

COMUNE DI STIGLIANO

OGGETTO:

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO AGRI-VOLTAICO A TERRA "STIGLIANO" DELLA POTENZA NOMINALE DI 20 MW LOCALITA" "STANZALAURO" NEL COMUNE DI STIGLIANO (MT)

ELABORATO:

RAPPORTO DELLE INDAGINI

PROPONENTE:

PROGETTAZIONE:

Ing. Carmen Martone Iscr. n.1872 Ordine Ingegneri Potenza C.F MRTCMN73D56H703E

COMPAGNIA DEL SOLE DUE S.R.L. P.IVA IT04320530985 VIA ALDO MORO, 28 25043- BRENO (BS) Geol. Raffaele Nardone Iscr. n. 243 Ordine Geologi Basilicata C.F NRDRFL71H04A509H EGM PROJECT S.R.L. VIA VERRASTRO 15/A 85100- POTENZA (PZ) P.IVA 02094310766 REA PZ-206983

BASILIC

Livello prog.	Cat. opera	N°. prog.elaborato	Tipo elaborato	N° foglio	Tot. fogli	Nome file	Scala
PD	I.IF	A.2.a	R				PARK
REV.	DATA		DESCRIZIONE		ESEGUI	TO VERIFICATO	APPROVATO
00	GENNAIO 20	023	Emission	е		Geol, Raffaele Nardor EGM Project	e Geol. Raffaele Nardone EGM Project
						NARRONE	

INDICE

1. Premessa	2
2. Prospezioni sismiche di tipo Masw	3
2.1 Attrezzatura e metodologia utilizzata	3
2.2. Elaborazione dati	5
2.3. Interpretazione	6
2.3.1 MASW01 Interpretazione	7
2.4. Interpretazione	13
2.4.1 MASW02 Interpretazione	14
2.5. Interpretazione	20
2.5.1 MASW03 Interpretazione	21
3. Prove penetrometriche dinamiche continue DPSH	27
4. Report fotografico	29
4.1. Indagine sismica di tipo MASW	29
4.2. Indagine Penetrometrica dinamica continua DPSH	30
4.4. Ubicazione delle Indagini	34

1. Premessa

Nell'ambito dei Lavori di "Progetto definitivo per la realizzazione di un parco Agri-Voltaico a terra "Stigliano" della potenza nominale di 20 MW località "Stanzalauro" nel comune di Stigliano (MT)", è stata eseguita una campagna di indagini geognostiche con lo scopo di ricostruire l'andamento stratigrafico del sottosuolo e il comportamento meccanico dei terreni, l'indagine ha previsto le seguenti lavorazioni:

- Esecuzione di n° 3 Indagine sismica di tipo MASW;
- Esecuzione di n° 6 indagini geognostiche di tipo DPSH.

Tali indagini sono state eseguite in conformità a quanto disposto da D.M. 17/01/2018 "*Norme tecniche per le Costruzioni*", oltre che secondo le modalità tecnologiche dell'ANISIG.

Si riportano in allegato alla presente:

1. Prove DPSH;

.... Engineering Geology Srl Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

2. Prospezioni sismiche di tipo Masw

MASW è l'acronimo di Multi-channel Analysis of Surface Waves (Analisi Multi-canale di Onde di Superficie). Ciò indica che il fenomeno che si analizza è la propagazione delle onde di superficie.

La MASW classica/standard consiste nella registrazione della propagazione di una classe di onde di superficie (specificatamente delle onde di Rayleigh). Più in dettaglio, le onde di Rayleigh vengono generate da una sorgente ad impatto verticale (in genere mediante massa battente del peso di 10 Kg su piastra in alluminio) o da un cannoncino sismico e vengono poi registrate tramite geofoni a componente verticale a frequenza propria di 4.5 Hz.

Più specificatamente si analizza la dispersione delle onde di superficie sapendo che frequenze diverse - e quindi lunghezze d'onda diverse - viaggiano a velocità diversa. Il principio di base quindi è piuttosto semplice: le varie componenti (frequenze) del segnale (cioè della perturbazione sismica che si propaga) viaggiano ad una velocità che dipende dalle caratteristiche del mezzo.

In particolare, le lunghezze d'onda più ampie (cioè le frequenze più basse) sono influenzate dalla parte più profonda (in altre termini "sentono" gli strati più profondi), mentre le piccole lunghezze d'onda (le frequenze più alte) dipendono dalle caratteristiche della parte più superficiale.

Poiché tipicamente la velocità delle onde sismiche aumenta con la profondità, ciò si rifletterà nel fatto che le frequenze più basse (delle onde di superficie) viaggeranno ad una velocità maggiore rispetto le frequenze più alte.

2.1 Attrezzatura e metodologia utilizzata

La strumentazione utilizzata è il sismografo W2Z a 24 canali Wireless della DOLANG GEOPHYSICAL dalle seguenti caratteristiche tecniche: gestione a microprocessore, Sampling Frequency 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, 16000 Hz; Number of samples in trigger mode 256, 516, 1024, 4096, 8192, 16384; risoluzione a 24 bit; acquisizione dei dati e codifica dei file in formato Seg-2-Y E DAT.

I geofoni sono connessi al pc in modalità wireless con range massimo di 500 m in campo aperto con la possibilità di inserire in serie 256 geofoni con frequenza propria di 4,5 Hz, il sensore

.... Engineering Geology Srl Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

trigger è inserito all'interno della mazza battente di 10 kg.



Le indagini si sono svolte secondo la seguente geometria:

- Numero di geofoni:12
- Spaziatura tra i geofoni: 2 m
- Numero di offset: 2 rispettivamente a 9, 10; m dal primo geofono.

Per l'interpretazione dei dati è stato utilizzato il software WinMasw Pro 4.4.2 della Eliosoft.

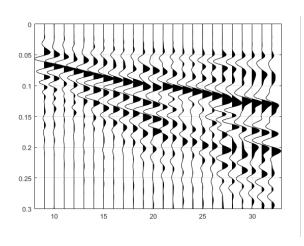
I dati sperimentali, acquisiti in formato SEG-2, sono stati trasferiti su PC e convertiti in un formato compatibile (.sgy format file). Il software a questo punto permette di sommare due dataset acquisiti con offset diversi in modo da ottenere un unico dataset equivalente ad un'acquisizione effettuata con 24 canali e spaziatura tra i geofoni pari a B/2 rispetto a quella utilizzata in campagna.

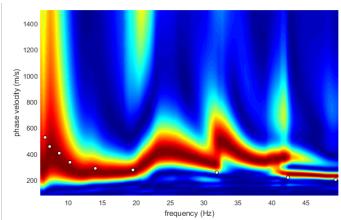
Nota bene: si ottiene un dataset in cui la spaziatura dei geofoni è pari a B/2

.... ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

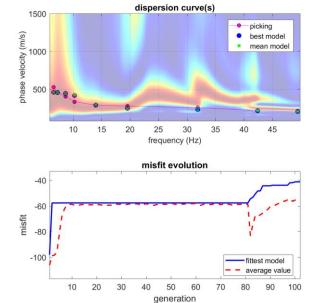
2.2. Elaborazione dati

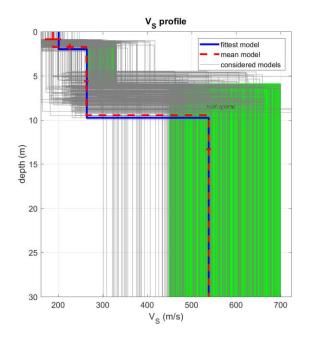
L'analisi consiste nella trasformazione dei segnali registrati in uno spettro bidimensionale "phase velocity-frequency (c-f)" che analizza l'energia di propagazione delle onde superficiali lungo la linea sismica. Dallo spettro bidimensionale ottenuto dalle registrazioni è possibile distinguere il "modo fondamentale" delle onde di superficie, in quanto le onde di Rayleigh presentano un carattere marcatamente dispersivo che le differenzia da altri tipi di onde (onde riflesse, onde rifratte, onde multiple). Sullo spettro di frequenza viene eseguito un "picking" attribuendo ad un certo numero di punti una o più velocità di fase per un determinato numero di frequenze. Tali valori vengono successivamente riportati su un diagramma periodo-velocità di fase per l'analisi della curva di dispersione e l'ottimizzazione di un modello interpretativo. Variando la geometria del modello di partenza ed i valori di velocità delle onde S si modifica automaticamente la curva calcolata di dispersione fino a conseguire un buon "fitting" con i valori sperimentali.



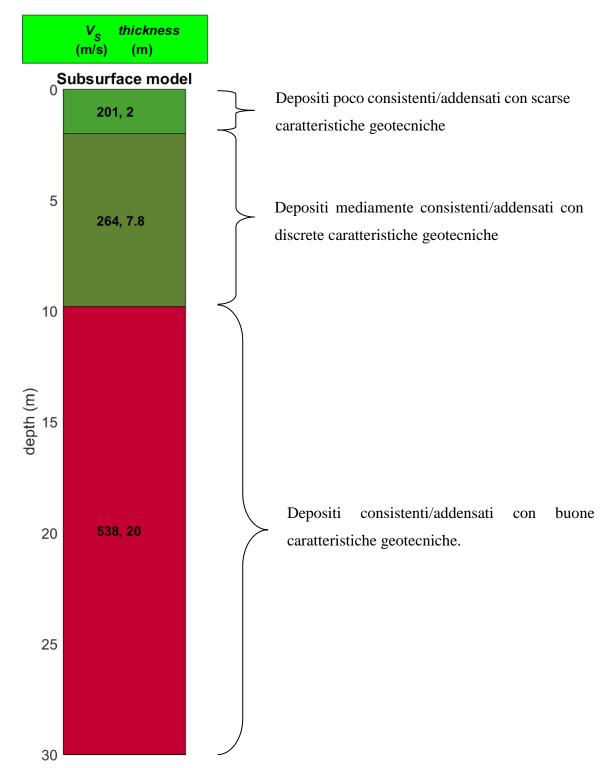

.... Engineering Geology SRL Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it


2.3. Interpretazione


Masw 01.

Nelle figure sottostanti sono riportati i risultati dell'inversione della curva di dispersione determinata tramite analisi di dati MASW. In alto a sinistra: spettro osservato, curve di dispersione piccate e curve del modello individuato dall'inversione. Sulla destra il profilo verticale $V_{\rm S}$ identificato (vedi anche Tabella 1). In basso a sinistra l'evolversi del modello al passare delle "generazioni" (l'algoritmo utilizzato per l'inversione delle curve di dispersione appartiene alla classe degli Algoritmi Genetici – Dal Moro et al., 2007).


2.3.1 MASW01 Interpretazione

In tabella e in figura sottostante sono riportati gli strati del modello medio individuato a cui corrisponde una **Vs30 di 389,4 m/s** a partire dal p.c secondo la D.M. 17/01/2018 "*Norme tecniche per le Costruzioni*".

Spessore (m)	VS (m/s) e deviazioni standard
2	201±18
7.8	264±18
semi-spazio	538±5

in cui:

.... Engineering Geology srl

Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

La stratigrafia del sottosuolo può essere assimilata ad un modello costituito da tre sismostrati

- Il primo sismostrato presenta uno spessore di circa 2.0 m, con velocità media delle onde di taglio di 201 m/s e corrisponde a depositi poco consistenti/addensati con scarse caratteristiche geotecniche;
- Il secondo sismostrato presenta uno spessore di circa 7.8 m, con velocità media delle onde di taglio di 264 m/s e corrisponde a depositi mediamente consistenti/addensati con discrete caratteristiche geotecniche;
- Il terzo sismostrato, che si rinviene a profondità maggiori di 9.8 m dal p.c. e fino alla profondità di investigazione, superiore ai 30 m di profondità, presenta velocità V_s media di 538 m/s.

Calcolo dei parametri elastici dinamici dei terreni

A partire dai valori di velocità delle onde sismiche V_S (m/s), ed adottando opportuni valori del Peso di volume γ (g/cm³) e del rapporto di Poisson rappresentativo dei litotipi presenti, è possibile inoltre <u>stimare attraverso relazioni empiriche</u>, la velocità delle onde di compressione V_P e i moduli dinamici del sottosuolo per ogni orizzonte sismico individuato.

La velocità delle onde P è stata ricavata empiricamente attraverso la seguente relazione:

$$V_P^2 = V_S^2 * (2-2\lambda)/(1-2\lambda)$$

Sono stati definiti inoltre i seguenti moduli dinamici:

- Modulo di taglio dinamico (G)

È definito dalla seguente equazione:

$$G = \gamma \cdot V s^2$$

.... Engineering Geology srl

Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

Dove γ = densità

Tale parametro è fortemente dipendente dalla porosità e dalla pressione; assume valori più bassi in litotipi ad alta porosità, sottoposti a basse pressioni e saturati in acqua.

- Modulo di Young (Ed)

È definito dalla seguente equazione:

$$\mathbf{E}_{\mathbf{d}} = \left[\mathbf{V}_{\mathbf{P}}^{2} \cdot \mathbf{\gamma} \cdot (1+\lambda) \cdot (1-2\lambda) \right] / (1-\lambda) \right]$$

Con λ = coeff. di Poisson

Rigidità sismica

$$\mathbf{R}_{s} = \gamma \mathbf{V}_{s}$$

Tale modulo dipende dalla porosità e dalla pressione litostatica.

Modulo di incompressibilità dinamica

È definito dalla seguente equazione:

$$\mathbf{K} = \gamma [\mathbf{V}_{\mathbf{P}^2} - 4/3 \cdot \mathbf{V}_{\mathbf{S}^2}]$$

ed è detto Bulk Modulus.

.... ENGINEERING GEOLOGY SRL

Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

Calcolo dei parametri elastici statici dei terreni

I moduli elastici dinamici sono misurati per piccole deformazioni (<10-4) e si osserva che i loro valori decrescono con l'aumentare delle deformazioni. I moduli elastici statici misurati in laboratorio sono pertanto più piccoli di quelli misurati in sito e delle correlazioni empiriche

permettono di ottenerli partendo da quelli elastici dinamici.

Nelle misure di laboratorio il rapporto Ed/Es (Ed modulo di Young o elastico dinamico -Es

modulo di Young o elastico statico) è comunemente 2.0 (Cheng and Johnston, 1981), ma per misure

in sito questo rapporto varia fra 1.5 e 9.1 (Gudmundsson, 1990; Link, 1968).

Rzhevsky e Novik hanno proposto le seguente relazione:

Edin=8.3 Estat+0.97 Estat= (Edin-0.97)/8.3

Massarch (1984) ha proposto la seguente relazione per passare dal modulo di taglio dinamico

a quello statico:

Gstat=R*G

Dove R è un parametro che 0.18 per le ghiaie, 0.15 per le sabbie mediamente dense e 0.11 per

le argille, dai due parametri si ricavano gli altri parametri elastici.

