

Direzione Tecnica

ITINERARIO INTERNAZIONALE E78 S.G.C. GROSSETO - FANO Tratto Selci Lama (E45) - S. Stefano di Gaifa Adeguamento a 2 corsie della Galleria della Guinza (lotto 2) e del tratto Guinza - Mercatello Ovest (lotto 3) 1° stralcio

PROGETTO ESECUTIVO COD. AN58 PROGETTAZIONE: REGRUPPAMENTO TEMPORANEO PROGETISTI MANDATARIA:							i	
PROGETTAZIONE: RAGGRUPPAMENTO TEMPORANEO PROGETTISTI MANDATARIA: MANDATARI		F	PROGETTO) ESECL	JTIVO		COD.	AN58
IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: INDUCTIONE SOCIETÀ Pro Iter SI Malane Ingegneri Provincie di Miano n. 18045 IL GOODINATORE PER LA SICUREZZA IN FASE DI PROCETIZIONE IL COORDINATORE DELLE PROCEDIMENTO: DOT. IL RESP. DEL PROCEDIMENTO: DOTA: CODICE DATA: CODICE PROCETIO ILV. PROC. N. PROC. IL OZ 70 2 M E 2 10 1 NOME FILE TODOSCI1GEORE01A.pdf CODICE CODICE TO INDAGINI GEOGNOSTICHE 20.05.02 - INDAGINI 2022 DOCUMENTAZIONE INDAGINI 2022 DOCUMENTAZIONE INDAGINI 2022 DOCUMENTAZIONE INDAGINI 2022 DOCUMENTAZIONE INDAGINI 2022 DOCUMENTAZIONE INDAGINI 2022 DOCUMENTAZIONE INDAGINI 2022 CODICE TO INDAGINE ELLE REVISIONE REVISIONE REVISIONE REVISIONE SCALA PROCETIO ILV. PROC. N. PROC. REVISIONE FILE TODOSCI I GEORIAL AND REVISIONE SCALA PROCETIO ILV. PROC. N. PROC. REVISIONE FILE TODOSCI I DO S G 1 1 GEO REO 1 A EMISSIONE FEBBRAIO 2020 PECORELLA MEZZANZANICA FORMICHI REV. DESCRIZIONE DATA REDATIO VERIFICATO APPROVATO	PROGETTAZION RAGGRUPPAME TEMPORANEO	ie: Ento Progettisti	MANDATARIA:	MANDAN	TI: ERICERCA VIABILITÀ AMBIENTE	siner	go	
PROTOCOLLO: DATA: PROTOCOLLO: DATA: O2 - INDAGINI 02.05 - INDAGINI GEOGNOSTICHE 02.05.02 - INDAGINI 2022 Documentazione Indagini Geognostiche 2022 CODICE PROGETTO PROGETTO NOME FILE TODSGI1GEORE01A.pdf REVISIONE SCALA CODICE PROGETTO N. PROG. CODICE TOOSGI1GEORE01A.pdf REVISIONE SCALA D CODICE ELAB. TOO SG11 GEO RE01 A R D C CODICE ELAB. TOO SG11 GEO RE01 A R A EMISSIONE FEBBRAIO 2023 PECORELLA MEZZANZANICA FORMICHI REV. DESCRIZIONE DATA REDATIO VERIFICATO APPROVATO	IL RESPONSAE SPECIALISTICH Ing. Riccardo Forr Ordine Ingegneri F IL GEOLOGO: Dott. Geol. Massir Albo Geol. Lombai IL COORDINATO Ing. Massimo Ma Ordine Ingegneri Pro VISTO: IL RES Dott ing Vincenzi	BILE DELL'INTEGRA IE: michi – Società Pro Ite Provincia di Milano n. 1 mo Mezzanzanica – Soc rdia n. A762 DRE PER LA SICUR mgini – Società Erre.VI.A vvincia di Varese n. 1502 SP. DEL PROCEDIM o Catone	ZIONE DELLE PRESTA r Srl 8045 cietà Pro Iter Srl EZZA IN FASE DI PRC 1 Srl ENTO:		GEGNER/ DOTT.ING FORMICHI RICC/ Sez.A. Setto a) civile e amble b/industriele c) dell'hitormazior n° A 18043 MILANO	RDD PROVINCE	06/ Polas anzantica ssimo	
02 - INDAGINI 02.05 - INDAGINI GEOGNOSTICHE 02.05.02 - INDAGINI 2022 Documentazione Indagini Geognostiche 2022 CODICE PROGETTO PROGETTO LIV. PROG. N. PROG. NOME FILE TOOSG11GEORE01A.pdf REVISIONE CODICE 100 SG11 GE0 D CODICE C CODICE B CODICE A EMISSIONE FEBBRAIO 2023 PECORELLA MEZZANZANICA FORMICHI REV. DESCRIZIONE	PROTOCOLLO:		DATA:				1242 103 (or	<u> </u>
CODICE_PROGETTO NOME_FILE TOOSG11GEORE01A.pdf REVISIONE SCALA PROGETTO LIV. PROG. N. PROG. CODICE TOOSG11GEORE01A.pdf A R D CODICE TOOSG11GEORE01A.pdf A R CD CODICE TOOSG11GEORE01A.pdf A R D CODICE TOOSG11GEORE01A.pdf A R B CODICE CODICE FEBBRAIO 2023 PECORELLA MEZZANZANICA A EMISSIONE FEBBRAIO 2023 PECORELLA MEZZANZANICA FORMICHI REV. DESCRIZIONE DATA REDATTO VERIFICATO APPROVATO			02.05 - IN 02.0 Documentazio	02 - INDA NDAGINI G 05.02 - INDA one Indagini	AGINI EOGNOSTIC AGINI 2022 i Geognostiche	CHE 2022		
LO702ME2101CODICE ELAB.T00SG11GEORE01ARD </td <td>CODICE PF</td> <td>ROGETTO</td> <td>NOME F</td> <td>LE LGEORE01A.pc</td> <td>lf</td> <td></td> <td>REVISIONE</td> <td>SCALA</td>	CODICE PF	ROGETTO	NOME F	LE LGEORE01A.pc	lf		REVISIONE	SCALA
DIIIICIIIBIIIAEMISSIONEFEBBRAIO 2023PECORELLAMEZZANZANICAFORMICHIREV.DESCRIZIONEDATAREDATTOVERIFICATOAPPROVATO	L070	2M E 21	01 CODICE ELAB.	T00SG	11GEOR	E 0 1	Α	R
CImage: C </td <td>D</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D							
D C C C A EMISSIONE FEBBRAIO 2023 PECORELLA MEZZANZANICA FORMICHI REV. DESCRIZIONE DATA REDATTO VERIFICATO APPROVATO	C							
REV. DESCRIZIONE DATA REDATTO VERIFICATO APPROVATO	A	EMISSIONE			FEBBRAIO	2023 PECORELLA	MEZZANZANICA	FORMICHI
	REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Mandanti

pizzi terra

0

Geofisi Misure

geoplanning

RTI

Capogruppo

AN58 - S.G.C. Grosseto – Fano (E78)

galleria della Guinza (lotto 2) e tratto Guinza – Mercatello Ovest (lotto 3 1º Stralcio)

Progetto	Gallerie della Guinza, Valpiana, S. Veronica e S. Antonio S/N
Nr. Progetto	AN58
Oggetto	Sondaggio orizzontale a carotaggio continuo
Emesso da	ATI monitoraggio
Emesso per	ANAS Direzione Progettazione e Realizzazione Lavori
	Progettazione, Indirizzo e Controllo – Geotecnica e Gallerie
Data	Agosto 2022

Revisione Documento

Autore	
Controllato	
Approvato	

Versione	Descrizione	Iniziali	Data

GALLERIA SANT'ANTONIO SUD INDAGINI GEOGNOSTICHE

Sondaggio orizzontale presso by-pass galleria progressiva km 7+775

SONDAGGIO ORIZZONTALE S1 C1 da 0,00 a 5,00 m

SONDAGGIO ORIZZONTALE S1 C2 da 5,00 a 10,00 m

SONDAGGIO ORIZZONTALE S1 C3 da 10,00 a 14,50 m

EXPERIMENTATIONS S.r.I. Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

kiwa certified

1 4

CORCIANO (PG) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori:

- Materiali da costruzione - Settore A - (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi

- Terre e Rocce Settori A e B Decreto n. 54349 del 16/02/2006 e successivi
- Prove e controlli su strutture e costruzioni esistenti (Circ. 633/STC) Decreto n. 83 del 18/03/2022

- Organismo di Ispezione, Certificazione e Prova settore Prodotti da costruz. Reg. (UE) n. 305/2011 – Not. n. 1676
 GROTTAGLIE (TA) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settore:

- Materiali da costruzione - Settore A - (Legge n. 1086/71) Decreto n. 63 del 30/03/2021

Laboratorio Terre e Rocce - Corciano (PG)

Decreto di concessione per i Settori A e B n. 54349 del 16/02/2006 e successivi

CERTIFICATO N°	T032106	DEL	14/09/2022
Verbale d'accettazione n°	T / 6430	del	13/09/2022
Intestatario:	ANAS SPA - Direzione Generale Via Luigi Pianciani, 16 00185 - Ro	- Prog. Geot. e Ga OMA	llerie
Committente:	GEOTECNICA LAVORI S.r.I.		
Cantiere:	Itinerario Internazionale E78 S.G Gaifa. Adeguamento a due corsie Ovest (lotto 3) 1º Stralcio.	à.C. Grosseto - Fa e della Galleria Guir	no, tratta Selci Lama (E45) S. Stefano di nza (lotto 2) e del tratto Guinza - Mercatello
Località:	Galleria S. Antonio Sud - Zona By	pass	
D.E.C.	Dott. Ing. Andrea Mattei		
Richiesta:	Non sottoscritta dalla D.L.		
Natura del campione:	Campione di roccia in involucro d	i plastica	

DATI	IDENTIFICATIVI	PROVE ESEGUITE	
Data ricevimento :	13/09/2022	DESCRIZIONE	PROGRESSIVO
Sondaggio:	SO	Point Load Test	FA01
Campione:	CL1		
Contrassegno:	SO-CL1		
Profondità:	7,00 - 8,00 m		
Punto di prelievo:	Galleria S. Antonio Sud Zona Bypass		
Data di prelievo:	non dichiarata		
Modalità di prelievo:	carotaggio		
C(
Tipo:	involucro di plastica		
Lunghezza:			
Diametro:	••		
Altro:			

	 II Direttore
Lo Sperimentatore	Dott. Geol. Emilio Cherubini
Doll. Geol. Simplie Cascian	
	(Fill)
	here

Sede Legale e^ttaboratori: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146 P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it; E-Mail: info@experimentations.it - Web Site: www.experimentations.it Sede Operativa e Laboratorio: Viale Jonio, 8 – 74023 Grottaglie - Taranto – Tel. e Fax +39 099 5626052 – PEC: exp.taranto@pec.it; E-Mail: grottaglie@experimentations.it Sede Operativa e Laboratorio: Zona Artigianale P.I.P. Snc - 08045 Lanusei – Nuoro - E-Mail: lanusei@experimentations.it

and the second se	rre e Rocce – Settori ove e controlli su stru DTTAGLIE (TA) - LABO ateriali da costruzion	A e B - Decreto n. 5434 itture e costruzioni esis IRATORIO AUTORIZZATO e – Settore A - (Legge n.) del 16/02/2006 e su tenti (Circ. 633/STC) - O DAL MINISTERO DE 1086/71) Decreto n.	Ccessivi Decreto n. 83 del LLE INFRASTRUTTO 63 del 30/03/202	18/03/2022 URE E DEI TI 1	t AASPORTI (art. 59 del D.P.R. 3	880/2001) settore:	BUREAU VERITAS Certification	No. 100
Certific	ato di prova	: T032106FA	01 P	agina 2/2	DATA	DI EMISSIONE:	14/09/22	Inizio analisi:	13/09/22
VERBA	LE DI ACCE	TTAZIONE N°:	T/6430 del	13/09/22	Apert	ura campione:	13/09/22	Fine analisi:	14/09/22
INTES RIFER	TATARIO: A IMENTO: E	ANAS SPA - DI 78 S.G.C G	REZIONE GE alleria S. Anto	NERALE onio Sud - B	Sypass				
SOND	AGGIO: SC)	CA	MPIONE:	CL1		PROFO	NDITA': m 7.	00 - 8.00
			<u>P</u>	OINT L	OAD	TEST			
			Modali	tà di prova:	Norma	ASTM D 5731			
· [NDICE CO	RRETTO Is	(<u>50)</u>	10					
Prove	esequite:		10	8_					
Valore	massimo		2.04	7					
Valore	medio *		1.26	R 5					
Valore	minimo		0.35	0 4					
valore			0,00	V 3					
		STICHE FISI	CHE	1					
	à paturala (0	0.3	0.6 0.9 1.2	1.5 1.5	8 2,1 2,4	2,7 3,0
Peso d	di volume (k	⁷⁸⁾ (N/m³):			0,0	INDICE COR	RETTO Is((50) (MPa)	
Prova	Forma Rottura	Piani di debolezza	Altezza	Larghez mm	za	Carico kN	Indice MPa	ls Ind	lice Is(50) MPa
		Δ	40,0	72,0	2	5,94	1,62	20	
1	D	/1		70 /					1,766
1	D D		37,0	72,0		1,11 4 75	0,32	27	1,766 0,351 1,297
1 2 3 4	D D D D	A A A	<u>37,0</u> 44,0 46,0	72,0)))	1,11 4,75 6,24	<i>0,32</i> 1,16 1,45	27 61 69	<i>1,766</i> <i>0,351</i> 1,297 1,647
1 2 3 4 5	D D D D D	A A A A A	37,0 44,0 46,0 41,0	72,0 73,0 73,0 73,0 75,0))))	1,11 4,75 6,24 7,23	0,32 1,16 1,45 <i>1,8</i> 4	27 51 59 47	1,766 0,351 1,297 1,647 2,043
1 2 3 4 5 6	D D D D D D	A A A A A	37,0 44,0 46,0 41,0 35,0	72,0 73,0 73,0 75,0 75,0	0 1 <t< td=""><td>1,11 4,75 6,24 7,23 2,41</td><td>0,32 1,16 1,45 1,84 0,72</td><td>27 51 59 47 21</td><td>1,766 0,351 1,297 1,647 2,043 0,770</td></t<>	1,11 4,75 6,24 7,23 2,41	0,32 1,16 1,45 1,84 0,72	27 51 59 47 21	1,766 0,351 1,297 1,647 2,043 0,770
1 2 3 4 5 6 7	D D D D D D D	A A A A A A	37,0 44,0 46,0 41,0 35,0 31,0	72,0 73,0 75,0 75,0 75,0 74,0 72,0	0 0 0 0 0 0	1,11 4,75 6,24 7,23 2,41 3,65 2,40	0,32 1,16 1,45 1,84 0,72 1,25	27 51 59 47 21 50	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828
1 2 3 4 5 6 7 8 9	D D D D D D D D D	A A A A A A A A	37,0 44,0 46,0 35,0 31,0 33,0 35,0	72,0 73,0 73,0 75,0 75,0 74,0 72,0 73,0	0))) 0 0 0 0 0 0 0 0	1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79	27 51 59 47 21 50 93 93	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841
1 2 3 4 5 6 7 8 9 10	D D D D D D D D D D D	A A A A A A A A A A A A	37,0 44,0 46,0 35,0 31,0 33,0 35,0 42,0	72,0 73,0 75,0 75,0 75,0 74,0 72,0 73,0 75,0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 0,79 1,50	27 59 47 21 50 93 93 91	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669
1 2 3 4 5 6 7 8 9 10	D D D D D D D D D	A A A A A A A A A A A	37,0 44,0 46,0 41,0 35,0 31,0 33,0 35,0 42,0	72,0 73,0 75,0 75,0 75,0 74,0 72,0 73,0 75,0	0	1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 1,50	27 51 59 47 21 50 93 93 93 91 91 92 93 93 93 93 93 93 93 93 93 93	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669
1 2 3 4 5 6 7 8 9 10	D D D D D D D D D D	A A A A A A A A A A	37,0 44,0 46,0 41,0 35,0 31,0 33,0 35,0 42,0	72,6 73,0 75,6 75,6 75,6 74,0 72,0 73,0 75,0		1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 1,50	27 51 59 47 21 50 03 03 01 1 1 1 1 1 1 1 1 1 1 1 1 1	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669
1 2 3 4 5 6 7 8 9 9 10	D D D D D D D D D	A A A A A A A A A A	37,0 44,0 46,0 41,0 35,0 31,0 33,0 35,0 42,0	72,0 73,0 73,0 75,0 75,0 74,0 72,0 73,0 75,0		1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 1,50	27 27 59 47 21 50 03 03 01 	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669
1 2 3 4 5 6 7 8 9 10	D D D D D D D D D D	A A A A A A A A A A A	37,0 44,0 46,0 35,0 31,0 33,0 35,0 42,0	72,0 73,0 75,0 75,0 74,0 72,0 73,0 75,0		1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 1,50	27 51 59 47 21 50 03 03 01 	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669
1 2 3 4 5 6 6 7 7 8 9 9 10		A A A A A A A A A A A A	37,0 44,0 46,0 41,0 35,0 31,0 33,0 35,0 42,0	72,0 73,0 73,0 75,0 75,0 74,0 72,0 73,0 75,0		1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 0,79 1,50	27 27 59 47 21 50 33 33 33 33 34 50 50 50 50 50 50 50 50 50 50	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669
1 2 3 4 5 6 7 8 9 10 10	D D D D D D D D D D D D D D D D D D D	A A A A A A A A A A C Calcolo del valore	37,0 44,0 46,0 35,0 31,0 33,0 35,0 42,0 medio i due va	72,6 73,6 73,6 75,6 75,6 74,6 72,6 73,6 75,6 75,6 75,6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2)))))))))) e i due	1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 1,50	27 27 59 47 21 50 93 93 93 93 91 	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669
1 1 2 3 4 5 6 7 8 9 9 10 10 * Vengo A - B B - C C - C D - Ir	D D D D D D D D D D D D D D D D D D D	A A A A A A A A A A A C A C A C Calcolo del valore Forma del pro- ttura diametra	37,0 44,0 46,0 35,0 31,0 35,0 35,0 42,0 medio i due va ovino e tipo	22,6 73,6 73,6 75,6 75,6 74,6 72,6 73,6 75,6 	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02 valori minori valori minori - Assenti - Perpendicolar - Paralleli alla c - In direzioni valori val	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 1,50 1,50 Posizione i alla direz direzione d arie	27 39 47 21 30 33 33 33 33 33 33 33 33 33	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669 ebolezza
1 1 2 3 4 5 6 7 8 9 9 10 10 	D D D D D D D D D D D D D D D D D D D	A A A A A A A A A A A A C A C A C Calcolo del valore Forma del pro- ttura diametra attura assiale	37,0 44,0 46,0 41,0 35,0 31,0 35,0 42,0 medio i due va ovino e tipo ale	22,6 73,6 73,6 75,6 75,6 74,6 72,6 73,6 75,6 	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,11 4,75 6,24 7,23 2,41 3,65 2,40 2,58 6,02 valori minori Assenti Perpendicolar Paralleli alla c In direzioni va	0,32 1,16 1,45 1,84 0,72 1,25 0,79 0,79 1,50 1,50 Posizione i alla direz direzione d trie	27 31 39 47 21 30 33 33 33 33 33 31 33 33 34 33 34 33 34 33 34 35 47 47 47 47 47 47 47 47 47 47	1,766 0,351 1,297 1,647 2,043 0,770 1,294 0,828 0,841 1,669 ebolezza

