CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

	F	ROGETTO DEFIN	NITIVO)		
ATI: TECH S.I.S. DELT INFR	NITAL s.p.a. (mar Studio di Ingegne A Ingegneria s.r.l. ATEC s.r.l Consult GIN s.p.a.	ria Stradale s.r.l.		Ordine Ing. Ve Prof. Ing. A Ordine Ing. R Ordine Ing. R Ordine Ing. R Ordine Ing. R IL GEOLOGO Dott. Geol. Ordine dei Ge	M. Raccosta erona n° A1665 A. Bevilacqua alermo n° 4058 M. Carlino grigento n° A628 N. Troccoli otenza n° 836 S. Esposito oma n° 20837	('62)
VISTO:IL RES	SPONSABILE	VISTO:IL RESPONSABILE DEL		Ordine degli Ir	ngegneri di Agrigento n°	334
DEL PROCED Dott. Ing. Mas	DIMENTO similiano Fidenzi	SERVIZIO PROGETTAZIONE Dott. Ing. Antonio Valente		PROTOCOLLO		
		GEOTECNICA TI INDAGINI GEOGNA OVE DI LABORATORI	OSTICH		ΞII	
CODICE PRO	OGETTO	NOME FILE GE02 GET RFII4.pdf		REVISIONE	FOGLIO	SCALA:
L O 4 0	07B D 0501	CODICE T 0 1 G E 0 2 G E T	RFII 4	В	DI DI	
D						
C B	REVISIONE a seguito is	truttoria ANAS 10/03/07	Aprile 2007	E. Mittiga	F. Arciuli	C. Marro
A	EMISSIONE	II UUOIIA AINAS 13/03/01	Ottobre 2006	E. Mittiga	F. Arciuli	C. Marro
REV.	DESCRIZIO	DNE	DATA	VERIFICATO	CONTROLLATO	APPROVATO

Autorizzazione Ministero delle Infrastrutture e Trasporti Autorizzazione Ministero delle Infrastrutture e Trasporti
Decreto n° 51130 del 29/09/2005 Settore "a" Punto 2 Parte 1 Circolare 349/99 STC D.P.R. n. 246/93 art. 8

PROVE DI LABORATORIO SUI TERRENI

COMMITTENTE: TECHNITAL S.p.A.

RICHIEDENTE: ING. DOMENICO D'ALESSANDRO

OGGETTO: COMPLETAMENTO DELL'ITINERARIO AGRIGENTO - CALTANISSETTA A19

NEL TRATTO DAL KM 44+00 DELLA SS640 DI PORTO EMPEDOCLE ALLO

SVINCOLO CON LA A19.

FASE 2 - TOMO I - A:

<u>S4 - S9 - S47 - S48 - S8 - S14 - S49</u>

LOCALITA': CANICATTI' - CALTANISSETTA

VERBALI DI ACCETTAZIONE N°: 204 - 205

IL DIRETTORE DEL LABORATORIO

Ing. Cal CEO PALITY OF Cignello

Sede Legale via A. Di Giovanni, 45 – 92100 AGRIGENTO Laboratorio Via A. Labriola, 21 - 92026 FAVARA (AG) Tel/fax 0922/437803 e-mail: geoservice.lab@libero.it

ELENCO SIGLE DELLE PROVE DI LABORATORIO

1 A DED TUDA CAMBIONI DU CONTIDUIDA DE CONTI	
1-APERTURA CAMPIONI IN CONTENITORI METALLICI	4.01
2-APERTURA CAMPIONI IN CONTENITORI DI PLASTICA	AC1
3-RICONOSCIMENTO E DESCRIZIONE DI UN CAMPIONE DI ROCCIA SCIOLTA O LAPIDEA	AC2
T DELEGIANTAZIONE DEL CONTENTITO ACCIDIO ACCID	RD
2-DELEMANAZIONE DEL PENU DELL'HALLA' DI VOLUME DED DE OMBAS DE CELL	CA
O DELEGIAN VERSION DELL LOCATED TO VALUE DE	PV1
, BELEIGHT BELLIESO SIECIFIC()	PV2
8-MISURA DEL CONTENUTO DELLA SOTANZA ORGANICA	PS1
9-MISURA DEL CONTENUTO DI CARBONATO DI CALCIO CON IL CALCIMETRO	CS2
10-MISURA DELLA RESISTENZA NON DRENATA CON IL DEMETRO METRO TAGOLOUS	cc
I PANALISI OKANULUMENTAZIONE	PT
12-ANALISI GRANULOMETRICA PER SETACCIATURA A SECCIO DI GUDETTO	AG1
13-AUALISI GIMANULUNE I KIL A PER SELATTIATUDA A CECCO DI CITIATE E	AG2
	AG3
	AG4
16-ANALISI GRANULOMETRICA MEDIANTE SETACCIATURA PER VIA UMIDA DI SABBIE LIMOSE(<3 Kg)	AG5
17-ANALISI GRANULOMETRICA MEDIANTE SETACCIATURA PER VIA UMIDA DI GHIAIE E SABBIE LIMOSE(<50 Kg) 18-ANALISI GRANULOMETRICA SILI IMI-ARGILLOSI CON SARRIA DER CETA GELLOSI GHIAIE E SABBIE LIMOSE(>50 Kg)	AG6
18-ANALISI GRANULOMETRICA SU LIMI-ARGILLOSI CON SABBIA PER SETACCIATURA E SEDIMENTAZIONE	AG7
	AG8
	AG9
21-DETERMINAZIONE DEL LIMITE DI DITIDO	LC1
22-PROVA DI COMPRESSIONE EDOMETRICA CON DI PATA DI ARRIVA CARIONE EDIMENTA DI CARIONE	LR
25 TROVA DI COMERCASSIONE EDOMETRICA CON DIDATA DI ADDITOLATIONE	CE1
271 NOVA DI COMI RESSIONE FOUME IRICA CON DIDATA DI ADDITO AGIONE DE LE	CE2
NON SUPERIORI ALLE 24 ORE E FINO AD UN CARICO MASSIMO DI 100 Kg/cmq	
25-PROVA DI COMPRESSIONE EDOMETRICA CON DURATA DI APPLICAZIONE DEGLI INCREMENTI DI CARICO NON SUPERIORI ALLE 24 ORE E FINO AD UN CARICO MASSIMO DI 100 Kg/cmq NON SUPERIORI ALLE 24 ORE E FINO AD UN CARICO MASSIMO DI 100 Kg/cmq NON SUPERIORI ALLE 24 ORE E FINO AD UN CARICO MASSIMO DI 100 Kg/cmq NON SUPERIORI ALLE 24 ORE E FINO AD UN CARICO MASSIMO DI 100 Kg/cmq	CE3
NON SUPERIORI ALLE 24 ORE E FINO AD UN CARICO MASSIMO DI 200 Kg/cmq	
26-SOVRAPPREZZO ALLE VOCI 22 23 24 25 BER DURATA DI ADDIVIO DI 200 Kg/cmq	CE4
26-SOVRAPPREZZO ALLE VOCI 22,23,24,25 PER DURATA DI APPLICAZIONE DEGLI INCREMENTI DI CARICO SUPERIORI ALLE 24 ORE, PER OGNI GIORNO O FRAZIONE DI GIORNO IN PIU'	
27-SOVRAPPREZZO ALLE VOCI 22,23,24,25 PER LA DETERMINAZIONE DEI VALORI EDOMETRICI	SE1
Cy (COEFF, DI CONSOLIDAZIONE), E (MODILLO EDO) (ERMINAZIONE DEI VALORI EDOMETRICI	
C _V (COEFF. DI CONSOLIDAZIONE), E (MODULO EDOMETRICO), K(PERMEABILITA') PER OGNI GRADINO 28-RILIEVO A DIAGRAMMAZIONE DELLE CURVE CEDIMENTO. TEMPO PER OGNI GRADINO	SE2
28-RILIEVO A DIAGRAMMAZIONE DELLE CURVE CEDIMENTO-TEMPO, PER OGNI CARICO APPLICATO	SE3
30-PROVA DI ROTTILIRA A COMPRESSIONE SEN PRI ION - PA	SES
30-PROVA DI ROTTURA A COMPRESSIONE SEMPLICE A DILATAZIONE TRASVERSALE LIBERA	KE UC
	UU
	cu
	CD
34-PROVA DI PERMEABILITA' IN EDOMETRO, PER OGNI CARICO APPLICATO 35-PROVA DI PERMEABILITA' IN PERMEAMETRO	CD PE1
36-PROVA DI POTTUBA CONTANTA DI PERMEAMETRO	PE2
36-PROVA DI ROTTURA CON L'APPARECCHIO DI TAGLIO DI CASAGRANDE DEL TIPO (CD) DELLA DURATA NON SUPERIORE ALLE 24 ORE, CON DIAGRAMMAZIONE DEL E CURVIE DEL TIPO (CD) DELLA DURATA	PE2
NON SUPERIORE ALLE 24 ORE, CON DIAGRAMMAZIONE DELLE CURVE: 3 PROVINI SU MATERIALI SABBIOSI 37-PROVA DI ROTTURA CON L'APPARECCHIO DI TAGLIO DI CASAGRANDE DELLE CURVE: 3 PROVINI SU MATERIALI SABBIOSI	OFF 1
37-PROVA DI ROTTURA CON L'APPARECCHIO DI TAGLIO DI CASAGRANDE DEL TIPO (CD) DELLA DURATA NON SUPERIORE ALLE 24 ORE, CON RILIEVO E DIAGRAMMAZIONE DEL ROUDENTA DE CONTROLLA DURATA NON	TD1
	ODD a
38-SOVRAPPREZZO PER LA DETERMINAZIONE DELLARESISTENZA RESIDUA	_TD2
37-1 KOVA DI COSTIPAMENTO SI PROVINI DEIMO mm TIDO DI COTOR PAR COLORIO	_ST1
	_CO1
	CO2
	_CO3
	_CO5
45-PROVA C.B.R. COMPRESA LA PREPARAZIONE DEL PROVINO E LA DIAGRAMMAZIONE DELLA CURVA PRESSIONI-	CO6
	_
46-MISURA DELLA DENSITA' IN SITU	_CBR
	DS

AUT. MIN. N°51130 DEL 29/09/2005 SETTORE "a" PROVE DI LABORATORIO SUI TERRENI

Oggetto:

Q က

2 4

9

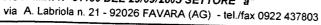
PROGRAMMA DELLE PROVE ESEGUITE

Verb. n.0204 SS 640 completamento dell'itinerario Agrigento - Caltanissetta - A19

BE CE4 CES CE1 bE5 bE1 CBB Data emissione 18/05/2006 Località: Canicatti'-Caltanissetta 9Ð∀ ¥G2 ∀C4 €5A ∀CS ₽Ð∀ ce ၁၁ Richiedente: Ina. D'Alessandro PS2 rsq AC1 PV1 PV1 PV1 7 Tipo di prelievo ind. Ē. TOTALE PROVE EFFETTUATE profondità (m) Origine e denominazione Committente: Technital 13,00 19,50 17,50 12.20 17,50 5,00 6,00 sigla S48C2 S4C1 S47C1 S48C1 S4C2 S9C2 S9C1

10

0 ω


)rigine (Origine e denominazione	13	23	21		11	21	10		<u> </u>		_		\vdash		H		-		\vdash			-		\vdash	L	-	-	ļ	-
sigla	profondità (m)	38	CE CC CC ON ON SE SE SE SE	าร)U]	<u>10</u>	<u> </u>	CD CD	SS	at ar	ат 1а	IOT																		
S4C1	13,00		\vdash		-	$ar{L}$		+	L	T	+	+	\dagger	+	‡	+	1	+	†	+	\pm	1	+	1	+		\dashv	-	1	
S4C2	19,50		+		+	_	İ	+	\prod	\dagger	- -	$oldsymbol{\perp}$	\pm	+	†	+	1	+	\pm	+	\pm	#	+	1	+		-	-		
S9C1	5,00	L	\vdash		-	1		+	I	\pm		T	\pm	+	1	+	1	+	1	+	\pm	\pm	+	\pm	\dashv		-	+	1	\dashv
S9C2	17,50		-		\vdash	L	-	+	I	+	+	\bot	\pm	+	\perp	+	#	+	\pm	+	\pm	1	+	\perp	\dashv	1	-	\dashv		-
S47C1	12,20		L	L	-	F		+	L	1	+	I	\pm	+	<u> </u>	+	#	+	1	$oxed{F}$	\pm	\pm	+	\pm	+		4	+		\dashv
S48C1	00'9		L		-	F	T	╀		+	+	T	1	\bot	1	+	#	+	\pm	otag	+	\pm	\bot	\pm	4	1	1	+	\downarrow	
S48C2	17,50		-		+	F	<u> </u> -	+	I	+	+	Ţ	+	\bot	1	+	1	+	\pm	\mp	_	\pm	\bot	\pm	-		7	\dashv		
			\vdash		+	I	1	+	I	\dagger	+	1	+	otag	\pm	+	1	+	\pm	\dashv	-	1	\dashv	\exists	-		4	\dashv		
		$oldsymbol{\perp}$	+	1	+	Ţ	士	+	1	\dagger	+	7	+	$oldsymbol{\perp}$	1	+	#	-	\pm	7	\dashv	\exists	-					\dashv		
		t	+	1	+	Ţ	T	+	I	+	+	1	+	$oldsymbol{\perp}$	1	+	1	+	_	4	\dashv	_	-					-		
18	OTALE PROVE EFFETTUATE		-		5	\bot	\dagger	+	T	+	2		+		\pm	\perp	#	+		1	+	\pm	1	\pm				+		-

II Direttore del labdratorio Ing. Calogero Palymbo Piccionello

Guglielm# Sciascia Lo Sperimentatore

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

Verbale n°		7			
	204		evimento [20/04/2006]	Data apertura	2/05/2006
Rapporto di prova nº	3063	Data em	issione [18/05/2006]	Località: Cani	
Committente: Technital	S.p.a.				
SS 640 "di Porto Empedan	dell'itinerario Ag	rigento-Ca	ltanissetta-A19 nel tratto da	Km 44+00 della	
SS 640 "di Porto Empedoc	ie" alio svincolo	con la A19			
Sondaggio 4	Campione	1			
	Campione		Profondità 13,00 m	Contenitore	M
Descrizione del campione	•	Indistur	pato [X]	Dimens	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ato [X]	Rimaneggiato	
	Argilla limosa	a colore gri	gio chiaro a tratti scagliosa.		
			www.cougnood.		
Ptfs Tv*				Pt fs	Tv *
O	I				
Grado di cementazione	Debole		Moderato [X] E	levato []	
Struttura	Omogenea [1	Eterogenea [X]	Stratificata []	
Classe di Qualità	Q1 []			otratilicata []	
		Q2 [] Q3 []	Q4 []	Q5 [X]
Consistenza	Molto tenero	Tenero	[] Consistente [X] M	olto consistente [] Duro [
Reazione all'HCI	Nessuna [] Debo			
		DCD	ole [] Forte []	Non Eseguita	[X]
Prove effettuate					
Contenuto d'acqua	Х	7	Prova edometrica		1
imiti di Atterberg	Х	7	Taglio diretto	X	-
nalisi granulometrica			ELĽ	X	1
reometria	X		Triassiale UU		i
'eso specifico	X	_	Triassiale CU		
ompattazione Proctor		٦	Triassiale CD]
enetrazione CBR		-			
		J .			•
Frandezze indice					
ontenuto d'acqua 1^ determ.	36,46	%	Peso di volume	40.400	
ontenuto d'acqua 2^ determ.	34,75	%	Peso di volume secco	18,499	kN/m ³
ontenuto d'acqua media	35,61	%	Grado di saturazione	13,642	kN/m ³
eso specifico 1º determ.	26,881	kN/m ³	Indice dei vuoti	98,90 0,965	%
eso specifico 2^determ.	26,733	kN/m ³	Porosità	0,491	
eso specifico media	26,807	kN/m³		0,491	
		''			
ervazioni					
direttore del Laboratorio					
g. Calogero Halumbo Pic	noionell-		L	o sperimentatore	
y. Varyyery Marurribo Pic	cionello			. V	
			G	o sperimentatore uglielino Seia:	scia

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

ANALISI GRANULOMETRICA

0204 20/04/2006 02/05/2006	3064 18/05/2006	Profondità 13,00 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondit
anissetta sandro	argilla con limo sabbiosa	Campione 1
Technital s.p.a. SS. 640 canicatti' caltanissetl Ing. Domenico D'Alessandro	CLASSIFICAZIONE:	4
Committente Cantiere Richiedente	Diagramma	Sondaggio

grasso media grossa fine media grossa fine media grossa fine grossa fine grossa	5 5	fina	OIIII			sabbia			ghiaia		ciott
0100		=	Illedio	grosso	tine	media	grossa	fine	media	grossa	
0010 0,000			*								
0,100											
000'1					7			+ - +			
001.00			111111111111111111111111111111111111111		······						
0,100											
0,100					· · · · · · · · · · · · · · · · · · ·						
0,100	1 1			7							
0,100				<u>`</u>							
0,100				· · ·							
0,000											
0,000	:		\ <u>`</u>								
0,000											-
0,010	:						T				•
0,010			<u>;</u>								-
0,010		*								1 1	
0,0010		<u> </u>									1
0,010		<u> </u>									-
0,0010							• • • • • • • • • • • • • • • • • • •		_		:
0,0010		::::									
0,010	1	\.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1 1	
0,010	:										
0,0010	: : : :										:
0,010											:
0,010											
0,010									· · · · · · · · · · · · · · · · · · ·		-
0,010		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									:
0,010					111						<u> </u>
0,010											
0,010											
0,010					·					1 1	
0,010 0,1000						· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · · · · · · ·		-
0,010											•
0,010										0 0	
0,010 0,100			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				***				
0,010 0,100 1,000											•
	5		0,010	e	0,100		1.000		10 000		100 000
				/					200,0		3
Il direttore del Zaboatorio			Il direttore	del Zucotatorio							

7

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

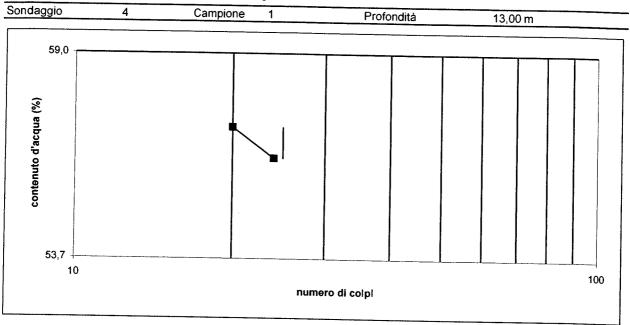
Verbale n°

0204

Data ricevimento

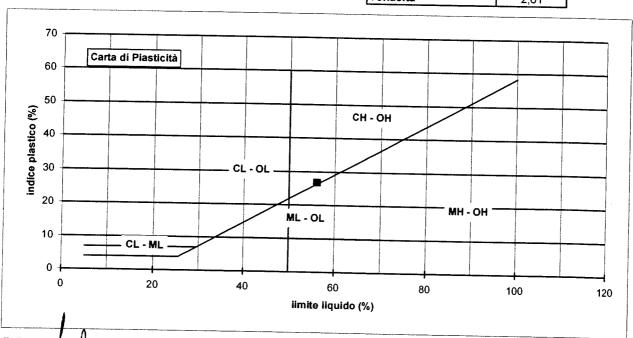
20/04/2006

Data apertura


02/05/2006

Rapporto di prova nº Data emissione

3065 18/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%		56,12
Limite Plastico	%	- 	29 30

Indice plastico	27
Consistenza	0,76
Liquidità	0,24
Fluidità	10,26
Tenacità	2,61

Il direttore del Laboratorio Ing. Calo mbo Piccionello

Lo sperimentatore

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°
Data ricevimento
Data apertura

0204

20/04/2006 02/05/2006

Certificato n° 30

3066

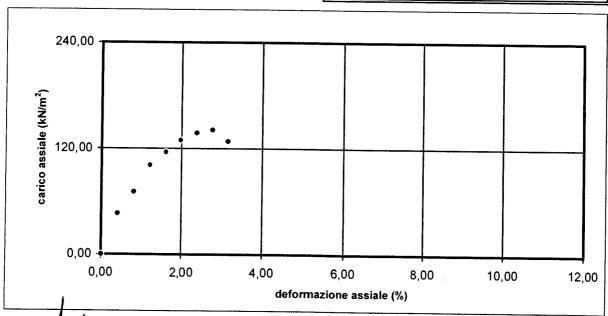
Data emissione

18/05/2006

Sondaggio	4	Campione	1	Profondità	13,00 m	

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0		
0,30	36		
0,60	55		
0,90	79		
1,20	91		
1,50	102		
1,80	109		
2,10	112		
2,40	102		

Dh	NL	Dh	NL
mm	div	mm	div

		<u> </u>	
		L	L

1			
1	Resistenza massima	444.00	1. 1.1
1	iiresistenza massima	141.09	kN/m⁴
1		,	

Il direttore del Vaporatorio
Ing. Calggero/Rajumbo Piccionello

Lo sperimentatore

Guglielnio Sciascia

DEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

erbale n. 0204	Certificato n. 3067 del 18/05/2006
tal S.p.a.	
·	
Canicatti'-Caltanissetta	
n	
	erbale n. 0204 tal S.p.a. Canicatti'-Caltanissetta

Dati del provino n°1 (200 kPa) - Vr=0,002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	16,984 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	17,781 kN/m³ v
Altezza finale	19,160 mm	Densità secca	12,489 kN/m³ v
No. tara 1	14	Umidità iniziale	35,992 % W
Massa tara 1	115,720 g	Umidità finale	36,395 % W
Massa tara 1 + massa umida iniz.	240,37 g	Saturazione iniziale	85,773 % S ₀
No. tara 2	79	Saturazione finale	94,137 % S.
Massa tara 2	71,860 g	Indice dei vuoti iniziale	
Massa tara 2 + massa umida fin.	196,880 g	Indice dei vuoti finale	
Massa tara 2 + massa secca	163,520 g	Densità secca finale	, ,
Peso specifico dei grani	26,81 kN/m³	- Silver a coosa filiale	13,036 kN/m 3 γ_a

Il Direttore dell'Iaboratorio Ing. Calogero Palaribo Piccionello

Lo Sperimentatore Guglietmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Committente

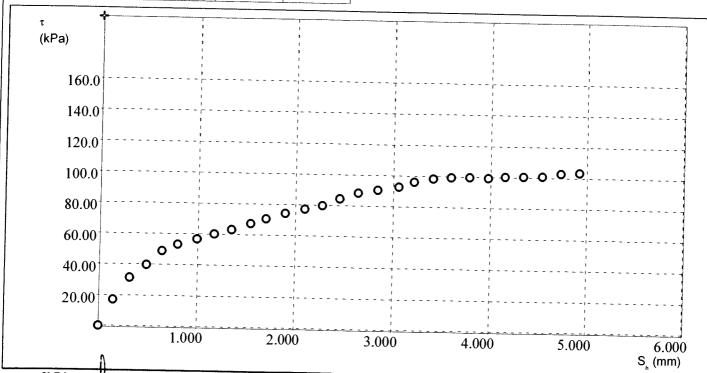
Indirizzo

Technital S.p.a.

Certificato n. 3067 del 18/05/2006

Cantiere

Sondaggio Campione


ss 640 Canicatti'-Caltanissetta

Profondità 13.00 m

Vr=0,002 mm/min

Risultati	(200 kPa) -			
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	0700
60,00	0,02	0,15	61,75	17,15
120,00	0,03	0,31	113,01	31,39
180,00	0,04	0,48	143,30	39,81
240,00	0,06	0,64	175,92	48,87
300,00	0,07	0,79	191,07	53,07
360,00	0,08	0,99	205,05	56,96
420,00	0,10	1,16	216,70	60,19
480,00	0,13	1,34	228,35	63,43
540,00	0,15	1,53	242,33	67,31
600,00	0,22	1,70	255,15	70,87
660,00	0,22	1,89	267,96	74,43
720,00	0,22	2,10	278,45	77,35
780,00	0,27	2,28	287,77	79,94
840,00	0,29	2,46	304,08	84,47
900,00	0,30	2,64	318,06	88,35
960,00	0,32	2,84	326,22	90,62

00 <u>2 </u>				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,33	3,06	334,37	92,88
1080,00	0,37	3,21	346,02	96,12
1140,00	0,37	3,41	354,18	98,38
1200,00	0,37	3,59	357,67	99,35
1260,00	0,38	3,78	358,84	99,68
1320,00	0,38	3,97	357,67	99,35
1380,00	0,40	4,15	361,17	100,32
1440,00	0,40	4,34	362,33	100,65
1500,00	0,41	4,53	363,50	100,97
1560,00	0,45	4,73	370,49	102,91
1620,00	0,45	4,92	372,82	103,56
1680,00	0,45	5,11	377,48	104,86

Il Direttore del laboratorio

Ing. Calogero Palarhbo Piccionello

Lo Sperimentatore Guglielm Sciascia

<u>FROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >> </u>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

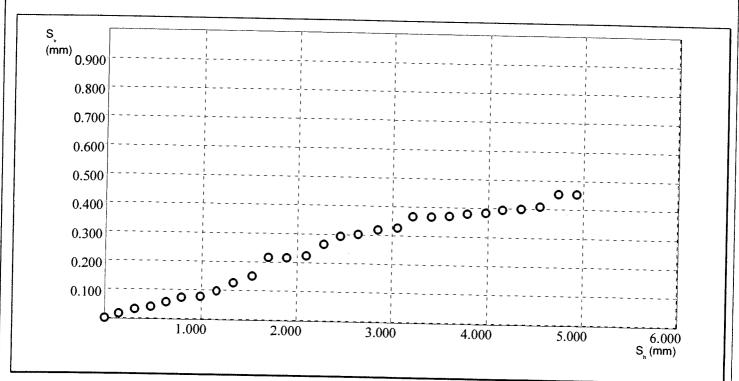
Dati cliente Verbale n. 0204

Certificato n. 3067 del 18/05/2006

Committente Technital S.p.a.

Indirizzo

Sito ss 640 Canicatti'-Caltanissetta


Sondaggio 4
Campione 1
Profondità 13.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,15	0,02
0,31	0,03
0,48	0,04
0,64	0,06
0,79	0,07
0,99	0,08
1,16	0,10
1,34	0,13
1,53	0,15
1,70	0,22

7 10 1110 11 1	(200 KPa) - V
Sh	Sv
mm	mm
1,89	0,22
2,10	0,22
2,28	0,27
2,46	0,29
2,64	0,30
2,84	0,32
3,06	0,33
3,21	0,37
3,41	0,37
3,59	0,37
3,78	0,38

Sh	Sv	
mm	mm	
3,97	0,38	
4,15	0,40	
4,34	0,40	
4,53	0,41	
4,73	0,45	
4,92	0,45	
5,11	0,45	

Il Direttore dellaboratorio

Ing. Calogero Pallembo Piccionello

Lo Sperimentatore
Guglialmo Sciascia

EEDERVICE PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

	Dati del Cliente	Verbale n. 0204	0.40
l			Certificato n. 3067 del 18/05/2006
	Committente	Technital S.p.a.	
	Indirizzo		

Cantiere ss 649 Canicatti'-Caltanissetta
Sondaggio 4
Campione 1
Profondità 13.00 m

Dati del provino n°2 (400 kPa) - Vr=0,002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	47.000 1111 3
Altezza iniziale	20,000 mm	Densità umida finale	17,380 kN/m³ γ _n
Altezza finale	18,570 mm	Densità secca	18,195 kN/m³ γ,
No. tara 1	15	Umidità iniziale	12,595 kN/m³ γ _d
Massa tara 1	114,120 g	Umidità finale	37,992 % W
Massa tara 1 + massa umida iniz.	241,68 g	Saturazione iniziale	34,130 % W
No. tara 2	41	Saturazione finale	91,994 % S ₀
Massa tara 2	68,580 g	Indice dei vuoti iniziale	95,524 % S,
Massa tara 2 + massa umida fin.	192,570 g	Indice dei vuoti finale	1,129 e ₀
Massa tara 2 + massa secca	161,020 g		0,976 e,
Peso specifico dei grani	26,81 kN/m ³	Densità secca finale	13,565 kN/m ³ γ _σ

Il Direttore de Laboratorio Ing. Calogero Palundo Piccionello

Lo Sperimentatore Guglielmo Sciascia

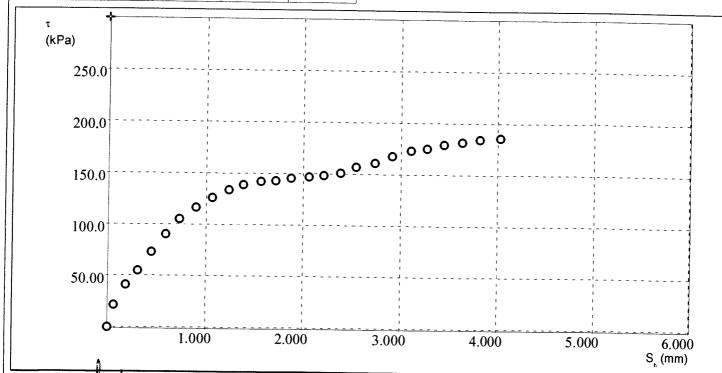
<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente
Verbale n. 0204
Committente
Indirizzo
Cantiere
Sondaggio
Campione

Certificato n. 3067 del 18/05/2006
Certificato n. 3067 del 18/05/2006


Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

l	Mountair	Jena rase u	i Tollura Pr	ovino n°2 (400 KPa) - \
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0Ţ00
	60,00	0,05	0,06	78,06	21,68
	120,00	0,09	0,18	147,96	41,10
	180,00	0,13	0,30	196,89	54,69
	240,00	0,15	0,44	263,30	73,14
	300,00	0,16	0,59	325,05	90,29
	360,00	0,21	0,73	378,64	105,18
	420,00	0,23	0,90	419,42	116,51
	480,00	0,24	1,06	453,21	125,89
	540,00	0,26	1,24	481,17	133,66
	600,00	0,28	1,39	499,81	138,84
	660,00	0,31	1,56	511,46	142,07
	720,00	0,34	1,72	513,79	142,72
	780,00	0,36	1,87	523,11	145,31
-	840,00	0,37	2,06	528,94	146,93
	900,00	0,38	2,21	534,76	148,54
	960,00	0,41	2,38	542,92	150,81

13.00 m

Profondità

dt	dΗ	Sh	F	
min	mm	mm	N	kPa
1020,00	0,43	2,54	565,05	156,96
1080,00	0,47	2,73	579,03	160,84
1140,00	0,50	2,91	602,33	167,32
1200,00	0,52	3,10	622,14	172,82
1260,00	0,55	3,27	630,30	175,08
1320,00	0,56	3,44	645,44	179,29
1380,00	0,58	3,63	654,76	181,88
1440,00	0,60	3,81	662,92	184,14
1500,00	0,63	4,03	668,74	185,76
1560,00	0,64	4,19	676,90	188,03

Il Direttore del laboratorio

Ing. Calogero Parambo Piccionello

Lo Sperimentatore
Guglielmo Sciascia

<u>LIEDIERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0204

Certificato n. 3067 del 18/05/2006

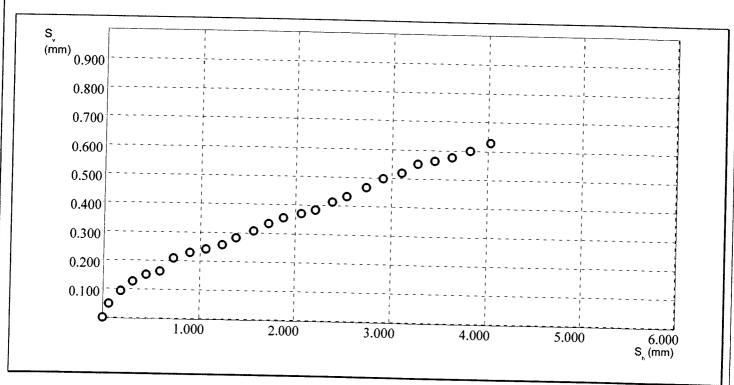
Committente Technital S.p.a.

Indirizzo

Sito ss 649 Canicatti - Caltanissetta

 Sondaggio
 4

 Campione
 1


 Profondità
 13.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,06	0,05
0,18	0,09
0,30	0,13
0,44	0,15
0,59	0,16
0,73	0,21
0,90	0,23
1,06	0,24
1,24	0,26
1,39	0,28

- 10 VIII 0 II 2 (400 KFa) - VI				
Sh	Sv			
mm	mm			
1,56	0,31			
1,72	0,34			
1,87	0,36			
2,06	0,37			
2,21	0,38			
2,38	0,41			
2,54	0,43			
2,73	0,47			
2,91	0,50			
3,10	0,52			
3,27 0,55				

Sh	Sv
mm	mm
3,44	0,56
3,63	0,58
3,81	0,60
4,03	0,63
4,19	0,64

Il Direttore del laboratorio
Ing. Calogere Palanno Piccionello

Lo Sperimentatore
Gugliamo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente	Verbale n. 0204	Certificato n. 3067 del 18/05/2006	
Committente	Technital S.p.a.		
Indirizzo			1
Cantiere	ss 640 Canicatti'-Caltanissetta		
Sondaggio	4		Ì
Campione	1		
Profondità	13.00 m		
Sondaggio Campione	4		

Dati del provino n°3 (800 kPa) - Vr=0,002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	17,631 kN/m³ γ _α
Altezza iniziale	20,000 mm	Densità umida finale	19,368 kN/m³ y
Altezza finale	17,020 mm	Densità secca	12,922 kN/m³ v
No. tara 1	16	Umidità iniziale	36,440 % W
Massa tara 1	115,920 g	Umidità finale	27,552 % W
Massa tara 1 + massa umida iniz.	245,32 g	Saturazione iniziale	92,659 % S ₀
No. tara 2	79	Saturazione finale	98,343 % S.
Massa tara 2	71,860 g	Indice dei vuoti iniziale	1,075 e
Massa tara 2 + massa umida fin.	192,830 g	Indice dei vuoti finale	0,766 e,
Massa tara 2 + massa secca	166,700 g	Densità secca finale	15,184 kN/m ³ γ _
Peso specifico dei grani	26,81 kN/m ³		' at

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore
Guglielino Sciascia

<u>FEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Committente

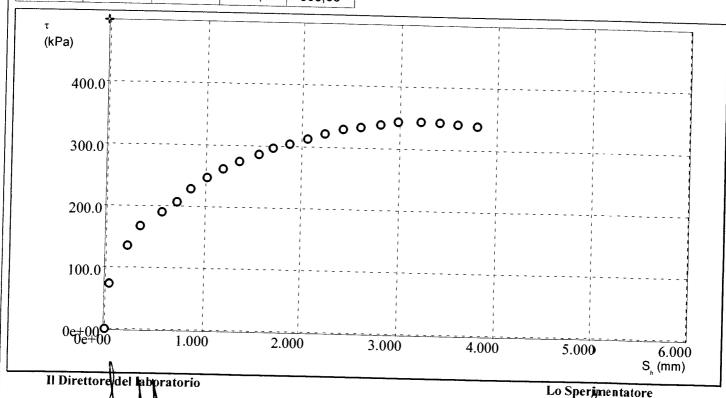
Technital S.p.a.

Certificato n. 3067 del 18/05/2006

Indirizzo Cantiere

ss 640 Canicatti'-Caltanissetta

Sondaggio Campione Profondità 13.00 m


Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

Risuitati	iella tase d	i rottura Pi	ovino n°3 (′800 kPa) - \
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	0700
120,00	0,05	0,04	265,63	73,79
180,00	0,11	0,21	488,16	135,60
240,00	0,16	0,34	602,33	167,32
300,00	0,21	0,56	686,22	190,62
360,00	0,25	0,71	744,47	206,80
420,00	0,26	0,85	822,53	228,48
480,00	0,29	1,02	888,94	246,93
540,00	0,31	1,18	940,20	261,17
600,00	0,33	1,35	987,97	274,44
660,00	0,35	1,55	1031,08	286,41
720,00	0,35	1,70	1068,36	296,77
780,00	0,38	1,87	1093,99	303,89
840,00	0,40	2,06	1125,45	312,62
900,00	0,43	2,23	1158,07	321,69
960,00	0,46	2,42	1188,36	330,10
1020,00	0,48	2,60	1201,17	333,66

Ing. Calogero Ralumbb Piccionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
1080,00	0,50	2,81	1217,49	338,19
1140,00	0,52	2,98	1234,96	343,04
1200,00	0,54	3,21	1237,29	343,69
1260,00	0,54	3,41	1234,96	343,04
1320,00	0,55	3,59	1226,81	340,78
1380,00	0,56	3,80	1217,49	338,19
1440,00	0,56	4,01	1 197,68	332,69

Guglielm Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0204

Certificato n. 3067 del 18/05/2006

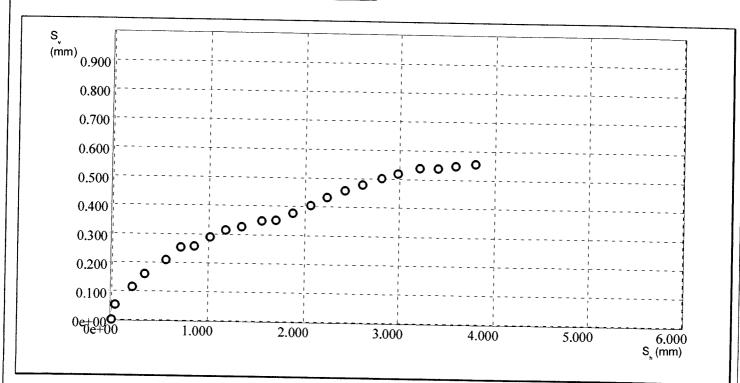
Committente

Indirizzo

Sito

Technital S.p.a.

ss 640 Canicatti'-Caltanissetta


Sondaggio Campione Profondità 13.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,04	0,05
0,21	0,11
0,34	0,16
0,56	0,21
0,71	0,25
0,85	0,26
1,02	0,29
1,18	0,31
1,35	0,33
1,55	0,35

•	- 10111011 3 (000 KFa) - VI				
	Sh	Sv			
	mm	mm			
	1,70	0,35			
	1,87	0,38			
	2,06	0,40			
	2,23	0,43			
	2,42	0,46			
	2,60	0,48			
	2,81	0,50			
	2,98	0,52			
	3,21	0,54			
	3,41	0,54			
	3,59	0,55			

Sh	Sv
mm	mm
3,80	0,56
4,01	0,56

Il Direttere del laboratorio

Ing. Calogero Indianho Piccionello

Lo Sperimentatore Gualiel no Sciascia

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Verbale n°	204		evimento	[20/04	/2006]		Data apertura	4/05/2006
Rapporto di prova nº	3068	Data em	issione	[18/05	5/2006]	Località: Canic	
Committente: Technital	S.p.a.					-		atti - Cartarii SSE
Oggetto: Completamento	dell'itinerario Agi	rigento-Ca	Itanissetta	a-A19 r	nel tratte	o dal Kr	n 44+00 della	
SS 640 "di Porto Empedoci	e" allo svincolo i	con la A19)					
Sondaggio 4	Campione	2	Drof	al:43	40.50			
			Prote	naita	19,50	m	Contenitore	M
Descrizione del campione		Indistur	oato [X				Rimaneggiato	1
	Marna arailla lim	1000 colo	L:				33	
•	Marna argillo-lim	iosa coloi	e bianco-	verdas	tro, sca	gliosa.		
Pt 3,8 Tv *							Pt 4,4	T., *
Crode di sauca da la	1_						F(4,4	Tv *
Grado di cementazione	Debole [Moderato	X] (1	Eleva	ato []	
Struttura	Omogenea []	Eterogen	ea ſ X	()	Stra	tificata []	
Classe di Qualità	Q1 []	Q2 [1	Q3				
Consistenza						Q4		Q5 [X]
	Molto tenero [] Tener	o[]Co	nsisten	te [X] Molto	consistente [] Duro []
Reazione all'HCI	Nessuna [] Deb	ole [] For	rte [] N	on Eseguita	[X]
Prove effettuate								1 ^ 1
TOTO CHOLLUAGE								
Contenuto d'acqua	X	1	Drawa					
imiti di Atterberg	$\frac{\hat{x}}{x}$	1		edome		- [
Analisi granulometrica		1	ELL	diretto		-	X	
reometria	X	1		-l- 1111		L	X	
eso specifico	X	1		ale UU ale CU				
		J		ale CD				
compattazione Proctor		1	111855	ale CD)	L		
enetrazione CBR		1						
Frandezze indice								
ontenuto d'acqua 1^ determ.	27.07							
ontenuto d'acqua 2º determ.	37,97	%	Peso di				18,180	kN/m ³
ontenuto d'acqua media	36,71	%	Peso di				13,237	kN/m ³
eso specifico 1º determ.	37,34	%	Grado d	li satura	zione		98,80	%
eso specifico 2 ⁿ determ.	26,596	kN/m ³	Indice d				1,001	
	26,384	kN/m ³	Porosita				0,500	
eso specifico media	26,490	kN/m ³						
ervazioni								
<u> </u>								
direttoro del 1 - 1	-							
direttore del Landratorio	_					Los	perimentatore	
g. Calogero/Palumbo Pic	cionello					•		
							1-15/2-1-0	oio
(Gugl	ielnyo Scias	UI a

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Associazione Laboratori Geotecnici Italiani

ANALISI GRANULOMETRICA

0204 20/04/2006 04/05/2006	3069 18/05/2006	Profondità 19,50 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità
altanissetta Iessandro	CLASSIFICAZIONE: argilla con limo debolmente sabbiosa	Campione 2
Technital s.p.a. SS. 640 canicatti' caltanissett Ing. Domenico D'Alessandro	CLASSIFICAZIONE:	4
Committente Cantiere Richiedente	Diagramma	Sondaggio

aldilla		imo			sabbia			ahiaia		#0,0
	fine	medio	grosso	fine	media	grossa	fine	edia	grossa	COC
							1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0			
100,00		1111					11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11
0,06			\ \ !					11		
80,0									• • • • • • • • • • • • • • • • • • •	1 1 1 1
70.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									111
0 09			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
50.0						111111111111111111111111111111111111111		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
40,0										1 1 1 1
30,0										1111
20.0										1111
10.0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1 1 1 1
			1111					11111		1111
0,001		0,010	_	0,100		1,000		7 10,000		100,000
		II direttore derini Ing. Calogero Par	abora Meto P	torio iccionello	3		Page S	Speramentatore Guggestato Sciascia	.œ	

7

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

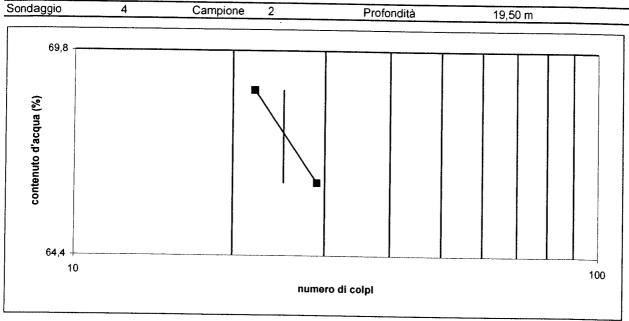
Committente: Technital S.p.a.

Richiedente: Ing.Domenico D'Alessandro

Cantiere: SS. 640

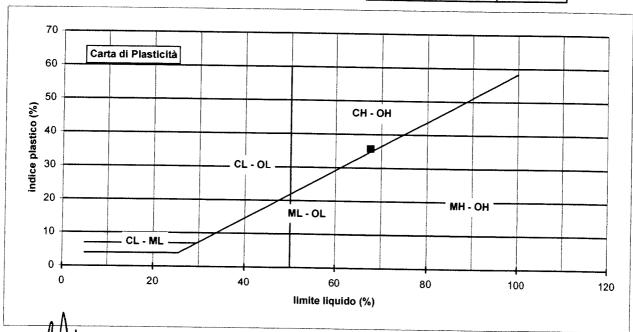
Località: Canicatti' - Caltanissetta

Verbale n° Data ricevimento 0204 20/04/2006


Data apertura Rapporto di prova nº 04/05/2006 3070

Data emissione

18/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	67,62
Limite Plastico	%	31.97

Indice plastico	36
Consistenza	0,85
Liquidità	0,15
Fluidità	20,17
Tenacità	1,77

Il diretto e aboratorio. alumbo Piccionello

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

0204

Data ricevimento

20/04/2006

Data apertura Certificato n°

04/05/2006

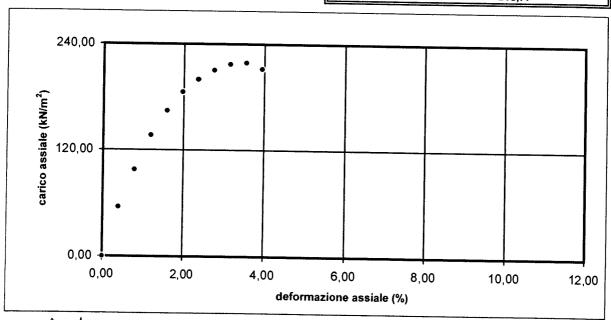
Data emissione

3071 18/05/2006

O a serial as a serial					
Sondaggio	A	Commisses	•	5 (11)	
00.14499.0	7	Campione	7	Profondità	19,50 m
			-	riolondia	19.5U M

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

na argillosa

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0	3,00	170
0,30	43		
0,60	76		· · · · · · · · · · · · · · · · · · ·
0,90	107		
1,20	129		
1,50	146		
1,80	158		
2,10	167		
2,40	173		
2,70	175		

Dh	NL	Dh	NL
mm	div	mm	div
			
			<u> </u>

Resistenza n	nassima	218,77	kN/m²

Il direttori del Laboratorio Ing. Calagera Palumbo Piccionello

Lo sperimentatore

Guglielmo Sciascia

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Certificato n. 3072 del 18/05/2006

Committente Technital S.p.a. Indirizzo

Cantiere ss 640 Canicatti'-Caltanissetta

Sondaggio Campione 2 Profondità 19.50 m

Dati del provino n°1 (200 kPa) - Vr=0,002 mm/min

Descrizione provino	marna		
Sezione	36,000 cm ²	Densità umida iniziale	17,166 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	18,030 kN/m³ γ
Altezza finale	19,030 mm	Densità secca	12,546 kN/m³ v
No. tara 1	13	Umidità iniziale	36,827 % W
Massa tara 1	105,860 g	Umidità finale	36,740 % W
Massa tara 1 + massa umida iniz.	231,85 g	Saturazione iniziale	89,451 % S _o
No. tara 2	39	Saturazione finale	98,295 % S,
Massa tara 2	70,780 g	Indice dei vuoti iniziale	1,112 e ₀
Massa tara 2 + massa umida fin.	196,690 g	Indice dei vuoti finale	1,010 e,
Massa tara 2 + massa secca Peso specifico dei grani	162,860 g 26,50 kN/m³	Densità secca finale	13,185 kN/m ³ γ _a

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

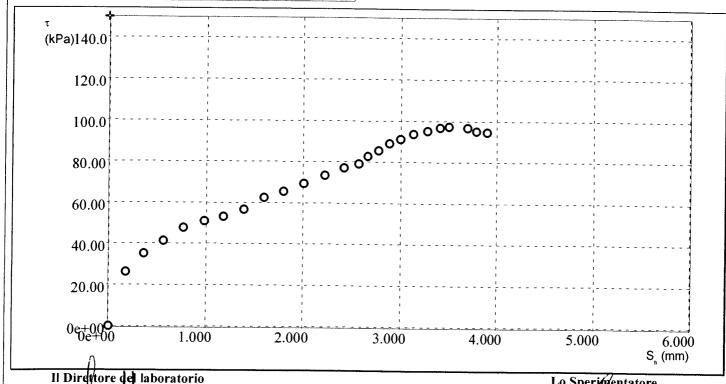
Dati del ClienteVerbale n. 0204CommittenteTechnital S.p.a.

Indirizzo

Cantiere ss 640 Canicatti'-Caltanissetta

Sondaggio 4
Campione 2
Profondità 19.50 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min


Mountaire	iella lase u	i iolluia Pi	ן דו טווועט (נ	200 KPa) - V
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	Ot00
60,00	0,04	0,17	94,75	26,32
120,00	0,08	0,36	127,11	35,31
180,00	0,12	0,56	149,06	41,41
240,00	0,14	0,76	172,17	47,83
300,00	0,16	0,98	183,73	51,04
360,00	0,19	1,18	191,82	53,28
420,00	0,21	1,40	204,53	56,81
480,00	0,23	1,60	225,33	62,59
540,00	0,24	1,80	235,73	65,48
600,00	0,26	2,01	249,59	69,33
660,00	0,28	2,22	264,58	73,50
720,00	0,30	2,42	277,70	77,14
 780,00	0,30	2,57	285,20	79,22
840,00	0,30	2,66	298,31	82,86
900,00	0,30	2,77	307,68	85,47
960,00	0,30	2,88	320,80	89,11

Ing. Caldgero Palumbo Piccionello

VE 111111111111111111111111111111111111				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,30	3,00	328,29	91,19
1080,00	0,30	3,13	337,66	93,80
1140,00	0,30	3,28	343,29	95,36
1200,00	0,30	3,41	348,91	96,92
1260,00	0,30	3,50	350,78	97,44
1320,00	0,30	3,69	348,91	96,92
1380,00	0,30	3,79	343,29	95,36
1440,00	0,30	3,90	341,41	94,84
1500,00	0,30	3,99	330,17	91,71
L		Li	L	

Lo Sperimentatore Guglielmo Sciascia

Certificato n. 3072 del 18/05/2006

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

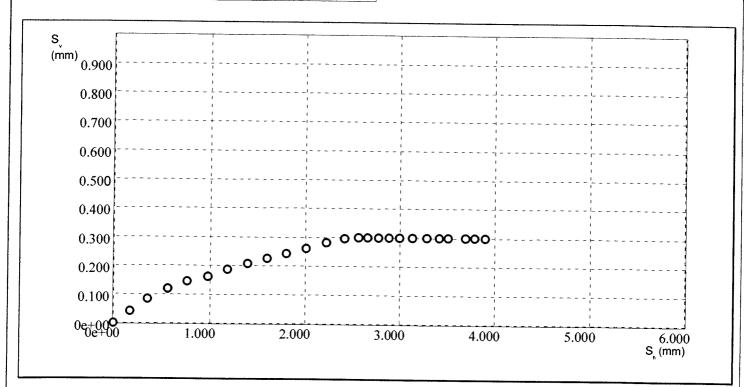
Dati cliente Verbale n. 0204

Committente Indirizzo

Sito ss 640 Canicatti'-Caltanissetta

Technital S.p.a.

Sondaggio 4
Campione 2
Profondità 19.50 m


Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,17	0,04
0,36	0,08
0,56	0,12
0,76	0,14
0,98	0,16
1,18	0,19
1,40	0,21
1,60	0,23
1,80	0,24
2,01	0,26

Sv
mm
0,28
0,30
0,30
0,30
0,30
0,30
0,30
0,30
0,30
0,30
0,30

Sh	Sv
mm	mm
3,69	0,30
3,79	0,30
3,90	0,30
3,99	0,30

Certificato n. 3072 del 18/05/2006

Il Direttore del aboratorio

Ing. Calogero Valumbo Piccionello

Lo Sperimentatore Guglielino Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente	Verbale n. 0204	Certificato n. 3072 del 18/05/2006	
Committente	Technital S.p.a.		
Indirizzo	·		
Cantiere	ss 640 Canicatti'-Caltanissetta		
Sondaggio	4		j
Campione	2		
Profondità	19.50 m		
			- 1

Dati del provino n°2 (400 kPa) - Vr=0,002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	17,244 kN/m³ γ _n
Altezza iniziale	20,000 mm	Densità umida finale	18,464 kN/m³ v
Altezza finale	18,070 mm	Densità secca	12,446 kN/m³ v
No. tara 1	14	Umidità iniziale	38,544 % W
Massa tara 1	115,720 g	Umidità finale	34,034 % W
Massa tara 1 + massa umida iniz.	242,28 g	Saturazione iniziale	92,223 % S
No. tara 2	78	Saturazione finale	99,548 % S.
Massa tara 2	69,120 g	Indice dei vuoti iniziale	1,129 e
Massa tara 2 + massa umida fin.	191,560 g	Indice dei vuoti finale	0,923 e,
Massa tara 2 + massa secca	160,470 g	Densità secca finale	13,776 kN/m ³ γ _a
Peso specifico dei grani	26,50 kN/m ³		of at

Il Direttore del Laboratorio Ing. Calogeri Pallando Piccionello

Lo Sperimentatore

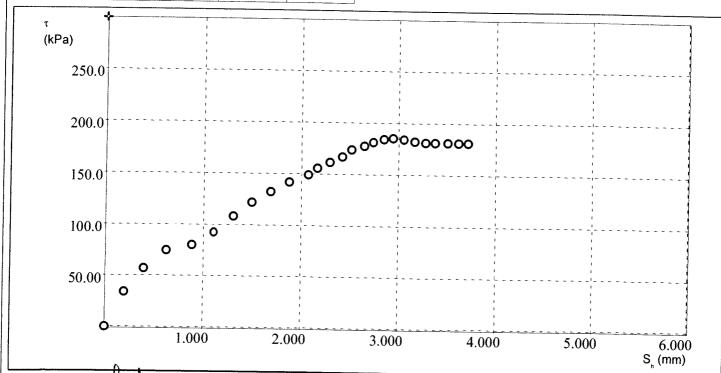
Guglielino Seiascia

DEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Certificato n. 3072 del 18/05/2006


Committente Technital S.p.a.

Cantiere ss 640 Canicatti'-Caltanissetta
Sondaggio 4
Campione 2
Profondità 19.50 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

Nisuitati	400 kPa) - \			
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	Ot00
60,00	0,03	0,19	123,78	34,38
120,00	0,04	0,40	204,75	56,88
180,00	0,05	0,62	268,38	74,55
240,00	0,07	0,88	288,04	80,01
300,00	0,08	1,11	333,16	92,54
360,00	0,10	1,31	389,84	108,29
420,00	0,14	1,50	438,43	121,79
480,00	0,18	1,69	475,44	132,07
540,00	0,23	1,88	510,15	141,71
600,00	0,27	2,07	536,75	149,10
660,00	0,30	2,16	560,65	155,74
720,00	0,30	2,29	581,26	161,46
780,00	0,30	2,42	601,87	167,19
840,00	0,31	2,51	625,92	173,87
900,00	0,31	2,65	639,66	177,68
960,00	0,31	2,74	653,40	181,50

02				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,31	2,85	663,71	184,36
1080,00	0,31	2,95	667,15	185,32
1140,00	0,31	3,06	663,71	184,36
1200,00	0,31	3,17	656,84	182,46
1260,00	0,31	3,28	653,40	181,50
1320,00	0,31	3,38	653,40	181,50
1380,00	0,31	3,51	653,40	181,50
1440,00	0,31	3,62	653,40	181,50
1500,00	0,31	3,71	653,40	181,50
1560,00	0,32	3,85	639,66	177,68

Il Direttore del laboratorio
Ing. Caloger

Palymon Piccionello

Lo Sperimentatore
Guglielmo Sciascia

<u>LIEUERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

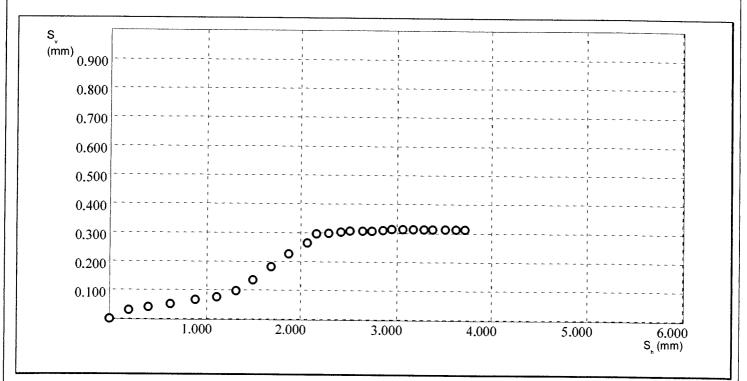
Dati cliente Verbale n. 0204

Certificato n. 3072 del 18/05/2006

Committente Technital S.p.a.

Indirizzo

Sito ss 640 Canicatti'-Caltanissetta


Sondaggio 4
Campione 2
Profondità 19.50 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,19	0,03
0,40	0,04
0,62	0,05
0,88	0,07
1,11	0,08
1,31	0,10
1,50	0,14
1,69	0,18
1,88	0,23
2,07	0,27

7 1001110 11 2 (400 Kr a) - VI					
Sh	Sv				
mm	mm				
2,16	0,30				
2,29	0,30				
2,42	0,30				
2,51	0,31				
2,65	0,31				
2,74	0,31				
2,85	0,31				
2,95	0,31				
3,06	0,31				
3,17	0,31				
3,28	0,31				

Sv
mm
0,31
0,31
0,31
0,31
0,32

Il Direttone del laboratorio

Ing. Calogero Palumilo Piccionello

Lo Sperimentatore

Guglielino Sciascia

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Certificato n. 3072 del 18/05/2006

Committente Technital S.p.a.

Indirizzo

Cantiere ss 640 Canicatti'-Caltanisetta

Sondaggio 4
Campione 2
Profondità 19.50 m

Dati del provino n°3 (800 kPa) - Vr=0,002 mm/min

Descrizione provino	marna		
Sezione	36,000 cm ²	Densità umida iniziale	16,798 kN/m $^{\circ}$ $\gamma_{_{\rm B}}$
Altezza iniziale	20,000 mm	Densità umida finale	19,060 kN/m³ γ,
Altezza finale	16,810 mm	Densità secca	12,407 kN/m³ v
No. tara 1	15	Umidità iniziale	35,394 % W
Massa tara 1	114,120 g	Umidità finale	29,124 % W
Massa tara 1 + massa umida iniz.	237,41 g	Saturazione iniziale	84,181 % S
No. tara 2	80	Saturazione finale	98,946 % S,
Massa tara 2	68,780 g	Indice dei vuoti iniziale	1,136 e
Massa tara 2 + massa umida fin.	186,360 g	Indice dei vuoti finale	0,795 e,
Massa tara 2 + massa secca	159,840 g	Densità secca finale	14,761 kN/m ³ γ
Peso specifico dei grani	26,50 kN/m ³		T et

Il Direttore del Laboratorio Ing. Calogero Palulabo Piccionello

Lo Sperimentatore Guglielmo Sciascia

<u>LIEDIERVICE</u> _{5,74} PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Committente Technital S.p.a.