Modulo di Poisson v = (E-2G)*/(2G)

Modulo di compressibilità volumetrico K=G*E/[3(3G-E)]

Moulo edometrico Eed=G*(4G-E)*/(3G-E)

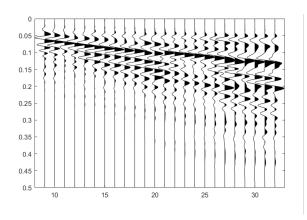
 $Me=16G2/[\pi(4G-E)]$ Modulo di carico su piastra

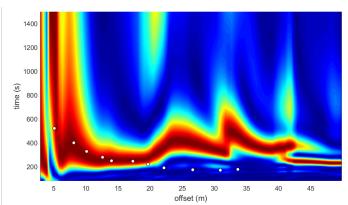
PA	PARAMETRI FISICI E DINAMICI MEDI DEL SOTTOSUOLO INDAGATO CON LA MASW 01										
STRATO	SPESSOR E m	Vp m/s	Vs m/s	γ g/cm ³	λ (-)	MODULO DI YOUNG E Kg/cm ²	R g/cm ²	MODULO DI TAGLIO G Kg/cm ²	Mod.di Incompressibilità K Kg/cm ²		
1	2,0	92	201	1,88	0,4	2127	0,378	760	3545		
2	7,8	47	264	1,95	0,4	3805	0,515	1359	6342		
3	20,2	1318	538	2,12	0,4	17181	1,141	6136	28636		

PARAMETRI STATICI MEDI DEL SOTTOSUOLO INDAGATO CON LA MASW 01									
STRATO	SPESSORE m	Vp m/s	γ g/cm ³	λ (-)	Modulo di carico su piastra Kg/cm ²	MODULO DI YOUNG Kg/cm ²	Modulo	MODULO DI TAGLIO Kg/cm ²	Mod.di Incompressibilità Kg/cm ²
1	2,0	492	1,88	0,4	357,71	256,15	341	98,80	524
2	7,8	647	1,95	0,4	640,37	458,32	612	176,67	1882
3	20,2	1318	2,12	0,4	2231,72	2069,88	2767	797,68	5677

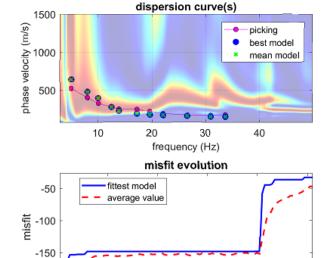
Rispetto le norme tecniche per le costruzioni (DM 17 gennaio 2018), il sito in esame rientra quindi nella categoria **B** ovvero:

 Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s



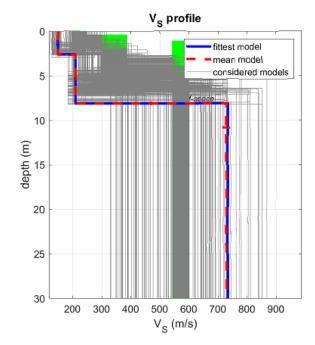

.... Engineering Geology SRL Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it


2.4. Interpretazione

Masw 02.

Nelle figure sottostanti sono riportati i risultati dell'inversione della curva di dispersione determinata tramite analisi di dati MASW. In alto a sinistra: spettro osservato, curve di dispersione piccate e curve del modello individuato dall'inversione. Sulla destra il profilo verticale Vs identificato (vedi anche Tabella 1). In basso a sinistra l'evolversi del modello al passare delle "generazioni" (l'algoritmo utilizzato per l'inversione delle curve di dispersione appartiene alla classe degli Algoritmi Genetici – Dal Moro et al., 2007).


40

60

generation

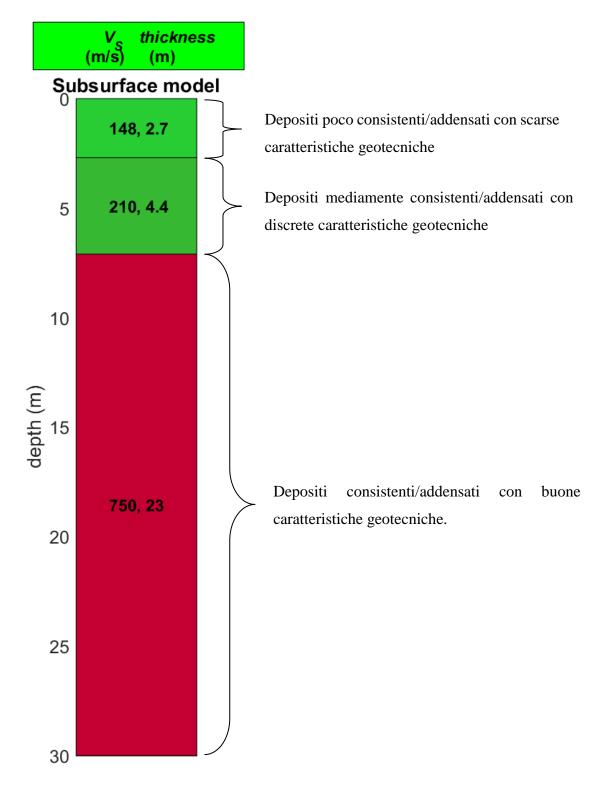
80

100

20

2.4.1 MASW02 Interpretazione

In tabella e in figura sottostante sono riportati gli strati del modello medio individuato a cui corrisponde una **Vs₃₀ di 430.2 m/s** a partire dal p.c secondo la D.M. 17/01/2018 "*Norme tecniche per le Costruzioni*".


Spessore (m)	VS (m/s) e deviazioni
2.7	standard 148±2
4.4	210±5
semi-spazio	750±13

.... Engineering Geology SRL Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

.... Engineering Geology Srl Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

La stratigrafia del sottosuolo può essere assimilata ad un modello costituito da tre sismostrati in cui:

- Il primo sismostrato presenta uno spessore di circa 2.7 m, con velocità media delle onde di taglio di 148 m/s e corrisponde a depositi poco consistenti/addensati con scarse caratteristiche geotecniche;
- Il secondo sismostrato presenta uno spessore di circa 4.4 m, con velocità media delle onde di taglio di 210 m/s e corrisponde a depositi mediamente consistenti/addensati con discrete caratteristiche geotecniche;
- Il terzo sismostrato, che si rinviene a profondità maggiori di 7.1 m dal p.c. e fino alla profondità di investigazione, superiore ai 30 m di profondità, presenta velocità V_s media di 750 m/s.

Calcolo dei parametri elastici dinamici dei terreni

A partire dai valori di velocità delle onde sismiche V_S (m/s), ed adottando opportuni valori del Peso di volume γ (g/cm³) e del rapporto di Poisson rappresentativo dei litotipi presenti, è possibile inoltre <u>stimare attraverso relazioni empiriche</u>, la velocità delle onde di compressione V_P e i moduli dinamici del sottosuolo per ogni orizzonte sismico individuato.

La velocità delle onde P è stata ricavata empiricamente attraverso la seguente relazione:

$$V_P^2 = V_S^2 * (2-2\lambda)/(1-2\lambda)$$

Sono stati definiti inoltre i seguenti moduli dinamici:

- Modulo di taglio dinamico (G)

È definito dalla seguente equazione:

$$G = \gamma \cdot Vs^2$$

.... Engineering Geology Srl

Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

Dove γ = densità

Tale parametro è fortemente dipendente dalla porosità e dalla pressione; assume valori più bassi in litotipi ad alta porosità, sottoposti a basse pressioni e saturati in acqua.

- Modulo di Young (Ed)

È definito dalla seguente equazione:

$$\mathbf{E}_{\mathbf{d}} = \left[\mathbf{V}_{\mathbf{P}}^{2} \cdot \mathbf{\gamma} \cdot (1+\lambda) \cdot (1-2\lambda) \right] / (1-\lambda) \right]$$

Con λ = coeff. di Poisson

Rigidità sismica

$$R_s = \gamma V_s$$

Tale modulo dipende dalla porosità e dalla pressione litostatica.

Modulo di incompressibilità dinamica

È definito dalla seguente equazione:

$$\mathbf{K} = \gamma [\mathbf{V}_{\mathbf{P}^2} - 4/3 \cdot \mathbf{V}_{\mathbf{S}^2}]$$

ed è detto Bulk Modulus.

.... ENGINEERING GEOLOGY SRL

Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

Calcolo dei parametri elastici statici dei terreni

I moduli elastici dinamici sono misurati per piccole deformazioni (<10-4) e si osserva che i loro valori decrescono con l'aumentare delle deformazioni. I moduli elastici statici misurati in laboratorio sono pertanto più piccoli di quelli misurati in sito e delle correlazioni empiriche permettono di ottenerli partendo da quelli elastici dinamici.

Nelle misure di laboratorio il rapporto Ed/Es (Ed modulo di Young o elastico dinamico -Es modulo di Young o elastico statico) è comunemente 2.0 (Cheng and Johnston, 1981), ma per misure in sito questo rapporto varia fra 1.5 e 9.1 (Gudmundsson, 1990; Link, 1968).

Rzhevsky e Novik hanno proposto le seguente relazione:

Edin=8.3 Estat+0.97 Estat= (Edin-0.97)/8.3

Massarch (1984) ha proposto la seguente relazione per passare dal modulo di taglio dinamico a quello statico:

Gstat=R*G

Dove R è un parametro che 0.18 per le ghiaie, 0.15 per le sabbie mediamente dense e 0.11 per le argille, dai due parametri si ricavano gli altri parametri elastici.

Modulo di Poisson v = (E-2G)*/(2G)

Modulo di compressibilità volumetrico K=G*E/[3(3G-E)]

Moulo edometrico Eed=G*(4G-E)*/(3G-E)

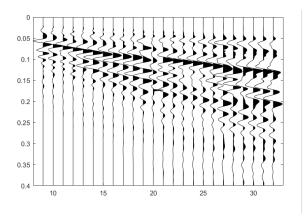
 $Me=16G2/[\pi(4G-E)]$ Modulo di carico su piastra

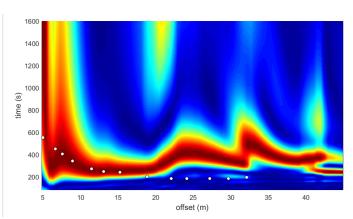
PA	PARAMETRI FISICI E DINAMICI MEDI DEL SOTTOSUOLO INDAGATO CON LA MASW 02										
STRATO	SPESSORE m	Vp m/s	Vs m/s	γ g/cm ³	λ (-)	MODULO DI YOUNG E Kg/cm ²	R g/cm ²	MODULO DI TAGLIO G Kg/cm ²	Mod.di Incompressibilità K Kg/cm ²		
1	2,7	63	148	1,81	0,4	1110	0,268	396	1850		
2	4,4	95	210	1,85	0,39	2268	0,389	816	3436		
3	22,9	1766	750	2,19	0,39	34246	1,643	12319	51888		

PARAMETRI STATICI MEDI DEL SOTTOSUOLO INDAGATO CON LA MASW 02										
STRATO	SPESSORE m	Vp m/s	γ g/cm ³	λ (-)	Modulo di carico su piastra Kg/cm ²	MODULO DI YOUNG Kg/cm ²	Modulo Edometrico Kg/cm ²	MODULO DI TAGLIO Kg/cm ²	Mod.di Incompressibilità Kg/cm ²	
1	2,7	363	1,81	0,4	186,62	133,63	178	51,54	273	
2	4,4	495	1,85	0,39	379,35	273,14	356	106,06	1072	
3	22,9	1766	2,19	0,39	4422,25	4125,92	5382	1601,44	10822	

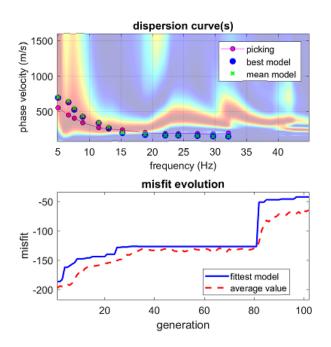
Rispetto le norme tecniche per le costruzioni (DM 17 gennaio 2018), il sito in esame rientra quindi nella categoria **B** ovvero:

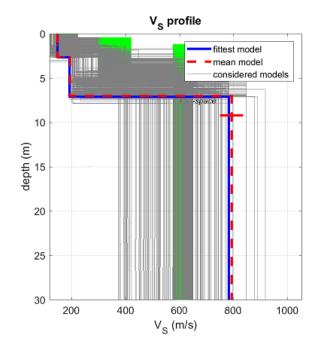
Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine
molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la
profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s



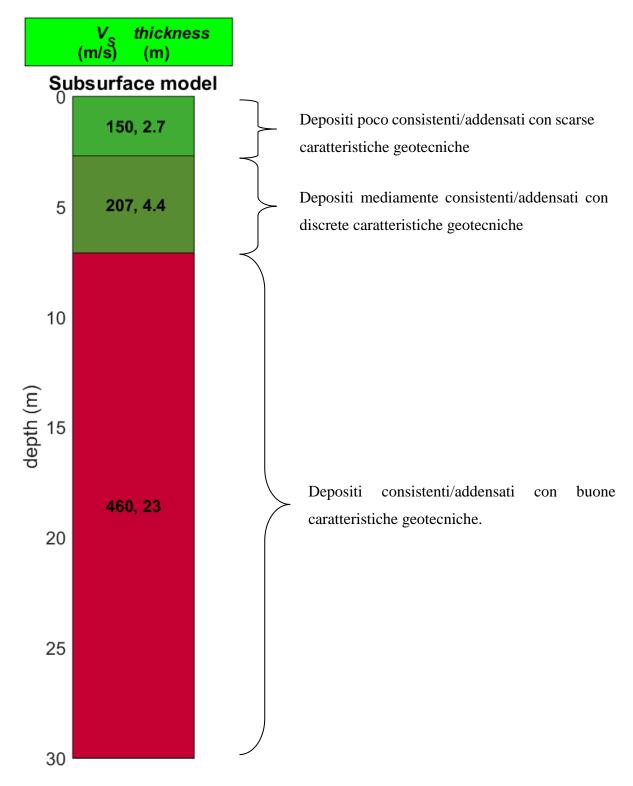


.... ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it


2.5. Interpretazione


Masw 03.

Nelle figure sottostanti sono riportati i risultati dell'inversione della curva di dispersione determinata tramite analisi di dati MASW. In alto a sinistra: spettro osservato, curve di dispersione piccate e curve del modello individuato dall'inversione. Sulla destra il profilo verticale $V_{\rm S}$ identificato (vedi anche Tabella 1). In basso a sinistra l'evolversi del modello al passare delle "generazioni" (l'algoritmo utilizzato per l'inversione delle curve di dispersione appartiene alla classe degli Algoritmi Genetici – Dal Moro et al., 2007).