Dott. Geel. Simone Casciari 1

Dott. Geol. Eritto Cherubini

Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali **EXPERIMENTATIONS S.r.I.** di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

BUREAU VERITA

certified

CORCIANO (PG) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori:

- Materiali da costruzione - Settore A - (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi

- Terre e Rocce Settori A e B Decreto n. 54349 del 16/02/2006 e successivi
- Prove e controlli su strutture e costruzioni esistenti (Circ. 633/STC) Decreto n. 83 del 18/03/2022

- Organismo di Ispezione, Certificazione e Prova settore Prodotti da costruz. Reg. (UE) n. 305/2011 - Not. n. 1676 GROTTAGLIE (TA) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settore:

- Materiali da costruzione – Settore A - (Legge n. 1086/71) Decreto n. 63 del 30/03/2021

Laboratorio Terre e Rocce - Corciano (PG)

Decreto di concessione per i Settori A e B n. 54349 del 16/02/2006 e successivi

				Pag.	1 di	2	
CERTIFICATO N°	T032107	DEL	14/09/2022				
Verbale d'accettazione n°	T / 6430	del	13/09/2022				
Intestatario:	ANAS SPA - Direzione Generale - F Via Luigi Pianciani, 16 00185 - ROM	Prog. Geot. e G //A	allerie				
Committente:	GEOTECNICA LAVORI S.r.I.						
Cantiere:	Itinerario Internazionale E78 S.G.C Gaifa. Adeguamento a due corsie d Ovest (lotto 3) 1º Stralcio.	C. Grosseto - F ella Galleria Gu	Fano, tratta Selci Lama (E45) uinza (lotto 2) e del tratto Guin	S. S za - N	Stefai Aerca	no di atello	
Località:	Galleria S. Antonio Sud - Zona Bypa	ass					
D.E.C.	Dott. Ing. Andrea Mattei						
Richiesta:	Non sottoscritta dalla D.L.						
Natura del campione:	Campione di roccia in involucro di p	lastica					

DAT	I IDENTIFICATIVI	PROVE ESEGUITE	
Data ricevimento :	13/09/2022	DESCRIZIONE	PROGRESSIVO
Sondaggio:	SO	Point Load Test	FA01
Campione:	CL2		
Contrassegno:	SO-CL2	5	
Profondità:	11,00 - 12,00 m		
Punto di prelievo:	Galleria S. Antonio Sud Zona Bypass		
Data di prelievo:	non dichiarata		
Modalità di prelievo:	carotaggio		
C	ONTENITORE	_	
Tipo:	involucro di plastica		
Lunghezza:			
Diametro:			
Altro:			

Lo Sperimentatore	II Direttore Dott. Geol. حُسْلًا، Cherubini
Dott. Geol. Simone Cascian	Find hard
Am	heeren

Sede Legale e Laboratori: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146

P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it; E-Mail: info@experimentations.it - Web Site: www.experimentations.it

Sede Operativa e Laboratorio: Viale Jonio, 8 – 74023 Grottaglie - Taranto – Tel. e Fax +39 099 5626052 – PEC: exp.taranto@pec.it; E-Mail: grottaglie@experimentations.it Sede Operativa e Laboratorio: Zona Artigianale P.I.P. Snc - 08045 Lanusei – Nuoro - E-Mail: lanusei@experimentations.it

1	5]
K	N]
S	GM	1

EXPERIMENTATIONS S.r.I.	Sede legale e laboratori: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia – Italia Tel. 075.5170556-5179254 - Fax +39 075.5178146 P.IVA e C. Fisc. 03372400543 E-mail: info@experimentations.com PEC: experimentations@pec.it Web Site: www.experimentations.it				
CORCIANO (PG) - LABORATORIO AUTO - Materiali da costruzione - Settore A - Terre e Rocce - Settori A e B - Decret - Prove e controlli su strutture e costru GROTTAGLIE (TA) - LABORATORIO AU - Materiali da costruzione - Settore A	DRIZZATO DAL MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI (art. 59 del D.P.R. 380/2001) settori: (Legge n. 1085/71) Decreto n. 38194 del 14/01/1994 e successivi o n. 54349 del 16/02/2006 e successivi Izioni esistenti (Circ. 633/STC) - Decreto n. 83 del 18/03/2022 TORIZZATO DAL MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI (art. 59 del D.P.R. 380/2001) settore: - (Legge n. 1086/71) Decreto n. 63 del 30/03/2021	BUREAU VERTAS Guessicessia			

Certificato di prova: T032107FA01	Pagina 2/2	DATA DI EMISSIONE:	14/09/22	Inizio analisi:	13/09/22
VERBALE DI ACCETTAZIONE Nº: T/64	30 del 13/09/22	Apertura campione:	13/09/22	Fine analisi:	14/09/22
INTESTATARIO: ANAS SPA - DIREZIONE GENERALE					
RIFERIMENTO: E 78 S.G.C Galleria S. Antonio Sud - Bypass					
SONDAGGIO: SO	CAMPIONE:	CL2	PROFOND	DITA': m 11.00	- 12.00
POINT LOAD TEST					

Modalità di prova: Norma ASTM D 5731

Forma Rottura	Piani di debolezza	Altezza mm	Larghezza mm	Carico kN	Indice Is MPa	Indice Is(50) MPa
D	A	56,0	78,0	6,11	1,099	1,315
D	A	51,0	75,0	8,96	1,840	2,138
D	A	41,0	53,0	2,51	0,907	0,928
В	A	79,0	79,0	10,73	1,719	2,112
С	A	42,0	79,0	2,62	0,620	0,698
D	Α	35,0	65,0	4,53	1,564	1,617
D	A	43,0	59,0	5,81	1,799	1,905
D	A	48,0	67,0	7,99	1,951	2,180
D	A	35,0	38,0	2,07	1,222	1,120
D	A	30,0	75,0	3,50	1,222	1,260
	Forma Rottura D D B C D D D D D D	Forma RotturaPiani di debolezzaDADADABACADADADADADADADADADADADADADADADADADADADA	Forma RotturaPiani di debolezzaAltezza mmDA56,0DA51,0DA41,0BA79,0CA42,0DA35,0DA43,0DA35,0DA30,0	Forma Rottura Piani di debolezza Altezza mm Larghezza mm D A 56,0 78,0 D A 51,0 75,0 D A 41,0 53,0 B A 79,0 79,0 C A 42,0 79,0 D A 35,0 65,0 D A 43,0 59,0 D A 35,0 38,0 D A 30,0 75,0 D A 30,0 75,0 D A 30,0 75,0	Forma Rottura Piani di debolezza Altezza mm Larghezza mm Carico kN D A 56,0 78,0 6,11 D A 51,0 75,0 8,96 D A 41,0 53,0 2,51 B A 79,0 79,0 10,73 C A 42,0 79,0 2,62 D A 35,0 65,0 4,53 D A 43,0 59,0 5,81 D A 48,0 67,0 7,99 D A 35,0 38,0 2,07 D A 30,0 75,0 3,50 - - - - - - - - - - D A 30,0 75,0 3,50 - - - - - - - - - - - - - <td>Forma Rottura Piani di debolezza Altezza mm Larghezza mm Carico kN Indice Is MPa D A 56,0 78,0 6,11 1,099 D A 51,0 75,0 8,96 1,840 D A 41,0 53,0 2,51 0,907 B A 79,0 79,0 10,73 1,719 C A 42,0 79,0 2,62 0,620 D A 35,0 65,0 4,53 1,564 D A 43,0 59,0 5,81 1,799 D A 48,0 67,0 7,99 1,951 D A 30,0 75,0 3,50 1,222 D A A A</td>	Forma Rottura Piani di debolezza Altezza mm Larghezza mm Carico kN Indice Is MPa D A 56,0 78,0 6,11 1,099 D A 51,0 75,0 8,96 1,840 D A 41,0 53,0 2,51 0,907 B A 79,0 79,0 10,73 1,719 C A 42,0 79,0 2,62 0,620 D A 35,0 65,0 4,53 1,564 D A 43,0 59,0 5,81 1,799 D A 48,0 67,0 7,99 1,951 D A 30,0 75,0 3,50 1,222 D A A A

A - Assenti

D - In direzioni varie

Vengono esclusi dal calcolo del valore medio i due valori maggiori e i due valori minori
 Forma del provino e tipo di rottura

A - Blocco

- B Cilindrico rottura diametrale
- C Cilindrico rottura assiale
- D Informe

Prova eseguita su provini essiccati a 70°C.

SGEO - Laboratorio 6.3 - 2021

Lo/Sperimentatore Dott. Geol. Simone Casciari

II Direttore Dott. Geol<u>temilio C</u>pérubini

Posizione dei piani di debolezza

B - Perpendicolari alla direzione del carico

C - Paralleli alla direzione del carico

Γ

S S.r.I. Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

BUREAU VERITAS

certified

155 LEAN

CORCIANO (PG) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori: - Materiali da costruzione – Settore A - (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi

- Terre e Rocce – Settori A e B - Decreto n. 54349 del 16/02/2006 e successivi

- Prove e controlli su strutture e costruzioni esistenti (Circ. 633/STC) - Decreto n. 83 del 18/03/2022

- Organismo di Ispezione, Certificazione e Prova settore Prodotti da costruz. Reg. (UE) n. 305/2011 – Not. n. 1676

GROTTAGLIE (TA) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settore: - Materiali da costruzione – Settore A - (Legge n. 1086/71) Decreto n. 63 del 30/03/2021

Laboratorio Terre e Rocce - Corciano (PG)

Decreto di concessione per i Settori A e B n. 54349 del 16/02/2006 e successivi

CERTIFICATO N°	T032122	DEL	23/09/2022			
Verbale d'accettazione n°	T / 6432	del	22/09/2022			
Intestatario:	ANAS SPA - Direzione Generale - Prog. Geot. e Gallerie /ia Luigi Pianciani, 16 00185 - ROMA					
Committente:	GEOTECNICA LAVORI S.r.I.	GEOTECNICA LAVORI S.r.I.				
Cantiere:	Itinerario Internazionale E78 S.G.C. Grosseto - Fano, tratta Selci Lama (E45) S. Stefano di Gaifa. Adeguamento a due corsie della Galleria Guinza (lotto 2) e del tratto Guinza - Mercatello Ovest (lotto 3) 1° Stralcio.					
Località:	Galleria S. Antonio Sud - Zona Bypass					
D.E.C.	Dott. Ing. Andrea Mattei					
Richiesta:	Non sottoscritta dalla D.L.					
Natura del campione:	Campione di roccia in involucro di plastica					

DA	TI IDENTIFICATIVI	PROVE ESEGUITE	
Data ricevimento :	22/09/2022	DESCRIZIONE	PROGRESSIVO
Sondaggio:	SO	Descrizione petrografica semplificata	FA01
Campione:	C1	Massa volumica apparente	FA02
Contrassegno:	SO-C1		
Profondità:	8,20 - 9,00 m		
Punto di prelievo:	Galleria S. Antonio Sud Zona Bypass		
Data di prelievo:	non dichiarata		
Modalità di prelievo:	carotaggio		
			×
	CONTENITORE		
Tipo:	involucro di plastica		
Lunghezza:			
Diametro:			
Altro:			

1	
Lo Sperimentatore	II Direttore
ott. Geol. Simone Casciari	Dott. Geol. Emilio Cherubini
	ster
	1 Aprilling

Sede Legale e Laboratori: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146
P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it; E-Mail: info@experimentations.it - Web Site: www.experimentations.it
Sede Operativa e Laboratorio: Viale Jonio, 8 - 74023 Grottaglie - Taranto - Tel. e Fax +39 099 5626052 - PEC: exp.taranto@pec.it; E-Mail: grottaglie@experimentations.it
Sede Operativa e Laboratorio: Zona Artigianale P.I.P. Snc - 08045 Lanusei - Nuoro - E-Mail: lanusei@experimentations.it