Certificato n. 3072 del 18/05/2006

Indirizzo

Cantiere

Sondaggio

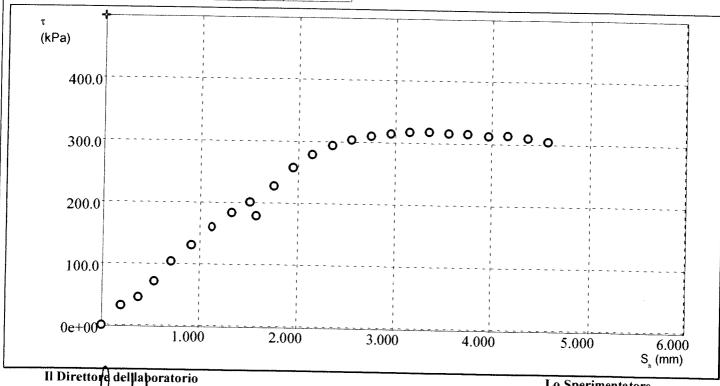
ss 640 Canicatti'-Caltanisetta

Campione 2 Profondità 19.50 m

Ing. Caloger Palam

o Piccionello

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min


[- Wountain C	rena rase u	Tollura Pi	ovino nº3 (ouu KPa) - 1
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0 1 00
	60,00	0,05	0,19	117,99	32,78
	120,00	0,08	0,37	166,58	46,27
	180,00	0,10	0,53	259,12	71,98
	240,00	0,12	0,71	374,80	104,11
	300,00	0,13	0,91	471,97	131,10
	360,00	0,14	1,13	578,40	160,67
	420,00	0,15	1,33	661,69	183,80
	480,00	0,15	1,52	724,16	201,15
	540,00	0,16	1,58	646,65	179,62
	600,00	0,18	1,75	820,17	227,82
	660,00	0,20	1,95	926,59	257,39
-	720,00	0,21	2,14	1004,10	278,92
	780,00	0,22	2,35	1058,47	294,02
	840,00	0,22	2,54	1092,02	303,34
	900,00	0,23	2,75	1117,47	310,41
	960,00	0,24	2,95	1131,35	314,26

_	<u> </u>				
	dt	dH	Sh	F	
	min	mm	mm	N	kPa
	1020,00	0,24	3,15	1142,92	317,48
	1080,00	0,25	3,35	1146,39	318,44
	1140,00	0,25	3,56	1138,29	316,19
	1200,00	0,25	3,75	1137,13	315,87
	1260,00	0,25	3,97	1125,56	312,66
	1320,00	0,25	4,16	1129,03	313,62
	1380,00	0,25	4,36	1116,31	310,09
	1440,00	0,25	4,57	1097,80	304,94
Į	1500,00	0,25	4,76	1094,33	303,98

Lo Sperimentatore

Sciascia

Guglielm

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

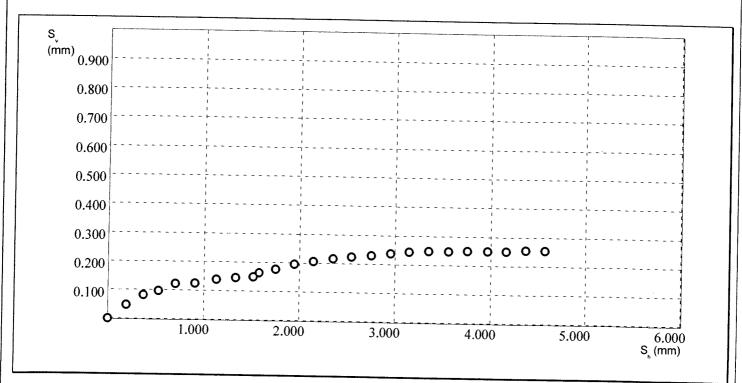
Dati cliente Verbale n. 0204

Committente Indirizzo

Sito ss 640 Canicatti'-Caltanisetta

Technital S.p.a.

Sondaggio 4
Campione 2
Profondità 19.50 m

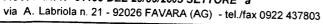

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

	T
Sh	Sv
mm	mm
0,00	0,00
0,19	0,05
0,37	0,08
0,53	0,10
0,71	0,12
0,91	0,13
1,13	0,14
1,33	0,15
1,52	0,15
1,58	0,16
1,75	0,18

	000 m uj = 01
Sh	Sv
mm	mm
1,95	0,20
2,14	0,21
2,35	0,22
2,54	0,22
2,75	0,23
2,95	0,24
3,15	0,24
3,35	0,25
3,56	0,25
3,75	0,25
3,97	0,25

Sh	Sv
mm	mm
4,16	0,25
4,36	0,25
4,57	0,25
4,76	0,25

Certificato n. 3072 del 18/05/2006


Il Direttore del Jaboratorio
Ing. Calogero Kajumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

Verbale n°	204	Data rice	vimento [20/04/2006]	Data apertura 2	26/04/2006
Rapporto di prova nº	3073	Data emis		Località: Canica	
Committente: Technital S	S.p.a.				itti - Oaitarriss
Oggetto: Completamento d	dell'itinerario Agr	igento-Calta	anissetta-A19 nel tratto di	al Km 44+00 della	
SS 640 "di Porto Empedocl	<u>e" allo svincolo (</u>	con la A19			
Sondaggio 9	Campione	. 1			
	Campione		Profondità 5,00 m	Contenitore	М
<u>Descrizione del campione</u>		Indisturba	nto [X]	Rimaneggiato	f 1
				rtimaneggiato	<u> </u>
	Limo arg	illo-sabbios	o colore grigio chiaro.		
	Pre:	senza di sos	stanza organica.		
Pt 4,7 Tv *		····			
		······································		Pt 5,5	Tv *
Grado di cementazione	Debole [1 N	Moderato [X]	Elevato []	
Struttura					
Struttura	Omogenea [terogenea [X]	Stratificata []	
Classe di Qualità	Q1 []	Q2 [] Q3 []	Q4 [] C	25 [X]
Consistenza	Molto tenero [] Tenero	[] Consistente [X] N	Molto consistente [
Reazione all'HCI	Nessuna [] Duro [
TOURIST CONTRACTOR	[IAESSUIIA [] Debol	e [] Forte [Non Eseguita	[X]
Contenuto d'acqua .imiti di Atterberg	X		Prova edometrica	X	
Analisi granulometrica		1	Taglio diretto ELL	X	
Areometria	X	1	Triassiale UU		
Peso specifico	X]	Triassiale CU		
Compattazione Proctor		ר	Triassiale CD		
enetrazione CBR		-			
		j			
Frandezze indice					
ontenuto d'acqua 1^ determ.	19,17	%	Peso di volume	18,979	kN/m ³
ontenuto d'acqua 2^ determ.	20,52	%	Peso di volume secco	15,836	kN/m ³
ontenuto d'acqua media	19,85	%	Grado di saturazione	77,76	%
eso specifico 1^ determ.	26,768	kN/m³	Indice dei vuoti	0,678	
eso specifico 2^determ. eso specifico media	26,391	kN/m³	Porosità	0,404	
eso specifico media	26,580	kN/m ³			
ervazioni					
direttens du () . M A .					<u></u>
direttore del Laboratorio				Lo sperimentatore	
g. Calogero/Palurhbo Pic	cionello			(1)	

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803 PROVE DI LABORATORIO SUI TERRENI

ANALISI GRANULOMETRICA

Committente Cantiere Richiedente	Technital s.p.a. SS. 640 canicatti' caltanisse Ing. Domenico D'Alessandr	nissetta andro	Verbale n° Data ricevimento Data apertura	0204 20/04/2006 26/04/2006
Diagramma	CLASSIFICAZIONE:	limo con argilla sabbioso	Certificato n° Data emissione	307 4 18/05/200 6
Sondaggio	6	Campione 1	Profondità	Profondità 5,00 m

ď	argilla		limo			sabbia			ahiaia		#cio
		fine	medio	grosso	fine	media	grossa	fine	media	grossa	1
2											-
0'06					.						
0,08											
0,07											
0.09											

0.04											
30.0	:\:	\									****
		1111									1111
0,001			0,010	`	0,100		1,000		10,000		100,000
			ll direttor Ing. Carogen	Il direttore del Laporatorio Ing. Carogero/Palumbo_Piccionello	nello	1/1		Lo sperimentatore Gugliermo Sciascia	Intatore Sciascia		
								<i>A</i>)			

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

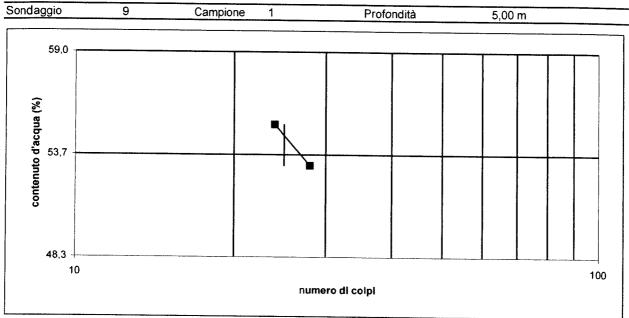
Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

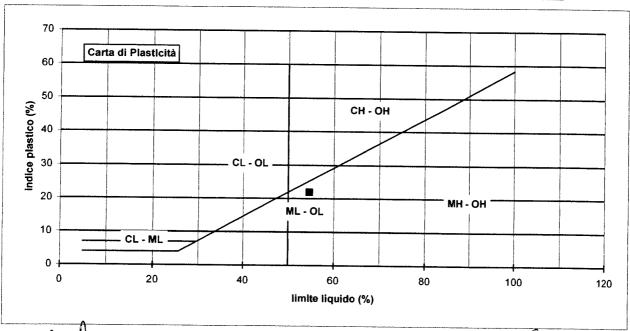
Località: Canicatti' - Caltanissetta

Verbale n° Data ricevimento Data apertura


0204 20/04/2006 26/04/2006

Rapporto di prova nº Data emissione

3075 18/05/2006


DESCRIZIONE:

limo argilloso

Limite Liquido	%	ó	54,67
Limite Plastico	%		32,75

Indice plastico	22
Consistenza	1,59
Liquidità	-0,59
Fluidità	31,97
Tenacità	0,69

Il direttore del Laboratorio Ing. Caldgero mbo Piccionello

Lo sperimentatore

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

0204

Data ricevimento

20/04/2006

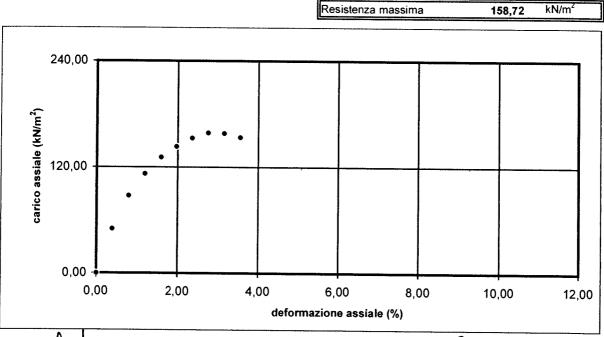
Data apertura

26/04/2006

Certificato n° Data emissione 3076 18/05/2006

Sondaggio	9	Campione	1	Profondità	5,00 m

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi


Letture di prova

DESCRIZIONE:

limo argilloso

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0		
0,30	39		
0,60	68	ł	
0,90	88		
1,20	103		
1,50	113		
1,80	121		
2,10	126		
2,40	126		
2,70	123		

Dh	NL	Dh	NL
mm	div	mm	div
			ļ
		<u> </u>	ļ
	· · · · · · · · · · · · · · · · · · ·		
			
			

Il direttore pel Laboratorio Ing. Calogoro Palambo Piccionello

Lo sperimentatore

Guglie mo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente	Verbale n. 0204	Certificato n. 3077 del 18/05/2006	
Committente	Technital S.p.a.		
Indirizzo			
Cantiere	ss 640 Canicatti'-Caltanissetta		
Sondaggio	9		
Campione	1		
Profondità	5.00 m		
			- 1

Dati del provino n°1 (200 kPa) - Vr=0,002 mm/min

Descrizione provino	limo		
Sezione	36,000 cm ²	Densità umida iniziale	19,583 kN/m 3 γ_n
Altezza iniziale	20,000 mm	Densità umida finale	20,114 kN/m³ v
Altezza finale	19,620 mm	Densità secca	16,139 kN/m³ v
No. tara 1	14	Umidità iniziale	21,342 % W
Massa tara 1	115,720 g	Umidità finale	22,263 % W
Massa tara 1 + massa umida iniz.	259,45 g	Saturazione iniziale	89,355 % S ₀
No. tara 2	40	Saturazione finale	97,944 % S,
Massa tara 2	62,710 g	Indice dei vuoti iniziale	0,647 e ₀
Massa tara 2 + massa umida fin.	207,530 g	Indice dei vuoti finale	0,616 e,
Massa tara 2 + massa secca	181,160 g	Densità secca finale	16,451 kN/m³ γ
Peso specifico dei grani	26.59 kN/m ³	Total Social Infale	10,451 KI4/III Y

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

Gughelme Sciascia

LEDERVICE PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Certificato n. 3077 del 18/05/2006

Committente Technital S.p.a.

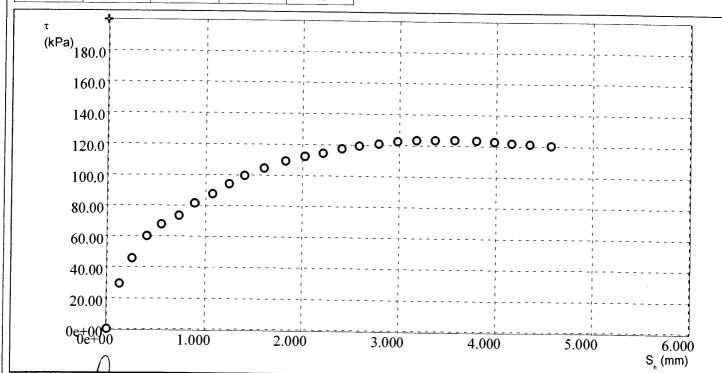
Indirizzo

... recrimitar 5.p.a

Indirizzo Cantiere

ss 640 Canicatti'-Caltanissetta

 Sondaggio
 9


 Campione
 1

 Profondità
 5.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

l	Trisuitati della lase di lottala Piovillo II I (200 KPa) -				200 KPa) - 1	/
İ	dt	dH	Sh	F	τ	1
	min	mm	mm	N	kPa	-
l	0,00	0,00	0,00	0,00	0ţ00	1
	60,00	0,03	0,13	106,02	29,45	
	120,00	0,06	0,26	165,44	45,96	
	180,00	0,08	0,41	216,70	60,19	
	240,00	0,10	0,55	244,66	67,96	
	300,00	0,11	0,73	264,47	73,46	-
	360,00	0,11	0,89	293,59	81,55	
	420,00	0,12	1,07	315,73	87,70	
	480,00	0,16	1,25	339,03	94,18	
	540,00	0,17	1,40	358,84	99,68	
	600,00	0,19	1,61	376,31	104,53	١
	660,00	0,22	1,83	392,62	109,06	
	720,00	0,23	2,02	404,28	112,30	
	780,00	0,25	2,21	412,43	114,56	
	840,00	0,25	2,40	422,92	117,48	
	900,00	0,27	2,59	429,91	119,42	
	960,00	0,29	2,79	435,73	121,04	

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,33	2,98	441,56	122,65
1080,00	0,33	3,18	443,89	123,30
1140,00	0,34	3,37	445,05	123,63
1200,00	0,35	3,57	446,22	123,95
1260,00	0,37	3,80	445,05	123,63
1320,00	0,39	3,98	442,72	122,98
1380,00	0,40	4,17	439,23	122,01
1440,00	0,40	4,35	436,90	121,36
1500,00	0,40	4,57	433,40	120,39
1560,00	0,40	4,76	432,24	120,07

Il Direttore del laboratorio

Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

<u>LIEDIERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

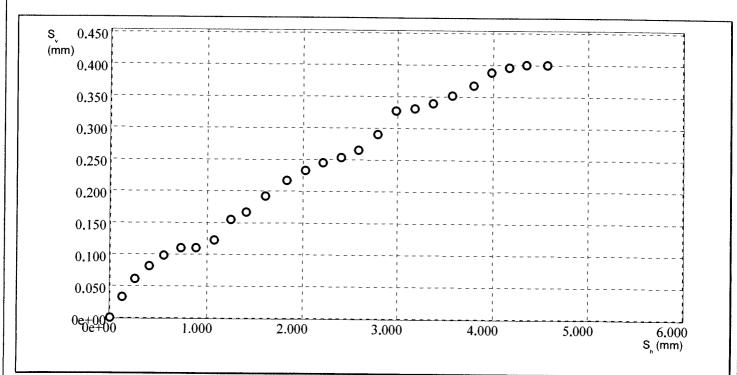
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0204

Certificato n. 3077 del 18/05/2006


Committente	Technital S.p.a.
Indirizzo	
Sito	ss 640 Canicatti'-Caltanissetta
Sondaggio	9
Campione	1
Profondità	5.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,13	0,03
0,26	0,06
0,41	0,08
0,55	0,10
0,73	0,11
0,89	0,11
1,07	0,12
1,25	0,16
1,40	0,17
1,61	0,19

1104111011 1 (200 Kr a) - VI-		
Sh	Sv	
mm	mm	
1,83	0,22	
2,02	0,23	
2,21	0,25	
2,40	0,25	
2,59	0,27	
2,79	0,29	
2,98	0,33	
3,18	0,33	
3,37	0,34	
3,57	0,35	
3,80	0,37	

Sh	Sv
mm	mm
3,98	0,39
4,17	0,40
4,35	0,40
4,57	0,40
4,76	0,40

Il Diretture del laboratorio
Ing. Calogero Palambo Piccionello

Lo Sperimentatore
Guglielmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Verbale n. 0204	Certificato n. 3077 del 18/05/2006
Technital S.p.a.	
ss 640 Canicatti'-Caltanissetta	
9	
1	
5.00 m	
	Technital S.p.a. ss 640 Canicatti'-Caltanissetta 9 1

Dati del provino n°2 (400 kPa) - Vr=0,002 mm/min

Descrizione provino	limo			
Sezione	36,000 cm ²	Densità umida iniziale	19,305 kN/m³ v	
Altezza iniziale	20,000 mm	Densità umida finale	20,430 kN/m³ v	
Altezza finale	18,810 mm	Densità secca	15,911 kN/m³ v	
No. tara 1	15	Umidità iniziale	21,331 % W	
Massa tara 1	114,120 g	Umidità finale	20,757 % W	
Massa tara 1 + massa umida iniz.	255,81 g	Saturazione iniziale	86,171 % S ₀	
No. tara 2	78	Saturazione finale	98,442 % S,	
Massa tara 2	69,120 g	Indice dei vuoti iniziale	0,671 e	
Massa tara 2 + massa umida fin.	210,140 g	Indice dei vuoti finale	0,571 e,	
Massa tara 2 + massa secca Peso specifico dei grani	185,900 g 26,59 kN/m³	Densità secca finale	16,918 kN/m ³ γ _σ	

Il Direttore de Haboratorio Ing. Calogro Palunto Piccionello

Lo Sperimentatore
Guglielano Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Committente Technital S.p.a.

Certificato n. 3077 del 18/05/2006

Indirizzo

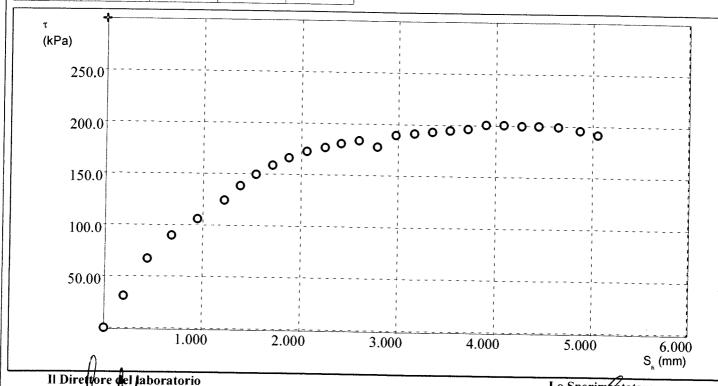
Cantiere

ss 640 Canicatti'-Caltanissetta

Sondaggio Campione Profondità 5.00 m

Ing. Calogero Hall

nbo/Piccionello


Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

l	Mountair	Jena rase u	i rollura Pr	ονιπο π•Ζ (400 KPa) - V
	dt	dH	Sh	F	τ
ĺ	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0100
	60,00	0,01	0,20	111,85	31,07
	120,00	0,01	0,44	242,33	67,31
	180,00	0,03	0,68	322,72	89,64
	240,00	0,04	0,94	383,30	106,47
	300,00	0,04	1,22	448,55	124,60
	360,00	0,06	1,39	498,64	138,51
	420,00	0,07	1,54	539,42	149,84
	480,00	0,07	1,71	572,04	158,90
	540,00	0,08	1,87	597,67	166,02
	600,00	0,10	2,06	622,14	172,82
	660,00	0,11	2,24	637,29	177,02
	720,00	0,12	2,41	651,27	180,91
	780,00	0,12	2,60	661,75	183,82
	840,00	0,13	2,78	640,78	177,99
	900,00	0,16	2,97	682,72	189,65
	960,00	0,18	3,17	689,71	191,59

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,20	3,35	695,54	193,21
1080,00	0,22	3,53	701,36	194,82
1140,00	0,24	3,71	708,36	196,77
1200,00	0,26	3,90	722,34	200,65
1260,00	0,28	4,08	722,34	200,65
1320,00	0,30	4,27	720,01	200,00
1380,00	0,32	4,44	720,01	200,00
1440,00	0,33	4,65	717,68	199,35
1500,00	0,34	4,87	704,86	195,79
1560,00	0,36	5,05	690,88	191,91
1620,00	0,37	5,24	676,90	188,03

Lo Sperimentatore

Guglielmo Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

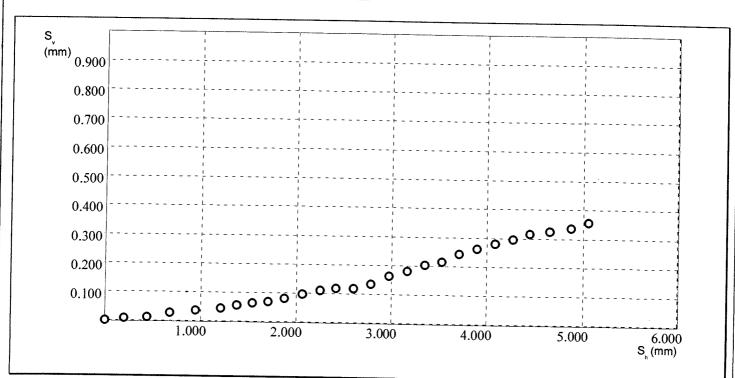
Dati cliente Verbale n. 0204

Certificato n. 3077 del 18/05/2006

Committente	Technital S.p.a.
Indirizzo	

Sito

ss 640 Canicatti'-Caltanissetta


Sondaggio 9
Campione 1
Profondità 5.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

	,
Sh	Sv
mm	mm
0,00	0,00
0,20	0,01
0,44	0,01
0,68	0,03
0,94	0,04
1,22	0,04
1,39	0,06
1,54	0,07
1,71	0,07
1,87	0,08
2,06	0,10
1,87	0,08

Sh	Sv
mm	mm
2,24	0,11
2,41	0,12
2,60	0,12
2,78	0,13
2,97	0,16
3,17	0,18
3,35	0,20
3,53	0,22
3,71	0,24
3,90	0,26
4,08	0,28

Sh	Sv
mm	mm
4,27	0,30
4,44	0,32
4,65	0,33
4,87	0,34
5,05	0,36
5,24	0,37

Il Direttore del Jaboratorio
Ing. Calogero Ralumbo Piccionello

Lo Sperimentatore

Guglialmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente	Verbale n. 0204	Certificato n. 3077 del 18/05/2006
Committente	Technital S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	1	
Profondità	5.00 m	

Dati del provino n°3 (800 kPa) - Vr=0,002 mm/min

Descrizione provino	limo		
Sezione	36,000 cm ²	Densità umida iniziale	19,256 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,590 kN/m ³ y
Altezza finale	18,110 mm	Densità secca	15,703 kN/m³ y
No. tara 1	16	Umidità iniziale	22,629 % W
Massa tara 1	115,920 g	Umidità finale	18,733 % W
Massa tara 1 + massa umida iniz.	257,25 g	Saturazione iniziale	88,490 % S ₀
No. tara 2	39	Saturazione finale	95,243 % S.
Massa tara 2	70,780 g	Indice dei vuoti iniziale	0,693 e ₀
Massa tara 2 + massa umida fin.	207,620 g	Indice dei vuoti finale	0,533 e,
Massa tara 2 + massa secca	186,030 g	Densità secca finale	17,342 kN/m ³ γ
Peso specifico dei grani	26,59 kN/m ³		17,072 KIWIII Y at

Il Direttore del Laboratorio Ing. Calogero Fahimbo Piccionello

Lo Sperimentatore
Guglielmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

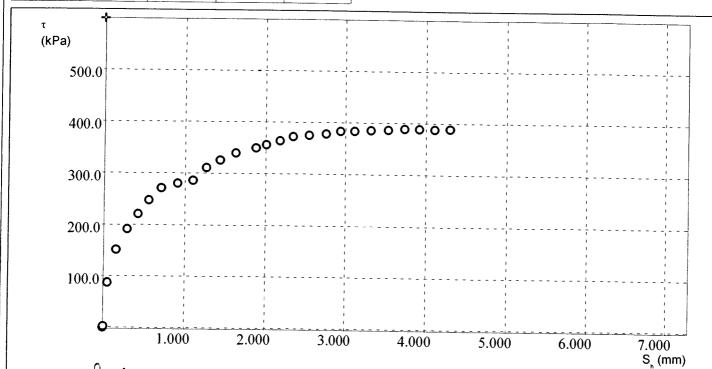
Dati del Cliente Verbale n. 0204 Committente Technital S.p.a.

5.00 m

Certificato n. 3077 del 18/05/2006

Indirizzo

Cantiere


Sondaggio Campione Profondità

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

SS 640 Canicatti'-Caltanissetta

risuitati t	iella lase u	i rottura Pr	ονιπο π-3 (800 KPa) - 1	/
đt	dH	Sh	F	τ]
min	mm	mm	N	kPa	-
0,00	0,00	0,00	0,00	0Ţ00	1
60,00	0,03	0,01	10,49	2,91	
120,00	0,04	0,06	316,90	88,03	ĺ
180,00	0,07	0,16	546,41	151,78	
240,00	0,09	0,30	690,88	191,91	
300,00	0,10	0,42	793,40	220,39	
360,00	0,11	0,56	892,43	247,90	
420,00	0,13	0,71	976,32	271,20	
480,00	0,14	0,91	1006,61	279,61	
 540,00	0,16	1,09	1028,75	285,76	
600,00	0,16	1,26	1117,29	310,36	
660,00	0,18	1,43	1172,05	325,57	l
720,00	0,22	1,63	1220,98	339,16	ĺ
780,00	0,23	1,87	1258,26	349,52	
840,00	0,26	2,00	1282,73	356,31	
900,00	0,27	2,17	1311,86	364,40	
960,00	0,27	2,34	1339,82	372,17	

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,29	2,54	1351,47	375,41
1080,00	0,32	2,74	1360,79	378,00
1140,00	0,33	2,93	1379,43	383,17
1200,00	0,34	3,11	1382,92	384,15
1260,00	0,35	3,32	1387,58	385,44
1320,00	0,35	3,53	1393,41	387,06
1380,00	0,36	3,73	1400,40	389,00
1440,00	0,37	3,92	1400,40	389,00
1500,00	0,37	4,10	1399,23	388,68
1560,00	0,38	4,29	1401,56	389,32
1620,00	0,39	4,50	1403,89	389,97

Il Direttore del laboratorio

Ing. Calogero Palumbo Piccionello

Lo Sperimentatore Gugliel/no Sciascia

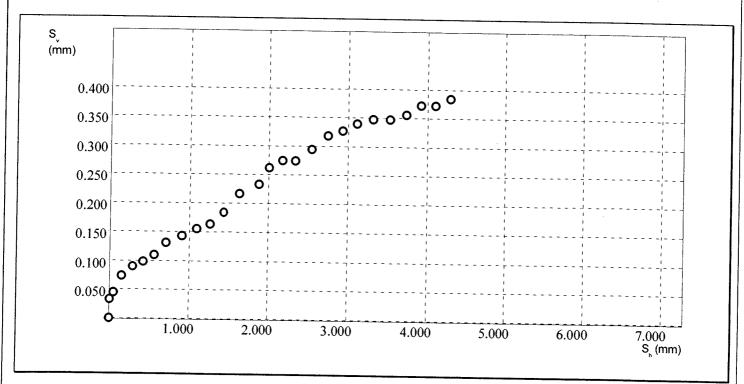
<u>LIEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente	Verbale n. 0204
--------------	-----------------

Certificato n. 3077 del 18/05/2006


Committente	Technital S.p.a.
Indirizzo	
Sito	SS 640 Canicatti'-Caltanissetta
Sondaggio	9
Campione	1
Profondità	5.00 m
L	

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,01	0,03
0,06	0,04
0,16	0,07
0,30	0,09
0,42	0,10
0,56	0,11
0,71	0,13
0,91	0,14
1,09	0,16
1,26	0,16

Sh	Sv		
mm	mm		
1,43	0,18		
1,63	0,22		
1,87	0,23		
2,00	0,26		
2,17	0,27		
2,34	0,27		
2,54	0,29		
2,74	0,32		
2,93	0,33		
3,11	0,34		
3,32	0,35		

Sh	Sv
mm	mm
3,53	0,35
3,73	0,36
3,92	0,37
4,10	0,37
4,29	0,38
4,50	0,39

Il Direttore del Japoratorio Ing. Calogero Palembo Piccionello

Lo Sperimentatore Guglielma Seiascia

<u>LEDERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente Verbale n. 0204

Certificato n. 3078 del 18/05/06

Committente Indirizzo Technital S.p.a.

0 ...

Cantiere

ss 640-Canicatti'-Caltanissetta

Sondaggio Campione 9

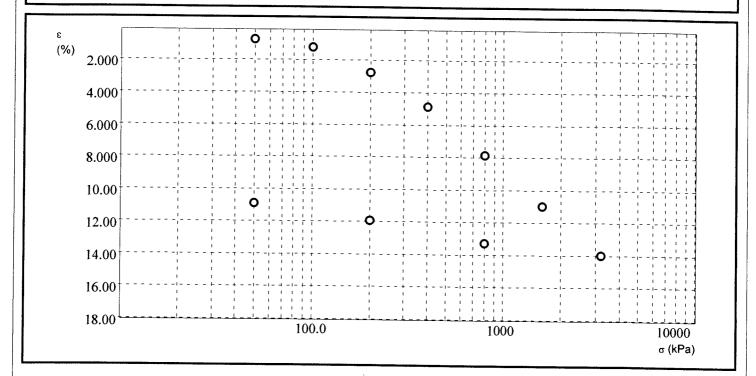
Profondità

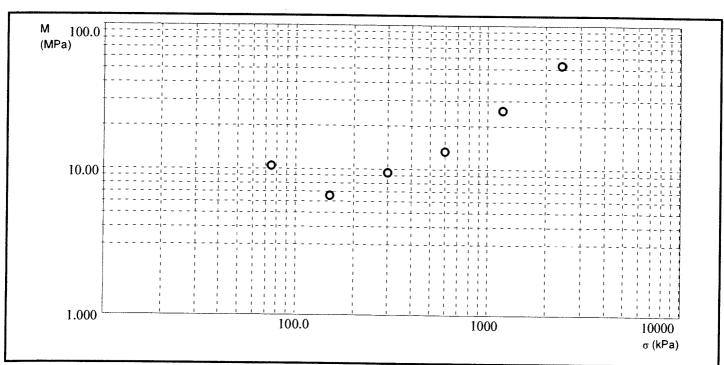
5.00 m

Dati del provino

Descrizione	limo		
Sezione	20,000 cm ²	Densità umida iniziale	19,274 Kn/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	21,736 kN/m³ γ ື
Altezza finale	17,110 mm	Densità secca iniziale	16,152 Kn/m ³ γ
No. Tara 1	4	Umidità iniziale	19,329 % W
Massa tara 1	53,840 g	Umidità finale	15,123 % W
Tara + massa umida iniz.	132,43 g	Saturazione iniziale	79,832 % S _o
No. Tara 2	4	Saturazione finale	97,974 % S,
Massa tara 2	53,840 g	Indice dei vuoti iniziale	0,663 e
Tara + massa umida fin.	129,660 g	Indice dei vuoti finale	0,423 e,
Tara + massa secca finale Peso specifico dei grani	119,700 g 26,86 Kn/m³	Densità secca finale	18,880 Kn/m ³ γ _{ar}

Gradino	P' kPa	ε %	е	M MPa	Cv cm²/s	K m/s	Metodo
1	50,0	0,752	0,650		6,119e-003		Casagrande
2	100,0	1,229	0,642	10,48	1,359e-002	1,272e-009	Casagrande
3	200,0	2,755	0,617	6,55	2,087e-003	3,124e-010	Casagrande
4	400,0	4,863	0,582	9,49	1,179e-003	1,219e-010	Casagrande
5	800,0	7,853	0,532	13,38	2,881e-003	2,113e-010	Casagrande
6	1600,0	10,968	0,481	25,68	5,200e-004	1,986e-011	Casagrande
7	3200,0	13,978	0,430	53,16	2,220e-004	4,100e-012	Casagrande
8	800,0	13,291	0,442			,	
9	200,0	11,912	0,465				
10	50,0	10,899	0,482				


Il Direttore del Laboratorio Ing. Calogero Palumbo/Piccionello Lo Sperimentatore
Guglielmo Sciascia

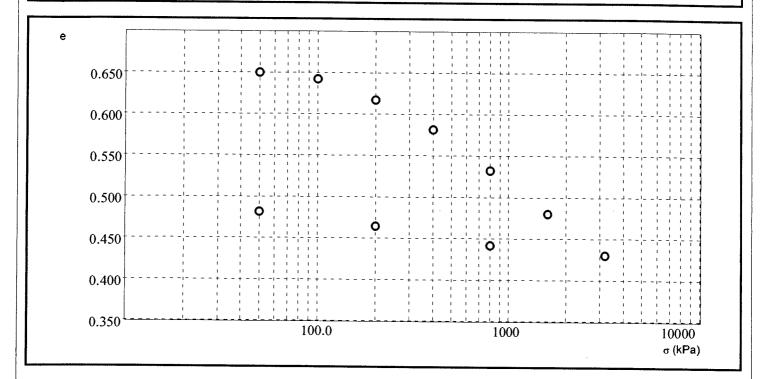

<u>DEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

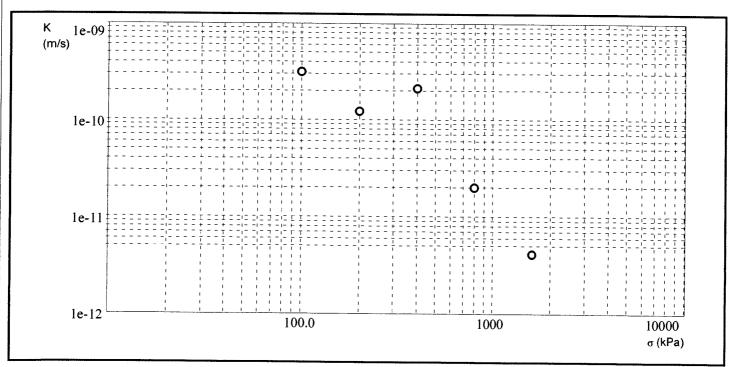
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06
Committente	Technital S.p.a.	
Indirizzo		
Cantiere	ss 640-Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	1	
Profondità	5.00 m	

Il Direttore del Laboratorio Ing. Calogero Palumo Diccionello


Lo Sperimentatore Guglielmo Sciascia


<u>LIETIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06
Committente	Technital S.p.a.	
Indirizzo		
Cantiere	ss 640-Canicatii'-Caltanissetta	
Sondaggio	9	
Campione	1	
Profondità	5.00 m	

Il Direttore del Laboratorio Ing. Calogero Pilymbo Piccionello

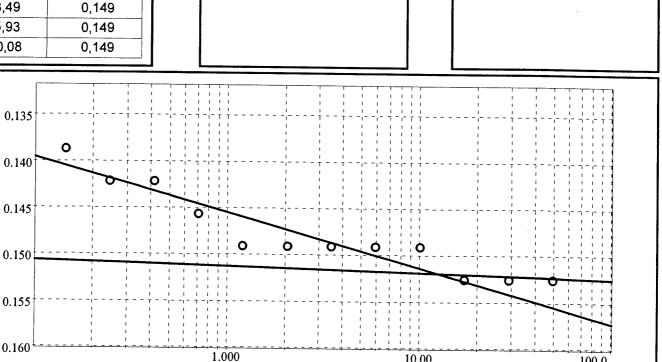
Lo Sperimentatore
Guglielnio Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

	INOTAL	DOMETRICA (ASTIM D2435)	
Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06	
Committente	Technital S.p.a.		1
Indirizzo			
Cantiere	ss 640-Canicatti'-Caltanissetta		
Sondaggio	9		
Campione	1		
Profondità	5.00 m		
Sondaggio Campione	9		


Dati acquisiti del gradino 01

dt	dH
min	mm
0,05	0,132
0,09	0,135
0,14	0,139
0,25	0,142
0,42	0,142
0,71	0,146
1,21	0,149
2,05	0,149
3,49	0,149
5,93	0,149
10,08	0,149

dΗ (mm)

σν 50,0 Kpa

	dH
min	mm
17,14	0,153
29,13	0,153
49,52	0,153

10.00

0,752 ε 0,650

Metodo Casagrande

Cv 6,12e-003 cm²/s

M Κ

Il Direttore del Laboratorio Ing. Calogero Palurobo Piccionello

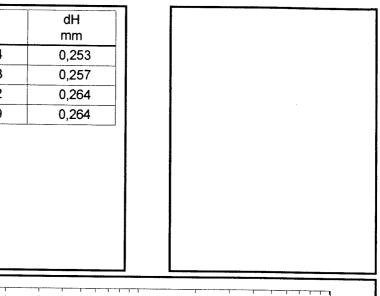
Lo Sperimentatore Guglielpho Sciascia

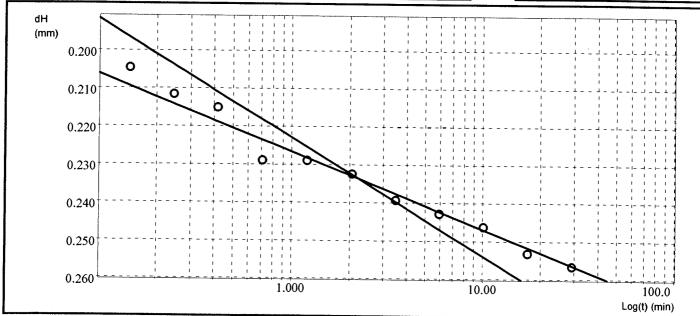
100.0 Log(t) (min)

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


		MILITARY (ACTIVIDE TOS)	
Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06	
Committente	Technital S.p.a.		
Indirizzo		· ·	
Cantiere	ss 640-Canicatti'-Caltanissetta		
Sondaggio	9		
Campione	1		
Profondità	5.00 m		


Dati acquisiti del gradino 02

dt	dH
min	mm
0,05	0,191
0,09	0,201
0,14	0,205
0,25	0,212
0,42	0,215
0,71	0,229
1,21	0,229
2,05	0,232
3,49	0,239
5,93	0,243
10,08	0,246

100,0 Kpa σ_{v}

min	dΗ
111111	mm
17,14	0,253
29,13	0,257
49,52	0,264
84,19	0,264

1,229 % ε 0,642

Metodo Casagrande

Cv 1,36e-002 cm²/s

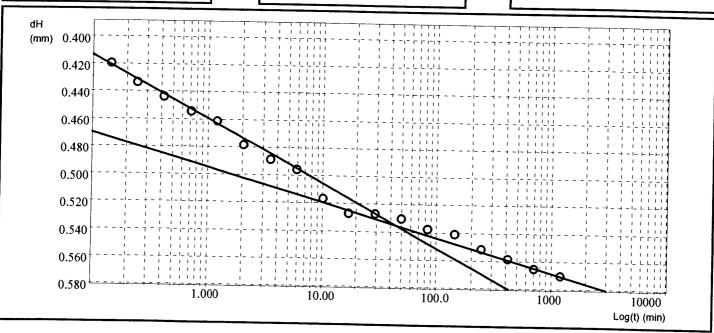
10,478 М MPa Κ 1,27e-009 m/s

Il Director del Laboratorio mbø Piccionello

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06
Committente	Technital S.p.a.	
Indirizzo		
Cantiere	ss 640-Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	1	
Profondità	5.00 m	

Dati acquisiti del gradino 03

dt	dH
min	mm
0,05	0,388
0,09	0,402
0,14	0,420
0,25	0,433
0,42	0,444
0,71	0,454
1,21	0,461
2,05	0,479
3,49	0,489
5,93	0,496
10,08	0,517

σν 200,0 Kpa

dt	dH
min	mm
17,14	0,527
29,13	0,527
49,52	0,531
84,19	0,537
143,12	0,541
243,31	0,551
413,62	0,558
703,15	0,565
1195,38	0,570
<u></u>	<u> </u>

ε 2,755 %

e 0,617

Metodo Casagrande

Cv 2,09e-003 cm²/s

M 6,554 MPa K 3,12e-010 m/s

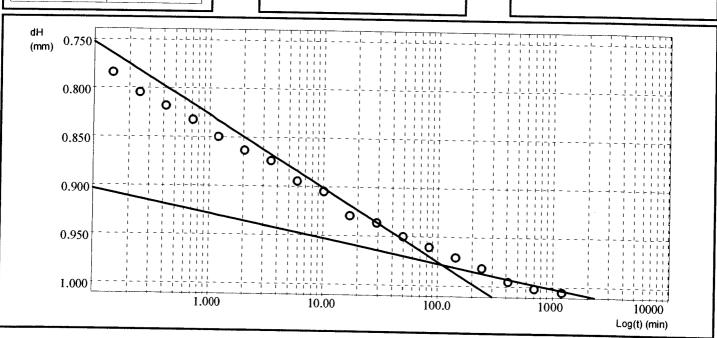
Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore Guglielmo Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


THOTA EDOMETRICA (ASTM D2435)		DOME NICA (AS M D2435)
Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06
Committente	Technital S.p.a.	
Indirizzo		
Cantiere	ss 640-Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	1	
Profondità	5.00 m	

Dati acquisiti del gradino 04

	dt	dH
	min	mm
	0,05	0,739
i	0,09	0,763
	0,14	0,784
	0,25	0,804
	0,42	0,818
[0,71	0,832
	1,21	0,850
Ĺ	2,05	0,863
	3,49	0,874
	5,93	0,895
	10,08	0,905
-		

σ v 400,0 Kpa

dt	dH
min	mm
17,14	0,929
29,13	0,936
49,52	0,950
84,19	0,960
143,12	0,971
243,31	0,981
413,62	0,995
703,15	1,002
1195,36	1,006

ε 4,863 % e 0,582

Metodo Casagrande

Cv 1,18e-003 cm²/s

M 9,487 MPa K 1,22e-010 m/s

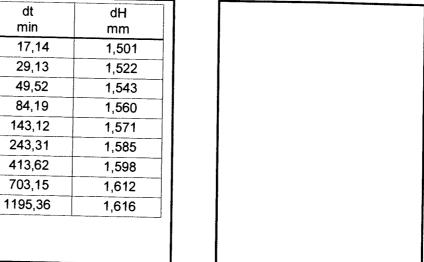
Il Direttore de Laboratorio Ing. Calogero Palundo Piccionello

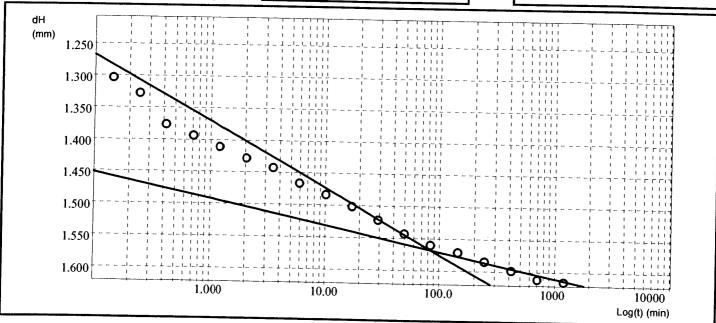
Lo Sperimentatore Guglielmo Sciascia

TEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


TROVA EDOMETRICA (ASTM D2435)			
Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06	
Committente	Technital S.p.a.		
Indirizzo			
Cantiere	ss 640-Canicatti'-Caltanissetta		
Sondaggio	9		
Campione	1		
Profondità	5.00 m		


Dati acquisiti del gradino 05

dt	dH
min	mm
0,05	1,207
0,09	1,269
0,14	1,304
0,25	1,328
0,42	1,377
0,71	1,394
1,21	1,411
2,05	1,429
3,49	1,442
5,93	1,467
10,08	1,484

$\sigma_{\,v}$ 800,0 Kpa

dt	dΗ
min	mm
17,14	1,501
29,13	1,522
49,52	1,543
84,19	1,560
143,12	1,571
243,31	1,585
413,62	1,598
703,15	1,612
1195,36	1,616

7,853 % 3 е 0,532

Metodo Casagrande

2,88e-003 Cv cm²/s

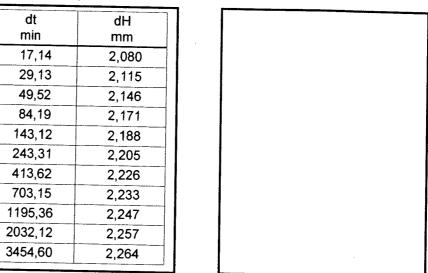
М 13,378 MPa Κ 2,11e-010 m/s

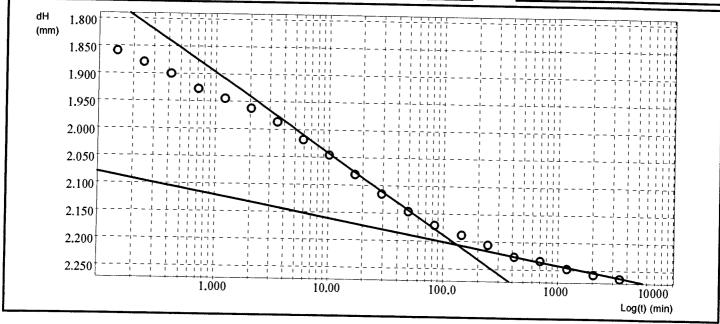
Il Direttore del Laboratorio Ing. Caloger Pally bo Piccionello Lo Sperimen Guglielmo Sc

<u>LEDERVICE</u> DE PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


TINOVA EDOMETRICA (ASTM D2435)		
Dati del Cliente	Verbale n. 0204	Certificato n. 3078 del 18/05/06
Committente	Technital S.p.a.	
Indirizzo		
Cantiere	ss 640-Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	1	
Profondità	5.00 m	


Dati acquisiti del gradino 06

dt dH	
min	mm
0,05	1,789
0,09	1,834
0,14	1,859
0,25	1,879
0,42	1,900
0,71	1,928
1,21	1,945
2,05	1,963
3,49	1,987
5,93	2,018
10,08	2,046

σν 1600,0 Kpa

dt	dH
min	mm
17,14	2,080
29,13	2,115
49,52	2,146
84,19	2,171
143,12	2,188
243,31	2,205
413,62	2,226
703,15	2,233
1195,36	2,247
2032,12	2,257
3454,60	2,264

10,968 3 %

е 0,481

Metodo Casagrande

Cv 5,20e-004 cm²/s

М 25,685 MPa K 1,99e-011 m/s

Il Directore del Laboratorio Calogeo Palumbo Piccionello Ing. Calogero Pa

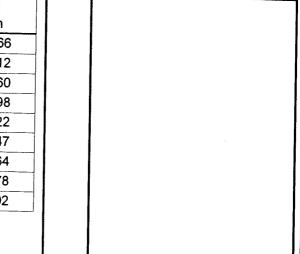
Lo Sperimentatore

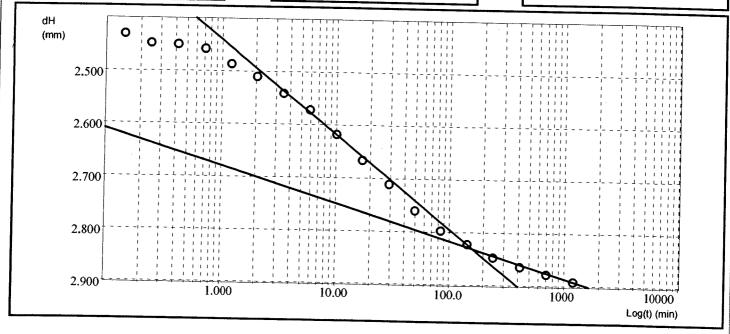
Guglielpho Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


Dati del Cliente	Verbale n. 0204 Cortificato n. 2079 del 40/05/00		
Committente Technital S.p.a.		Certificato n. 3078 del 18/05/06	
Indirizzo	rediffication, p.a.		
Cantiere	ss 640-Canicatti'-Caltanissetta		
Sondaggio	9		
Campione	1		
Profondità	5.00 m		


Dati acquisiti del gradino 07

dt	dH
min	mm
0,05	2,399
0,09	2,413
0,14	2,431
0,25	2,448
0,42	2,450
0,71	2,458
1,21	2,486
2,05	2,510
3,49	2,542
5,93	2,573
10,08	2,618

σν 3200,0 Kpa

dt	dH	
min	mm	
17,14	2,666	
29,13	2,712	
49,52	2,760	
84,19	2,798	
143,12	2,822	
243,31	2,847	
413,62	2,864	
703,15	2,878	
1195,36	2,892	

ε 13,978 %

e 0,430

Metodo Casagrande

Cv 2,22e-004 cm²/s

M 53,159 MPa

K 4,10e-012 m/s

Il Directore del Laboratorio Ing. Caloggro Palumbo Piccionello

Lo Sperimentatore

Gugliel no Sciascia

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Verbale n°	204	Data ricevir	mento [20/04/2006]	Data apertura 20/04/2006
Rapporto di prova nº	3079	Data emiss		Località: Canicatti'-Caltanissetta
Committente: Technital S.p.a.				
Oggetto: Completamento de	ell'itinerario Agrig	ento-Caltan	nissetta-A19 nel tratto dal Kr	n 44+00 della
SS 640 "di Porto Empedocle	" allo svincolo co	on la A19		
Sondaggio 9	Campione	2	Drofoudità 47 50	
oonaaggio o	Tognipione		Profondità 17,50 m	Contenitore M
Descrizione del campione		Indisturbato	of X]	Rimaneggiato []
	olore grigio scurc	con notevo	le presenza di resti di gusci	
Pt 3,2 Tv *				Pt 3,8 Tv *
Grado di cementazione	Debole [1 Mc	oderato [X] Eleva	-1-
				ato []
Struttura	Omogenea [X] Ete	erogenea [] Stra	tificata []
Classe di Qualità	Q1 []	Q2 [] Q3 [] Q4	[] Q5 [X]
Consistenza	Molto tenero [] Tenero [] Consistente [X] Molto	consistente [] Duro []
Reazione all'HCI	Nessuna [] Debole		on Eseguita [X]
Prove effettuate				The second secon
Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR	X X X		Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD	X
Grandezze indice				
Contenuto d'acqua 1^ determ.	27,20	%	Peso di volume	18,962 kN/m ³
Contenuto d'acqua 2 [^] determ.	26,44	%	Peso di volume secco	14,952 kN/m ³
Contenuto d'acqua media	26,82		Grado di saturazione	90,55 %
Peso specifico 1º determ.	27,059	3	Indice dei vuoti	0,795
Peso specifico 2^determ. Peso specifico media	26,615		Porosità	0,443
servazioni				
l direttore del aboratorio ing. Calogero Palumbo Pic	cionello		Lo: G	sperimentatore uglielmo Sciascia

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

ANALISI GRANULOMETRICA

0204 20/04/2006 20/04/2006	3080 18/05/2006	7,50 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità 17,50 m
nissetta andro	argilla con limo sabbiosa	Campione 2
Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	CLASSIFICAZIONE:	5
Committente Cantiere Richiedente	Diagramma	Sondaggio

ciott.

grossa

ghiaia media

fine

grossa

sabbia media

fine

grosso

limo medio

fine

argilla

100,000	10,000 Lo sperimentatore	1,000	0,100 aporatorio	Il direttore del
1111				
1111				
1111				
1111				
1111				
1111				
1111			:::	

77

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

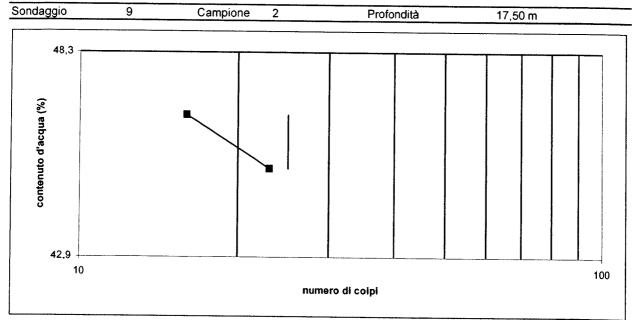
Località: Canicatti' - Caltanissetta

Verbale n°

0204

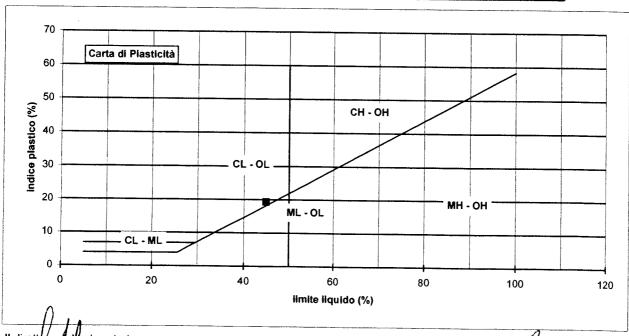
Data ricevimento

20/04/2006


Data apertura

20/04/2006

Rapporto di prova n° Data emissione 3081 18/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	44,94
Limite Plastico	%	25.64

Indice plastico	19
Consistenza	0,94
Liquidità	0,06
Fluidità	8,93
Tenacità	2,16

Il direttore dell aboratorio Ing. Calogoro Palumbo Piccionello

Lo sperimentatore

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006
Cliente	Technital S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	2	
Profondità	17.50 m	

Dati del provino n°1 - Vr=0,01 mm/min

0			
Sezione provino	11,33 cm ²	Densità umida iniziale	18,93 Kn/m³ γ __
Altezza iniziale	76,00 mm	Densità umida finale	19,94 Kn/m³ γ
Altezza finale	70,45 mm	Densità secca	14,83 Kn/m³ γ į
No. Tara 1	0	Umidità iniziale	27,69 % W ,
Massa tara 1	0,00 g	Umidità finale	24,63 % W
Tara +massa umida iniziale	166,19 g	Saturazione iniziale	93,52 % S
No. Tara 2	0	Saturazione finale	99,41 % S,
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,810 e
Tara + massa umida finale	162,21 g	Indice dei vuoti finale	0,678 e,
Tara + massa secca	130,15 g	Densità secca finale	16,00 Kn/m ³ γ _α
		**	

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore
Gugliermo Sciascia

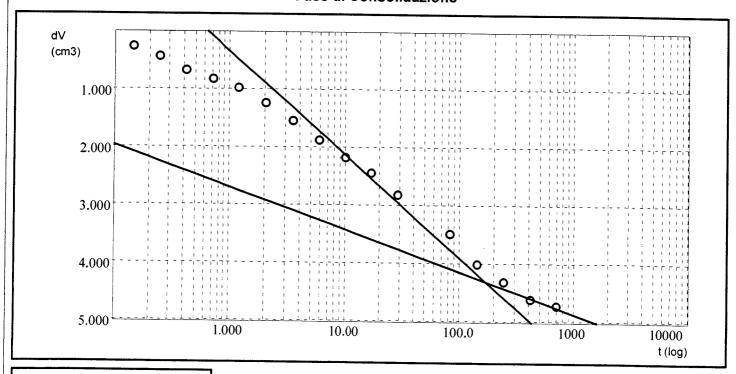
<u>LIEDIERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006
Cliente	Tachnital C n a	

Cliente Technital S.p.a. Indirizzo


Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 9
Campione 2
Profondità 17.50 m

Dati acquisiti

•					
dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,00	0,03	0,00	0,89	2,44	75,08
0,00	0,19	8,87	0,89	2,82	84,45
0,00	0,27	15,12	0,89	3,49	97,56
0,89	0,44	16,36	0,89	4,02	108,18
0,89	0,68	21,99	0,89	4,32	116,30
0,89	0,83	28,86	0,89	4,62	123,17
0,89	0,98	36,35	0,89	4,73	130,67
0,89	1,24	43,22	0,89	4,99	133,17
0,89	1,54	51,34			l
0,89	1,88	55,72			
0.89	2 18	64.46			

Fase di Consolidazione

Risultati di elaborazione

T₁₀₀ (min): 174,01

Il Directore del Laboratorio
Ing. Calogero Palambo Piccionello

Lo Sperimentator

Guglielmo Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Rapporto di prova n. 3082 del 18/05/2006

Cliente Technital S.p.a.
Indirizzo
Cantiere SS 640 Canicatti'-Caltanissetta
Sondaggio 9
Campione 2
Profondità 17.50 m

dH mm	dN N	dU kPa
0,00	0,00	0,00
0,31	12,74	0,24
0,53	21,49	0,48
0,70	31,48	0,81
0,94	43,97	1,18
1,21	58,96	1,51
1,45	70,21	1,84
1,69	82,70	2,07
1,88	96,44	2,45
2,17	105,18	2,73
2,43	116,43	3,24
2,69	126,42	3,43
2,96	137,66	3,66
3,24	147,66	3,99
3,48	158,90	4,46
3,74	171,39	4,65
4,07	170,71	5,07
4,35	170,71	5,35
4,66	167,90	5,72
4,90	165,08	6,10
5,19	162,27	6,47
5,49	162,27	6,85
5,75	158,53	7,22

II Directore del Laboratorio ng. Calogeno Palumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Rapporto di prova n. 3082 del 18/05/2006

Dati del Cliente Verbale n. 0204 Cliente Technital S.p.a.