2.5.1 MASW03 Interpretazione

In tabella e in figura sottostante sono riportati gli strati del modello medio individuato a cui corrisponde una **Vs₃₀ di 400.3 m/s** a partire dal p.c secondo la D.M. 17/01/2018 "*Norme tecniche per le Costruzioni*".

Spessore (m)	VS (m/s) e deviazioni
	standard
2.7	150±10
4.4	207±6
semi-spazio	460±17

.... Engineering Geology Srl Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

La stratigrafia del sottosuolo può essere assimilata ad un modello costituito da tre sismostrati in cui:

- Il primo sismostrato presenta uno spessore di circa 2.7 m, con velocità media delle onde di taglio di 150 m/s e corrisponde a depositi poco consistenti/addensati con scarse caratteristiche geotecniche;
- Il secondo sismostrato presenta uno spessore di circa 4.4 m, con velocità media delle onde di taglio di 207 m/s e corrisponde a depositi mediamente consistenti/addensati con discrete caratteristiche geotecniche;
- Il terzo sismostrato, che si rinviene a profondità maggiori di 7.1 m dal p.c. e fino alla profondità di investigazione, superiore ai 30 m di profondità, presenta velocità V_s media di 460 m/s.

Calcolo dei parametri elastici dinamici dei terreni

A partire dai valori di velocità delle onde sismiche V_S (m/s), ed adottando opportuni valori del Peso di volume γ (g/cm³) e del rapporto di Poisson rappresentativo dei litotipi presenti, è possibile inoltre <u>stimare attraverso relazioni empiriche</u>, la velocità delle onde di compressione V_P e i moduli dinamici del sottosuolo per ogni orizzonte sismico individuato.

La velocità delle onde P è stata ricavata empiricamente attraverso la seguente relazione:

$$V_P^2 = V_S^2 * (2-2\lambda)/(1-2\lambda)$$

Sono stati definiti inoltre i seguenti moduli dinamici:

- Modulo di taglio dinamico (G)

È definito dalla seguente equazione:

$$G = \gamma \cdot Vs^2$$

.... Engineering Geology srl

Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

Dove γ = densità

Tale parametro è fortemente dipendente dalla porosità e dalla pressione; assume valori più bassi in litotipi ad alta porosità, sottoposti a basse pressioni e saturati in acqua.

- Modulo di Young (Ed)

È definito dalla seguente equazione:

$$\mathbf{E}_{\mathbf{d}} = \left[\mathbf{V}_{\mathbf{P}}^{2} \cdot \mathbf{\gamma} \cdot (1+\lambda) \cdot (1-2\lambda) \right] / (1-\lambda) \right]$$

Con λ = coeff. di Poisson

Rigidità sismica

$$\mathbf{R}_{s} = \gamma \mathbf{V}_{s}$$

Tale modulo dipende dalla porosità e dalla pressione litostatica.

Modulo di incompressibilità dinamica

È definito dalla seguente equazione:

$$\mathbf{K} = \gamma [\mathbf{V}_{\mathbf{P}^2} - 4/3 \cdot \mathbf{V}_{\mathbf{S}^2}]$$

ed è detto Bulk Modulus.

.... ENGINEERING GEOLOGY SRL

Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E_mail info@engeosrl.it

Calcolo dei parametri elastici statici dei terreni

I moduli elastici dinamici sono misurati per piccole deformazioni (<10-4) e si osserva che i

loro valori decrescono con l'aumentare delle deformazioni. I moduli elastici statici misurati in

laboratorio sono pertanto più piccoli di quelli misurati in sito e delle correlazioni empiriche

permettono di ottenerli partendo da quelli elastici dinamici.

Nelle misure di laboratorio il rapporto Ed/Es (Ed modulo di Young o elastico dinamico -Es

modulo di Young o elastico statico) è comunemente 2.0 (Cheng and Johnston, 1981), ma per misure

in sito questo rapporto varia fra 1.5 e 9.1 (Gudmundsson, 1990; Link, 1968).

Rzhevsky e Novik hanno proposto le seguente relazione:

Edin=8.3 Estat+0.97 Estat= (Edin-0.97)/8.3

Massarch (1984) ha proposto la seguente relazione per passare dal modulo di taglio dinamico

a quello statico:

Gstat=R*G

Dove R è un parametro che 0.18 per le ghiaie, 0.15 per le sabbie mediamente dense e 0.11 per

le argille, dai due parametri si ricavano gli altri parametri elastici.

Modulo di Poisson v = (E-2G)*/(2G)

Modulo di compressibilità volumetrico K=G*E/[3(3G-E)]

Moulo edometrico Eed=G*(4G-E)*/(3G-E)

 $Me=16G2/[\pi(4G-E)]$ Modulo di carico su piastra

PA	PARAMETRI FISICI E DINAMICI MEDI DEL SOTTOSUOLO INDAGATO CON LA MASW 03										
STRATO	SPESSORE m	Vp m/s	Vs m/s	γ g/cm ³	λ (-)	MODULO DI YOUNG E Kg/cm ²	R g/cm ²	MODULO DI TAGLIO G Kg/cm ²	Mod.di Incompressibilità K Kg/cm²		
1	2,6	67	150	1,81	0,4	1140	0,272	407	1901		
2	5,5	95	210	1,85	0,39	2268	0,389	816	3436		
3	22,0	1648	700	2,19	0,39	29832	1,533	10731	45200		

PARAMETRI STATICI MEDI DEL SOTTOSUOLO INDAGATO CON LA MASW 03										
STRATO	SPESSORE m	Vp m/s	γ g/cm ³	λ (-)	Modulo di carico su piastra Kg/cm ²	MODULO DI YOUNG Kg/cm ²	Modulo Edometrico Kg/cm ²	MODULO DI TAGLIO Kg/cm ²	Mod.di Incompressibilità Kg/cm ²	
1	2,6	367	1,81	0,4	191,71	137,27	183	52,94	281	
2	5,5	495	1,85	0,39	379,35	273,14	356	106,06	1072	
3	22,0	1648	2,19	0,39	3852,24	3594,12	4688	1395,03	9427	

Rispetto le norme tecniche per le costruzioni (DM 17 gennaio 2018), il sito in esame rientra quindi nella categoria **B** ovvero:

 Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s

.... ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

3. Prove penetrometriche dinamiche continue DPSH

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M
- altezza libera caduta H
- punta conica: diametro base cono D, area base A (angolo di apertura α)
- avanzamento (penetrazione) δ

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della GeoStru Software.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini 1983 - Meyerhof 1956 - Desai 1968 - Borowczyk-Frankowsky 1981.

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

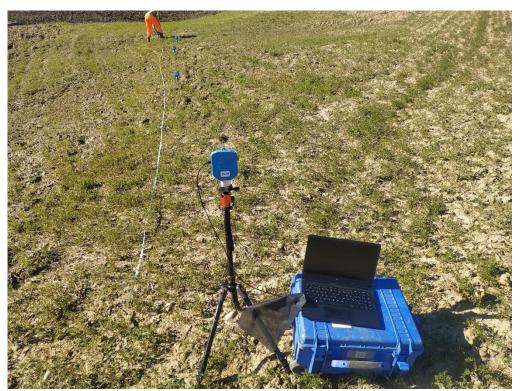
In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e della resistenza alla punta.

Nell'area d'interesse è stata eseguita n° 6 prova penetrometriche dinamiche.

4. Report fotografico

4.1. Indagine sismica di tipo MASW


POSTAZIONE DELLA MASW 01

POSTAZIONE DELLA MASW 02

POSTAZIONE DELLA MASW 03

4.2. Indagine Penetrometrica dinamica continua DPSH

POSTAZIONE DELLA DPSH 01

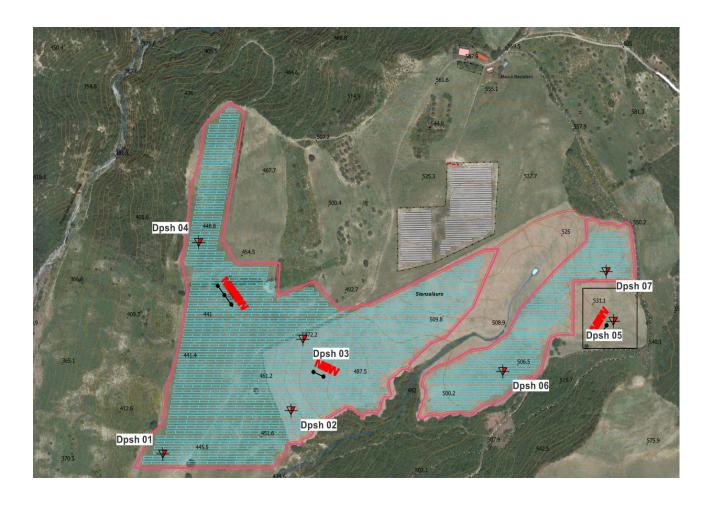
.... ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

POSTAZIONE DELLA DPSH 02

POSTAZIONE DELLA DPSH 03

POSTAZIONE DELLA DPSH 04

POSTAZIONE DELLA DPSH 05



POSTAZIONE DELLA DPSH 06

4.4. Ubicazione delle Indagini

ALL. 1 PARAMETRI DELLE DPSH

PROVA PENETROMETRICA DINAMICA

Committente: Compagnia del Sole Descrizione: Parco fotovoltaico Localita': Stigliano (Mt)

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

attensiiche Technene-Strumentan Solida. Di Sii 10 03-2	200 1 7 107 11 11	
Rif. Norme	DIN 4094	
Peso Massa battente	63.5 Kg	
Altezza di caduta libera	0.75 m	
Peso sistema di battuta	0.63 Kg	
Diametro punta conica	51.00 mm	
Area di base punta	20.43 cm ²	
Lunghezza delle aste	1 m	
Peso aste a metro	6.31 Kg/m	
Profondita' giunzione prima	asta 0.40 m	
Avanzamento punta	0.20 m	
Numero colpi per punta	N(20)	
Coeff. Correlazione	1.47	
Rivestimento/fanghi	No	
Angolo di apertura punta	90 °	

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura α);
- avanzamento (penetrazione) δ ;
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL);
- tipo MEDIO (DPM);
- tipo PESANTE (DPH);
- tipo SUPERPESANTE (DPSH).

Classificazione ISSMFE dei penetrometri dinamici:

Tipo	Sigla di riferimento	peso della massa M (kg)	prof. max indagine battente (m)
Leggero	DPL (Light)	M ≤ 10	8
Medio	DPM (Medium)	10 < M < 40	20-25
Pesante	DPH (Heavy)	$40 \le M < 60$	25

Super pesante	DPSH	M ≥ 60	25
(Super Heavy)			

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento $\delta = 10$ cm, punta conica (α =60-90°), diametro D 35.7 mm, area base cono A=10 cm 2 rivestimento / fango bentonitico : talora previsto;
- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento δ = 10 cm, punta conica (α = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M=73 kg, altezza di caduta H=0.75 m, avanzamento $\delta=30$ cm, punta conica ($\alpha=60^{\circ}$), diametro D=50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica (α = 60°-90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$NSPT = \beta_t \cdot N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M peso massa battente.

M' peso aste.

H altezza di caduta.

A area base punta conica.

δ passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd resistenza dinamica punta (area A).

e infissione media per colpo (δ/N).

M peso massa battente (altezza caduta H).

P peso totale aste e sistema battuta.

Calcolo di (N₁)₆₀

(N₁)₆₀ è il numero di colpi normalizzato definito come segue:

 $(N_1)_{60} = \text{CN} \cdot \text{N60 con CN} = \sqrt{(\text{Pa}'/\sigma_{\text{VO}})} \quad \text{CN} < 1.7 \quad \text{Pa} = 101.32 \,\text{kPa} \, (Liao \, e \, Whitman \, 1986)$

 $N_{60} = N_{SPT} \cdot (ER/60) \cdot C_S \cdot C_r \cdot C_d$

ER/60 rendimento del sistema di infissione normalizzato al 60%.

C_s parametro funzione della controcamicia (1.2 se assente).

C_d funzione del diametro del foro (1 se compreso tra 65-115mm).

C_r parametro di correzione funzione della lunghezza delle aste.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini (1983) - Meyerhof (1956) - Desai (1968) - Borowczyk-Frankowsky (1981). Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili

informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media (+ s)

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media (- s)

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Distribuzione normale R.C.

Il valore di $N_{spt,k}$ viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt$$
, $_k = Nspt$, $_{medio} - 1.645 \cdot (\sigma_{Nspt})$

dove σ_{Nspt} è la deviazione standard di Nspt

Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt}) / \sqrt{n}$$

dove n è il numero di letture.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 m ed immorsamento d = 1 m.

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di *SHI-MING* (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di *SHI-MING*.

Correzione Nspt in presenza di falda

 $Nspt\ corretto = 15 + 0.5 \cdot (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m;
 correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata,
 valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mq)
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers (1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 m. sopra falda e < 7 m per terreni in falda) $\sigma > 5$ t/mq.

- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito $< 38^{\circ}$.
- Malcev (1964) Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m e per valori di angolo di attrito $< 38^{\circ}$).
- Schmertmann (1977)- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 m sopra falda e > 15 m per terreni in falda) σ >15 t/mq.
- Shioi-Fukuni (1982) JAPANESE NATIONALE RAILWAY, Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 m sopra falda e > 15 m per terreni in falda) s>15 t/mq.
- Meyerhof (1965) Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 m e con (%) di limo > 5% a profondità < 3 m.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (E_{V})

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici.
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia.
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia

- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

• Terzaghi-Peck (1948-1967)

Modulo di poisson

Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

• Seed-Idriss (1978-1981) . Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/s)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 - 4,0 kg/cmq.

Modulo di reazione (Ko)

Navfac (1971-1982) - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA (1983).
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt < 8, argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). Cu (min-max).
- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche
 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche" di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità , (Cu-Nspt-grado di plasticità).
- Schmertmann (1975), Cu (Kg/cmq) (valori medi), valida per **argille** e **limi argillosi** con Nc = 20 e Qc/Nspt = 2.
- Schmertmann (1975), Cu (Kg/cmq) (valori minimi), valida per argille NC.
- Fletcher (1965), (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni (1982), valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975),- per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP < 20), valida per litotipi argillosi a medio-bassa plasticità (IP < 20) da esperienze su argille glaciali .
- Vesic (1970), correlazione valida per argille molli (valori minimi e massimi).

- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt < 30) medie e molli (Nspt < 4) e argille sabbiose (Nspt = 6-12).

Modulo Di Young (E_Y)

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. > 15.
- D'Appollonia ed altri (1983), correlazione valida per argille sature-argille fessurate.