EXPERIMENTATION CORCLANO (PG) - LABORAT - Materiali da costruzione - Terre e Rocce - Settori A e - Prove e controlli su strutt GROTTAGLIE (TA) - LABORA - Materiali da costruzione -	IS S.r. . Sede legale e labora P.IVA e C. Fisc. 0337. ORIO AUTORIZZATO DAL MINIST - Settore A - (Legge n. 1086/71) I B - Decreto n. 54349 del 16/022 ure e costruzioni esistenti (Circ. 1 VTORIO AUTORIZZATO DAL MINI - Settore A - (Legge n. 1086/71) I	tori: Via Y. Gagarin, 69 - 060 2400543 E-mail: info@exp IRRO DELLE INFRASTRUTTUR Decreto n. 38194 del 14/01/ 2006 e successivi 33/STC] - Decreto n. 83 del STERO DELLE INFRASTRUTTO Decreto n. 63 del 30/03/2023	73 S. Mariano di Corciano - Perugia – Itali erimentations.com PEC: experimentati <i>tE DEI TRASPORTI</i> (art. 59 del D.P.R. 38/ 1994 e successivi 18/03/2022 <i>JRE E DEI TRASPORTI</i> (art. 59 del D.P.R. 3 1	a Tel. 075.517055 ons@pec.it Web 0/2001) settori: 180/2001) settore:	5-5179254 - Fax +39 075.5 Site: www.experimentatic support of the second	SITERIA
Certificato di prova:	T032122FA01	Pagina 2/3	DATA DI EMISSIONE:	23/09/22	Inizio analisi:	22/09/22
VERBALE DI ACCETT	AZIONE Nº: T/6432	2 del 22/09/22	Apertura campione:	22/09/22	Fine analisi:	22/09/22
						1

INTESTATARIO: ANAS S.p.A. Direzione Generale - Prog. Geot. e Gallerie

RIFERIMENTO: SONDAGGIO:

SO

CAMPIONE:

PROFONDITA': m 8.20 - 9.00

DESCRIZIONE PETROGRAFICA SEMPLIFICATA

C1

Modalità di prova: Norma UNI EN ISO 14689-1 / UNI EN ISO 12670 / UNI EN ISO 12407

Dimensione dei granuli	inferiore a 0,06 mm
Struttura	massiva, particellare frattura da scagliosa a concoide
Anisotropia	con la manipolazione per il ricavo di provini a geometria regolare si formano discontinuità variamente orientate, non osservabili all'origine, che si aprono in breve tempo
Porosità	primaria di grado medio-basso
Vescicolarità	non presente
Colore	grigio bluastro (Munsell GLEY2 - 4/1)
Composizione mineralogica	minerali delle argille, minerali calcarei, miche reazione con HCI: viva effervescenza
Alterazione e sgretolamento	nessun segno visibile di alterazione; durezza Mohs inferiore a 3
Fossili e microfossili	non rilevati

SGEO - Laboratorio 6.3 - 2021

Lo Sperimentatore . Geøl Simone Casciari Dott. G

Nome della roccia

MARNA SILTOSA (CALCISILTITE)

II Direttore Dott. Geol. Emilio Cherubini

EXPERIMENTATIONS S.r.I. Sede legale e labora P.IVA e C. Fisc. 0337' CORCIANO (PG) - LABORATORIO AUTORIZZATO DAL MINIST - Materiali da costruzione – Settore A - (Legge n. 1086/71) D - Terre e Rocce – Settori A e B - Decreto n. 54349 del 16/02/ - Prove e controlli su strutture e costruzioni esistenti (Circ. 6 GROTTAGLIE (TA) - LABORATORIO AUTORIZZATO DAL MINIS - Materiali da costruzione – Settore A - (Legge n. 1086/71) D	tori: Via Y. Gagarin, 69 - 060 400543 E-mail: info@exp ERO DELLE /INFRASTRUTTU ecreto n. 38194 del 14/01/ 2006 e successivi 33/STC) - Decreto n. 83 del TERO DELLE /INFRASTRUTT ecreto n. 63 del 30/03/202	73 S. Mariano di Corciano - Perugia – Itali erimentations.com PEC: experimentati RE <i>EDEI TRASPORTI</i> (art. 59 del D.P.R. 38/ 1994 e successivi 18/03/2022 <i>URE E DEI TRASPORTI</i> (art. 59 del D.P.R. 3 1	a Tel. 075.5170556 ons@pec.it Web 9/2001) settori: 80/2001) settore:	5-5179254 - Fax +39 075.5 Site: www.experimentatio	intratado ins.it
Certificato di prova: T032122FA02	Pagina 3/3	DATA DI EMISSIONE:	23/09/22	Inizio analisi:	22/09/22
VERBALE DI ACCETTAZIONE N°: T/6432	del 22/09/22	Apertura campione:	22/09/22	Fine analisi:	23/09/22
INTESTATARIO: ANAS S.p.A. Direzione	Generale - Prog.	Geot. e Gallerie			
RIFERIMENTO:					
SONDAGGIO: SO	CAMPIONE:	C1	PROFO	NDITA': m 8.2	0 - 9.00
MASSA VOLUMICA NATURALE					

Peso di volume allo stato naturale = 25,4 kN/m³

Lo Sperimentatore Dott. Geol. Simone Casciari

II Direttore Dott. Geol. Emilio Cherabini

Г

.r.|. Rilievi, monitoraggi, ispezioni, elaborazione dati, certificazioni e prove sperimentali di prodotti da costruzione, strutture, terreni e materiali in sito ed in laboratorio

BUREAU VERITAS

kiwa certified

150 1400

Pag 1 di

2

CORCIANO (PG) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settori:

- Materiali da costruzione – Settore A - (Legge n. 1086/71) Decreto n. 38194 del 14/01/1994 e successivi

- Terre e Rocce Settori A e B Decreto n. 54349 del 16/02/2006 e successivi
- Prove e controlli su strutture e costruzioni esistenti (Circ. 633/STC) Decreto n. 83 del 18/03/2022

- Organismo di Ispezione, Certificazione e Prova settore Prodotti da costruz. Reg. (UE) n. 305/2011 – Not. n. 1676

GROTTAGLIE (TA) - Laboratorio Autorizzato dal Ministero delle Infrastrutture e dei Trasporti (art. 59 del D.P.R. 380/2001) settore:

- Materiali da costruzione - Settore A - (Legge n. 1086/71) Decreto n. 63 del 30/03/2021

Laboratorio Terre e Rocce - Corciano (PG)

Decreto di concessione per i Settori A e B n. 54349 del 16/02/2006 e successivi

CERTIFICATO N°	T032123	DEL	23/09/2022	rag. i di o	
Verbale d'accettazione n°	T / 6432	del	22/09/2022		
Intestatario:	ANAS SPA - Direzione Generale - Prog. Geot. e Gallerie Via Luigi Pianciani, 16 00185 - ROMA				
Committente:	GEOTECNICA LAVORI S.r.I.				
Cantiere:	Itinerario Internazionale E78 S.G.C. Grosseto - Fano, tratta Selci Lama (E45) S. Stefano di Gaifa. Adeguamento a due corsie della Galleria Guinza (lotto 2) e del tratto Guinza - Mercatello Ovest (lotto 3) 1° Stralcio.				
Località:	Galleria S. Antonio Sud - Zona Bypass				
D.E.C.	Dott. Ing. Andrea Mattei				
Richiesta:	Non sottoscritta dalla D.L.				
Natura del campione:	Campione di roccia in involucro di plastica				

DA	TI IDENTIFICATIVI	PROVE ESEGUITE	
Data ricevimento :	22/09/2022	DESCRIZIONE	PROGRESSIVO
Sondaggio:	SO	Descrizione petrografica semplificata	FA01
Campione:	C2	Massa volumica apparente	FA02
Contrassegno:	SO-C2		
Profondità:	10,50 - 11,00 m		
Punto di prelievo:	Galleria S. Antonio Sud Zona Bypass		
Data di prelievo:	non dichiarata		
Modalità di prelievo:	carotaggio		
C	ONTENITORE		
Tipo:	involucro di plastica		
Lunghezza:			
Diametro:			
Altro:			

Lo Sperimeritatore	II Direttore
Dott. Geol. Sinohe Casciari	Dott. Geol. Emito Cherubini

Sede Legale e Laboratori: Via Y. Gagarin, 69 - 06073 S. Mariano di Corciano - Perugia - Tel. +39 075 5170556 - Fax +39 075 5178146 P.IVA e C. Fisc. 03372400543 - REA PG 284510 - PEC: experimentations@pec.it; E-Mail: info@experimentations.it - Web Site: www.experimentations.it Sede Operativa e Laboratorio: Viale Jonio, 8 – 74023 Grottaglie - Taranto – Tel. e Fax +39 099 5626052 – PEC: exp.taranto@pec.it; E-Mail: grottaglie@experimentations.it Sede Operativa e Laboratorio: Zona Artigianale P.I.P. Snc - 08045 Lanusei – Nuoro - E-Mail: lanusei@experimentations.it

6	5	Į.
W	N,	
2	GM	

 EXPERIMENTATIONS S.r.I. Sede legale e laborator CORCIANO (PG) - LABORATORIO AUTORIZZATO DAL MINISTER Materiali da costruzione – Settori A - (Legge n. 1086/71) Dec - Terre e Rocce – Settori A e B - Decreto n. 54349 del 16/02/20 - Prove e controlli su strutture e costruzioni esistenti (Circ. 633 GROTTAGLIE (TA) - LABORATORIO AUTORIZZATO DAL MINISTI - Materiali da costruzione – Settori A - (Legge n. 1086/71) Dec 	n: via Y. Gagarin, 69 - 060 00543 E-mail: Info@exp 10 DELLE INFRASTRUTTUR 10 Ge successivi 15(STC) - Decreto n, 83 del 15(STC)	73 S. Mariano di corciano - Pretigia – Itali erimentations.com PEC: experimentati 12 E DEI TRASPORTI (art. 59 del D.P.R. 38 1994 e successivi 18/03/2022 JRE E DEI TRASPORTI (art. 59 del D.P.R. 3 1	80/2001) settore:	Co coi Co coi Contractoria	Insite Insite
Certificato di prova: T032123FA01	Pagina 2/3	DATA DI EMISSIONE:	23/09/22	Inizio analisi:	22/09/22
VERBALE DI ACCETTAZIONE N°: T/6432	del 22/09/22	Apertura campione:	22/09/22	Fine analisi:	22/09/22

INTESTATARIC	: ANAS S.p.A. Direzion	ie Generale - Prog	g. Geot. e Gallerie		
RIFERIMENTO	E 78 S.G.C Galleria	S. Antonio Sud -	Bypass		
SONDAGGIO:	SO	CAMPIONE:	C2	PROFONDITA': m	10.50 - 11.00

DESCRIZIONE PETROGRAFICA SEMPLIFICATA

Modalità di prova: Norma UNI EN ISO 14689-1 / UNI EN ISO 12670 / UNI EN ISO 12407

Dimensione dei granuli	inferiore a 0,06 mm
Struttura	massiva, particellare frattura da scagliosa a concoide
Anisotropia	con la manipolazione per il ricavo di provini a geometria regolare si formano discontinuità variamente orientate, non osservabili all'origine, che si aprono in breve tempo
Porosità	primaria di grado medio-basso
Vescicolarità	non presente
Colore	grigio bluastro (Munsell GLEY2 - 4/1)
Composizione mineralogica	minerali delle argille, minerali calcarei, miche reazione con HCI: viva effervescenza
Alterazione e sgretolamento	nessun segno visibile di alterazione; durezza Mohs inferiore a 3
Fossili e microfossili	non rilevati

SGEO - Laboratorio 6.3 - 2021

Lo Sperimentatore Dott. Geol. Simone Casciari

II Direttore Dott. Geol. Emilio Cherubini <u>Marada</u>u

EXPERIMENTATIONS S.r.I. Sede legale e laboratori: Via Y. Gagarin, 69 - 060 P.IVA e C. Fisc. 03372400543 E-mail: Info@exps CORCIANO (PG) - LABORATORIO AUTORIZZATO DAL MINISTERO DELLE INFRASTRUTTU - Materiali da costruzione - Settore A - (Legge n. 1086/71) Decreto n. 38144 del 14/01/ - Terre e Rocce - Settori A e B - Decreto n. 54349 del 16/02/2006 e successivi - Prove e controlli su strutture e costruzioni esistenti (Circ. 633/STC) - Decreto n. 83 del GROTTAGLIE (TA) - LABORATORIO AUTORIZZATO DAL MINISTERO DELLE INFRASTRUTT - Materiali da costruzione - Settore A - (Legge n. 1086/71) Decreto n. 63 del 30/03/202	073 S. Mariano di Corciano - Perugia – Itali perimentations.com PEC: experimentati <i>RE EDI TRASPORTI</i> (art. 59 del D.P.R. 38 /1994 e successivi I 18/03/2022 <i>URE E DEI TRASPORTI</i> (art. 59 del D.P.R. 3 21	a Tel. 075.517055 ons@pec.it Web 0/2001} settori: 880/2001} settore:	6-5179254 - Fax +39 075.5 Site: www.experimentation not support the second seco	S178146 ons.it Constitution Con
Certificato di prova: T032123FA02 Pagina 3/3	DATA DI EMISSIONE:	23/09/22	Inizio analisi:	22/09/22
VERBALE DI ACCETTAZIONE N°: T/6432 del 22/09/22	Apertura campione:	22/09/22	Fine analisi:	23/09/22
INTESTATARIO: ANAS S.p.A. Direzione Generale - Prog.	. Geot. e Gallerie			
RIFERIMENTO: E 78 S.G.C Galleria S. Antonio Sud - E	Bypass			
SONDAGGIO: SO CAMPIONE:	C2	PROFOND	DITA': m 10.50	- 11.00
MASSA VOLU	MICA NATURALI	E		

Peso di volume allo stato naturale = $25,5 \text{ kN/m}^3$

SGEO - Laboratorio 6.3 - 2021

Lo Sperimentatore Dott. Geol Simone Casciari

II Direttore Dott. Geol. Emilio Cherubini MCCullur

PAGE

1 di/of 11

Prova dilatometrica eseguita nel sondaggio S14_Pz22 presso una galleria in adeguamento appartenente al tratto E78 S.G.C. Grosseto – Fano, collocata al confine fra le regioni di Umbria e Marche rispettivamente nei comuni di San Giustino (PG) e Mercatello sul Metauro (PU)

00	25/08/2022	Issued	Gianfranco Draga	GEOLOGIN s.r.L. Via Isarop, 5 99040 VARNA (1927) P. IVA 02621760343
This docur by Geologi	ment is property of Geo in srl	ologin srl It is strictly forbidden to reproduce this document, in whole or in part, and to pro	vide to others any related	information without the previous written consent

Geologin Srl Via Isarco 5 / 39040 Varna(IT) Email: Info@geolog-in.com PAGINA - PAGE

2 di/of 11

1.	INTRO	DUZIONE	3
2.	UBICAZ	ZIONE DEL SITO D'INDAGINE	4
3.	MODAL	ITA' DI ESECUZIONE DELLE PROVE DILATOMETRICHE	5
4.	STRUM	ENTAZIONE UTILIZZATA	6
5.	RISULT	ATI DELLE PROVE DILATOMETRICHE	7
	5.1.	Sondaggio S14_Pz22	7
	5.2.	Schema, Taratura e Calibrazione dello strumento 1	.0

Via Isarco 5 / 39040 Varna(IT) Email: Info@geolog-in.com PAGINA - PAGE

3 di/of 11

1. INTRODUZIONE

Su incarico della società Pizzi Terra Srl, in data 10.08.2022, è stata eseguita una prova dilatometrica presso una delle gallerie in adeguamento (chiuse al traffico) appartenenti al tratto E78 S.G.C. Grosseto – Fano, collocate al confine fra le regioni di Umbria e Marche rispettivamente nei comuni di San Giustino (PG) e Mercatello sul Metauro (PU).

Nella seguente tabella sono riportate le specifiche di ogni prova eseguita.

Prova	Sondaggio	Quantità	Tratto indagato
Dilatometria DRT	S14_Pz22	1	8.00m – 9.00m

2.

