

La recinzione dell'area prevede l'utilizzo di strutture portanti adatte al terreno, con la possibilità di scegliere tra pali infissi nel terreno mediante l'impiego di attrezzature battipalo.

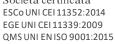
La soluzione di progetto adottata non prevede l'utilizzo di basamenti in cemento allo scopo di ridurre al minimo l'impatto sui suoli. Tale soluzione, inoltre, facilita il futuro piano di dismissione del Parco Fotovoltaico. La recinzione sarà realizzata lungo tutto il perimetro del Parco Fotovoltaico con pali in acciaio





zincato a caldo ed una rete in maglia sciolta con un'altezza totale dal piano di calpestio di 2 metri di altezza, con sollevamento da terra di almeno 10 cm per consentire il passaggio e la movimentazione di animali di piccola taglia, facenti parte della fauna selvatica presente in zona.

Recinzione tipo dell'Area del Campo Fotovoltaico


L'accesso principale al Parco Fotovoltaico avverrà direttamente da strada pubblica interpoderale in località "Serralta" confinante con l'area interessata del Progetto, dove sono previsti 9 cancelli di ingresso del tipo a scorrimento in modo da non creare intralcio e consentire sufficienti condizioni di sicurezza e ottima visibilità ai veicoli in entrata/uscita dall'area.

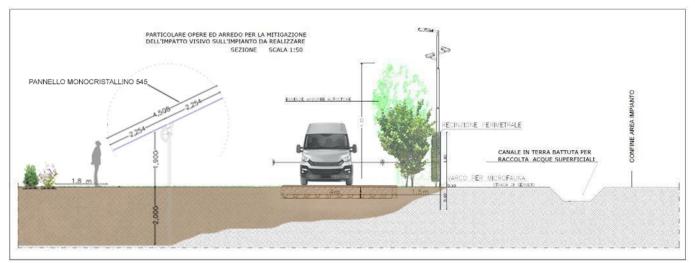
Cancello di ingesso al Campo Fotovoltaico

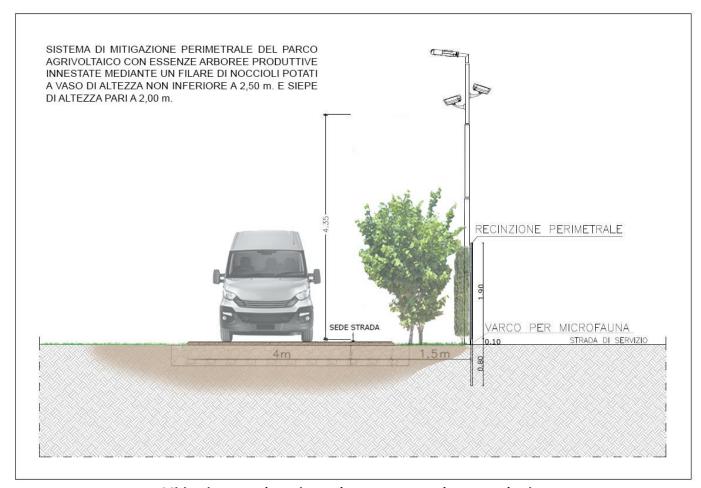


I mezzi che accederanno a tali aree saranno i mezzi propri utilizzati per la pulizia e la normale manutenzione del Parco Fotovoltaico. Oltre alla recinzione metallica è previsto un sistema antintrusione di sicurezza perimetrale in grado di rilevare qualsiasi movimento e, allo stesso tempo, scattare foto anche di notte. Al fine di salvaguardare gli aspetti scenico-percettivi del paesaggio, la verifica di compatibilità paesaggistica (e, in particolare, di impatto visivo) dell'intervento, il progetto di mitigazione dell'opera prevede la piantumazione di siepi costituite da differenti varietà autoctone lungo tutto il perimetro dell'area.