Stato di consistenza

• Classificazione A.G.I. 1977.

Peso di Volume

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

• Meyerhof ed altri.

PROVA ... Dpsh 01

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data Profondita' prova Falda non rilevata 15/12/2022 4.80 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	_	coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	2	0.851	17.88	21.01	0.89	1.05
0.60	4	0.847	32.67	38.57	1.63	1.93
0.80	5	0.843	40.66	48.22	2.03	2.41
1.00	5	0.840	40.49	48.22	2.02	2.41
1.20	6	0.836	48.39	57.86	2.42	2.89
1.40	6	0.833	48.19	57.86	2.41	2.89
1.60	9	0.830	66.53	80.20	3.33	4.01
1.80	11	0.826	81.00	98.02	4.05	4.90
2.00	11	0.823	80.69	98.02	4.03	4.90
2.20	12	0.820	87.70	106.93	4.38	5.35
2.40	12	0.817	87.38	106.93	4.37	5.35
2.60	20	0.764	126.58	165.63	6.33	8.28
2.80	24	0.711	141.40	198.76	7.07	9.94
3.00	32	0.659	174.56	265.01	8.73	13.25
3.20	27	0.706	157.87	223.61	7.89	11.18
3.40	17	0.753	106.07	140.79	5.30	7.04
3.60	16	0.751	92.93	123.77	4.65	6.19
3.80	14	0.748	81.05	108.30	4.05	5.41
4.00	14	0.746	80.79	108.30	4.04	5.41
4.20	16	0.744	92.05	123.77	4.60	6.19
4.40	19	0.741	108.97	146.97	5.45	7.35
4.60	22	0.689	110.04	159.65	5.50	7.98
4.80	50	0.587	213.03	362.85	10.65	18.14

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
1.6	4.75	45.31	Incoere	0	1.86	1.9	0.15	1.47	6.98	argilla
			nte -							marnosa
			coesivo							
3.2	18.62	157.86	Incoere	0	2.13	2.29	0.47	1.47	27.37	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose
4.6	16.86	130.22	Incoere	0	2.12	2.22	0.79	1.47	24.78	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 01

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	6.98	0.00-1.60	Terzaghi-Peck	0.44
argilla marnosa				
Strato (2)	27.37	1.60-3.20	Terzaghi-Peck	1.85
arenarie alternate				
ad argille marnose				
Strato (3)	24.78	3.20-4.60	Terzaghi-Peck	1.67
arenarie alternate				
ad argille marnose				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato (1)	6.98	0.00-1.60	Robertson (1983)	13.96
argilla marnosa				
Strato (2)	27.37	1.60-3.20	Robertson (1983)	54.74
arenarie alternate				
ad argille marnose				
Strato (3)	24.78	3.20-4.60	Robertson (1983)	49.56
arenarie alternate				
ad argille marnose				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	6.98	0.00-1.60	Stroud e Butler	32.02
argilla marnosa			(1975)	
Strato (2)	27.37	1.60-3.20	Stroud e Butler	125.57
arenarie alternate			(1975)	
ad argille marnose				
Strato (3)	24.78	3.20-4.60	Stroud e Butler	113.69
arenarie alternate			(1975)	
ad argille marnose				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato (1)	6.98	0.00-1.60	Apollonia	69.80
argilla marnosa				
Strato (2)	27.37	1.60-3.20	Apollonia	273.70
arenarie alternate				
ad argille marnose				
Strato (3)	24.78	3.20-4.60	Apollonia	247.80
arenarie alternate				
ad argille marnose				

Classificazione AGI

	=			
Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	6.98	0.00-1.60	A.G.I. (1977)	MODERAT.
argilla marnosa				CONSISTENTE
Strato (2)	27.37	1.60-3.20	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				
Strato (3)	24.78	3.20-4.60	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
Strato (1) argilla marnosa		0.00-1.60	Meyerhof	1.86
Strato (2) arenarie alternate ad argille marnose	27.37	1.60-3.20	Meyerhof	2.13
Strato (3) arenarie alternate ad argille marnose		3.20-4.60	Meyerhof	2.12

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo
				(t/m^3)
Strato (1)	6.98	0.00-1.60	Meyerhof	1.90
argilla marnosa				
Strato (2)	27.37	1.60-3.20	Meyerhof	2.29
arenarie alternate				
ad argille marnose				
Strato (3)	24.78	3.20-4.60	Meyerhof	2.22
arenarie alternate				
ad argille marnose				

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	Correlazione	Velocita' onde di
		(m)		taglio
				(m/s)
Strato (1)	6.98	0.00-1.60	Ohta & Goto	91.71
argilla marnosa			(1978) Argille	
			limose e argille di	
			bassa plasticità	
Strato (2)	27.37	1.60-3.20	Ohta & Goto	143.6
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	
Strato (3)	24.78	3.20-4.60	Ohta & Goto	155.02
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	6.98	0.00-1.60	6.98	Skempton 1986	25.92
argilla marnosa					
Strato (2)	27.37	1.60-3.20	27.37	Skempton 1986	60.71
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Skempton 1986	57.69
arenarie					
alternate ad					
argille marnose					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	6.98	0.00-1.60	6.98	Meyerhof	21.99
argilla marnosa				(1956)	
Strato (2)	27.37	1.60-3.20	27.37	Meyerhof	27.82
arenarie				(1956)	
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Meyerhof	27.08
arenarie				(1956)	
alternate ad					
argille marnose					

Modulo di Young

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm²)
Strato (1) argilla marnosa		0.00-1.60	6.98	Terzaghi	
Strato (2) arenarie alternate ad argille marnose		1.60-3.20	27.37	Terzaghi	373.43
Strato (3) arenarie alternate ad argille marnose		3.20-4.60	24.78	Terzaghi	355.32

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	6.98	0.00-1.60	6.98	Begemann 1974	41.80
argilla marnosa				(Ghiaia con	
				sabbia)	
Strato (2)	27.37	1.60-3.20	27.37	Begemann 1974	83.68
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Begemann 1974	78.36
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	6.98	0.00-1.60	6.98	Classificazione	POCO
argilla marnosa				A.G.I	ADDENSATO
Strato (2)	27.37	1.60-3.20	27.37	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1) argilla marnosa		0.00-1.60	6.98	Terzaghi-Peck 1948	1.44
Strato (2) arenarie alternate ad argille marnose		1.60-3.20	27.37	Terzaghi-Peck 1948	1.67
Strato (3) arenarie alternate ad argille marnose	24.78	3.20-4.60	24.78	Terzaghi-Peck 1948	1.65

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m^3)
Strato (1)	6.98	0.00-1.60	6.98	Terzaghi-Peck	1.90
argilla marnosa				1948	
Strato (2)	27.37	1.60-3.20	27.37	Terzaghi-Peck	2.04
arenarie				1948	
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Terzaghi-Peck	2.02
arenarie				1948	
alternate ad					
argille marnose					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	6.98	0.00-1.60	6.98	(A.G.I.)	0.34
argilla marnosa					
Strato (2)	27.37	1.60-3.20	27.37	(A.G.I.)	0.3
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	(A.G.I.)	0.31
arenarie					
alternate ad					
argille marnose					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	6.98	0.00-1.60	6.98	Ohsaki (Sabbie	403.77
argilla marnosa				pulite)	
Strato (2)	27.37	1.60-3.20	27.37	Ohsaki (Sabbie	1458.65
arenarie				pulite)	
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Ohsaki (Sabbie	1328.52
arenarie				pulite)	
alternate ad					
argille marnose					

Velocita' onde di taglio

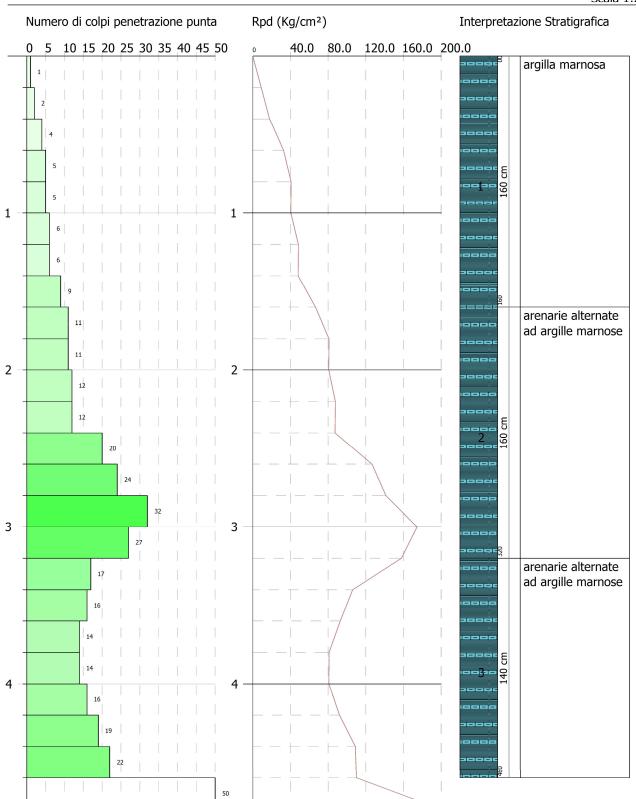
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde
		(m)			di taglio
					(m/s)
Strato (1)	6.98	0.00-1.60	6.98	Ohta & Goto	91.71
argilla marnosa				(1978) Limi	
Strato (2)	27.37	1.60-3.20	27.37	Ohta & Goto	143.6
arenarie				(1978) Limi	
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Ohta & Goto	155.02
arenarie				(1978) Limi	
alternate ad					
argille marnose					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K 0
		(m)			
Strato (1)	6.98	0.00-1.60	6.98	Navfac 1971-	1.44
argilla marnosa				1982	
Strato (2)	27.37	1.60-3.20	27.37	Navfac 1971-	5.23
arenarie				1982	
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Navfac 1971-	4.84
arenarie				1982	
alternate ad					
argille marnose					

Qc (Resistenza punta Penetrometro Statico)

_ `	sunta i enetromet				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm²)
Strato (1)	6.98	0.00-1.60	6.98	Robertson 1983	13.96
argilla marnosa					
Strato (2)	27.37	1.60-3.20	27.37	Robertson 1983	54.74
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.78	3.20-4.60	24.78	Robertson 1983	49.56
arenarie					
alternate ad					
argille marnose					



PROVA PENETROMETRICA DINAMICA Dpsh 01 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Compagnia del Sole 15/12/2022

Committente: Compagnia del Sole Descrizione: Parco fotovoltaico Localita': Stigliano (Mt)

Scala 1:24

PROVA ... Dpsh 02

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 15/12/2022 Profondita' prova 5.60 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	•	coeff.	dinamica	dinamica	ammissibile	ammissibile
, ,		riduzione	ridotta	(Kg/cm²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm²)	\ U /	Herminier -	Olandesi
			` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		Olandesi	(Kg/cm²)
					(Kg/cm²)	, <u>e</u>
0.20	2	0.855	17.96	21.01	0.90	1.05
0.40	2	0.851	17.88	21.01	0.89	1.05
0.60	2	0.847	16.34	19.29	0.82	0.96
0.80	3	0.843	24.40	28.93	1.22	1.45
1.00	5	0.840	40.49	48.22	2.02	2.41
1.20	5	0.836	40.32	48.22	2.02	2.41
1.40	7	0.833	56.22	67.50	2.81	3.38
1.60	9	0.830	66.53	80.20	3.33	4.01
1.80	9	0.826	66.27	80.20	3.31	4.01
2.00	9	0.823	66.02	80.20	3.30	4.01
2.20	12	0.820	87.70	106.93	4.38	5.35
2.40	18	0.767	123.05	160.40	6.15	8.02
2.60	19	0.764	120.26	157.35	6.01	7.87
2.80	15	0.761	94.59	124.23	4.73	6.21
3.00	16	0.759	100.53	132.51	5.03	6.63
3.20	25	0.706	146.17	207.04	7.31	10.35
3.40	27	0.703	157.28	223.61	7.86	11.18
3.60	30	0.701	162.65	232.07	8.13	11.60
3.80	31	0.648	155.49	239.80	7.77	11.99
4.00	15	0.746	86.56	116.03	4.33	5.80
4.20	16	0.744	92.05	123.77	4.60	6.19
4.40	17	0.741	97.50	131.50	4.88	6.58
4.60	15	0.739	80.47	108.85	4.02	5.44
4.80	15	0.737	80.24	108.85	4.01	5.44
5.00	17	0.735	90.68	123.37	4.53	6.17
5.20	19	0.733	101.07	137.88	5.05	6.89
5.40	20	0.731	106.10	145.14	5.31	7.26
5.60	50	0.579	197.89	341.71	9.89	17.09

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
2	5.3	49.48	Incoere	0	1.89	1.9	0.19	1.47	7.79	argilla
			nte -							marnosa
			coesivo							
4	20.8	170	Incoere	0	2.17	2.39	0.6	1.47	30.58	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose
5.4	17	125.62	Incoere	0	2.12	2.22	0.96	1.47	24.99	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 02

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	7.79	0.00-2.00	Terzaghi-Peck	0.49
argilla marnosa				
Strato (2)	30.58	2.00-4.00	Terzaghi-Peck	2.06
arenarie alternate			_	
ad argille marnose				
Strato (3)	24.99	4.00-5.40	Terzaghi-Peck	1.69
arenarie alternate			_	
ad argille marnose				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato (1)	7.79	0.00-2.00	Robertson (1983)	15.58
argilla marnosa				
Strato (2)	30.58	2.00-4.00	Robertson (1983)	61.16
arenarie alternate				
ad argille marnose				
Strato (3)	24.99	4.00-5.40	Robertson (1983)	49.98
arenarie alternate				
ad argille marnose				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	7.79	0.00-2.00	Stroud e Butler	35.74
argilla marnosa			(1975)	
Strato (2)	30.58	2.00-4.00	Stroud e Butler	140.30
arenarie alternate			(1975)	
ad argille marnose				
Strato (3)	24.99	4.00-5.40	Stroud e Butler	114.65
arenarie alternate			(1975)	
ad argille marnose				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato (1)	7.79	0.00-2.00	Apollonia	77.90
argilla marnosa				
Strato (2)	30.58	2.00-4.00	Apollonia	305.80
arenarie alternate				
ad argille marnose				
Strato (3)	24.99	4.00-5.40	Apollonia	249.90
arenarie alternate				
ad argille marnose				