Indirizzo

Cantiere

Sondaggio

SS 640 Canicatti'-Caltanissetta

Campione Profondità

2 17.50 m

Dati elaborati

eps	(s1-s3)	dU	s1'	s3'	s1'/s3'	ť'	s'	A
%	kPa	kPa	kPa	kPa		kPa	kPa	
0,00	0,00	0,00	100,00	100,00	1,00	100,00	0,00	0,000
0,41	11,20	0,24	110,96	99,76	1,11	105,36	5,60	0,022
0,70	18,83	0,48	118,35	99,52	1,19	108,94	9,42	0,025
0,93	27,53	0,81	126,72	99,19	1,28	112,96	13,76	0,029
1,24	38,33	1,18	137,15	98,82	1,39	117,98	19,16	0,031
1,59	51,22	1,51	149,71	98,49	1,52	124,10	25,61	0,029
1,90	60,78	1,84	158,95	98,16	1,62	128,56	30,39	0,030
2,22	71,37	2,07	169,30	97,93	1,73	133,61	35,68	0,029
2,48	83,01	2,45	180,56	97,55	1,85	139,06	41,50	0,029
2,85	90,19	2,73	187,46	97,27	1,93	142,37	45,09	0,030
3,20	99,47	3,24	196,23	96,76	2,03	146,49	49,74	0,033
3,54	107,63	3,43	204,20	96,57	2,11	150,38	53,81	0,032
3,89	116,78	3,66	213,12	96,34	2,21	154,73	58,39	0,031
4,26	124,77	3,99	220,78	96,01	2,30	158,39	62,38	0,032
4,58	133,83	4,46	229,37	95,54	2,40	162,45	66,91	0,033
4,92	143,82	4,65	239,18	95,35	2,51	167,26	71,91	0,032
5,36	142,60	5,07	237,53	94,93	2,50	166,23	71,30	0,036
5,73	142,03	5,35	236,68	94,65	2,50	165,67	71,02	0,038
6,13	139,10	5,72	233,37	94,28	2,48	163,82	69,55	0,041
6,45	136,31	6,10	230,21	93,90	2,45	162,06	68,15	0,045
6,82	133,45	6,47	226,98	93,53	2,43	160,25	66,73	0,049
7,23	132,88	6,85	226,03	93,15	2,43	159,59	66,44	0,052
7,57	129,32	7,22	222,10	92,78	2,39	157,44	64,66	0,056

<u>LEDERVICE</u> _{s.t.} PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006
Cliente	Technital S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	2	
Profondità	17.50 m	

Dati del provino n°2 - Vr=0,01 mm/min

Sezione provino	11,33 cm ²	Densità umida iniziale	19,00 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	19,87 Kn/m³ γ n
Altezza finale	71,19 mm	Densità secca	14,99 Kn/m ³ y
No. Tara 1	0	Umidità iniziale	26,71 % ່ ່ ່
Massa tara 1	0,00 g	Umidità finale	24,16 % W
Tara +massa umida iniziale	166,75 g	Saturazione iniziale	92,48 % S _o
No. Tara 2	0	Saturazione finale	97,64 % S,
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,790 e
Tara + massa umida finale	163,39 g	Indice dei vuoti finale	0,677 e,
Tara + massa secca	131,60 g	Densità secca finale	16,01 Kn/m ³ γ _{σr}
		Ţ	

Il Direttore del Laboratorio Ing. Calogero Palambo Piccionello

Lo Sperimentatore

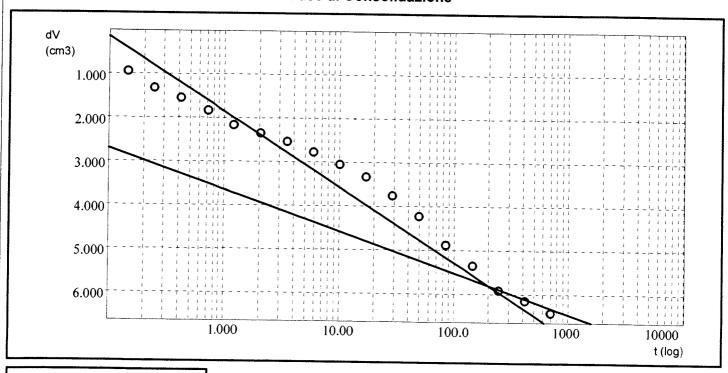
<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006

Cliente Technital S.p.a. Indirizzo


Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 9
Campione 2
Profondità 17.50 m

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,00	0,24	7,62	0,89	3,34	90,07
0,00	0,48	12,62	0,89	3,76	100,06
0,00	0,95	17,61	0,89	4,23	107,56
0,89	1,32	20,74	0,89	4,88	119,43
0,89	1,56	31,36	0,89	5,35	128,79
0,89	1,84	38,23	0,89	5,91	137,54
0,89	2,16	46,35	0,89	6,15	149,41
0,89	2,35	56,34	0,89	6,43	158,78
0,89	2,54	64,46	0,89	6,61	163,77
0,89	2,77	71,96			<u>'</u>
0,89	3,05	78,83			

Fase di Consolidazione

Risultati di elaborazione

T₁₀₀ (min): 205,05

II Direttore del Laboratorio
Ing. Calogero Paluribo Piccionello

Lo Sperimentator

Guglielmo Sciascia

<u>LEDERVICE</u> SAL PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006
Cliente	Technital S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	2	
Profondità	17.50 m	

-11.1	I	T
dH	dN	dU
mm	N	kPa
0,00	0,00	0,00
0,31	26,67	0,34
0,55	46,35	0,61
0,77	68,21	0,91
1,01	87,88	1,17
1,23	109,74	1,39
1,51	127,23	1,62
1,80	151,28	1,88
2,08	184,07	2,29
2,34	208,12	2,52
2,58	243,10	2,89
2,91	265,08	3,16
3,17	285,07	3,49
3,48	298,81	3,76
3,83	310,06	4,13
4,16	317,55	4,50
4,51	315,05	4,73
4,81	315,05	5,14

Il Direttore del Laboratorio Ing. Calogeo Palumoo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

<u>LEDERVICE</u> ,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Rapporto di prova n. 3082 del 18/05/2006

Cliente Technital S.p.a.

Indirizzo

Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 9 Campione 2 Profondità 17.50 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	ť kPa	s' kPa	Α
0,00	0,00	0,00	200,00	200,00	1,00	200,00	0,00	0,000
0,41	23,44	0,34	223,10	199,66	1,12	211,38	11,72	0,015
0,72	40,61	0,61	240,00	199,39	1,20	219,70	20,30	0,015
1,01	59,59	0,91	258,68	199,09	1,30	228,89	29,80	0,015
1,33	76,54	1,17	275,37	198,83	1,38	237,10	38,27	0,015
1,62	95,30	1,39	293,90	198,61	1,48	246,25	47,65	0,015
1,99	110,06	1,62	308,44	198,38	1,55	253,41	55,03	0,015
2,36	130,36	1,88	328,48	198,12	1,66	263,30	65,18	0,014
2,74	158,02	2,29	355,72	197,71	1,80	276,71	79,01	0,015
3,08	178,03	2,52	375,51	197,48	1,90	286,49	89,01	0,014
3,40	207,27	2,89	404,37	197,11	2,05	300,74	103,63	0,014
3,83	225,00	3,16	421,85	196,84	2,14	309,35	112,50	0,014
4,18	241,10	3,49	437,61	196,51	2,23	317,06	120,55	0,014
4,58	251,66	3,76	447,90	196,24	2,28	322,07	125,83	0,015
5,04	259,87	4,13	455,74	195,87	2,33	325,80	129,93	0,016
5,47	264,94	4,50	460,44	195,50	2,36	327,97	132,47	0,017
5,93	261,58	4,73	456,85	195,27	2,34	326,06	130,79	0,018
6,33	260,46	5,14	455,32	194,86	2,34	325,09	130,23	0,020

<u>LIEDIERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006			
Technital S.p.a.				
SS 640 Canicatti'-Caltanissetta				
9				
2				
17.50 m				
	Technital S.p.a. SS 640 Canicatti'-Caltanissetta 9 2			

Dati del provino n°3 - Vr=0,01 mm/min

Sezione provino	11,33 cm ²	Densità umida iniziale	18,83 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	19,98 Kn/m³ γ
Altezza finale	70,67 mm	Densità secca	14,92 Kn/m ³ γ
No. Tara 1	0	Umidità iniziale	26,18 % W
Massa tara 1	0,00 g	Umidità finale	24,53 % W
Tara +massa umida iniziale	165,25 g	Saturazione iniziale	89,66 % S
No. Tara 2	0	Saturazione finale	99.74 % S.
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,799 e
Tara + massa umida finale	163,08 g	Indice dei vuoti finale	0,673 e,
Tara + massa secca	130,96 g	Densità secca finale	16,05 Kn/m ³ γ _σ

Il Directore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore
Guglielino Sciascia

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

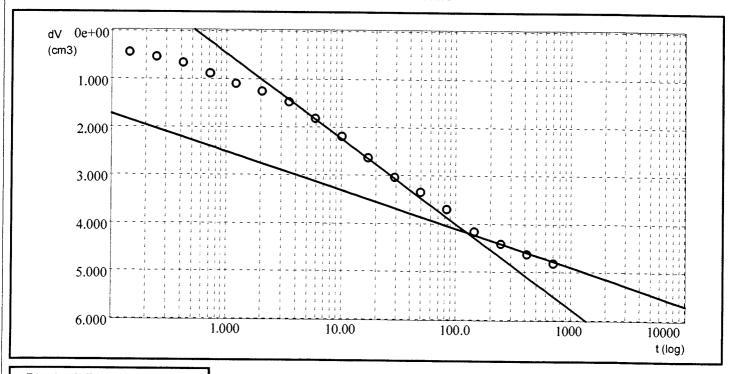
PROVA TRIASSIALE CU (ASTM D4767)

Cliente Technital S.p.a. Rapporto di prova n. 3082 del 18/05/2006

Indirizzo

Dati del Cliente

Cantiere SS 640 Canicatti'-Caltanissetta


Sondaggio Campione Profondità 17.50 m

Dati acquisiti

dH	d∨	dU	dH	dV	dU
mm	cm3	kPa	mm	cm3	kPa
0,00	0,19	5,76	0,89	2,63	95,36
0,00	0,38	12,03	0,89	3,04	111,03
0,00	0,44	15,16	0,89	3,35	127,94
0,89	0,54	22,05	0,89	3,69	144,23
0,89	0,66	28,32	0,89	4,16	154,89
0,89	0,88	35,84	0,89	4,41	168,04
0,89	1,10	43,98	0,89	4,63	175,56
0,89	1,26	52,13	0,89	4,82	179,95
0,89	1,47	61,53	0,89	4,97	184,34
0,89	1,82	72,18			
0.89	2.19	85 34			

Verbale n. 0204

Fase di Consolidazione

Risultati di elaborazione

T₁₀₀ (min): 129,26

Il Direttore del Laboratorio Ing. Calogero/Palumbo Piccionello

Lo Sperimentator Guglielm Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006
Cliente	Technital S.p.a.	

Indirizzo
Cantiere SS 640 Canicatti'-Caltanissetta
Sondaggio 9
Campione 2
Profondità 17.50 m

dN N	dU kPa
0,00	0,00
25,48	0,32
55,47	0,63
77,95	0,82
115,43	1,04
147,91	1,35
182,89	1,63
212,87	2,07
257,84	2,41
287,82	2,79
317,80	3,13
345,28	3,50
370,27	3,94
392,75	4,41
412,74	4,75
426,73	5,22
431,11	5,50
431,11	6,03
424,55	6,31
	N 0,00 25,48 55,47 77,95 115,43 147,91 182,89 212,87 257,84 287,82 317,80 345,28 370,27 392,75 412,74 426,73 431,11

Il Direttore del Laboratorio Ing. Cajogero Palumbo Piccionello

Lo Sperimentatore

Guglielpho Sciascia

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Rapporto di prova n. 3082 del 18/05/2006

Cliente

Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

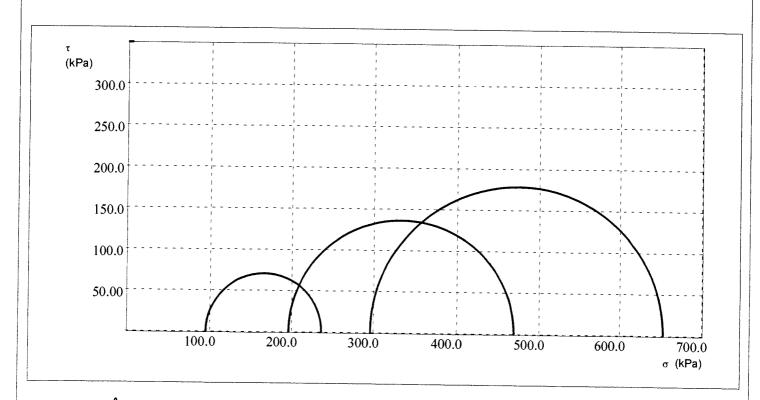
2 Profondità 17.50 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	t' kPa	s' kPa	Α
0,00	0,00	0,00	300,00	300,00	1,00	300,00	0,00	0,000
0,41	22,40	0,32	322,08	299,68	1,07	310,88	11,20	0,014
0,75	48,59	0,63	347,95	299,37	1,16	323,66	24,29	0,013
1,13	68,02	0,82	367,21	299,18	1,23	333,19	34,01	0,012
1,47	100,38	1,04	399,34	298,96	1,34	349,15	50,19	0,010
1,82	128,17	1,35	426,82	298,65	1,43	362,74	64,09	0,011
2,13	157,97	1,63	456,34	298,37	1,53	377,36	78,99	0,010
2,48	183,22	2,07	481,15	297,93	1,61	389,54	91,61	0,011
2,85	221,08	2,41	518,67	297,59	1,74	408,13	110,54	0,011
3,23	245,83	2,79	543,05	297,21	1,83	420,13	122,92	0,011
3,57	270,47	3,13	567,35	296,87	1,91	432,11	135,24	0,012
3,95	292,73	3,50	589,22	296,50	1,99	442,86	146,36	0,012
4,26	312,87	3,94	608,93	296,06	2,06	452,49	156,44	0,013
4,69	330,38	4,41	625,97	295,59	2,12	460,78	165,19	0,013
5,13	345,62	4,75	640,86	295,25	2,17	468,06	172,81	0,014
5,59	355,60	5,22	650,38	294,78	2,21	472,58	177,80	0,015
6,10	357,27	5,50	651,77	294,50	2,21	473,13	178,64	0,015
6,54	355,63	6,03	649,60	293,97	2,21	471,78	177,82	0,017
7,02	348,39	6,31	642,07	293,69	2,19	467,88	174,19	0,018

<u>LEDERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)


PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3082 del 18/05/2006
Committente	Technital S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	9	
Campione	2	
Profondità	17.50 m	

Risultati di prova

Provino	Ho mm	A cm²	γ _n g/cm³	γ _d g/cm³	Wo %	Wf %	So %	Sf %
	76,00	11,33	1,93	1,51	27,69	24,63	93,52	99,41
	76,00	11,33	1,94	1,53	26,71	24,16	92,48	97,64
	76,00	11,33	1,92	1,52	26,18	24,53	89,66	99,74

Provino	σ _{1C} kPa	σ _{3C} kPa	BP kPa	ε %	$\sigma_1 - \sigma_3$ kPa	σ'1 / σ'3	dU kPa	A
	300,00	300,00	200,00	5,19	141,70	1,00	4,91	0,03
	400,00	400,00	200,00	4,37	273,18	1,00	3,62	0,01
	500,00	500,00	200,00	4,60	357,39	1,00	4,30	0,01

Il Direttore dell Laboratorio
Ing. Calogoro Pallamoo Piccionello

Lo Sperimentatore Guglielmo Sciascia

PROVE DI LABORATORIO SUI TERRENI

Verbale n°

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Data apertura 28/04/2006

Guglielmo Sciascia

Rapporto di prova nº	3083	Data emis	sione [18/05/2006]	Località: Canica	atti'-Caltanissetta
Committente: Technital S						
Oggetto: Completamento o	lell'itinerario Agri	gento-Calta	anissetta-A19 nel tra	tto dal Kı	n 44+00 della	
SS 640 "di Porto Empedocle	e" allo svincolo c	on la A19				
[6. 4		····				
Sondaggio 47	Campione	.1	Profondità 12,2	<u>0 m</u>	Contenitore	M
Descrizione del campione		Indisturba	ato [X]		Rimaneggiato	[]
limo argilloso a	alteratocolore gia	illastro con	presenza di ossidaz	zione,fraz	ioni sabbiose.	
Pt 4 Tv *						
FL4 IV		· · · · · · · · · · · · · · · · · · ·			Pt fs	Tv *
Grado di cementazione	Debole [1 1	Moderato [X]	Elev	ato []	
Struttura	Omogonog					
	Omogenea [terogenea [X]	Stra	atificata []	
Classe di Qualità	Q1 []	Q2 [] Q3 [] Q4	4 [] (Q5 [X]
Consistenza	Molto tenero [] Tenero	[] Consistente [X] Molt	o consistente [] Duro []
Reazione all'HCI	Nessuna [] Debo	le [] Forte	[] N	Non Eseguita	[X]
Prove effettuate						
Contenuto d'acqua	X]	Prova edometrica	1		
Limiti di Atterberg	X	_	Taglio diretto		X	
Analisi granulometrica Areometria		-	ELL		X	
Peso specifico	X	_	Triassiale UU			
reso specifico		J	Triassiale CU Triassiale CD			
Compattazione Proctor		1	massiale CD		L	
Penetrazione CBR]				
Grandezze indice						
Contenuto d'acqua 1 [^] determ.	22,62	%	Peso di volume		19,575	kN/m³
Contenuto d'acqua 2 [^] determ.	22,44	%	Peso di volume sed	co	15,976	kN/m³
Contenuto d'acqua m edia	22,53	%	Grado di saturazior	ne	89,39	%
Peso specifico 1^ determ.	26,933	kN/m³	Indice dei vuoti		0,674	
Peso specifico 2^determ.	26,550	kN/m³	Porosità		0,403	
Peso specifico media	26,742	kN/m³				
servazioni						
A ,		····				
I direttore del Laboratorio						
ina. Calogero Palumbo Pi	ooionollo			LC	sperimentatore	€

Data ricevimento [20/04/2006]

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 · 92026 FAVARA (AG) · tel./fax 0922 437803

ANALISI GRANULOMETRICA

0204 20/04/2006 28/04/2006	3084 18/05/2006	Profondità 12,20 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità
inissetta iandro	limo con argilla sabbioso	Campione 1
Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	CLASSIFICAZIONE:	47
Committente Cantiere Richiedente	Diagramma	Sondaggio

fine media grossa fine	argilla		limo			sabbia			ahiaia		#oio
001 0,010 1,000 1,		fine	medio	grosso	fine	media	grossa	fine	media	grossa	CIOC
001 0 1,000 1,000 Lospein/Matatore										The state of the s	
001 0,100 1,000 Lo soeimentatione	100,0				· · · · · · · · · · · · · · · · · · ·						
001 0,000 1,000 1,000 Lo specimentatore					· · · · · · · · · · · · · · · · · · ·						
001 1,000 10,000 Lo specimentatione					1						•
001 0,000 1,000 10,000											
001 1,000 1,000 Lo specimentatore				:							
001 0,100 1,000 Lo specimentatore											
1,000 10,000 Lo specimentatore											
1000 10,000 Lo specimentatore			``	7							
001 1,000 10,000			· · ·								::
001 1,000 Lo sperimentatore Il direttory del Laboratorio											
001 1,000 Lo sperimentariore			<u></u>								
001 1,000 10,000		::									:
001 0,010 10,000 Lo spezimentatore		<u></u>									
001 0,100 1,000 Lo spezimentatore		\ \ \									
001 0,010 1,000 Laboratorio	\ : :								1 1		
001 0,010 1,000 Laboratorio											
001 1,000 10,000 1,000 Laboratorio											
001 0,010 1,000 Laboratorio											
001 0,010 1,000 Laboratorio											
001 0,010 1,000 1,000 Laboratorio											
001 1,000 1,000 1,000 1,000 1,000 Laboratorio			111					111	111		
0,010 1,000 1,000 1,000 light direttory del Laboratorio											•
Lo sperimentatore	,001		0,010	<	0,100		1,000		7 10,000		100,
poratorio									\		
			# direttorg					Lo sperim	entatore		

7

Guglietmo Sciascia

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

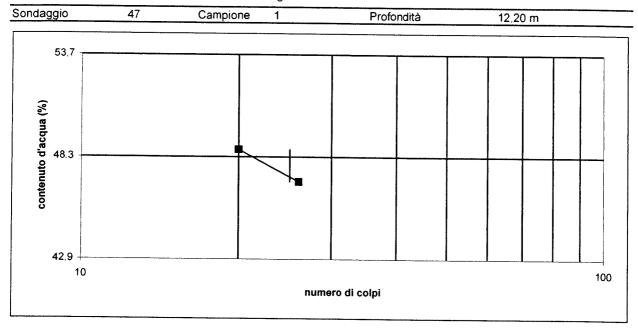
Committente: Technital S.p.a.

Richiedente: Ing.Domenico D'Alessandro

Cantiere: SS. 640

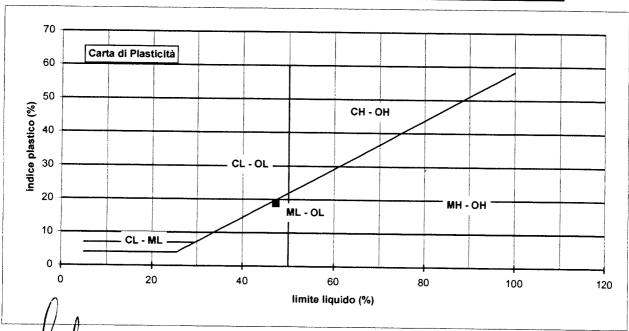
Località: Canicatti' - Caltanissetta

Verbale n°
Data ricevimento
Data apertura
Rapporto di prova n°


0204 20/04/2006 28/04/2006

Data emissione

3085 18/05/2006


DESCRIZIONE:

limo argilloso

Limite Liquido	%	,	47,25
Limite Plastico	%		28 44

Indice plastico	19
Consistenza	1,31
Liquidità	-0,31
Fluidità	14,83
Tenacità	1,27

Il direttore de Laboratorio Ing. Calogera Palumbo Piccionello

Lo sperimentatore

1/1

Guglielmo Sciascia

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

0204

Data ricevimento Data apertura 20/04/2006 28/04/2006

Certificato n°

3086

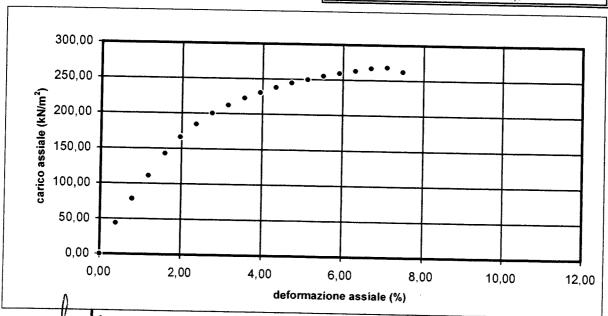
Data emissione

18/05/2006

Sondaggio	47	Campione	1	Profondità	12,20 m	

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura	····	gradi

Letture di prova


DESCRIZIONE:

limo argilloso

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0	3,00	185
0,30	34	3,30	192
0,60	61	3,60	198
0,90	87	3,90	203
1,20	112	4,20	208
1,50	131	4,50	212
1,80	146	4,80	216
2,10	159	5,10	220
2,40	169	5,40	222
2,70	178	5,70	218

Dh	NL	Dh	NL
mm	div	mm	div
	· · · · · · · · · · · · · · · · · · ·		

Resistenza	maccima	000 0	# 1ch1/mm2
III resistenza	III assiii la	268.3	a4 kN/m²
The same of the sa			

Il direttore del Laboratorio Ing. Calogero Paulinho Piccionello

Guglieimo Sciascia

Lo sperimentatore

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Certificato n. 3087 del 18/05/2006

Committente Technital S.p.a.

Indirizzo

Cantiere ss 640 Canicatti'-Caltanissetta

Sondaggio 47
Campione 1
Profondità 12.20 m

Dati del provino n°1 (200 kPa) - Vr=0,002 mm/min

Descrizione provino	limo		
Sezione	36,000 cm ²	Densità umida iniziale	19,226 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,242 kN/m ³ v
Altezza finale	18,790 mm	Densità secca	15,633 kN/m³ γ
No. tara 1	14	Umidità iniziale	22,982 % W
Massa tara 1	115,720 g	Umidità finale	21,649 % W
Massa tara 1 + massa umida iniz.	256,83 g	Saturazione iniziale	88,167 % S ₀
No. tara 2	81	Saturazione finale	97.210 % S.
Massa tara 2	75,850 g	Indice dei vuoti iniziale	0,711 e
Massa tara 2 + massa umida fin.	215,430 g	Indice dei vuoti finale	0,607 e,
Massa tara 2 + massa secca Peso specifico dei grani	190,590 g 26,74 kN/m³	Densità secca finale	16,640 kN/m ³ γ _{dr}

Il Direttore del Laboratorio Ing. Calegero Palumbo Piccionello

Lo Sperimentatore

Guglisimo Sciascia

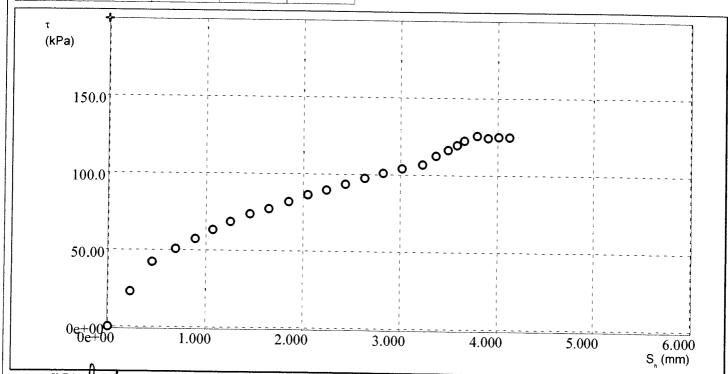
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del ClienteVerbale n. 0204CommittenteTechnital S.p.a.

Indirizzo

Cantiere ss 640 Canicatti'-Caltanissetta


Sondaggio 47
Campione 1
Profondità 12.20 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

l	(200 Kr a)				
	dt	dH	Sh	F	τ
ļ	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	Oţ00
	60,00	0,02	0,22	83,20	23,11
	120,00	0,04	0,45	151,37	42,05
	180,00	0,06	0,68	182,57	50,71
	240,00	0,08	0,89	206,84	57,45
	300,00	0,10	1,07	227,64	63,23
	360,00	0,14	1,25	247,28	68,69
	420,00	0,16	1,46	265,77	73,82
	480,00	0,18	1,65	278,48	77,36
	540,00	0,21	1,86	294,66	81,85
	600,00	0,22	2,05	311,99	86,66
	660,00	0,23	2,24	323,55	89,87
į	720,00	0,25	2,44	337,41	93,73
	780,00	0,27	2,63	351,28	97,58
	840,00	0,29	2,82	363,99	101,11
	900,00	0,30	3,02	375,54	104,32
	960,00	0,32	3,22	384,79	106,89

<u> </u>				
đt	dΗ	Sh	F	
min	mm	mm	N	kPa
1020,00	0,33	3,36	405,31	112,59
1080,00	0,35	3,48	419,36	116,49
1140,00	0,37	3,58	430,61	119,61
1200,00	0,39	3,65	441,85	122,74
1260,00	0,41	3,79	453,09	125,86
1320,00	0,43	3,90	447,47	124,30
1380,00	0,45	4,01	450,28	125,08
1440,00	0,46	4,12	450,28	125,08
1500,00	0,48	4,20	447,47	124,30

Certificato n. 3087 del 18/05/2006

Il Directore del laboratorio

Ing. Calogero Palumbo Piccionello

Lo Sperimentatore Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0204

Certificato n. 3087 del 18/05/2006

Committente

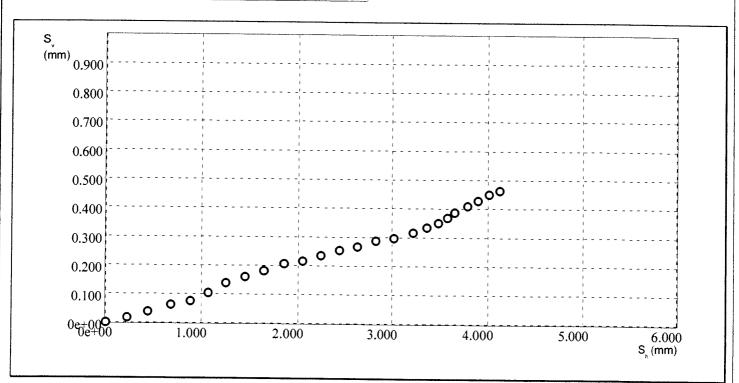
Technital S.p.a.

Indirizzo Sito

ss 640 Canicatti'-Caltanissetta

Sondaggio

47


Campione 1
Profondità 12.20 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,22	0,02
0,45	0,04
0,68	0,06
0,89	0,08
1,07	0,10
1,25	0,14
1,46	0,16
1,65	0,18
1,86	0,21
2,05	0,22

1 (200 100 4)				
Sh	Sv			
mm	mm			
2,24	0,23			
2,44	0,25			
2,63	0,27			
2,82	0,29			
3,02	0,30			
3,22	0,32			
3,36	0,33			
3,48	0,35			
3,58	0,37			
3,65	0,39			
3,79	0,41			

Sh	Sv	
mm	mm	
3,90	0,43	
4,01	0,45	
4,12	0,46	
4,20	0,48	

Il Direttore del laboratorio Ing. Calogero/Phlumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

<u>LIETIERVICE</u> _{sod.} PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0204

Certificato n. 3087 del 18/05/2006

Committente

Technital S.p.a.

ite Technitai S.p.:

Indirizzo

Cantiere

ss 640 Canicatti'-Caltanissetta

Sondaggio

47

Campione Profondità 1 12.20 m

Dati del provino n°2 (400 kPa) - Vr=0,002 mm/min

Descrizione provino	limo		
Sezione	36,000 cm ²	Densità umida iniziale	18,285 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	19,835 kN/m³ γ "
Altezza finale	18,390 mm	Densità secca	14,622 kN/m ³ y
No. tara 1	15	Umidità iniziale	25,047 % W,
Massa tara 1	114,120 g	Umidità finale	24,730 % W
Massa tara 1 + massa umida iniz.	248,32 g	Saturazione iniziale	82,376 % S _o
No. tara 2	82	Saturazione finale	98,901 % S,
Massa tara 2	67,230 g	Indice dei vuoti iniziale	0,829 e
Massa tara 2 + massa umida fin.	201,090 g	Indice dei vuoti finale	0,682 e,
Massa tara 2 + massa secca	174,550 g	Densità secca finale	15,903 kN/m ³ γ _α
Peso specifico dei grani	26,74 kN/m ³		Tar

Il Direttore le Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

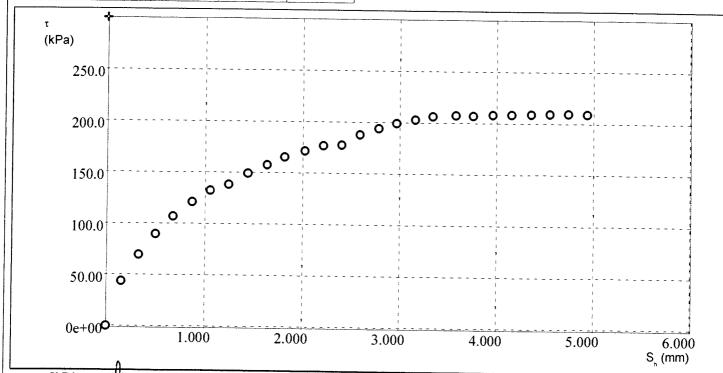
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3087 del 18/05/2006

Dati del ClienteVerbale n. 0204CommittenteTechnital S.p.a.

Indirizzo Cantiere


ss 640 Canicatti'-Caltanissetta

Sondaggio 47
Campione 1
Profondità 12.20 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

7.10011dtf 4011d 1000 df 10ttald 1 1041110 ff 2 (40					400 AFa) - 1
	dt	dH	Sh	F	τ
ļ	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	Oţ00
	60,00	0,04	0,15	157,15	43,65
	120,00	0,07	0,33	249,59	69,33
	180,00	0,10	0,50	322,39	89,55
	240,00	0,13	0,67	384,79	106,89
	300,00	0,16	0,87	436,79	121,33
	360,00	0,19	1,05	476,07	132,24
	420,00	0,21	1,24	496,87	138,02
	480,00	0,23	1,44	537,32	149,25
	540,00	0,26	1,63	567,36	157,60
	600,00	0,29	1,81	595,09	165,30
	660,00	0,31	2,02	618,20	171,72
	720,00	0,34	2,21	636,69	176,86
	780,00	0,36	2,41	639,00	177,50
	840,00	0,39	2,59	675,98	187,77
	900,00	0,42	2,78	697,93	193,87
	960,00	0,44	2,97	716,42	199,01

V4 MM/MM				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,47	3,16	730,29	202,86
1080,00	0,48	3,34	741,84	206,07
1140,00	0,50	3,58	746,47	207,35
1200,00	0,51	3,75	745,31	207,03
1260,00	0,52	3,96	748,78	207,99
1320,00	0,54	4,15	749,93	208,31
1380,00	0,55	4,35	751,09	208,64
1440,00	0,55	4,55	752,24	208,96
1500,00	0,56	4,74	753,40	209,28
1560,00	0,57	4,93	752,24	208,96
1620,00	0,58	5,13	751,09	208,64

Il Direttore del laboratorio

Ing. Calogero Paluraba Piccionello

Lo Sperimentatore

Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0204

Certificato n. 3087 del 18/05/2006

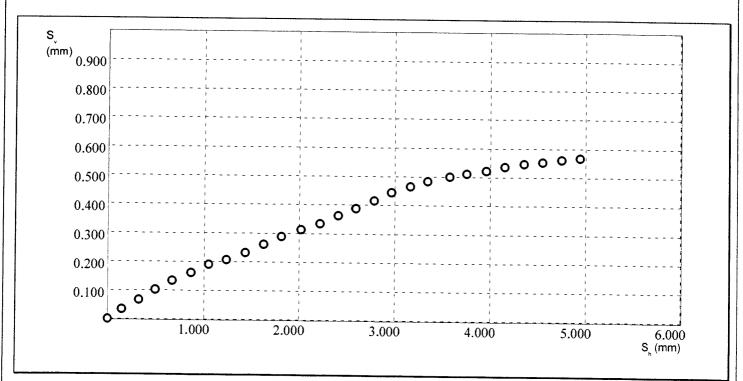
Committente Technital S.p.a.

Indirizzo

Sito ss 640 Canicatti'-Caltanissetta

 Sondaggio
 47

 Campione
 1


 Profondità
 12.20 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,15	0,04
0,33	0,07
0,50	0,10
0,67	0,13
0,87	0,16
1,05	0,19
1,24	0,21
1,44	0,23
1,63	0,26
1,81	0,29

1 1041110 11 2 (+UU KFaj - VI
Sh	Sv
mm	mm
2,02	0,31
2,21	0,34
2,41	0,36
2,59	0,39
2,78	0,42
2,97	0,44
3,16	0,47
3,34	0,48
3,58	0,50
3,75	0,51
3,96	0,52

Sh	Sv
mm	mm
4,15	0,54
4,35	0,55
4,55	0,55
4,74	0,56
4,93	0,57
5,13	0,58

Il Direttore del laboratorio
Ing. Calogoro Palumbo Piccionello

Lo Sperimentatore

Guglielfno Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0204 Certificato n. 3087 del 18/05/2006

Committente Technital S.p.a.

Indirizzo

Cantiere ss 640 Canicatti'-Caltanissetta

Sondaggio 47
Campione 1
Profondità 12.20 m

Dati del provino n°3 (800 kPa) - Vr=0,002 mm/min

Descrizione provino	limo		
Sezione	36,000 cm ²	Densità umida iniziale	18,775 kN/m³ γ _α
Altezza iniziale	20,000 mm	Densità umida finale	21,343 kN/m ³ v
Altezza finale	16,400 mm	Densità secca	15,045 kN/m³ v
No. tara 1	16	Umidità iniziale	24,796 % W
Massa tara 1	115,920 g	Umidità finale	16,329 % W
Massa tara 1 + massa umida iniz.	253,72 g	Saturazione iniziale	86,938 % S ₀
No. tara 2	41	Saturazione finale	97,282 % S.
Massa tara 2	68,580 g	Indice dei vuoti iniziale	0,778 e
Massa tara 2 + massa umida fin.	197,030 g	Indice dei vuoti finale	0,458 e.
Massa tara 2 + massa secca Peso specifico dei grani	179,000 g 26,74 kN/m³	Densità secca finale	18,347 kN/m ³ γ _σ

Il Direttore del Laboratorio Ing. Calogro Palambo Piccionello Lo Sperimentatore
Gustielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

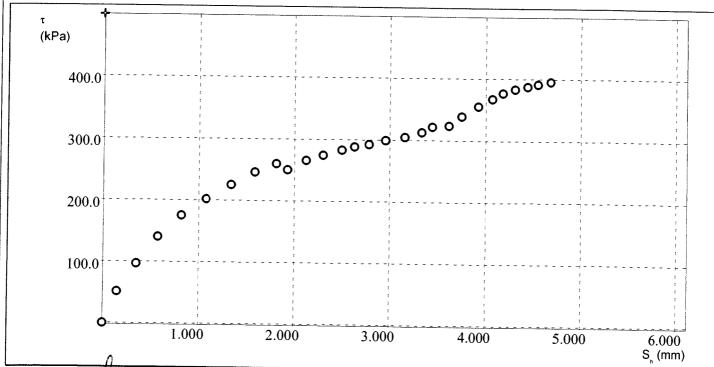
Dati del Cliente Certificato n. 3087 del 18/05/2006

Committente

Technital S.p.a.

Indirizzo

Cantiere


ss 640 Canicatti'-Caltanissetta

Sondaggio 47 Campione 1 Profondità 12.20 m

Risultati della fase di rottura Vr=0,002 mm/min

	Risultati della fase di rottura Provino nº3 (800				800 kPa) - ۱
	dt	dH	Sh	F	τ
ĺ	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0700
	60,00	0,01	0,15	186,24	51,73
	120,00	0,02	0,35	349,35	97,04
	180,00	0,05	0,57	505,52	140,42
	240,00	0,06	0,82	630,45	175,13
	300,00	0,08	1,08	727,63	202,12
	360,00	0,09	1,34	812,07	225,58
	420,00	0,10	1,59	884,95	245,82
	480,00	0,12	1,81	935,85	259,96
	540,00	0,14	1,93	902,30	250,64
	600,00	0,14	2,12	956,67	265,74
	660,00	0,16	2,30	987,90	274,42
	720,00	0,20	2,50	1017,98	282,77
	780,00	0,23	2,63	1037,65	288,24
	840,00	0,26	2,78	1053,84	292,73
	900,00	0,28	2,96	1076,98	299,16
	960,00	0,31	3,15	1096,64	304,62

OZ 11111111111111111				
dt	dΗ	Sh	F	
min	mm	mm	N	kPa
1020,00	0,34	3,33	1126,72	312,98
1080,00	0,36	3,44	1159,11	321,98
1140,00	0,39	3,61	1166,05	323,90
1200,00	0,41	3,74	1219,26	338,68
1260,00	0,43	3,92	1279,42	355,39
1320,00	0,45	4,07	1323,38	367,60
1380,00	0,46	4,18	1355,77	376,60
1440,00	0,47	4,31	1381,22	383,67
1500,00	0,48	4,44	1397,41	388,17
1560,00	0,48	4,55	1410,14	391,70
1620,00	0,49	4,68	1424,02	395,56
1680,00	0,50	4,86	1420,55	394,60

Il Direttore del laboratorio

Ing. Calogero Pallurbo Piccionello

Lo Sperimentatore Gugli**e**lmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0204

Certificato n. 3087 del 18/05/2006

Committente

Technital S.p.a.

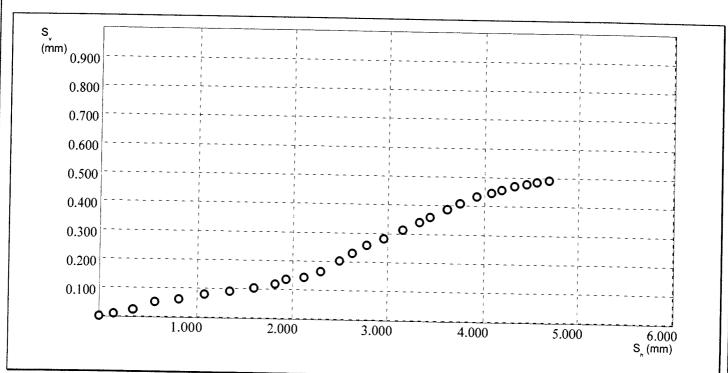
Indirizzo

Sito

ss 640 Canicatti'-Caltanissetta

Sondaggio Campione

47 1


Profondità 12.20 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,15	0,01
0,35	0,02
0,57	0,05
0,82	0,06
1,08	0,08
1,34	0,09
1,59	0,10
1,81	0,12
1,93	0,14
2,12	0,14

FIOVINO Nº3 (800 KPa) - V
Sh	Sv
mm	mm
2,30	0,16
2,50	0,20
2,63	0,23
2,78	0,26
2,96	0,28
3,15	0,31
3,33	0,34
3,44	0,36
3,61	0,39
3,74	0,41
3,92	0,43

Sh	Sv
mm	mm
4,07	0,45
4,18	0,46
4,31	0,47
4,44	0,48
4,55	0,48
4,68	0,49
4,86	0,50

Il Direttore del laboratorio
Ing. Calogero Palumbo Piccionello

Lo Sperimentatore
Guglialpo Sciascia

PROVE DI LABORATORIO SUI TERRENI

Verbale n°

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

204

Verbale n°	204	Data ricevin	nento [20/04/2006]		Data apertura	26/04/2006]		
Rapporto di prova n°	3088	Data emissi	one [18/05/2006]		.ocalità: Canica	tti'-Caltanissetta		
Committente: Technital S.p.a.								
Oggetto: Completamento dell'itinerario Agrigento-Caltanissetta-A19 nel tratto dal Km 44+00 della								
SS 640 "di Porto Empedocle"	allo svincolo co	n la A19						
Sondaggio 48	Campiono	4	Drofordità COO	Т2				
Johnaggio 48	Sondaggio 48 Campione 1 Profondità 6,00 m Contenitore M							
Descrizione del campione	Descrizione del campione Indisturbato [X] Rimaneggiato []							
	Arailla limosa	colore ariaia	con frazioni sabbiose	_				
	, ii giii a iii ii loogi	colore grigio	COIT II AZIOTII SADDIOSE	7 .				
Pt fs Tv *					Pt fs	Tv *		
		***************************************			77.15	- 1 V		
Grado di cementazione	Debole [] Mo	derato [X]	Elevat	0 []			
Struttura	Omogenea [] Eter	ogenea [X]	Strati	ficata []			
Classe di Qualità	Q1 []	Q2 []	Q3 []	Q4	[] 0	15 [X]		
Consistenza	Molto tenero [] Tenero [] Consistente [X]	Molto	consistente [] Duro []		
Reazione all'HCI	Nessuna [] Debole	[] Forte [I No	n Eseguita	[X]		
Prove effettuate								
Combonista di conse								
Contenuto d'acqua Limiti di Atterberg	X		Prova edometrica					
Analisi granulometrica			Taglio diretto ELL	<u> </u>	X			
Areometria	Х		Triassiale UU	-	X			
Peso specifico	$\frac{x}{x}$		Triassiale CU	 				
,	·····		Triassiale CD	<u> </u>				
Compattazione Proctor				L				
Penetrazione CBR								
Grandezze indice								
Contenuto d'acqua 1^ determ.	22.05							
Contenuto d'acqua 1º determ. Contenuto d'acqua 2º determ.	23,05		Peso di volume	····	18,613	kN/m³		
Contenuto d'acqua media	23,04 23,04		Peso di volume secco		15,127	kN/m³		
Peso specifico 1 [^] determ.	27,316	- 3	Grado di saturazione Indice dei vuoti		79,09	%		
Peso specifico 2^determ.	26,778	3	Porosità		0,788 0,441			
Peso specifico media	27,047	kN/m ³	i orosita		0,441			
servazioni								
_								
I direttore del Laboratorio						· · · · · · · · · · · · · · · · · · ·		
	nionalla			Lo s	perimentatore			
rig. Calogery Hajumbo Pico	g. Calogero Palumbo Piccionello Guglielano Sciascia							
				Guglie	xydo-8ciaso	cia		

Data ricevimento [20/04/2006]

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803 PROVE DI LABORATORIO SUI TERRENI

ANALISI GRANULOMETRICA

Committente Cantiere Richiedente	Technital s.p.a. SS. 640 canicatti' caltanisset Ing. Domenico D'Alessandro	nissetta andro	Verbale n° Data ricevimento Data apertura	0204 20/04/2006 26/04/2006
Diagramma	CLASSIFICAZIONE:	argilla con limo sabbiosa	Certificato n° Data emissione	3089 18/05/2006
Sondaggio	48	Campione 1	Profondità	Profondità 6,00 m

	argilla		limo			sabbia			ahiaia		toio
-		fine	medio	grosso	fine	media	grossa	fine	media	grossa	1000
100,0						111		111	111		111
0'06									1 11	* * * * * * * * * * * * * * * * * * *	: ::
80,0				· · · · · · · · · · · · · · · · · · ·							
70,0										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0.09											1111
50.0											1111
40.0	\										1111
20											
20.0											1111
											1111
0,0											1111
0,001	5		0,010	`	0,100		1,000		10,000		100,000
			II direttore	Il direttore del Laboratorio				Lo sperigientatore	<i>e</i> ntatore		

7

Gugliflmo-Sciascia

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

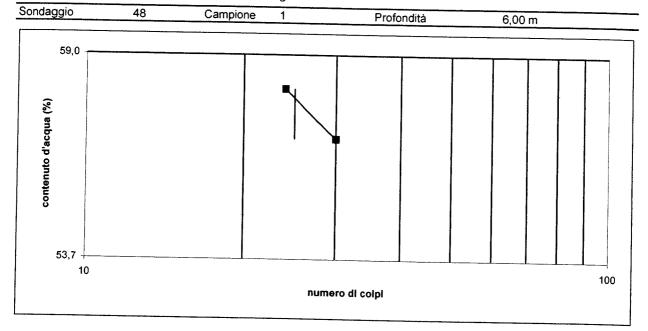
LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

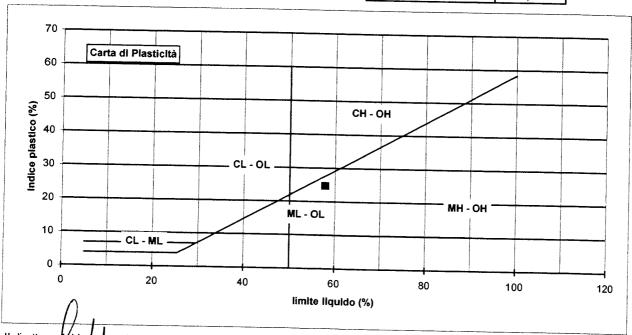
Cantiere: SS. 640

Località: Canicatti' - Caltanissetta


Verbale n°
Data ricevimento
Data apertura
Rapporto di prova n°

0204 20/04/2006 26/04/2006

Rapporto di prova n° Data emissione 3090 18/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	57,90
Limite Plastico	%	33.16

Indice plastico	25		
Consistenza	1,41		
Liquidità	-0,41		
Fluidità	13,41		
Tenacità	1,84		

Il direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Guglielmo Sciascia

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°
Data ricevimento

0204

20/04/2006 26/04/2006

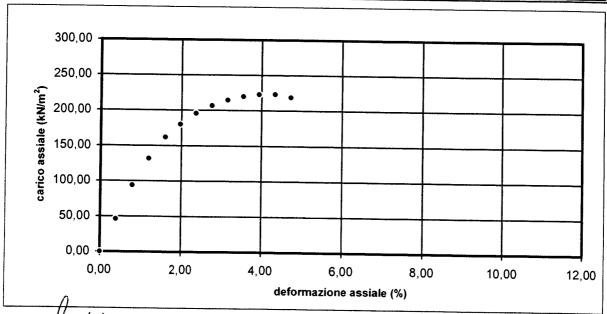
Data apertura 26/04 Certificato n° 3091

Data emissione 18/05/2006

Candonnia	4.0					
Sondaggio	48	Campione	4	Dan for all (4.)	A A A	
	•••	Campione		Profonditá	6,00 m	
		· · · · · · · · · · · · · · · · · · ·			0,00 111	

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0	3,00	179
0,30	36	3,30	180
0,60	73	3,60	177
0,90	103		
1,20	127		
1,50	142		
1,80	155		
2,10	164		****
2,40	171		
2,70	176		

Dh	NL	Dh	NL
mm	div	mm	div
			
			

Resistenza massima	223,32	kN/m²

Il direttore del Vaboratorio Ing. Calogero Palumbo Piccionello

Lo sperimentatore

Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0204

Certificato n. 3092 del 18/05/2006

Committente

Technital S.p.a.

Indirizzo

Cantiere

ss 640 Canicatti'-Caltanissetta Sondaggio 48

Campione

Profondità 6.00 m

Dati del provino n°1 (200 kPa) - Vr=0,002 mm/min

Descrizione provino	argilla			
Sezione	36,000 cm ²	Densità umida iniziale	18,452 kN/m³ γ	
Altezza iniziale	20,000 mm	Densità umida finale	19,660 kN/m³ γ	
Altezza finale	19,150 mm	Densità secca	14,866 kN/m³ γ	
No. tara 1	13	Umidità iniziale	24,122 % W	
Massa tara 1	105,860 g	Umidità finale	26,625 % W	
Massa tara 1 + massa umida iniz.	241,29 g	Saturazione iniziale	81,173 % S	
No. tara 2	78	Saturazione finale	98,929 % S,	
Massa tara 2	69,120 g	Indice dei vuoti iniziale	0,819 e	
Massa tara 2 + massa umida fin.	207,280 g	Indice dei vuoti finale	0,742 e,	
Massa tara 2 + massa secca	178,230 g	Densità secca finale	15,526 kN/m ³ γ σ	
Peso specifico dei grani	27,05 kN/m³		1 dr	

del Laboratorio Palumbo Piccionello

Lo Sperimentatore Gugliermo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0204

Certificato n. 3092 del 18/05/2006

Committente

Technital S.p.a.

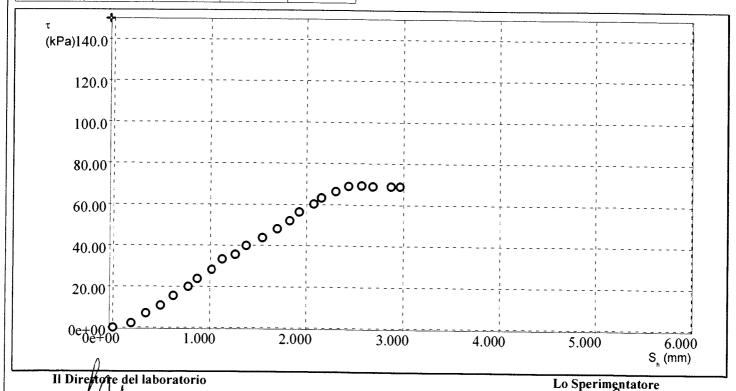
Indirizzo Cantiere

ss 640 Canicatti'-Caltanissetta

Sondaggio Campione 48

Profondità

1 6.00 m


Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

RISUITATI	ielia lase ul	TOLLUTA PT	ovino n°i (200 KPa) - V
dt	dΗ	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	0±00
60,00	0,05	0,19	8,08	2,24
120,00	0,06	0,34	25,26	7,02
180,00	0,08	0,49	39,31	10,92
240,00	0,10	0,62	56,49	15,69
300,00	0,12	0,77	72,11	20,03
360,00	0,13	0,87	86,16	23,93
420,00	0,16	1,02	101,78	28,27
480,00	0,17	1,13	120,52	33,48
540,00	0,20	1,27	128,33	35,65
600,00	0,22	1,38	143,94	39,98
660,00	0,24	1,55	158,00	43,89
720,00	0,28	1,70	173,62	48,23
780,00	0,30	1,83	187,67	52,13
840,00	0,31	1,93	203,29	56,47
900,00	0,33	2,08	217,34	60,37
960,00	0,34	2,15	228,27	63,41

Ing. Calogero Ralumbo Piccionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,36	2,30	239,21	66,45
1080,00	0,38	2,43	248,58	69,05
1140,00	0,40	2,57	250,14	69,48
1200,00	0,43	2,68	248,58	69,05
1260,00	0,45	2,87	248,58	69,05
1320,00	0,47	2,96	248,58	69,05
1380,00	0,49	3,13	248,58	69,05

Guglielyno Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

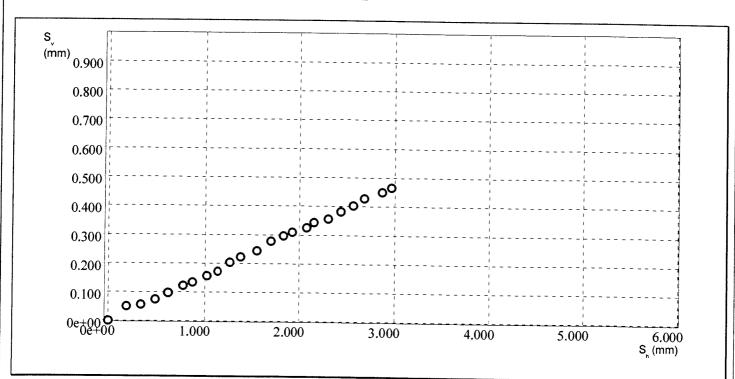
Dati cliente Verbale n. 0204

Certificato n. 3092 del 18/05/2006

Committente Technital S.p.a.

Indirizzo Sito

ss 640 Canicatti'-Caltanissetta


Sondaggio 48
Campione 1
Profondità 6.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr=0,002 mm/min

	T
Sh	Sv
mm	mm
0,00	0,00
0,19	0,05
0,34	0,06
0,49	0,08
0,62	0,10
0,77	0,12
0,87	0,13
1,02	0,16
1,13	0,17
1,27	0,20
1,38	0,22

	•
Sh	Sv
mm	mm
1,55	0,24
1,70	0,28
1,83	0,30
1,93	0,31
2,08	0,33
2,15	0,34
2,30	0,36
2,43	0,38
2,57	0,40
2,68	0,43
2,87	0,45

Sh	Sv
mm	mm
2,96	0,47
3,13	0,49

Il Direttore del laboratorio
Ing. Calggero Palumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0204

Certificato n. 3092 del 18/05/2006

Committente

Technital S.p.a.

Indirizzo

Cantiere

SS 640-Canicatti'-Caltanissetta

Sondaggio

48

Campione Profondità

6.00 m

Dati del provino n°2 (400 kPa) - Vr=0,002 mm/min

Descrizione provino	argilla			
Sezione	36,000 cm ²	Densità umida iniziale	18,598 kN/m 3 γ_n	
Altezza iniziale	20,000 mm	Densità umida finale	20,325 kN/m ³ γ	
Altezza finale	18,030 mm	Densità secca	14,893 kN/m ³ y	
No. tara 1	14	Umidità iniziale	24,874 % W	
Massa tara 1	115,720 g	Umidità finale	23,026 % W	
Massa tara 1 + massa umida iniz.	252,22 g	Saturazione iniziale	84,045 % S _o	
No. tara 2	40	Saturazione finale	99,644 % S,	
Massa tara 2	62,710 g	Indice dei vuoti iniziale	0,816 e	
Massa tara 2 + massa umida fin.	197,190 g	Indice dei vuoti finale	0,637 e,	
Massa tara 2 + massa secca Peso specifico dei grani	172,020 g 27,05 kN/m³	Densità secca finale	16,521 kN/m ³ γ _{dr}	

Il Direttore Ing. Calogero le Laboratorio imbo Piccionello

Lo Sperimentatore

Guglietmo Sciascia

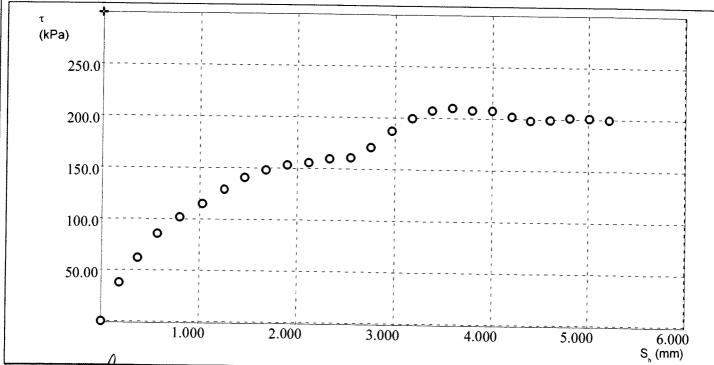
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del ClienteVerbale n. 0204CommittenteTechnital S.p.a.

Indirizzo Cantiere •

SS 640-Canicatti'-Caltanissetta


Sondaggio 48
Campione 1
Profondità 6.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

l	Misuitati della lase di lottula Piovillo n'2 (400 KPa) - 1
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0Ţ00
	60,00	0,02	0,18	136,50	37,92
	120,00	0,04	0,37	223,26	62,02
	180,00	0,05	0,57	307,71	85,47
	240,00	0,07	0,80	366,70	101,86
	300,00	0,09	1,02	414,13	115,04
	360,00	0,10	1,25	463,88	128,85
	420,00	0,13	1,47	506,68	140,74
	480,00	0,15	1,68	533,28	148,13
	540,00	0,20	1,90	550,64	152,95
	600,00	0,24	2,12	559,89	155,52
	660,00	0,29	2,34	573,77	159,38
	720,00	0,36	2,55	578,40	160,67
	780,00	0,40	2,76	616,57	171,27
	840,00	0,43	2,97	674,41	187,34
***************************************	900,00	0,44	3,18	719,53	199,87
	960,00	0,44	3,38	747,29	207,58

<u> </u>				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,45	3,59	755,39	209,83
1080,00	0,46	3,79	748,45	207,90
1140,00	0,46	4,00	748,45	207,90
1200,00	0,47	4,20	728,78	202,44
1260,00	0,47	4,40	714,90	198,58
1320,00	0,47	4,60	717,21	199,23
1380,00	0,48	4,81	725,31	201,48
1440,00	0,48	5,01	724,16	201,15
1500,00	0,49	5,22	718,37	199,55
1560,00	0,50	5,42	707,96	196,66

Certificato n. 3092 del 18/05/2006

Il Direttore del laboratorio

Ing. Caloger Valumbo Piccionello

Lo Sperimentatore Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0204

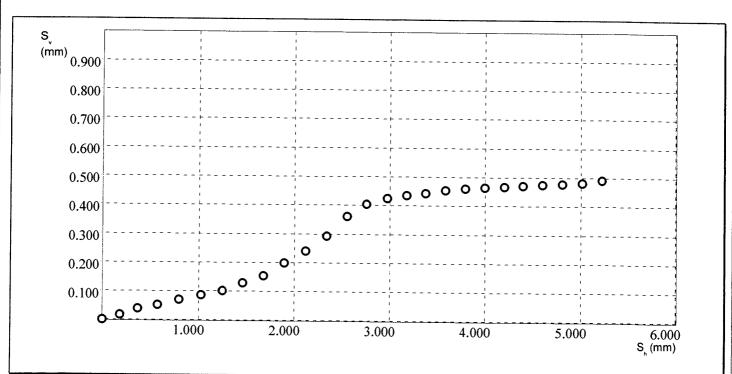
Certificato n. 3092 del 18/05/2006

Committente

Technital S.p.a.