Tipo di mitigazione lungo il perimetro del Parco Fotovoltaico vista in prospetto

Lungo la recinzione sono previste siepi con piantumazione di piante ad altezza superiore della rete metallica, per le quali saranno previste e pianificate le attività di giardinaggio e potatura.





Tipo di siepe lungo il perimetro di recinzione del Parco Fotovoltaico vista in sezione

Mitigazione strada perimetrale con essenze arboree produttive

Il disegno di cui sopra riguarderà anche la mitigazione visiva delle cabine di campo del Produttore e i relativi locali inverter distribuiti sulle n. 5 aree di suddivisione del Parco Fotovoltaico. Una fila di alberi mitigherà le cabine in modo da contenere gli effetti percettivi dei manufatti.

5. ILLUMINAZIONE E VIDEOSORVEGLIANZA

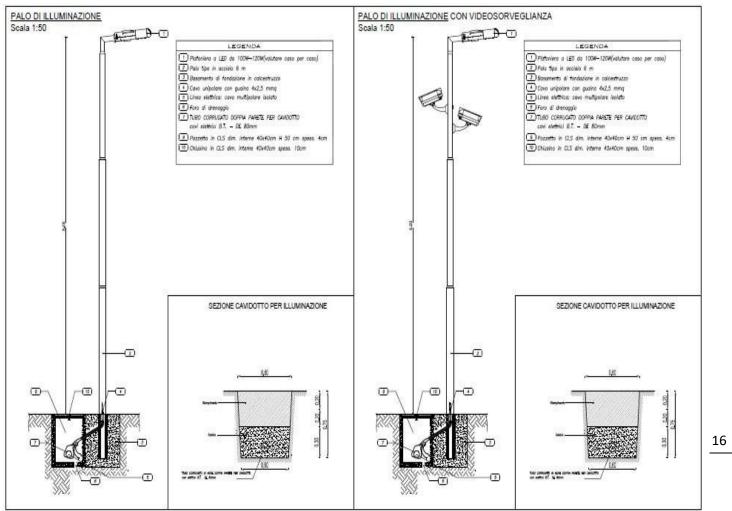
L'impianto di illuminazione è previsto su tutto il perimetro dell'impianto fotovoltaico e sarà realizzato con pali distanti tra loro circa 40 metri con altezza pari a 6 metri, adatti ad illuminare il perimetro dell'area. Essi saranno dotati di lampade a led con adeguato valore di illuminamento e potenza massima pari a 100 W. L'area sarà illuminata in modo automatico tramite sensori di movimento posizionati in più punti, in particolar modo in corrispondenza delle zone di accesso principali e ad alta frequenza di presenza umana. Scopo di tale scelta è quella di rendere minimo l'impatto ambientale da inquinamento luminoso, oltre alla salvaguardia della fauna selvatica presente in zona.

L'energia per l'alimentazione delle lampade di illuminazione notturna sarà derivata da una linea BT 230 V appositamente dedicata alla generazione da fonte rinnovabile mediante impianto fotovoltaico con accumulo, posizionato sulle coperture delle rispettive cabine di trasformazione, in modo da ottimizzare l'occupazione del suolo, ridurre il consumo di energia fossile e impiegare, in autoconsumo, l'energia rinnovabile solare mediante utilizzo di batterie di accumulo. Lo stesso sistema consentirà l'utilizzo di energia pulita per l'alimentazione delle telecamere di videosorveglianza.

Tali tipologici saranno realizzati in palo zincato, verniciato, in grado di portare il corpo illuminante e le telecamere secondo una valutazione tale da disporre ogni 40 metri, intervallati, un palo di illuminazione ed uno di illuminazione con due telecamere, in grado di rilevare movimenti ed attivarsi di conseguenza. L'impianto di videosorveglianza sarà realizzato utilizzando le strutture dell'impianto di illuminazione. Si avrà l'istallazione di telecamere sui pali di illuminazione serviti dal gruppo di continuità, posizionate ad una altezza pari a 5 metri, lungo il perimetro dell'impianto, con sistema di monitoraggio da una centrale in luogo remoto. Le telecamere, dovranno registrare i movimenti, inviando un segnale di allarme e una registrazione dovranno controllare l'intero perimetro della recinzione, con particolare attenzione ai punti critici, realizzati in ₁₅ prossimità delle cabine elettriche e nelle zone di attraversamento. Le telecamere saranno collegate ad un sistema di registrazione, NVR, posizionato in cabina di consegna e controllabile, tramite rete, anche da remoto.