Classificazione AGI

	=			
Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	7.79	0.00-2.00	A.G.I. (1977)	MODERAT.
argilla marnosa				CONSISTENTE
Strato (2)	30.58	2.00-4.00	A.G.I. (1977)	ESTREM.
arenarie alternate				CONSISTENTE
ad argille marnose				
Strato (3)	24.99	4.00-5.40	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(t/m^3)
Strato (1)	7.79	0.00-2.00	Meyerhof	1.89
argilla marnosa				
Strato (2)	30.58	2.00-4.00	Meyerhof	2.17
arenarie alternate				
ad argille marnose				
Strato (3)	24.99	4.00-5.40	Meyerhof	2.12
arenarie alternate				
ad argille marnose				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
Strato (1)	7.79	0.00-2.00	Meyerhof	1.90
argilla marnosa			-	
Strato (2)	30.58	2.00-4.00	Meyerhof	2.39
arenarie alternate				
ad argille marnose				
Strato (3)	24.99	4.00-5.40	Meyerhof	2.22
arenarie alternate				
ad argille marnose				

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	Correlazione	Velocita' onde di
		(m)		taglio
				(m/s)
Strato (1)	7.79	0.00-2.00	Ohta & Goto	97.58
argilla marnosa			(1978) Argille	
			limose e argille di	
			bassa plasticità	
Strato (2)	30.58	2.00-4.00	Ohta & Goto	152.82
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	
Strato (3)	24.99	4.00-5.40	Ohta & Goto	160.93
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	7.79	0.00-2.00	7.79	Skempton 1986	27.9
argilla marnosa					
Strato (2)	30.58	2.00-4.00	30.58	Skempton 1986	64.09
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Skempton 1986	57.94
arenarie					
alternate ad					
argille marnose					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	7.79	0.00-2.00	7.79	Meyerhof	22.23
argilla marnosa				(1956)	
Strato (2)	30.58	2.00-4.00	30.58	Meyerhof	28.74
arenarie				(1956)	
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Meyerhof	27.14
arenarie				(1956)	
alternate ad					
argille marnose					

Modulo di Young

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm²)
Strato (1) argilla marnosa		0.00-2.00	7.79	Terzaghi	
Strato (2) arenarie alternate ad argille marnose		2.00-4.00	30.58	Terzaghi	394.72
Strato (3) arenarie alternate ad argille marnose		4.00-5.40	24.99	Terzaghi	356.82

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	7.79	0.00-2.00	7.79	Begemann 1974	43.47
argilla marnosa				(Ghiaia con	
				sabbia)	
Strato (2)	30.58	2.00-4.00	30.58	Begemann 1974	90.28
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Begemann 1974	78.79
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	7.79	0.00-2.00	7.79	Classificazione	POCO
argilla marnosa				A.G.I	ADDENSATO
Strato (2)	30.58	2.00-4.00	30.58	Classificazione	ADDENSATO
arenarie				A.G.I	
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1) argilla marnosa		0.00-2.00	7.79	Terzaghi-Peck 1948	1.45
Strato (2) arenarie alternate ad argille marnose		2.00-4.00	30.58	Terzaghi-Peck 1948	1.70
Strato (3) arenarie alternate ad argille marnose		4.00-5.40	24.99	Terzaghi-Peck 1948	1.65

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m^3)
Strato (1)	7.79	0.00-2.00	7.79	Terzaghi-Peck	1.90
argilla marnosa				1948	
Strato (2)	30.58	2.00-4.00	30.58	Terzaghi-Peck	2.06
arenarie				1948	
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Terzaghi-Peck	2.03
arenarie				1948	
alternate ad					
argille marnose					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	7.79	0.00-2.00	7.79	(A.G.I.)	0.34
argilla marnosa					
Strato (2)	30.58	2.00-4.00	30.58	(A.G.I.)	0.29
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	(A.G.I.)	0.3
arenarie					
alternate ad					
argille marnose					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	7.79	0.00-2.00	7.79	Ohsaki (Sabbie	447.67
argilla marnosa				pulite)	
Strato (2)	30.58	2.00-4.00	30.58	Ohsaki (Sabbie	1618.92
arenarie				pulite)	
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Ohsaki (Sabbie	1339.10
arenarie				pulite)	
alternate ad					
argille marnose					

Velocita' onde di taglio

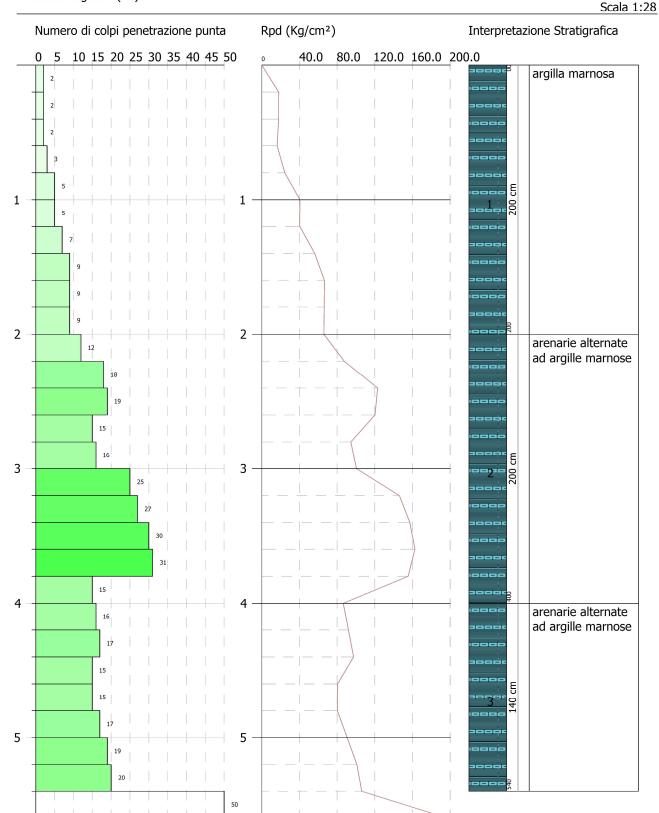
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde
		(m)			di taglio
					(m/s)
Strato (1)	7.79	0.00-2.00	7.79	Ohta & Goto	97.58
argilla marnosa				(1978) Limi	
Strato (2)	30.58	2.00-4.00	30.58	Ohta & Goto	152.82
arenarie				(1978) Limi	
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Ohta & Goto	160.93
arenarie				(1978) Limi	
alternate ad					
argille marnose					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	7.79	0.00-2.00	7.79	Navfac 1971-	1.62
argilla marnosa				1982	
Strato (2)	30.58	2.00-4.00	30.58	Navfac 1971-	5.69
arenarie				1982	
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Navfac 1971-	4.87
arenarie				1982	
alternate ad					
argille marnose					

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm²)
Strato (1)	7.79	0.00-2.00	7.79	Robertson 1983	15.58
argilla marnosa					
Strato (2)	30.58	2.00-4.00	30.58	Robertson 1983	61.16
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.99	4.00-5.40	24.99	Robertson 1983	49.98
arenarie					
alternate ad					
argille marnose					



PROVA PENETROMETRICA DINAMICA Dpsh 02 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Compagnia del Sole Descrizione: Parco fotovoltaico Localita': Stigliano (Mt) 15/12/2022

PROVA ... Dpsh 03

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data Profondita' prova Falda non rilevata 15/12/2022 13.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	.	coeff.	dinamica	dinamica	ammissibile	ammissibile
()		riduzione	ridotta	(Kg/cm²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)	(8-7)	Herminier -	Olandesi
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Olandesi	(Kg/cm²)
					(Kg/cm²)	` U
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	2	0.851	17.88	21.01	0.89	1.05
0.60	4	0.847	32.67	38.57	1.63	1.93
0.80	6	0.843	48.80	57.86	2.44	2.89
1.00	3	0.840	24.29	28.93	1.21	1.45
1.20	4	0.836	32.26	38.57	1.61	1.93
1.40	3	0.833	24.10	28.93	1.20	1.45
1.60	8	0.830	59.14	71.29	2.96	3.56
1.80	7	0.826	51.54	62.38	2.58	3.12
2.00	7	0.823	51.35	62.38	2.57	3.12
2.20	8	0.820	58.46	71.29	2.92	3.56
2.40	9	0.817	65.53	80.20	3.28	4.01
2.60	6	0.814	40.46	49.69	2.02	2.48
2.80	7	0.811	47.04	57.97	2.35	2.90
3.00	5	0.809	33.49	41.41	1.67	2.07
3.20	6	0.806	40.05	49.69	2.00	2.48
3.40	6	0.803	39.92	49.69	2.00	2.48
3.60	4	0.801	24.78	30.94	1.24	1.55
3.80	6	0.798	37.06	46.41	1.85	2.32
4.00	7	0.796	43.10	54.15	2.16	2.71
4.20	7	0.794	42.98	54.15	2.15	2.71
4.40	6	0.791	36.73	46.41	1.84	2.32
4.60	6	0.789	34.36	43.54	1.72	2.18
4.80	5	0.787	28.56	36.28	1.43	1.81
5.00	6	0.785	34.18	43.54	1.71	2.18
5.20	5	0.783	28.41	36.28	1.42	1.81
5.40	5	0.781	28.34	36.28	1.42	1.81
5.60	5	0.779	26.62	34.17	1.33	1.71
5.80	6	0.777	31.87	41.00	1.59	2.05
6.00	5	0.775	26.50	34.17	1.32	1.71

6.20 5 0.774 26.44 34.17 1.32 1.71 6.40 6 0.772 31.66 41.00 1.58 2.05 6.60 6 0.770 29.85 38.75 1.49 1.94 6.80 10 0.769 49.64 64.58 2.48 3.23 7.00 9 0.766 39.56 51.66 1.98 2.58 7.40 7 0.766 39.56 51.66 1.98 2.58 7.40 7 0.764 34.54 45.20 1.73 2.26 7.60 6 0.763 28.01 36.73 1.40 1.84 7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.757 37.08 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85							
6.60 6 0.770 29.85 38.75 1.49 1.94 6.80 10 0.769 49.64 64.58 2.48 3.23 7.00 9 0.766 34.59 58.12 2.23 2.91 7.20 8 0.766 39.56 51.66 1.98 2.58 7.40 7 0.764 34.54 45.20 1.73 2.26 7.60 6 0.763 28.01 36.73 1.40 1.84 7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.757 37.08 48.97 1.85 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.80 9 0.753 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97	6.20	5	0.774	26.44	34.17	1.32	1.71
6.80 10 0.769 49.64 64.58 2.48 3.23 7.00 9 0.767 44.59 58.12 2.23 2.91 7.20 8 0.766 39.56 51.66 1.98 2.58 7.40 7 0.764 34.54 45.20 1.73 2.26 7.60 6 0.763 28.01 36.73 1.40 1.84 7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.757 37.08 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97	6.40	6	0.772	31.66	41.00	1.58	2.05
7.00 9 0.767 44.59 58.12 2.23 2.91 7.20 8 0.766 39.56 51.66 1.98 2.58 7.40 7 0.764 34.54 45.20 1.73 2.26 7.60 6 0.763 28.01 36.73 1.40 1.84 7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.759 37.14 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97	6.60	6	0.770	29.85	38.75	1.49	1.94
7.20 8 0.766 39.56 51.66 1.98 2.58 7.40 7 0.764 34.54 45.20 1.73 2.26 7.60 6 0.763 28.01 36.73 1.40 1.84 7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.759 37.14 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75	6.80	10	0.769	49.64	64.58	2.48	3.23
7.40 7 0.764 34.54 45.20 1.73 2.26 7.60 6 0.763 28.01 36.73 1.40 1.84 7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.759 37.14 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.86 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25	7.00		0.767	44.59	58.12	2.23	2.91
7.60 6 0.763 28.01 36.73 1.40 1.84 7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.759 37.14 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66	7.20	8	0.766	39.56	51.66	1.98	2.58
7.80 8 0.761 37.28 48.97 1.86 2.45 8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.759 37.14 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 <td>7.40</td> <td>7</td> <td>0.764</td> <td>34.54</td> <td>45.20</td> <td>1.73</td> <td></td>	7.40	7	0.764	34.54	45.20	1.73	
8.00 9 0.760 41.86 55.09 2.09 2.75 8.20 8 0.759 37.14 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 </td <td>7.60</td> <td></td> <td>0.763</td> <td>28.01</td> <td>36.73</td> <td>1.40</td> <td>1.84</td>	7.60		0.763	28.01	36.73	1.40	1.84
8.20 8 0.759 37.14 48.97 1.86 2.45 8.40 8 0.757 37.08 48.97 1.85 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.89 4.16 10.40 15 0.696 57.82 83.14 2.89	7.80		0.761	37.28	48.97	1.86	
8.40 8 0.757 37.08 48.97 1.85 2.45 8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.89 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.	8.00		0.760	41.86	55.09	2.09	2.75
8.60 6 0.756 26.39 34.90 1.32 1.75 8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68							
8.80 9 0.755 39.51 52.36 1.98 2.62 9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 <t< td=""><td></td><td></td><td></td><td></td><td>48.97</td><td>1.85</td><td></td></t<>					48.97	1.85	
9.00 9 0.753 39.45 52.36 1.97 2.62 9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68				26.39			1.75
9.20 9 0.752 39.39 52.36 1.97 2.62 9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.40 16 0.690 58.45 84.68 2.92 4.23 11.40 16 0.690 58.45 84.68	8.80	9		39.51	52.36	1.98	2.62
9.40 8 0.751 34.96 46.54 1.75 2.33 9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.699 58.45 84.68		9			52.36	1.97	2.62
9.60 6 0.750 24.94 33.25 1.25 1.66 9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02	9.20		0.752	39.39	52.36	1.97	2.62
9.80 8 0.749 33.20 44.34 1.66 2.22 10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09				34.96			
10.00 10 0.748 41.44 55.42 2.07 2.77 10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
10.20 15 0.697 57.91 83.14 2.90 4.16 10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 </td <td>9.80</td> <td>8</td> <td>0.749</td> <td>33.20</td> <td>44.34</td> <td>1.66</td> <td></td>	9.80	8	0.749	33.20	44.34	1.66	
10.40 15 0.696 57.82 83.14 2.89 4.16 10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07<	10.00	10			55.42		2.77
10.60 15 0.694 55.13 79.39 2.76 3.97 10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63		15	0.697				4.16
10.80 16 0.693 58.71 84.68 2.94 4.23 11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28		15	0.696		83.14		
11.00 16 0.692 58.63 84.68 2.93 4.23 11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28							
11.20 17 0.691 62.20 89.97 3.11 4.50 11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28							
11.40 16 0.690 58.45 84.68 2.92 4.23 11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28	11.00	16	0.692	58.63	84.68	2.93	4.23
11.60 15 0.689 52.35 75.96 2.62 3.80 11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28		17	0.691		89.97		
11.80 16 0.688 55.76 81.02 2.79 4.05 12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28	11.40		0.690				
12.00 17 0.687 59.16 86.09 2.96 4.30 12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28							
12.20 20 0.686 69.50 101.28 3.47 5.06 12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28			0.688				
12.40 25 0.635 80.41 126.60 4.02 6.33 12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28		17					
12.60 27 0.634 83.12 131.07 4.16 6.55 12.80 30 0.633 92.20 145.63 4.61 7.28							
12.80 30 0.633 92.20 145.63 4.61 7.28							
13.00 35 0.582 98.90 169.90 4.94 8.50							
	13.00	35	0.582	98.90	169.90	4.94	8.50