Indirizzo Sito

SS 640-Canicatti'-Caltanissetta


Sondaggio 48
Campione 1
Profondità 6.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,18	0,02
0,37	0,04
0,57	0,05
0,80	0,07
1,02	0,09
1,25	0,10
1,47	0,13
1,68	0,15
1,90	0,20
2,12	0,24

Sh	Sv
mm	mm
2,34	0,29
2,55	0,36
2,76	0,40
2,97	0,43
3,18	0,44
3,38	0,44
3,59	0,45
3,79	0,46
4,00	0,46
4,20	0,47
4,40	0,47

Sh	Sv			
mm	mm			
4,60	0,47			
4,81	0,48			
5,01	0,48			
5,22	0,49			
5,42	0,50			

Il Directore del laboratorio

Ing. Cologeno Palumbo Piccionello

Lo Sperimentatore

Guglieli 16 Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0204

Certificato n. 3092 del 18/05/2006

Committente

Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

Campione

Profondità 6.00 m

Dati del provino n°3 (800 kPa) - Vr=0,002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	17,648 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,202 kN/m ³ γ,
Altezza finale	17,100 mm	Densità secca	13,996 kN/m ³ v
No. tara 1	15	Umidità iniziale	26,100 % W
Massa tara 1	114,120 g	Umidità finale	23.413 % W
Massa tara 1 + massa umida iniz.	243,65 g	Saturazione iniziale	77,169 % S ₀
No. tara 2	80	Saturazione finale	98,963 % S,
Massa tara 2	68,780 g	Indice dei vuoti iniziale	0,932 e _o
Massa tara 2 + massa umida fin.	195,550 g	Indice dei vuoti finale	0,652 e,
Massa tara 2 + massa secca Peso specifico dei grani	171,500 g 27,05 kN/m³	Densità secca finale	16,369 kN/m ³ γ _α

Il Direttore Ing. Calbgero el Laboratorio alumbo Piccionello

Lo Sperimentatore Gugliesmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0204

Certificato n. 3092 del 18/05/2006

Committente

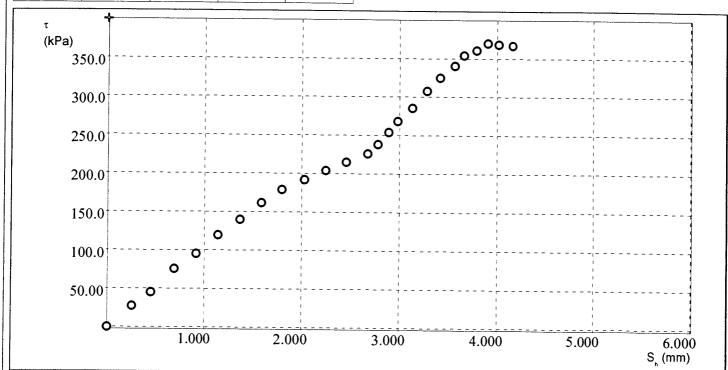
Technital S.p.a.

Indirizzo Cantiere

Sondaggio

SS 640 Canicatti'-Caltanissetta

Campione


48

Profondità 6.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

l	Risultati della lase di rottura Provino nº3 (8				800 KPa) - V
	dt	dΗ	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0700
	60,00	0,03	0,26	99,48	27,63
	120,00	0,05	0,45	163,11	45,31
	180,00	0,06	0,69	271,85	75,51
	240,00	0,09	0,91	342,41	95,11
	300,00	0,12	1,14	430,47	119,57
	360,00	0,14	1,36	503,73	139,93
	420,00	0,15	1,59	582,64	161,84
	480,00	0,17	1,80	644,63	179,06
	540,00	0,20	2,03	689,72	191,59
	600,00	0,22	2,24	734,81	204,11
	660,00	0,24	2,46	774,26	215,07
	720,00	0,26	2,67	813,71	226,03
	780,00	0,29	2,78	858,80	238,56
	840,00	0,31	2,89	915,16	254,21
ĺ	900,00	0,33	2,98	965,88	268,30
	960,00	0,36	3,13	1027,88	285,52

<u>/02 </u>				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,37	3,28	1106,78	307,44
1080,00	0,40	3,41	1168,78	324,66
1140,00	0,42	3,56	1225,13	340,32
1200,00	0,44	3,66	1275,86	354,40
1260,00	0,47	3,79	1298,40	360,67
1320,00	0,50	3,90	1332,22	370,06
1380,00	0,52	4,01	1326,58	368,49
1440,00	0,54	4,16	1320,95	366,93
1500,00	0,56	4,26	1309,67	363,80

Il Direttgre del laboratorio

Ing. Calogero Palambo Piccionello

Lo Sperimentatore

o Sciascia

Guglielr

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0204

Certificato n. 3092 del 18/05/2006

Committente Indirizzo

Technital S.p.a.

Sito

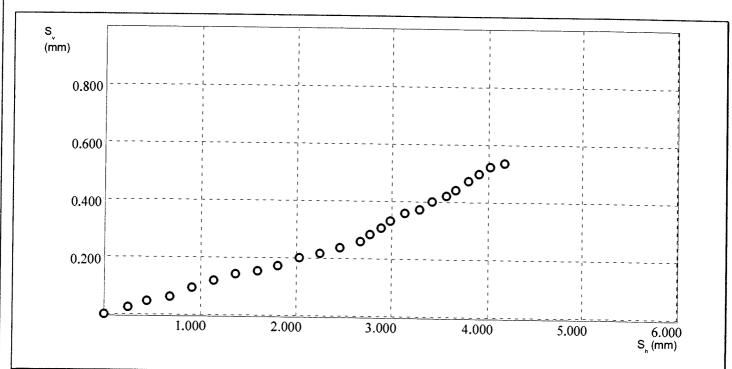
SS 640 Canicatti'-Caltanissetta

Sondaggio

48

Campione

Profondità


6.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr=0,002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,26	0,03
0,45	0,05
0,69	0,06
0,91	0,09
1,14	0,12
1,36	0,14
1,59	0,15
1,80	0,17
2,03	0,20
2,24	0,22

	•
Sh	Sv
mm	mm
2,46	0,24
2,67	0,26
2,78	0,29
2,89	0,31
2,98	0,33
3,13	0,36
3,28	0,37
3,41	0,40
3,56	0,42
3,66	0,44
3,79	0,47

Sh	Sv
mm	mm
3,90	0,50
4,01	0,52
4,16	0,54
4,26	0,56

Il Direttore del laboratorio Ing. Calogero Edumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

PROVE DI LABORATORIO SUI TERRENI

Verbale n°

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

204

Data apertura 26/04/2006

Rapporto di prova n°	3093	Data emiss	sione	[18/05/2006]	Località: Canic	atti'-Caltanissetta	
Committente: Technital S.				······································			
Oggetto: Completamento dell'itinerario Agrigento-Caltanissetta-A19 nel tratto dal Km 44+00 della							
SS 640 "di Porto Empedocle	" allo svincolo c	on la A19					
[Condonnia 10	1		·				
Sondaggio 48	Campione	2	Profe	ondità 17,50 m	Contenitore	М	
Descrizione del campione		Indisturbat	:o[X]		Rimaneggiato		
Arg	Argilla limosa colore grigio con rara presenza di gusci fossili.						
Pt fs Tv *					Pt fs	Tv *	
	1						
Grado di cementazione	Debole [] M	oderate	D [] Eleva	ito [X]		
Struttura	Omogenea [>	(terogei	nea [] Stra	tificata []		
Classe di Qualità	Q1 []	Q2 []	Q3 [] Q4	1 []	Q5 [X]	
Consistenza	Molto tenero [] Tenero [] Co	nsistente [] Molto	consistente[)	(] Duro []	
Reazione all'HCI	Nessuna [] Debole	⊋ [] Forte [] N	Non Eseguita	[X]	
Prove effettuate							
Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR	X X X		Taglio ELL Triass Triass	edometrica o diretto siale UU siale CU siale CD	X		
Grandezze indice							
Contenuto d'acqua 1º determ.	24,28	%	Peso d	di volume	18,605	kN/m³	
Contenuto d'acqua 2 [^] determ.	24,00	%	Peso o	di volume secco	14,987	kN/m³	
Contenuto d'acqua media	24,14	%		di saturazione	83,99	%	
Peso specifico 1^ determ.	27,218	kN/m ³		dei vuoti	0,757		
Peso specifico 2^determ.	25,434	kN/m ³	Porosi	tå	0,431		
sservazioni	Peso specifico media 26,326 kN/m ³						
J							
ll direttore del Laboratorio Ing. Dalogero Palumbo Pio	ccionello				sperimentator		

Data ricevimento [20/04/2006]

PROVE DI LABORATORIO SUI TERRENI
AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"
via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

ANALISI GRANULOMETRICA

Committente Cantiere Richiedente	Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	altanissetta essandro	Verbale n° Data ricevimento Data apertura	0204 20/04/2006 26/04/2006
Diagramma	CLASSIFICAZIONE:	argilla con limo debolmente sabbiosa	Certificato n° Data emissione	3094 18/05/2006
Sondaggio	48	Campione 2	Profondità 17,50 m	17,50 m

	argilla		limo	Name of the last o		sabbia			ahiaia		#oio#
		fine	medio	grosso	fine	media	grossa	fine	media	grossa	3
								The state of the s	Andreadous de la companya del companya del companya de la companya		
100,00											- 1
0				::)							
2				\							
2 9											
0 0											
3											
0,0											
o, 6											
0, 0											
0,001	τ-		0,010		0,100		1,000		10,000		100,000
			•	,				**	0		

Lo spermentatore Gugnelmo Sciascia

1/1

Il direttore del Laboratorio Ing. Calogero Petembo Piccionello

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

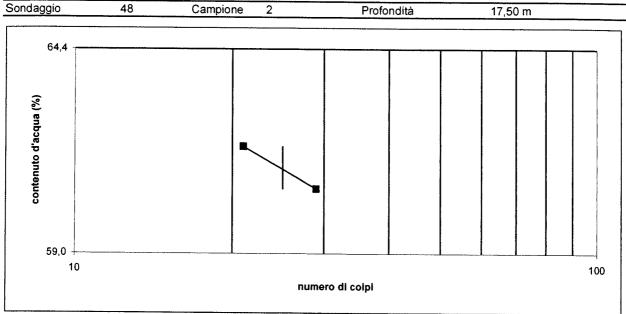
Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°
Data ricevimento
Data apertura
Rapporto di prova n°

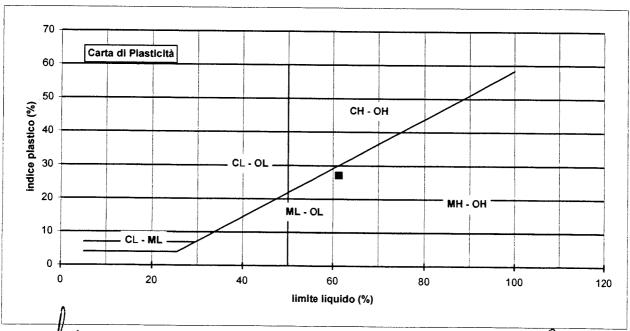
20/04/2006 26/04/2006 3095

0204


Data emissione

18/05/2006

DESCRIZIONE:


argilla

.....

Limite Liquido	%	61,25
Limite Plastico	%	34,12

Indice plastico	27
Consistenza	1,37
Liquidità	-0,37
Fluidità	7,92
Tenacità	3,43

II direttore del Laboratorio
Ing. Calggera Palumbo Piccionello

Lo sperimentatore Guglielino Sciascia

<u>LIEDIERVICE</u> _{s.t.} PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Rapporto di prova n. 3096 del 18/05/2006

Cliente Technital S.p.a.

Verbale n. 0204

Indirizzo

Cantiere SS 640 Canicatti'-Caltanissetta

Dati del Cliente

Sondaggio Campione 2 Profondità 17.50 m

Dati del provino n°1 - Vr=0,01 mm/min

1 1			
Sezione provino	11,33 cm ²	Densità umida iniziale	18,62 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	19,86 Kn/m³ γ "
Altezza finale	71,28 mm	Densità secca	15,12 Kn/m³ γ (
No. Tara 1	0	Umidità iniziale	23,17 % W
Massa tara 1	0,00 g	Umidità finale	23,21 % W
Tara +massa umida iniziale	163,44 g	Saturazione iniziale	83,85 % S
No. Tara 2	0	Saturazione finale	98,33 % S,
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,742 e
Tara + massa umida finale	163,49 g	Indice dei vuoti finale	0,634 e
Tara + massa secca	132,69 g	Densità secca finale	16,12 Kn/m ³ γ _σ
		1	· ·

Il Direttore del Laboratorio Ing. Calogoro Palumbo Piccione bo Piccionello

Guglielino Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

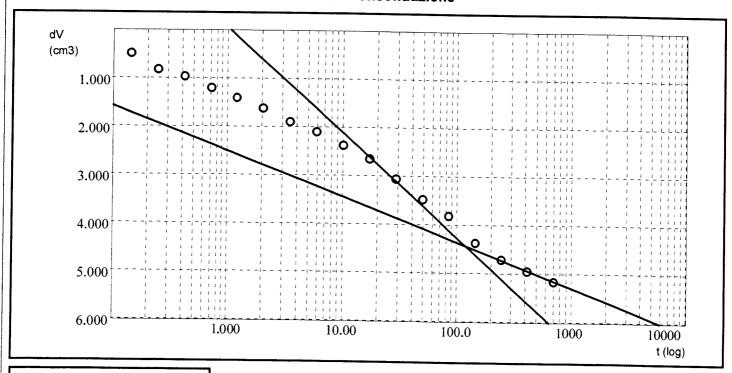
Dati del Cliente	Verbale n. 0204	Rapporto di prova n. 3096 del 18/05/2006
		11 m pro m 0000 doi 10100/2000

Cliente Technital S.p.a.

Indirizzo

Cantiere SS 640 Canicatti'-Caltanissetta

 Sondaggio
 48


 Campione
 2

 Profondità
 17.50 m

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,00	0,18	13,24	0,89	2,65	90,07
0,00	0,35	18,24	0,89	3,06	101,94
0,00	0,49	23,24	0,89	3,48	111,93
0,89	0,83	29,48	0,89	3,82	125,67
0,89	0,97	36,98	0,89	4,37	136,29
0,89	1,21	41,97	0,89	4,71	149,41
0,89	1,42	48,84	0,89	4,95	156,28
0,89	1,62	55,09	0,89	5,16	161,27
0,89	1,90	61,96	0,89	5,40	166,90
0,89	2,10	71,96			
0.89	2 38	79 45			

Fase di Consolidazione

Risultati di elaborazione

T₁₀₀ (min) : 122,66

Il Direttore del Laboratorio

Ing. Calogero Palumbo Piccionello

Lo Sperimentator

Gugliel no Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente

Verbale n. 0204

Rapporto di prova n. 3096 del 18/05/2006

Cliente Indirizzo Technital S.p.a.

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

48

Profondità

17.50 m

dN N	dU kPa
0,00	0,00
11,24	0,26
28,42	0,60
44,03	0,79
61,21	0,91
78,39	1,13
101,81	1,33
122,11	1,52
137,73	1,66
154,90	1,89
167,40	2,11
184,57	2,31
183,64	2,62
181,29	2,90
180,51	3,13
178,95	3,38
178,17	3,63
	N 0,00 11,24 28,42 44,03 61,21 78,39 101,81 122,11 137,73 154,90 167,40 184,57 183,64 181,29 180,51 178,95

Il Diretto re del Laboratorio Ing. Calogero Ralumbo Piccionello

Lo Sperimentatore Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Rapporto di prova n. 3096 del 18/05/2006

Dati del Cliente Verbale n. 0204 Cliente Technital S.p.a.

Indirizzo

Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 48 Campione 2

Profondità 17.50 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	t' kPa	s' kPa	Α
0,00	0,00	0,00	100,00	100,00	1,00	100,00	0,00	0,000
0,47	9,88	0,26	109,62	99,74	1,10	104,68	4,94	0,026
0,81	24,88	0,60	124,28	99,40	1,25	111,84	12,44	0,024
1,19	38,41	0,79	137,61	99,21	1,39	118,41	19,20	0,021
1,56	53,18	0,91	152,28	99,09	1,54	125,69	26,59	0,017
1,90	67,87	1,13	166,74	98,87	1,69	132,80	33,93	0,017
2,22	87,86	1,33	186,54	98,67	1,89	142,61	43,93	0,015
2,54	105,04	1,52	203,52	98,48	2,07	151,00	52,52	0,015
2,85	118,09	1,66	216,43	98,34	2,20	157,38	59,05	0,014
3,17	132,39	1,89	230,50	98,11	2,35	164,30	66,19	0,014
3,57	142,47	2,11	240,35	97,89	2,46	169,12	71,23	0,015
3,98	156,43	2,31	254,12	97,69	2,60	175,90	78,21	0,015
4,38	154,98	2,62	252,36	97,38	2,59	174,87	77,49	0,017
4,75	152,41	2,90	249,51	97,10	2,57	173,30	76,20	0,019
5,24	150,97	3,13	247,85	96,87	2,56	172,36	75,49	0,021
5,70	148,94	3,38	245,56	96,62	2,54	171,09	74,47	0,023
6,22	147,48	3,63	243,84	96,37	2,53	170,11	73,74	0,025

Il Direttore de Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore Gugliel de Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

	Rapporto di prova n. 3096 del 18/05/2006
rechnital S.p.a.	
,	
SS 640 Canicatti'-Caltanissetta	
8	
7.50 m	
	SS 640 Canicatti'-Caltanissetta 8

Dati del provino n°2 - Vr=0,01m/min

Sezione provino	11,33 cm ²	Densità umida iniziale	18,78 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	19,93 Kn/m³ γ
Altezza finale	71,19 mm	Densità secca	15,17 Kn/m³ v
No. Tara 1	0	Umidità iniziale	23,75 % W
Massa tara 1	0,00 g	Umidità finale	23,03 % W
Tara +massa umida iniziale	164,81 g	Saturazione iniziale	86,69 % S ₀
No. Tara 2	0	Saturazione finale	98,81 % S,
Massa tara 2	0,00 g	Indice dei vuoti iniziale	
Tara + massa umida finale	163,85 g	Indice dei vuoti finale	,
Tara + massa secca	133,18 g	Densità secca finale	0,626 e, 16,20 Kn/m³γ _#

Il Direttere del Laboratorio Ing. Calogero Palambo Piccionello

Lo Sperimentatore

Guglipimo Sciascia

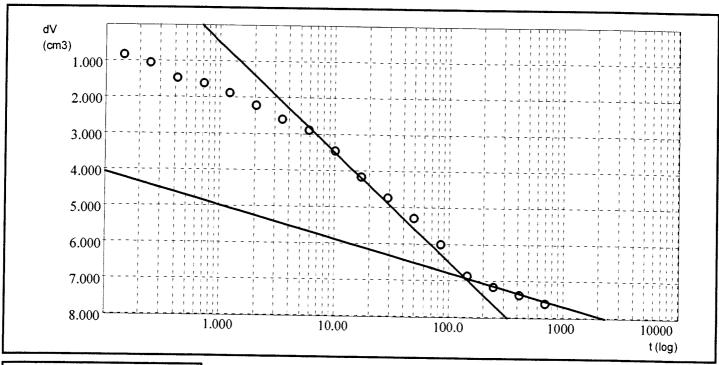
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Rapporto di prova n. 3096 del 18/05/2006

Cliente Technital S.p.a.

Indirizzo


Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 48
Campione 2
Profondità 17.50 m

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,00	0,38	19,49	0,89	4,17	96,31
0,00	0,61	24,48	0,89	4,73	104,43
0,00	0,83	30,11	0,89	5,29	116,30
0,89	1,06	36,35	0,89	6,00	125,67
0,89	1,47	40,72	0,89	6,87	137,54
0,89	1,62	48,84	0,89	7,17	145,66
0,89	1,88	55,09	0,89	7,39	153,78
0,89	2,22	63,21	0,89	7,62	163,15
0,89	2,59	69,46	0,89	7,80	170,64
0,89	2,89	77,58			
0,89	3,46	86.95			

Fase di Consolidazione

Risultati di elaborazione

T₁₀₀ (min): 142,32

Il Direttore del Laboratorio
Ing. Caloggro Halumbo Piccionello

Lo Sperimentator Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Rapporto di prova n. 3096 del 18/05/2006

Cliente

Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

48

Profondità

17.50 m

· · · · · · · · · · · · · · · · · · ·	17.50 /11			
dH mm	dN N	dU kPa		
0,00	0,00	0,00		
0,31	22,86	0,40		
0,57	52,84	0,65		
0,86	73,45	0,88		
1,12	94,07	1,03		
1,36	114,68	1,15		
1,60	131,54	1,45		
1,86	152,15	1,65		
2,10	178,39	2,05		
2,34	202,75	2,25		
2,58	228,98	2,48		
2,91	251,47	2,80		
3,15	270,21	3,08		
3,41	287,07	3,43		
3,68	302,06	3,80		
3,98	320,80	4,10		
4,27	323,80	4,38		
4,57	323,80	4,65		
4,81	322,55	4.95		

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Rapporto di prova n. 3096 del 18/05/2006

Cliente

Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

48

Campione

2

Profondità 17.50 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	t' kPa	s' kPa	Α
0,00	0,00	0,00	200,00	200,00	1,00	200,00	0,00	0,000
0,41	20,09	0,40	219,69	199,60	1,10	209,64	10,05	0,020
0,75	46,29	0,65	245,63	199,35	1,23	222,49	23,14	0,020
1,13	64,10	0,88	263,22	199,12	1,32	231,17	32,05	0,014
1,47	81,80	1,03	280,77	198,97	1,41	239,87	40,90	0,014
1,79	99,41	1,15	298,25	198,85	1,50	248,55	49,70	0,013
2,11	113,66	1,45	312,20	198,55	1,57	255,37	56,83	
2,45	131,00	1,65	329,35	198,35	1,66	263,85	65,50	0,013
2,77	153,09	2,05	351,04	197,95	1,77	274,49	76,55	0,013
3,08	173,43	2,25	371,18	197,75	1,88	284,46	86,72	0,013
3,40	195,23	2,48	392,75	197,52	1,99	295,14		0,013
3,83	213,44	2,80	410,64	197,20	2,08	303,92	97,62	0,013
4,15	228,60	3,08	425,52	196,92	2,16	311,22	106,72	0,013
4,49	241,99	3,43	438,56	196,57	2,10		114,30	0,013
4,84	253,70	3,80	449,90	196,20		317,57	120,99	0,014
5,24	268,30	4,10	464,20	195,20	2,29	323,05	126,85	0,015
5,61	269,74	4,38	465,36		2,37	330,05	134,15	0,015
6,02	268,59	4,65	463,94	195,62	2,38	330,49	134,87	0,016
6,33	266,65			195,35	2,37	329,64	134,30	0,017
0,00	200,00	4,95	461,70	195,05	2,37	328,37	133,33	0,019

Il Direttore del Laboratorio Ing. Calogero Paumbo Piccionello

Lo Sperimentatore Guglielmo Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Cliente

Indirizzo Cantiere Technital S.p.a.

Rapporto di prova n. 3096 del 18/05/2006

Sondaggio

SS 640 Canicatti'-Caltanissetta 48

17.50 m

Campione Profondità

2

Dati del provino n°3 - Vr=0,01 mm/min

Sezione provino	11,33 cm ²	Densità umida iniziale	18,57 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	20,04 Kn/m³ γ
Altezza finale	70,21 mm	Densità secca	15,11 Kn/m³ γ
No. Tara 1	0	Umidità iniziale	22,88 % W
Massa tara 1	0,00 g	Umidità finale	22,48 % W
Tara +massa umida iniziale	163,02 g	Saturazione iniziale	82,79 % S
No. Tara 2	0	Saturazione finale	99,07 % S,
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,741 e
Tara + massa umida finale	162,49 g	Indice dei vuoti finale	0,609 e,
Tara + massa secca	132,67 g	Densità secca finale	16,36 Kn/m ³ γ

Il Direttere del Laboratorio Ing. Calogero Palembo Piccionello

Lo Sperimentatore Guglielmø Sciascia

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

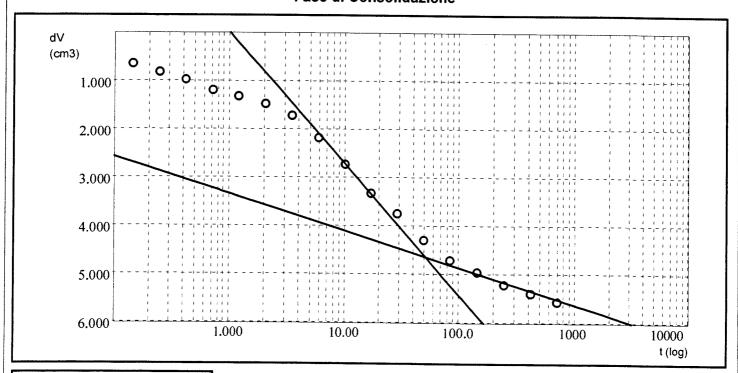
PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204

Rapporto di prova n. 3096 del 18/05/2006

Cliente Technital S.p.a.

Indirizzo


Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 48
Campione 2
Profondità 17.50 m

Dati acquisiti

dΗ	dV	dU	dH	dV	ďU
mm	cm3	kPa	mm	cm3	kPa
0,00	0,36	20,17	0,89	3,33	85,34
0,00	0,49	24,56	0,89	3,75	94,74
0,00	0,65	30,83	0,89	4,30	102,25
0,89	0,82	37,72	0,89	4,71	114,16
0,89	0,98	42,73	0,89	4,96	124,18
0,89	1,20	47,74	0,89	5,22	138,60
0,89	1,33	50,88	0,89	5,40	154,89
0,89	1,48	57,14	0,89	5,57	168,67
0,89	1,72	62,78	0,89	5,70	184,34
0,89	2,19	68,42		·····	
0,89	2,74	78.44			

Fase di Consolidazione

Risultati di elaborazione

 T_{100} (min): 52,52

Il Direttore del aboratorio
Ing. Calogoro Palambo Piccionello

Lo Sperimentator

Gualie mo Sciascia

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0204 Rapporto di prova n. 3096 del 18/05/2006

Cliente Technital S.p.a.
Indirizzo
Cantiere SS 640 Canicatti'-Caltanissetta
Sondaggio 48
Campione 2

17.50 m

Profondità

dH mm	dN N	dU kPa
0,00	0,00	0,00
0,27	30,48	0,34
0,55	60,46	0,83
0,77	87,95	1,06
1,03	125,42	1,47
1,34	157,90	1,81
1,60	192,88	2,07
1,88	220,36	2,48
2,17	250,34	2,74
2,43	275,33	3,16
2,72	297,81	3,49
3,04	322,80	3,91
3,33	342,79	4,32
3,61	360,27	4,84
3,98	382,76	5,14
4,27	410,24	5,55
4,55	444,22	5,89
4,86	463,90	6,27
5,19	472,64	6,57
5,51	472,64	6,98
5,80	463,90	7,43

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

TEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Rapporto di prova n. 3096 del 18/05/2006

Dati del Cliente Verbale n. 0204 Cliente Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

48

Profondità

17.50 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	ť kPa	s' kPa	Α
0,00	0,00	0,00	300,00	300,00	1,00	300,00	0,00	0,000
0,35	26,81	0,34	326,46	299,66	1,09	313,06	13,40	0,000
0,72	52,98	0,83	352,15	299,17	1,18	325,66	26,49	0,015
1,01	76,84	1,06	375,78	298,94	1,26	337,36	38,42	
1,36	109,20	1,47	407,73	298,53	1,37	353,13	54,60	0,014
1,76	136,91	1,81	435,11	298,19	1,46	366,65	68,46	0,013
2,11	166,65	2,07	464,58	297,93	1,56	381,26		0,013
2,48	189,67	2,48	487,19	297,52	1,64	392,36	83,33	0,012
2,85	214,65	2,74	511,91	297,26	1,72		94,84	0,013
3,20	235,23	3,16	532,08	296,84	1,72	404,58	107,33	0,013
3,57	253,46	3,49	549,97	296,51		414,46	117,62	0,013
4,00	273,50	3,91	569,59	296,09	1,85	423,24	126,73	0,014
4,38	289,30	4,32	584,98		1,92	432,84	136,75	0,014
4,75	302,87	4,84		295,68	1,98	440,33	144,65	0,015
5,24			598,03	295,16	2,03	446,59	151,44	0,016
	320,12	5,14	614,98	294,86	2,09	454,92	160,06	0,016
5,61	341,76	5,55	636,20	294,45	2,16	465,32	170,88	0,016
5,99	368,60	5,89	662,70	294,11	2,25	478,41	184,30	0,016
6,39	383,27	6,27	677,01	293,73	2,30	485,37	191,64	0,016
6,82	388,70	6,57	682,13	293,43	2,32	487,78	194,35	
7,25	386,90	6,98	679,92	293,02	2,32	486,47	193,45	0,017
7,63	378,21	7,43	670,78	292,57	2,29	481,68	189,10	0,018 0,020

Il Direttone de Laboratorio Ing. Calogeno Paluribo Piccionello

DEDIERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente

Verbale n. 0204

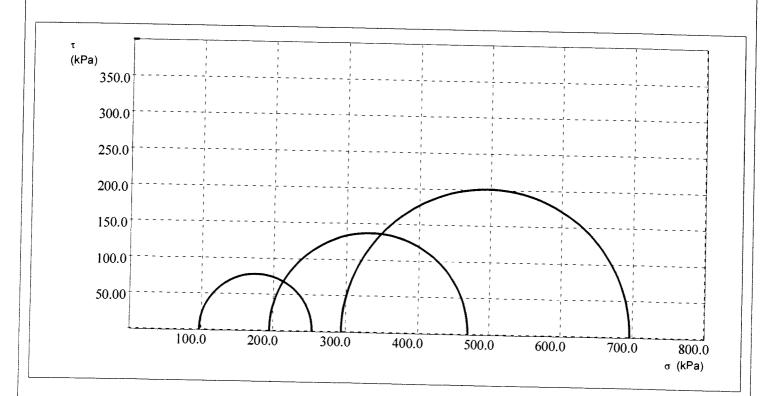
Rapporto di prova n. 3096 del 18/05/2006

Technital S.p.a.
Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

 Sondaggio
 48


 Campione
 2

 Profondità
 17.50 m

Risultati di prova

Provino	Ho mm	A cm²	γ _n g/cm³	γ _d g/cm³	Wo %	Wf %	So %	Sf %
	76,00	11,33	1,90	1,54	23,17	23,21	83,85	98,33
	76,00	11,33	1,91	1,55	23,75	23,03	86,69	98,81
·	76,00	11,33	1,89	1,54	22,88	22,48	82,79	99,07

Provino	σ _{1C} kPa	σ _{3C} kPa	BP kPa	ε %	σ ₁ - σ ₃ kPa	σ'_1 / σ'_3	dU kPa	А
	300,00	300,00	200,00	3,98	155,73	1,00	2,31	0,01
	400,00	400,00	200,00	5,52	273,99	1,00	4,31	
	500,00	500,00	200,00	5,40	402,09	1,00	5,31	0,02

Il Direttore del Laboratorio
Ing. Calogeno Pallmpo Piccionello

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N°51130 DEL 29/09/2005 SETTORE "a"

Oggetto:

PROGRAMMA DELLE PROVE ESEGUITE SS 640 completamento dell'itinerario Agrigento - Caltanissetta - A19

A ssociazione Laboratori Geotecnici

D'Alessandro Coalità: Carloratti:		L
Coalità Canicatti Canica	4	
Coalità: Canicatti		\vdash
Coalità Canicatti Canica	H	
Coalità Canicatti'-Caltanissetta Coalità	\Box	
Coalità: Caltanissetta Coalità: Caltanissetta Coalità: Caltanissetta Coalità: Coa		
COalità Coal	\sqcup	_
CO3 CO3	H	-
Coalità: Coalit	H	\dashv
CS Cality CS Cality CS Cality CS Cality CS CAlity CS CAlity CS CAlity CS CAlity CS CAlity CAlity CS CS CS CS CS CS CS C		\top
CS Cality		
Coality Coa		4
CS	\dashv	十
CS	三	4
CS	_	\bot
CS CS CS CS CS CS CS CS CS CS CS CS CS C	╫	+
CS CS CS CS CS CS CS CS CS CS CS CS CS C	+	+
CS	1	T
CS	\perp	I
	_	\bot
SO	_	6
	+	+
8 00	+	T
D/A/4		
8 129 L L L L L L L L L L	1	6
O CVA	1	
AO	-	6
COA COA COA COA COA COA COA COA COA COA		6 6
B VCS B	$\dagger \dagger$	\dashv
Ê 10A		6
i i i i i i i i i i i i i i i i i i i		
Tipo di prelievo		
	$\vdash \vdash$	\dashv
Tim.		
	ļ	П
one the late of th	[5
al nazi	-JĒ	
echnital enominazione profondità (m) 4,00 9,00 14,50 17,00 28,00 33,00 38,00 5,60		-
der der der 18 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	14	1
Origine e denominazione sigla profondità (m S8C1 4,00 S8C3 14,50 S8C3 14,50 S14C1 28,00 S14C2 33,00 S14C2 33,00 S49C1 5,60 S49C2 18,00	TOTALE PROVE FEFETTI IATE	
Origine sigla sigla S8C1 S8C2 S8C3 S8C4 S8C4 S14C2 S14C2 S14C2 S14C3 S14	14	
	يدر	
O C C C C C C C C C C C C C C C C C C C	74	

Origine e donomisses		i							7	
	11 11 11 11 11 11 11 11 11 11 11 11 11	3	7							
profondità (m) ග			3C 7C							
	1,	;	T							
	 - -				† 					
			-		+		1			
			1		1					
			-							
			-							
		_								
	-		-	+						
				1					‡	1
	-							#	1	1
						+	+	1		
TOTALE PROVE FFFFTTIIATE										
1001		2	9							E
					_		-			_

II Direttore de Naporatorio Ing. Calogero Palumbo Piccionello

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Verbale n	205		imento [23/04/2006]	Data apertura	2/05/2006
Rapporto di prova nº	3097	Data emis	sione [19/05/2006]	Località: Canic	
Committente: Technital S	5.p.a.				
Oggetto: Completamento d	dell'itinerario Agi	rigento-Calta	nissetta-A19 nel tratto d	lal Km 44+00 della	
SS 640 "di Porto Empedoci	e alio svincolo	con la A19			
Sondaggio 8	Campione		Profondità 4,00 m	<u> </u>	
	To assistante	· !	JETOTOHUITA 4,00 M	Contenitore	<u>M</u>
Descrizione del campione		Indisturbat	to [X]	Rimaneggiato	1 1
				ramaneggiate	
	Argilla lim	osa colore g	rigio scuro, scagliosa.		
Pt 3.2 Tv 1,1					
1 (),2 1 4 1,1				Pt 3,5	Tv 1,2
Grado di cementazione	Debole I	1 64	oderete IV 3		
		J IVI	oderato [X]	Elevato []	
Struttura	Omogenea [X] E	terogenea []	Stratificata []	
Classe di Qualità	Q1 []	Q2 [] Q3 []	Q4 [] (Q5 [X]
Consistenza	Molto tenero] Tenero [
				Molto consistente [] Duro []
Reazione all'HCI	Nessuna [] Debole	Forte [] Non Eseguita	[X]
Prove effettuate					
Tove enettuate					
Contenuto d'acqua	X	7	Decree and the		
Limiti di Atterberg	$\frac{\hat{x}}{x}$	-	Prova edometrica Taglio diretto		
Analisi granulometrica		1	ELL	X	
Areometria	Х	i i	Triassiale UU		
Peso specifico	Х	1	Triassiale CU		
		_	Triassiale CD		
Compattazione Proctor					ļ
Penetrazione CBR		_			
Grandezze indice					
Contenuto d'acqua 1^ determ.	31,82	0/	la		
Contenuto d'acqua 2^ determ.	30,95	%	Peso di volume	18,543	kN/m ³
Contenuto d'acqua media	31,38	%	Peso di volume secco	14,114	kN/m ³
Peso specifico 1 [^] determ.	26,818	kN/m ³	Grado di saturazione	93,02	%
Peso specifico 2^determ.	27,069	kN/m ³	Indice dei vuoti Porosità	0,909	
Peso specifico media	26,944	kN/m ³	i orosita	0,476	
servazioni					
		·····			
direttore del Laboratorio			······	77	
ng. Calogero Rajumbo Pio	rcionalla			Lo sperimentatore	

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803 PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

ANALISI GRANULOMETRICA

0205 to 23/04/2006 02/05/2006	3098	Profondità 4 00 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Pro
anissetta sandro	argilla con limo sabbiosa	Campione 1
Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	CLASSIFICAZIONE:	8
Committente Cantiere Richiedente	Diagramma	Sondaggio

ciott.

grossa

media ghiaia

fine

grossa

sabbia medía

fine

grosso

medio <u>im</u>

fine

argilla

3	2	-			<u>ā</u>	Lo sperimentatore Gugliermo Sciascia	Scient	<i>¥</i> 8	<u> </u>	ug/	Ō	3	2				;		•		llell	torio	Il direttore der Laboratorio Ing. Calogero Patumbo Piccionello	13/12	# 750	e lo	g/ ië	_ 20	6		2	U	u u	<i>u</i>	u u	u	n	n	n
100,000					0	10,000	-4					8	1,000						0	0,100									010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010
	1111 1111	::::		1111 1111					1111					1111	1111					1111 1111	1 1 1 1 1 1 1 1		 									1111 1111							
	1111	**** ****					1111 111							::::		****	::::				****											:::::		:::::	:::::	:::::	:::::		
	111111	:::: ::::	111			111	111 1111							*** ****										***												\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		1111					1111	::::							1111	::::				1111						::::	• • • •				\	::/::		::/::	::/::	::/::	::/::	::/::	::/::
T	1111	1 1 1 1					1111	::::								::::				1111	1111	****	::::		\:::::	\ :::		::X::	:: <u>``</u>			····\	:::\ :::\	····\	····\	····\	····\	····\	····\
																* * * * * * * * *	***				***:	::: :: :	<i>†</i> ∷∷ ∷∷	\															

Lo sperimentatore Gugliermo Sciascia

17

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing.Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

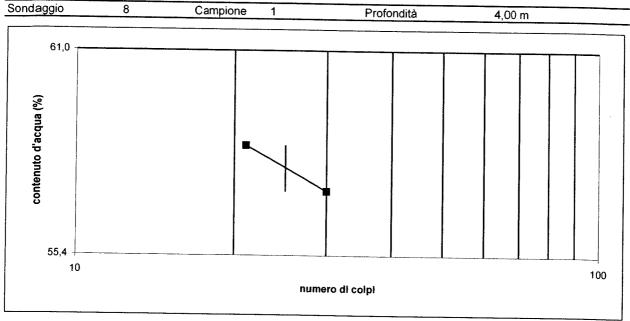
Verbale n°

0205

Data ricevimento

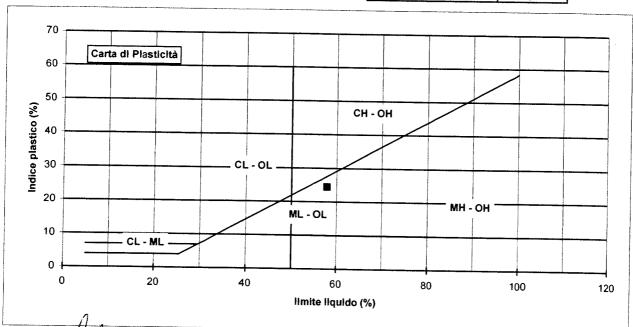
23/04/2006

Data apertura


02/05/2006

Rapporto di prova nº Data emissione

3099 19/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	57,81
Limite Plastico	%	33,33

Indice plastico	24
Consistenza	1,08
Liquidità	-0,08
Fluidità	7,94
Tenacità	3,08

Il direttore de/Lal Ing. Caloger o Piccionello

Lo sperimentatore

Guglienno Sciascia

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

0205

Data ricevimento

23/04/2006 02/05/2006

Data apertura Certificato n°

3100

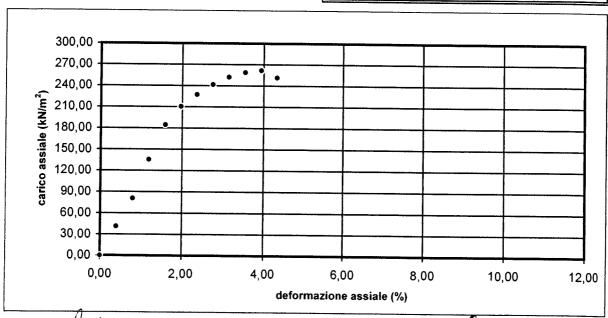
Data emissione

19/05/2006

Sondaggio	Q	Compiono	4	D (11/1)		
~~	U	Campione	1	Profonditá	4,00 m	
				. rororiana		

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0	3,00	210
0,30	32	3,30	203
0,60	63		
0,90	106		
1,20	145		
1,50	166		
1,80	180		
2,10	192		
2,40	201		
2,70	207		

Dh	NL	Dh	NL
mm	div	mm	div
		<u> </u>	

Resistenza massima	261,53	kN/m²

Il direttore del Laboratorio Ing. Calogero Paturato Piccionello

Lo sperimentatore

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Verbale n°	205	Data ricevim	nento [23/04/2006]	Data apertura 5/05/2006
Rapporto di prova nº	3101	Data emissi	one [19/05/2006]	Località: Canicatti'-Caltanissetta
Committente: Technital S				
Oggetto : Completamento d SS 640 "di Porto Empedocle	əll'itinerario Agrig " allo svincolo co	jento-Caltani on la A19	issetta-A19 nel tratto dal K	m 44+00 della
Sondaggio 8	Campione	2	Profondità 9,00 m	Contenitore M
			i Totomana 0,00 m	Contenitore M
Descrizione del campione		Indisturbato	[X]	Rimaneggiato []
	Argilla limos	sa colore griç	gio scuro, scagliosa.	
Pt fs Tv *				Ptfs Tv *
Grado di cementazione	To-1-1-			
Grado di cementazione	Debole [<u> </u>	derato [X] Ele	evato []
Struttura	Omogenea [X	[] Ete	erogenea [] Str	atificata []
Classe di Qualità	Q1 []	Q2 []	Q3 [] Q	14 [] Q5 [X]
Consistenza	Molto tenero [] Tenero [] Consistente [X] Molt	o consistente [] Duro []
Reazione all'HCI	Nessuna [] Debole		Non Eseguita [X]
Prove effettuate				Ton Zoogana [X]
Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR	X X X		Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD	X
Grandezze indice				
Contenuto d'acqua 1º determ.	30,51		Peso di volume	19,289 kN/m ³
Contenuto d'acqua 2^ determ. Contenuto d'acqua media	30,11		Peso di volume secco	14,803 kN/m ³
Peso specifico 1^ determ.	30,31 27,223	3	Grado di saturazione	98,45 %
Peso specifico 2^determ.	27,168		Indice dei vuoti Porosità	0,837
Peso specifico media	27,196	kN/m ³	rorosita	0,456
servazioni				
Il direttore del Laboratorio			Lo	o sperimentatore

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) · tel./fax 0922 437803

ANALISI GRANULOMETRICA

Committente Cantiere Richiedente	Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	anissetta sandro	Verbale n° Data ricevimento Data apertura	0205 23/04/2006 05/05/2006	
Diagramma	CLASSIFICAZIONE:	argilla con limo sabbiosa	Certificato n° Data emissione	3102 19/05/2006	
Sondaggio	8	Campione 2	Profondità	Profondità 9,00 m	

100000 1000000	_						The state of the s		D		CIO
				rosso	fine	media	grossa	fine	media	grossa	
10000 t 00010											
000,01	100,0										
00100 00,10 00,000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7::::::						· · · · · · · · · · · · · · · · · · ·	
0,100				/						1 1	
0,100											
0010				<u>;</u>							
0010 0,000			. 1								
0,100			/								
0,100			<u></u>								•
0,100		• • • • • • • • • • • • • • • • • • • •		1 1							
0,100											-
0010 1,000											:
0001	1 1	\									
0001											
00010	11			-							
000,010 0,010	.\						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · · · · · · · · · · · · · ·		
0001						-					
004		· +									
0001		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
0001		· + · · · · · · · · · · · · · · ·					1 1				
0001		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
0001								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·		
0001											
0001											
0001							· · · · · · · · · · · · · · · · · · ·				
0001 0,010 1,000		- 7 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
0001 0,000	0,02										•
0001											1
0001 1,000		· · · · · · · · · · · · · · · · · · ·	4 4								
0001 0,000									· · · · · · · · · · · · · · · · · · ·		-
0,010 0,000		11									
0,010 1,000		T + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1				
001 0,010 1,000 10,000		T		:							
0,100 1,000 1,000 10,000	004	Č	ç		44, 4						1
	3	oʻ0	2		0,100		1,000		10,000		Š

1/1

Il direttore der Kabaratorio Ing. Calogeno Patringo Priccionello

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

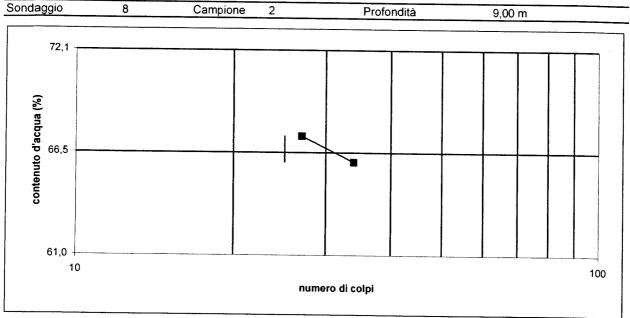
Data ricevimento

0205

Data apertura

23/04/2006

Rapporto di prova n°


05/05/2006 3103

Data emissione

19/05/2006

DESCRIZIONE:

argilla

Limite Liquido	%	67,88
Limite Plastico	%	34,27

Indice plastico	34
Consistenza	1,12
Liquidità	-0,12
Fluidità	13,98
Tenacità	2,40

Il direttore de Ing. Calogero Piccionello

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

0205

Data ricevimento

23/04/2006

Data apertura

05/05/2006

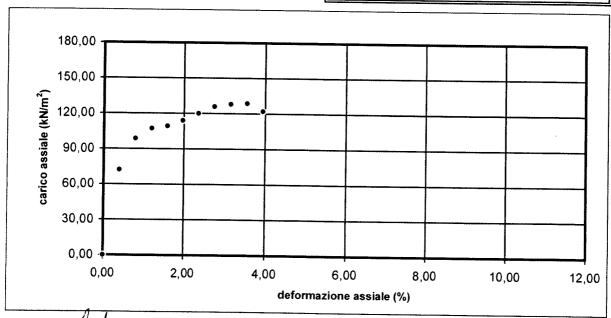
Certificato n° Data emissione

3104 19/05/2006

Condoggio		A .			
Sondaggio		Campione	2	Denfandikk	A AA
00 -	•	Campione	~	Protondità	9,00 m
					0,00 111

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0	3,00	98
0,30	56		
0,60	77		
0,90	84		***
1,20	86		
1,50	90		
1,80	95		
2,10	100		
2,40	102		
2,70	103		

Dh	NL	Dh	NL
mm	div	mm	div
		ļ	
		ļ	
		I	

Resistenza massima 128,76 kN/m²

Il direttore del Laboratorio Ing. Calogero Palympo Piccionello

Lo sperimentatore

<u>LEDERVICE</u> SAL PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente	Verbale n. 0205	Certificato n. 3105 del 19/05/06
Committente	TECHNITAL S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	8	
Campione	2	
Profondità	9.00 m	
L		

Dati del provino n°1 (200 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	18,966 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	19,549 kN/m³ γ
Altezza finale	18,980 mm	Densità secca	14,553 kN/m³ γ
No. tara 1	14	Umidità iniziale	30,325 % 'w
Massa tara 1	115,720 g	Umidità finale	27,479 % W
Massa tara 1 + massa umida iniz.	254,92 g	Saturazione iniziale	97,803 % S
No. tara 2	80	Saturazione finale	99,675 % S,
Massa tara 2	68,780 g	Indice dei vuoti iniziale	0,852 e
Massa tara 2 + massa umida fin.	204,940 g	Indice dei vuoti finale	0,757 e,
Massa tara 2 + massa secca	175,590 g	Densità secca finale	15,335 kN/m ³ γ
Peso specifico dei grani	26,95 kN/m ³		To at

Il Direttore del La loratorio Ing. Calogero Palumbo Piccionello

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

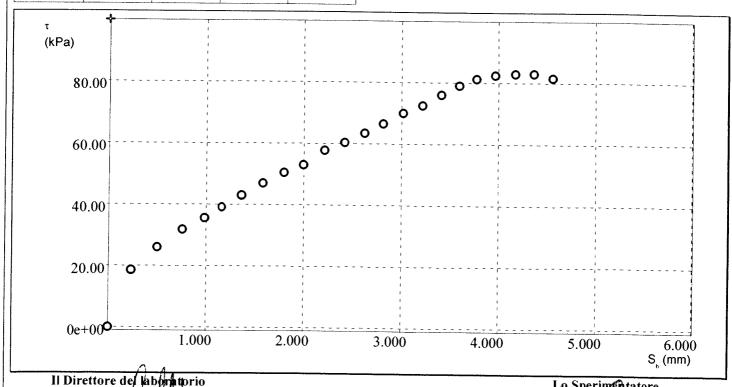
Certificato n. 3105 del 19/05/06

Dati del Cliente Verbale n. 0205 Committente TECHNITAL S.p.a.

Indirizzo Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione 2 Profondità 9.00 m


Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

l	Mountaire	iciia iase u	TOLLUIA FI	UVIIIU II I (.	200 KPaj - V
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0400
	60,00	0,04	0,23	67,02	18,62
	120,00	0,05	0,50	93,60	26,00
	180,00	0,07	0,75	114,30	31,75
	240,00	0,11	0,98	128,26	35,63
	300,00	0,13	1,16	140,97	39,16
	360,00	0,15	1,37	154,90	43,03
	420,00	0,18	1,58	168,96	46,93
	480,00	0,19	1,79	181,45	50,40
	540,00	0,21	2,00	190,82	53,01
	600,00	0,23	2,21	208,00	57,78
	660,00	0,25	2,42	217,36	60,38
	720,00	0,27	2,62	228,29	63,42
	780,00	0,29	2,81	239,23	66,45
	840,00	0,33	3,02	251,72	69,92
	900,00	0,35	3,22	261,09	72,52
	960,00	0,40	3,41	273,58	75,99

Ing. Calogero Palumba Hidcionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,42	3,60	284,51	79,03
1080,00	0,46	3,77	292,32	81,20
1140,00	0,50	3,97	297,00	82,50
1200,00	0,52	4,17	298,56	82,93
1260,00	0,54	4,36	298,56	82,93
1320,00	0,57	4,56	293,88	81,63
1380,00	0,60	4,75	290,76	80,77

Lo Sperimentatore

<u>LIEDERVICE</u> SAL PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

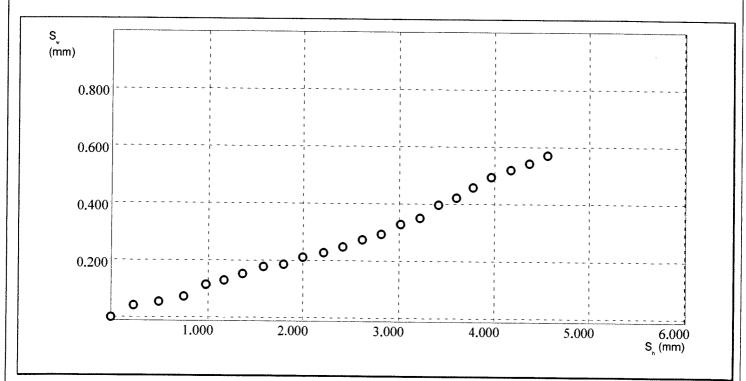
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0205

TECHNITAL S.p.a.

Certificato n. 3105 del 19/05/06


Committente Indirizzo Sito SS 640 Canicatti'-Caltanissetta Sondaggio Campione Profondità 9.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,23	0,04
0,50	0,05
0,75	0,07
0,98	0,11
1,16	0,13
1,37	0,15
1,58	0,18
1,79	0,19
2,00	0,21
2,21	0,23

	•
Sh	Sv
mm	mm
2,42	0,25
2,62	0,27
2,81	0,29
3,02	0,33
3,22	0,35
3,41	0,40
3,60	0,42
3,77	0,46
3,97	0,50
4,17	0,52
4,36	0,54

Sh	Sv
mm	mm
4,56	0,57
4,75	0,60

Il Direttore del laboratorio Ing. Calogero/Ralumbo Piccionello

Lo Sperimentatore

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205 Certificato n. 3105 del 19/05/06

Committente TECHNITAL S.p.a.

Indirizzo
Cantiere SS 640 Canicatti'-Caltanissetta
Sondaggio 8
Campione 2
Profondità 9.00 m

Dati del provino n°2 (400 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	18,444 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	19,269 kN/m³ γ n
Altezza finale	18,690 mm	Densità secca	14,091 kN/m³ γ'
No. tara 1	15	Umidità iniziale	30,893 % W
Massa tara 1	114,120 g	Umidità finale	27,790 % W
Massa tara 1 + massa umida iniz.	249,49 g	Saturazione iniziale	93,383 % S
No. tara 2	78	Saturazione finale	97,430 % S.
Massa tara 2	69,120 g	Indice dei vuoti iniziale	0,905 e
Massa tara 2 + massa umida fin.	201,280 g	Indice dei vuoti finale	0,781 e.
Massa tara 2 + massa secca Peso specifico dei grani	172,540 g 26,85 kN/m³	Densità secca finale	15,079 kN/m 3 γ_{at}

Il Direttore de Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205 Certificato n. 3105 del 19/05/06 Committente

Indirizzo

TECHNITAL S.p.a.

Cantiere

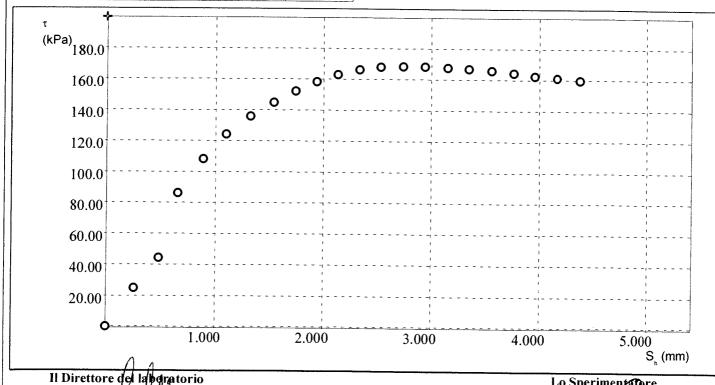
SS 640 Canicatti'-Caltanissetta

Sondaggio Campione 2 Profondità 9.00 m

Ing. Calogero Palumbo

Riccionello

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min


cuitati c	rona rasc a	Tollura Fil	J 1110 11 L (-	too kraj - v
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	07O0
60,00	0,02	0,26	90,23	25,06
120,00	0,02	0,48	159,64	44,34
180,00	0,05	0,66	310,02	86,12
240,00	0,08	0,88	389,84	108,29
300,00	0,12	1,10	446,52	124,03
360,00	0,15	1,32	489,33	135,92
420,00	0,17	1,54	521,72	144,92
480,00	0,20	1,74	548,32	152,31
540,00	0,23	1,94	570,30	158,42
600,00	0,26	2,13	586,50	162,92
660,00	0,28	2,34	598,06	166,13
720,00	0,29	2,53	605,01	168,06
780,00	0,31	2,74	606,16	168,38
840,00	0,33	2,94	606,16	168,38
900,00	0,35	3,15	603,85	167,74
960,00	0,36	3,34	601,53	167,09

۰					
	dt	dH	Sh	F	
	min	mm	mm	N	kPa
	1020,00	0,37	3,56	596,91	165,81
	1080,00	0,37	3,76	592,28	164,52
	1140,00	0,38	3,95	585,34	162,59
	1200,00	0,38	4,16	580,71	161,31
	1260,00	0,39	4,38	574,93	159,70
	1320,00	0,40	4,58	567,99	157,77
			L		L

Lo Sperimentatore

Sciascia.

Guglieln

<u>LIEDJERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0205

Certificato n. 3105 del 19/05/06

|--|

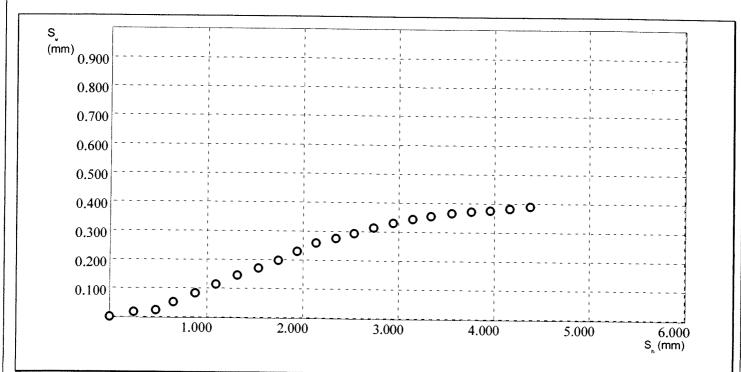
TECHNITAL S.p.a.

Indirizzo

Sito

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione 8


Campione 2 Profondità 9.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,26	0,02
0,48	0,02
0,66	0,05
0,88	0,08
1,10	0,12
1,32	0,15
1,54	0,17
1,74	0,20
1,94	0,23
2,13	0,26

Provincia 2 (400 KPa) - Vr			
Sh	Sv		
mm	mm		
2,34	0,28		
2,53	0,29		
2,74	0,31		
2,94	0,33		
3,15	0,35		
3,34	0,36		
3,56	0,37		
3,76	0,37		
3,95	0,38		
4,16	0,38		
4,38	0,39		

Sh	Sv
mm	mm
4,58	0,40

Il Direttore del laboratorio
Ing. Calogero Falurnio Piccionello

<u>FIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3105 del 19/05/06

Committente TECHNITAL S.p.a.

Indirizzo

Dati del Cliente

Cantiere SS 640 Canicatti'-Caltanissetta

Verbale n. 0205

Sondaggio 8
Campione 2
Profondità 9.00 m

Dati del provino n°3 (800 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ⁻²	Densità umida iniziale	18,247 kN/m 3 $\gamma_{_{D}}$
Altezza iniziale	20,000 mm	Densità umida finale	20,090 kN/m ³ γ
Altezza finale	17,390 mm	Densità secca	14,158 kN/m³ γ
No. tara 1	16	Umidità iniziale	28,881 % W
Massa tara 1	115,920 g	Umidità finale	23,386 % W
Massa tara 1 + massa umida iniz.	249,84 g	Saturazione iniziale	88,174 % S
No. tara 2	39	Saturazione finale	98,624 % S,
Massa tara 2	70,780 g	Indice dei vuoti iniziale	0,896 e
Massa tara 2 + massa umida fin.	198,990 g	Indice dei vuoti finale	0,649 e,
Massa tara 2 + massa secca Peso specifico dei grani	174,690 g 26,85 kN/m³	Densità secca finale	16,283 kN/m ³ γ _{df}

Il Direttore del Laboratorio Ing. Calogero Paumbo Piccionello

Lo Sperimentatore

<u>LIEDIERVICE</u> ", PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3105 del 19/05/06

Dati del Cliente Verbale n. 0205 Committente

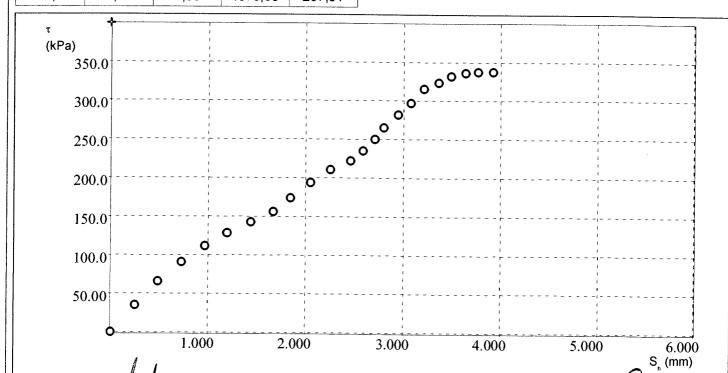
Indirizzo

TECHNITAL S.p.a.