Le telecamere saranno dotate di sensore di movimento ed a infrarosse. Solo per quelle poste in prossimità di cabine ed accessi, si potranno installare telecamere PTZ motorizzate (Pan – movimento orizzontale, Tilt – movimento verticale e Zoom).

Di seguito si riportano le due tipologie scelte per i pali di illuminazione e videosorveglianza:



Pali per illuminazione e videosorveglianza dell'area di progetto

6. TRACCIATI E CAVIDOTTI PER LA CONNESSIONE DELL'IMPIANTO ALLA RETE

La realizzazione dell'elettrodotto MT in cavo interrato è suddivisibile nelle tre fasi operative di seguito descritte:

- esecuzione dello scavo per l'alloggiamento del cavidotto;
- stenditura e posa del tubo corrugato con cavo di trasmissione dell'energia all'interno;
- apposizione della segnalazione del percorso interrato del cavidotto;
- reinterro dello scavo fino a piano campagna.

L'area di cantiere in questa fase di progetto è costituita essenzialmente dalla realizzazione di trincea di posa del cavo che si estende progressivamente sull'intera lunghezza del percorso.

Tale trincea sarà larga 0,80 metri per una profondità di 1,20 m, prevalentemente su sedime stradale. Durante la realizzazione delle opere, il criterio di gestione del materiale scavato prevede il suo deposito temporaneo lateralmente lo stesso scavo e successivamente il suo utilizzo per il reinterro degli scavi, previo accertamento, durante la fase esecutiva, dell'idoneità di detto materiale per il riutilizzo in sito. Nel caso in cui i campionamenti eseguiti forniscano un esito negativo, il materiale scavato sarà destinato ad idonea discarica, con le modalità previste dalla normativa vigente e il riempimento verrà effettuato con materiale inerte di idonee caratteristiche. Il materiale di riempimento potrà essere miscelato con sabbia vagliata al fine di mantenere la resistività termica del terreno al valore di progetto.

L'esecuzione dei lavori non farà utilizzo di tecnologie di scavo che impieghino prodotti tali da contaminare le rocce e le terre, nelle aree a verde, boschive, agricole, residenziali, aste fluviali o canali in cui sono assenti scarichi e in tutte le aree in cui non sia accertata e non si sospetti una potenziale contaminazione, anche se dovuta a fonti inquinanti diffuse, il materiale scavato sarà considerato idoneo al riutilizzo in sito.

Il terreno movimentato per gli scavi necessari per la posa delle linee elettriche BT e MT, per la sistemazione delle strade interne, per la realizzazione dei canali di scolo delle acque superficiali e per la posa delle cabine di consegna e di campo sarà completamente riutilizzato in cantiere per ricoprire gli stessi scavi e per livellare alcune aree leggermente depresse; pertanto, nel cantiere non saranno presenti quantità di terreni in eccesso risultanti dagli interventi di scavo e sbancamento terra.

Il cavidotto di collegamento MT 20 kV tra la cabina terminale del Parco Fotovoltaico e la Sottostazione Elettrica di Trasformazione (SSE) a 20/36 kV del Produttore, pari a circa 5 km, sarà realizzato mediante scavo a sezione obbligata di dimensione 0,80 x 1,20 metri. Il cavidotto sarà strutturato mediante un letto di sabbia di circa 20 cm in cui saranno posati i cavi MT entro tubo corrugato idoneo all'uso, sopra saranno coperti per uno spessore di 20 cm di sabbia e con sovrapposto nastro di segnalazione. La restante parte dello scavo sarà riempito con materiale proveniente dagli scavi opportunamente vagliato in sito. Per i tratti che eventualmente dovessero interessare i terreni vegetali, lungo la strada pubblica in terra battuta, il terreno di scavo ricavato sarà opportunamente e direttamente livellato in sito.