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
1.4	3.29	32.06	Incoere	0	1.75	1.88	0.12	1.47	4.84	argilla
			nte -							marnosa
			coesivo							
9.8	6.83	48.14	Incoere	0	1.97	2.17	1.07	1.47	10.04	argilla
			nte -							marnosa
			coesivo							
13	19.06	97.67	Incoere	0	2.14	2.31	2.24	1.47	28.02	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 03

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato (1)	4.84	0.00-1.40	Terzaghi-Peck	0.30
argilla marnosa				
Strato (2)	10.04	1.40-9.80	Terzaghi-Peck	0.68
argilla marnosa			_	
Strato (3)	28.02	9.80-13.00	Terzaghi-Peck	1.89
arenarie alternate				
ad argille marnose				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato (1)	4.84	0.00-1.40	Robertson (1983)	9.68
argilla marnosa				
Strato (2)	10.04	1.40-9.80	Robertson (1983)	20.08
argilla marnosa				
Strato (3)	28.02	9.80-13.00	Robertson (1983)	56.04
arenarie alternate				
ad argille marnose				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	4.84	0.00-1.40	Stroud e Butler	22.21
argilla marnosa			(1975)	
Strato (2)	10.04	1.40-9.80	Stroud e Butler	46.06
argilla marnosa			(1975)	
Strato (3)	28.02	9.80-13.00	Stroud e Butler	128.56
arenarie alternate			(1975)	
ad argille marnose				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato (1)	4.84	0.00-1.40	Apollonia	48.40
argilla marnosa				
Strato (2)	10.04	1.40-9.80	Apollonia	100.40
argilla marnosa				
Strato (3)	28.02	9.80-13.00	Apollonia	280.20
arenarie alternate				
ad argille marnose				

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	4.84	0.00-1.40	A.G.I. (1977)	MODERAT.
argilla marnosa				CONSISTENTE
Strato (2)	10.04	1.40-9.80	A.G.I. (1977)	CONSISTENTE
argilla marnosa				
Strato (3)	28.02	9.80-13.00	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(t/m^3)
Strato (1)	4.84	0.00-1.40	Meyerhof	1.75
argilla marnosa				
Strato (2)	10.04	1.40-9.80	Meyerhof	1.97
argilla marnosa				
Strato (3)	28.02	9.80-13.00	Meyerhof	2.14
arenarie alternate				
ad argille marnose				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
Strato (1) argilla marnosa		0.00-1.40	Meyerhof	1.88
Strato (2) argilla marnosa	10.04	1.40-9.80	Meyerhof	2.17
Strato (3) arenarie alternate ad argille marnose		9.80-13.00	Meyerhof	2.31

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	Correlazione	Velocita' onde di
		(m)		taglio
				(m/s)
Strato (1)	4.84	0.00-1.40	Ohta & Goto	83.89
argilla marnosa			(1978) Argille	
			limose e argille di	
			bassa plasticità	
Strato (2)	10.04	1.40-9.80	Ohta & Goto	142.17
argilla marnosa			(1978) Argille	
			limose e argille di	
			bassa plasticità	
Strato (3)	28.02	9.80-13.00	Ohta & Goto	194.77
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	

TERRENI INCOERENTI

Densita' relativa

Delibita Telativa					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	4.84	0.00-1.40	4.84	Skempton 1986	20.41
argilla marnosa					
Strato (2)	10.04	1.40-9.80	10.04	Skempton 1986	33.08
argilla marnosa					
Strato (3)	28.02	9.80-13.00	28.02	Skempton 1986	61.43
arenarie					
alternate ad					
argille marnose					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	4.84	0.00-1.40	4.84	Meyerhof	21.38
argilla marnosa				(1956)	
Strato (2)	10.04	1.40-9.80	10.04	Meyerhof	22.87
argilla marnosa				(1956)	
Strato (3)	28.02	9.80-13.00	28.02	Meyerhof	28.01
arenarie				(1956)	
alternate ad					
argille marnose					

Modulo di Young

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm²)
Strato (1) argilla marnosa		0.00-1.40	4.84	Terzaghi	
Strato (2) argilla marnosa		1.40-9.80	10.04	Terzaghi	226.17
Strato (3) arenarie alternate ad argille marnose		9.80-13.00	28.02	Terzaghi	377.84

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	4.84	0.00-1.40	4.84	Begemann 1974	37.41
argilla marnosa				(Ghiaia con	
				sabbia)	
Strato (2)	10.04	1.40-9.80	10.04	Begemann 1974	48.09
argilla marnosa				(Ghiaia con	
				sabbia)	
Strato (3)	28.02	9.80-13.00	28.02	Begemann 1974	85.02
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	4.84	0.00-1.40	4.84	Classificazione	POCO
argilla marnosa				A.G.I	ADDENSATO
Strato (2)	10.04	1.40-9.80	10.04	Classificazione	MODERATAM
argilla marnosa				A.G.I	ENTE
					ADDENSATO
Strato (3)	28.02	9.80-13.00	28.02	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di
		(m)			Volume
					(t/m^3)
Strato (1)	4.84	0.00-1.40	4.84	Terzaghi-Peck	1.41
argilla marnosa				1948	
Strato (2)	10.04	1.40-9.80	10.04	Terzaghi-Peck	1.48
argilla marnosa				1948	
Strato (3)	28.02	9.80-13.00	28.02	Terzaghi-Peck	1.68
arenarie				1948	
alternate ad					
argille marnose					

Peso unita' di volume saturo

1 Coo anna an vo	raine bataro				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m^3)
Strato (1)	4.84	0.00-1.40	4.84	Terzaghi-Peck	1.88
argilla marnosa				1948	
Strato (2)	10.04	1.40-9.80	10.04	Terzaghi-Peck	1.92
argilla marnosa				1948	
Strato (3)	28.02	9.80-13.00	28.02	Terzaghi-Peck	2.04
arenarie				1948	
alternate ad					
argille marnose					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	4.84	0.00-1.40	4.84	(A.G.I.)	0.34
argilla marnosa					
Strato (2)	10.04	1.40-9.80	10.04	(A.G.I.)	0.33
argilla marnosa					
Strato (3)	28.02	9.80-13.00	28.02	(A.G.I.)	0.3
arenarie					
alternate ad					
argille marnose					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	4.84	0.00-1.40	4.84	Ohsaki (Sabbie	286.20
argilla marnosa				pulite)	
Strato (2)	10.04	1.40-9.80	10.04	Ohsaki (Sabbie	568.25
argilla marnosa				pulite)	
Strato (3)	28.02	9.80-13.00	28.02	Ohsaki (Sabbie	1491.19
arenarie				pulite)	
alternate ad					
argille marnose					

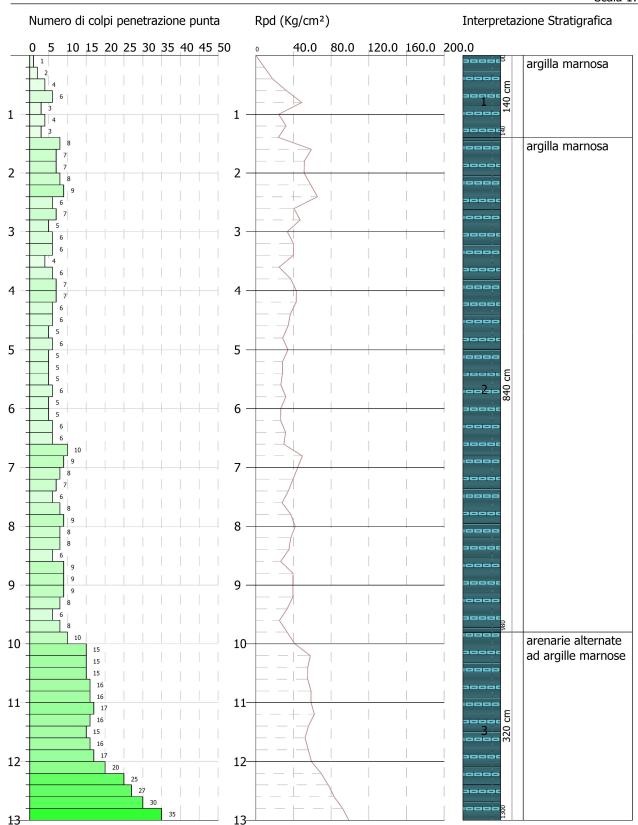
Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde
		(m)			di taglio
					(m/s)
Strato (1)	4.84	0.00-1.40	4.84	Ohta & Goto	83.89
argilla marnosa				(1978) Limi	
Strato (2)	10.04	1.40-9.80	10.04	Ohta & Goto	142.17
argilla marnosa				(1978) Limi	
Strato (3)	28.02	9.80-13.00	28.02	Ohta & Goto	194.77
arenarie				(1978) Limi	
alternate ad					
argille marnose					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	4.84	0.00-1.40	4.84	Navfac 1971-	0.95
argilla marnosa				1982	
Strato (2)	10.04	1.40-9.80	10.04	Navfac 1971-	2.11
argilla marnosa				1982	
Strato (3)	28.02	9.80-13.00	28.02	Navfac 1971-	5.33
arenarie				1982	
alternate ad					
argille marnose					

£ - (and Tenedometro Statico)						
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc		
		(m)			(Kg/cm²)		
Strato (1)	4.84	0.00-1.40	4.84	Robertson 1983	9.68		
argilla marnosa							
Strato (2)	10.04	1.40-9.80	10.04	Robertson 1983	20.08		
argilla marnosa							
Strato (3)	28.02	9.80-13.00	28.02	Robertson 1983	56.04		
arenarie							
alternate ad							
argille marnose							



PROVA PENETROMETRICA DINAMICA Dpsh 03 Strumento utilizzato... DPSH TG 63-200 PAGANI

15/12/2022

Committente: Compagnia del Sole Descrizione: Parco fotovoltaico Localita': Stigliano (Mt)

Scala 1:64

PROVA ... Dpsh 04

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data Profondita' prova Falda non rilevata 15/12/2022 6.40 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	-	coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm²)		Herminier -	Olandesi
			_		Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.20	5	0.855	44.90	52.54	2.24	2.63
0.40	5	0.851	44.70	52.54	2.23	2.63
0.60	7	0.847	57.18	67.50	2.86	3.38
0.80	8	0.843	65.06	77.15	3.25	3.86
1.00	5	0.840	40.49	48.22	2.02	2.41
1.20	7	0.836	56.45	67.50	2.82	3.38
1.40	15	0.783	113.24	144.65	5.66	7.23
1.60	17	0.780	118.09	151.48	5.90	7.57
1.80	22	0.726	142.39	196.04	7.12	9.80
2.00	34	0.673	203.95	302.97	10.20	15.15
2.20	17	0.770	116.66	151.48	5.83	7.57
2.40	17	0.767	116.21	151.48	5.81	7.57
2.60	18	0.764	113.93	149.07	5.70	7.45
2.80	15	0.761	94.59	124.23	4.73	6.21
3.00	15	0.759	94.25	124.23	4.71	6.21
3.20	13	0.756	81.39	107.66	4.07	5.38
3.40	14	0.753	87.35	115.94	4.37	5.80
3.60	17	0.751	98.74	131.50	4.94	6.58
3.80	20	0.748	115.79	154.71	5.79	7.74
4.00	22	0.696	118.45	170.18	5.92	8.51
4.20	22	0.694	118.05	170.18	5.90	8.51
4.40	20	0.741	114.71	154.71	5.74	7.74
4.60	21	0.689	105.04	152.40	5.25	7.62
4.80	23	0.687	114.68	166.91	5.73	8.35
5.00	27	0.685	134.22	195.94	6.71	9.80
5.20	27	0.683	133.83	195.94	6.69	9.80
5.40	25	0.681	123.56	181.42	6.18	9.07
5.60	24	0.679	111.39	164.02	5.57	8.20
5.80	25	0.677	115.71	170.85	5.79	8.54
6.00	27	0.675	124.64	184.52	6.23	9.23

6.20	35	0.624	149.19	239.19	7.46	11.96
6.40	50	0.572	195.46	341.71	9.77	17.09

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		$(Kg/cm^2$		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
1.2	6.17	60.91	Incoere	0	1.94	2.13	0.12	1.47	9.07	argilla
			nte -							marnosa
			coesivo							
3.4	17.91	156.29	Incoere	0	2.12	2.26	0.47	1.47	26.33	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose
6.2	23.93	173.75	Incoere	0	2.29	2.5	1.02	1.47	35.18	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 04

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm^2)
Strato (1)	9.07	0.00-1.20	Terzaghi-Peck	0.61
argilla marnosa				
Strato (2)	26.33	1.20-3.40	Terzaghi-Peck	1.78
arenarie alternate				
ad argille marnose				
Strato (3)	35.18	3.40-6.20	Terzaghi-Peck	2.38
arenarie alternate				
ad argille marnose				

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato (1)	9.07	0.00-1.20	Robertson (1983)	18.14
argilla marnosa				
Strato (2)	26.33	1.20-3.40	Robertson (1983)	52.66
arenarie alternate				
ad argille marnose				
Strato (3)	35.18	3.40-6.20	Robertson (1983)	70.36
arenarie alternate				
ad argille marnose				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	9.07	0.00-1.20	Stroud e Butler	41.61
argilla marnosa			(1975)	
Strato (2)	26.33	1.20-3.40	Stroud e Butler	120.80
arenarie alternate			(1975)	
ad argille marnose				
Strato (3)	35.18	3.40-6.20	Stroud e Butler	161.41
arenarie alternate			(1975)	
ad argille marnose				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato (1)	9.07	0.00-1.20	Apollonia	90.70
argilla marnosa				
Strato (2)	26.33	1.20-3.40	Apollonia	263.30
arenarie alternate			_	
ad argille marnose				
Strato (3)	35.18	3.40-6.20	Apollonia	351.80
arenarie alternate				
ad argille marnose				

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	9.07	0.00-1.20	A.G.I. (1977)	CONSISTENTE
argilla marnosa				
Strato (2)	26.33	1.20-3.40	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				
Strato (3)	35.18	3.40-6.20	A.G.I. (1977)	ESTREM.
arenarie alternate				CONSISTENTE
ad argille marnose				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
Strato (1) argilla marnosa		0.00-1.20	Meyerhof	1.94
Strato (2) arenarie alternate ad argille marnose		1.20-3.40	Meyerhof	2.12
Strato (3) arenarie alternate ad argille marnose		3.40-6.20	Meyerhof	2.29