Cantiere SS 640 Canicatti'-Caltanissetta Sondaggio Campione 2 Profondità 9.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

ı	Risuitati d	iella tase di	roπura Pr	ovino n°3 (i	800 KPa) - V
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,01	2,31	0764
l	20,00	0,01	0,26	128,40	35,67
l	40,00	0,02	0,49	235,99	65,55
	60,00	0,05	0,73	328,53	91,26
	80,00	0,07	0,96	402,57	111,82
	100,00	0,10	1,20	461,56	128,21
	120,00	0,13	1,44	512,46	142,35
	140,00	0,16	1,67	563,36	156,49
	160,00	0,20	1,84	625,83	173,84
	180,00	0,23	2,05	698,71	194,08
l	200,00	0,28	2,25	757,70	210,47
	220,00	0,32	2,46	800,50	222,36
	240,00	0,35	2,58	845,47	234,85
	260,00	0,39	2,70	900,44	250,12
	280,00	0,42	2,80	955,40	265,39
	300,00	0,45	2,95	1015,37	282,05
	320,00	0,49	3,08	1070,33	297,31


Il Direttore del laboratorio

Ing. Calogero/Palurablo/Piccionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
340,00	0,52	3,21	1135,29	315,36
360,00	0,55	3,36	1165,27	323,69
380,00	0,59	3,49	1195,25	332,01
400,00	0,63	3,64	1210,24	336,18
420,00	0,65	3,77	1215,24	337,57
440,00	0,68	3,92	1215,24	337,57
460,00	0,70	4,05	1210,24	336,18

Lo Sperimentatore Guglielme Sciasci

Sciascia

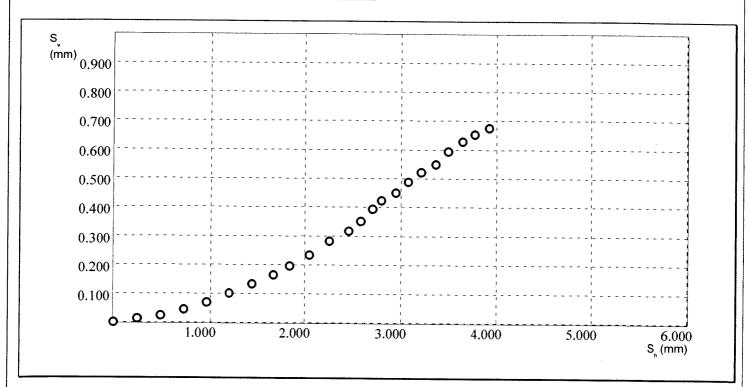
<u>LIEDJERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0205

Certificato n. 3105 del 19/05/06


Committente	TECHNITAL S.p.a.
Indirizzo	
Sito	SS 640 Canicatti'-Caltanissetta
Sondaggio	8
Campione	2
Profondità	9.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,01	0,00
0,26	0,01
0,49	0,02
0,73	0,05
0,96	0,07
1,20	0,10
1,44	0,13
1,67	0,16
1,84	0,20
2,05	0,23
2,25	0,28

1 1001110 11 3 (000 KFa) - VI			
Sh	Sv		
mm	mm		
2,46	0,32		
2,58	0,35		
2,70	0,39		
2,80	0,42		
2,95	0,45		
3,08	0,49		
3,21	0,52		
3,36	0,55		
3,49	0,59		
3,64	0,63		
3,77	0,65		

Sh	Sv
mm	mm
3,92	0,68
4,05	0,70

Il Direttore del la boratorio
Ing. Calogero Palumbo Piccionello

Il direttore del Laboratorio

Ing. Calogero Palumpo Piccionello

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Lo sperimentatore

no Sciascia

Verbale n°	205	Data ricevim	nento [23/04/2006]	Data apertura 5/05/2006
Rapporto di prova nº	3106	Data emissi	one [19/05/2006]	Località: Canicatti'-Caltanissetta
Committente: Technital S.				
Oggetto: Completamento dell'itinerario Agrigento-Caltanissetta-A19 nel tratto dal Km 44+00 della SS 640 "di Porto Empedocle" allo svincolo con la A19				
Sondaggio 8	Campione	3	Drofondità 4450 m	
Ochaaggio 0	Campione	J	Profondità 14,50 m	Contenitore M
Descrizione del campione		Indisturbato	[X]	Rimaneggiato []
	Argi	lla marnosa	colore grigio.	
Pt fs Tv *		***************************************		Pt fs Tv *
Grado di cementazione	Debole [] Mo	derato [X] Elev	ato []
Struttura	Omogenea [X] Ete	erogenea [] Stra	tificata []
Classe di Qualità	Q1 []	Q2 []	Q3 [] Q4	[] Q5 [X]
Consistenza	Molto tenero [] Tenero [] Consistente [X] Molto	
Reazione all'HCI	Nessuna [] Debole	[] Forte [] N	lon Eseguita [X]
Prove effettuate				on Essgand
Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR	X X X		Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD	XXX
Grandezze indice				
Contenuto d'acqua 1º determ.	21,91	%	Peso di volume	19,355 kN/m ³
Contenuto d'acqua 2^ determ.	21,95		Peso di volume secco	15,874 kN/m ³
Contenuto d'acqua media	21,93		Grado di saturazione	84,53 %
Peso specifico 1º determ.	27,021		Indice dei vuoti	0,700
Peso specifico 2^determ. Peso specifico media	26,953 26,987	kN/m³ kN/m³	Porosità	0,412
servazioni				

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel. fax 0922 437803

ANALISI GRANULOMETRICA

0205 23/04/2006 05/05/2006	3107 19/05/2006	Profondità 14,50 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità
altanissetta essandro	argilla con limo debolmente sabbiosa	Campione 3
Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	CLASSIFICAZIONE: argilla	8
Committente Cantiere Richiedente	Diagramma	Sondaggio

	argilla		limo			sabbia			qhiaia		toio
		fine	medio	grosso	fine	media	grossa	fine	media	grossa	200
						0.0000					
<u>6</u> 8									111	111	111
2,00											
20,0											****
0,04											1111
30.0 30.0											
20.0											
00											
0,001			0,010	-	0,100		1,000		10,000		100,000
			II direttere del Calorina Ing. Calogero Paramillo I	Il direttere del Caloratorio Calogero Partimbo Piccion	storio Piccionello			Lo sperime Guallelm	Lo sperimentatore Gual Jelmo Schascha		

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

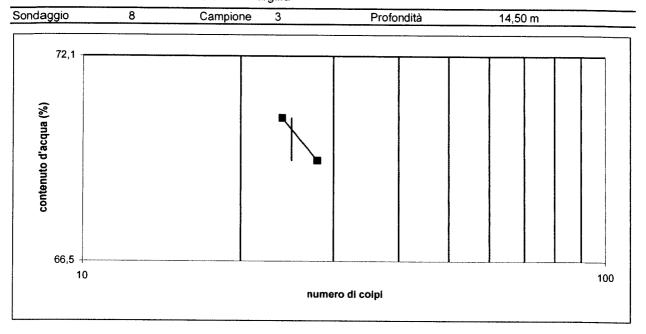
Richiedente: Ing.Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

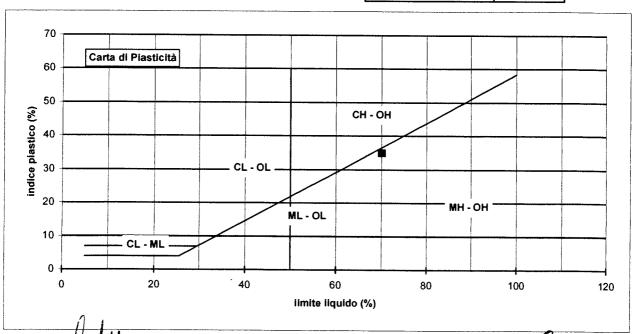
Verbale n° 0205

Data ricevimento 23/04/2006


Data apertura 05/05/2006

Rapporto di prova n° 3108

Rapporto di prova n° 3108 Data emissione 19/05/2006


DESCRIZIONE:

argilla

%		70,10
0/_		35 14
	%	%

Indice plastico	35
Consistenza	1,38
Liquidità	-0,38
Fluidità	17,18
Tenacità	2,03

Il direttore de Laboratorio Ing. Calogero Palampo Piccionello

Lo sperimentatore

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n° Data ricevimento 0205

 Data ricevimento
 23/04/2006

 Data apertura
 05/05/2006

Certificato n° 3109

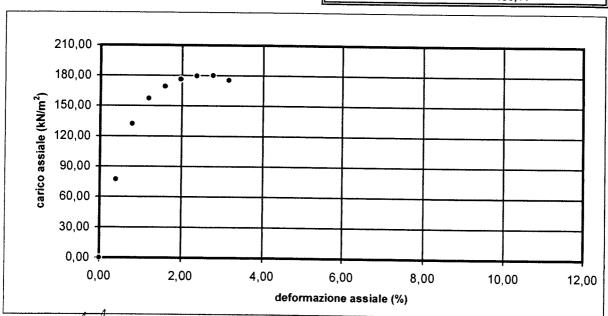
Data emissione

19/05/2006

Sondaggio	8	Campione	2	Deoforalità	44 50	
001,0099.0			J	Profonditá	14,50 m	
					.,	

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0		
0,30	60		
0,60	103		····
0,90	123		
1,20	133		
1,50	139		
1,80	142		
2,10	143		
2,40	140		

Dh	NL	Dh	NL
mm	div	mm	div
		<u> </u>	
			<u> </u>

Resistenza massima	180,14	kN/m ²

Il direttore del Laboratorio Ing. Calogero Palymbo Piccionello

Lo sperimentatione

Gugliela Seiasci

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205

Certificato n. 3110 del 19/05/06

Committente Indirizzo

TECHNITAL S.p.a.

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

Campione Profondità

14.50 m

Dati del provino n°1 (200 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	19,262 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	19,808 kN/m³ v
Altezza finale	19,630 mm	Densità secca	15,494 kN/m³ v
No. tara 1	14	Umidità iniziale	24,314 % W
Massa tara 1	115,720 g	Umidità finale	25,475 % W
Massa tara 1 + massa umida iniz.	257,09 g	Saturazione iniziale	90,577 % S
No. tara 2	81	Saturazione finale	99,231 % S
Massa tara 2	75,850 g	Indice dei vuoti iniziale	0,736 e ₀
Massa tara 2 + massa umida fin.	218,540 g	Indice dei vuoti finale	0,704 e,
Massa tara 2 + massa secca	189,570 g	Densità secca finale	15,786 kN/m ³ y
Peso specifico dei grani	26,90 kN/m ³		10,100 KIVIII Y

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Guglie Mao Sclascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

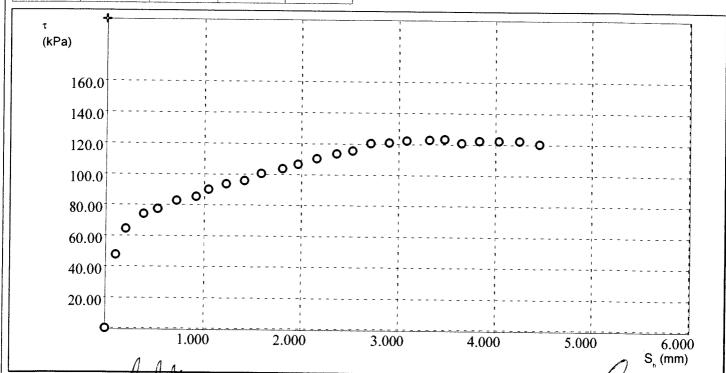
Dati del Cliente Verbale n. 0205 Committente

TECHNITAL S.p.a.

Certificato n. 3110 del 19/05/06

Indirizzo

Cantiere


SS 640 Canicatti'-Caltanissetta

Sondaggio Campione 3 Profondità 14.50 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Risuitati C	jella tase di	rottura Pr	ovino n°1 (.	200 kPa) - V
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	0 1 00
60,00	0,05	0,10	172,43	47,90
120,00	0,08	0,20	233,01	64,73
180,00	0,10	0,39	266,80	74,11
240,00	0,12	0,53	278,45	77,35
300,00	0,14	0,71	298,31	82,86
360,00	0,17	0,91	307,68	85,47
420,00	0,19	1,04	324,55	90,15
480,00	0,22	1,23	337,66	93,80
540,00	0,22	1,41	345,16	95,88
600,00	0,23	1,59	362,02	100,56
660,00	0,25	1,81	373,27	103,69
720,00	0,26	1,97	384,51	106,81
780,00	0,28	2,16	397,63	110,45
840,00	0,30	2,36	408,87	113,57
900,00	0,32	2,53	416,36	115,66
960,00	0,33	2,72	433,23	120,34

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,36	2,90	435,10	120,86
1080,00	0,38	3,08	440,72	122,42
1140,00	0,38	3,32	442,60	122,94
1200,00	0,39	3,47	444,47	123,46
1260,00	0,41	3,65	435,10	120,86
1320,00	0,42	3,83	440,72	122,42
1380,00	0,43	4,04	440,72	122,42
1440,00	0,45	4,25	440,72	122,42
1500,00	0,46	4,46	433,23	120,34
1560,00	0,48	4,65	429,48	119,30

Il Direttore de laboratorio

Ing. Calogero Palumbo Piccionello

<u>LIEDIERVICE ...</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0205

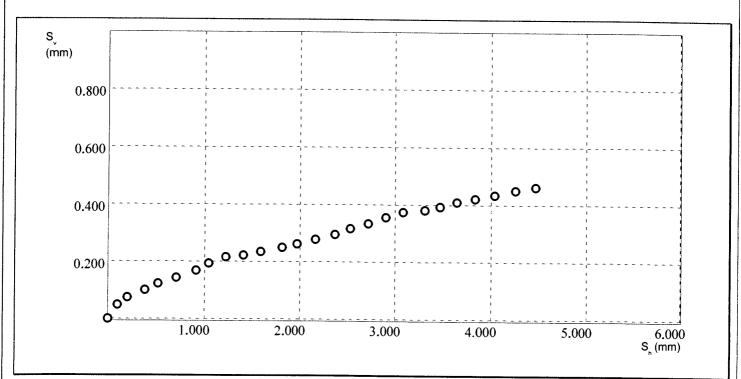
Certificato n. 3110 del 19/05/06

Committente	TECHNITAL S.p.a.
Land Calman	

Indirizzo

Sito

SS 640 Canicatti'-Caltanissetta


Sondaggio 8
Campione 3
Profondità 14.50 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Sv
mm
0,00
0,05
0,08
0,10
0,12
0,14
0,17
0,19
0,22
0,22
0,23

Sh	Sv
mm	mm
1,81	0,25
1,97	0,26
2,16	0,28
2,36	0,30
2,53	0,32
2,72	0,33
2,90	0,36
3,08	0,38
3,32	0,38
3,47	0,39
3,65	0,41

Sh	Sv
mm	mm
3,83	0,42
4,04	0,43
4,25	0,45
4,46	0,46
4,65	0,48

Il Direttore de l'aboratorio
Ing. Calogero Palumbo Ficcionello

<u>LIEDIERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

	Dati del Cliente	Verbale n. 0205	Certificato n. 3110 del 19/05/06	
	Committente	TECHNITAL S.p.a.		
ĺ	Indirizzo			
	Cantiere	SS 640 Canicatti'-Caltanissetta		
	Sondaggio	8		
	Campione	3		!

14.50 m Dati del provino n°2 (400 kPa) - Vr 0.002 mm/min

Profondità

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	18,909 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,511 kN/m³ γ ື
Altezza finale	18,200 mm	Densità secca	15,527 kN/m³ v′
No. tara 1	15	Umidità iniziale	21,780 % W
Massa tara 1	114,120 g	Umidità finale	20,209 % W
Massa tara 1 + massa umida iniz.	252,90 g	Saturazione iniziale	81,867 % S
No. tara 2	40	Saturazione finale	96,613 % S
Massa tara 2	62,710 g	Indice dei vuoti iniziale	0,727 e
Massa tara 2 + massa umida fin.	199,700 g	Indice dei vuoti finale	0,572 e,
Massa tara 2 + massa secca Peso specifico dei grani	176,670 g 26,82 kN/m³	Densità secca finale	17,063 kN/m 3 γ _{ef}

Il Direttore del Labo Ing. Calogero Palumbo

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3110 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

Cantiere

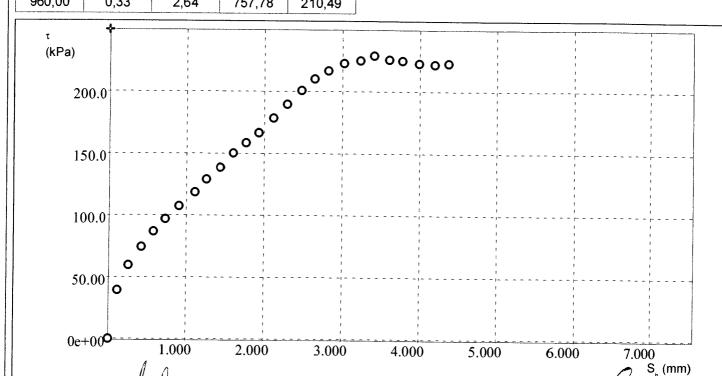
SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

3

Profondità 14.50 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min


risuitati d	iella tase di	roπura Pr	ovino n°2 (4	400 KPa) - V
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	ОтОО
60,00	0,01	0,12	142,14	39,48
120,00	0,03	0,26	215,54	59,87
180,00	0,06	0,42	267,96	74,43
240,00	0,08	0,58	313,40	87,06
300,00	0,10	0,73	349,52	97,09
360,00	0,12	0,91	386,76	107,43
420,00	0,17	1,11	427,98	118,88
480,00	0,17	1,25	465,46	129,29
540,00	0,19	1,44	499,19	138,66
600,00	0,21	1,60	540,41	150,11
660,00	0,24	1,76	570,39	158,44
720,00	0,26	1,93	600,37	166,77
780,00	0,27	2,11	641,60	178,22
840,00	0,28	2,29	682,82	189,67
900,00	0,31	2,48	724,05	201,12
960,00	0,33	2,64	757,78	210,49
	dt min 0,00 60,00 120,00 180,00 240,00 360,00 420,00 480,00 640,00 660,00 720,00 780,00 840,00 900,00	dt min dH mm 0,00 0,00 60,00 0,01 120,00 0,03 180,00 0,06 240,00 0,08 300,00 0,10 360,00 0,12 420,00 0,17 480,00 0,17 540,00 0,21 660,00 0,24 720,00 0,26 780,00 0,27 840,00 0,28 900,00 0,31	dt min dH mm Sh mm 0,00 0,00 0,00 60,00 0,01 0,12 120,00 0,03 0,26 180,00 0,06 0,42 240,00 0,08 0,58 300,00 0,10 0,73 360,00 0,12 0,91 420,00 0,17 1,11 480,00 0,17 1,25 540,00 0,19 1,44 600,00 0,21 1,60 660,00 0,24 1,76 720,00 0,26 1,93 780,00 0,27 2,11 840,00 0,28 2,29 900,00 0,31 2,48	min mm N 0,00 0,00 0,00 0,00 60,00 0,01 0,12 142,14 120,00 0,03 0,26 215,54 180,00 0,06 0,42 267,96 240,00 0,08 0,58 313,40 300,00 0,10 0,73 349,52 360,00 0,12 0,91 386,76 420,00 0,17 1,11 427,98 480,00 0,17 1,25 465,46 540,00 0,19 1,44 499,19 600,00 0,21 1,60 540,41 660,00 0,24 1,76 570,39 720,00 0,26 1,93 600,37 780,00 0,27 2,11 641,60 840,00 0,28 2,29 682,82 900,00 0,31 2,48 724,05

Il Direttore del laboratorio

Ing. Calogero Palumbo Riccionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,34	2,82	780,26	216,74
1080,00	0,36	3,02	802,75	222,99
1140,00	0,38	3,22	810,24	225,07
1200,00	0,40	3,41	825,23	229,23
1260,00	0,42	3,60	813,99	226,11
1320,00	0,44	3,78	810,24	225,07
1380,00	0,44	3,99	802,75	222,99
1440,00	0,50	4,19	799,00	221,94
1500,00	0,50	4,37	802,75	222,99
1560,00	0,50	4,56	784,01	217,78

Gugilalino Sciascia

<u>LIEDJERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

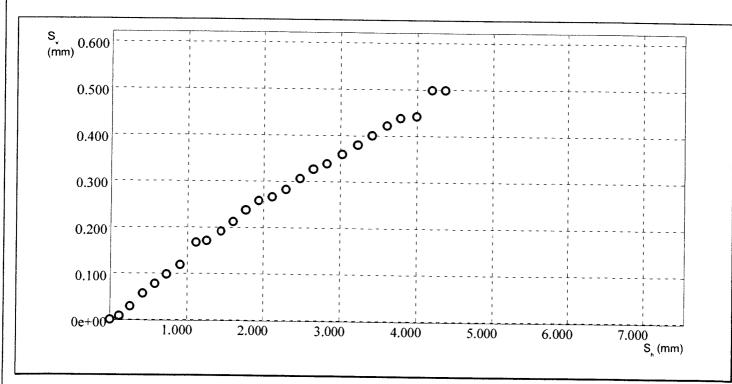
Dati cliente Verbale n. 0205

Committente Indirizzo

Sito SS 640 Canicatti'-Caltanissetta

TECHNITAL S.p.a.

Sondaggio 8
Campione 3
Profondità 14.50 m


Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,12	0,01
0,26	0,03
0,42	0,06
0,58	0,08
0,73	0,10
0,91	0,12
1,11	0,17
1,25	0,17
1,44	0,19
1,60	0,21

1001110 11 2 (400 KPa) - VF		
Sh	Sv	
mm	mm	
1,76	0,24	
1,93	0,26	
2,11	0,27	
2,29	0,28	
2,48	0,31	
2,64	0,33	
2,82	0,34	
3,02	0,36	
3,22	0,38	
3,41	0,40	
3,60	0,42	

Sh	Sv
mm	mm
3,78	0,44
3,99	0,44
4,19	0,50
4,37	0,50
4,56	0,50

Certificato n. 3110 del 19/05/06

Il Direttore del laboratorio
Ing. Calogero Palumbo Pigcionello

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente	Verbale n. 0205	Certificato n. 3110 del 19/05/06
Committente	TECHNITAL S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	

Sondaggio 8
Campione 3
Profondità 14.50 m

Dati del provino n°3 (800 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla			
Sezione	36,000 cm ²	Densità umida iniziale	18,775 kN/m³ γ	
Altezza iniziale	20,000 mm	Densità umida finale	20,447 kN/m³ γ	
Altezza finale	18,160 mm	Densità secca	15,268 kN/m ³ v	
No. tara 1	16	Umidità iniziale	22,970 % W	
Massa tara 1	115,920 g	Umidità finale	21,596 % W	
Massa tara 1 + massa umida iniz.	253,72 g	Saturazione iniziale	82,999 % S	
No. tara 2	18	Saturazione finale	99,227 % S,	
Massa tara 2	36,770 g	Indice dei vuoti iniziale	0,757 e	
Massa tara 2 + massa umida fin.	173,030 g	Indice dei vuoti finale	0,595 e,	
Massa tara 2 + massa secca Peso specifico dei grani	148,830 g 26,82 kN/m³	Densità secca finale	16,815 kN/m ³ γ ₄	

Il Direttore del Laboratorio Ing. Calogero Palumo Piccionello

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3110 del 19/05/06

Dati del Cliente Verbale n. 0205 Committente

TECHNITAL S.p.a.

Indirizzo Cantiere

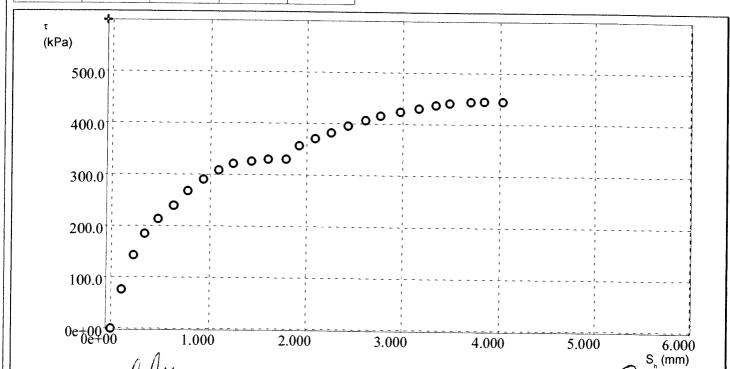
SS 640 Canicatti'-Caltanissetta

Sondaggio Campione 3 Profondità 14.50 m

Il Direttore del labor

Ing. Calogero Palundo Viccionello

torio


Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

1	Tusurtati	rena rase u	i i Villui a Fi	UVIIIU II 3 (ouu Kraj - v
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0±00
	60,00	0,07	0,11	277,28	77,02
	120,00	0,07	0,23	513,79	142,72
	180,00	0,07	0,34	662,92	184,14
	240,00	0,07	0,48	770,10	213,92
	300,00	0,08	0,64	863,31	239,81
	360,00	0,11	0,78	963,50	267,64
	420,00	0,11	0,93	1045,06	290,29
	480,00	0,13	1,09	1111,47	308,74
	540,00	0,15	1,24	1159,23	322,01
	600,00	0,16	1,42	1174,38	326,22
	660,00	0,17	1,60	1186,03	329,45
	720,00	0,18	1,78	1189,52	330,42
	780,00	0,18	1,92	1285,06	356,96
	840,00	0,19	2,09	1333,99	370,55
-	900,00	0,21	2,25	1377,10	382,53
	960,00	0,22	2,43	1426,03	396,12

J = 111111/111111				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,25	2,61	1464,48	406,80
1080,00	0,25	2,77	1497,10	415,86
1140,00	0,27	2,97	1525,06	423,63
1200,00	0,29	3,17	1549,53	430,42
1260,00	0,29	3,34	1571,66	436,57
1320,00	0,31	3,48	1589,14	441,43
1380,00	0,33	3,69	1598,46	444,02
1440,00	0,34	3,83	1601,95	444,99
1500,00	0,34	4,03	1601,95	444,99
1560,00	0,34	4,23	1604,28	445,63
				L

Lo Sperimentatore

Gualielino Sciascia

<u>LIEDJERVICE</u> JA PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0205

Certificato n. 3110 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

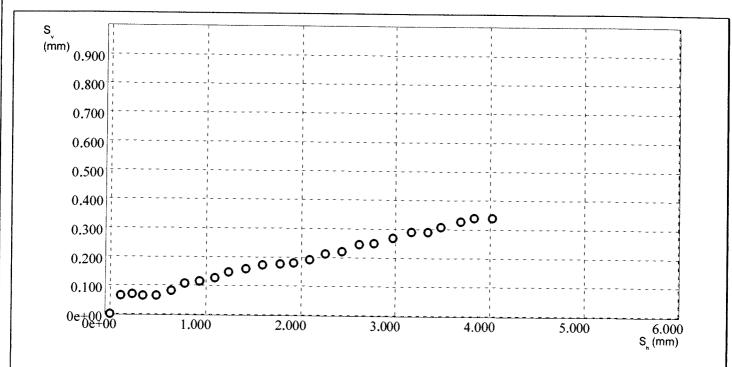
Sito

SS 640 Canicatti'-Caltanissetta

Sondaggio

8

Campione Profondità


3 14.50 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,11	0,07
0,23	0,07
0,34	0,07
0,48	0,07
0,64	0,08
0,78	0,11
0,93	0,11
1,09	0,13
1,24	0,15
1,42	0,16

, , , , , , , , , , , , , , , , , , , ,	oud Kraj - VI
Sh	Sv
mm	mm
1,60	0,17
1,78	0,18
1,92	0,18
2,09	0,19
2,25	0,21
2,43	0,22
2,61	0,25
2,77	0,25
2,97	0,27
3,17	0,29
3,34	0,29

Sh	Sv
mm	mm
3,48	0,31
3,69	0,33
3,83	0,34
4,03	0,34
4,23	0,34

Il Direttore de laboratorio Ing. Calogero Polumbo Piccionello

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Verbale n°	205	Data rice	vimento [23/04/2006]	Data apertura 8/05/2006	 6
Rapporto di prova n°	3111	Data emi	ssione [19/05/2006]	Località: Canicatti'-Caltan	
Committente: Technital S	.p.a.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Oggetto : Completamento d SS 640 "di Porto Empedocle	ell'itinerario Agri e" allo svincolo c	gento-Calt on la A19	anissetta-A19 nel tratto d	al Km 44+00 della	
Sondaggio 8	Campione	.4	Profondità 17,00 m	Contenitore M	
Descrizione del campione		Indisturb		Rimaneggiato [
	Argilla limosa	colore grig	gio leggermente scagliosa) .	
Pt fs Tv *				Pt fs Tv *	
Grado di cementazione	Dobolo r				
	Debole [Moderato [] E	levato [X]	
Struttura	Omogenea [2	<u> </u>	Eterogenea []	Stratificata []	
Classe di Qualità	Q1 []	Q2 [] Q3 []	Q4 [] Q5 [X]
Consistenza	Molto tenero [] Tenero	[] Consistente [X] N	Molto consistente [] Duro [
Reazione all'HCI	Nessuna [] Debo] Non Eseguita [X]	
Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor	X X X		Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD	X X	
Penetrazione CBR Grandezze indice					
Contenuto d'acqua 1^ determ.	26,92	%	Peso di volume	19,741 kN/i	3
Contenuto d'acqua 2^ determ.	26,96	%	Peso di volume secco	15,551 kN/r	
Contenuto d'acqua media	26,94	%	Grado di saturazione	97,48 %	
Peso specifico 1^ determ.	27,128	kN/m³	Indice dei vuoti	0,754	
Peso specifico 2^determ. Peso specifico media	27,418	kN/m³	Porosità	0,430	
servazioni	27,273	kN/m ³			
1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A				^	

Il direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo sperimentatore

Guglietino Sciascia

PROVE DI LABORATORIO SUI TERRENI *AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"* via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

ANALISI GRANULOMETRICA

0205 23/04/2006 08/05/2006	3112 19/05/2006	Profondità 17,00 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità
caltanissetta Nessandro	CLASSIFICAZIONE: argilla con limo debolmente sabbiosa	Campione 4
Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	CLASSIFICAZIONE:	80
Committente Cantiere Richiedente	Diagramma	Sondaggio

ciott.

grossa

ghiaia media

fine

grossa

sabbia media

fine

grosso

limo medio

fine

argilla

Defl. and an analysis of the second s	Ser Laboration 0,100 1,000
00-	0,010 0,100 Il direttore der Laboratorio 0,100 Ing. Calegeto Patluatio Piccionello
2/6	0,010

Gugijetmo Sciascia

7

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

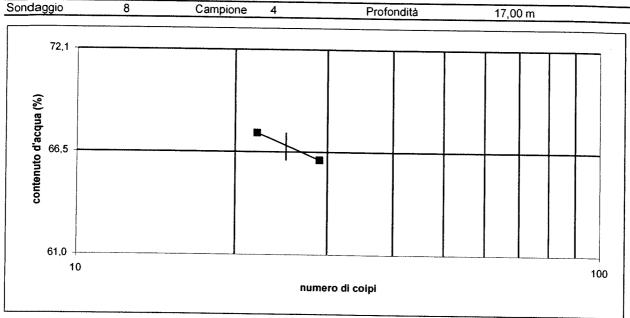
Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n° Data ricevimento Data apertura

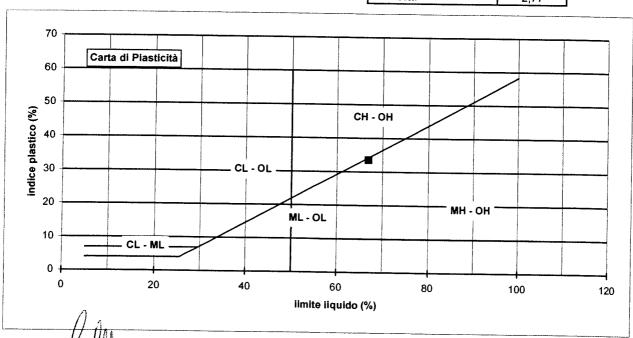
0205 23/04/2006

Rapporto di prova n°


08/05/2006 3113

Data emissione

19/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%		66,88
Limite Plastico	%	<u> </u>	33.35

Indice plastico	34
Consistenza	1,19
Liquidità	-0,19
Fluidità	12,09
Tenacità	2,77

Il direttore de Ing. Caloger F o Piccionello

Lo sperimentatore Gualie/mo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente	Verbale n. 0205	Certificato n. 3114 del 19/05/06	
Committente	TECHNITAL S.p.a.		
Indirizzo			
Cantiere	SS 640 Canicatti'-Caltanissetta		İ
Sondaggio	8		
Campione	4		
Profondità	17.00 m		

Dati del provino n°1 (200 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	19,289 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	19,782 kN/m³ v
Altezza finale	19,430 mm	Densità secca	15,210 kN/m³ v
No. tara 1	14	Umidità iniziale	26,821 % W
Massa tara 1	115,720 g	Umidità finale	26,355 % W
Massa tara 1 + massa umida iniz.	257,29 g	Saturazione iniziale	93,974 % S
No. tara 2	82	Saturazione finale	98,699 % S
Massa tara 2	67,230 g	Indice del vuoti iniziale	0,794 e ₀
Massa tara 2 + massa umida fin.	208,280 g	Indice dei vuoti finale	0,743 e,
Massa tara 2 + massa secca	178,860 g	Densità secca finale	15,656 kN/m ³ v
Peso specifico dei grani	27,28 kN/m³		10,000 KMIII Y a

II Direttore del Vaporatorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

Gualietino Sciascia

LEDERVICE PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3114 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

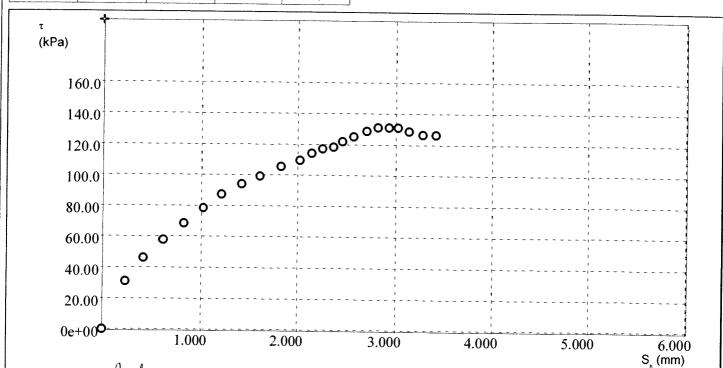
Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 8
Campione 4
Profondità 17.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Mountati	iciia iase u	i i Ottura Fi	OVINO II I (.	200 KPa) - V
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	Oţ00
60,00	0,01	0,23	112,09	31,13
120,00	0,05	0,42	166,39	46,22
180,00	0,08	0,61	207,99	57,78
240,00	0,10	0,82	247,28	68,69
300,00	0,11	1,02	283,10	78,64
360,00	0,13	1,21	314,30	87,31
420,00	0,15	1,42	338,57	94,05
480,00	0,17	1,61	357,06	99,18
540,00	0,19	1,82	380,17	105,60
600,00	0,22	2,02	395,19	109,77
660,00	0,24	2,14	411,43	114,29
720,00	0,25	2,25	422,36	117,32
780,00	0,27	2,36	426,73	118,54
840,00	0,29	2,46	439,85	122,18
900,00	0,30	2,57	450,78	125,22
960,00	0,31	2,70	463,90	128,86

Il Direttore/del la dratorio


Palymbo Piccionello

Ing. Calogero

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,32	2,81	472,64	131,29
1080,00	0,34	2,93	472,64	131,29
1140,00	0,36	3,02	472,64	131,29
1200,00	0,39	3,13	463,90	128,86
1260,00	0,41	3,28	455,15	126,43
1320,00	0,44	3,41	455,15	126,43
1380,00	0,45	3,51	448,59	124,61

Lo Sperimentatore

Guglielmo Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0205

Certificato n. 3114 del 19/05/06

Committente

TECHNITAL S.p.a.

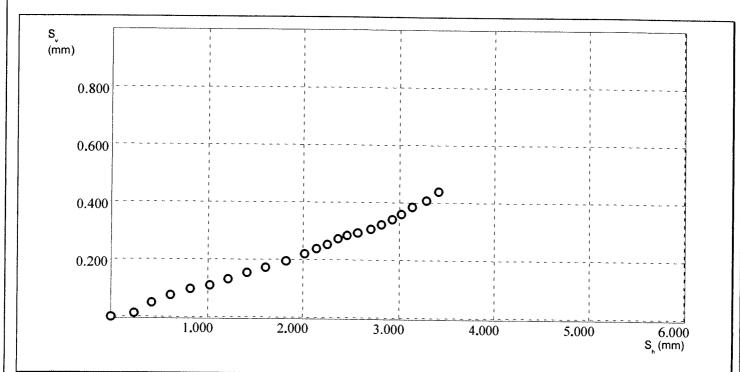
Indirizzo

Sito

SS 640 Canicatti'-Caltanissetta Sondaggio

Campione

Profondità


17.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,23	0,01
0,42	0,05
0,61	0,08
0,82	0,10
1,02	0,11
1,21	0,13
1,42	0,15
1,61	0,17
1,82	0,19
2,02	0,22

Provino nº1 (200 KPa) - Vi			
Sh	Sv		
mm	mm		
2,14	0,24		
2,25	0,25		
2,36	0,27		
2,46	0,29		
2,57	0,30		
2,70	0,31		
2,81	0,32		
2,93	0,34		
3,02	0,36		
3,13	0,39		
3,28	0,41		

Sh	Sv
mm	mm
3,41	0,44
3,51	0,45

Il Direttore del la poratorio

Ing. Calogero Phlymbo Piccionello

Lo Sperimentatore

Gughelmo Sclascia

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3114 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

Campione

4

Profondità

17.00 m

Dati del provino n°1 (200 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	18,570 kN/m³ γ _n
Altezza iniziale	20,000 mm	Densità umida finale	19,859 kN/m³ γ ື
Altezza finale	18,490 mm	Densità secca	14,665 kN/m ³ γ
No. tara 1	15	Umidità iniziale	26,628 % W
Massa tara 1	114,120 g	Umidità finale	25,197 % W
Massa tara 1 + massa umida iniz.	250,41 g	Saturazione iniziale	86,071 % S
No. tara 2	79	Saturazione finale	97,337 % S,
Massa tara 2	71,860 g	Indice dei vuoti iniziale	0,860 e
Massa tara 2 + massa umida fin.	206,610 g	Indice dei vuoti finale	0,720 e,
Massa tara 2 + massa secca	179,490 g	Densità secca finale	
Peso specifico dei grani	27,28 kN/m ³		15,862 kN/m ັγ _a ,

Il Direttore del La Ing. Calogero Palum ntorio ccionello

Lo Sperimentatore

Gugliellyo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205 Certificato n. 3114 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

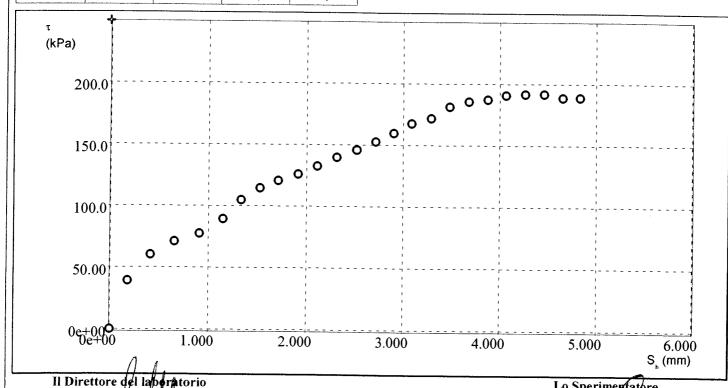
Cantiere

Sondaggio

SS 640 Canicatti'-Caltanissetta

Campione Profondità 17.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min


l	Moultati della lase di lottula Fi			iovilio II I (200 KPa) - V		
l	dt	dH	Sh	F	τ	
	min	mm	mm	N	kPa	
	0,00	0,00	0,00	0,00	0100	
	60,00	0,04	0,18	142,13	39,48	
	120,00	0,05	0,41	217,24	60,34	
İ	180,00	0,08	0,65	256,53	71,26	
	240,00	0,09	0,91	279,64	77,68	
	300,00	0,11	1,15	322,39	89,55	
	360,00	0,14	1,34	377,85	104,96	
	420,00	0,16	1,53	412,52	114,59	
	480,00	0,19	1,71	435,63	121,01	
	540,00	0,21	1,92	454,12	126,14	
	600,00	0,23	2,11	478,45	132,90	
	660,00	0,25	2,31	503,44	139,84	
	720,00	0,27	2,52	525,30	145,92	
	780,00	0,28	2,71	550,28	152,86	
	840,00	0,30	2,91	575,27	159,80	
	900,00	0,32	3,09	603,37	167,60	
	960,00	0,34	3,29	618,99	171,94	

Ing. Calogero Palurible Piccionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,37	3,49	653,34	181,48
1080,00	0,39	3,68	668,96	185,82
1140,00	0,42	3,87	675,20	187,56
1200,00	0,43	4,07	687,70	191,03
1260,00	0,46	4,26	690,82	191,89
1320,00	0,48	4,45	690,82	191,89
1380,00	0,50	4,65	681,45	189,29
1440,00	0,52	4,83	681,45	189,29
1500,00	0,55	5,04	675,20	187,56

Lo Sperimentatore

Gualielmo Sciascia

<u>LIEDERVICE PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >></u>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0205

Certificato n. 3114 del 19/05/06

Committente Indirizzo

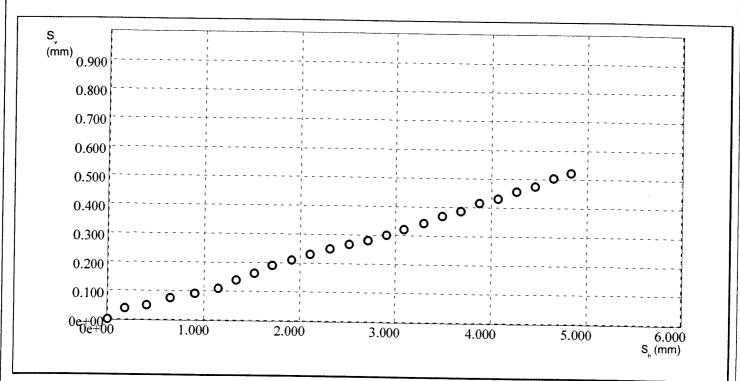
TECHNITAL S.p.a.

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

Sito

8 4


Profondità 17.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,18	0,04
0,41	0,05
0,65	0,08
0,91	0,09
1,15	0,11
1,34	0,14
1,53	0,16
1,71	0,19
1,92	0,21
2,11	0,23

Provino n°1 (200 kPa) - Vr		
Sh	Sv	
mm	mm	
2,31	0,25	
2,52	0,27	
2,71	0,28	
2,91	0,30	
3,09	0,32	
3,29	0,34	
3,49	0,37	
3,68	0,39	
3,87	0,42	
4,07	0,43	
4,26	0,46	

Sh	Sv
mm	mm
4,45	0,48
4,65	0,50
4,83	0,52
5,04	0.55

Il Direttore del laboratorio
Ing. Calogero Ralumbo Piccionello

Lo Sperimentatore

Gualielmo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3114 del 19/05/06

Committente

Indirizzo Cantiere TECHNITAL S.p.a.

SS 640 Canicatti'-Caltanissetta

Verbale n. 0205

Sondaggio Campione

Dati del Cliente

Profondità 17.00 m

Dati del provino n°3 (800 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	18,579 kN/m³ γ _n
Altezza iniziale	20,000 mm	Densità umida finale	20,764 kN/m³ γ,"
Altezza finale	16,730 mm	Densità secca	14,392 kN/m³ γ
No. tara 1	16	Umidità iniziale	29,092 % W
Massa tara 1	115,920 g	Umidità finale	20,685 % W
Massa tara 1 + massa umida iniz.	252,28 g	Saturazione iniziale	90,336 % S
No. tara 2	41	Saturazione finale	98,223 % S,
Massa tara 2	68,580 g	Indice dei vuoti iniziale	0,896 e
Massa tara 2 + massa umida fin.	196,060 g	Indice dei vuoti finale	0,586 e,
Massa tara 2 + massa secca Peso specifico dei grani	174,210 g 27,28 kN/m³	Densità secca finale	17,205 kN/m 3 γ_{dr}

Il Direttore de Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3114 del 19/05/06

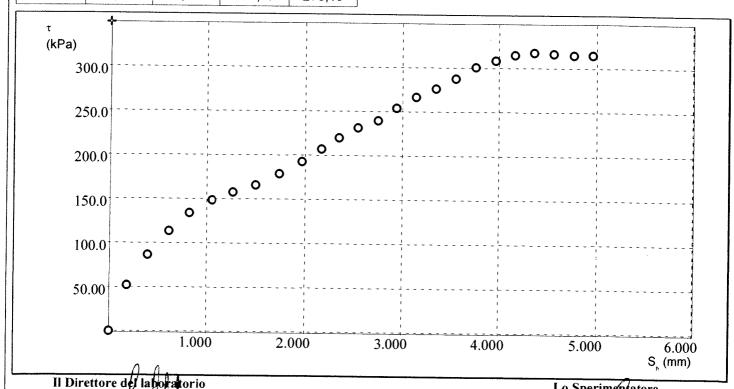
Dati del Cliente Verbale n. 0205 Committente TECHNITAL S.p.a.

Indirizzo

Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio Campione Profondità 17.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min


	Mountain	iena rase u	i iouuia ri	OVIIIO II 3 (ouu KPa) - 1
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0010
	60,00	0,01	0,18	187,40	52,06
	120,00	0,01	0,40	312,34	86,76
	180,00	0,02	0,61	407,19	113,11
	240,00	0,03	0,82	483,54	134,32
	300,00	0,04	1,06	535,60	148,78
	360,00	0,06	1,27	567,99	157,77
	420,00	0,07	1,50	596,91	165,81
	480,00	0,08	1,74	642,72	178,53
Ì	540,00	0,10	1,97	694,25	192,85
	600,00	0,12	2,16	745,78	207,16
	660,00	0,15	2,35	792,63	220,17
-	720,00	0,18	2,54	834,79	231,89
	780,00	0,21	2,75	862,90	239,69
	840,00	0,23	2,94	914,43	254,01
	900,00	0,25	3,15	961,27	267,02
	960,00	0,28	3,35	994,07	276,13

Ing. Calogero Palumho Piccionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,30	3,56	1036,23	287,84
1080,00	0,31	3,76	1083,07	300,85
1140,00	0,33	3,97	1111,18	308,66
1200,00	0,35	4,16	1134,60	315,17
1260,00	0,36	4,35	1143,97	317,77
1320,00	0,37	4,56	1139,29	316,47
1380,00	0,38	4,76	1134,60	315,17
1440,00	0,38	4,96	1134,60	315,17
1500,00	0,39	5,16	1111,18	308,66

Lo Sperimentatore

Guglieliho Sciascia

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0205

Certificato n. 3114 del 19/05/06

Committente

TECHNITAL S.p.a.

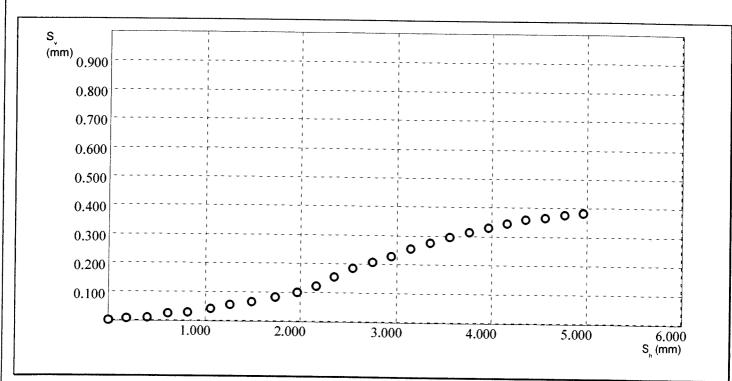
Indirizzo

Sito

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

Profondità


17.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,18	0,01
0,40	0,01
0,61	0,02
0,82	0,03
1,06	0,04
1,27	0,06
1,50	0,07
1,74	0,08
1,97	0,10
2,16	0,12

FIOVINO II 3 (800 KFa) - VI		
Sh	Sv	
mm	mm	
2,35	0,15	
2,54	0,18	
2,75	0,21	
2,94	0,23	
3,15	0,25	
3,35	0,28	
3,56	0,30	
3,76	0,31	
3,97	0,33	
4,16	0,35	
4,35	0,36	

Sh	Sv
mm	mm
4,56	0,37
4,76	0,38
4,96	0,38
 5,16	0.39

Il Direttore del laboratorio Ing. Caloger Pallmph Piccionello

Lo Sperimentatore

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE UU (ASTM D2850)

Dati del Cliente

Verbale n. 0205

Rapporto di prova n. 3115 del 19/05/06

Committente Indirizzo

Technital S.p.a.

SS 640 Canicatti -Caltanissetta

Epsilon

%

6,54

6,77

7,08

Cantiere Sondaggio

Campione

Profondità

17.00 m

Dati del provino N°1 - Vr 0.38 mm/min

Sezione provino Altezza iniziale Altezza finale No. Tara 1 Massa tara 1 Tara + massa umida iniziale	11,33 cm ² 76,00 mm 70,62 mm 0 0,00 g	Densità umida iniziale Densità umida finale Densità secca Umidità iniziale	19,52 Kn/m³ γ _n 21,01 Kn/m³ γ _t 15,28 Kn/m³ γ _d 27,74 % W _b
No. Tara 2	171,36 g 0	Saturazione iniziale	98,26 % S _o
Massa tara 2 Tara + massa umida finale	0,00 g 171,36 g	Indice dei vuoti iniziale	0,785 e _o
Tara + massa secca Peso specifico dei grani	134,15 g 27,28 Kn/m³	Densità secca finale	16,45 Kn/m 3 γ_{ar}

Α

cm2

12,12

12,15

12,19

s1-s3

kPa

170,96

168,23

166,12

Elaborazione dati acquisiti

Epsilon	Α	s1-s3
%	cm2	kPa
0,00	11,33	0,00
0,26	11,36	9,90
0,49	11,39	27,70
0,75	11,42	42,68
1,01	11,45	58,94
1,27	11,48	73,75
1,50	11,50	88,51
1,76	11,53	104,53
2,02	11,56	113,70
2,31	11,60	125,49
2,54	11,62	138,62
2,80	11,66	150,31
3,08	11,69	157,88
3,28	11,71	172,22
3,52	11,74	182,45
3,83	11,78	187,15
4,09	11,81	189,71
4,38	11,85	189,14
4,64	11,88	189,42
4,92	11,92	184,92
5,24	11,96	184,30
5,56	12,00	183,69
5,90	12,04	179,90
6,22	12,08	176,97

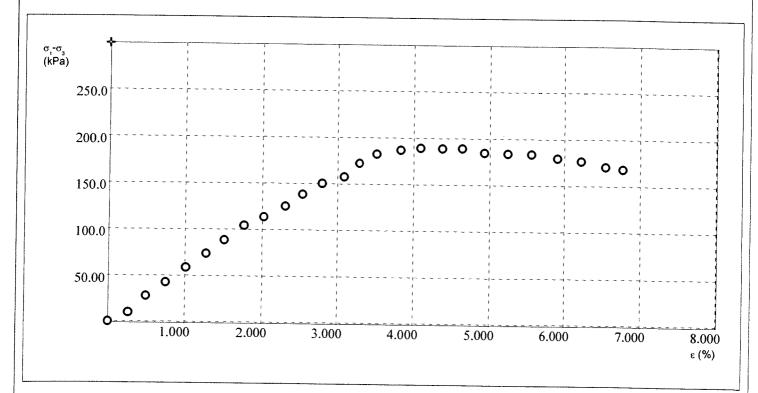
Il Direttore del Laboratorio Ing. Calogero Valumbo Viccionello

Lo Speringentatore

Guglielmo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)


PROVA TRIASSIALE UU (ASTM D2850)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3115 del 19/05/06
Cliente	Technital S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	8	
Campione	4	
Profondità	17.00 m	

Dati acquisiti

dH	dN
mm	N
0,00	0,00
0,20	11,24
0,38	31,54
0,57	48,72
0,77	67,46
0,97	84,63
1,14	101,81
1,34	120,55
1,53	131,48
1,75	145,53
1,93	161,15
2,12	175,20
2,34	184,57
2,50	201,75

dH	dN
mm	N
2,67	214,24
2,91	220,49
3,11	224,11
3,33	224,11
3,52	225,05
3,74	220,36
3,98	220,36
4,22	220,36
4,49	216,61
4,73	213,80
4,97	207,25
5,14	204,43
5,38	202,56

Il Direttore del Laboratorio
Ing. Calogero Paluribo Riccionello

Lo Sperimentatore
Guglielmo Selascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE UU (ASTM D2850)

Rapporto di prova n. 3115 del 19/05/06

Committente	Technital Sin a

Indirizzo Cantiere

Dati del Cliente

SS 640 Canicatti -Caltanissetta

Verbale n. 0205

Sondaggio 8
Campione 4
Profondità 17.00 m

Dati del provino N°2 - Vr 0.38 mm/min

Sezione provino	11,33 cm ²	Densità umida iniziale	19,51 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	20,88 Kn/m³ γ
Altezza finale	71,02 mm	Densità secca	15,65 Kn/m³ v
No. Tara 1	0	Umidità iniziale	24,70 % W
Massa tara 1	0,00 g		_ · · · · · · · · · · · · · · · · · · ·
Tara + massa umida iniziale	171,29 g	Saturazione iniziale	92,41 % S _o
No. Tara 2	0		52, 11 %
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,743 e o
Tara + massa umida finale	171,29 g		5,1 45 ° 0
Tara + massa secca	137,36 g	Densità secca finale	16,75 Kn/m ³ γ _σ
Peso specifico dei grani	27,28 Kn/m ³	The state of the s	10,73 Killill Y at

Α

cm2

11,99

12,03

12,06

12,10

12,13

s1-s3

kPa

223,05

227,50

228,17

223,60

221,76

Epsilon

%

5,47

5,78

6,04

6,33

6,56

Elaborazione dati acquisiti

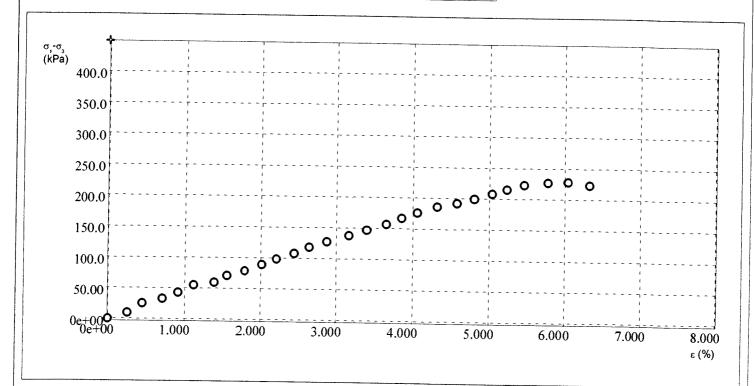
Epsilon	Α	s1-s3
%	cm2	kPa
0,00	11,33	0,00
0,25	11,36	9,90
0,45	11,38	24,97
0,71	11,41	33,12
0,91	11,43	42,61
1,12	11,46	54,79
1,38	11,49	60,08
1,55	11,51	70,83
1,78	11,54	78,79
2,01	11,56	89,41
2,21	11,59	98,66
2,44	11,61	107,84
2,64	11,64	118,35
2,87	11,67	127,44
3,16	11,70	137,74
3,39	11,73	146,73
3,65	11,76	156,96
3,85	11,78	167,23
4,05	11,81	176,14
4,31	11,84	186,21
4,57	11,87	192,28
4,80	11,90	199,69
5,03	11,93	208,37
5,24	11,96	215,76
	1/ 1/4	

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)


PROVA TRIASSIALE UU (ASTM D2850)

_ Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3115 del 19/05/06
Cliente	Technital S.p.a.	1
Indirizzo		
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	8	
Campione	4	
Profondità	17.00 m	

Dati acquisiti

dH	dN	dH	dN
mm	N	mm	N
0,00	0,00	2,40	161,15
0,19	11,24	2,58	172,08
0,34	28,42	2,77	184,57
0,54	37,79	2,93	197,06
0,69	48,72	3,08	208,00
0,85	62,77	3,28	220,49
1,05	69,02	3,48	228,29
1,18	81,51	3,65	237,66
1,35	90,88	3,83	248,59
1,53	103,37	3,98	257,96
1,68	114,30	4,15	267,33
1,86	125,23	4,39	273,58
2,01	137,73	4,59	275,14
2,18	148,66	4,81	270,46

dH	dN
mm	N
4,99	268,89

Il Direttore del Laboratorio
Ing. Calogoro Patunto Piccionello

Lo Sperimentatore Gualielmo Sciascia

DEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE UU (ASTM D2850)

Dati del Cliente

Verbale n. 0205

Rapporto di prova n. 3115 del 19/05/06

Committente
Indirizzo
Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio 8
Campione 4
Profondità 17.00 m

Dati del provino N°3 - Vr 0.38 mm/min

Sezione provino	11,33 cm ²	Densità umida iniziale	19,65 Kn/m ³	ν
Altezza iniziale	76,00 mm	Densità umida finale	21,02 Kn/m ³	Λ 1 ^u
Altezza finale	71,07 mm	Densità secca	15,55 Kn/m ³	ı, V
No. Tara 1	0	Umidità iniziale	•	ν, W _o
Massa tara 1	0,00 g			- 70
Tara + massa umida iniziale	172,51 g	Saturazione iniziale	97,28 %	s,
No. Tara 2	0			- 0
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0.754	e _o
Tara + massa umida finale	172,51 g		9,104	- 0
Tara + massa secca	136,49 g	Densità secca finale	16,63 Kn/m ³	
Peso specifico dei grani	27,28 Kn/m ³	and a second finale	10,03 Killiii	Υ _{απ}