Via Isarco 5 / 39040 Varna(IT) Email: Info@geolog-in.com PAGINA - PAGE

4 di/of 11

UBICAZIONE DEL SITO D'INDAGINE

Fig. 1: Ubicazione approssimativa del sondaggio S14-Pz22

PAGINA - PAGE

5 di/of 11

3. MODALITA' DI ESECUZIONE DELLE PROVE DILATOMETRICHE

Per le prove dilatometriche viene calato un packer all'interno del foro di sondaggio per mezzo di aste metalliche. Questo packer è collegato sia con tubicini di alta pressione alla bombola gas che con un cavo elettrico al datalogger. Per eseguire la prova lo stesso packer viene gonfiato con azoto per vedere la dilatazione della roccia/formazione in funzione della pressione. I dati vengono trasmessi tramite il cavo elettrico dai sensori presenti nel packer al datalogger sulla superfice. Per la visualizzazione dei dati viene utilizzato un Tablet che è collegato al datalogger via Bluetooth. Le prove di solito vengono eseguite dal basso verso l'alto oppure realizzando una tasca di prova a fondo foro.

La prova viene eseguita in tre cicli composti da carico e scarico, la pressione massima di ogni ciclo è circa il doppio della pressione massima del ciclo precedente. Ogni massima pressione di ogni ciclo dipende dalla profondità della prova e dal livello dell'acqua. Grazie alla membrana flessibile la pressione viene esercitata in maniera uniforme alla parete del foro.

Le profondità delle prove sono state indicate dal committente.

Fig.1: Schema della prova dilatometrica. 1 aste metalliche; 2 datalogger; 3 regolatore e valvole gas; 4 bombola gas; 5 tubicini di alta pressione; 6 cavo elettrico; 7 tubo a sedimenti; 8 foro di sondaggio; 9 sonda dilatometrica

4.

Via Isarco 5 / 39040 Varna(IT) Email: Info@geolog-in.com PAGINA - PAGE

6 di/of 11

STRUMENTAZIONE UTILIZZATA

Il dilatometro utilizzato è di tipo DMP-90 da 100 bar ed è composto da:

- Datalogger (DP Box); (1)
- Cavo elettrico per trasferimento dati; (2)
- Sonda dilatometrica Ø 90 mm; (3)
- Regolatore gas e valvole gas; (4)
- Bombola d'azoto; (5)
- Tubicini di collegamento sonda-bombola gas, per alimentazione gas, con resistenza = 220 bar; (6)
- Tablet per la visualizzazione e registrazione dei dati

Fig.2: Schema della strumentazione utilizzata

Per le prove dilatometriche è stato usato un dilatometro flessibile di tipo DMP90 della ditta TELEMAC. Il dilatometro, di diametro 90mm è composto da una membrana flessibile di lunghezza 1000m, un tubo di sedimento, tre sensori di spostamento per misurare la dilatazione e un sensore di pressione per misurare la pressione all'interno della sonda.

Per regolare la pressione all'interno del packer, vengono utilizzati delle valvole, rubinetti e un regolatore gas di alta pressione. Grazie a questo sistema di valvole, rubinetti e regolatore, è possibile aumentare, mantenere e diminuire la pressione all'interno del packer e quindi realizzare i tre cicli e i vari step dei cicli per eseguire una prova corretta.

PAGINA - PAGE

7 di/of 11

5. RISULTATI DELLE PROVE DILATOMETRICHE

5.1. Sondaggio S14_Pz22

5.1.1.1. Dilatometria 1 – 8.00 m – 9.00 m

Geologin Srl Via Isarco 5 / 39040 Varna(IT) Email: Info@geolog-in.com PAGINA - PAGE

8 di/of 11

N		COMM	ITTENTE:	Pi	zzi Terra S.r	·.I.	COORDINATE:	
XI	JEULUUIN	CAN	TIERE:		Umbria			
	GEOPHYSICAL LOGGING	SOND	AGGIO:		S14_Pz22		Quota (m.s.l.m.):	
тест.	Test dilatometro	PROVA	DIAM. SONDA (mm)	FALDA	LITOL	.OGIA	DATA	
TEST:	flessibile	DRT1	90				10/08/2022	OPERATORE
	DMP-90	PROFONDITA' (m)	DIAM. FORO (mm)	RQD %			ORA	
DEV:	NF EN ISO 22476-5	8-9m	101		1			G.Draga
	•	Pressio	one (Bar)		Deformaz	ioni (mm)		Mod Dilato
	Ciclo	Letta	Corretta	Sensore 1	Sensore 2	Sensore 3	Media	(MPa)
		0.0	0.0	0.000	0.000	0.000	0.000	
		1.4	0.1	2.172	2.059	2.202	2.144	
	Contatto	1.6	0.0	2.895	2.953	2.845	2.898	
		2.3	0.6	3.241	3.257	3.257	3.252	
		4.9	3.0	4.223	4.352	4.635	4.403	
	Po	12.3	9.2	12.520	12.775	14.182	13.159	-
		14.0	10.9	12.522	12.783	14.184	13.163	E _{D1}
	Carico	16.0	12.9	12.522	12.783	14.184	13.163	
		18.2	15.1	12.522	12.784	14.186	13.164	11433.4
	P ₁	20.5	17.4	12.528	12.785	14.193	13.169	
		18.3	15.2	12.526	12.780	14.190	13.165	E _{E1}
01	Scarico	16.8	13.7	12.527	12.778	14.188	13.164	
Cicl		14.2	11.1	12.525	12.777	14.186	13.163	15921.5
	Po	12.2	9.1	12.526	12.774	14.187	13.162	
		14.0	10.9	12.522	12.776	14.186	13.161	E _{DR1}
	Ricarico	16.1	13.0	12.526	12.783	14.187	13.165	
		19.1	16.0	12.527	12.787	14.193	13.169	11113.1
	P1	20.2	17.1	12.528	12.787	14.194	13.170	
	-	22.9	19.8	12.531	12.788	14.199	13.173	E _{D2}
	Carico	23.6	20.5	12.533	12.789	14.203	13.175	
		25.6	22.5	12.535	12.793	14.207	13.178	7466.1
	1,5.P ₁ < P ₂ < 2.P ₁	28.7	25.6	12.541	12.797	14.214	13.184	
		24.8	21.7	12.544	12.793	14.209	13.182	E _{F2}
22	Scarico	20.1	16.9	12.539	12.787	14.199	13.175	
Cick		17.0	13.9	12.537	12.785	14.199	13.174	13510.4
-	Po	12.5	9.4	12.532	12.779	14.197	13.169	
		17.2	14.1	12.532	12.785	14.198	13.172	E _{DR2}
	Ricarico	20.4	17.2	12.533	12.789	14.203	13.175	DRZ
		23.6	20.5	12.538	12.791	14.209	13.179	10091.6
	P ₂	28.0	24.9	12.546	12.799	14.219	13.188	
	-	32.1	29.0	12.556	12.806	14.230	13.197	E _{D3}
	Carico	35.5	32.4	12.565	12.812	14.241	13.206	
		40.0	36.9	12.571	12.818	14.247	13.212	6759.4
33	1,5.P ₂ < P ₃ < 2.P ₂	44.0	40.9	12.579	12.822	14.255	13.219	
Cicle		36.2	33.1	12.578	12.812	14.247	13.212	
5	Scarico	28.8	25.7	12.572	12.804	14,241	13.206	E _{E3}
		20.3	17.2	12,556	12.794	14,216	13.189	
	Po	12.7	9.6	12,542	12,786	14,209	13,179	9617.8
	- 0		5.0	12.012	12.700	2205	10.110	

Via Isarco 5 / 39040 Varna(IT) Email: Info@geolog-in.com PAGINA - PAGE

10 di/of 11

P_{resistenza guaina} (D_{misurata}) = P_e (D_{misurata})

P_{corretta} = P_{misurata} (D_{misurata}) - P_e (D_{misurata})

5.2. Schema, Taratura e Calibrazione dello strumento

STANDARDIZZAZIONE DELLA SONDA DILATOMETRICA

La standardizzazione permette di determinare la resistenza della membrana :

P_e espresso sotto forma di poligono :

 $P_e(D_{misurata}) = a \times D_{misurata}^{\alpha} + b \times D_{misurata}^{\beta} + c \times D_{misurata}^{\gamma} + d \times D_{misurata}^{\delta} + e \times D_{misurata}^{\delta} + f \times D_{misurata}^{\delta}$

La pressione applicata può essere corretta secondo la relazione :

Spostamenti (mm) Definizioni di coefficienti : Pressione (bar) C1 C2 СЗ Media 0.000 0.0 0.000 0.000 0.000 0.7 0.863 0.372 1.664 0.966 1.381 1.786 2.610 1.926 1.2 a = -4.00E-04 $\alpha = 4$ 1.5 2.463 2.141 3.349 2.651 1.8 3.601 3.255 4.597 3.818 b = 1.29E-02 $\beta = 3$ 2.0 4.691 4.404 5.721 4.939 7.418 7.259 8.497 7.725 2.4 c = -1.48E-01 $\gamma = 2$ 2.6 8.916 8.801 10.012 9.243 2.8 10.421 10.431 11.570 10.807 d = 8.67E-01 $\delta = 1$ 12.285 13.563 2.9 12.453 12.767 e = -5.00E-04 $\varepsilon = 0$ f = 0.00E+00 $\phi = 0$

Via Isarco 5 / 39040 Varna(IT) Email: Info@geolog-in.com PAGINA - PAGE

11 di/of 11

CALIBRAZIONE DELLA SONDA DILATOMETRICA

La calibrazione permette di determinare con precisione il diametro della sonda dilatometrica. Ciò corrisponde alla differenza tra il diametro

del tubo in cui viene gonfiata la sonda e la media degli spostamenti dei tre sensori:

 $Ø_s = Ø_{tubo} - \Delta d_m$

Da questi dati è quindi possibile determinare il diametro iniziale del pozzo alla profondità della prova dilatometrica. Questo è definito dalla relazione (Ddm, PO è la media degli spostamenti dei sensori alla pressione di contatto - PO):

 $Ø_{F,0} = Ø_s - \Delta d_{m,P0}$

Dressiens (her)		Spostan	nenti (mm)		Determinazione del diametro della conda diletometrica
Pressione (bar)	C1	C2	C3	Media	
0.00	0.000	0.000	0.000	0.000	
0.69	1.370	1.215	2.448	1.678	
1.24	1.551	2.406	2.798	2.252	Diametro interno del tubo <u>:</u>
2.22	6.482	7.295	7.942	7.240	
2.85	10.602	11.232	11.097	10.977	Ø _{intérieur tube} = 102.000 mm
2.96	10.645	11.241	11.157	11.014	
5.85	10.795	11.265	11.215	11.092	Spostamento medio dei sensori diametrali
8.99	10.842	11.276	11.220	11.113	<u>al contatto :</u>
15.39	10.887	11.293	11.237	11.139	
21.67	10.917	11.309	11.253	11.160	∆d _m = 11.071 mm
24.99	10.928	11.313	11.257	11.166	
29.32	10.932	11.318	11.262	11.171	<u>Diametro sonda :</u>
39.03	10.940	11.339	11.279	11.186	
49.39	10.946	11.354	11.294	11.198	$\emptyset_{sonda} = \emptyset_{tubo} - \Delta d_m = 90.929$ mm
59.40	10.951	11.369	11.308	11.209	
79.86	10.960	11.376	11.323	11.220	

Progetto	Indagini strutturali e rilievi gallerie della Guinza, Valpiana, S. Veronica e S. Antonio della
	S.G.C. Grosseto – Fano (E78)
Nr. Progetto	20000.501
Oggetto	Rilievo geomeccanico Galleria Guinza, Imbocco Nord
Emesso da	Pizzi terra S.r.l.
Emesso per	ANAS
Data	11-07-2022

Revisione Documento

Autore	Giampaolo Mariannelli
Controllato	Francesco Fidolini
Approvato	Riccardo Pizzi

Versione	Descrizione	Iniziali	Data
00			11-07-2022

Sommario

1		Prer	nessa	3
2		Inqu	adramento geologico e descrizione dell'affioramento	3
3		Cara	atterizzazione geomeccanica della roccia intatta	6
4		Cara	atterizzazione geomeccanica delle discontinuità	8
	4.	1	Ubicazione delle linee di stendimento	8
	4.2	2	Caratterizzazione delle discontinuità 1	1
	4.:	3	Famiglie di discontinuità1	4
	4.4	4	Spaziatura1	4
	2	4.4.1	Spaziatura apparente totale1	5
	2	4.4.2	Spaziatura reale dei set di discontinuità1	6
	4.	5	Volume roccioso unitario1	6
	4.6	6	Volumetric Joint Count	8
5		Clas	sificazione dell'ammasso roccioso1	9
	5.	1	Rock Mass Rating (RMR) – Beniawski 19891	9
	5.2	2	Rock Quality Index (Q-System) – Barton 19742	2
	5.3	3	Geological Strenght Index – Marinos & Hoek 20002	6
6		Sinte	esi dei dati acquisiti2	7

1 Premessa

Il 7 giugno 2022 è stato eseguito un rilievo geomeccanico della parete rocciosa presente al di sopra dell'Imbocco Nord della Galleria della Guinza, situata nel Comune di Mercatello sul Metauro (PU).

Figura 1 – posizione su CTR della parete rocciosa oggetto di rilevamento

I dati sono stati acquisiti mediante tre stendimenti, lungo i quali sono stati misurati tutti gli elementi necessari alla caratterizzazione geostrutturale e geomeccanica dell'ammasso roccioso secondo le prescrizioni "ISRM (1978) – Commission on standardization of laboratory and field tests. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 15, pp. 319-368", e ISRM – Metodologie per la descrizione quantitativa delle discontinuità negli ammassi rocciosi (1993) Rivista Italiana di Geotecnica, n. 2, 151-200".

2 Inquadramento geologico e descrizione dell'affioramento

L'area è caratterizzata dall'affioramento della Formazione Marnoso Arenacea (FMA) ed in particolare dal Membro di Collina, costituito da torbiditi pelitico arenacee (AP = 1/4 - 1/6) silicoclastiche. Le arenarie sono in strati da sottili a spessi, a grana fine. La parte pelitica è costituita da marnosiltiti grigie finemente stratificate.

UNITÀ TETTONICA PIETRALUNGA

MARNE DI SAN PAOLO

Marne, marne argillose grigio azzurre in strati generalmente sottili con sporadici sottili livelli di arenarie fini. Sono presenti slump intraformazionali. Il massimo spessore affiorante è circa 250 metri. SERRAVALLIANO p.p. -TORTONIANO INF. p.p. (MNN7-MNN9)

FORMAZIONE MARNOSO ARENACEA ROMAGNOLA (FMA)

Membro di Montecoronaro

SPL

mbro di Montecoronaro Torbiditi politico arenacee (A/P<1/8) silicoclastiche, in strati molto sottili a grana fine, la parte pelitica è costituita da marnosititi grige linemente stratificate. Sono presenti siump intraformazionali. La base dei membro, non affiorante, è parzialmente eteropica con il membro di Collina. Il passaggio alle soprastanti Marne di San Paolo avviene con la progressiva diminuzione della componente arenitica. Il massimo spessore afforante è di circa 250 metri. SERRAVALLIANO p.p.- TORTONIANO INF. p.p. (MNN6a-MNN8a)

nbro di Collina

Torbiditi pelitico arenacee (A/P=1/4-1/6) silicoclastiche. Le arenarie sono in strati molto sottili a grana fine. La parte pelítica è costituita da mamosititi grige finemente stratificate. Sono frequenti strati di calcareniti fini di colore grigio chiaro spessi da 20 a 40 centimetri con provenienze da SE. La base di questo membro raggiunge talora lo strato Contessa. Alternativamente i passaggio laterale al membro di Galeata avviene per progressivo aumento della frazione arenitica. Il massimo spessore affiorante è circa 300 metri. LANGHIANO SUP. p.p. -SERRAVALLIANO SUP. p.p. (MNN55-MNN7)

nbro di Galeata

Torbiditi arenaceo pelitiche (A/P= 1/1-1/4) silicoclastiche. Le arenarie, in strati da sottili a molto spessi hanno Torbiciti arenaceo petitiche (AP= 1/1-1/4) silicoclastiche. Le arenarie, in strati da sotili a molto spessi hanno grana fine anche alla base degli strati di maggior spessore. La frazione pelitica è costituita da marnosititi fini grige. Talora sono presentirizzonti di marne blancastre compatte. Abbondanti le calcareniti fini con provenienze sud-orientali (colombine). Questo membro contilene lo strato Contessa che talora raggiunge il contatto con la sottostante litofacies di Montelabreve. Si tratta di un bancone di spessore da 3 a 4 metri di calcarenite fine a base arenacea, con evidenti paleccorrenti da SE. Al tetto è quasi sempre visibile una 'coda' di marnosititi fini grige che può raggiungere gli 8 metri di spessore. Alla base del membro è stata distinta una ittofacies pelitico-arenacea. Lo spessore di questo membro è di circa 450 metri. *LANGHIANO SUP. p.p. - SERRAVALLIANO SOMMITALE / TORTONIANO BASALE (MNN5b-MNN7)*

FMA.