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
Strato (1) argilla marnosa		0.00-1.20	Meyerhof	2.13
Strato (2) arenarie alternate ad argille marnose	26.33	1.20-3.40	Meyerhof	2.26
Strato (3) arenarie alternate ad argille marnose	35.18	3.40-6.20	Meyerhof	2.50

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Velocita' onde di taglio
		()		(m/s)
Strato (1)	9.07	0.00-1.20	Ohta & Goto	90.78
argilla marnosa			(1978) Argille	
			limose e argille di	
			bassa plasticità	
Strato (2)	26.33	1.20-3.40	Ohta & Goto	141.47
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	
Strato (3)	35.18	3.40-6.20	Ohta & Goto	171.44
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	9.07	0.00-1.20	9.07	Skempton 1986	30.9
argilla marnosa					
Strato (2)	26.33	1.20-3.40	26.33	Skempton 1986	59.53
arenarie					
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Skempton 1986	68.36
arenarie					
alternate ad					
argille marnose					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	9.07	0.00-1.20	9.07	Meyerhof	22.59
argilla marnosa				(1956)	
Strato (2)	26.33	1.20-3.40	26.33	Meyerhof	27.52
arenarie				(1956)	
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Meyerhof	30.05
arenarie				(1956)	
alternate ad					
argille marnose					

Modulo di Young

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm²)
Strato (1) argilla marnosa		0.00-1.20	9.07	Terzaghi	
Strato (2) arenarie alternate ad argille marnose	26.33	1.20-3.40	26.33	Terzaghi	366.27
Strato (3) arenarie alternate ad argille marnose		3.40-6.20	35.18	Terzaghi	423.37

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	9.07	0.00-1.20	9.07	Begemann 1974	46.09
argilla marnosa				(Ghiaia con	
				sabbia)	
Strato (2)	26.33	1.20-3.40	26.33	Begemann 1974	81.55
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Begemann 1974	99.73
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	9.07	0.00-1.20	9.07	Classificazione	POCO
argilla marnosa				A.G.I	ADDENSATO
Strato (2)	26.33	1.20-3.40	26.33	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Classificazione	ADDENSATO
arenarie				A.G.I	
alternate ad					
argille marnose					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di
		(m)			Volume
					(t/m^3)
Strato (1)	9.07	0.00-1.20	9.07	Terzaghi-Peck	1.47
argilla marnosa				1948	
Strato (2)	26.33	1.20-3.40	26.33	Terzaghi-Peck	1.66
arenarie				1948	
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Terzaghi-Peck	1.74
arenarie				1948	
alternate ad					
argille marnose					

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m^3)
Strato (1)	9.07	0.00-1.20	9.07	Terzaghi-Peck	1.91
argilla marnosa				1948	
Strato (2)	26.33	1.20-3.40	26.33	Terzaghi-Peck	2.03
arenarie				1948	
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Terzaghi-Peck	2.08
arenarie				1948	
alternate ad					
argille marnose					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	9.07	0.00-1.20	9.07	(A.G.I.)	0.34
argilla marnosa					
Strato (2)	26.33	1.20-3.40	26.33	(A.G.I.)	0.3
arenarie					
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	(A.G.I.)	0.28
arenarie					
alternate ad					
argille marnose					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	9.07	0.00-1.20	9.07	Ohsaki (Sabbie	516.49
argilla marnosa				pulite)	
Strato (2)	26.33	1.20-3.40	26.33	Ohsaki (Sabbie	1406.49
arenarie				pulite)	
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Ohsaki (Sabbie	1846.85
arenarie				pulite)	
alternate ad					
argille marnose					

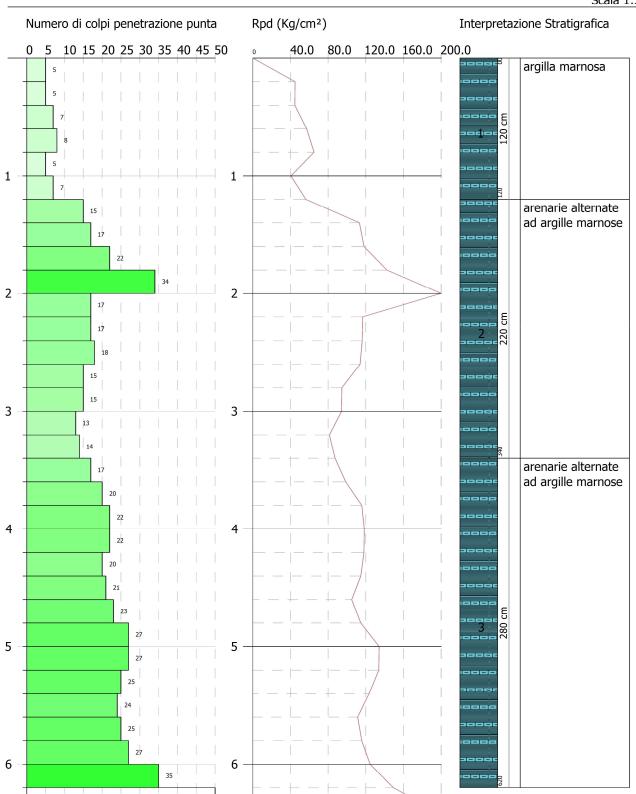
Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Velocita' onde di taglio
		(III)			(m/s)
Strato (1)	9.07	0.00-1.20	9.07	Ohta & Goto	90.78
argilla marnosa				(1978) Limi	
Strato (2)	26.33	1.20-3.40	26.33	Ohta & Goto	141.47
arenarie				(1978) Limi	
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Ohta & Goto	171.44
arenarie				(1978) Limi	
alternate ad					
argille marnose					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	9.07	0.00-1.20	9.07	Navfac 1971-	1.90
argilla marnosa				1982	
Strato (2)	26.33	1.20-3.40	26.33	Navfac 1971-	5.08
arenarie				1982	
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Navfac 1971-	6.29
arenarie				1982	
alternate ad					
argille marnose					

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm²)
Strato (1)	9.07	0.00-1.20	9.07	Robertson 1983	18.14
argilla marnosa					
Strato (2)	26.33	1.20-3.40	26.33	Robertson 1983	52.66
arenarie					
alternate ad					
argille marnose					
Strato (3)	35.18	3.40-6.20	35.18	Robertson 1983	70.36
arenarie					
alternate ad					
argille marnose					



PROVA PENETROMETRICA DINAMICA Dpsh 04 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Compagnia del Sole Descrizione: Parco fotovoltaico Localita': Stigliano (Mt)

15/12/2022

Scala 1:32

PROVA ... Dpsh 05

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data Profondita' prova Falda non rilevata 15/12/2022 6.20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	1	coeff.	dinamica	dinamica	ammissibile	ammissibile
, ,		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm²)	, ,	Herminier -	Olandesi
			, ,		Olandesi	(Kg/cm²)
					(Kg/cm²)	, ,
0.20	3	0.855	26.94	31.52	1.35	1.58
0.40	3	0.851	26.82	31.52	1.34	1.58
0.60	5	0.847	40.84	48.22	2.04	2.41
0.80	5	0.843	40.66	48.22	2.03	2.41
1.00	7	0.840	56.69	67.50	2.83	3.38
1.20	7	0.836	56.45	67.50	2.82	3.38
1.40	8	0.833	64.25	77.15	3.21	3.86
1.60	8	0.830	59.14	71.29	2.96	3.56
1.80	8	0.826	58.91	71.29	2.95	3.56
2.00	8	0.823	58.68	71.29	2.93	3.56
2.20	15	0.770	102.94	133.66	5.15	6.68
2.40	17	0.767	116.21	151.48	5.81	7.57
2.60	23	0.714	136.05	190.48	6.80	9.52
2.80	27	0.711	159.08	223.61	7.95	11.18
3.00	29	0.709	170.20	240.17	8.51	12.01
3.20	28	0.706	163.71	231.89	8.19	11.59
3.40	24	0.703	139.81	198.76	6.99	9.94
3.60	15	0.751	87.13	116.03	4.36	5.80
3.80	14	0.748	81.05	108.30	4.05	5.41
4.00	15	0.746	86.56	116.03	4.33	5.80
4.20	18	0.744	103.55	139.24	5.18	6.96
4.40	17	0.741	97.50	131.50	4.88	6.58
4.60	18	0.739	96.56	130.62	4.83	6.53
4.80	17	0.737	90.93	123.37	4.55	6.17
5.00	15	0.735	80.01	108.85	4.00	5.44
5.20	17	0.733	90.43	123.37	4.52	6.17
5.40	18	0.731	95.49	130.62	4.77	6.53
5.60	22	0.679	102.11	150.35	5.11	7.52
5.80	27	0.677	124.97	184.52	6.25	9.23
6.00	32	0.625	136.79	218.69	6.84	10.93

< 20	=0	0 == 1	10 - 0 1	0.44.54	0.00	15.00
6.20	50	0.574	196 04	34171	0.80	17 09
0.20	50	0.57+	170.04	3+1./1	9.00	17.07

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
2	6.2	58.55	Incoere	0	1.94	2.13	0.19	1.47	9.11	argilla
			nte -							marnosa
			coesivo							
3.6	22.25	185.76	Incoere	0	2.22	2.46	0.57	1.47	32.71	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose
6	19.17	138.79	Incoere	0	2.14	2.32	1.0	1.47	28.18	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 05

TERRENI COESIVI

Coesione non drenata

	1			
Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato (1)	9.11	0.00-2.00	Terzaghi-Peck	0.62
argilla marnosa				
Strato (2)	32.71	2.00-3.60	Terzaghi-Peck	2.21
arenarie alternate			_	
ad argille marnose				
Strato (3)	28.18	3.60-6.00	Terzaghi-Peck	1.90
arenarie alternate				
ad argille marnose				

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato (1)	9.11	0.00-2.00	Robertson (1983)	18.22
argilla marnosa				
Strato (2)	32.71	2.00-3.60	Robertson (1983)	65.42
arenarie alternate				
ad argille marnose				
Strato (3)	28.18	3.60-6.00	Robertson (1983)	56.36
arenarie alternate				
ad argille marnose				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	9.11	0.00-2.00	Stroud e Butler	41.80
argilla marnosa			(1975)	
Strato (2)	32.71	2.00-3.60	Stroud e Butler	150.07
arenarie alternate			(1975)	
ad argille marnose				
Strato (3)	28.18	3.60-6.00	Stroud e Butler	129.29
arenarie alternate			(1975)	
ad argille marnose				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato (1)	9.11	0.00-2.00	Apollonia	91.10
argilla marnosa				
Strato (2)	32.71	2.00-3.60	Apollonia	327.10
arenarie alternate				
ad argille marnose				
Strato (3)	28.18	3.60-6.00	Apollonia	281.80
arenarie alternate				
ad argille marnose				

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	9.11	0.00-2.00	A.G.I. (1977)	CONSISTENTE
argilla marnosa				
Strato (2)	32.71	2.00-3.60	A.G.I. (1977)	ESTREM.
arenarie alternate				CONSISTENTE
ad argille marnose				
Strato (3)	28.18	3.60-6.00	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
Strato (1) argilla marnosa		0.00-2.00	Meyerhof	1.94
Strato (2) arenarie alternate ad argille marnose		2.00-3.60	Meyerhof	2.22
Strato (3) arenarie alternate ad argille marnose		3.60-6.00	Meyerhof	2.14

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
Strato (1)	9.11	0.00-2.00	Meyerhof	2.13
argilla marnosa				
Strato (2)	32.71	2.00-3.60	Meyerhof	2.46
arenarie alternate				
ad argille marnose				
Strato (3)	28.18	3.60-6.00	Meyerhof	2.32
arenarie alternate				
ad argille marnose				

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	Correlazione	Velocita' onde di
		(m)		taglio
				(m/s)
Strato (1)	9.11	0.00-2.00	Ohta & Goto	100.26
argilla marnosa			(1978) Argille	
			limose e argille di	
			bassa plasticità	
Strato (2)	32.71	2.00-3.60	Ohta & Goto	152.57
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	
Strato (3)	28.18	3.60-6.00	Ohta & Goto	164.98
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	9.11	0.00-2.00	9.11	Skempton 1986	30.99
argilla marnosa					
Strato (2)	32.71	2.00-3.60	32.71	Skempton 1986	66.14
arenarie					
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Skempton 1986	61.6
arenarie					
alternate ad					
argille marnose					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	9.11	0.00-2.00	9.11	Meyerhof	22.6
argilla marnosa				(1956)	
Strato (2)	32.71	2.00-3.60	32.71	Meyerhof	29.35
arenarie				(1956)	
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Meyerhof	28.05
arenarie				(1956)	
alternate ad					
argille marnose					

Modulo di Young

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm²)
Strato (1) argilla marnosa		0.00-2.00	9.11	Terzaghi	
Strato (2) arenarie alternate ad argille marnose		2.00-3.60	32.71	Terzaghi	408.24
Strato (3) arenarie alternate ad argille marnose		3.60-6.00	28.18	Terzaghi	378.91

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	9.11	0.00-2.00	9.11	Begemann 1974	46.18
argilla marnosa				(Ghiaia con	
				sabbia)	
Strato (2)	32.71	2.00-3.60	32.71	Begemann 1974	94.65
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Begemann 1974	85.35
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	9.11	0.00-2.00	9.11	Classificazione	POCO
argilla marnosa				A.G.I	ADDENSATO
Strato (2)	32.71	2.00-3.60	32.71	Classificazione	ADDENSATO
arenarie				A.G.I	
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1)	9.11	0.00-2.00	9.11	Terzaghi-Peck	1.47
argilla marnosa				1948	
Strato (2)	32.71	2.00-3.60	32.71	Terzaghi-Peck	1.72
arenarie				1948	
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Terzaghi-Peck	1.68
arenarie				1948	
alternate ad					
argille marnose					

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m^3)
Strato (1)	9.11	0.00-2.00	9.11	Terzaghi-Peck	1.91
argilla marnosa				1948	
Strato (2)	32.71	2.00-3.60	32.71	Terzaghi-Peck	2.07
arenarie				1948	
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Terzaghi-Peck	2.05
arenarie				1948	
alternate ad					
argille marnose					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	9.11	0.00-2.00	9.11	(A.G.I.)	0.34
argilla marnosa					
Strato (2)	32.71	2.00-3.60	32.71	(A.G.I.)	0.29
arenarie					
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	(A.G.I.)	0.3
arenarie					
alternate ad					
argille marnose					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	9.11	0.00-2.00	9.11	Ohsaki (Sabbie	518.63
argilla marnosa				pulite)	
Strato (2)	32.71	2.00-3.60	32.71	Ohsaki (Sabbie	1724.70
arenarie				pulite)	
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Ohsaki (Sabbie	1499.19
arenarie				pulite)	
alternate ad				_	
argille marnose					