Α

cm2

12,05

12,08

12,12

s1-s3

kPa

250,37

247,13

242,55

Epsilon

%

5,97

6,22

6,49

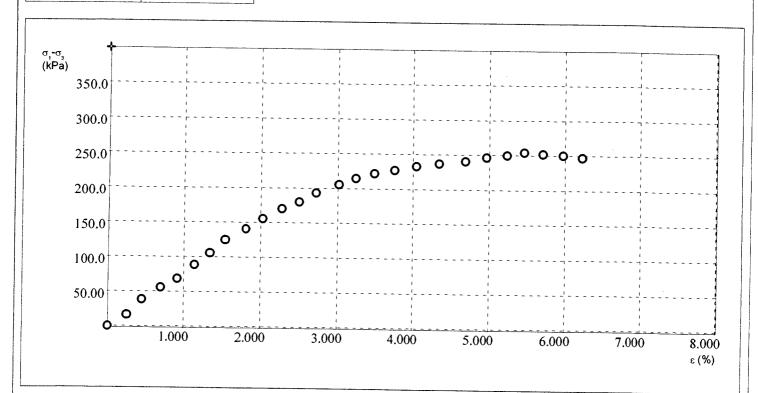
Elaborazione dati acquisiti

Epsilon	Α	s1-s3
%	cm2	kPa
0,00	11,33	0,00
0,25	11,36	16,77
0,45	11,38	38,69
0,70	11,41	56,39
0,92	11,43	68,55
1,14	11,46	88,84
1,34	11,48	106,34
1,53	11,51	125,12
1,80	11,54	141,02
2,03	11,56	155,55
2,27	11,59	169,98
2,50	11,62	180,34
2,72	11,65	193,34
3,01	11,68	206,12
3,23	11,71	214,98
3,48	11,74	222,42
3,75	11,77	227,10
4,05	11,81	233,01
4,34	11,84	237,57
4,69	11,89	240,65
4,96	11,92	246,51
5,23	11,96	249,73
5,45	11,98	254,36
5,70	1/2,011	252,39
F) 50	/ // // /	

Il Direttore del La boratorio Ing. Calogero Paluyabo Piccionello Lo Spérimentatore Gugtielmo Sciascia

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)


PROVA TRIASSIALE UU (ASTM D2850)

Verbale n. 0205	Rapporto di prova n. 3115 del 19/05/06
Technital S.p.a.	
· ·	
SS 640 Canicatti -Caltanissetta	
8	
4	
17.00 m	
-	Technital S.p.a. SS 640 Canicatti -Caltanissetta 8 4

Dati acquisiti

	dH	dN
	mm	N
	0,00	0,00
	0,19	19,05
	0,34	44,03
	0,53	64,33
	0,70	78,39
	0,87	101,81
	1,02	122,11
	1,17	143,97
	1,37	162,71
	1,54	179,89
	1,73	197,06
	1,90	209,56
	2,06	225,17
-	2,29	240,79

dH	dN
mm	N
2,46	251,72
2,65	261,09
2,85	267,33
3,08	275,14
3,30	281,39
3,56	286,07
3,77	293,88
3,98	298,56
4,14	304,81
4,33	303,25
4,54	301,69
4,73	298,56
4,93	293,88

Il Direttore del Laboratorio
Ing. Calogero Palambo Piccionello

Lo Sperimentatore Guglielan Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE UU (ASTM D2850)

Dati del Cliente

Verbale n. 0205

Rapporto di prova n. 3115 del 19/05/06

Committente

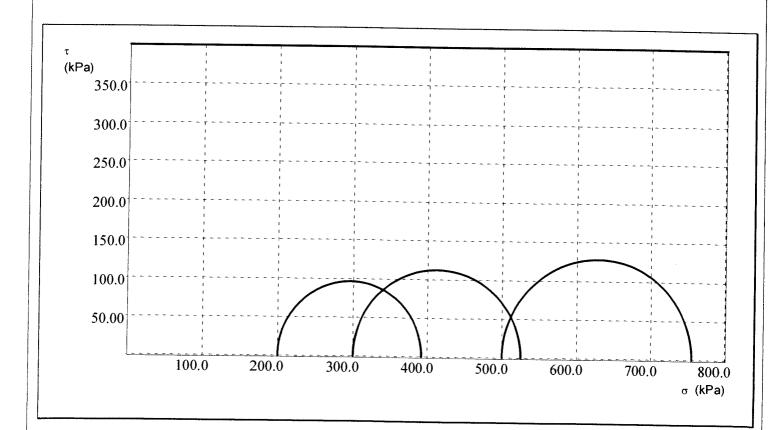
Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio


Campione

Profondità

17.00 m

Risultati di prova

Provino	Ho mm	Ao cm ²	γ _n g/cm ³	γ _d g/cm³	Wo %	So %	σ kPa	ε %	σ ₁ -σ ₃ kPa
	76,00	11,33	1,990	1,558	27,74	98,26	200,00	3,02	192,27
	76,00	11,33	1,989	1,595	24,70	92,41	300.00	3,16	225,02
···	76,00	11,33	2,003	1,585	26,39	97,28	500,00	4.16	256.53

Il Direttore del Laboratorio Ing. Calogero Halumba

Lo Sperimentatore Guglierno Sciascia

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [] Duro [] Reazione all'HCI Nessuna [] Debole [] Forte [] Non Eseguita [X] Prove effettuate Contenuto d'acqua	via A. Labriola n. 21 - 92026 FA	VARA (AG) - tel./fa	x 0922 4378	03			
Rapporto di prova n° 3116		205	Data rice	evimento	[23/04/2006]	Data apertura	9/05/2006
Committene: Technital S.p.a. Oggetto: Completamento dell'itinerario Agrigento-Caltanissetta-A19 nel tratto dal Km 44+00 della SS 640 "di Porto Empedocle" allo svincolo con la A19 Sondaggio 14							
Descrizione del campione Indisturbato [X] Rimaneggiato [] Argilla limosa colore grigio scuro con presenza di resti di gusci fossili. Pt 3,5 Tv 1,55 Pt 4,2 Tv 1,55 Grado di cementazione Debole [] Moderato [X] Elevato [] Struttura Omogenea [X] Eterogenea [] Stratificata [] Classe di Qualità Q1 [] Q2 [] Q3 [] Q4 [] Q5 [X] Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [Duro [] Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [Duro [] Contenuto d'acqua [X] Triassiale UI Triassiale UI Triassiale UI Triassiale CD Grandezze indice Contenuto d'acqua 1^ determ. 20,63 % Peso specifico Proctor Penetrazione CBR Peso di volume 19,472 kN/m³ Peso di volume secco 16,184 kN/m³ Contenuto d'acqua 1^ determ. 20,01 % Grado di saturazione 82,23 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2'determ. 27,168 kN/m³ Porosità 0,400	Oggetto: Completamento d	dell'itinerario Agr	igento-Ca con la A19	 tanissetta	a-A19 nel tratto da		- CNA. NOCCHA
Descrizione del campione Indisturbato [X] Rimaneggiato [] Argilla limosa colore grigio scuro con presenza di resti di gusci fossili. Pt 3,5 Tv 1,55 Pt 4,2 Tv 1,55 Grado di cementazione Debole [] Moderato [X] Elevato [] Struttura Omogenea [X] Eterogenea [] Stratificata [] Classe di Qualità Q1 [] Q2 [] Q3 [] Q4 [] Q5 [X] Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [Duro [] Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [Duro [] Contenuto d'acqua [X] Triassiale UI Triassiale UI Triassiale UI Triassiale CD Grandezze indice Contenuto d'acqua 1^ determ. 20,63 % Peso specifico Proctor Penetrazione CBR Peso di volume 19,472 kN/m³ Peso di volume secco 16,184 kN/m³ Contenuto d'acqua 1^ determ. 20,01 % Grado di saturazione 82,23 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2'determ. 27,168 kN/m³ Porosità 0,400	Sondaggio 14	Campiana	4	In a			
Argilla limosa colore grigio scuro con presenza di resti di gusci fossili. Pt 3,5 TV 1,55 Pt 4,2 TV 1,55 Grado di cementazione Debole [] Moderato Struttura Omogenea [X] Eterogenea [] Stratificata [] Classe di Qualità Q1 Q2 [] Q3 [] Q4 [] Q5 [X] Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [] Duro [] Reazione all'HCl Nessuna [] Debole [] Forte [] Non Eseguita [X] Prove effettuate Contenuto d'acqua X Itiniti di Atterberg Analisi granulometrica Areometria Peso specifico X Triassiale UU Triassiale CU Triassiale CU Triassiale CU Triassiale CD Grandezze indice Contenuto d'acqua 1º determ. 20,63 % Peso specifico 1º determ. 20,63 % Peso specifico 1º determ. 20,6769 kN/m³ Peso specifico 1º determ. 20,7168 kN/m³ Peso specifico media 20,920 % Porosità Prova edometrica X Triassiale UU Triassiale CU Triassiale CU Triassiale CU Triassiale CU Triassiale CD Peso di volume 19,472 kN/m³ Peso di volume secco 16,184 kN/m³ Peso specifico 1º determ. 20,666 Peso specifico 1º determ. 20,7168 kN/m³ Peso specifico media 20,920 % Porosità Porosità O,400	concessio 14	Campione		Profe	ondită 28,00 m	Contenitore	M
Pt 3.5	Descrizione del campione		Indisturt	oato [X		Rimaneggiato	[]
Classe di Qualità		limosa colore gr	igio scuro	con pres	enza di resti di gu	sci fossili.	
Struttura Omogenea [X] Eterogenea [] Stratificata [] Classe di Qualità Q1 [] Q2 [] Q3 [] Q4 [] Q5 [X] Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [] Duro [] Reazione all'HCI Nessuna [] Debole [] Forte [] Non Eseguita [X] Prove effettuate Contenuto d'acqua X Taglio diretto X Taglio diretto X X Triassiale UU Triassiale CU Triassiale CU Triassiale CD Triassiale CD Compattazione Proctor Penetrazione CBR Grandezze indice Contenuto d'acqua 1^ determ. 20,63 % Contenuto d'acqua 10 determ. 20,01 % Peso di volume 19,472 kN/m³ Peso di volume secco 16,184 kN/m³ Peso specifico 1^ determ. 20,768 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Poso specifico media 26,968 kN/m³	1 10,0 11 1,00					Pt 4,2	Tv 1,55
Struttura Omogenea [X] Eterogenea [] Stratificata [] Classe di Qualità Q1 [] Q2 [] Q3 [] Q4 [] Q5 [X] Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [] Duro [] Reazione all'HCI Nessuna [] Debole [] Forte [] Non Eseguita [X] Prove effettuate Contenuto d'acqua	Grado di cementazione	Debole []	Moderate) [X]	Elevato []	
Classe di Qualità Q1	Struttura	Omogenea I	X 1	Eterogo			
Consistenza Molto tenero [] Tenero [] Consistente [X] Molto consistente [] Duro [] Reazione all'HCI Nessuna [] Debole [] Forte [] Non Eseguita [X] Prove effettuate Contenuto d'acqua X Taglio diretto X Taglio diretto X X Taglio diretto ELL X Triassiale UU Triassiale UU Triassiale CU Triassiale CD Compattazione Proctor Penetrazione CBR Contenuto d'acqua 1^ determ. 20,63 % Contenuto d'acqua 1^ determ. 20,01 % Contenuto d'acqua media 20,32 % Contenuto d'acqua 20,32 % Contenuto d'acqua 20,32 % Contenuto d'acqua 20,32 % Contenuto d'acqua 20,32 % Contenuto d'ac				Lieloge	nea []	Stratificata []	
Reazione all'HCI Nessuna Debole Forte Non Eseguita X Prove effettuate Prova edometrica Taglio diretto ELL X Areometria Areometria Areometria Areometria Areometria Compattazione Proctor Penetrazione CBR Grandezze indice Contenuto d'acqua 1^ determ. 20,63 % Contenuto d'acqua 2^ determ. 20,01 % Contenuto d'acqua 2^ determ. 20,01 % Contenuto d'acqua 2^ determ. 20,01 % Contenuto d'acqua endia 20,32 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2^ determ. 27,168 kN/m³ Peso specifico media 26,968 kN/m³ Perova edometrica X Taglio diretto ELL X Triassiale UU Triassiale CU Triassiale CD Peso di volume 19,472 kN/m³ Peso di volume secco 16,184 kN/m³ Peso di volume secco 16,184 kN/m³ Peso di volume 82,23 % Indice dei vuoti 0,666 Porosità 0,400			Q2 [1	Q3 []	Q4 [] (Q5 [X]
Prove effettuate Contenuto d'acqua	Consistenza	Molto tenero [] Tener	o[]Cc	onsistente [X] M	olto consistente [] Duro []
Contenuto d'acqua X Taglio diretto X Taglio diretto X X Taglio diretto X X Triassiale UU Triassiale CU Triassiale CD Triassiale	Reazione all'HCI	Nessuna [] Deb	ole [] Forte []	Non Eseguita	[X]
Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR Grandezze indice Contenuto d'acqua 1^ determ. Contenuto d'acqua 2^ determ. Contenuto d'acqua media Contenuto d'acqua media 20,32 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Peso specifico 2^determ. 26,968 kN/m³ Peso specifico media 26,968 kN/m³ Peso specifico media 26,968 kN/m³ Peso di volume 19,472 kN/m³ Peso di volume secco 16,184 kN/m³ Grado di saturazione 82,23 % Indice dei vuoti 0,666 Porosità 0,400	Prove effettuate						
Grandezze indice Contenuto d'acqua 1^ determ. 20,63 % Contenuto d'acqua 2^ determ. 20,01 % Contenuto d'acqua media 20,32 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Peso specifico media 26,968 kN/m³	Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor	X		Taglio ELL Triass Triass	o diretto siale UU siale CU	X	
Contenuto d'acqua 1^ determ. 20,63 % Contenuto d'acqua 2^ determ. 20,01 % Contenuto d'acqua media 20,32 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Peso specifico media 26,968 kN/m³			<u> </u>				·
Contenuto d'acqua 2^ determ. Contenuto d'acqua media 20,01 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Peso specifico media 26,968 kN/m³ Peso specifico media 20,01 % Peso di volume secco 16,184 kN/m³ Grado di saturazione 82,23 % Indice dei vuoti 0,666 Porosità 0,400		20.63	%	Peso	li volumo	40.470	1,11, 3
Contenuto d'acqua media 20,32 % Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Peso specifico media 26,968 kN/m³ Peso specifico media 26,968 kN/m³							
Peso specifico 1^ determ. 26,769 kN/m³ Peso specifico 2^determ. 27,168 kN/m³ Peso specifico media 26,968 kN/m³ Indice dei vuoti 0,666 Porosità 0,400							
Peso specifico 2^determ. 27,168 kN/m³ Porosità 0,400 Peso specifico media 26,968 kN/m³		26,769	kN/m ³			**************************************	70
Peso specifico media 26,968 kN/m³				Porosi	à		
servazioni	Peso specifico media	26,968	kN/m ³				
	servazioni						

Os

Il direttore del Laboratorio Ing. Calogero Palymbo Piccionello

Lo sperimentatore

Guglierno Sciascia

PROVE DI LABORATORIO SUI TERRENI *AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"*via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

ANALISI GRANULOMETRICA

0205 23/04/2006 09/05/2006	3117 19/05/2006	Profondità 28,00 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità
altanissetta Iessandro	CLASSIFICAZIONE: argilla con limo debolmente sabbiosa	Campione 1
Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	CLASSIFICAZIONE:	14
Committente Cantiere Richiedente	Diagra mma	Sondaggio

4	argilla		limo			sabbia			cicido		
	And the second s	fine	medio	grosso	fine	media	Grossa	frac	dinaia Modio	000000	Cott
				The same and the s			500	Đ	liledia	glossa	
100,0											
			11								
0.06											
2			<u> </u>								:
					1 1 1	111					
2			\.								
70.0		×					111	111			
<u></u>		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
900		· · · · · · · · · · · · · · · · · · ·	11							11	11
 }		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
50.0	`\										11
40.0		11	11						11	11	• •
 }											
່ ດຳດ											
200											
: }											
10.0						11					
.; 0,											11
0,001	-		0,010		0,100		1,000		10,000	The state of the s	100,000

Il direttora del Labolatario Ing. Callogera Patunito Piccionello

Lo sperificantale Gualiermo S

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing.Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

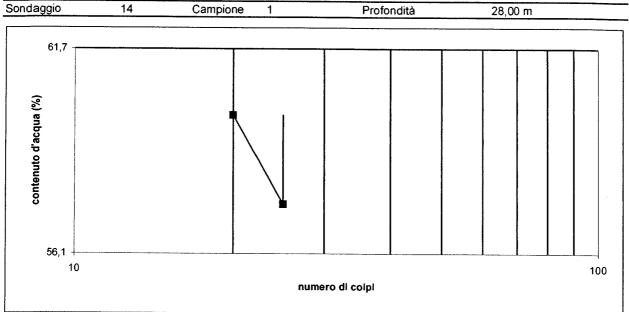
Verbale n°

0205

Data ricevimento

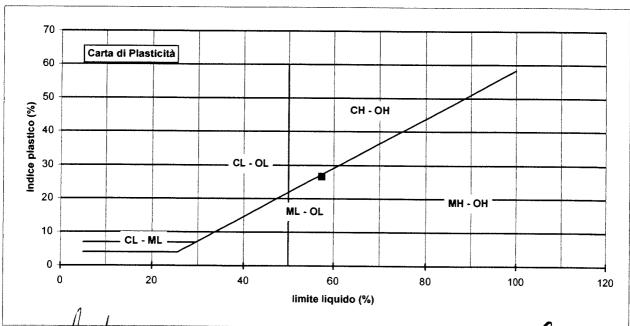
23/04/2006

Data apertura Rapporto di prova nº 09/05/2006


3118

Data emissione

19/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	57,42
Limito Plastico	0/.	20.70
Limite Plastico	%	30,79

Indice plastico	27
Consistenza	1,39
Liquidità	-0,39
Fluidità	25,07
Tenacità	1,06

Il direttore de Ing. Caloger Piccionello

Lo sperimentatore Guglielmo Sciascia

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

0205

Data ricevimento

23/04/2006

Data apertura Certificato n° 09/05/2006

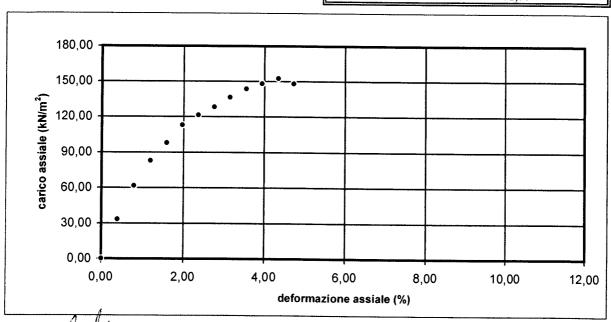
Data emissione

3119 19/05/2006

Sondaggio	1/1	Campione	4	D = 4 = 142	^^ ^
Corraaggio	17	Campione	1	Profondità	28,00 m
			•	rolonala	20,00 111

Diametro provino	38,10	mm
		mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	dív	mm	div
0,00	0	3,00	119
0,30	26	3,30	123
0,60	48	3,60	120
0,90	65		
1,20	77		
1,50	89		
1,80	96		
2,10	102		
2,40	109		
2,70	115		

Dh	NL	Dh	NL
mm	div	mm	div
			ļ
		<u> </u>	
			
			
		† — — — — — — — — — — — — — — — — — — —	

ı			
l	Resistenza massima	152,60	kN/m²

Il direttore del Laboratorio Ing. Caloggro Palurnto Piccionello

Lo sperimentatore

Guglielmo Sciascia

<u>LIEUERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3120 del 19/05/06

Committente

Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

14

Campione

Profondità

28.00 m

Dati del provino n°1 (200 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla			
Sezione	36,000 cm ²	Densità umida iniziale	19,105 kN/m³ γ	
Altezza iniziale	20,000 mm	Densità umida finale	20,066 kN/m³ γ n	
Altezza finale	19,270 mm	Densità secca	15,564 kN/m³ γ	
No. tara 1	14	Umidità iniziale	22,752 % W	
Massa tara 1	115,720 g	Umidità finale	24,223 % W	
Massa tara 1 + massa umida iniz.	255,94 g	Saturazione iniziale	85,362 % S	
No. tara 2	78	Saturazione finale	99,465 % S,	
Massa tara 2	69,120 g	Indice dei vuoti iniziale	0,733 e ₀	
Massa tara 2 + massa umida fin.	211,020 g	Indice dei vuoti finale	0,669 e,	
Massa tara 2 + massa secca	183,350 g	Densità secca finale	16,153 kN/m³ γ	
Peso specifico dei grani	26,97 kN/m ³		15,155 Killin Y at	

Il Direttore del L Ing. Calogero Balun

Lo Sperimentatore Guglieling Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3120 del 19/05/06

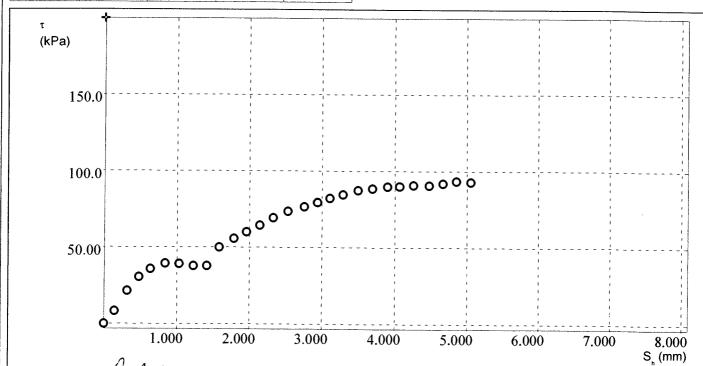
Committente

Technital S.p.a.

Indirizzo

Cantiere

Sondaggio


SS 640 Canicatti'-Caltanissetta

14 Campione Profondità 28.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Risuitati d	iella tase di	roπura Pre	ovino n°1 (2	200 KPa) - \
dt	dH	Sh	F	τ
min	mm	mm	N	kPa
0,00	0,00	0,00	0,00	OtO0
60,00	0,03	0,15	30,29	8,41
120,00	0,05	0,31	78,06	21,68
180,00	0,07	0,48	109,52	30,42
240,00	0,07	0,64	128,16	35,60
300,00	0,08	0,83	142,14	39,48
360,00	0,09	1,03	140,97	39,16
420,00	0,09	1,22	136,31	37,86
480,00	0,09	1,40	136,31	37,86
540,00	0,15	1,58	180,58	50,16
600,00	0,15	1,78	201,55	55,99
660,00	0,16	1,96	216,70	60,19
720,00	0,18	2,14	233,01	64,73
780,00	0,19	2,33	249,32	69,26
840,00	0,21	2,53	264,47	73,46
900,00	0,23	2,76	276,12	76,70
960,00	0,25	2,94	286,60	79,61

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,27	3,10	295,92	82,20
1080,00	0,28	3,29	305,25	84,79
1140,00	0,30	3,49	314,57	87,38
1200,00	0,31	3,69	319,23	88,67
1260,00	0,32	3,90	323,89	89,97
1320,00	0,34	4,06	325,05	90,29
1380,00	0,35	4,26	327,38	90,94
1440,00	0,36	4,48	327,38	90,94
1500,00	0,40	4,66	332,04	92,23
1560,00	0,40	4,85	336,70	93,53
1620,00	0,40	5,05	335,54	93,20
1680,00	0,40	5,26	332,04	92,23

Il Direttore del laforatorio

Ing. Calogera Palambo Piccionello

Lo Sperimentatore Gugliel o Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0205

Certificato n. 3120 del 19/05/06

Committente Indirizzo

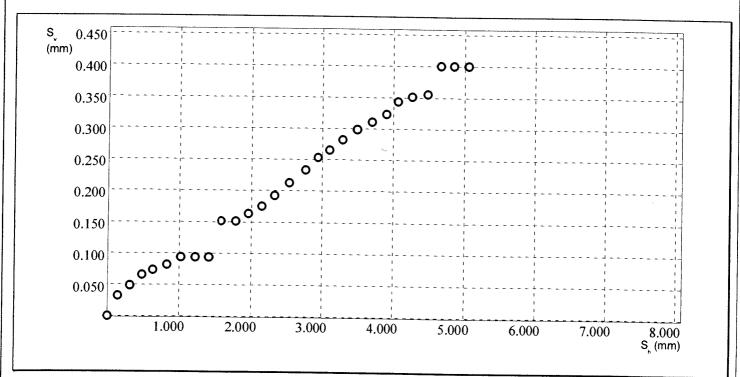
Technital S.p.a.

Sito

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione

Profondità


28.00 m

Risultati della fase di rottura Provinci Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,15	0,03
0,31	0,05
0,48	0,07
0,64	0,07
0,83	0,08
1,03	0,09
1,22	0,09
1,40	0,09
1,58	0,15
1,78	0,15

Provino n°1 (200 kPa) - Vi		
Sh	Sv	
mm	mm	
1,96	0,16	
2,14	0,18	
2,33	0,19	
2,53	0,21	
2,76	0,23	
2,94	0,25	
3,10	0,27	
3,29	0,28	
3,49	0,30	
3,69	0,31	
3,90	0,32	

Sh	Sv
mm	mm
4,06	0,34
4,26	0,35
4,48	0,36
4,66	0,40
4,85	0,40
5,05	0,40
5,26	0,40

Il Direttore del laboratorio Ing. Calogero Kalumbol

Lo Sperimentatore 20 8ciascia

<u>LIEDIERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3120 del 19/05/06

Committente Technital S.p.a.

Indirizzo

Cantiere

Sondaggio

Dati del Cliente

SS 640 Canicatti'-Caltanissetta

Verbale n. 0205

Campione

Profondità 28.00 m

Dati del provino n°2 (400 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla			
Sezione	36,000 cm ²	Densità umida iniziale	19,324 kN/m³ γ	
Altezza iniziale	20,000 mm	Densità umida finale	20,572 kN/m³ γ n	
Altezza finale	18,710 mm	Densità secca	15,955 kN/m³ γ	
No. tara 1	15	Umidità iniziale	21,119 % W	
Massa tara 1	114,120 g	Umidità finale	20,623 % W	
Massa tara 1 + massa umida iniz.	255,95 g	Saturazione iniziale	84,108 % S	
No. tara 2	41	Saturazione finale	97,542 % S,	
Massa tara 2	68,580 g	Indice dei vuoti iniziale	0,690 e º	
Massa tara 2 + massa umida fin.	209,830 g	Indice dei vuoti finale	0,581 e,	
Massa tara 2 + massa secca Peso specifico dei grani	185,680 g 26,97 kN/m³	Densità secca finale	17,055 kN/m ³ γ _d	

Il Direttore del Labo Ing. Calogero Palumbo

Lo Sperimentatore Gunlia Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Ing. Calogero Palumbo

Aiccionello

Verbale n. 0205

Certificato n. 3120 del 19/05/06

Committente

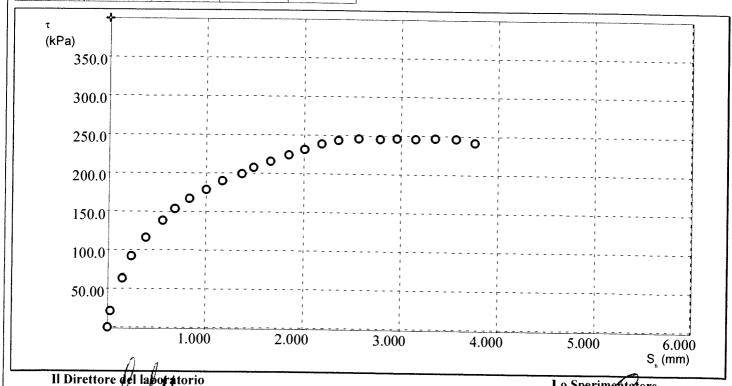
Technital S.p.a.

Indirizzo

Cantiere Sondaggio SS 640 Canicatti'-Caltanissetta

Campione

Profondità


28.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min

l	risuitati C	Jelia Tase O	rottura Pr	ovino n°2 (400 KPa) - \
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0 1 00
	60,00	0,01	0,03	76,89	21,36
	120,00	0,05	0,15	229,52	63,75
	180,00	0,06	0,24	332,04	92,23
	240,00	0,08	0,39	418,26	116,18
	300,00	0,09	0,56	498,64	138,51
	360,00	0,09	0,68	554,57	154,05
	420,00	0,11	0,83	601,17	166,99
	480,00	0,11	1,00	643,11	178,64
	540,00	0,12	1,17	683,89	189,97
	600,00	0,13	1,37	717,68	199,35
	660,00	0,13	1,49	747,97	207,77
	720,00	0,13	1,66	777,09	215,86
	780,00	0,14	1,85	807,39	224,27
	840,00	0,15	2,00	834,18	231,72
	900,00	0,18	2,18	859,81	238,84
-	960,00	0,18	2,36	877,29	243,69

•	~ 111111/111111				
	dt	dΗ	Sh	F	
	min	mm	mm	N	kPa
	1020,00	0,18	2,56	886,61	246,28
	1080,00	0,18	2,78	885,44	245,96
	1140,00	0,18	2,96	887,77	246,60
	1200,00	0,18	3,15	886,61	246,28
	1260,00	0,18	3,35	890,10	247,25
	1320,00	0,19	3,56	888,94	246,93
	1380,00	0,19	3,76	871,46	242,07
	1440,00	0,20	3,95	864,47	240,13
					·

Lo Sperimentatore Gualielnio Seiascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0205

Certificato n. 3120 del 19/05/06

Committente Indirizzo

Sito

Technital S.p.a.

SS 640 Canicatti'-Caltanissetta

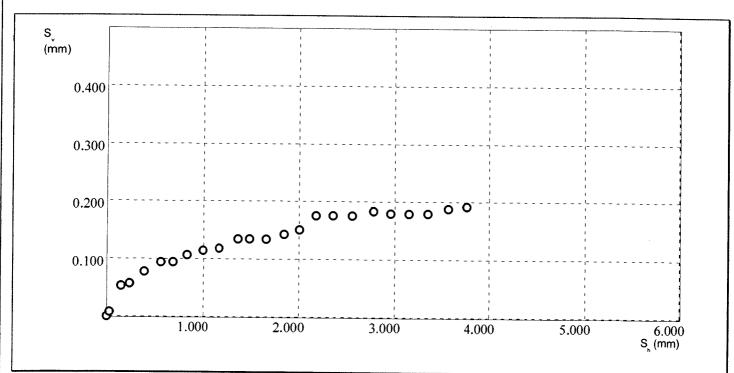
Sondaggio

14

Campione

14

Profondità


28.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,03	0,01
0,15	0,05
0,24	0,06
0,39	0,08
0,56	0,09
0,68	0,09
0,83	0,11
1,00	0,11
1,17	0,12
1,37	0,13

Sh	Sv		
mm	mm		
1,49	0,13		
1,66	0,13		
1,85	0,14		
2,00	0,15		
2,18	0,18		
2,36	0,18		
2,56	0,18		
2,78	0,18		
2,96	0,18		
3,15	0,18		
3,35	0,18		

Sh	Sv
mm	mm
3,56	0,19
3,76	0,19
3,95	0,20

Il Direttore del laporatorio
Ing. Calogery Palymbo Riccionello

Lo Sperimentatore Gualielmo Sciascia

<u>LIEUERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3120 del 19/05/06

Committente Technital S.p.a.

Indirizzo

Dati del Cliente

Cantiere SS 640 Canicatti'-Caltanissetta

Sondaggio 14 Campione 1

Profondità 28.00 m

Dati del provino n°3 (800 kPa) - Vr 0.002 mm/min

Verbale n. 0205

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	18,925 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,386 kN/m ³ γ
Altezza finale	18,100 mm	Densità secca	15,381 kN/m³ γ
No. tara 1	16	Umidità iniziale	23,040 % W
Massa tara 1	115,920 g	Umidità finale	19,949 % W
Massa tara 1 + massa umida iniz.	254,82 g	Saturazione iniziale	84,082 % S
No. tara 2	40	Saturazione finale	93.467 % S
Massa tara 2	62,710 g	Indice dei vuoti iniziale	0,753 e
Massa tara 2 + massa umida fin.	198,120 g	Indice dei vuoti finale	0,587 e,
Massa tara 2 + massa secca	175,600 g	Densità secca finale	16,996 kN/m³ γ
Peso specifico dei grani	26,97 kN/m ³		To,000 Ki Willi

Il Direttore del Laboratorio Ing. Calogero Palunibo Piccionello

Lo Sperimentatore Guglielpho Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3120 del 19/05/06

Committente

Technital S.p.a.

Indirizzo

Cantiere Sondaggio SS 640 Canicatti'-Caltanissetta

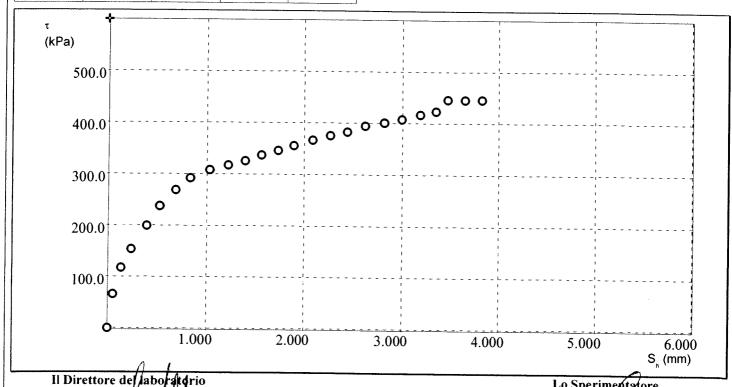
Campione

14

Profondità

28.00 m

Risultati della fase di rottura P Vr 0.002 mm/min


	Risultati della fase di rottura			ovino n°3 (i	800 kPa) - V
	dt	dH	Sh	F	τ
l	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0т00
	60,00	0,04	0,06	240,00	66,67
	120,00	0,05	0,14	420,59	116,83
	180,00	0,07	0,24	552,24	153,40
	240,00	0,09	0,40	717,68	199,35
	300,00	0,10	0,53	855,15	237,54
	360,00	0,12	0,68	965,83	268,29
	420,00	0,13	0,83	1050,88	291,91
	480,00	0,15	1,03	1106,80	307,45
	540,00	0,17	1,22	1141,76	317,15
	600,00	0,18	1,39	1172,05	325,57
	660,00	0,18	1,56	1212,83	336,90
	720,00	0,19	1,73	1245,45	345,96
	780,00	0,20	1,89	1279,23	355,34
	840,00	0,21	2,09	1318,85	366,35
	900,00	0,22	2,26	1351,47	375,41
	960,00	0,23	2,44	1375,93	382,20

Ing. Calogero Palumbo Piocionello

V& 111111/1111111				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,24	2,62	1420,21	394,50
1080,00	0,25	2,82	1443,51	400,97
1140,00	0,25	2,99	1467,97	407,77
1200,00	0,27	3,19	1498,26	416,18
1260,00	0,29	3,35	1521,57	422,66
1320,00	0,30	3,47	1605,45	445,96
1380,00	0,31	3,65	1605,45	445,96
1440,00	0,32	3,82	1605,45	445,96
1500,00	0,33	4,00	1605,45	445,96

Lo Sperimentatore

Gualialmo Sciascia

<u>LIEDIERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente

Verbale n. 0205

Certificato n. 3120 del 19/05/06

Committente

Technital S.p.a.

Indirizzo

Sito

SS 640 Canicatti'-Caltanissetta

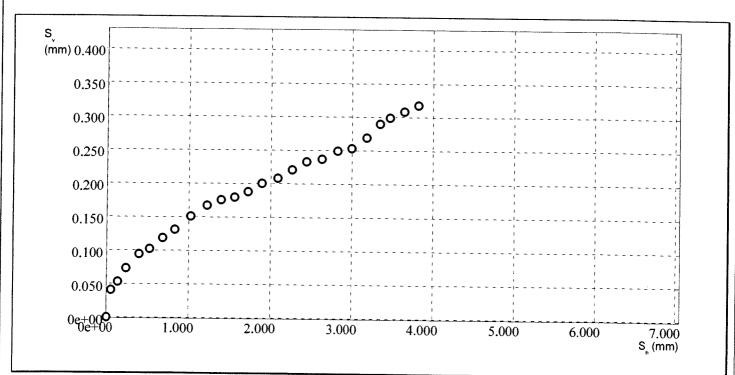
Sondaggio

14

Campione

4

Profondità


28.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,06	0,04
0,14	0,05
0,24	0,07
0,40	0,09
0,53	0,10
0,68	0,12
0,83	0,13
1,03	0,15
1,22	0,17
1,39	0,18

- 101110 11 3 (000 KF a) - VI				
Sh	Sv			
mm	mm			
1,56	0,18			
1,73	0,19			
1,89	0,20			
2,09	0,21			
2,26	0,22			
2,44	0,23			
2,62	0,24			
2,82	0,25			
2,99	0,25			
3,19	0,27			
3,35	0,29			

Sh	Sv
mm	mm
3,47	0,30
3,65	0,31
3,82	0,32
4,00	0,33

Il Direttore del laboratorio
Ing. Calogero Palumbo Piccionello

Lo Sperimentatore
Guglielmio Sciascia

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente Verbale n. 0205

Certificato n. 3121 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

14

Campione Profondità

28.00 m

Dati del provino

Descrizione	argilla limosa		
Sezione	20,000 cm ²	Densità umida iniziale	19,593 Kn/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	21,670 kN/m³ γ "
Altezza finale	17,320 mm	Densità secca iniziale	16,174 Kn/m³ y
No. Tara 1	3	Umidità iniziale	21,137 % W
Massa tara 1	53,550 g	Umidità finale	16,027 % W
Tara + massa umida iniz.	133,44 g	Saturazione iniziale	87,074 % S
No. Tara 2	3	Saturazione finale	99,254 % S,
Massa tara 2	53,550 g	Indice dei vuoti iniziale	0,667 e
Tara + massa umida fin.	130,070 g	Indice dei vuoti finale	0,444 e,
Tara + massa secca finale	119,500 g	Densità secca finale	18,677 Kn/m ³ γ _α
Peso specifico dei grani	26,97 Kn/m ³		T at

Gradino	P' kPa	ε %	е	M MPa	Cv cm²/s	K m/s	Metodo
1	50,0	1,739	0,638		2,556e-003		Casagrande
2	200,0	3,369	0,611	9,21	6,350e-004	6,769e-011	Casagrande
3	400,0	5,330	0,578	10,20	8,390e-004	8,074e-011	Casagrande
4	800,0	6,995	0,551	24,01	8,630e-004	3,525e-011	Casagrande
5	1600,0	9,544	0,508	31,39	5,050e-004	1,580e-011	Casagrande
6	3200,0	13,290	0,446	42,70	5,550e-004	1,274e-011	Casagrande
7	800,0	12,564	0,458				
8	200,0	11,081	0,483				
9	50,0	10,184	0,498				

Il Direttore de Laboratorio Ing. Calogero Palambo Pi conello

Lo Sperimentatore Guglielmo Sciascia

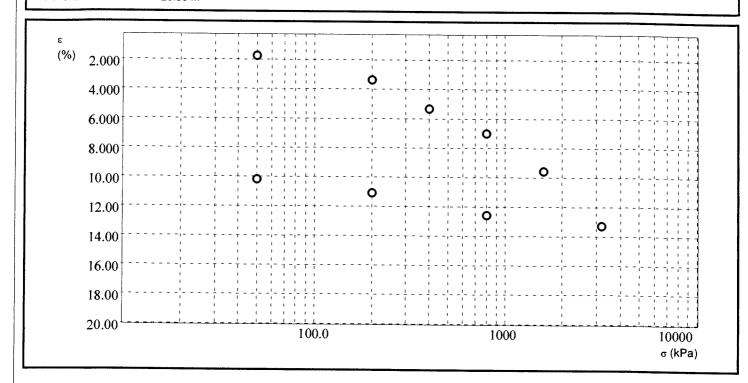
<u>LIEUJERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

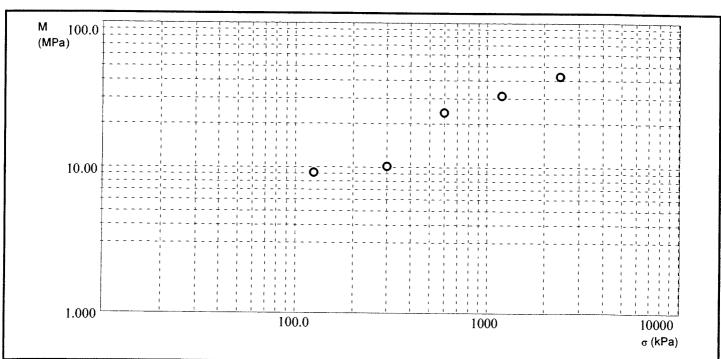
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Certificato n. 3121 del 19/05/06

Committente TECHNITAL S.p.a.


Indirizzo Cantiere


Dati del Cliente

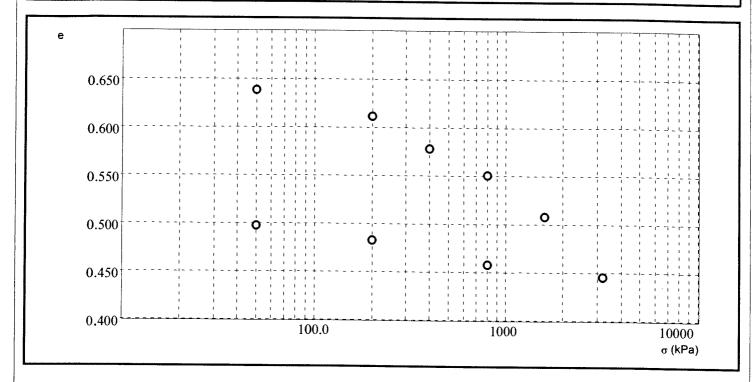
SS 640 Canicatti'-Caltanissetta

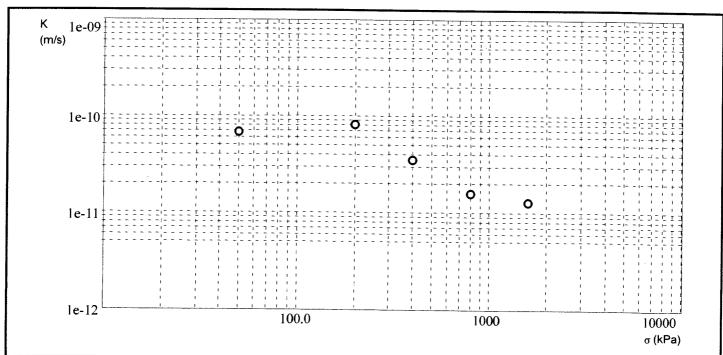
Verbale n. 0205

Sondaggio 14
Campione 1
Profondità 28.00 m

Il Direttore del Laboratorio
Ing. Calogero Palumbo Provionello

Lo Sperimentarore


Guglielmo Sciascia


<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente	Verbale n. 0205	Certificato n. 3121 del 19/05/06
Committente	TECHNITAL S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	14	
Campione	1	
Profondità	28.00 m	

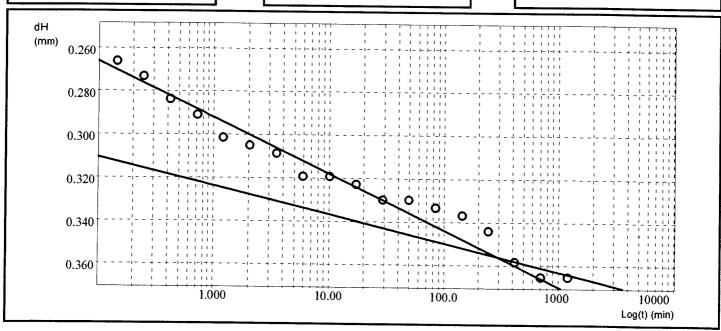
Il Direttore del Laboratorio
Ing. Calogero Palupibo Piccionello

Lo Sperimentatore Guglielpho Sciascia

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


Dati del Cliente	Verbale n. 0205	Certificato n. 3121 del 19/05/06	
Committente	TECHNITAL S.p.a.		
Indirizzo			
Cantiere	SS 640 Canicatti'-Caltanissetta		
Sondaggio	14		
Campione	1		
Profondità	28.00 m		

Dati acquisiti del gradino 01

dt	dH
min	mm
0,05	0,248
0,09	0,255
0,14	0,266
0,25	0,273
0,42	0,284
0,71	0,291
1,21	0,301
2,05	0,305
3,49	0,309
5,93	0,319
10,08	0,319

σν 50,0 Kpa

dt	dH
min	mm
17,14	0,323
29,13	0,330
49,52	0,330
84,19	0,333
143,12	0,337
243,31	0,344
413,62	0,358
703,15	0,365
1195,36	0,365

ε 1,739 %
 e 0,638
 Metodo Casagrande
 Cv 2,56e-003 cm²/s

M K

Il Direttore del Laboratorio Ing. Calogero Palumoo Piccionello

Lo Sperimentatore

auglielme Sciascia

LEDERVICE PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

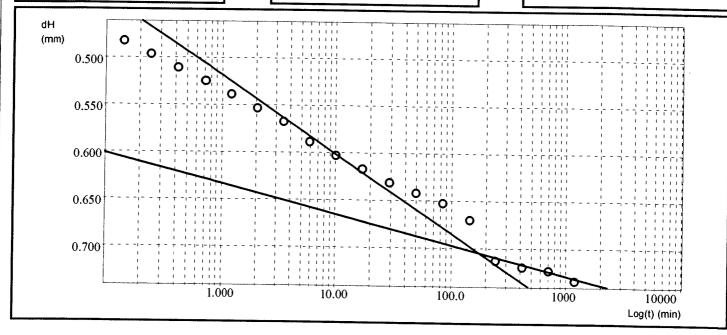
PROVA EDOMETRICA (ASTM D2435)

		EDOMETICA	(A3181D2433)
Dati del Cliente	Verbale n. 0205		Certificato n. 3121 del 19/05/06
			Oct. 111 Cato 11. 3121 del 19/03/06

Committente TECHNITAL S.p.a.

Indirizzo Cantiere

SS 640 Canicatti'-Caltanissetta


Sondaggio 14
Campione 1
Profondità 28.00 m

Dati acquisiti del gradino 02

dt	dH
min	mm
0,05	0,461
0,09	0,475
0,14	0,482
0,25	0,496
0,42	0,511
0,71	0,525
1,21	0,539
2,05	0,553
3,49	0,567
5,93	0,589
10,08	0,603

σν 200,0 Kpa

dt	dH
min	mm
17,14	0,617
29,13	0,631
49,52	0,642
84,19	0,652
143,12	0,670
243,31	0,713
413,62	0,720
703,15	0,723
1195,36	0,734

 ϵ 3,369 % e 0,611

Metodo Casagrande

Cv 6,35e-004 cm²/s

M 9,207 MPa K 6,77e-011 m/s

Il Direttore del Laboratorio Ing. Calogero Palumbo Picquello Lo Sperimentatore Guglieumo Sciascia

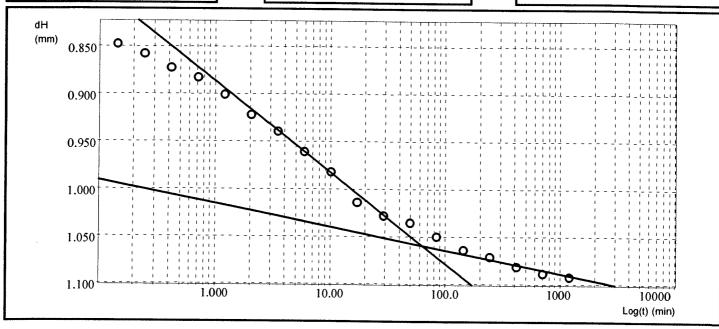
<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente	Verbale n. 0205	Certificato n. 3121 del 19/05/06
Committente	TECHNITAL S.p.a.	

Indirizzo
Cantiere SS 640 Canicatti'-Caltanissetta
Sondaggio 14


Sondaggio 14
Campione 1
Profondità 28.00 m

Dati acquisiti del gradino 03

dt	dH
min	mm
0,05	0,823
0,09	0,833
0,14	0,848
0,25	0,858
0,42	0,872
0,71	0,883
1,21	0,901
2,05	0,922
3,49	0,940
5,93	0,961
10,08	0,982

σν 400,0 Kpa

dt	dH
min	mm
17,14	1,014
29,13	1,028
49,52	1,035
84,19	1,050
143,12	1,064
243,31	1,071
413,62	1,082
703,15	1,089
1195,36	1,092

ε 5,330 % e 0,578

Metodo Casagrande

Cv 8,39e-004 cm²/s

M 10,199 MPa K 8,07e-011 m/s

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello Lo Sperimentatore Guglielmo Sciascia

<u>LIEDIERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

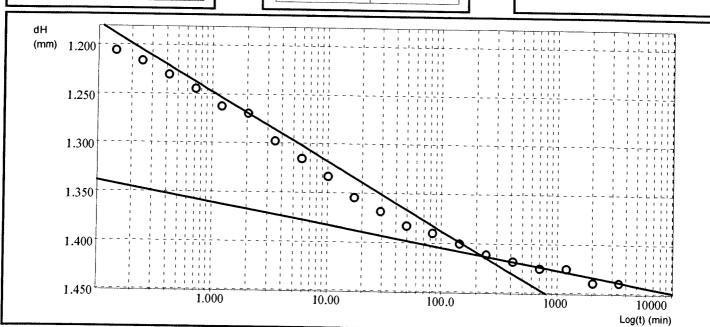
PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente Verbale n. 0205 Certificato n. 3121 del 19/05/06

Committente TECHNITAL S.p.a.

Indirizzo

Cantiere SS 640 Canicatti'-Caltanissetta


Sondaggio 14
Campione 1
Profondità 28.00 m

Dati acquisiti del gradino 04

dt	dH
min	mm
0,05	1,181
0,09	1,191
0,14	1,206
0,25	1,216
0,42	1,230
0,71	1,245
1,21	1,262
2,05	1,270
3,49	1,298
5,93	1,316
10,08	1,333

σν 800,0 Kpa

dt	dH
min	mm
17,14	1,355
29,13	1,369
49,52	1,383
84,19	1,390
143,12	1,401
243,31	1,411
413,62	1,418
703,15	1,426
1195,36	1,426
2032,12	1,440
3454,60	1,440

ε 6,995 % e 0,551

Metodo Casagrande Cv 8,63e-004 cm²/s

M 24,015 MPa K 3,53e-011 m/s

Il Direttore del Laboratorio Ing. Calogero Palumbo Pircionello

Lo Sperimentatore Guglielpo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

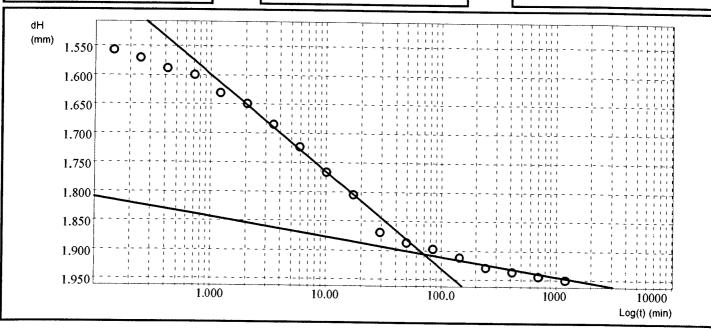
PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente	Verbale n. 0205	Certificato n. 3121 del 19/05/06
Committente	TECHNITAL S.p.a.	

TECHNITAL S.p.a.

Indirizzo Cantiere

SS 640 Canicatti'-Caltanissetta


Sondaggio 14 Campione Profondità 28.00 m

Dati acquisiti del gradino 05

dt	dH
min	mm
0,05	1,507
0,09	1,535
0,14	1,557
0,25	1,571
0,42	1,589
0,71	1,599
1,21	1,631
2,05	1,649
3,49	1,684
5,93	1,723
10,08	1,766

1600,0 Kpa σу

dН
mm
1,805
1,869
1,887
1,897
1,911
1,929
1,936
1,944
1,950

9,544 % ε

0,508 е

Metodo Casagrande

5,05e-004 cm²/s

31,392 M MPa 1,58e-011 K

Il Direttore del La Ing. Calogero Palumbo

Lo Sperimentatore

Gualieto Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

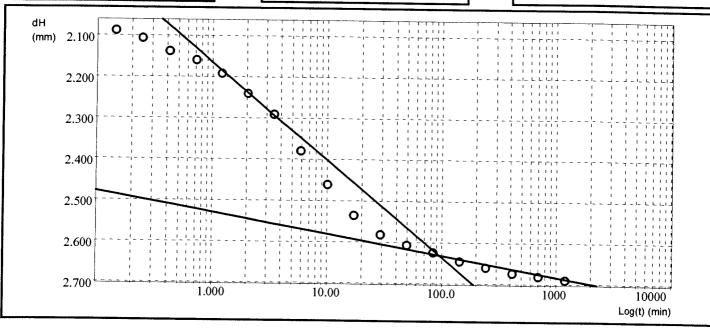
PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente Verbale n. 0205 Certificato n. 3121 del 19/05/06

Committente TECHNITAL S.p.a.

Indirizzo Cantiere

SS 640 Canicatti'-Caltanissetta


Sondaggio 14
Campione 1
Profondità 28.00 m

Dati acquisiti del gradino 06

dt min	dH mm
0,05	2,060
0,09	2,074
0,14	2,089
0,25	2,106
0,42	2,138
0,71	2,160
1,21	2,191
2,05	2,241
3,49	2,291
5,93	2,379
10,08	2,461

σν 3200,0 Kpa

dt	dH
min	mm
17,14	2,535
29,13	2,582
49,52	2,606
84,19	2,624
143,12	2,645
243,31	2,660
413,62	2,674
703,15	2,681
1195,38	2,690

 ϵ 13,290 % e 0,446

Metodo Casagrande

Cv 5,55e-004 cm²/s

M 42,703 MPa K 1,27e-011 m/s

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Guglielmo scharcia

Verbale n°

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

205

Data apertura 3/05/2006

Rapporto di prova nº	3121b	Data emissi	one [19/05/2006]	Località: Canicatti'-Caltanissetta
Committente: Technital S.				
Oggetto: Completamento de	ell'itinerario Agri	gento-Caltan	issetta-A19 nel tratto	dal Km 44+00 della
SS 640 "di Porto Empedocle	" allo svincolo c	on la A19		
Sondaggio 14	Campione	2	Profondità 33,00 m	Contenitore M
Daniel III.				
Descrizione del campione		Indisturbate)[X]	Rimaneggiato []
An	gilla colore griç	gio con pres	senza di resti di gusci	fossili.
Pt 3,9 Tv 1,7				
				Pt 4,4 Tv 1,8
Grado di cementazione	Debole [] Mo	derato [X]	Elevato []
Struttura	Omogenea [)	X] Et	erogenea []	Stratificata []
Classe di Qualità	Q1 []	Q2 [Q3 []	Q4 [] Q5 [X]
Consistenza	Molto tenero [] Tenero [] Consistente [X]	Molto consistente [] Duro []
Reazione all'HCI	Nessuna [] Debole	[] Forte [] Non Eseguita [X]
Prove effettuate				
Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR	X X X		Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD	X
Grandezze indice				
Contenuto d'acqua 1º determ.	23,31	%	Peso di volume	19,493 kN/m ³
Contenuto d'acqua 2 ⁿ determ.	23,30		Peso di volume secco	15,809 kN/m ³
Contenuto d'acqua media	23,30		Grado di saturazione	89,72 %
Peso specifico 1 ^a determ.	26,671		Indice dei vuoti	0,697
Peso specifico 2 [^] determ.	26,972		Porosità	0,411
Peso specifico media	26,821	kN/m ³		
servazioni 				
direttore del Laboratorio ng. Calogero Pallimbo Pic	cionello			Lo sperimentatore Guglielmo Sciascia

Data ricevimento [23/04/2006]

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

ANALISI GRANULOMETRICA

0205 23/04/2006 03/05/2006	3121c 19/05/2006	33,00 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità 33,00 m
' caltanissetta Alessandro	argilla con limo debolmente sabbiosa	Campione 2
Technital s.p.a. SS. 640 canicatti' caltanissetta Ing. Domenico D'Alessandro	CLASSIFICAZIONE: argilla	14
Committente Cantiere Richiedente	Diagramma	Octobrico

arqilla

					2000	~		dulala		÷ cic
	fine	medio	Oroseo	fine.			THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS N			5
The state of the s		Olippin	glosso	alue	media	grossa	fine	media	grossa	
100,0										
11	1 1 1 1 1 1 1 1 1 1	11			1-1-1-1					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>.</u>			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1
0,06								111111111111111111111111111111111111111		1
1										
1 1	•		<u> </u>			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1
0,08		i								
		· · · · · · · · · · · · · · · · · · ·				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				i
					<u> </u>				1 1	
70 0										
2	· · · · · · · · · · · · · · · · · · ·		T							
				1111111111111						
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		•			11111111111				
0'09	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				<u> </u>					1 1
	\		-					1		
	Ź,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>	<u> </u>					
/·	<u> </u>									
/			_							
					<u> </u>					
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		-
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111		-
1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
					1 1 1 1 1 1 1 1 1					
30,0										
					1 1 1 1 1 1					-
			-						1 1	
	T			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
										1
1 1		111111111111111111111111111111111111111			1 1 1 1 1 1 1 1 1					
!!!!!!!!!!!!	T					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!		Y - +	!
10.0					•					
			1 1 1 1 1 1							
			-							
										_
0,0										
000		6		The state of the s				L 1 4 1		
- 00'0				900						

Gugliermo Sciascia Lo sperimentatore

1/1

Il direttore del Laboratorio

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

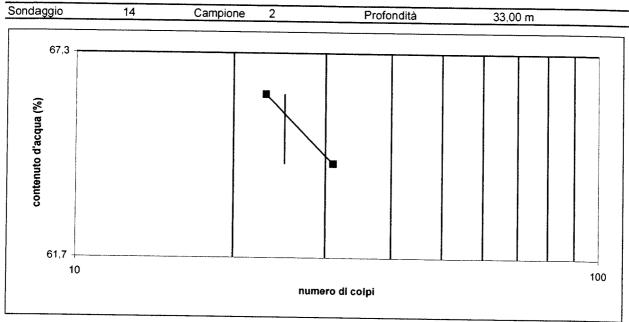
Verbale n°

Data ricevimento

0205 23/04/2006

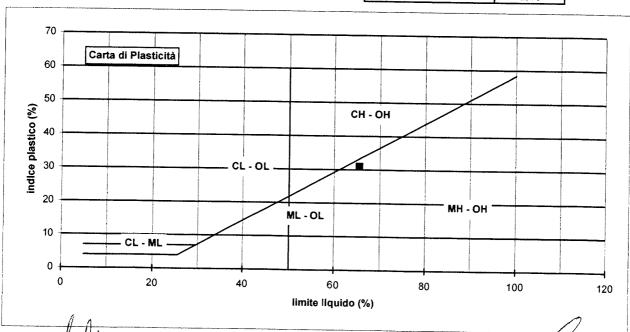
Data apertura

Rapporto di prova nº


03/05/2006

Data emissione

3121d 19/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	65,61
Limite Plastico	%	34,62

Indice plastico	31	
Consistenza	1,37	
Liquidità	-0,37	
Fluidità	14,58	
Tenacità	2,13	

il direttore del **t**atorio Ing. Caloge bo Piccionello

Lo sperimentatione Guglielmo Serascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06
Cliente	Technital S.p.a.	
Indirizzo	·	•
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	14	
Campione	2	
Profondità	33.00 m	

Dati del provino n°1 - Vr 0.01 mm/min

.			
Sezione provino	11,33 cm ²	Densità umida iniziale	19,65 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	20,62 Kn/m³ γ
Altezza finale	71,52 mm	Densità secca	16,19 Kn/m ³ γ
No. Tara 1	0	Umidità iniziale	21,39 % W
Massa tara 1	0,00 g	Umidità finale	19,86 % W
Tara +massa umida iniziale	172,51 g	Saturazione iniziale	89,07 % S ₀
No. Tara 2	0	Saturazione finale	97,13 % S,
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,657 e o
Tara + massa umida finale	170,33 g	Indice dei vuoti finale	0,559 e,
Tara + massa secca	142,11 g	Densità secca finale	17,20 Kn/m ³ γ _σ

Il Direttore del Laboratorio Ing. Calogero Palunto Piccionello Lo Sperimentatore
Gugarelmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

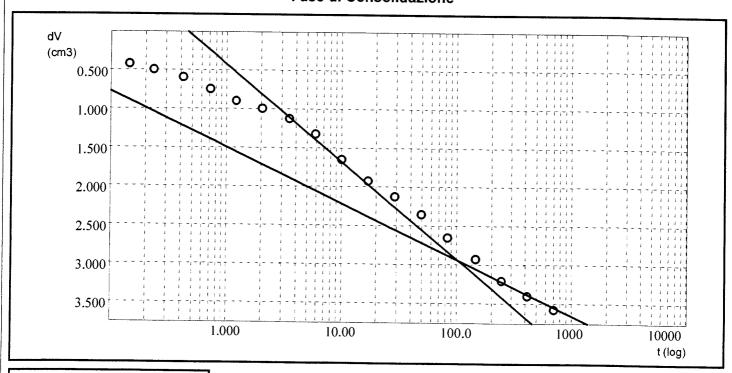
Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06

Cliente Technital S.p.a.