884

FMA.

Litofacies di Montelabreve Torbiditi sottili silicoclastiche a grana fine Affiora diffusamente nel settore sud orientale del Foglio. La base di questa litofacies non affiora ed il tetto può raggiungere lo strato Contessa. Lo spessore affiorante è circa 400 metri, quello totale, risultante dalle sezioni geologiche è di circa 1000 m. LANGHIANO p.p. (MNN4b-MNN5b)

nbro di Corniolo

mbro di Corniolo Torbiditi pellitico arenacee con A/P = 1/3 - 1/4. Le arenarie sono in strati prevalentemente molto sottili e subordinatamente sottili e medi a grana fine e di colore grigiastro (sequenze Tb-Td). Alla base degli strati arenacei sono ben visibili impronte di corrente tipo flute cast che indicano provenienze da NW. Il massimo spessore affiorante è di cica 600 metri. LANGHIANO p.p. (MNN4b-MNN5b)

bro di Biserno

Torbiditi pelifico arenacee con A/P= 1/4 - 1/5. Le arenarie sono prevalentemente in strati sottili e medi a grana fine, raramente spessi e di colore griglastro (sequenze Tb-Td). Le peliti, di colore griglo sono in genere prevalenti. Lo spessore stimato è circa 400 metri. BURDIGALINO p.p.-LANCHILANO p.p. (MN3b-MNN5a)

La parete rocciosa affiorante presso l'imbocco della galleria è caratterizzata da una successione di 7 strati arenacei, di spessore variabile tra 20 cm ed 1 m, a cui si intercalano interstrati marnosi e pelitici potenti fino ad 1 m. L'assetto della stratificazione è a traverpoggio rispetto all'orientazione del versante.

Ad un primo approccio visivo, le bancate e gli strati arenacei, più compenti, mostrano una fratturazione orientata secondo due principali set di discontinuità la cui giacitura è perpendicolare alla stratificazione, mentre gli intervalli marnosi e pelitici presentano una fratturazione pervasiva del tipo a "saponetta".

Alla base della parete è presente un esteso accumulo detritico a testimonianza della forte erodibilità dei litotipi e della fratturazione diffusa.

Figura 3 – materiale detritico derivante dall'alterazione della parete rocciosa.

Le masse rocciose sono frequentemente soggette all'azione degli agenti atmosferici vicino alla superficie e quindi alterate soprattutto lungo i piani di discontinuità. Ciò fa sì che la resistenza sulla superficie sia minore di quella misurata sulla roccia integra all'interno. I principali effetti dell'azione degli agenti atmosferici sono: la disgregazione meccanica e la decomposizione chimica. L'alterazione meccanica ha come effetti l'ampliamento delle discontinuità presenti, la formazione di nuove discontinuità per il fratturarsi delle rocce o l'apertura di fratture intergranulari; le alterazioni chimiche si manifestano con una decolorazione della roccia e conducono ad una eventuale decomposizione dei minerali silicatici in minerali argillosi

Secondo la classificazione proposta da ISRM (1978), il grado di alterazione della massa rocciosa nel suo insieme può essere descritto mediante la seguente tabella:

Denominazione	Descrizione	Grado
Fresca	Non vi sono segni visibili di alterazione del materiale roccioso; tuttalpiù una leggera decolorazione sulla superficie delle maggiori discontinuità.	I
Leggermente alterata	La decolorazione indica un'alterazione del materiale roccioso e delle su- perfici di discontinuità. Tutto il materiale roccioso può essere decolorato e talvolta può essere esternamente meno resistente della roccia fresca all'in- terno.	п
Moderatamente alterata	Meno della metà del materiale roccioso è decomposto e/o disgregato come un terreno. Roccia fresca o decolorata è presente o come uno scheletro con- tinuo o all'interno di singoli blocchi.	ш
Fortemente alterata	Più della metà del materiale roccioso è decomposto e/o disgregato come un terreno, Roccia fresca o decolorata è presente o come uno scheletro di- scontinuo o all'interno di singoli blocchi.	IV
Completamente alterata	Tutto il materiale roccioso è decomposto e/o disgregato come un terreno. La struttura massiva originaria è ancora largamente intatta.	v
Suolo residuale	Tutto il materiale roccioso è diventato un terreno. Le strutture della massa e dei materiali rocciosi sono distrutte. Vi è un forte cambiamento di volume ma il terreno non ha subito trasporti significativi.	VI

Figura 4 – grado di alterazione dell'ammasso roccioso

La parete rocciosa oggetto di rilevamento è costituita da strati lapidei e interstrati marnoso siltosi: il comportamento di questi ultimi può in alcuni casi essere assimilato a quello di una terra piuttosto che a quello di una roccia. Per questo motivo l'affioramento può essere classificato nel grado III – moderatamente alterato. Da una panoramica completa dell'area di affioramento, non sono stati rilevati la presenza oppure indizi di evidenti filtrazioni di acqua.

3 Caratterizzazione geomeccanica della roccia intatta

Per la caratterizzazione geomeccanica della roccia intatta sono state eseguite alcune prove di carico puntuale (*Point Load Test*).

La prova di carico puntuale, condotta secondo le raccomandazioni ISRM, consiste nel portare a rottura il provino imponendogli un carico puntuale e conduce alla determinazione di un indice di resistenza (*Point Load Index Is*) definito come:

$$I_s = \frac{P}{D^2}$$

dove P è la forza applicata a rottura (espressa in N) e D è il diametro del provino (distanza tra le punte dell'apparecchio, espressa in mm).

Il valore dell'indice I_s può essere correlato, mediante relazioni empiriche, con la resistenza a trazione uniassiale σ_t e con la resistenza a compressione uniassiale σ_c . Per utilizzare le correlazioni empiriche è necessario però correggere il valore di I_s, in modo da riferirlo ad un campione cilindrico standard di diametro 50 mm, tramite la seguente espressione:

$$I_{s(50)} = F \frac{P}{D_e^2}$$

dove:

$$F = \left(\frac{D_e}{50}\right)^{0.45} D_e = \sqrt{\frac{4}{\pi}} \quad WD$$

con D distanza tra le punte dell'apparecchio e W larghezza del provino nella direzione perpendicolare alle punte (in mm).

La resistenza a trazione σ_t (UTS) può essere stimata tramite la relazione:

$$\sigma_{t} = -1.3 I_{s(50)}$$

Mentre la resistenza a compressione uniassiale σ_c (UCS), si ottiene applicando la relazione:

 $\sigma_{c} = K I_{s(50)}$

K è un coefficiente moltiplicativo per il quale l'ISRM consiglia il valore 24, ma nella pratica si è evidenziato come tale valore non è univoco ma largamente variabile. Palmstrom suggerisce di variare K in funzione di Is secondo lo schema seguente:

Is (mPa)	К
< 3.5	14
3.5 – 6.0	16
6.0 - 1.0	20
> 6.0	25

Per determinare la resistenza a compressione uniassiale della roccia intatta presente sul fronte sono state condotte 10 prove su provini di forma irregolare di arenaria e marna (Tabella 1); il valore medio $I_{s(50)}$ è stato ottenuto facendo riferimento alle raccomandazioni ISRM (1985), escludendo (per i campioni di marna) i due valori più bassi e i due più alti e calcolando la media aritmetica dei restanti indici.

Il valore medio di $I_{s(50)}$ ricavato è $I_{s(50)} = 5.7$ Mpa per i campioni di arenaria e $I_{s(50)} = 1.7$ Mpa per i campioni di marna.

Utilizzando le relazioni citate si ha:

 σ_c = 83 Mpa per le arenarie (si è utilizzato in via cautelativa il valore minimo);

 σ_c = 23 Mpa per le marne.

litologia	Prova n°	forma rottura	Piani debolezza	altezza (mm)	larghezza (mm)	carico (kN)	Indice Is (Mpa)	Indice Is(50) (Mpa)	στ (Mpa)	к	σc (Mpa)
arenaria	1	С	А	40.8	78.1	22.56	5.561	6.201	-8.0613	16	99.216
arenaria	2	С	А	40.8	78.1	19.03	4.69	5.23	-6.799	16	83.68
marne argillose	3	А	А	60	79	1.26	0.209	0.255	-0.3315	14	3.57
marne argillose	4	А	А	43.5	63.2	1.01	0.289	0.311	-0.4043	14	4.354
marne	5	А	А	52	65.1	3.04	0.705	0.797	-1.0361	14	11.158
marne	6	А	А	63	82	9.65	1.467	1.824	-2.3712	14	25.536
marne	7	А	А	44	73	8.66	2.118	2.366	-3.0758	14	33.124
marne	8	А	А	52	60.5	6.23	1.555	1.729	-2.2477	14	24.206
marne	9	A	A	35.5	47	5.99	2.82	2.718	-3.5334	14	38.052
marne	10	А	A	36.5	55	6.37	2.492	2.505	-3.2565	14	35.07

Tabella 1 - Risultati della prova di point load su alcuni campioni di forma irregolare. Is₅₀: indice di point load. Evidenziati i valori scartati.

Oltre alla prova di Point Load è stata eseguita anche la misura della massa volumica della roccia intatta. I risultati ottenuti sono:

massa volumica (kg/m ³)	2579.8
porosità aperta (%)	2.9

4 Caratterizzazione geomeccanica delle discontinuità

Per la descrizione quantitativa delle discontinuità sono stati usati i metodi proposti dall'ISRM (1978).

Il rilevamento delle proprietà geomeccaniche delle discontinuità è stato eseguito con il metodo dello stendimento (*scanline survey*). La localizzazione delle stazioni di rilevamento è visibile in Figura 5.

Per ogni stendimento è stata realizzata, direttamente in campagna, una scheda di caratterizzazione geomeccanica delle discontinuità. Un esempio di tale scheda, relativo allo stendimento 1, è riportato in Figura 6.

Le schede di caratterizzazione geomeccanica delle discontinuità per i 3 stendimenti eseguiti sono riportate in coda al rapporto.

4.1 Ubicazione delle linee di stendimento

Una volta valutate le condizioni di sicurezza e di accesso alla scarpata, è stato impostato il rilevamento lungo linee di misura ortogonali tra loro: due linee di stendimento verticali e una terza linea orizzontale alla base della scarpata.

L'affioramento è costituito da una parete rocciosa, immergente verso i quadranti nord-orientali, di altezza variabile tra 15 e 11 m e larghezza di 21 m.

Affioramento								
Immersione	35°							
Inclinazione	80°							
altezza	11-15 m							

Di seguito i dati di giacitura delle linee di scansione eseguite:

stazione	direzione (m)	inclinazione (°)	lunghezza (m)
1	35	80	13
2	35	80	11
3	135	0	21

Figura 5 – ubicazione degli stendimenti eseguiti

SCHEDA DI CARATTERIZZAZIONE GEOMECCANICA DELLE DISCONTINUITA'																	
DATI GENERAL	DATI GENERALI							STEND	IMENTO								
n. scheda:				Rilevat	ore:	G. Mar	iannelli		Immersi	mmersione (°): 35				Direzio	ne (°):	35	
Località: Ga	alleria	Guinza	a sud	Data:	07/06	/2022			Inclinazio	one (°):	80			Inclinaz	zione (°):	80	
Stazione:	1			n. foto:					Altezza (m):	13			Lunghe	zza (m):	13	
Intersezion	ne 🛛	or	ientazio	one	persis	tenza	apertura	rug	osità		resist	enza		riempimento		filtra	zione
n. x t	tipo	α	β	stria	termin.	traccia	A	tipo	JRC	stima	scleron	netro	degrad.	tipo	resist.	tipo	Q
(m)	(1)	(°)	(°)	(°)	(2)	(m)	(mm)	(3)	1-20	(4)	orient.	R	(5)	(6)	(4)	(7)	(i/min)
1 0.4	JN1	55	72		sd	0.3	-	P1 D1	6 10		later.	28	1				
3 0.9	IN1	65	75		sd	0.3	-	U1	4		later.	26	1				
4 3.4	JN2	180	89		sd	0.35	1	U2	12		later.	24	1	0			
54	JN1	70	75		sd	1	2	U2	8		later.	30	1	0			
6 5.2	BG	295	20		XX	>10		P1	4		basso	22	1				
7 5.3	JN1	75	70		sd	0.6	3	U2	8		later.	28	1	0			
8 5.8	JN IN	240	20		xx dx	0.2		P1 D1	4		later.	28	1			ш	
10 6.5	IN1	70	72		dx	2	3	U2	10		later.	26	1	2		F2	
11 6.6	BG	290	20		xx	>10	5	P1	6		basso	24	1	-		12	
12 8	JN	50	45		dd	0.2		P1	4		later.	20	1				
13 8.4	JN1	65	65		dx	1.2	2	U2	10		later.	34	1	0			
14 8.7	JN2	5	68		dx	0.25		U1	10		later.	36	1				
15 9.4	JN	175	75		dx	0.3		P2	8		later.	34	1				
16 9.6	JN	25	35		ax	0.2		02	12		obiiq.	28	1				
17 12																	
19																	
20																	
21																	
22																	
24																	
25																	
26																	
27																	
28																	
30																	
31																	
32																	
33																	
34																	
35																	
30																	
38																	
39																	
40																	
41																	
42																	
44																	
45																	
46																	
47																	
48																	
49 50																	
Note da	10.3	m a 12	m inte	rstrato s	iltitico e	e marno	so	-		-				-		-	
nella parete af	fiora	una suc	cession	ie di 7 st	rati mar	noso-a	renacei alte	ernati a	potenti ir	nterstra	ti siltitici						
(1) tipo discon	tinuita	à	(2) tern	ninazion	e		(4) resiste	nza			(6) riem	ipimei	nto		(7) filtra	zione	
DG - stratificazio JN - giunto	ne		x - oltre r - contr	aπioram o roccia	ento		S1 - molto i S2 - molle (molle (<2 25-50 kP	25 кна) Ра)		1 - color	ite azione	sup.		U2 - aper	a/secca ta asciuti	a
FL - faglia			d - contr	ro discon	tinuità		S3 - moder	. consist.	, (50-100 ki	Pa)	2 - terra	coesiv	a		U3 - aper	ta tracce	flusso
FR - fessura			s - contr	o strato			S4 - consist	. (100-25	50 kPa)	-	3 - terra	granul	are		U4 - aper	ta umida	
FS - fissilità ST - stilolite			(3) rugo	osità			S5 - molto (consist. (250-500 kl	ra) N	4 - ceme	ntazio: e	ne		U5 - aper	ta bagna o continu	ta
SC - scistosità			S - a gra	dini			so esuem	. consist	. 1- 200 KFG	.,	6 - clorit	– e, talco	o, gesso		Riempime	ento	~
CL - clivaggio			U - ondu	ulato			(5) degrad	lazione			7 - altro	(specif	icare)		F1 - asciu	tto	
FO - foliazione			P - plana	are			0 - fresca						-		F2 - umid	0	
VN - vena	ie		1 - liscio	, 2 - scab	ro, 3 - str	iato	1 - decolora	ata							F3 - bagn	ato adilar	onte
əri - zona dı tagli	10						2 - decomp 3 - disgrega	usta Ita							r4 - traco F5 - dilavo	e ailavan ato	iento

Figura 6 – scheda di caratterizzazione delle discontinuità relativa allo stendimento 1

Figura 7 – stazione n. 3

4.2 Caratterizzazione delle discontinuità

Ogni discontinuità intercettata dalle linee di stendimento è stata descritta direttamente in fase di rilievo mediante i seguenti parametri:

- Tipo di discontinuità (piano di strato o giunto);
- Giacitura (l'orientazione nello spazio in termini di "direzione di immersione" e di inclinazione del piano di discontinuità;
- Persistenza (intesa come la lunghezza della traccia della discontinuità misurata a partire dal punto di intersezione con la linea di scansione fino alla terminazione superiore o inferiore della discontinuità);

Figura 8 – rappresentazione della traccia delle discontinuità

 Terminazione della discontinuità secondo la dicitura indicata da ISRM (x – oltre affioramento, d – contro discontinuità, r – contro roccia intatta);

Figura 9 – persistenza delle discontinuità, ridisegnato da Barton (1978) – *Suggested methods for the quantitative description of discontinuities in rock masses*.