I cavidotti di impianto, BT ed MT, saranno realizzati all'interno del Campo Fotovoltaico mediante scavo a sezione obbligata di dimensione 0,80 x 1,00 metri. Il terreno di scavo verrà completamente utilizzato per il rinterro e per la restante parte per livellare aree lievemente depresse.

7. CABINE DI CAMPO

Il progetto del Parco Fotovoltaico prevede la posa di n. 5 cabine di campo del Produttore interconnesse mediante cavo MT 20 kV, ubicate all'interno dell'area:

- a. N. 2 CABINE equipaggiate con 1 TRAFO MT/BT 20/0,4 kV 4,00 MVA;
- b. N. 1 CABINA equipaggiata con 1 TRAFO MT/BT 20/0,4 kV 1,00 MVA;
- c. N. 1 CABINA equipaggiata con 1 TRAFO MT/BT 20/0,4 kV 0,50 MVA;
- d. N. 1 CABINA equipaggiata con 1 TRAFO MT/BT 20/0,4 kV 1,50 MVA;

Le cabine di campo **tipo a** saranno costruite con 2 vani utente BT e 2 vani per TRAFO MT/BT 20/0,4 kV 2,00 MVA, con dimensioni pari a 12,00 m x 2,50 m ed altezza fuori terra pari a 2,60 m, realizzate in c.a.v. prefabbricato, componendosi di 2 elementi monolitici ovvero la vasca, che svolge la doppia funzione di fondazione e di alloggio dei cavi in arrivo o in partenza dal campo, e il corpo in elevazione. Gli elementi della cabina, prefabbricati in stabilimento, saranno trasportati in cantiere ed eventualmente montati contemporaneamente alla fase di scarico. Prima della movimentazione della cabina sarà predisposto il piano di posa con un fondo di pulizia e livellamento in magrone di calcestruzzo oppure con una massicciata di misto di cava. Le cabine saranno dotate di porte in VTR, aperture grigliate sempre VTR nonché una maglia di terra in corda di rame nudo. All'interno saranno alloggiate le seguenti componenti elettromeccaniche:

- Quadri di parallelo sottocampi a cui fanno capo gli inverter;
- Quadri di linea in BT;
- Quadri in MT di protezione TRAFO e arrivo/partenza linea MT;
- N. 1 trasformatore 0,4/20 kV 4,00 MVA;
- Quadri servizi ausiliari.

Le cabine di campo **tipo b**, **tipo c** e **tipo d** saranno costituite da 1 vano utente BT e 1 vano per TRAFO MT/BT 20/0,4 kV 1,00 MVA per il tipo b, 0,50 MVA per il tipo c oppure 1,50 MVA per il tipo d, con dimensioni pari a 6,70 m x 2,50 m ed altezza fuori terra pari a 2,60 m, realizzate in c.a.v. prefabbricato, componendosi di 2 elementi monolitici ovvero la vasca, che svolge la doppia funzione di fondazione e di alloggio dei cavi in arrivo o in partenza dal campo, e il corpo in elevazione. Gli elementi della cabina, prefabbricati in stabilimento, saranno trasportati in cantiere ed eventualmente montati contemporaneamente alla fase di scarico. Prima della movimentazione della cabina sarà predisposto il piano di posa con un fondo di pulizia e livellamento in

Società certificata

ESCo UNI CEI 11352:2014

EGE UNI CEI 11339:2009

QMS UNI EN ISO 9001:2015

magrone di calcestruzzo oppure con una massicciata di misto di cava. Le cabine saranno dotate di porte in VTR, aperture grigliate sempre VTR nonché una maglia di terra in corda di rame nudo. All'interno saranno alloggiate le seguenti componenti elettromeccaniche:

- Quadri di parallelo sottocampi a cui fanno capo gli inverter;
- Quadri di linea in BT;
- Quadri in MT di protezione TRAFO e arrivo/partenza linea MT;
- N. 1 trasformatore 0,4/20 kV 1,00 MVA (tipo b), 0,50 MVA (tipo c) oppure 1,50 MVA (tipo d);
- Quadri servizi ausiliari.