Indirizzo


Cantiere SS 640 Canicatti -Caltanissetta

Sondaggio 14
Campione 2
Profondità 33.00 m

Dati acquisiti

dH	dV	dU	dH	dV	dU
mm	cm3	kPa	mm	cm3	kPa
0,01	0,14	21,99	2,85	1,92	98,19
0,01	0,27	28,86	2,85	2,13	107,56
0,01	0,42	36,35	2,85	2,35	118,80
2,85	0,49	41,97	2,85	2,65	130,67
0,01	0,59	46,35	2,85	2,93	144,41
0,01	0,74	52,59	2,85	3,20	153,78
0,01	0,89	60,71	2,85	3,41	160,65
0,01	1,00	68,83	2,85	3,58	164,40
0,01	1,12	75,08	2,85	3,73	168,77
2,85	1,32	83,20	<u> </u>		
2,85	1,65	90,07			

Fase di Consolidazione

Risultati di elaborazione

 T_{100} (min): 105,45

II Direttore del Cattoratorio
Ing. Calogero Palumbo Piccionello

Lo Sperimentator

Guglielmo Sciascia

<u>LIEDERVICE</u> , PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3121e del 19/05/06

Cliente Technital S.p.a.

Cantiere SS 640 Canicatti -Caltanissetta

Sondaggio 14
Campione 2
Profondità 33.00 m

dH mm	dN N	dU kPa
0,00	0,00	0,00
0,38	12,74	0,25
0,66	26,48	0,56
0,94	45,22	0,97
1,22	62,71	1,24
1,41	82,70	1,66
1,65	100,19	2,00
1,93	116,43	2,38
2,23	133,92	2,79
2,50	148,91	3,10
2,81	166,40	3,41
3,06	182,64	3,68
3,36	198,88	3,99
3,64	213,87	4,27
3,90	228,86	4,58
4,20	235,10	4,89
4,48	228,86	5,30

II Direttore de Laboratorio Ing. Calogero Palunito Piccionello Lo Sperimentatore

Guglishno Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3121e del 19/05/06 Cliente

Indirizzo Cantiere Technital S.p.a.

SS 640 Canicatti -Caltanissetta

Sondaggio

14

Campione

2

Profondità

33.00 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	ť kPa	s' kPa	Α
0,00	0,00	0,00	100,00	100,00	1,00	100,00	0,00	0,000
0,50	11,19	0,25	110,94	99,75	1,11	105,35	5,60	
0,87	23,17	0,56	122,62	99,44	1,23	111,03	11,59	0,022
1,24	39,42	0,97	138,45	99,03	1,40	118,74	19,71	0,024
1,61	54,46	1,24	153,22	98,76	1,55	125,99	27,23	0,025
1,85	71,64	1,66	169,98	98,34	1,73	134,16	35,82	0,023
2,17	86,50	2,00	184,50	98,00	1,88	141,25		0,023
2,54	100,15	2,38	197,77	97,62	2,03	147,70	43,25	0,023
2,94	114,72	2,79	211,93	97,21	2,18	154,57	50,07	0,024
3,28	127,11	3,10	224,01	96,90	2,31	160,46	57,36	0,024
3,70	141,42	3,41	238,02	96,59	2,46		63,56	0,024
4,02	154,71	3,68	251,03	96,32	2,40	167,30	70,71	0,024
4,42	167,77	3,99	263,78	96,01	2,75	173,67	77,36	0,024
4,79	179,72	4,27	275,46	95,73		179,90	83,89	0,024
5,13	191,62	4,58	287,05	95,73	2,88	185,59	89,86	0,024
5,53	196,03	4,89	291,15		3,01	191,24	95,81	0,024
5,90	190,08	5,30	284,78	95,11	3,06	193,13	98,02	0,025
,	.00,00	0,00	204,70	94,70	3,01	189,74	95,04	0,028

Ing. Calogery Pallundo Piccionello

Lo Sperimentatore Gualia ma Calanti

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06
Technital S.p.a.	
·	
SS 640 Canicatti -Caltanissetta	
14	
2	
33.00 m	
	Technital S.p.a. SS 640 Canicatti -Caltanissetta 14 2

Dati del provino n°2 - Vr 0.01 mm/min

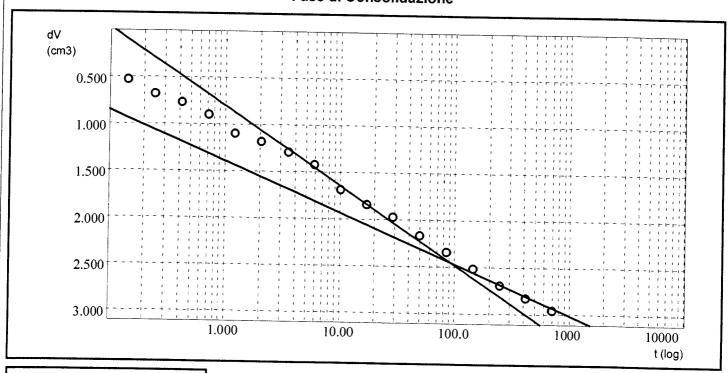
Densità umida iniziale Densità umida finale Densità secca Umidità iniziale Umidità finale Saturazione iniziale Saturazione finale Indice dei vuoti iniziale Indice dei vuoti finale Densità secca finale	19,56 Kn/m³ γ, 20,62 Kn/m³ γ, 16,13 Kn/m³ γ, 21,26 % W, 20,96 % W, 87,70 % S, 99,97 % S, 0,663 e, 0,573 e, 17,05 Kn/m³ γ,
	Densità umida finale Densità secca Umidità iniziale Umidità finale Saturazione iniziale Saturazione finale Indice dei vuoti iniziale Indice dei vuoti finale

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore Guglielmio Sciascia

<u>LEDERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)


PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06
Cliente	Technital S.p.a.	
Indirizzo	·	
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	14	
Campione	2	
Profondità	33.00 m	

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,01	0,27	13,27	3,39	1,84	75,93
0,01	0,40	18,91	3,39	1,97	86,58
0,01	0,53	23,92	3,39	2,17	101,62
0,01	0,68	27,06	3,39	2,34	114,15
0,01	0,77	31,44	3,39	2,52	126,69
0,01	0,90	37,71	3,39	2,69	137,97
0,01	1,10	41,47	3,39	2,82	147,36
0,01	1,18	47,73	3,39	2,96	154,88
0,01	1,29	54,63	3,39	3,09	159,27
3,39	1,43	61,52			,
3,39	1,69	69,04			

Fase di Consolidazione

Risultati di elaborazione

T₁₀₀ (min): 94,73

II Direttore del Laboratorio
Ing. Calogero Palumbo Piccionello

Lo Sperimentator

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06
Cliente	Technital S.p.a.	
Indirizzo	,	
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	14	
Campione	2	
Profondità	33.00 m	

		,
dH	dN	dU
mm	N	kPa
0,00	0,00	0,00
0,31	22,30	0,35
0,62	52,90	0,62
0,88	81,32	0,90
1,12	101,00	1,18
1,38	122,86	1,43
1,64	142,54	1,75
1,86	170,96	2,02
2,10	201,56	2,34
2,37	225,61	2,67
2,61	251,84	3,02
2,85	293,38	3,33
3,09	317,43	3,50
3,33	348,03	3,68
3,59	369,89	3,76
3,85	383,01	3,98
4,09	365,52	4,11

Il Direttore del Laboratorio Ing. Calogero Palumbo Riccionello

Lo Sperimentatore

Guglielmo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3121e del 19/05/06 Cliente

Indirizzo

Technital S.p.a.

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio

14

Campione Profondità

2 33.00 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	t' kPa	s' kPa	Α
0,00	0,00	0,00	200,00	200,00	1,00	200,00	0,00	0.000
0,41	19,60	0,35	219,25	199,65	1,10	209,45		0,000
0,81	46,32	0,62	245,70	199,38	1,13	222,54	9,80	0,018
1,16	70,95	0,90	270,05	199,10	1,36	 	23,16	0,013
1,47	87,83	1,18	286,65	198,82		234,57	35,47	0,013
1,82	106,47	1,43	305,04	<u> </u>	1,44	242,73	43,92	0,013
2,16	123,08			198,57	1,54	251,81	53,23	0,013
		1,75	321,33	198,25	1,62	259,79	61,54	0,014
2,45	147,19	2,02	345,17	197,98	1,74	271,58	73,59	0,014
2,77	172,98	2,34	370,63	197,66	1,88	284,15	86,49	0,014
3,11	192,93	2,67	390,26	197,33	1,98	293,79	96,46	0,014
3,43	214,66	3,02	411,64	196,98	2,09	304,31	107,33	0,014
3,75	249,24	3,33	445,92	196,67	2,27	321,29	124,62	
4,06	268,79	3,50	465,28	196,50	2,37	330,89		0,013
4,38	293,73	3,68	490,05	196,32			134,39	0,013
4,72	311,05	3,76	507,29		2,50	343,19	146,86	0,013
5,07	320,92	3,98		196,24	2,59	351,76	155,53	0,012
5,38			516,93	196,02	2,64	356,48	160,46	0,012
5,30	305,24	4,11	501,13	195,89	2,56	348,51	152,62	0,013

Il Direttore del Laboratorio Ing. Calogero Palamilo Piccionello

Lo Sperimentatore Guglielmo Sciascia

EEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06
Cliente	Technital S.p.a.	
Indirizzo	·	
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	14	
Campione	2	
Profondità	33.00 m	

Dati del provino n°3 - Vr 0.01 mm/min

Sezione provino	11,33 cm ²	Densità umida iniziale	19,76 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	20,97 Kn/m ³ γ
Altezza finale	69,75 mm	Densità secca	16,17 Kn/m³ v
No. Tara 1	0	Umidità iniziale	22,15 % W
Massa tara 1	0,00 g	Umidità finale	19,02 % W
Tara +massa umida iniziale	173,41 g	Saturazione iniziale	92,00 % S ₀
No. Tara 2	0	Saturazione finale	99,62 % S,
Massa tara 2	0,00 g	Indice dei vuoti iniziale	0,658 e ₀
Tara + massa umida finale	168,96 g	Indice dei vuoti finale	0,522 e,
Tara + massa secca	141,96 g	Densità secca finale	17,62 Kn/m ³ γ _α

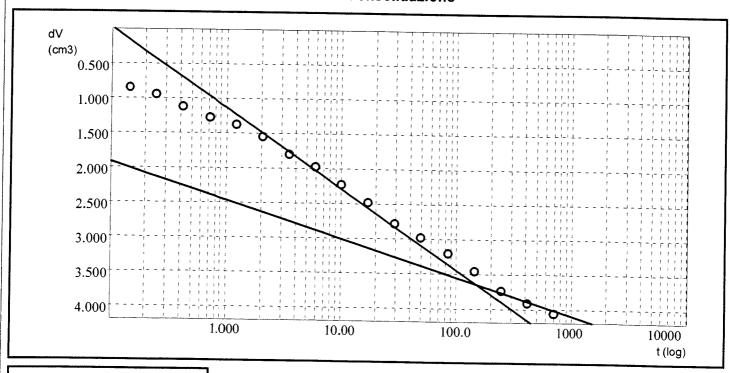
Il Direttore del/Lalforatorio Ing. Calogero Parumbo Piccionello

Lo Sperimentatore

Guglielino Sciascia

<u>LIEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)


PROVA TRIASSIALE CU (ASTM D4767)

Dati del 0	Cliente Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06
Cliente	Technital S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	14	
Campione	2	
Profondità	33.00 m	

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,01	0,37	15,12	2,85	2,48	71,33
0,01	0,57	21,99	2,85	2,78	75,08
0,01	0,84	26,98	2,85	2,98	78,83
0,01	0,95	31,98	2,85	3,20	83,20
0,01	1,12	36,98	2,85	3,46	92,57
0,01	1,27	41,35	2,85	3,73	106,93
0,01	1,37	46,97	2,85	3,91	121,30
0,01	1,55	52,59	2,85	4,06	137,54
2,85	1,80	57,59	2,85	4,16	156,28
2,85	1,97	63,21		· · · · · · · · · · · · · · · · · · ·	
2,85	2,23	67,58			

Fase di Consolidazione

Risultati di elaborazione

T₁₀₀ (min): 153,89

II Direttore del Laboratorio
Ing. Calogo o Parunto Piccionello

Lo Sperimentator Guglielmo Sciascia

<u>LIEDIERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

_	Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3121e del 19/05/06
	Cliente	Technital S.p.a.	
1	ndirizzo	·	
	Cantiere	SS 640 Canicatti -Caltanissetta	
8	Sondaggio	14	
	Campione	2	
	Profondità	33.00 m	

dH	dN	dU
mm	N	kPa
0,00	0,00	0,00
0,27	45,47	0,46
0,53	87,95	0,62
0,77	130,42	0,93
1,01	177,89	1,16
1,34	225,36	1,41
1,60	257,84	1,72
1,88	297,81	1,89
2,17	335,29	2,20
2,52	370,27	2,51
2,82	412,74	2,68
3, 15	445,22	2,93
3,48	482,70	3,13
3,83	502,69	3,32
4,22	530,17	3,55
4,57	540,16	3,77
4,90	552,65	3,97
5,25	567,65	4,17
5,56	567,65	4,39
5,93	567,65	4,53
6,26	552,65	4,81

Il Direttore del Laboratorio Ing. Calogero Palumbo Miccionello

Lo Sperimentatore

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3121e del 19/05/06 Cliente

Indirizzo

Technital S.p.a.

Cantiere Sondaggio SS 640 Canicatti -Caltanissetta

Campione

14 2

Profondità

33.00 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	ť kPa	s' kPa	Α
0,00	0,00	0,00	300,00	300,00	1,00	300,00	0,00	0,000
0,35	39,99	0,46	339,54	299,54	1,13	319,54	20,00	
0,70	77,08	0,62	376,46	299,38	1,26	337,92	38,54	0,011
1,01	113,94	0,93	413,01	299,07	1,38	356,04	56,97	0,008
1,33	154,92	1,16	453,76	298,84	1,52	376,30	77,46	0,008
1,76	195,40	1,41	493,99	298,59	1,65	396,29	97,70	0,007
2,11	222,78	1,72	521,06	298,28	1,75	409,67		0,007
2,48	256,34	1,89	554,45	298,11	1,86		111,39	0,008
2,85	287,49	2,20	585,29	297,80	1,97	426,28	128,17	0,007
3,31	315,97	2,51	613,47	297,49		441,55	143,74	0,008
3,72	350,75	2,68	648,08	297,32	2,06	455,48	157,99	0,008
4,15	376,66	2,93	673,73		2,18	472,70	175,38	0,008
4,58	406,53	3,13		297,07	2,27	485,40	188,33	0,008
5,04	421,32		703,40	296,87	2,37	500,14	203,26	0,008
5,56	441,93	3,32	717,99	296,68	2,42	507,34	210,66	0,008
6,02		3,55	738,38	296,45	2,49	517,42	220,96	0,008
	448,06	3,77	744,29	296,23	2,51	520,26	224,03	0,008
6,45	456,32	3,97	752,35	296,03	2,54	524,19	228,16	0,009
6,91	466,39	4,17	762,23	295,83	2,58	529,03	233,20	0,009
7,31	464,38	4,39	759,99	295,61	2,57	527,80	232,19	0,009
7,80	461,93	4,53	757,40	295,47	2,56	526,43	230,96	0,009
8,23	447,62	4,81	742,81	295,19	2,52	519,00	223,81	0,010

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore

Audialma Cainacia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3121e del 19/05/06

Committente

Technital S.p.a.

Indirizzo

Cantiere

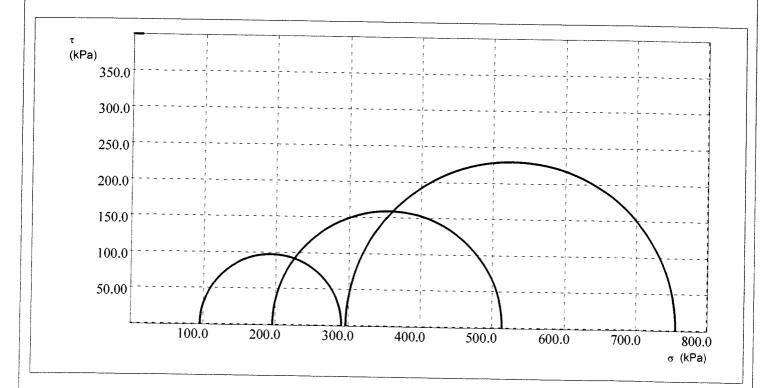
SS 640 Canicatti -Caltanissetta

Sondaggio

14

Campione

2


Profondità

33.00 m

Risultati di prova

Provino	Ho mm	A cm²	γ _n g/cm³	γ _d g/cm³	Wo %	Wf %	So %	Sf %
	76,00	11,33	2,00	1,65	21,39	19,86	89,07	97,13
	76,00	11,33	1,99	1,64	21,26	20,96	87,70	99,97
	76,00	11,33	2,01	1,65	22,15	19,02	92,00	99,62

Provino	σ _{1C} kPa	σ _{3C} kPa	BP kPa	ε %	$\sigma_1 - \sigma_3$ kPa	σ' ₁ / σ' ₃	dU kPa	Α
	300,00	300,00	200,00	4,39	194,66	1,00	3,97	0,02
	400,00	400,00	200,00	4,27	318,26	1,00	3,62	0,01
	500,00	500,00	200,00	5,15	459,56	1,00	3,37	0,01

Il Direttore del La lo atorio Ing. Calogery Palymb

Lo Sperimentatore Guglielmo Sciascia

Ing. Calogero Palumbo Piccionello

Verbale n°

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

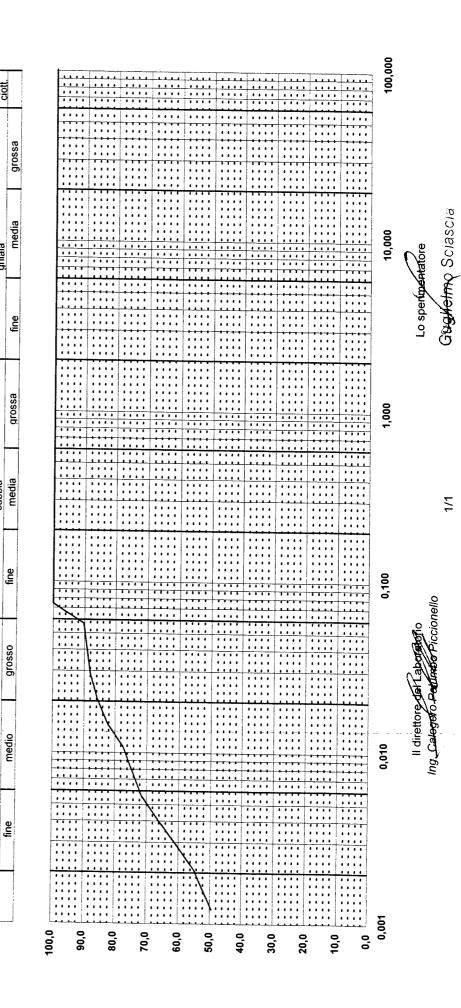
Guallettho Sciascia

Verbale n°	205		nento [23/04/2006]	Data apertura 9/05/2006
Rapporto di prova nº	3122			Località: Canicatti'-Caltanissetta
Committente: Technital S.				
Oggetto: Completamento de SS 640 "di Porto Empedocle	ell'itinerario Agrig " allo svincolo co	pento-Caltan on la A19	issetta-A19 nel tratto dal I	Km 44+00 della
Sondaggio 14	Campione	. 3	Profondità 38,00 m	Contenitore M
			i rotottata oo,oo iii	Ontenitore is
Descrizione del campione		Indisturbato)[X]	Rimaneggiato []
Argilla	colore grigio co	mpatta, con	presenza di resti di gusci	fossili.
Pt 4,5 Tv *			44	Pt 5.1 Tv *
		· · · · · · · · · · · · · · · · · · ·		PLS,1 IV
Grado di cementazione	Debole [] M o	derato [X] Ek	evato []
Struttura	Omogenea [X	[] Et	erogenea [] Sti	ratificata []
Classe di Qualità	Q1 []	Q2 [Q3 [] (Q4 [] Q5 [X]
Consistenza	Molto tenero [] Tenero [] Consistente [X] Mol	to consistente [] Duro []
Reazione all'HCI	Nessuna [] Debole	[] Forte []	Non Eseguita [X]
Prove effettuate				
Contenuto d'acqua	X		Prova edometrica	
Limiti di Atterberg Analisi granulometrica	X		Taglio diretto	X
Areometria	X		ELL Tripopiala IIII	X
Peso specifico	$\frac{\hat{x}}{x}$		Triassiale UU Triassiale CU	
The optionist			Triassiale CD	
Compattazione Proctor			massiale OB	
Penetrazione CBR				
Grandezze indice				
Contenuto d'acqua 1^ determ.	24.44	~ [
Contenuto d'acqua 1º determ.	24,41 25,06		Peso di volume	19,387 kN/m ³
Contenuto d'acqua media	25,06		Peso di volume secco	15,542 kN/m ³
Peso specifico 1 [^] determ.	27,129		Grado di saturazione Indice dei vuoti	90,42 %
eso specifico 2^determ.	26,949		Porosità	0,740
eso specifico medi a	27,039	kN/m³	· O.OSILA	0,425
servazioni				
direttore del Laboratorio	-		L	o sperimentafore

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803 PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

ANALISI GRANULOMETRICA

0205 23/04/2006 09/05/2006	3123 19/05/2006	38,00 m
Verbale n° Data ricevimento Data apertura	Certificato n° Data emissione	Profondità 38,00 m
caltanissetta Jessandro	argilla con limo debolmente sabbiosa	Campione 3
Technital s.p.a. SS. 640 canicatti' caltanisse Ing. Domenico D'Alessandr	CLASSIFICAZIONE: argilla	14
Committente Cantiere Richiedente	Diagramma	Sondaggio


ciott.

ghiaia

sabbia

imo

argilla

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

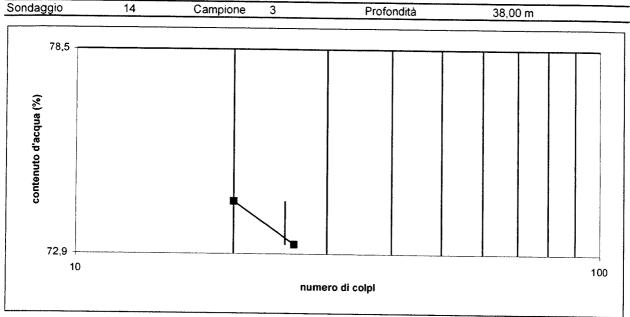
Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

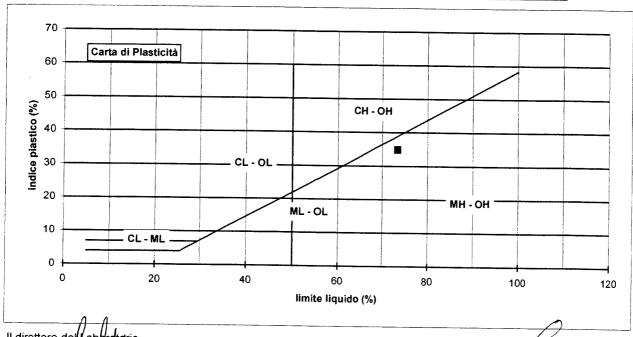
Località: Canicatti' - Caltanissetta

Verbale n° Data ricevimento Data apertura


0205 23/04/2006 09/05/2006

Rapporto di prova nº Data emissione

3124 19/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	73,32
Limite Plastico	%	38.44

Indice plastico	35
Consistenza	1,39
Liquidità	-0,39
Fluidità	10,36
Tenacità	3,37

Il direttore de Ing. Caloger Piccionello

Lo sperimentatore Gugtielmo Sciascia

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n° Data ricevimento

0205

Data apertura

23/04/2006 09/05/2006

Certificato n°
Data emissione

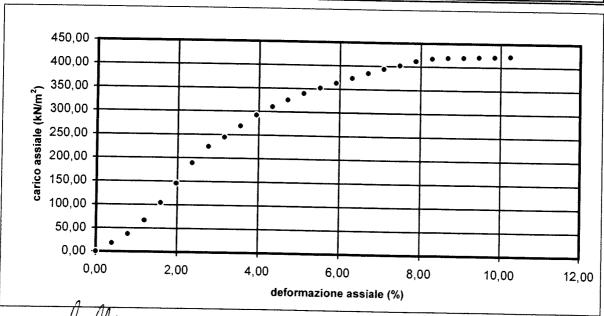
19/05/2006

3125

Sondaggio			
	Campione	Profondità	38.00 m

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL.
mm	div	mm	div
0,00	0	3,00	235
0,30	14	3,30	250
0,60	29	3,60	263
0,90	52	3,90	276
1,20	82	4,20	287
1,50	115	4,50	297
1,80	150	4,80	307
2,10	178	5,10	317
2,40	195	5,40	326
2,70	215	5,70	334

Dh	NL	Dh	NL
mm	div	mm	div
6,00	343		
6,30	349		
6,60	352		
6,90	354		
7 ,20	356		
7,50	358		
7,80	360		

Resistenza massima		1 1 1 / /
irtesistenza massima	422.72	kN/m²
	444,14	121 47111

Il direttore del Laboratorio Ing. Calogero Palantop Piccionello

Lo sperimentatore

Guglielmo Sciascia

<u>FIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3126 del 19/05/06

Committente

Technital S.p.a

901tilloato II. 0120 del 15/05/

Indirizzo Cantiere

. .

recinital 5.p.a

SS 640 Canicatti'-Caltanossetta

Sondaggio Campione 14

Campione 3 Profondità 38.00 m

Dati del provino n°1 (200 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla	1		
Sezione	36,000 cm ²	Densità umida iniziale	17,888 kN/m³ γ	
Altezza iniziale	20,000 mm	Densità umida finale	19,197 kN/m³ γ ੈ	
Altezza finale	19,230 mm	Densità secca	14,218 kN/m³ γ'	
No. tara 1	13	Umidità iniziale	25,817 % W	
Massa tara 1	105,860 g	Umidità finale	29,823 % W	
Massa tara 1 + massa umida iniz.	237,15 g	Saturazione iniziale	78,885 % S	
No. tara 2	40	Saturazione finale	99,175 % S,	
Massa tara 2	62,710 g	Indice dei vuoti iniziale	0,902 e ₀	
Massa tara 2 + massa umida fin.	198,180 g	Indice dei vuoti finale	0,829 e,	
Massa tara 2 + massa secca Peso specifico dei grani	167,060 g 27,05 kN/m³	Densità secca finale	14,787 kN/m 3 γ_{dr}	

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore
Guglielpio Sclascia

<u>LIEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

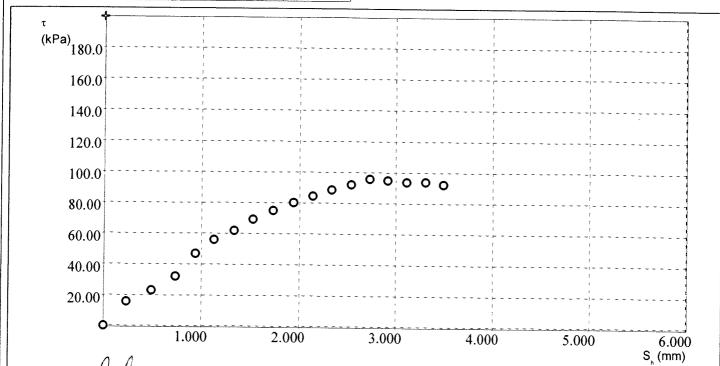
PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3126 del 19/05/06

Dati del Cliente Verbale n. 0205 Committente Technital S.p.a

Indirizzo

Cantiere


SS 640 Canicatti'-Caltanossetta

Sondaggio Campione Profondità 38.00 m

Risultati della fase di rottura Provid Vr 0.002 mm/min

dt min dH mm Sh mm F N t kPa 0,00 0,00 0,00 0,00 0,00 60,00 0,00 0,23 56,62 15,73 120,00 0,00 0,49 83,20 23,11 180,00 0,01 0,73 115,55 32,10 240,00 0,01 0,94 168,71 46,86 300,00 0,01 1,13 202,22 56,17 360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 <t< th=""><th>İ</th><th>KISUILALI U</th><th>iella tase di</th><th>rollura Pri</th><th>ו) דיח סחועם</th><th>200 KPa) - \</th></t<>	İ	KISUILALI U	iella tase di	rollura Pri	ו) דיח סחועם	200 KPa) - \
0,00 0,00 0,00 0,00 0,00 0,00 60,00 0,00 0,23 56,62 15,73 120,00 0,00 0,49 83,20 23,11 180,00 0,01 0,73 115,55 32,10 240,00 0,01 0,94 168,71 46,86 300,00 0,01 1,13 202,22 56,17 360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 <td< th=""><th></th><th>dt</th><th>dH</th><th>Sh</th><th>F</th><th>τ</th></td<>		dt	dH	Sh	F	τ
60,00 0,00 0,23 56,62 15,73 120,00 0,00 0,49 83,20 23,11 180,00 0,01 0,73 115,55 32,10 240,00 0,01 0,94 168,71 46,86 300,00 0,01 1,13 202,22 56,17 360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		min	mm	mm	N	kPa
120,00 0,00 0,49 83,20 23,11 180,00 0,01 0,73 115,55 32,10 240,00 0,01 0,94 168,71 46,86 300,00 0,01 1,13 202,22 56,17 360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		0,00	0,00	0,00	0,00	0700
180,00 0,01 0,73 115,55 32,10 240,00 0,01 0,94 168,71 46,86 300,00 0,01 1,13 202,22 56,17 360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		60,00	0,00	0,23	56,62	15,73
240,00 0,01 0,94 168,71 46,86 300,00 0,01 1,13 202,22 56,17 360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		120,00	0,00	0,49	83,20	23,11
300,00 0,01 1,13 202,22 56,17 360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		180,00	0,01	0,73	115,55	32,10
360,00 0,02 1,34 223,02 61,95 420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		240,00	0,01	0,94	168,71	46,86
420,00 0,02 1,53 249,59 69,33 480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		300,00	0,01	1,13	202,22	56,17
480,00 0,04 1,73 270,39 75,11 540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71	İ	360,00	0,02	1,34	223,02	61,95
540,00 0,06 1,94 288,88 80,24 600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		420,00	0,02	1,53	249,59	69,33
600,00 0,07 2,14 303,90 84,42 660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		480,00	0,04	1,73	270,39	75,11
660,00 0,09 2,33 318,92 88,59 720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		540,00	0,06	1,94	288,88	80,24
720,00 0,10 2,54 331,63 92,12 780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		600,00	0,07	2,14	303,90	84,42
780,00 0,11 2,73 344,34 95,65 840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		660,00	0,09	2,33	318,92	88,59
840,00 0,12 2,92 341,12 94,75 900,00 0,12 3,11 337,36 93,71		720,00	0,10	2,54	331,63	92,12
900,00 0,12 3,11 337,36 93,71		780,00	0,11	2,73	344,34	95,65
		840,00	0,12	2,92	341,12	94,75
960,00 0,12 3,30 338,61 94,06		900,00	0,12	3,11	337,36	93,71
		960,00	0,12	3,30	338,61	94,06

dt min	dH mm	Sh mm	F N	kPa
1020,00	0,13	3,49	332,35	92,32
1080,00	0,14	3,69	333,60	92,67

Il Direttore del alforatorio

Ing. Calogero Palyhorbo Piccionello

Lo Sperimentatore Guglielmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati cliente Verbale n. 0205

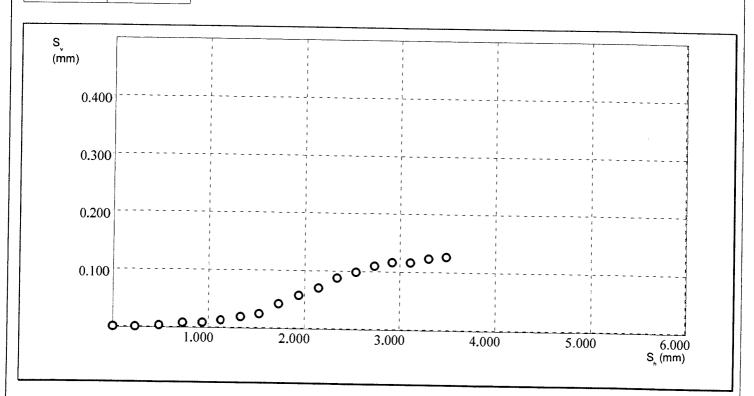
Certificato n. 3126 del 19/05/06

Committente Technital S.p.a

Indirizzo

Sito

Sondaggio Campione


Profondità 38.00 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

SS 640 Canicatti'-Caltanossetta

Sv
mm
0,00
0,00
0,00
0,01
0,01
0,01
0,02
0,02
0,04
0,06
0,07

Sv
mm
0,09
0,10
0,11
0,12
0,12
0,12
0,13
0,14

Il Direttore del laboratorio Ing. Calogero Pallambo Piccionello

Lo Sperimentatore

Guglionno Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205 Certificato n. 3126 del 19/05/06

Committente Technital S.p.a.

Indirizzo
Cantiere SS 640 Canicatti'-Caltanissetta
Sondaggio 14

Campione 3 Profondità 38.00 m

Dati del provino n°2 (400 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla		
Sezione	36,000 cm ²	Densità umida iniziale	18,638 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,324 kN/m ³ v
Altezza finale	18,170 mm	Densità secca	15,022 kN/m³ v
No. tara 1	14	Umidità iniziale	24,073 % W
Massa tara 1	115,720 g	Umidità finale	22,921 % W
Massa tara 1 + massa umida iniz.	252,51 g	Saturazione iniziale	82,909 % S ₀
No. tara 2	41	Saturazione finale	99,399 % S,
Massa tara 2	68,580 g	Indice dei vuoti iniziale	
Massa tara 2 + massa umida fin.	204,100 g	Indice dei vuoti finale	0
Massa tara 2 + massa secca Peso specifico dei grani	178,830 g 27,05 kN/m³	Densità secca finale	0,636 e, $16,534 \text{ kN/m}^3 \gamma_{\text{eff}}$

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

Lo Sperimentatore Guglielmo Sciascia

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

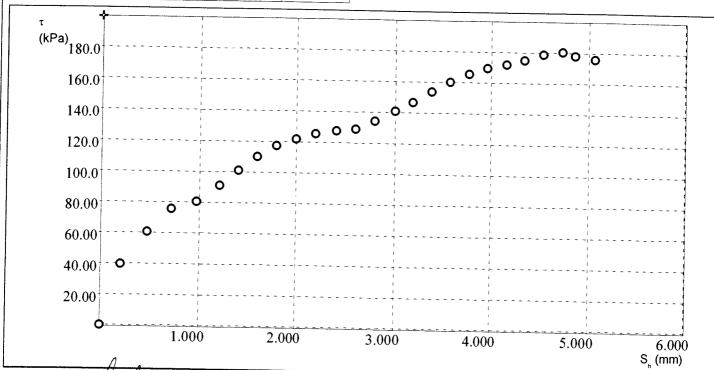
PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205 Certificato n. 3126 del 19/05/06 Committente

Indirizzo

Technital S.p.a.

Cantiere


SS 640 Canicatti'-Caltanissetta

Sondaggio 14 Campione 3 Profondità 38.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) Vr 0.002 mm/min

	Mountair	uella lase u	i iollura Pr	ovino n°2 (400 KPa) - \
ĺ	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0 , 00
	60,00	0,02	0,20	143,28	39,80
	120,00	0,03	0,47	218,39	60,66
	180,00	0,04	0,71	272,70	75,75
	240,00	0,05	0,97	290,04	80,57
	300,00	0,07	1,21	328,17	91,16
	360,00	0,08	1,41	363,99	101,11
	420,00	0,11	1,60	396,34	110,10
	480,00	0,15	1,79	422,92	117,48
	540,00	0,18	2,00	439,10	121,97
	600,00	0,20	2,19	451,81	125,50
	660,00	0,23	2,41	458,74	127,43
	720,00	0,25	2,60	464,52	129,03
	780,00	0,26	2,79	484,16	134,49
	840,00	0,27	3,00	507,27	140,91
	900,00	0,28	3,18	528,98	146,94
	960,00	0,28	3,37	554,28	153,97

/ <u>~ 111111/111111</u>				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,28	3,57	576,76	160,21
1080,00	0,29	3,76	596,44	165,68
1140,00	0,29	3,96	610,49	169,58
1200,00	0,29	4,16	618,93	171,92
1260,00	0,29	4,34	630,17	175,05
1320,00	0,29	4,54	644,22	178,95
1380,00	0,30	4,73	649,84	180,51
1440,00	0,30	4,86	641,41	178,17
1500,00	0,31	5,06	632,98	175,83
1560,00	0,32	5,24	630,17	175,05

Il Direttore del laboratorio

Ing. Calogero Palambo Piccionello

Lo Sperimentatore

<u>Sciascia</u>

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

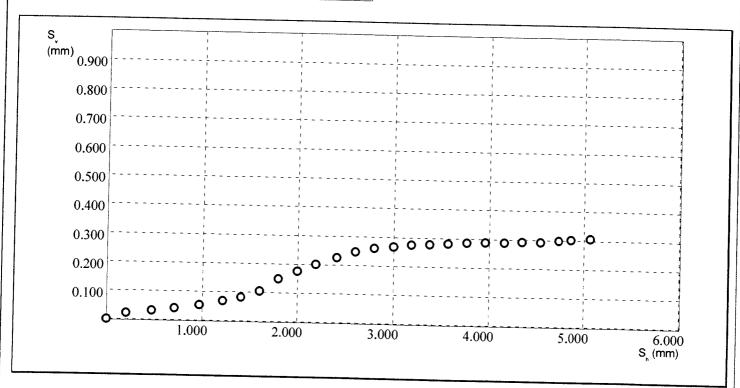
Dati cliente Verbale n. 0205

Certificato n. 3126 del 19/05/06

Committente Technital S.p.a. Indirizzo

Sito

SS 640 Canicatti'-Caltanissetta


Sondaggio 14
Campione 3
Profondità 38.00 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,20	0,02
0,47	0,03
0,71	0,04
0,97	0,05
1,21	0,07
1,41	0,08
1,60	0,11
1,79	0,15
2,00	0,18
2,19	0,20

Sh	Sv		
mm	mm		
2,41	0,23		
2,60	0,25		
2,79	0,26		
3,00	0,27		
3,18	0,28		
3,37	0,28		
3,57	0,28		
3,76	0,29		
3,96	0,29		
4,16	0,29		
4,34	0,29		

Sh	Sv
mm	mm
4,54	0,29
4,73	0,30
4,86	0,30
5,06	0,31
5,24	0,32

Il Direttore del laboratorio
Ing. Calogero Palundo Piccionello

Lo Sperimentatore

Guglielpho Sciascia

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

SS 640 Canicatti'-Caltanissetta

Certificato n. 3126 del 19/05/06

Committente

Technital S.p.a.

Indirizzo

Cantiere

Sondaggio

14

Campione

3

Profondità

38.00 m

Dati del provino n°3 (800 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla			
Sezione	36,000 cm ²	Densità umida iniziale	18,858 kN/m³ _V	
Altezza iniziale	20,000 mm	Densità umida finale	21,054 kN/m ³ γ	
Altezza finale	17,050 mm	Densità secca	21,054 kN/m γ _γ 15,045 kN/m³ γ	
No. tara 1	15	Umidità iniziale	/ d	
Massa tara 1	114,120 g	Umidità finale	,	
Massa tara 1 + massa umida iniz.	252,53 g	Saturazione iniziale	19,299 % W,	
No. tara 2	78	Saturazione finale	87,608 % S ₀	
Massa tara 2	69,120 g	Indice dei vuoti iniziale	99,910 % S,	
Massa tara 2 + massa umida fin.	200,850 g	Indice dei vuoti finale	0,798 e _o	:
Massa tara 2 + massa secca	179,540 g		0,533 e,	
Peso specifico dei grani	27,05 kN/m ³	Densità secca finale	17,648 kN/m 3 γ_{at}	

Il Direttore del Lab Ing. Calogero Palumbo **≱**torio ccionello

Lo Sperimentatore Guglieln

<u>LIEUERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3126 del 19/05/06

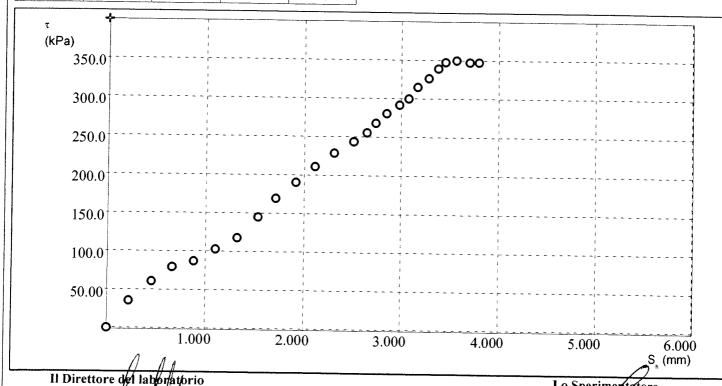
Dati del Cliente Verbale n. 0205 Committente Technital S.p.a.

Indirizzo Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio 14 Campione 3 Profondità 38.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min


l	7 (75 ditati	aciia lase u	i i Ottura Fi	OVINO II 3 (ouu KPa) - 1
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	Ot00
	60,00	0,01	0,23	128,40	35,67
	120,00	0,02	0,46	219,79	61,05
ĺ	180,00	0,03	0,67	285,73	79,37
	240,00	0,03	0,88	313,49	87,08
	300,00	0,06	1,10	371,33	103,15
	360,00	0,08	1,32	423,39	117,61
	420,00	0,12	1,53	521,72	144,92
	480,00	0,18	1,71	610,79	169,66
	540,00	0,23	1,92	685,98	190,55
	600,00	0,28	2,11	760,02	211,12
	660,00	0,32	2,31	822,48	228,47
	720,00	0,36	2,51	878,01	243,89
	780,00	0,37	2,65	920,42	255,67
	840,00	0,37	2,74	965,40	268,17
	900,00	0,38	2,85	1010,37	280,66
	960,00	0,38	2,98	1050,34	291,76

Ing. Calogero Halumbo Piccionello

vz mm/min				
dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,38	3,08	1080,32	300,09
1080,00	0,38	3,17	1135,29	315,36
1140,00	0,39	3,28	1175,27	326,46
1200,00	0,39	3,38	1220,24	338,95
1260,00	0,39	3,45	1250,22	347,28
1320,00	0,39	3,56	1260,21	350,06
1380,00	0,39	3,70	1250,22	347,28
1440,00	0,40	3,79	1250,22	347,28
1500,00	0,40	3,90	1235,23	343,12

Lo Sperimentatore

Guglielmo Sciascia

<u>LIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

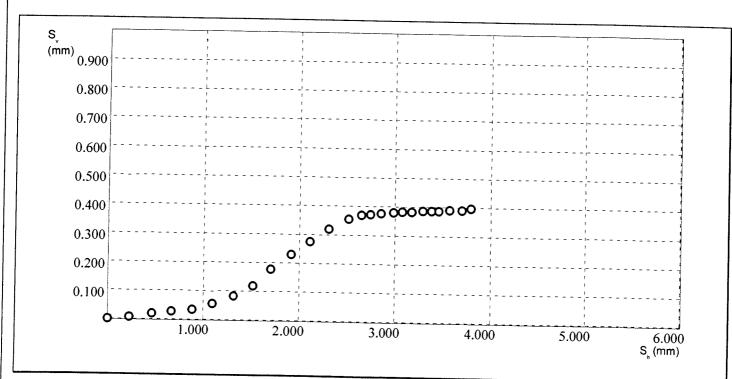
Dati cliente Verbale n. 0205

Certificato n. 3126 del 19/05/06

Committente Technital S.p.a.

Indirizzo

Sito


SS 640 Canicatti'-Caltanissetta

Sondaggio 14 Campione 3 Profondità 38.00 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

	000 Ki a) - Vi
Sh	Sv
mm	mm
2,31	0,32
2,51	0,36
2,65	0,37
2,74	0,37
2,85	0,38
2,98	0,38
3,08	0,38
3,17	0,38
3,28	0,39
3,38	0,39
3,45	0,39

Sh	Sv
mm	mm
3,56	0,39
3,70	0,39
3,79	0,40
3,90	0,40

Il Direttore del laboratorio
Ing. Calogero Palumno Piccionello

Lo Sperimentatore Guglielmo Sciascia

Verbale n°

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

Verbale n°	205	Data rice	vimento [23/04/2006]	Data apertura 9	9/05/2006
Rapporto di prova nº	3127	Data emis	sione [19/05/2006]	Località: Canica	
Committente: Technital S	3.p.a.				
Oggetto: Completamento d	lell'itinerario Agri	igento-Calta	anissetta-A19 nel tratto d	dal Km 44+00 della	
SS 640 "di Porto Empedocl	e alio svincolo d	on la A19			
Sondaggio 49	Campione	. 1	Profondità 5,60 m	Contenitore !	
			protonata 3,00 m	Contenitore i	<u>VI</u>
Descrizione del campione		Indisturba	ato [X]	Rimaneggiato	[]
Δη	ailla limasa alta	roto salaus			<u> </u>
70;	yma mnosa aner	ata colore	giallastro leggermente pi	lastica.	
Pt 3,7 Tv *				Pt 4,6	Tv *
O					
Grado di cementazione	Debole [<u>] </u>	Moderato [X]	Elevato []	
Struttura	Omogenea [] E1	erogenea [X]	Stratificata []	
Classe di Qualità	Q1 []	Q2 [] Q3 []		
Consistenza					Q5 [X]
	Molto tenero [] Tenero	[X] Consistente []	Molto consistente [] Duro [_]
Reazione all'HCI	Nessuna [] Debo	le [] Forte [] Non Eseguita	[X]
D					<u> </u>
Prove effettuate					
Contenuto d'acqua	X	7			
imiti di Atterberg	x	-	Prova edometrica	X	
Analisi granulometrica		1	Taglio diretto ELL	X	
reometria	Х	1	Triassiale UU	^-	
Peso specifico	X]	Triassiale CU		
Compattazione Proctor		1	Triassiale CD		
Penetrazione CBR		1			
CHELIAZIONE CDA		J			
Frandezze indice					
ontenuto d'acqua 1^ determ.	29,45	%	Peso di volume	19,264	kN/m³
ontenuto d'acqua 2^ determ.	28,41	%	Peso di volume secco	14,941	kN/m³
ontenuto d' acqua media	28,93	%	Grado di saturazione	96,59	%
eso specifico 1 [^] determ.	27,029	kN/m ³	Indice dei vuoti	0,810	
eso specifico 2^determ.	27,058	kN/m ³	Porosità	0,448	·
eso specifico media	27,044	kN/m ³		0,110	
		. —			
ervazioni					
11					
direttore del Laboratorio				Lo sperimentatore	ř
g. Calogero Pallumbo Pic	cionello			-o speninentatore	
//W	•			Gualist	
				Gugliennio Scia	scia

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803 PROVE DI LABORATORIO SUI TERRENI

ANALISI GRANULOMETRICA

argilla	, 100 Aug 1, 100 Aug 1, 100 Aug 1, 100 Aug 1, 100 Aug 1, 100 Aug 1, 100 Aug 1, 100 Aug 1, 100 Aug 1, 100 Aug 1	limo			sabbia			chiaia		#0.0
	fine	medio	grosso	fine	media	grossa	fine	media	grossa	COOK:
90										
0,06			1111							1111
80,0										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0,07										
0,09										
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
30,0										11111111
10,0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
0,001	ó	0,010		0,100		1,000	The state of the s	10,000		100,000
	ŜUJ	Il direttore de Labou. Ing. Calògero Paturabo	Il direttore de Laboratorio Calogero Paturubo Accionello	0//0	1/1		Lo sperimentatore	Lo sperimentatore Gaglielms Sciascia		

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

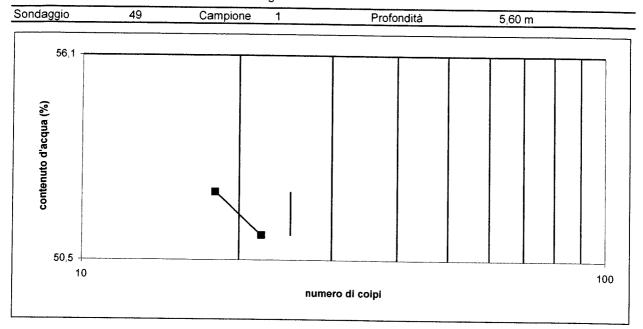
Committente: Technital S.p.a.

Richiedente: Ing.Domenico D'Alessandro

Cantiere: SS. 640

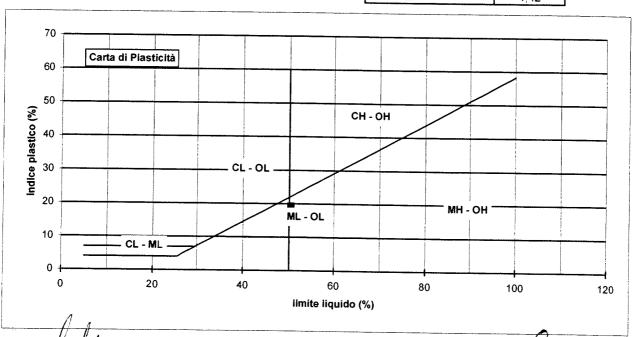
Località: Canicatti' - Caltanissetta

Verbale n°
Data ricevimento
Data apertura
Rapporto di prova n°


0205 23/04/2006 09/05/2006 3129

Data emissione 19/0

19/05/2006


DESCRIZIONE:

argilla

Limite Liquido	%	50,39
Limite Plastico	%	31,17

Indice plastico	19	
Consistenza	1,12	
Liquidità	-0,12	
Fluidità	13,54	
Tenacità	1.42	

Il direttore del Vaboratorio Ing. Calogero Palumbo Piccionello Lo sperimentatore
Guglielmo Sciascia

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

Data ricevimento

0205

Data apertura

23/04/2006 09/05/2006

Certificato n°

3130

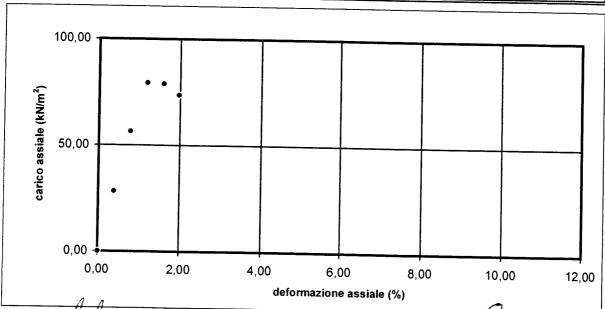
Data emissione

19/05/2006

Sondaggio 49 Campione 1 Profondità 5,60 m	
Treference 5,50 m	

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0		
0,30	22		
0,60	44		
0,90	62		
1,20	62		
1,50	58		

Dh	NL	Dh	NL
mm	div	mm	div

Resistenza massima	70.22	kN/m ²
resistenza massima	79.32	KIN/III

Il direttore de Laboratorio Ing. Calogero Palunibo Piccionello

Lo sperimentatore

Guglielmo Seiascia

<u>LIEDIERVICE</u> , PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

SS 640 Canicatti'-Caltanissetta

Certificato n. 3131 del 19/05/06

Committente

Technital S.p.a.

Indirizzo

Cantiere

Sondaggio

49

Campione

Profondità 5.60 m

Dati del provino n°1 (200 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla limosa		
Sezione	36,000 cm ²	Densità umida iniziale	18,451 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	19,135 kN/m ³ γ
Altezza finale	19,490 mm	Densità secca	14,342 kN/m ³ v
No. tara 1	14	Umidità iniziale	28,653 % W
Massa tara 1	115,720 g	Umidità finale	30,021 % W
Massa tara 1 + massa umida iniz.	251,14 g	Saturazione iniziale	89,176 % S
No. tara 2	81	Saturazione finale	98,797 % S,
Massa tara 2	75,850 g	Indice dei vuoti iniziale	0,886 e
Massa tara 2 + massa umida fin.	212,710 g	Indice dei vuoti finale	0,838 e,
Massa tara 2 + massa secca	181,110 g	Densità secca finale	
Peso specifico dei grani	27,05 kN/m ³		14,717 kN/m °γ _{ar}

Il Direttore del Lab Ing. Calogero Palumbo

LEDERVICE ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

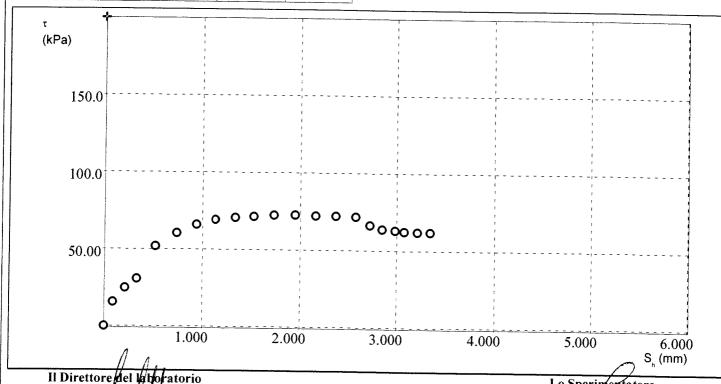
PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3131 del 19/05/06

Dati del ClienteVerbale n. 0205CommittenteTechnital S.p.a.

Indirizzo Cantiere

SS 640 Canicatti'-Caltanissetta


Sondaggio 49
Campione 1
Profondità 5.60 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

			, , ottara , ,	0 viii 0 ii 1 (200 KFa) -
	dt	dH	Sh	F	τ
	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	O7O0
	60,00	0,01	0,09	56,62	15,73
	120,00	0,02	0,21	90,13	25,04
	180,00	0,02	0,34	110,93	30,81
	240,00	0,06	0,52	187,19	52,00
	300,00	0,10	0,73	218,39	60,66
	360,00	0,13	0,94	238,04	66,12
	420,00	0,14	1,13	249,59	69,33
	480,00	0,16	1,34	255,37	70,94
	540,00	0,17	1,53	257,68	71,58
	600,00	0,18	1,73	261,15	72,54
ĺ	660,00	0,18	1,95	262,30	72,86
]	720,00	0,19	2,16	259,99	72,22
	780,00	0,19	2,38	259,99	72,22
	840,00	0,20	2,58	258,84	71,90
	900,00	0,20	2,72	239,19	66,44
ĺ	960,00	0,20	2,85	229,95	63,87

Ing. Calogero Palatrato Piccionello

dt	dH	Sh	F	
min	mm	mm	N	kPa
1020,00	0,20	2,98	227,64	63,23
1080,00	0,20	3,08	225,33	62,59
1140,00	0,20	3,21	224,17	62,27
1200,00	0,20	3,34	223,02	61,95
1260,00	0,20	3,45	221,86	61,63

<u>LIEDIERVICE</u> ", PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

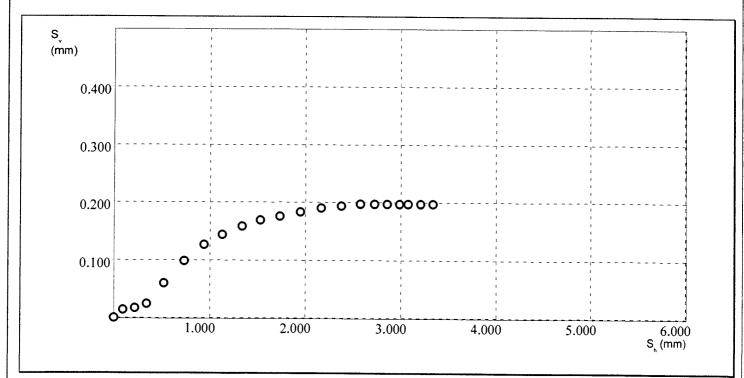
Dati cliente Verbale n. 0205

Certificato n. 3131 del 19/05/06

Committente Technital S.p.a.

Indirizzo

Sito


SS 640 Canicatti'-Caltanissetta

Sondaggio 49
Campione 1
Profondità 5.60 m

Risultati della fase di rottura Provino n°1 (200 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,09	0,01
0,21	0,02
0,34	0,02
0,52	0,06
0,73	0,10
0,94	0,13
1,13	0,14
1,34	0,16
1,53	0,17
1,73	0,18

Sh	Sv
mm	mm
1,95	0,18
2,16	0,19
2,38	0,19
2,58	0,20
2,72	0,20
2,85	0,20
2,98	0,20
3,08	0,20
3,21	0,20
3,34	0,20
3,45	0,20

Il Direttore de la poratorio
Ing. Calogero Paluppo Piccione

Guglielmo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Verbale n. 0205

Certificato n. 3131 del 19/05/06

Committente

Technital S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

49

Campione Profondità

5.60 m

Dati del provino n°2 (400 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla limosa		·	
Sezione	36,000 cm ²	Densità umida iniziale	18,587 kN/m³	v
Altezza iniziale	20,000 mm	Densità umida finale	19,998 kN/m ³	
Altezza finale	17,980 mm	Densità secca	14,419 kN/m ³	1,
No. tara 1	15	Umidità iniziale		Υ _α W
Massa tara 1	114,120 g	Umidità finale	,	W
Massa tara 1 + massa umida iniz.	250,54 g	Saturazione iniziale	,	S,
No. tara 2	79	Saturazione finale		S,
Massa tara 2	71,860 g	Indice dei vuoti iniziale		e,
Massa tara 2 + massa umida fin.	203,810 g	Indice dei vuoti finale		e,
Massa tara 2 + massa secca Peso specifico dei grani	177,690 g 27,05 kN/m³	Densità secca finale	16,039 kN/m ³	γ _{ar}

Il Direttore/del Laboratorio Ing. Calogero Palymbo Piccionello

Lo Sperimentatore

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205 Certificato n. 3131 del 19/05/06 Committente

Technital S.p.a.