 Rugosità, o scabrezza, riferita alle irregolarità a piccola scala delle pareti della discontinuità e definita dal parametro JRC (joint roughness coefficient) variabile da 2 a 20, ricavato attraverso l'abaco di Barton & Choubey (1977);

Figura 10 – profili di rugosità e JRC corrispondente

Le superfici di strato sono risultate in massima parte planari lisce o scabre, i due set JN1 e JN2 planari o ondulati scabri (si veda la Figura 28 per i dati completi);

• Apertura, intesa come distanza ortogonale tra le pareti della discontinuità;

Tipo di giunto	Apertura
Molto serrato	< 0,1 mm
Serrato	0,1 - 0,25 mm
Poco serrato	0,25 - 0,5 mm
Aperto	0,5 - 2,5 mm
Apertura ampia	2,5 - 10 mm
Apertura molto ampia	10 - 100 mm
Apertura estremamente ampia	100 - 1000 mm
Giunto cavernoso	> 1 m

Figura 11 – classificazione dei giunti in base alla loro apertura

I valori di apertura delle due famiglie principali (vedi 4.3) sono piuttosto variabili, ma sono risultati mediamente superiori a 10 mm, con valori massimi di 50 mm;

- Riempimento, materiale presente all'interno della discontinuità aperta, definito precisando il tipo di materiale, la durezza e lo spessore;
- Alterazione delle pareti dei giunti, definita in base alla seguente tabella (nel caso di studio si rientra nella classe "decolorato":

Denominazione	Descrizione
Fresco	Non vi sono segni visibili di alterazione del materiale roccioso.
Decolorato	Il colore della roccia fresca originale è cam- biato. Si dovrebbe indicare il grado del cam- biamento. Se questo riguarda un particolare costituente mineralogico, ciò deve essere in- dicato.
Decomposto	La roccia è alterata sino alle condizioni di un terreno in cui la struttura originaria è ancora intatta ma alcuni o tutti i grani sono decom- posti.
Disgregato	La roccia è alterata sino alle condizioni di un terreno in cui la struttura originaria è ancora intatta. La roccia è friabile ma i grani non sono decomposti.

Figura 12 – grado di alterazione del materiale roccioso

 Resistenza a compressione uniassiale delle pareti delle discontinuità JCS (*joint compressive strength*) determinata mediante l'utilizzo dello sclerometro secondo le indicazioni di Barton & Choubey (1977). Per ogni set di discontinuità viene fornito il valore del rimbalzo R.

I valori ricavati per ogni parametro descritto sono riportati in Figura 28.

4.3 Famiglie di discontinuità

Per famiglia di discontinuità si intende l'insieme di discontinuità con simile orientazione (sub-parallele), generalmente dello stesso tipo e, presumibilmente, originatesi con lo stesso meccanismo genetico.

Per il riconoscimento delle famiglie, i dati di orientazione delle discontinuità sono stati rappresentati in proiezione stereografica (emisfero inferiore).

I tre stendimenti eseguiti rientrano in un unico dominio strutturale e per questo motivo è stato possibile rappresentare i dati in un unico diagramma.

Per una migliore individuazione dei sistemi di discontinuità è stato realizzato un diagramma di isodensità dei poli (Figura 13).

Figura 13 – proiezione stereografica delle discontinuità rilevate

Le orientazioni dei piani modali delle famiglie di discontinuità individuate sono:

famiglia di discontinuità	Immersione (°)	Inclinazione (°)
JN1	64	72
JN2	353	85
BG	298	14

^{*}dove BG è la stratificazione

4.4 Spaziatura

La spaziatura di discontinuità adiacenti condiziona in modo sostanziale le dimensioni dei singoli blocchi di roccia intatta potenzialmente soggetti a fenomeni cinematici. Sistemi di discontinuità ravvicinate tendono a dare condizioni di bassa coesione nell'ammasso roccioso, mentre quelli che hanno alta spaziatura tendono a

produrre condizioni d'interdipendenza tra i blocchi. Tali effetti dipendono dalla persistenza delle singole discontinuità.

Si possono distinguere:

- La **spaziatura apparente totale x**_s (spaziatura s.l.; intercetta), intesa come distanza media, tra due piani di discontinuità contigue lungo la linea di scansione;
- La **spaziatura reale di un singolo set di discontinuità X**_f (spaziatura principale), distanza tra due discontinuità contigue appartenenti ad una stessa famiglia, misurata lungo la normale del piano modale della famiglia.

4.4.1 Spaziatura apparente totale

La spaziatura apparente media viene calcolata dividendo la lunghezza dello stendimento per il numero di discontinuità intercettate:

Figura 14 – spaziatura delle discontinuità intercettate lungo uno stendimento

< 6 cm	Fratture molto ravvicinate;
6 ÷ 20 cm	Fratture ravvicinate;
20 ÷ 60 cm	Fratture moderatamente ravvicinate;
60 ÷ 200 cm	Fratture distanziate;
> 200 cm	Fratture molto distanziate.

Figura 15 – descrizione qualitativa della spaziatura delle discontinuità

Dalla spaziatura può essere ricavata una stima dell'indice RQD sulla base della relazione proposta da Hudson & Priest (1976):

$$RQD = 100e^{-0.1\lambda}(1+0.1\lambda)$$

Dove λ è la frequenza ($\lambda = 1/\bar{x}$)

I risultati ottenuti sono riportati nella tabella seguente:

LINEE DI STENDIMENTO						
	orienta.	zione	lunghezza	n. discont.	frequenza	RQD
Ν.	а	b	L	N	$\lambda = N/L$	$100e^{-0.1\lambda}(1+0.1\lambda)$
	[°]	[°]	[m]	[-]	[1/m]	[%]
1	35	80	13	17	1.3076923	99.2
2	35	80	11	15	1.3636364	99.2
3	135	0	21	30	1.4285714	99.1

4.4.2 Spaziatura reale dei set di discontinuità

Oltre alla spaziatura apparente, è stata calcolata la spaziatura reale del singolo set di discontinuità, tenendo in considerazione l'angolo tra la linea di stendimento e la normale al piano di discontinuità di interesse.

$$X_f = x_{fs} \left| \cos \theta_{fs} \right|$$

Dove x_{fs} è la spaziatura apparente di una famiglia e θ_{fs} rappresenta l'angolo compreso tra la linea di stendimento s e la normale alla famiglia di discontinuità f.

	orienta	zione		spa	ziatura
Set discontinuità	а	b	x_{fs}	$ heta_{fs}$	$X_f = x_{fs} \big \cos \theta_{fs} \big $
	[°]	[°]	[m]	[°]	[m]
JN1	64	72	1.61	72	0.50
JN2	353	85	2.33	46.2	1.61
BG	298	14	2.45	77.6	0.53

Figura 16 - misura della spaziatura tra i joint dall'osservazione di un affioramento

4.5 Volume roccioso unitario

La dimensione dei blocchi è un indicatore estremamente importante del comportamento dell'ammasso roccioso. Le misure dei blocchi sono determinate dalla spaziatura delle discontinuità, dal numero di famiglie e dalla persistenza delle discontinuità che delimitano i potenziali blocchi.

Tali parametri contribuiscono a determinare la forma dei blocchi oltre alla loro dimensione: nel caso oggetto di studio, si hanno elementi *prismatici* e *tabulari*.

Figura 17 – esempi di alcune forme di blocchi (da Dearman, 1991)

Essendo un parametro determinante, il *block size* è rappresentato, sia implicitamente che esplicitamente, nei principali sistemi quantitativi di classificazione degli ammassi rocciosi tra i quali:

- il rapporto tra RQD ed il fattore Jn nel Q-system di Barton;
- RQD e *joint spacing* (S) nel sistema RMR;
- *Block volume* (Vb) nel sistema RMi (Rock Mass Index) e il numero di joint set (nj) quanto l'RMi è applicato nella progettazione dei sistemi di consolidamento.

Quando blocchi singoli possono essere osservati in superficie, il loro volume può essere valutato direttamente selezionando blocchi rappresentativi e misurando le dimensioni medie. Dalle osservazioni svolte in sito, le dimensioni dei blocchi sono estremamente variabili, a seconda che provengano dalle bancate arenacee o dagli interstrati marnosi: in Figura 18 sono visibili alcuni elementi di dimensioni variabili tra pochi cm³ e 20-25 dm³ (utilizzando come riferimento di scala il martello da geologo). Sono stati osservati blocchi di maggiori dimensioni, anche dell'ordine di 0.5 m³.

Figura 18 – blocchi presenti alla base della parete.

La dimensione dei blocchi viene determinata per via analitica mediante il *block volume* (Vb). In presenza di 3 famiglie di discontinuità come nel caso di studio, tale parametro si determina mediante la seguente

espressione:

$$V_b = \frac{S_1 \cdot S_2 \cdot S_3}{\sin \gamma_1 \cdot \sin \gamma_2 \cdot \sin \gamma_3}$$

Dove S_1, S_2, S_3 sono i valori di spaziatura media delle tre famiglie di discontinuità, mentre γ_1, γ_2 e γ_3 sono gli angoli tra i piani delle famiglie.

Figura 19 – parametri di spaziatura e angoli tra discontinuità

Il risultato ottenuto è riportato nella seguente tabella:

fratturazione	spazi	atura	ang	goli tra	set	V_b
Set	X_f	[m]		γ [°]		[m³]
			γ ₁	γ_2	γ_3	
JN1	S ₁	0.50	70			0 47
JN2	S ₂	1.61	70	80	77	0.77
BG	S₃	0.53			//	

Il *block volume* può essere classificato come suggerito da Palmstrom (1995):

			BLOCK VOLUME		
	very small	small	moderate	large	very large
Vb =	10 – 200cm ³	0.2 – 10dm ³	10 – 200dm ³	0.2 – 10m ³	> 10m³

4.6 Volumetric Joint Count

Il numero volumetrico delle discontinuità, introdotto da Palmstrom nel 1974, è definito come la somma del numero di discontinuità per ogni set intersecanti un volume di 1 m³.

$$J_V = \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_n}$$

Dove S_1 S_2 e S_3 sono le spaziature medie dei set di discontinuità.

Risulta un $J_V = 4.53$

La classificazione del parametro J_V è la seguente:

			DEGREE O	F JOINTING		
	very low	low	moderate	high	very high	crushed
Jv =	< 1	1-3	3 - 10	10 - 30	30 - 60	> 60

I seguenti termini descrittivi forniscono un'idea della corrispondente dimensione dei blocchi:

Classificazione	J _v (giunti/m ³)
Blocchi molto grandi	< 1,0
Blocchi grandi	1 - 3
Blocchi di medie dimensioni	3 - 10
Blocchi piccoli	10-30
Blocchi molto piccoli	> 30
Rocce frantumate	> 60

Figura 20 – classificazione della dimensione dei blocchi in base alla densità volumetrica (ISRM, 1978) Esiste una correlazione approssimata tra J_V e RQD introdotta da Palmstrom (1974):

$$RQD = 115 - 3.3 \cdot J_V$$

Con RQD = 0 quando $J_V > 35$ e RQD = 100 quando $J_V < 4.5$

Applicando la correlazione, risulta un RQD pari a 100.

Come osservabile in Figura 21, la correlazione è poco rappresentativa, specialmente quando gli spezzoni di carota hanno lunghezze intorno a 10 cm.

Figura 21 – correlazione J_V – RQD (Palmstrom, 1974)

5 Classificazione dell'ammasso roccioso

Sulla scorta dei dati raccolti e dei parametri calcolati, è possibile classificare l'ammasso roccioso affiorante secondo i più comuni sistemi utilizzati.

5.1 Rock Mass Rating (RMR) – Beniawski 1989

Questo sistema è stato introdotto da Beniawski nel 1973 inizialmente per studi in gallerie in rocce competenti

fratturate e poi applicato anche in altri ambiti.

La classificazione è basata sui seguenti parametri:

- Resistenza a compressione uniassiale della roccia intatta (A1);
- Indice RQD (A2);
- Spaziatura delle discontinuità (A3);
- Condizioni delle superfici di discontinuità (A4);
- Condizioni idrauliche (A5);
- Aggiustamento (A6) per l'orientazione delle discontinuità in relazione all'opera.

Si può definire:

- un indice RMR di base, RMR_b = A1+A2+A3+A4+A5
- un indice RMR corretto, RMR_c = RMR_b+A6
- un indice RMR di base modificato, RMR_b'= A1+A2+A3+A4+15

Ad ogni parametro viene assegnato un punteggio (*rating*), sulla base della tabella di classificazione fornita dall'autore; l'indice RMR finale è dato dalla somma dei punteggi. Per ottenere un valore di RMR dipendente esclusivamente dal tipo di ammasso, è necessario fare riferimento all'indice RMR di base (RMR_b).

L'indice RMR_b è ottenuto sommando i primi 5 parametri, ed escludendo il sesto (A6), che difatti tiene conto dell'orientazione delle discontinuità in relazione al tipo di opera di ingegneria.

Per la stima del parametro A1 è stato utilizzato il valore di resistenza a compressione uniassiale (UCS), ricavato dalla prova *point load*.

Il valore RQD è stato determinato, per ogni linea di stendimento, in base alla relazione di Hudson & Priest (1976):

$$RQD_t = 100\lambda \int_{x=t}^{x=\infty} x f(x) \, dx$$

con λ frequenza delle discontinuità e f(x) distribuzione dei valori di spaziatura.

Assumendo per i valori di spaziatura una distribuzione esponenziale negativa si ottiene per t=0,1:

$$RQD = 100e^{-0.1\lambda}(1+0.1\lambda)$$

Per la determinazione del parametro A2 della classificazione di Bieniawski si è fatto riferimento ad un valore cautelativo di 75%, tenendo in considerazione che le linee di stendimento sono state eseguite nelle porzioni di ammasso più integre.

Nella Figura 22**Errore. L'origine riferimento non è stata trovata.** sono riportati gli indici dei vari parametri che caratterizzano l'ammasso secondo BIENIAWSKI (1989).

I valori dell'indice RMR sono riportati nella tabella seguente:

RMRb	RMRc	RMR _b ′
61	56	66

INED FROM TOTAL RATINGS				
100 ← 81	80 ← 61	60 ← 41	40 ← 21	< 21
1		Ш	IV	V
Very good rock	Good rock	Fair rock	Poor rock	Very poor rock
	INED FROM TOTAL RATINGS 100 ← 81 I Very good rock	INED FROM TOTAL RATINGS 100 ← 81 80 ← 61 I II Very good rock Good rock	INED FROM TOTAL RATINGS 100 ← 81 80 ← 61 60 ← 41 I II III Very good rock Good rock Fair rock	INED FROM TOTAL RATINGS 100 ← 81 80 ← 61 60 ← 41 40 ← 21 I II III IV Very good rock Good rock Fair rock Poor rock

L'ammasso roccioso affiorante rientra nella classe III – Fair rock.