8. SOTTOSTAZIONE ELETTRICA D'UTENZA

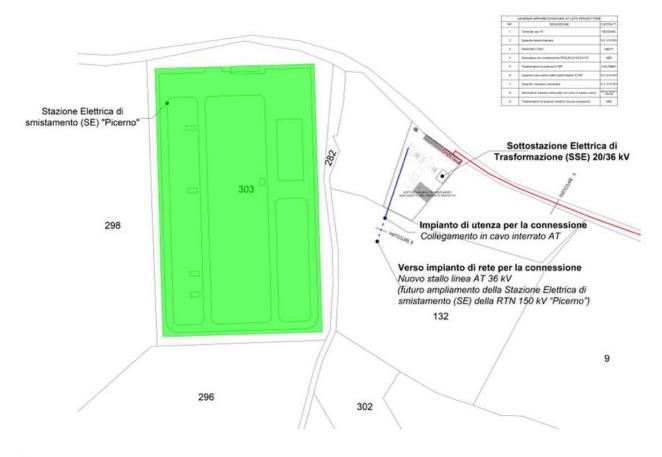
La Sottostazione Elettrica d'Utenza (SSE) del Produttore, completa di relative apparecchiature ausiliarie (quadri, sistemi di controllo e protezione, trasformatore ausiliario), ha dimensioni, al netto delle fasce di rispetto da linee elettriche di servizio (energia, telecomunicazioni, ecc..) e corsi d'acqua, pari a ca. 2.000 m². L'energia prodotta prima di essere immessa in rete (RTN) viene elevata alla tensione di 36 kV mediante un trasformatore trifase di potenza AT/MT 36/20 kV, con potenza nominale Pn = 15 MVA.

Inoltre, il quadro all'aperto della Stazione Elettrica di Smistamento (SE) a 150 kV "Picerno" è composto da:

- nuovo stallo AT completo di raccordi;
- trasformatore AT/MT con potenza nominale 15 MVA;
- edificio quadri comandi e servizi ausiliari.

La posizione dell'edificio quadri consente di agevolare l'ingresso dei cavi MT nella stazione e sarà di dimensioni adeguate nel rispetto delle leggi vigenti e rispettive regole tecniche.

Si riporta di seguito planimetria elettromeccanica della Sottostazione Elettrica di Trasformazione (SSE) del Produttore, posizionata in prossimità della Stazione Elettrica di Smistamento (SE) "Picerno" 150 kV ubicata in Picerno (Pz):



Stralcio su base catastale della Sottostazione Elettrica di Trasformazione (SSE) del Produttore con relativa connessione AT al futuro ampliamento della Stazione Elettrica di Smistamento (SE) "Picerno"

Il terreno interessato all'impianto presenta un'orografia regolare. La progettazione è stata finalizzata a minimizzare i movimenti terra e le dimensioni dell'area da occupare, posizionando l'impianto oltre che in un'area quanto più possibile pianeggiante, anche in prossimità della viabilità esistente e del punto di connessione.

Esso in particolare garantisce:

COMUNE DI PICERNO

- la possibilità di circolazione delle persone in condizioni di sicurezza su tutta la superficie della Sottostazione Elettrica d'Utenza (SSE);
- la possibilità di circolazioni dei mezzi meccanici per le attività di manutenzione ordinaria e straordinaria, grazie alla viabilità e alle aree di manovra presenti nell'area interna.