Indirizzo

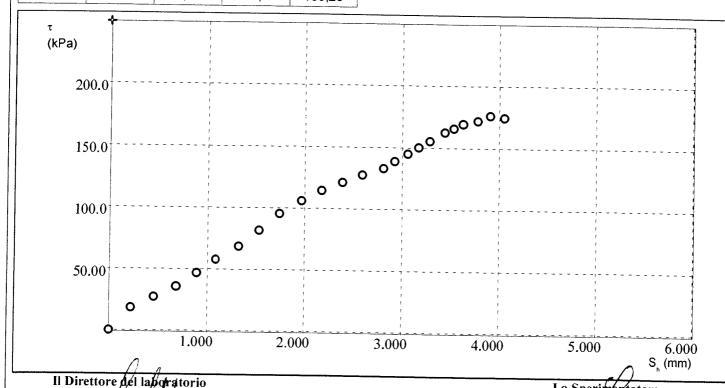
Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio Campione Profondità 5.60 m

Ing. Calogere Palumbo

iccionello


Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min

į	Nisuitati	uena rase o	i rottura Pr	ovino n°2 (400 KPa) - V
	dt	dH	Sh	F	τ
l	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	OŢ00
	60,00	0,04	0,23	67,09	18,64
	120,00	0,08	0,46	98,33	27,31
	180,00	0,11	0,69	129,56	35,99
	240,00	0,17	0,89	168,89	46,91
	300,00	0,21	1,09	208,22	57,84
	360,00	0,25	1,32	247,55	68,77
	420,00	0,27	1,53	293,83	81,62
	480,00	0,30	1,74	343,57	95,44
	540,00	0,33	1,97	381,74	106,04
	600,00	0,35	2,17	411,82	114,39
	660,00	0,39	2,39	436,11	121,14
	720,00	0,41	2,59	459,25	127,57
	780,00	0,43	2,81	478,91	133,03
	840,00	0,44	2,92	500,31	138,98
	900,00	0,44	3,06	522,17	145,05
į	960,00	0,44	3,17	540,91	150,25

dН	Sh	F	
mm	mm	N	kPa
0,44	3,28	559,65	155,46
0,44	3,43	584,63	162,40
0,45	3,53	597,13	165,87
0,45	3,62	609,62	169,34
0,45	3,77	618,99	171,94
0,45	3,90	634,60	176,28
0,45	4,05	628,36	174,54
0,45	4,20	609,62	169,34
	mm 0,44 0,45 0,45 0,45 0,45 0,45	mm mm 0,44 3,28 0,44 3,43 0,45 3,53 0,45 3,62 0,45 3,77 0,45 3,90 0,45 4,05	mm mm N 0,44 3,28 559,65 0,44 3,43 584,63 0,45 3,53 597,13 0,45 3,62 609,62 0,45 3,77 618,99 0,45 3,90 634,60 0,45 4,05 628,36

Lo Sperimentatore

Guglielmo Sciascia

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

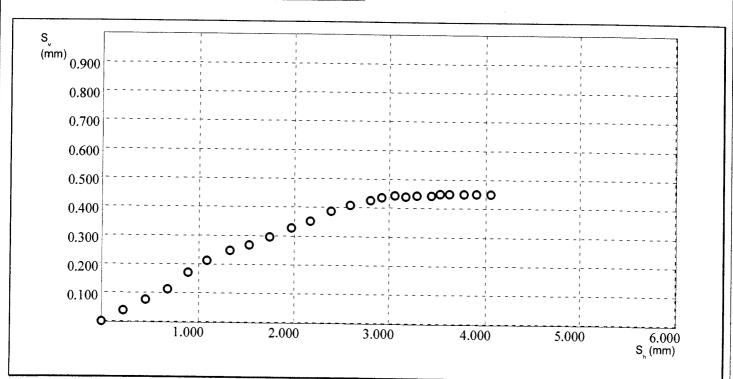
Dati cliente Verbale n. 0205

Certificato n. 3131 del 19/05/06

Committente Technital S.p.a.

Indirizzo Sito

SS 640 Canicatti'-Caltanissetta


Sondaggio 49
Campione 1
Profondità 5.60 m

Risultati della fase di rottura Provino n°2 (400 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,23	0,04
0,46	0,08
0,69	0,11
0,89	0,17
1,09	0,21
1,32	0,25
1,53	0,27
1,74	0,30
1,97	0,33
2,17	0,35

	,
Sh	Sv
mm	mm
2,39	0,39
2,59	0,41
2,81	0,43
2,92	0,44
3,06	0,44
3,17	0,44
3,28	0,44
3,43	0,44
3,53	0,45
3,62	0,45
3,77	0,45

Sh	Sv
mm	mm
3,90	0,45
4,05	0,45
4,20	0.45

Il Direttore del laboratorio
Ing. Calogero Palumpo Piccionello

Lo Sperimentatore

Guglielmo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Certificato n. 3131 del 19/05/06

Committente Technital S.p.a.

Indirizzo

Dati del Cliente

Cantiere SS 640 Canicatti -Caltanissetta

Verbale n. 0205

 Sondaggio
 49

 Campione
 1

 Profondità
 5.60 m

Dati del provino n°3 (800 kPa) - Vr 0.002 mm/min

Descrizione provino	argilla limosa		
Sezione	36,000 cm ²	Densità umida iniziale	18,285 kN/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,202 kN/m ³ γ
Altezza finale	17,310 mm	Densità secca	14,130 kN/m ³ v
No. tara 1	16	Umidità iniziale	29,399 % W
Massa tara 1	115,920 g	Umidità finale	23,739 % W
Massa tara 1 + massa umida iniz.	250,12 g	Saturazione iniziale	88,677 % S _o
No. tara 2	80	Saturazione finale	
Massa tara 2	68,780 g	Indice dei vuoti iniziale	
Massa tara 2 + massa umida fin.	197,110 g	Indice dei vuoti finale	0,914 e ₀
Massa tara 2 + massa secca Peso specifico dei grani	172,490 g 27,05 kN/m³	Densità secca finale	0,657 e, 16,326 kN/m³γ _a

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

<u>LIEDERVICE</u> SALA PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente Verbale n. 0205 Certificato n. 3131 del 19/05/06 Committente Technital S.p.a.

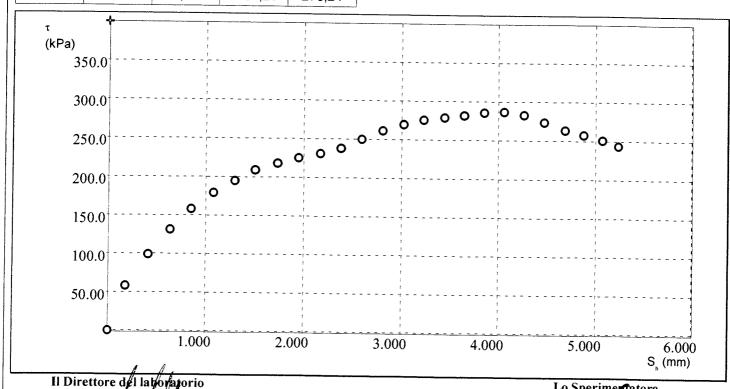
Indirizzo

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio Campione Profondità 5.60 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min


	The state of the s				
	dt	dH	Sh	F	τ
ĺ	min	mm	mm	N	kPa
	0,00	0,00	0,00	0,00	0700
	60,00	0,03	0,18	210,54	58,48
	120,00	0,05	0,41	356,29	98,97
	180,00	0,07	0,64	471,97	131,10
	240,00	0,08	0,85	569,14	158,10
	300,00	0,08	1,08	645,49	179,30
	360,00	0,10	1,30	702,18	195,05
	420,00	0,12	1,51	751,92	208,87
	480,00	0,14	1,73	784,31	217,86
	540,00	0,16	1,95	810,91	225,25
	600,00	0,18	2,16	831,74	231,04
	660,00	0,21	2,38	856,03	237,79
-	720,00	0,22	2,59	899,99	250,00
-	780,00	0,22	2,81	940,48	261,24
	840,00	0,23	3,02	970,55	269,60
	900,00	0,23	3,23	992,53	275,70
	960,00	0,24	3,44	1005,26	279,24

Ing. Calogero Palumbo Piccionello

/ L 11111/11/11					
dt	dH	Sh	F		
min	mm	mm	N	kPa	
1020,00	0,25	3,65	1014,51	281,81	
1080,00	0,25	3,85	1028,39	285,66	
1140,00	0,25	4,06	1031,86	286,63	
1200,00	0,26	4,26	1019,14	283,09	
1260,00	0,26	4,47	985,59	273,78	
1320,00	0,27	4,68	949,73	263,81	
1380,00	0,28	4,88	928,91	258,03	
1440,00	0,29	5,07	904,62	251,28	
1500,00	0,30	5,24	878,01	243,89	
1560,00	0,30	5,49	859,50	238,75	

Lo Sperimentatore

Guglieli o Sciascia

<u>LIEUERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA DI TAGLIO DIRETTO (ASTM D3080)

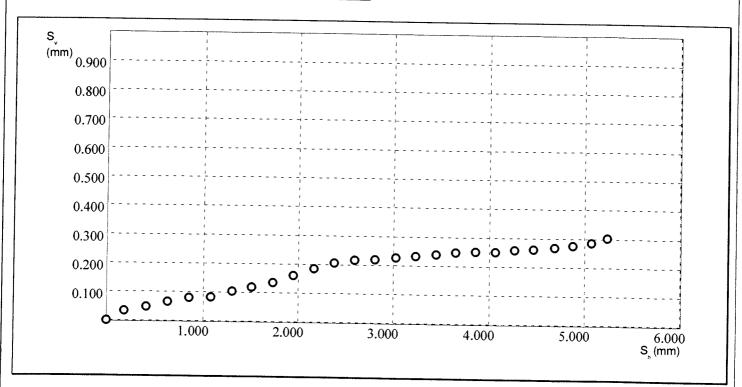
Dati cliente Verbale n. 0205

Certificato n. 3131 del 19/05/06

Committente Technital S.p.a.

Indirizzo Sito

SS 640 Canicatti -Caltanissetta


Sondaggio 49
Campione 1
Profondità 5.60 m

Risultati della fase di rottura Provino n°3 (800 kPa) - Vr 0.002 mm/min

Sh	Sv
mm	mm
0,00	0,00
0,18	0,03
0,41	0,05
0,64	0,07
0,85	0,08
1,08	0,08
1,30	0,10
1,51	0,12
1,73	0,14
1,95	0,16
2,16	0,18

Sh	Sv
mm	mm
2,38	0,21
2,59	0,22
2,81	0,22
3,02	0,23
3,23	0,23
3,44	0,24
3,65	0,25
3,85	0,25
4,06	0,25
4,26	0,26
4,47	0,26

Sh	Sv
mm	mm
4,68	0,27
4,88	0,28
5,07	0,29
5,24	0,30
5,49	0,30

Il Direttore del Jaboratorio
Ing. Calogero Pajumbo Piccionello

<u>LIEDIERVICE</u> ,,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente Verbale n. 0205

Certificato n. 3132 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

Sondaggio

49

Campione

Profondità

5.60 m

Dati del provino

Descrizione	argilla limosa		
Sezione	20,000 cm ²	Densità umida iniziale	18,629 Kn/m³ γ
Altezza iniziale	20,000 mm	Densità umida finale	20,731 kN/m ³ γ
Altezza finale	16,910 mm	Densità secca iniziale	14,536 Kn/m³ γ
No. Tara 1	2	Umidità iniziale	28,159 % W
Massa tara 1	53,810 g	Umidità finale	20,584 % W
Tara + massa umida iniz.	129,77 g	Saturazione iniziale	90,207 % S
No. Tara 2	2	Saturazione finale	99,010 % S,
Massa tara 2	53,810 g	Indice dei vuoti iniziale	0,861 e
Tara + massa umida fin.	125,280 g	Indice dei vuoti finale	0,573 e.
Tara + massa secca finale Peso specifico dei grani	113,080 g 27,05 Kn/m³	Densità secca finale	17,192 Kn/m 3 γ

Gradino	P' kPa	ε %	е	M MPa	Cv cm²/s	K m/s	Metodo
1	50,0	0,990	0,842		4,275e-003		Casagrande
2	100,0	1,845	0,826	5,85	2,860e-004	4,794e-011	Casagrande
3	200,0	2,948	0,806	9,07	9,930e-004	1,075e-010	Casagrande
4	400,0	5,035	0,767	9,58	4,260e-004	4,362e-011	Casagrande
5	800,0	7,917	0,713	13,88	2,980e-004	2,110e-011	Casagrande
6	1600,0	11,126	0,654	24,93	1,290e-004	5,091e-012	Casagrande
7	3200,0	14,887	0,584	42,55	9,700e-005	2,236e-012	Casagrande
8	800,0	13,185	0,615			_,	Gudagraride
9	200,0	10,861	0,659				
10	50,0	8,637	0,700				

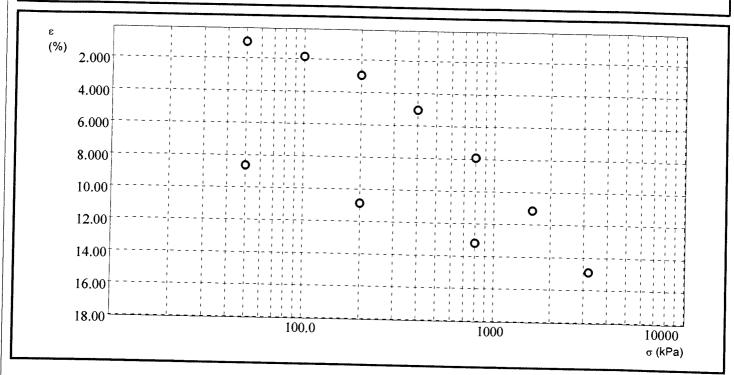
Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

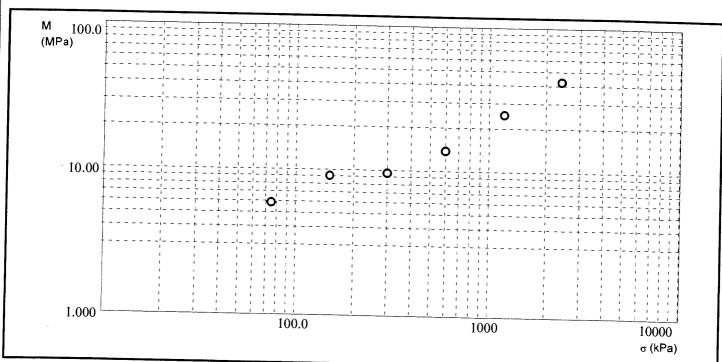
Lo Sperimentatore

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


Dati del Cliente	Verbale n. 0205	
Committente	TECHNITAL S.p.a.	
I madinis		


Certificato n. 3132 del 19/05/06

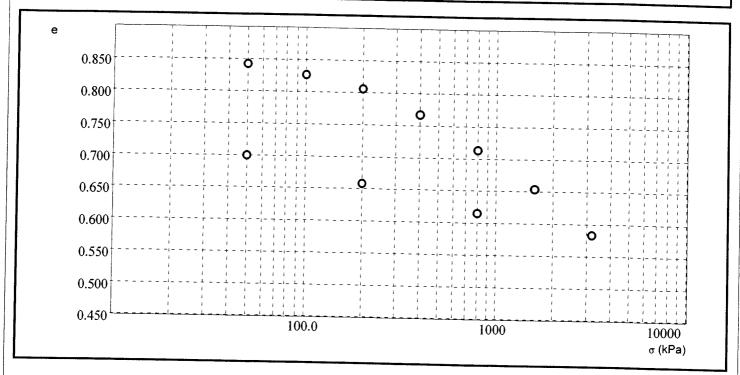
Indirizzo Cantiere

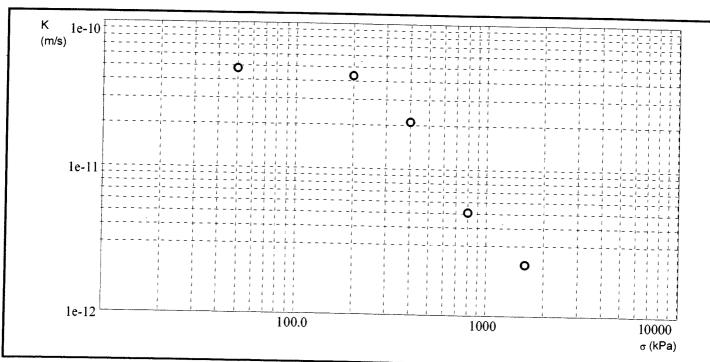
SS 640 Canicatti'-Caltanissetta

Sondaggio 49 Campione 1 Profondità 5.60 m

Il Direttore del Laboraforio Ing. Calogero Palumbo Pccionello

Lo Sperimentatore


Gugliet/no Sciascia


TEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

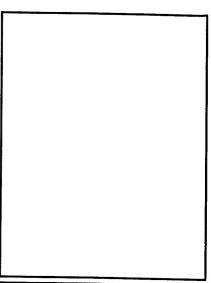
Dati del Cliente	Verbale n. 0205	Certificato n. 3132 del 19/05/06
Committente	TECHNITAL S.p.a.	0 0 1 1 1 0 1 0 2 del 1 3/03/00
Indirizzo	,	
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	49	
Campione	1	
Profondità	5.60 m	

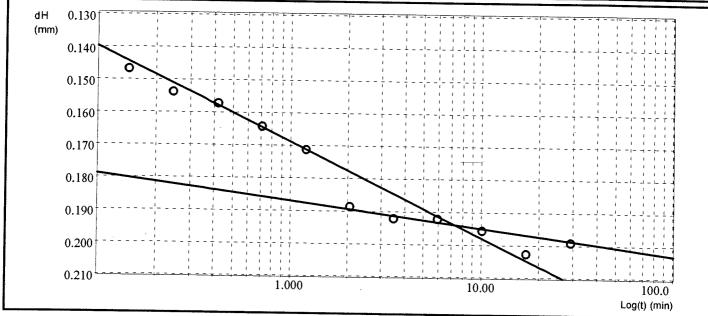
Il Direttore del Laboratorio
Ing. Calogero Palumbo Piccionello

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


Dati del Cliente	Verbale n. 0205	Certificato n. 3132 del 19/05/06
Committente	TECHNITAL S.p.a.	
Indirizzo		
Cantiere	SS 640 Canicatti'-Caltanissetta	
Sondaggio	49	
Campione	1	
Profondità	5.60 m	


Dati acquisiti del gradino 01

dt	dH
<u>min</u>	mm
0,05	0,129
0,09	0,136
0,14	0,147
0,25	0,154
0,42	0,157
0,71	0,164
1,21	0,171
2,05	0,189
3,49	0,192
5,93	0,192
10,08	0,196

σν 50,0 Kpa

_	, , ,	
	dt min	dH mm
	17,14	0,203
	29,13	0,199
		•

 ϵ 0,990 % e 0,842

Metodo Casagrande

Cv 4,28e-003 cm²/s

M K

Il Direttore de La poratorio Ing. Calogero Palymbo Piccionello

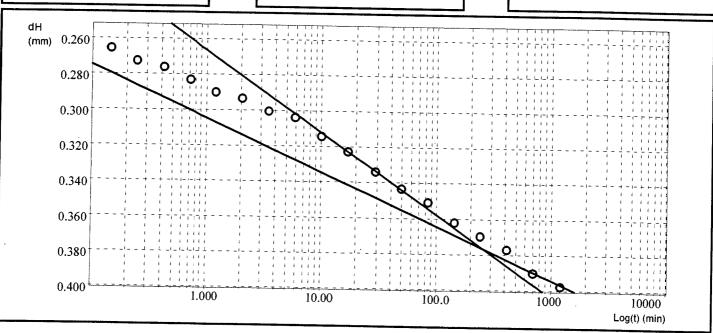
Lo Sperimentatore

Guglielmo Sciascia

<u>GEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


Dati del Cliente	Verbale n. 0205	Certificato n. 3132 del 19/05/06	
Committente	TECHNITAL S.p.a.		
Indirizzo	·		
Cantiere	SS 640 Canicatti - Caltanissetta		
Sondaggio	49		1
Campione	1		
Profondità	5.60 m		

Dati acquisiti del gradino 02

dt	dH
min	mm
0,05	0,252
0,09	0,259
0,14	0,266
0,25	0,273
0,42	0,276
0,71	0,283
1,21	0,290
2,05	0,294
3,49	0,300
5,93	0,304
10,08	0,314

σν 100,0 Kpa

dt	dH
min	mm
17,14	0,323
29,13	0,334
49,52	0,343
84,19	0,351
143,12	0,362
243,31	0,370
413,62	0,377
703,15	0,390
1195,36	0,398

ε 1,845 % e 0,826

Metodo Casagrande Cv 2,86e-004 cm²/s

CV 2,86e-004 cm²/s

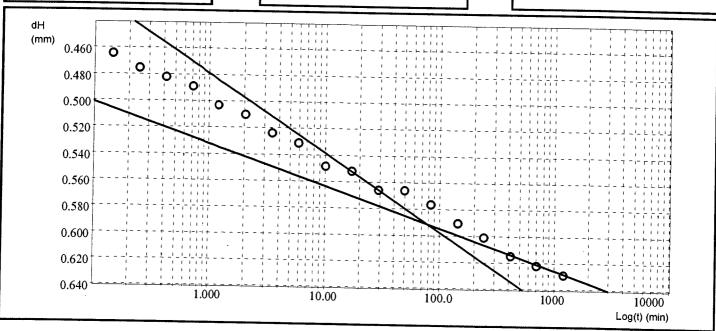
M 5,845 MPa K 4,79e-011 m/s

Il Direttore del Laporatorio Ing. Calogero Palumpo Piccionello

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


Dati del Cliente	Verbale n. 0205	Certificato n. 3132 del 19/05/06	
Committente	TECHNITAL S.p.a.		
Indirizzo			ı
Cantiere	SS 640 Canicatti'-Caltanissetta		
Sondaggio	49		ı
Campione	1		
Profondità	5.60 m		1

Dati acquisiti del gradino 03

dt	dH
min	mm
0,05	0,440
0,09	0,454
0,14	0,465
0,25	0,475
0,42	0,482
0,71	0,489
1,21	0,503
2,05	0,510
3,49	0,524
5,93	0,531
10,08	0,549

σν 200,0 Kpa

đt	dH
min	mm
17,14	0,552
29,13	0,566
49,52	0,566
84,19	0,577
143,12	0,590
243,31	0,601
413,62	0,615
703,15	0,622
1195,36	0,629

ε 2,948 % e 0,806 Metodo Casagrande Cv 9,93e-004 cm²/s

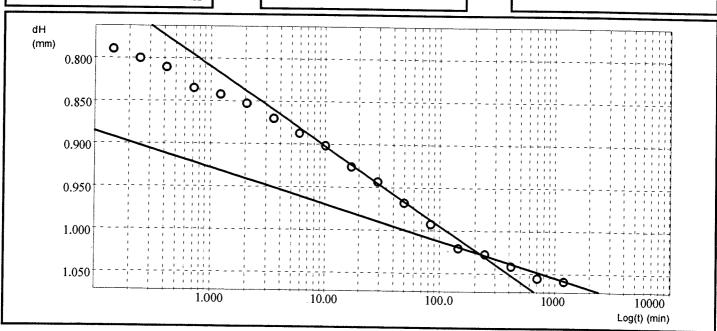
M 9,068 MPa K 1,07e-010 m/s

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

<u>LIEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)


THE PERSON (NOTH DETAIL)			
Dati del Cliente	Verbale n. 0205	Certificato n. 3132 del 19/05/06	
Committente	TECHNITAL S.p.a.		
Indirizzo			
Cantiere	SS 640 Canicatti'-Caltanissetta		
Sondaggio	49		
Campione	1		
Profondità	5.60 m		
			,

Dati acquisiti del gradino 04

dt	dH
min	mm
0,05	0,762
0,09	0,776
0,14	0,790
0,25	0,800
0,42	0,811
0,71	0,835
1,21	0,842
2,05	0,853
3,49	0,870
5,93	0,887
10,08	0,901

σν 400,0 Kpa

dt	dH
min	mm
17,14	0,926
29,13	0,943
49,52	0,968
84,19	0,992
143,12	1,020
243,31	1,027
413,62	1,041
703,15	1,055
1195,36	1,059

ε 5,035 %e 0,767Metodo Casagrande

Cv 4,26e-004 cm²/s

M 9,585 MPa K 4,36e-01,1 m/s

Il Direttore del Laboratorio Ing. Calogero Parumbol Pircionello

<u>LIEUERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati	aeı	CI	ente

Verbale n. 0205

Certificato n. 3132 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo Cantiere

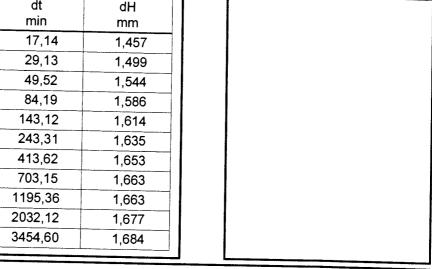
SS 640 Canicatti'-Caltanissetta

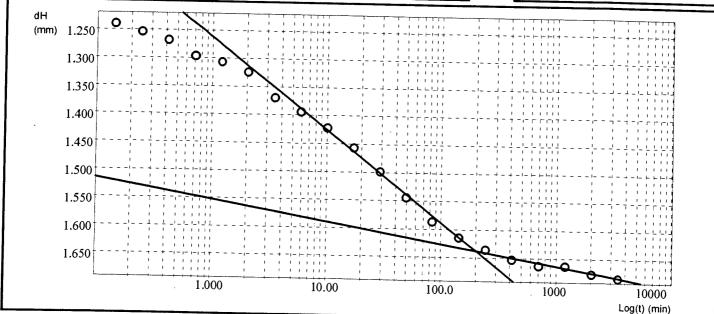
Sondaggio

49

Campione

Profondità


5.60 m


Dati acquisiti del gradino 05

dt	dH
min	mm
0,05	1,219
0,09	1,230
0,14	1,240
0,25	1,254
0,42	1,268
0,71	1,296
1,21	1,307
2,05	1,324
3,49	1,370
5,93	1,394
10,08	1,422

σv 800,0 Kpa

-		
	dt	dH
	min	mm
	17,14	1,457
	29,13	1,499
	49,52	1,544
	84,19	1,586
	143,12	1,614
	243,31	1,635
	413,62	1,653
	703,15	1,663
	1195,36	1,663
	2032,12	1,677
	3454,60	1,684

7,917 ε

%

0,713 е

Metodo Casagrande

Cv 2,98e-004 cm²/s

M

13,878

MPa

K

2,11e-011

Il Direttore del Laboratorio Ing. Calogero Palumbo

<u>LIEDERVICE</u> ,, PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Certificato n. 3132 del 19/05/06

Dati del Cliente	Verbale n. 0205
Committente	TECHNITAL S.n.a

Indirizzo

Cantiere

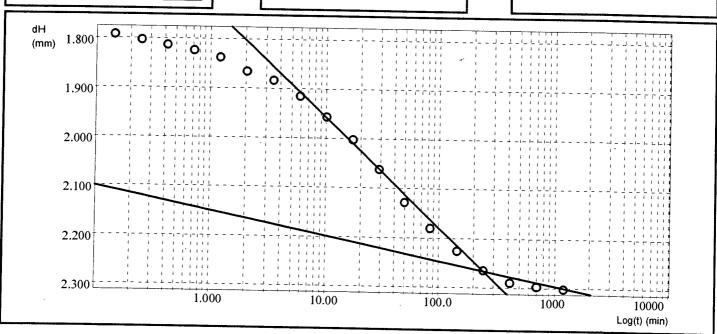
SS 640 Canicatti'-Caltanissetta

Sondaggio

49

Campione

Profondità


5.60 m

Dati acquisiti del gradino 06

dt	dH
min	mm
0,05	1,775
0,09	1,789
0,14	1,792
0,25	1,803
0,42	1,813
0,71	1,824
1,21	1,838
2,05	1,866
3,49	1,883
5,93	1,915
10,08	1,957

1600,0 Kpa σv

dt	dH
min	mm
17,14	2,002
29,13	2,061
49,52	2,128
84,19	2,180
143,12	2,226
243,31	2,264
413,62	2,289
703,45	2,296
1195,53	2,301

11,126 % 3

0,654

Metodo Casagrande

Cv 1,29e-004 cm²/s

М 24,928 MPa K 5,09e-012 m/s

Il Direttore del Il alfofatorio Ing. Calogero Palumb

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente

Verbale n. 0205

Certificato n. 3132 del 19/05/06

Committente

TECHNITAL S.p.a.

Indirizzo

Cantiere

SS 640 Canicatti'-Caltanissetta

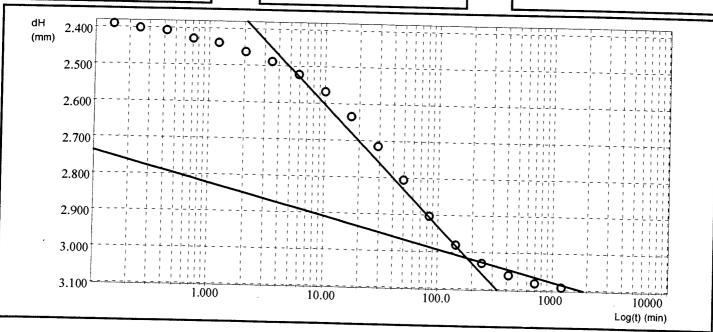
Sondaggio

49

Campione

1

Profondità


5.60 m

Dati acquisiti del gradino 07

dt	dH
min	mm
0,05	2,379
0,09	2,390
0,14	2,390
0,25	2,400
0,42	2,407
0,71	2,428
1,21	2,439
2,05	2,463
3,49	2,488
5,93	2,523
10,08	2,568

3200,0 Kpa

dt	dH
min	mm
17,14	2,635
29,13	2,715
49,52	2,806
84,19	2,904
143,12	2,980
243,31	3,029
413,62	3,061
703,15	3,082
1195,38	3,092

3

14,887

0,584

Metodo Casagrande

Cv

9,70e-005 cm²/s

М

е

42,546

MPa

%

K

2,24e-012

m/s

Il Direttore del 1 Ing. Calogero Parumi

PROVE DI LABORATORIO SUI TERRENI

Verbale n°

Il direttore del Laborato

o Piccionello

Ing. Caloger Pal

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

205

Lo sperimentatore

mo Sciascia

Verbale n°	205	Data ricev	imento [23/04/2006]		Data apertura	29/04/2006
Rapporto di prova nº	3133	Data emis	sione [19/05/2006]	Località: Canio	catti'-Caltanissetta
Committente: Technital S.				-		
Oggetto: Completamento de	ell'itinerario Agriç	gento-Calta	anissetta-A19 nel tratto	o dal Km	44+00 della	· · · · · · · · · · · · · · · · · · ·
SS 640 "di Porto Empedocle	<u>" allo svincolo c</u>	on la A19				
Sondonnio 40	To					
Sondaggio 49	Campione	2	Profondità 18,00	m	Contenitore	M
Descrizione del campione		Indisturba	to[X]		Rimaneggiato	o[]
	Argilla co	olore grigio	leggermente plastica.			
2						
Pt 4,2 Tv *					Pt 4,4	Tv *
Grado di cementazione	Dobale	1 .	4.4			· · · · · · · · · · · · · · · · · · ·
Grado di cementazione	Debole [<u> </u>	foderato [X]	Eleva	ato []	
Struttura	Omogenea [>	(] [Eterogenea []	Stra	tificata []	
Classe di Qualità	Q1 []	Q2 [] Q3 []	Q4		Q5 [X]
Consistenza	Molto tenero [] Tenero	[] Consistente [X] Molto	consistente [] Duro []
Reazione all'HCI	Nessuna [1 Debol	e [] Forte [1 N	on Eseguita	[X 1
	Nessuna [] Debol	e [] Forte [] N	on Eseguita	[X]
Reazione all'HCI Prove effettuate	Nessuna [] Debol	e [] Forte [] N	on Eseguita	[X]
Prove effettuate] Debol	e [] Forte [] N	on Eseguita	[X]
Prove effettuate Contenuto d'acqua	X] Debo	Prova edometrica] N	on Eseguita	[x]
Prove effettuate Contenuto d'acqua Limiti di Atterberg] Debo	Prova edometrica Taglio diretto] N		[x]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica	X] Debol	Prova edometrica Taglio diretto ELL] N	on Eseguita	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU		X	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU] N		[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU	J N	X	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU] N	X	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU] N	X	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU	No.	X	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU] N	X	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR Grandezze indice Contenuto d'acqua 1 ⁴ determ.	X] Debol	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU] N	X	[X]
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR Contenuto d'acqua 1^ determ. Contenuto d'acqua 2^ determ.	X X X X X	% %	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD		X	
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR Grandezze indice Contenuto d'acqua 1^ determ. Contenuto d'acqua media	26,29 26,06 26,17	% % %	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD		X X 20,057	kN/m ³
Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR Contenuto d'acqua 1^ determ. Contenuto d'acqua 2^ determ. Contenuto d'acqua media Peso specifico 1^ determ.	X X X X X 26,29 26,06 26,17 27,383	% % % kN/m³	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD		X X 20,057 15,897	kN/m ³ kN/m ³
Prove effettuate Contenuto d'acqua Limiti di Atterberg Analisi granulometrica Areometria Peso specifico Compattazione Proctor Penetrazione CBR Grandezze indice Contenuto d'acqua 1^ determ. Contenuto d'acqua media	26,29 26,06 26,17	% % %	Prova edometrica Taglio diretto ELL Triassiale UU Triassiale CU Triassiale CD		20,057 15,897 99,16	kN/m ³ kN/m ³

Data ricevimento [23/04/2006]

PROVE DI LABORATORIO SUI TERRENI AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a" via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

ANALISI GRANULOMETRICA

Verbale n° 0205 Data ricevimento 23/04/2006 Data apertura 29/04/2006	Certificato n° 3134 Ila con limo debolmente sabbiosa Data emissione 19/05/2006	Campione 2 Profondità 18,00 m
Committente Technital s.p.a. Cantiere SS. 640 canicatti' caltanissetta Richiedente Ing. Domenico D'Alessandro	CLASSIFICAZIONE: argi	Sondaggio 49 Cal

fine media grossa fine media grossa	media grosso fine media		
		media	grossa
		111111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			11
			•••
			•
			-+
			11

II direttore der Eaboratorio Ing.-Carogero Balanda Piccionello

1/1

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. Nº 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

LIMITI DI CONSISTENZA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Ing. Calogero

Località: Canicatti' - Caltanissetta

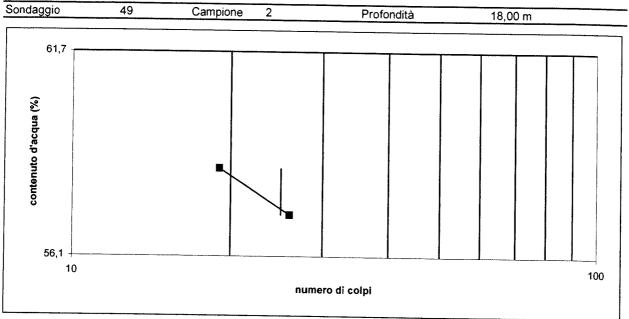
Verbale n° Data ricevimento

0205 23/04/2006

Data apertura

29/04/2006

Rapporto di prova nº

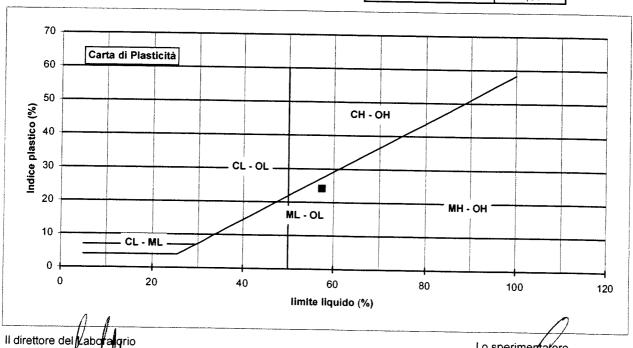

3135

Data emissione

19/05/2006

DESCRIZIONE:

argilla


Limite Liquido	%	57,36
Limite Plastico	%	33.23

Piccionello

Indice plastico	24
Consistenza	1,29
Liquidità	-0,29
Fluidità	9,32
Tenacità	2,59

Lo sperimentatore

Guglielmb Sciascia

1/1

PROVE DI LABORATORIO SUI TERRENI

AUT. MIN. N° 51130 DEL 29/09/2005 SETTORE "a"

via A. Labriola n. 21 - 92026 FAVARA (AG) - tel./fax 0922 437803

PROVA DI ESPANSIONE LATERALE LIBERA

Committente: Technital S.p.a.

Richiedente: Ing. Domenico D'Alessandro

Cantiere: SS. 640

Località: Canicatti' - Caltanissetta

Verbale n°

Data ricevimento

0205

Data apertura

23/04/2006 29/04/2006

Certificato n°

3136

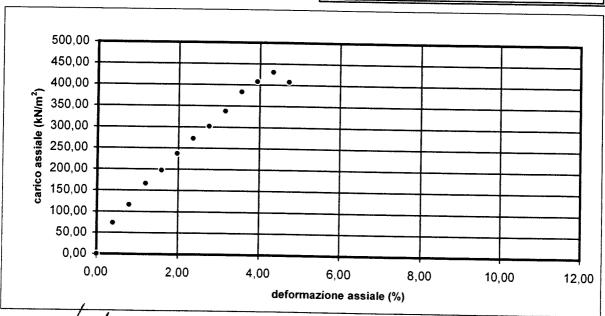
Data emissione

19/05/2006

O						
Sondaggio	40	Compions	_	5 (11.1		
Condaggio	43	Campione	7	Profondità	18,00 m	
				riololiula	10.00 111	
					,	

Diametro provino	38,10	mm
Altezza provino	76,20	mm
Velocità di prova	0,7600	mm/min
Costante di carico assiale	0,1505	kg/divis
Angolo di rottura		gradi

Letture di prova


DESCRIZIONE:

argilla

Dh	NL	Dh	NL
mm	div	mm	div
0,00	0	3,00	328
0,30	57	3,30	347
0,60	91	3,60	330
0,90	130		
1,20	155		,
1,50	187		
1,80	216		
2,10	240		
2,40	269		***
2,70	307		

Dh	NL	Dh	NL
mm	div	mm	div
			
	····		
			i

Resistenza massima	430.52	kN/m ²	
r toolotonza massima	430,32	KIMATI	

Il direttore del Laboratorio Ing. Calogero Palympo Piccionello

Lo sperimentatore

Guglielmo-Sciascia

<u>LIEDIERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3137 del 19/05/06

Cliente Technital S.p.a.
Indirizzo
Cantiere SS 640 Canicatti -Caltanissetta

Sondaggio 49
Campione 2
Profondità 18.00 m

Dati del provino n°1 - Vr 0.01 mm/min

Sezione provino Altezza iniziale Altezza finale No. Tara 1 Massa tara 1 Tara +massa umida iniziale	11,33 cm ² 76,00 mm 71,43 mm 0 0,00 g	Densità umida iniziale Densità umida finale Densità secca Umidità iniziale Umidità finale	19,99 Kn/m³ γ, 20,68 Kn/m³ γ, 15,99 Kn/m³ γ 25,01 % W, 21,51 % W,
No. Tara 2	175,49 g 0	Saturazione iniziale Saturazione finale	97,99 % S ₀ 98,53 % S,
Massa tara 2 Tara + massa umida finale 	0,00 g 170,58 g	Indice dei vuoti iniziale Indice dei vuoti finale	0,713 e _o
Tara + massa secca	140,38 g	Densità secca finale	17,02 Kn/m ³ γ ູ

Il Direttore del Laboratorio Ing. Calogero Palumdo Piccionello

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3137 del 19/05/06
Cliente	Technital S.p.a.	11 1000,00

Indirizzo

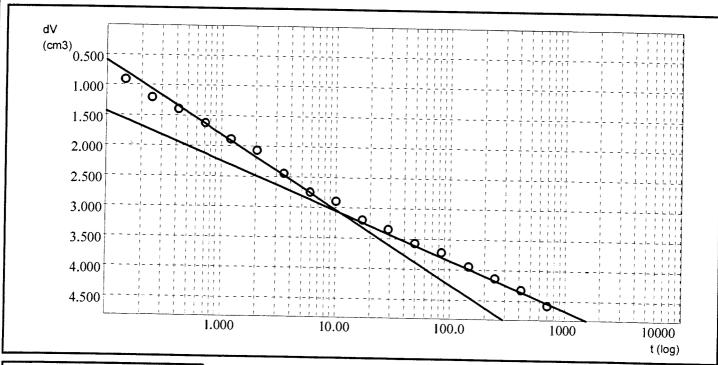
Technital S.p.a.

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio

49 2


Campione Profondità

18.00 m

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,00	0,53	17,64	2,98	3,19	82,81
0,00	0,79	23,91	2,98	3,34	90,33
0,00	0,91	28,29	2,98	3,57	100,36
3,51	1,21	33,31	2,98	3,72	109,76
3,51	1,39	38,32	2,98	3,94	125,43
3,51	1,62	42,71	2,98	4,13	135,45
3,51	1,88	48,35	2,98	4,32	147,36
3,51	2,07	54,61	2,98	4,58	159,27
3,51	2,44	59,63	2,98	4,73	164,28
2,98	2,74	66,52			
2,98	2,89	73,41			

Fase di Consolidazione

Risultati di elaborazione

 T_{100} (min): 11,28

Il Direttore del Laberatorio

Ing. Calogero Palumb **∦**iccionello Lo Sperimentator

Guglielmo Sciascia

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

١.	Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3137 del 19/05/06
	Cliente	Technital S.p.a.	
	Indirizzo	·	
	Cantiere	SS 640 Canicatti -Caltanissetta	
	Sondaggio	49	
	Campione	2	
	Profondità	18.00 m	

[13.1		T
dH	dN	dU
mm	N	kPa
0,00	0,00	0,00
0,35	17,15	1,06
0,62	34,01	1,58
0,90	55,09	2,02
1,14	67,74	2,54
1,43	81,79	3,03
1,71	97,25	3,42
1,97	115,52	3,90
2,28	135,20	4,38
2,63	152,06	5,17
2,93	167,52	5,74
3,24	192,82	6,30
3,57	205,47	6,87
3,90	216,71	7,31
4,27	221,30	7,66
4,57	216,61	8,14

Il Direttore del Labbratorio ing. Calogero Palumbo Aiccionello

EEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente

Verbale n. 0205

Rapporto di prova n. 3137 del 19/05/06

Cliente Indirizzo

Technital S.p.a.

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio

49

Campione

2

Profondità

18.00 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	ť kPa	s' kPa	Α
0,00	0,00	0,00	100,00	100,00	1,00	100,00	0,00	0,000
0,47	15,06	1,06	114,00	98,94	1,15	106,47	7,53	<u>-</u>
0,81	29,77	1,58	128,19	98,42	1,30	113,30	14,89	0,070
1,19	48,05	2,02	146,03	97,98	1,49	122,00	24,02	0,053
1,50	58,89	2,54	156,34	97,46	1,60	126,90	29,44	0,042
1,88	70,84	3,03	167,81	96,97	1,73	132,39	35,42	0,043
2,25	83,90	3,42	180,49	96,58	1,87	138,53	41,95	0,043
2,59	99,32	3,90	195,42	96,10	2,03	145,76		0,041
3,00	115,75	4,38	211,37	95,62	2,21	153,49	49,66	0,039
3,46	129,57	5,17	224,40	94,83	2,37	159,62	57,87	0,038
3,86	142,15	5,74	236,41	94,26	2,51	165,34	64,79	0,040
4,26	162,93	6,30	256,62	93,70	2,74		71,07	0,040
4,69	172,83	6,87	265,96	93,13	2,74	175,16	81,46	0,039
5,13	181,47	7,31	274,15	92,69		179,54	86,42	0,040
5,61	184,35	7,66	276,69	92,34	2,96	183,42	90,73	0,040
6,02	179,68	8,14	271,54		3,00	184,52	92,18	0,042
-,	,	0, 14	27 1,04	91,86	2,96	181,70	89,84	0,045

Il Direttore del Laboratorio Ing. Calogero Palumbo Piccionello

ENVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3137 del 19/05/06
Cliente	Technital S.p.a.	
Indirizzo	•	
Cantiere	SS 640 Canicatti -Caltanissetta	
Sondaggio	49	
Campione	2	
Profondità	18.00 m	

Dati del provino n°2 - Vr 0.01 mm/min

Sezione provino	11,33 cm ²	Densità umida iniziale	19,84 Kn/m³ γ
Altezza iniziale	76,00 mm	Densità umida finale	20,73 Kn/m³ γ
Altezza finale	70,34 mm	Densità secca	15,75 Kn/m³ _V
No. Tara 1	0	Umidità iniziale	25,98 % W
Massa tara 1	0,00 g	Umidità finale	21,81 % W
Tara +massa umida iniziale	174,16 g	Saturazione iniziale	98,20 % S ₀
No. Tara 2	0	Saturazione finale	99,95 % S.
Massa tara 2	0,00 g	Indice dei vuoti iniziale	
Tara + massa umida finale	168,39 g	Indice dei vuoti finale	2.222
Tara + massa secca	138,24 g	Densità secca finale	0,609 e, 17,02 Kn/m³γ _a ,

Il Direttore del Laboratorio Ing. Calogero Palumpo Piccionello

<u>LEDERVICE</u> , PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Cliente

Rapporto di prova n. 3137 del 19/05/06

Technital S.p.a.

Indirizzo Cantiere

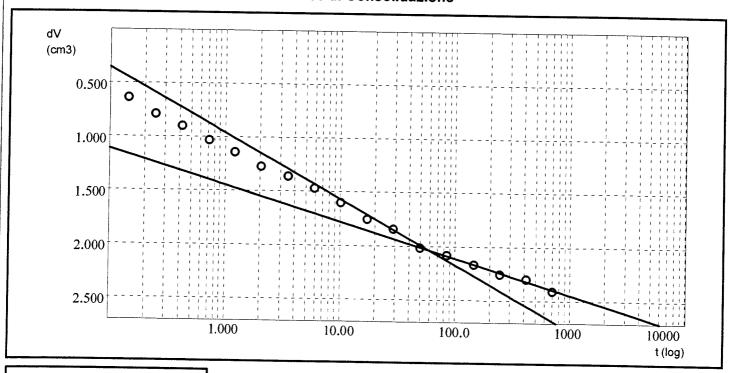
Sondaggio

SS 640 Canicatti -Caltanissetta

Campione

49

2


Profondità

18.00 m

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,00	0,35	13,87	3,51	1,75	78,83
0,00	0,53	18,24	3,51	1,84	88,19
0,00	0,64	21,99	3,51	2,02	101,94
3,51	0,79	26,98	3,51	2,08	113,80
3,51	0,90	31,36	3,51	2,17	126,30
3,51	1,03	36,98	3,51	2,26	140,04
3,51	1,14	40,72	3,51	2,30	154,40
3,51	1,27	46,35	3,51	2,41	161,27
3,51	1,36	53,22	3,51	2,50	164,40
3,51	1,47	60,71			
3,51	1,60	70,08			

Fase di Consolidazione

Risultati di elaborazione

 T_{100} (min): 60,90

Il Direttore del Laberttorio Ing. Calogere Palumbo Piccionello

<u>CIEDIERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3137 del 19/05/06

Cliente Technital S.p.a.
Indirizzo
Cantiere SS 640 Canicatti -Caltanissetta

Sondaggio 49
Campione 2
Profondità 18.00 m

~		
dH	dN	dU
mm	N	kPa
0,00	0,00	0,00
0,27	34,10	0,35
0,55	54,72	0,55
0,79	86,57	0,70
1,05	110,93	0,88
1,27	129,67	1,08
1,51	161,52	1,28
1,71	185,88	1,53
2,02	208,37	1,73
2,28	228,98	1,95
2,54	257,09	2,13
2,82	273,95	2,38
3,15	292,69	2,58
3,50	309,56	2,75
3,83	320,80	3,00
4,16	321,99	3,23
4,57	320,42	3,45
4,86	315,74	3,65
5,29	314,18	3,90
5,67	309,49	4,08

Il Direttore del Laboratorio Ing. Calogero Palumbo I iccionello

Lo Spermentatore

Guglielmo Sciascia

<u>LIEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente

Verbale n. 0205

Rapporto di prova n. 3137 del 19/05/06

Cliente

Technital S.p.a.

Indirizzo

Cantiere Sondaggio SS 640 Canicatti -Caltanissetta

Campione

49

Profondità

2

18.00 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	ť kPa	s' kPa	Α
0,00	0,00	0,00	200,00	200,00	1,00	200,00	0,00	0,000
0,35	29,99	0,35	229,64	199,65	1,15	214,64	15,00	
0,72	47,94	0,55	247,39	199,45	1,24	223,42	23,97	0,012
1,04	75,61	0,70	274,91	199,30	1,38	237,10	37,81	0,012
1,39	96,55	0,88	295,67	199,12	1,48	247,40	48,28	0,009
1,67	112,53	1,08	311,45	198,92	1,57	255,19		0,009
1,99	139,73	1,28	338,45	198,72	1,70	268,58	56,27	0,010
2,25	160,37	1,53	358,84	198,47	1,81		69,86	0,009
2,65	179,03	1,73	377,30	198,27	1,90	278,66	80,19	0,010
3,00	196,04	1,95	394,09	198,05	1,99	287,79	89,52	0,010
3,34	219,33	2,13	417,20	197,87	2,11	296,07	98,02	0,010
3,72	232,81	2,38	430,43	197,62		307,53	109,66	0,010
4,15	247,62	2,58	445,04		2,18	314,03	116,40	0,010
4,61	260,63	2,75	457,87	197,42	2,25	321,23	123,81	0,010
5,04	268,87	3,00		197,25	2,32	327,56	130,31	0,011
5,47	268,64	<u>-</u>	465,87	197,00	2,36	331,43	134,44	0,011
6,02		3,23	465,41	196,77	2,37	331,09	134,32	0,012
	265,79	3,45	462,34	196,55	2,35	329,44	132,90	0,013
6,39	260,86	3,65	457,21	196,35	2,33	326,78	130,43	0,014
6,97	257,98	3,90	454,08	196,10	2,32	325,09	128,99	0,015
7,46	252,80	4,08	448,72	195,92	2,29	322,32	126,40	0,016

<u>LEDERVICE</u> ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente

Verbale n. 0205

Rapporto di prova n. 3137 del 19/05/06

Cliente

Technital S.p.a.

Indirizzo

Cantiere Sondaggio SS 640 Canicatti -Caltanissetta 49

Campione

Profondità

18.00 m

Dati del provino nº3 - Vr 0.01 mm/min

Sezione provino Altezza iniziale Altezza finale No. Tara 1 Massa tara 1 Tara +massa umida iniziale No. Tara 2 Massa tara 2	11,33 cm ² 76,00 mm 71,37 mm 0 0,00 g 172,88 g 0	Densità umida iniziale Densità umida finale Densità secca Umidità iniziale Umidità finale Saturazione iniziale Saturazione finale	19,70 Kn/m ³ 20,42 Kn/m ³ 15,63 Kn/m ³ 26,02 % 22,71 % 96,60 % 98,26 %
Massa tara 2 Tara + massa umida finale	0,00 g 168,34 g	Indice dei vuoti iniziale Indice dei vuoti finale	0,752 6 0,645
Tara + massa secca	137,18 g	Densità secca finale	16,64 Kn/m ³

Il Diretto de del Laboratorio Ing. Calogero Patimbo Piccionello

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente

Verbale n. 0205

Rapporto di prova n. 3137 del 19/05/06

Cliente

Technital S.p.a.

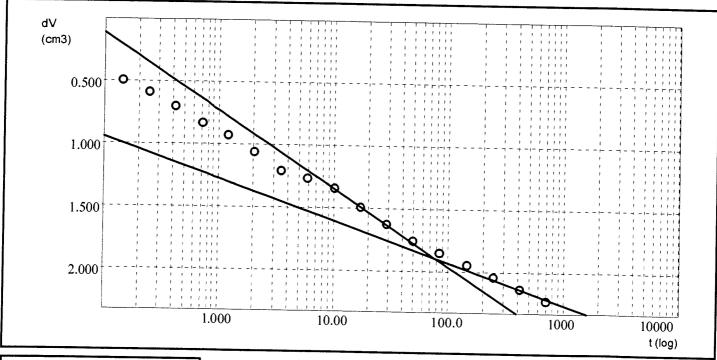
Indirizzo

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio

Campione


Profondità

18.00 m

Dati acquisiti

dH mm	dV cm3	dU kPa	dH mm	dV cm3	dU kPa
0,00	0,27	26,98	2,98	1,49	118,80
0,00	0,38	30,11	2,98	1,62	128,17
0,00	0,49	35,10	2,98	1,76	142,54
3,51	0,59	41,35	2,98	1,85	152,53
3,51	0,70	48,22	2,98	1,95	161,90
3,51	0,83	58,21	2,98	2,04	170,64
3,51	0,93	66,96	2,98	2,13	176,26
3,51	1,06	75,08	2,98	2,23	181,89
2,98	1,21	88,19	2,98	2,30	185,63
2,98	1,27	98,19			
2,98	1,34	109,43			

Fase di Consolidazione

Risultati di elaborazione

 T_{100} (min): 79,75

Il Direttore del Laporajorio Ing. Calogero Palumb ccionello

Lo Sperimentator

Guglietho Sciascia

<u>LIEDIERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente	Verbale n. 0205	Rapporto di prova n. 3137 del 19/05/06
Cliente	Technital S n a	

Indirizzo Cantiere Technital S.p.a.

SS 640 Canicatti -Caltanissetta

Sondaggio 49
Campione 2
Profondità 18.00 m

dN N	dU kPa
0,00	0,00
40,47	0,42
80,45	0,83
115,43	1,14
157,90	1,48
192,88	1,93
230,36	2,24
262,84	2,65
295,32	3,10
332,79	3,41
370,27	3,68
407,75	4,06
415,80	4,37
415,80	4,85
415,80	5,13
409,24	5,54
400,50	5,81
391,76	6,12
	N 0,00 40,47 80,45 115,43 157,90 192,88 230,36 262,84 295,32 332,79 370,27 407,75 415,80 415,80 415,80 409,24 400,50

Il Direttore del Laboratorio Ing. Calogero Patumbo Hiscionello

LEDERVICE ... PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Cliente

Technital S.p.a.

Rapporto di prova n. 3137 del 19/05/06

Indirizzo

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio

49

Campione

2

Profondità

18.00 m

Dati elaborati

eps %	(s1-s3) kPa	dU kPa	s1' kPa	s3' kPa	s1'/s3'	t' kPa	s' kPa	Α
0,00	0,00	0,00	300,00	300,00	1,00	300,00		0.00
0,41	35,58	0,42	335,16	299,58	1,12	317,37	0,00	0,00
0,81	70,43	0,83	369,60	299,17	1,12		17,79	0,01
1,13	100,73	1,14	399,59	298,86	·	334,38	35,21	0,01
1,44	137,35	1,48	435,87	298,52	1,34	349,22	50,36	0,01
1,76	167,24	1,93	465,31		1,46	367,19	68,68	0,01
2,13	198,98	2,24	 	298,07	1,56	381,69	83,62	0,01
2,45	226,30		496,74	297,76	1,67	397,25	99,49	0,01
2,80		2,65	523,64	297,35	1,76	410,50	113,15	0,01
	253,36	3,10	550,26	296,90	1,85	423,58	126,68	0,01
3,11	284,58	3,41	581,18	296,59	1,96	438,88	142,29	0,01
3,52	315,32	3,68	611,63	296,32	2,06	453,98	157,66	0,01
3,95	345,68	4,06	641,62	295,94	2,17	468,78	172,84	
4,26	351,35	4,37	646,98	295,63	2,19	471,30	175,67	0,012
4,69	349,76	4,85	644,91	295,15	2,19			0,01
5,04	348,50	5,13	643,37	294,87		470,03	174,88	0,014
5,38	341,75	5,54	636,22	294,46	2,18	469,12	174,25	0,018
5,73	333,23	5,81	627,42		2,16	465,34	170,88	0,016
6,10	324,66	6,12		294,19	2,13	460,80	166,62	0,017
	52.,00	0,12	618,54	293,88	2,10	456,21	162,33	0,019

<u>LEDERVICE</u> PROVE DI LABORATORIO SUI TERRENI AUT. MIN. 51130 DEL 29/09/2005 SETTORE << a >>

Sede Legale: Via A. Di Giovanni n. 45 92100 Agrigento - Laboratorio: Via A. Labriola n. 21 92026 Favara (Ag)

PROVA TRIASSIALE CU (ASTM D4767)

Dati del Cliente Verbale n. 0205 Rapporto di prova n. 3137 del 19/05/06 Committente

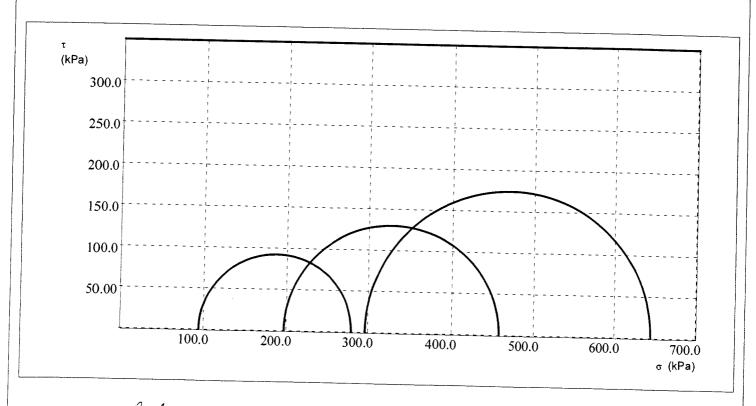
Indirizzo

Technital S.p.a.

Cantiere

SS 640 Canicatti -Caltanissetta

Sondaggio Campione


49

2 Profondità 18.00 m

Risultati di prova

Provino	Ho mm	A cm²	γ _n g/cm ³	γ _d g/cm ³	Wo %	Wf %	So %	Sf %
	76,00	11,33	2,04	1,63	25,01	21,51	97,99	98,53
	76,00	11,33	2,02	1,61	25,98	21,81	98,20	99,95
	76,00	11,33	2,01	1,59	26,02	22,71	96,60	98,26

σ _{IC} kPa	σ _{3C} kPa	BP kPa	ε %	$\sigma_1 - \sigma_3$ kPa	σ' ₁ / σ' ₃	dU kPa	Α
300,00	300,00	200,00	3,69	185.08	1.00		0.00
400,00	400,00	200,00		<u>-</u>	 		0,03
500,00	500,00	200,00			 	<u>-</u>	0,01 0,01
	kPa 300,00 400,00	kPa kPa 300,00 300,00 400,00 400,00	kPa kPa kPa 300,00 300,00 200,00 400,00 400,00 200,00	kPa kPa kPa % 300,00 300,00 200,00 3,69 400,00 400,00 200,00 4,17	kPa kPa kPa % kPa 300,00 300,00 200,00 3,69 185,08 400,00 400,00 200,00 4,17 260,37	kPa kPa kPa % kPa % kPa % <th< td=""><td>kPa kPa kPa %</td></th<>	kPa kPa kPa %

Il Direttore del La poratorio Ing. Calogero Palumbo Hiccionello