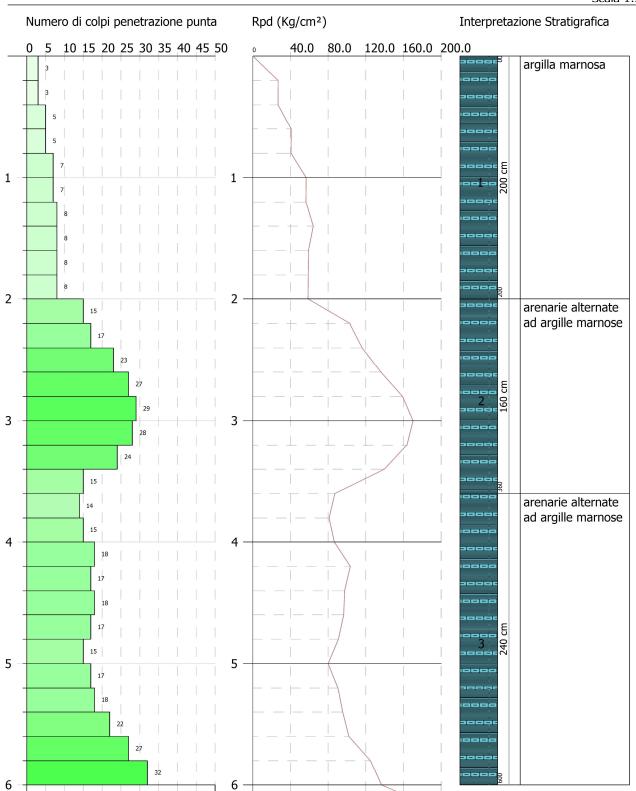
Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde
		(m)			di taglio
					(m/s)
Strato (1)	9.11	0.00-2.00	9.11	Ohta & Goto	100.26
argilla marnosa				(1978) Limi	
Strato (2)	32.71	2.00-3.60	32.71	Ohta & Goto	152.57
arenarie				(1978) Limi	
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Ohta & Goto	164.98
arenarie				(1978) Limi	
alternate ad					
argille marnose					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K 0
		(m)			
Strato (1)	9.11	0.00-2.00	9.11	Navfac 1971-	1.91
argilla marnosa				1982	
Strato (2)	32.71	2.00-3.60	32.71	Navfac 1971-	5.98
arenarie				1982	
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Navfac 1971-	5.35
arenarie				1982	
alternate ad					
argille marnose					

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm²)
Strato (1)	9.11	0.00-2.00	9.11	Robertson 1983	18.22
argilla marnosa					
Strato (2)	32.71	2.00-3.60	32.71	Robertson 1983	65.42
arenarie					
alternate ad					
argille marnose					
Strato (3)	28.18	3.60-6.00	28.18	Robertson 1983	56.36
arenarie					
alternate ad					
argille marnose					



PROVA PENETROMETRICA DINAMICA Dpsh 05 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Compagnia del Sole Descrizione: Parco fotovoltaico Localita': Stigliano (Mt)

15/12/2022

Scala 1:31

50

PROVA ... Dpsh 06

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data Profondita' prova Falda non rilevata 15/12/2022 6.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	-	coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
			_		Olandesi	(Kg/cm²)
					(Kg/cm²)	_
0.20	2	0.855	17.96	21.01	0.90	1.05
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	3	0.847	24.50	28.93	1.23	1.45
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	4	0.840	32.39	38.57	1.62	1.93
1.20	6	0.836	48.39	57.86	2.42	2.89
1.40	8	0.833	64.25	77.15	3.21	3.86
1.60	8	0.830	59.14	71.29	2.96	3.56
1.80	9	0.826	66.27	80.20	3.31	4.01
2.00	9	0.823	66.02	80.20	3.30	4.01
2.20	10	0.820	73.08	89.11	3.65	4.46
2.40	12	0.817	87.38	106.93	4.37	5.35
2.60	12	0.814	80.92	99.38	4.05	4.97
2.80	12	0.811	80.64	99.38	4.03	4.97
3.00	13	0.759	81.68	107.66	4.08	5.38
3.20	12	0.806	80.10	99.38	4.01	4.97
3.40	26	0.703	151.46	215.32	7.57	10.77
3.60	28	0.701	151.81	216.59	7.59	10.83
3.80	33	0.648	165.52	255.27	8.28	12.76
4.00	17	0.746	98.10	131.50	4.91	6.58
4.20	17	0.744	97.80	131.50	4.89	6.58
4.40	18	0.741	103.24	139.24	5.16	6.96
4.60	15	0.739	80.47	108.85	4.02	5.44
4.80	15	0.737	80.24	108.85	4.01	5.44
5.00	14	0.735	74.68	101.60	3.73	5.08
5.20	15	0.733	79.79	108.85	3.99	5.44
5.40	17	0.731	90.19	123.37	4.51	6.17
5.60	19	0.729	94.68	129.85	4.73	6.49
5.80	23	0.677	106.46	157.18	5.32	7.86
6.00	50	0.575	196.64	341.71	9.83	17.09

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
2	5.2	48.5	Incoere	0	1.89	1.9	0.19	1.47	7.64	argilla
			nte -							marnosa
			coesivo							
3.8	17.56	143.22	Incoere	0	2.12	2.25	0.57	1.47	25.81	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose
5.8	17	124.08	Incoere	0	2.12	2.22	0.97	1.47	24.99	arenarie
			nte -							alternate
			coesivo							ad
										argille
										marnose

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 06

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Prof. Strato Correlazione	
		(m)		(Kg/cm ²)
Strato (1)	7.64	0.00-2.00	Terzaghi-Peck	0.48
argilla marnosa				
Strato (2)	25.81	2.00-3.80	Terzaghi-Peck	1.74
arenarie alternate				
ad argille marnose				
Strato (3)	24.99	3.80-5.80	Terzaghi-Peck	1.69
arenarie alternate				
ad argille marnose				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato (1)	7.64	0.00-2.00	Robertson (1983)	15.28
argilla marnosa				
Strato (2)	25.81	2.00-3.80	Robertson (1983)	51.62
arenarie alternate				
ad argille marnose				
Strato (3)	24.99	3.80-5.80	Robertson (1983)	49.98
arenarie alternate				
ad argille marnose				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato Correlazione		Eed
		(m)		(Kg/cm ²)
Strato (1)	7.64	0.00-2.00	Stroud e Butler	35.05
argilla marnosa			(1975)	
Strato (2)	25.81	2.00-3.80	Stroud e Butler	118.42
arenarie alternate			(1975)	
ad argille marnose				
Strato (3)	24.99	3.80-5.80	Stroud e Butler	114.65
arenarie alternate			(1975)	
ad argille marnose				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato (1)	7.64	0.00-2.00	Apollonia	76.40
argilla marnosa				
Strato (2)	25.81	2.00-3.80	Apollonia	258.10
arenarie alternate				
ad argille marnose				
Strato (3)	24.99	3.80-5.80	Apollonia	249.90
arenarie alternate				
ad argille marnose				

Classificazione AGI

Classificazione AGI	·			
Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	7.64	0.00-2.00	A.G.I. (1977)	MODERAT.
argilla marnosa				CONSISTENTE
Strato (2)	25.81	2.00-3.80	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				
Strato (3)	24.99	3.80-5.80	A.G.I. (1977)	MOLTO
arenarie alternate				CONSISTENTE
ad argille marnose				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
Strato (1) argilla marnosa		0.00-2.00	Meyerhof	1.89
Strato (2) arenarie alternate ad argille marnose		2.00-3.80	Meyerhof	2.12
Strato (3) arenarie alternate ad argille marnose		3.80-5.80	Meyerhof	2.12

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
Strato (1) argilla marnosa		0.00-2.00	Meyerhof	1.90
Strato (2) arenarie alternate ad argille marnose		2.00-3.80	Meyerhof	2.25
Strato (3) arenarie alternate ad argille marnose	24.99	3.80-5.80	Meyerhof	2.22

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	Correlazione	Velocita' onde di
Descrizione	NSF I		Correlazione	
		(m)		taglio
				(m/s)
Strato (1)	7.64	0.00-2.00	Ohta & Goto	97.25
argilla marnosa			(1978) Argille	
			limose e argille di	
			bassa plasticità	
Strato (2)	25.81	2.00-3.80	Ohta & Goto	147.44
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	
Strato (3)	24.99	3.80-5.80	Ohta & Goto	161.59
arenarie alternate			(1978) Argille	
ad argille marnose			limose e argille di	
			bassa plasticità	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	7.64	0.00-2.00	7.64	Skempton 1986	27.54
argilla marnosa					
Strato (2)	25.81	2.00-3.80	25.81	Skempton 1986	58.93
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Skempton 1986	57.94
arenarie					
alternate ad					
argille marnose					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	7.64	0.00-2.00	7.64	Meyerhof	22.18
argilla marnosa				(1956)	
Strato (2)	25.81	2.00-3.80	25.81	Meyerhof	27.37
arenarie				(1956)	
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Meyerhof	27.14
arenarie				(1956)	
alternate ad					
argille marnose					

Modulo di Young

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm²)
Strato (1) argilla marnosa		0.00-2.00	7.64	Terzaghi	
Strato (2) arenarie alternate ad argille marnose	25.81	2.00-3.80	25.81	Terzaghi	362.63
Strato (3) arenarie alternate ad argille marnose		3.80-5.80	24.99	Terzaghi	356.82

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	7.64	0.00-2.00	7.64	Begemann 1974	43.16
argilla marnosa				(Ghiaia con	
				sabbia)	
Strato (2)	25.81	2.00-3.80	25.81	Begemann 1974	80.48
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Begemann 1974	78.79
arenarie				(Ghiaia con	
alternate ad				sabbia)	
argille marnose					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	7.64	0.00-2.00	7.64	Classificazione	POCO
argilla marnosa				A.G.I	ADDENSATO
Strato (2)	25.81	2.00-3.80	25.81	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Classificazione	MODERATAM
arenarie				A.G.I	ENTE
alternate ad					ADDENSATO
argille marnose					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1) argilla marnosa		0.00-2.00	7.64	Terzaghi-Peck 1948	1.45
Strato (2) arenarie alternate ad argille marnose		2.00-3.80	25.81	Terzaghi-Peck 1948	1.66
Strato (3) arenarie alternate ad argille marnose	24.99	3.80-5.80	24.99	Terzaghi-Peck 1948	1.65

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
	1,611	(m)	111 0410010	001101110110	Volume Saturo
					(t/m^3)
Strato (1)	7.64	0.00-2.00	7.64	Terzaghi-Peck	1.90
argilla marnosa				1948	
Strato (2)	25.81	2.00-3.80	25.81	Terzaghi-Peck	2.03
arenarie				1948	
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Terzaghi-Peck	2.03
arenarie				1948	
alternate ad					
argille marnose					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	7.64	0.00-2.00	7.64	(A.G.I.)	0.34
argilla marnosa					
Strato (2)	25.81	2.00-3.80	25.81	(A.G.I.)	0.3
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	(A.G.I.)	0.3
arenarie					
alternate ad					
argille marnose					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	7.64	0.00-2.00	7.64	Ohsaki (Sabbie	439.56
argilla marnosa				pulite)	
Strato (2)	25.81	2.00-3.80	25.81	Ohsaki (Sabbie	1380.37
arenarie				pulite)	
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Ohsaki (Sabbie	1339.10
arenarie				pulite)	
alternate ad					
argille marnose					

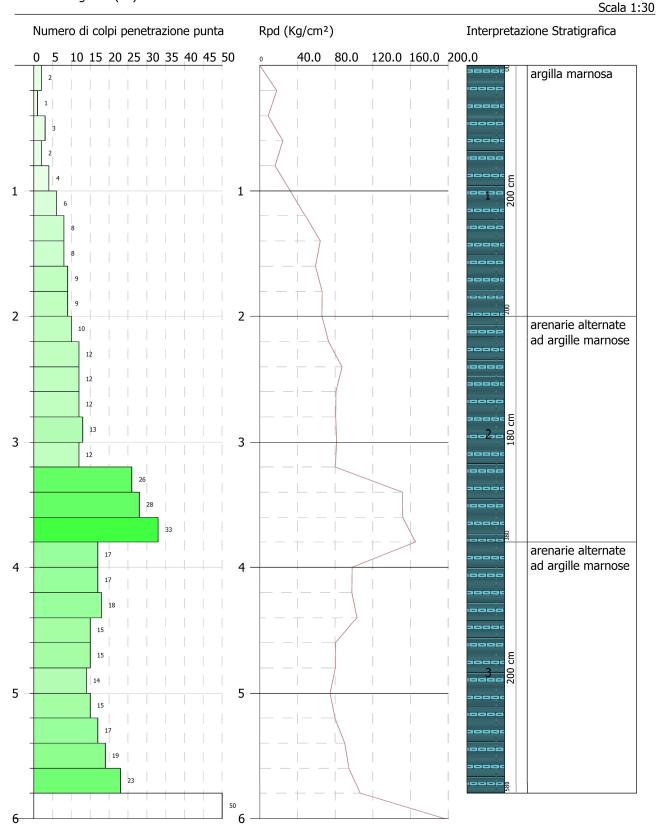
Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde
		(m)			di taglio
					(m/s)
Strato (1)	7.64	0.00-2.00	7.64	Ohta & Goto	97.25
argilla marnosa				(1978) Limi	
Strato (2)	25.81	2.00-3.80	25.81	Ohta & Goto	147.44
arenarie				(1978) Limi	
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Ohta & Goto	161.59
arenarie				(1978) Limi	
alternate ad					
argille marnose					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	7.64	0.00-2.00	7.64	Navfac 1971-	1.59
argilla marnosa				1982	
Strato (2)	25.81	2.00-3.80	25.81	Navfac 1971-	5.00
arenarie				1982	
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Navfac 1971-	4.87
arenarie				1982	
alternate ad					
argille marnose					

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm²)
Strato (1)	7.64	0.00-2.00	7.64	Robertson 1983	15.28
argilla marnosa					
Strato (2)	25.81	2.00-3.80	25.81	Robertson 1983	51.62
arenarie					
alternate ad					
argille marnose					
Strato (3)	24.99	3.80-5.80	24.99	Robertson 1983	49.98
arenarie					
alternate ad					
argille marnose					



PROVA PENETROMETRICA DINAMICA Dpsh 06 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Compagnia del Sole Descrizione: Parco fotovoltaico Localita': Stigliano (Mt) 15/12/2022