Per l'alloggiamento delle apparecchiature di protezione e controllo, per i quadri dei servizi ausiliari della Sottostazione Elettrica d'Utenza (SSE), per le telecomunicazioni e per i quadri di sezionamento delle linee MT del Parco Fotovoltaico, è prevista la posa delle cabine descritte ai paragrafi precedenti.

Nella Sottostazione Elettrica di Trasformazione (SSE), oltre al manufatto di consegna e alle componenti elettriche di controllo e sezionamento, saranno realizzate le seguenti principali opere civili:

Fondazioni di componenti e apparecchiature AT;

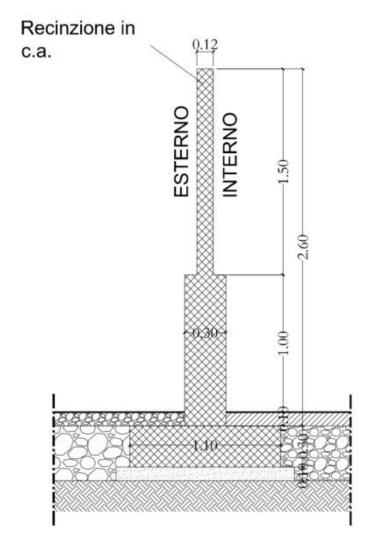
EPS ENGINEERING SRL

P.I. 03953670613 | R.E.A. CE - 286561

T. +39 081 503 1400 | service@epsnet.it | www.epsnet.it

Via Vito di Jasi 20 | 81031 Aversa (Ce)

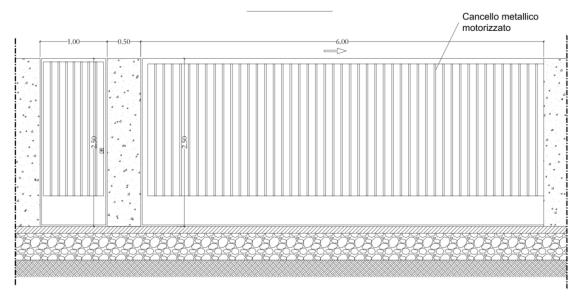
Cunicoli e vie cavo;



- Chioschi per apparecchiature;
- Recinzione di stazione;
- Piazzale di stazione;
- Vasche olio.

La Sottostazione Elettrica di Utenza (SSE) sarà delimitata da una recinzione realizzata in c.a. come da seguente particolare:

Gli ingressi saranno dotati sia di un cancello pedonale che di un cancello carrabile motorizzato così come rappresentato di seguito.



I piazzali interni all'area recintata saranno dotati di pavimentazione in asfalto sia per agevolare la circolazione interna dei mezzi sia per una maggiore durabilità della stessa in quanto è probabile il passaggio di mezzi pesanti.

9. LINEE ELETTRICHE DI CONNESSIONE

I cavi BT di collegamento tra cassette di parallelo stringa e i quadri di campo, in corrente continua, sono 22 previste del tipo H1Z2Z2-K con sezione minima calcolata tenendo conto di una caduta di tensione massima ammissibile <1%. Le connessioni in corrente alternata sono previste mediante cavo FG16(O)R16. La posa è prevista all'interno di cavidotti in PEAD posati a quota -50 ÷ -80 cm e raccordati tra loro mediante pozzetti di ispezione.

I cavi MT saranno in alluminio con formazione ad elica visibile del tipo ARE4H5EX, conformi alla specifica tecnica E-distribuzione DC4385 e con sezione minima calcolata tenendo conto di una caduta di tensione massima ammissibile <0.5%. La posa è prevista direttamente interrata a -100 ÷ -120 cm con protezione anti sfondamento da escavazione senza corrugati o manufatti di posa interposti con il terreno.

I cavi AT sono previsti in alluminio del tipo ARE4H1H5E, conformi alla CEI 60840 con sezione minima calcolata tenendo conto di una caduta di tensione massima ammissibile <2%.