A. CLA	ASSIFICAT	ION PARAMETERS AN	D THEIR RATINGS						
	1	Parameter			Range of values	0.0	26		
	Strengt of	h Point-load strength index	>10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	For this k compress preferred	ow range ive te	- uniaxia est is
A1	intact ro materia	uniaxial comp.	>250 MPa	100 - 250 MPa	50 + 100 MPa	25 - 50 MPa	5-25 MPa	1-5 MP8	<1 MPa
		Rating	15	12	7	4	2	1	0
	Dri	I core Quality RQD	90% - 100%	75% - 90%	50% - 75%	25% - 50%	1	< 25%	
A2		Rating	20	17	13	8	1	3	-
	Sper	ing of discontinuities	>2 m	0.6-2 m	200 - 600 mm	60 - 200 mm	1 0	< 60 mm	_
A3		Rating	20	15	10	8		5	
A 4	Cond	Very rough surfaces Slightly rough surfaces Slightly rough surfaces Soft surfaces Soft surfaces (See E) Not continuous Sightly weathered walls Highly weathered walls Continuous Control Control Control Sightly weathered walls Control Sightly weathered walls Control Contr		Soft goug or Separa Continuos	e >5 mm t nton > 5 m nt	ihick m			
		Rating	30	25	20	10		0	
		Inflow per 10 m tunnel length (I/m)	None	< 10	10 - 25	25 - 125		> 125	
A5	Groundwa ter	(Joint water press)/ (Major principal o)	0	<0.1	0.1, -0.2	0.2 - 0.5		> 0.5	
		General conditions	Completely dry	Damp	Wet	Dripping		Flowing	
		Rating	15	10	7	4		0	
B. RAT	TING ADJ	JSTMENT FOR DISCON	TINUITY ORIENTATIONS (Se	eF)					
Strike	and dip ori	entations	Very favourable	Favourable	Fair	Unfavourable	Very	Unfavour	able
		Tunnels & mines	0	-2	-5	-10		-12	
R	atings	Foundations	0	-2	-7	-15		-25	
		Slopes	0	-5	-25	-50			
C. RO	CK MASS	CLASSES DETERMINE	D FROM TOTAL RATINGS						
Rating	ĝ.		100 - 81	80 +- 61	60 ← 41	40 +- 21		< 21	
Class (number		1	1		IV		v	
Descrip	ption		Very good rock	Good rock	Fair rock	Poor rack	Ve	ery poor ro	ck.
D. ME	ANING OF	ROCK CLASSES	1. W.			11.	12		
Class	number		1		ш	IV		V	
Averag	ge stand-up	time	20 yrs for 15 m span	1 year for 10 m span	1 week for 5 m span	10 hrs for 2.5 m span	30 m	in for 1 m	span
Cohesi	ion of rock	mass (kPa)	>400	300 - 400	200 - 300	100 - 200		< 100	
Friction	n angle of r	ock mass (deg)	>45	35 - 45	25 - 35	15 - 25		<15	
E. GUI	DELINES	FOR CLASSIFICATION	OF DISCONTINUITY conditio	ns		200 1947 - 1946 - 1946			
Discon	tinuity long	th (persistance)	< 1 m	1-3 m	3 - 10 m	10 - 20 m		> 20 m	
Rating	tine langet	tions)	6 None	4	2 0.1 - 1.0 mm	1.5mm	-	25.000	_
Rating	alon (apen	urey	6	5	4	1		0	
Rough	ness		Very rough	Rough	Slightly rough	Smooth	S	lickenside	d
Rating			6	5	3	1	2.0	0	
Ration	(gouge)		None 5	Hard ming < 5 mm	Plaro mang > 5 mm	Soft tiling < 5 mm	Son	nung > 5 0	mm
Weath	ering		Unweathered	Slightly weathered	Moderately weathered	Highly weathered	D	ecompose	d
F. FFF	FCT OF D	SCONTINUITY STRIKE	AND DIP ORIENTATION IN 1	UNNELLING**	3	1 1		U	_
CONT		Shike per	endicular to tunnel axis			Strike parallel to tunnel avia	-		-
	Drive	th an Jin 45 - 90"	Drive who ca	- Din 20 - 45°	Din 45 - 90*		Un 20 - 45	io.	_
	Danie W	lety favourable	Ener	rahle	Very unfavourable		Fair	<u>.</u>	
-	Drive	sigst din - Din 45.00*	Crive application	in - Din 20-45°	(), (intervention)	n 0-20 - integnective of strike*	1.00		
-	unite dy	Enir	Unive againets	ny sty zo to		Eair			_
		rai	uniax	Juladit	Fair				

* Some conditions are mutually exclusive . For example, if infilling is present, the roughness of the surface will be overshadowed by the influence of the gouge. In such cases use A.4 directly. ** Modified after Wickham et al (1972).

Figura 22 - valori dei parametri A1-A5 (rating) della classificazione RMR, classi e correzioni per la giacitura delle

discontinuità (Beniawski, 1989).

5.2 Rock Quality Index (Q-System) – Barton 1974

Barton et alii (1974) hanno rilevato che la classificazione di Bieniawski (1974) ignora la scabrezza delle discontinuità e il loro riempimento e pertanto hanno proposto una nuova classificazione basata sull'Indice Q (*Tunnelling Quality Index*) derivato dai sei parametri seguenti:

a) indice RQD;

- b) numero delle famiglie di giunti (*Jn*);
- c) scabrezza delle superfici dei giunti più sfavorevoli alla stabilità dello scavo (Jr);
- d) grado di alterazione della superficie dei giunti e materiale di riempimento (Ja);
- e) eventuale presenza di acqua (Jw);

f) condizioni di sollecitazione (SRF).

L'Indice di qualità della Roccia (Q) è determinato dalla relazione:

$$Q = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a} \cdot \frac{J_w}{SRF}$$

Si noti che:

- Il rapporto *RQD/Jn* tiene conto delle caratteristiche strutturali dell'ammasso e fornisce una misura approssimata delle dimensioni del blocco medio;

 - il rapporto *Jr/Ja* tiene conto delle caratteristiche di resistenza meccanica dei giunti; il valore di questo rapporto è più elevato per giunti molto scabri con superfici a diretto contatto fra loro. Eventuali alterazioni delle superfici del giunto, o la presenza di materiale di riempimento riducono sensibilmente il valore di questo rapporto.

- il rapporto Jw/SRF è un fattore empirico che esprime lo stato di tensione efficace agente nella porzione dell'ammasso roccioso in esame. Il parametro SRF è indicativo dello stato di sollecitazione, mentre Jw è un parametro che tiene conto della pressione dell'acqua che ha un effetto negativo sulla resistenza dei giunti determinando una riduzione della tensione efficace normale.

La classificazione di Barton (o dell'Indice Q) è prevalentemente utilizzata per la previsione del sistema di sostegno di gallerie e grandi scavi sotterranei.

A ciascuno dei parametri che figurano nella precedente espressione è attribuito un valore numerico sulla base di valutazioni qualitative e quantitative.

Q	Classe	Descrizione
0,001 - 0,01	IX	Eccezionalmente scadente
0,01 - 0,1	VIII	Estremamente scadente
0,1-1	VII	Molto scadente
1 – 4	VI	Scadente
4 - 10	V	Mediocre
10 - 40	IV	Buona
40 - 100	III	Molto buona
100 - 400	Π	Estremamente buona
400 - 1000	Ι	Ottima

Figura 23 – classi di ammasso roccioso determinate con l'Indice Q.

L'indice Q (variabile da 0,001 a 1000) è diviso in 9 intervalli cui corrispondono altrettante classi di ammasso roccioso (Figura 23).

Si riporta di seguito, per mezzo di tabelle, il calcolo dell'indice Q:

1	RQD (Rock Quality Designation) RQD					
А	Very poor	(> 27 joints per m³)	0-25			
В	Poor	(20-27 joints per m ³)	25-50			
С	Fair	(13-19 joints per m ³)	50-75			
D	Good	(8-12 joints per m ³)	75-90			
E	Excellent	(0-7 joints per m ³)	90-100			
Note	e: I) Where RQD is reported or II) RQD-Intervals of 5, i.e. 100	measured as \leq 10 (including 0) the value 10 is used to evaluate the G), 95, 90, etc., are sufficiently accurate	2-value			

2	Joint set number	J _n
А	Massive, no or few joints	0.5-1.0
В	One joint set	2
С	One joint set plus random joints	3
D	Two joint sets	4
Е	Two joint sets plus random joints	6
F	Three joint sets	9
G	Three joint sets plus random joints	12
н	Four or more joint sets, random heavily jointed "sugar cube", etc	15
J	Crushed rock, earth like	20
Not	e: I) For tunnel intersections, use 3 x J _n II) For portals, use 2 x J _n	

3	Joint Roughness Number	J _r
a) b)	Rock-wall contact, and Rock-wall contact before 10 cm of shear movement	
А	Discontinuous joints	4
В	Rough or irregular, undulating	3
С	Smooth, undulating	2
D	Slickensided, undulating	1.5
Е	Rough, irregular, planar	1.5
F	Smooth, planar	1
G	Slickensided, planar	0.5
Not) Description refers to small scale features and intermediate scale features, in that order	
c)	No rock-wall contact when sheared	
Н	Zone containing clay minerals thick enough to prevent rock-wall contact when sheared	1
Not	e: II) Add 1 If the mean spacing of the relevant joint set is greater than 3 m (dependent on the size of the underground opening)	
	iii) $J_r = 0.5$ can be used for planar slickensided joints having lineations, provided the lineations are in the estimated sliding direction	orlented

4	Joint Alteration Number	Φ _r approx.	Ja	
a) (Rock-wall contact (no mineral fillings, only coatings)			
A	Tightly healed, hard, non-softening, impermeable filling, i.e., quartz or epidote.		0.75	
В	Unaltered joint walls, surface staining only.	25-35°	1	
С	Slightly altered joint walls. Non-softening mineral coatings; sandy particles, clay-free disintegrated rock, etc.	25-30°	2	
D	Silty or sandy clay coatings, small clay fraction (non-softening).	20-25°	3	
E	Softening or low friction clay mineral coatings, i.e., kaolinite or mica. Also chlorite, talc gypsum, graphite, etc., and small quantities of swelling clays.	8-16°	4	
b)	Rock-wall contact before 10 cm shear (thin mineral fillings)			
F	Sandy particles, clay-free disintegrated rock, etc.	25-30°	4	
G	Strongly over-consolidated, non-softening, clay mineral fillings (continuous, but <5 mm thickness).	16-24°	6	
н	Medium or low over-consolidation, softening, clay mineral fillings (continuous, but <5 mm thickness).	12-16°	8	
J	Swelling-clay fillings, i.e., montmorillonite (continuous, but <5 mm thickness). Value of J_{α} depends on percent of swelling clay-size particles.	6-12°	8-12	
c) I	No rock-wall contact when sheared (thick mineral fillings)			
к	Zones or bands of disintegrated or crushed rock. Strongly over-consolidated.	16-24°	6	
L	Zones or bands of clay, disintegrated or crushed rock. Medium or low over-consolidation or softening fillings.	12-16°	8	
М	Zones or bands of clay, disintegrated or crushed rock. Swelling clay. J_{a} depends on percent of swelling clay-size particles.	6-12°	8-12	
N	Thick continuous zones or bands of clay. Strongly over-consolidated.	12-16°	10	
0	Thick, continuous zones or bands of clay. Medium to low over-consolidation.	12-16°	13	
Ρ	Thick, continuous zones or bands with clay. Swelling clay, $J_{\rm a}$ depends on percent of swelling clay-size particles.	6-12°	13-20	

5	Joint Water Reduction Factor	J _w
А	Dry excavations or minor inflow (humid or a few drips)	1.0
В	Medium inflow, occasional outwash of joint fillings (many drips/"rain")	0.66
С	Jet inflow or high pressure in competent rock with unfilled joints	0.5
D	Large inflow or high pressure, considerable outwash of joint fillings	0.33
E	Exceptionally high inflow or water pressure decaying with time. Causes outwash of material and perhaps cave in	0.2-0.1
F	Exceptionally high inflow or water pressure continuing without noticeable decay. Causes outwash of material and perhaps cave in	0.1-0.05
Note	Process C to F are crude estimates. Increase J_w if the rock is drained or grouting is carried out	
	I) Special problems caused by ice formation are not considered	

6	Stress Reduction Factor SRF										
a) I	Weak zones intersecting the underground opening, which may cause loose	ening of r	ock mass								
А	Multiple occurrences of weak zones within a short section containing clar disintegrated, very loose surrounding rock (any depth), or long sections w (weak) rock (any depth). For squeezing, see 6L and 6M	y or chen vith incon	nically npetent	10							
В	Multiple shear zones within a short section in competent clay-free rock wi surrounding rock (any depth)	ith loose		7.5							
С	Single weak zones with or without clay or chemical disintegrated rock (depth \leq 50m) 5										
D	Loose, open joints, heavily jointed or "sugar cube", etc. (any depth) 5										
Е	Single weak zones with or without clay or chemical disintegrated rock (depth > 50m) 2.5										
Note: I) Reduce these values of SRF by 25-50% if the weak zones only influence but do not intersect the underground opening											
b) (Competent, mainly massive rock, stress problems	σ _c /σ ₁	σ _e /σ _c	SRF							
F	Low stress, near surface, open joints >200 <0.01 2.5										
G	Medium stress, favourable stress condition 200-10 0.01-0.3 1										
Н	High stress, very tight structure. Usually favourable to stability. 0 May also be unfavourable to stability dependent on the orientation of stresses compared to jointing/weakness planes* 10-5 0.3-0.4										
J	Moderate spalling and/or slabbing after > 1 hour in massive rock	5-3	0.5-0.65	5-50							
К	Spalling or rock burst after a few minutes in massive rock	3-2	0.65-1	50-200							
L	Heavy rock burst and immediate dynamic deformation in massive rock	<2	>1	200-400							
Note	 Vote: II) For strongly anlsotropic virgin stress field (if measured): when 5 ≤ σ₁ / σ₃ ≤ 10, reduce σ_c to 0.75 σ_c. When σ₁ / σ₃ > 10, reduce σ_c to 0.5 σ_c, where σ_c = unconfined compression strength, σ₁ and σ₃ are the major and minor principal stresses, and σ_g = maximum tangential stress (estimated from elastic theory) III) When the depth of the crown below the surface is less than the span; suggest SRF increase from 2.5 to 5 for such cases (see F) 										
c)	Squeezing rock: plastic deformation in incompetent rock under the influence of σ_{e}/σ_{e} SRF high pressure										
М	M Mild squeezing rock pressure 1-5 5-10										
Ν	Heavy squeezing rock pressure		>5	10-20							
Note	e: Iv) Determination of squeezing rock conditions must be made according to r et al., 1992 and Bhasin and Grimstad, 1996)	elevant lit	erature (l.	e. Singh							
d) 3	welling rock: chemical swelling activity depending on the presence of wa	ter		SRF							
0	Mild swelling rock pressure			5-10							
Ρ	Heavy swelling rock pressure			10-15							

Il valore di Q così determinato risulta pari a:

0.31 - tipico di un ammasso dalle caratteristiche molto scadenti.

5.3 Geological Strenght Index – Marinos & Hoek 2000

L'Indice RMR e l'Indice Q entrambi includono e sono fortemente dipendenti dalla classificazione RQD. Siccome in molti casi di rocce fortemente fratturate l'indice RQD è zero oppure privo di significato o di difficile determinazione, è stato proposto un sistema alternativo di classificazione degli ammassi rocciosi che non tiene conto di esso, ma che si basa soprattutto su osservazioni geologiche sul terreno, la struttura e natura della roccia. Questa classificazione è detta "Indice GSI" (Geological Strength Index). L'indice è stato introdotto da Hoek e collaboratori (Hoek, 1994; Hoek et alii, 1995; Hoek & Brown, 1997) e successivamente perfezionato per includere ammassi di qualità scarsa, rocce eterogenee e stratificate (Hoek et alii, 1998; Marinos & Hoek, 2000, 2001; Marinos et alii, 2005) e ofioliti (Marinos et alii, 2006).