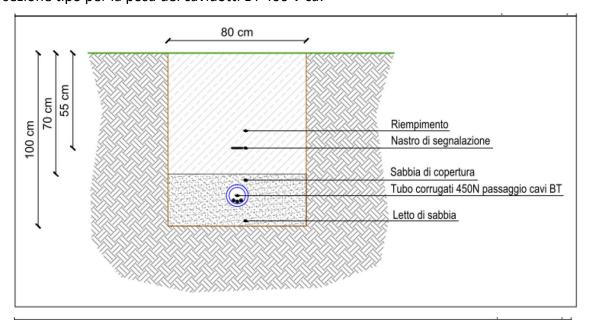
La posa sarà prevista direttamente interrata a -150 cm con protezione anti sfondamento da escavazione senza corrugati o manufatti di posa interposti con il terreno.

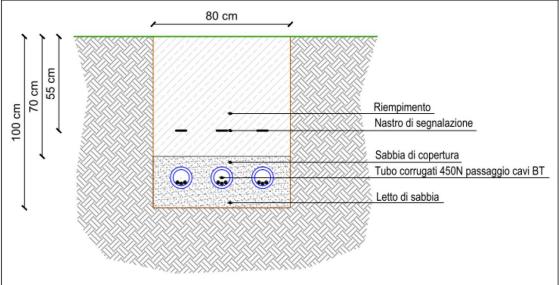
Tutte le operazioni per loro messa in opera dovranno saranno eseguite secondo le norme CEI 20-13, CEI 20-14, CEI 20-24.

Dal punto di vista delle opere di connessione, saranno posati 3 tipologie di cavidotto interrato:

- CAVIDOTTI BT per le connessioni degli inverter alle Cabine di Campo;
- CAVIDOTTI MT 20 kV per le inter-connessioni delle Cabine di Campo MT e per l'elettrodotto di rete con connessone MT 20 kV del Parco Fotovoltaico alla SSE del Produttore;
- CAVIDOTTO AT per la connessione della Sottostazione Elettrica di trasformazione (SSE) del Produttore alla Stazione Elettrica di Smistamento (SE) a 150 kV "Picerno" di proprietà di Terna S.p.A.

I cavidotti BT saranno realizzati tutti all'interno delle aree che compongono il Parco Fotovoltaico.



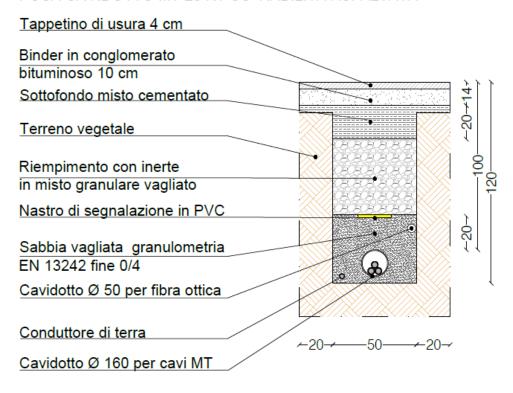


Le sezioni degli scavi per i cavidotti in BT avranno larghezza variabile in funzione del grado di riempimento dei corrugati in quanto, per ogni Campo Fotovoltaico, sono presenti inverter trifase da cui partono 4 (3F+N) cavi di sezione variabile a seconda della distanza degli stessi dalle Cabine di Campo. Segue la sezione tipo per la posa dei cavidotti BT 400 V ca:

I cavidotti MT collegheranno le cabine di campo tra di loro e alla Sottostazione Elettrica di Trasformazione (SSE) 36/20 kV. In fase di studio del tracciato del cavidotto MT a 20 kV si è tenuto conto delle seguenti indicazioni progettuali:

- preferenza di precorsi lungo strade asfaltate esistenti;
- riduzione al minimo delle interferenze con infrastrutture esistenti e zone con vincoli incompatibili con l'infrastruttura di rete.

Il tracciato MT previsto da progetto collega tutte le Cabine di Campo con la Sottostazione Elettrica di trasformazione (SSE) 36/20 kV, secondo il seguente schema:



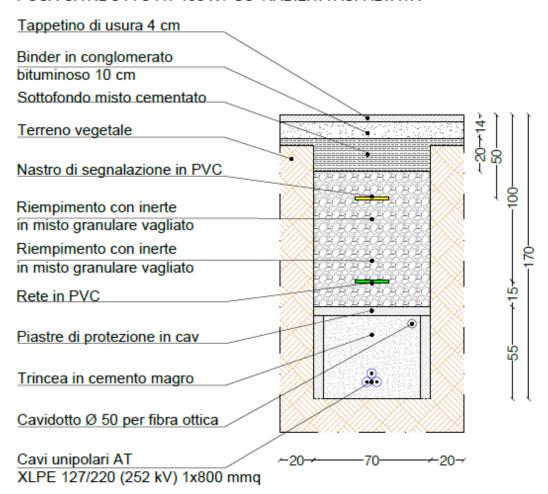
- TRATTO 1: Cabina di Campo 1 Cabina di Campo 2;
- TRATTO 2: Cabina di Campo 2 Cabina di Campo 3;
- TRATTO 3: Cabina di Campo 3 Cabina di Campo 4;
- TRATTO 4: Cabina di Campo 4 Cabina di Campo 5;
- TRATTO 5: Cabina di Campo 5 SSE.

Si riportano di seguito le sezioni tipo dei cavidotti MT 20 kV ca:

POSA CAVIDOTTO MT 20 KV SU VIABILITÀ ASFALTATA

POSA CAVIDOTTO MT 20 KV SU TERRENO AGRICOLO

Segue la sezione tipo del cavidotto interrato prevista nel presente progetto per il collegamento AT necessario per la connessione della Sottostazione Elettrica del Produttore (SSE) alla Stazione Elettrica di Smistamento (SE) a 150 kV "Picerno" di proprietà di Terna S.p.A:



POSA CAVIDOTTO AT 150 KV SU VIABILITÀ ASFALTATA

10. OPERE DI MITIGAZIONE

Le opere di mitigazione sono necessarie per ridurre al minimo gli effetti negativi dovuti all'intervento antropico del Parco Fotovoltaico e soprattutto per facilitare il ripristino ante-operam dello stato dei luoghi a fine vita.

Tra le opere di mitigazione previste vi sono:

- collocazione dei pannelli in armonia con l'orografia del paesaggio;
- utilizzo esclusivo di cavidotti interrati;
- mitigazione visiva, per quanto possibili, mediante piantumazione di siepi e arbusti autoctoni lungo la recinzione;
- ordine e pulizia del sito;
- scelta di colori che mimetizzano l'impatto visivo del Parco Fotovoltaico;
- minimizzazione degli scavi per la realizzazione di trade e piazzole;
- costruzione delle opere eseguita in periodi lontani dalla riproduzione e nidificazione della fauna;
- lavori eseguiti nelle ore diurne co mezzi che non determinano impatti acustici significativi;

Società certificata

ESCo UNI CEI 11352:2014

EGE UNI CEI 11339:2009

QMS UNI EN ISO 9001:2015

- opere di cantiere in quantità strettamente indispensabili che verranno prontamente smantellate a fine lavori;
- prima dell'avvio dei lavori, ove possibile, il suolo vegetale verrà prelevato e gestito in cumuli di dimensioni adeguate ad evitare fenomeni degenerativi e posto a dimora una volta effettuati i lavori;
- nessuna occupazione di suoli destinati per colture agricole di pregio.

In definitiva, tutte le scelte progettuali sono effettuate col fine di **rendere minimi gli impatti sul paesaggio**, dal punto di vista percettivo e di occupazione dei suoli.

Aversa, 07/07/2022