La valutazione dell'Indice GSI si basa sull'uso di grafici differenziati in base alla tipologia di formazione rocciosa, spaziando dagli ammassi rocciosi in rocce consistenti, alle rocce deboli fino alle rocce tenere e agli ammassi in formazioni in facies di flysch (Marinos & Hoek, 2001; Marinos, 2017).

GEOLOGICAL STRENGTH INDEX (GSI) FOR HETEROGENE Chart modified and extended by V. Marinos from the P.Marinos I Heterogeneous rockmasses are meant those with alternating layers of i their strength properties. For flysch, a typical formation with hetero sandstones and siltstones. Clay shales may be present. From a desc discontinuites (particularly of the bedding planes), choose a box in based on the tectonic disturbance (undisturbed, slightly dis sheared), the proportion of siltstones against sandstones a siltstone layers. In the type IV and V when the thickness o GSI value by 5 is suggested. From type IV and the following the siltstone mass. Locate the position in the box that corresponds the contours. The determination of the structure and the condition Note that the Hock - Brown criterion does not apply to stru- continuous weak planar discontinuities are present, these will dominate masses is reduced by the presence of groundwater and this can be all poor and very poor conditions. Water pressure does not change the value STRUCTURE AND COMPOSITION	OUS ROCK MASSES SUCH AS FLYSCH & E.Hoek (2001) original one clearly different lithology types with significant differences in geneous rock masses, these alternations are consisting of ription of the lithology, structure and surface conditions of the chart. The selection of the structure should be turbed, strongly disturbed - folded, desintegrated, and the expressed or not stratification inside the f sandstone beds exceed Slocm an increase of the types, the stratification planes are perceptible inside to the conflorm and estimate the average value GSI from of discontinuities may renge between two adjacent fields. turally controlled failures. Where unfavourably oriented the behaviour of the rock mass. The strength of some rock word for by a slight shift to the right in the columns for fair, e of GSI and it is dealt with by using effective stress analysis.	SURFACE CONDITIONS OF DISCONTINUITIES (Predominantly bedding planes)	D VERY GOOD Very rough, fresh unweathered surfaces	년 편 Rough, slightly weathered or oxylised PS surfaces	년 FAIR 9 Smooth, moderately weathered and 15 altered surfaces	POOR Very smooth, occasionally slickensided surfaces with compact coatings or fillings mith angular fragments	 VERY POOR Very smooth, slickensided or highly weathered surfaces with soft clay coating or fillings
TYPE I. Undisturbed, with thick to medium thickness sandstone beds with sporadic thin films of siltstone. In shallow tunnels or slopes where confinement is poor the mode of the failure has a kinematic character controlled by the bedding planes and GSI is meanigless	TYPE II. Undisturbed massive siltston (stratification planes are imperceptible) wit sporadic thin interlayers of sandstones	e h	80	 	m	N/A	N/A
TYPE III. Moderately disturbed sandstones with thin films of interlayers siltstone similar amounts	TYPE V. Moderately disturbed siltstones with sandstone interlayers	CONHEN THICKNESS OF CONHEN THICKNESS OF SANDSTONE BEDS ~50000		60 111 1 50	v v v	1	N/A
TYPE VII. Strongly disturbed, folded rockmass that retains its structure, with sandstone and siltstone in similar extend	TYPE VIII. Strongly disturbed, folded rockmass, with siltstones and sandstone interlayers. The structure is retained and deformation - shearing is not strong		N/A		⁴⁰ уп 30	vm	
TYPE IX. Desintegrated rockmass that can be found in wide zones of faults or/and of high weathering. In this type mainly brittle material is present with some disturbed siltstones between rock pieces	TYPE X. Tectonically deformed intensively folded/ faulted siltstone or clay shale with broken and deformed sandstone layers forming an almost chaotic structure		N/A	\square	IX	200	
TYPE XI. Tectonically strongly sheared silistone or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandistone are transformed into small rock pieces. Ultimately the ground behavior is that of a soil	Ļ		N/A	N/A		/×1	10
N/A Means geologically impossible combination Means deformation after tectonic disturban	. In the non - shadowed areas, such rockmasses	are no	t impossible	e to find bu	t it is very u	unusual	

Figura 24 – valutazione del GSI in rocce torbiditiche (Marinos, 2017)

L'utilizzo del metodo nel caso di formazioni geologiche particolari come torbiditi, calcaree e non calcaree, usualmente composte da alternanza variabile tra differenti litotipi pone una evidente e crescente complessità nella attribuzione del parametro GSI, ma anche nel caso della assegnazione di un parametro unitario di resistenza a compressione uniassiale. Mentre nel caso della compressione uniassiale un valore unitario può

essere ottenuto mediante una media ponderata dei valori di resistenza a compressione di ogni litotipo, tenendo conto della rispettiva abbondanza relativa, nel caso dell'attribuzione del valore di GSI questo metodo non è altrettanto facilmente utilizzabile. Marinos (2010, 2017) ha pubblicato due importanti lavoro che si possono considerare dei riferimenti per risolvere l'attribuzione del valore di GSI in ammassi rocciosi caratterizzati da questa complessità.

Nel caso in esame è stato utilizzato lo schema riportato in Figura 24, valido per le rocce torbiditiche.

Determinato l'Indice GSI è possibile ricavare mediante una serie di relazioni empiriche la resistenza alla compressione di un ammasso roccioso ed altri parametri (Hoek et alii, 1995).

6 Sintesi dei dati acquisiti

Infine, si riportano le schede di rilevamento relative ai 3 stendimenti e la scheda di sintesi dell'ammasso roccioso contenente i dati necessari per ricavare i parametri di resistenza al taglio ed eseguire le necessarie verifiche geotecniche:

			SCHEDA DI CARATTERIZZAZIONE GEOMECCANICA DELLE DISCONTINUITA'															
DAT	I GENER	RALI								AFFIOR/	MENT	0			STEND	IMENTO		
n. so	heda:				Rilevat	ore:	G. Mar	iannelli		Immersi	one (°):	35			Direzio	ne (°):	35	
Loca	lità:	Galleria	a Guinza	a N	Data:	07/06	/2022			Inclinazi	one (°):	80			Inclina	zione (°):	80	
Staz	ione:	-	1	lontori	n. foto:	noreic	tonzo	oportura		Altezza (m):	13	0.070		Lunghe	ezza (m):	13 filtra	ziono
-	ntersezi	tino	or	rentazio	one	persis	tenza traccia	apertura	tino		ctima	scleror	enza	dograd	tino	rocist	tino	zione
	(m)	(1)	(°)	(°)	/º)	(2)	(m)	(mm)	(3)	1-20	(4)	orient.	R	(5)	(6)	(4)	(7)	(I/min)
1	0.4	JN1	55	72	U.	sd	0.3	-	P1	6	19	later.	28	1	19/	17	17	17 7
2	0.6	JN1	60	75		sd	1	-	P1	10		later.	30	1				
3	0.9	JN1	65	75		sd	0.3	1	U1	4		later.	26	1	0			
4	3.4	JINZ IN1	70	75		sd	0.35	2	P2 P2	8		later.	30	1	0			
6	5.2	BG	295	20		XX	>10		P1	4		basso	22	1	Ŭ			
7	5.3	JN1	75	70		sd	0.6	3	U2	8		later.	28	1	0			
8	5.8	JN	90	70		XX	0.2		P1	4		later.	28	1			114	
10	6.5	JN IN1	240	72		dx dx	0.45	3	P1 U2	4		later.	26	1	2		E2	
11	6.6	BG	290	20		XX	>10	5	P1	6		basso	24	1	-		12	
12	8	JN	50	45		dd	0.2		P1	4		later.	20	1				
13	8.4	JN1	65	65		dx	1.2	2	U2	10		later.	34	1	0			
14	9.7	JN2 IN	5	75		dx dx	0.25		P1 P2	10		later.	30	1				
16	9.6	JN	25	35		dx	0.2		U2	12		oblig.	28	1				
17	12																	
18																		
19																		
21																		
22																		
23																		
24																		
25																		
27																		
28																		
29																		
30																		
32																		
33																		
34																		
35																		
30																		
38																		
39																		
40																		
41																		
42																		
44																		
45																		
46																		
48																		
49																		
50	_	1- 10 2																
nella	? a parete	affiora	s m a 12 una suo	2 m inte	rstrato s ne di 7 st	rati mar	e marno noso-a	iso renacei alte	ernati a	potenti i	nterstra	ti siltitic	i					
143.4				1011				(4)				(c) :				(7) (1)		
(1) t BG -	ipo disci stratifica	ontinuit zione	a	(2) tern	ninazior affioram	ento		(4) resiste	nza molle (<)	25 kPa)		(b) riem	ipimei ite	nto		(/) filtraz	one /secca	
JN - 8	giunto	LIGHT		r - contr	o roccia	cinto		S2 - molle (25-50 kF	Pa)		1 - color	azione	sup.		U2 - aperta	a asciutta	
FL - f	aglia			d - contr	ro discon	tinuità		S3 - moder.	consist.	(50-100 k	Pa)	2 - terra	coesiv	a		U3 - aperta	a tracce f	lusso
FR - 1 FS - f	issilità			s - contr	o strato			S4 - consist S5 - molto (. (100-25 consist (50 kPa) 250-500 k	3 - terra granulare U4 - aperta umio 0 kPa) 4 - cementazione U5 - aperta barri					a umida a bagnatz		
ST - 9	ST - stilolite (3) rugosità S6 - estrem. co					. consist	. (>500 kP	a)	5 - calcit	e			U6 - flusso	continuo)			
SC - scistosità S - a gradini					6 - clorite, talco, gesso Riempimento						nto							
CL - clivaggio U - ondulato (5) degradazione 7 - altro (specif					icare)		F1 - asciutt	to										
FO - 1 VN -	vena	=		P - plana 1 - liscio	are , 2 - scab	ro, 3 - str	iato	u - tresca 1 - decolora	ata							F2 - umido F3 - bagna	to	
SH -	zona di ta	aglio				.,		2 - decomp	osta							F4 - tracce	dilavame	ento
3 - disgregata F5 - dilavato																		

				SCHE		RATTE	RIZZAZION	E GEON	ECCANIC		DISCO	NTINI	IITA'			
DATLOFN	FRAIL			Jones	CA DI CA	and the	ALCON IN	2 GLOW	AFFIOR	MENTO	1000			STEND	MENTO	
n schede:	CIONES			Rilevat	ore:	G. Mar	iannelli		Immersi	one (°).	35			Direzio	ine (°):	35
n. scrieua. Località:	Galleri	a Guinza	a N	Data:	07/06	/2022			Inclinazi	one (°):	80			Inclina	zione (°):	80
Stazione:		2		n foto		2022			Altezza (m).	13			Lunghe	27a (m)	11
Interse	zione	or	ientazio	one	persis	tenza	apertura	rug	osita		resist	enza		riemp	imento	filtrazione
n. x	tipo	a	в	stria	termin.	traccia	A	tipo	JRC	stima	scleron	netro	degrad.	tipo	resist.	tipo Q
(m)	(1)	(*)	(•)	(*)	(2)	(m)	(mm)	(3)	1-20	(4)	orient.	R	(5)	(6)	(4)	(7) (l/min)
1 0.65	BG	300	15		XX	5		U2	10		basso	18	1	1-1		
2 0.7	JN2	185	89		dx	0.4		P2	12		later.	34	1			
3 1.7	JN2	30	52		фх	0.15		U2	6		obliq.	10	1			
4 2.1	JN1	60	70		dx	0.5	3	P1	8		later.	26	1	0		
5 2.5	JN	30	80		dx	0.45		P1	6		later.	20	1			
6 3.5	BG	305	15		XX	>10		P1	4		basso	16	1	-		
/ 3.6	JN1	65	80		dx	1.6	20	02	8		later.	30	1	2		
9 5 2	IN2	20	78		dx dx	0.2	10	P1 P2	4		later	10	1	2		F2
10 6	IN1	68	82		dx	2.5		P2	14		later	42	1	-		
11 6.3	JN	35	80		ds	0.25		U2	10		later.	28	1			
12 9	BG	305	12		XX	>10		P1	8		basso	20	1			
13 9.5	JN1	65	72		фх	7	50	U2	6		later.	28	1	2		
14 10.6	6 BG	310	10		XX	8		U1	6		basso	14	1			
15 10.8	JN1	70	65		dd	0.2	50	P2	8		later.	30	1	2		
16																
1/																
19																
20																
21																
22																
23																
24																
25																
26																
2/																
20																
30																
31																
32																
33																
34																
35																
36																
37																
39																
40																
41																
42																
43																
44																
45																
40																
47																
49																
50																
Note	il set JI	N1 most	ra aper	ture im	portanti	fino a 2	cm con rie	empime	nto coesi	vo quasi	sempre	asciu	itto			
la traccia o	iel set BG	s e pari a	all'ampi	ezza de	ll'affiora	mento	(gli strati si	seguon	o con cor	itinuita)						
(1) tipo dis	continui	tá	(2) terr	ninazior	ne		(4) resiste	nza			(6) riem	pime	nto		(7) filtra	zione
BG - stratifi	cazione		x - oltre	affioram	ento		S1 - molto r	molle (<2	25 kPa)		0 - assen	te			U1 - chius	sa/secca
JN - giunto			r - contr	o roccia			S2 - molle (25-50 kP	a) (50 4000)		1 - color:	azione	sup.		U2 - aper	ta asciutta
FL - Taglia FR - farmer			d - contr	no discon	tinuita		53 - moder. 54 - coordist	. consist. (100-25	(30-100 ki (0 kP=)	·a)	2 - terra 3 - terra	coesiv	ane		05 - aper	ta tracce flusso ta umida
FS - fissilità			a - contr	0.20,900			S5 - molto d	consist. (250-500 ki	Pa)	4 - ceme	ntazio	ne		U5 - aper	ta bagnata
ST - stilolite			(3) rugo	osità			S6 - estrem	. consist	(>500 kPa)	5 - calcit				U6 - fluss	o continuo
SC - scistosi	tà		S - a gra	dini							6 - cloriti	e, talco	o, gesso		Riempim	anto
CL - clivaggi	•		U - ondu	ulato			(5) degrad	lazione		1	7 - altro	(specif	icare)		F1 - asciu	tto
FO - foliazio	ne		P - plana	are			0 - fresca								F2 - umid	0
SH - zona di	taclio		1 - IISCIO	, 2 - scab	10, 5 - str	-10	2 - decomp	osta							F4 - trace	e dilavamento
							3 - disgrega	ta							F5 - dilav	ato

					SCHE	DA DI C	ARATTE	RIZZAZION	E GEON	/ECCANI	CA DELLE DISCO	ONTIN	UITA'					
DATI	GENER	ALI								AFFIOR				STEND	IMENTO			
n. scl	heda:				Rilevat	ore:	G. Mar	riannelli		Immersi	one (°): 35			Direzio	one (°):	135		
Loca	lità:	Galleria	a Guinz	a N	Data:	07/06	/2022			Inclinazi	one (°): 80			Inclina	zione (°):	0		
Stazi	one:		3		n. foto:					Altezza	m): 13			Lunghe	ezza (m):	21.2		
In	itersezi	one	0	rientazio	one	persis	stenza	apertura	rug	osità	resist	tenza		riem	pimento	filtra	zione	
n.	X	tipo	α	β	stria	termin.	traccia	A	tipo	JRC	stima sclero	metro	degrad.	tipo	resist.	tipo	Q	
	(m)	(1)	(*)	(*)	(°)	(2)	(m)	(<i>mm</i>)	(3)	1-20	(4) orient.	R	(5)	(6)	(4)	(/)	(<i>i/min)</i>	
1	1.8	JN2 IN1	325	68		dx	1.2	30	P2 P2	12	later.	34	1					
3	1.8	JN2	325	85		dx	0.6	50	U2	10	later.	28	1					
4	3.1	JN1	52	76		dx	1.2	10	P2	6	later.	32	1					
5	3.2	JN2	350	85		dx	0.1	5	P2	4	later.	28	1	2				
6	3.5	JN	40	63		xx	0.1		U2	6	later.	22	1					
/	4.2	JN	28	<u>/2</u> 97		dx	0.2		P2 P2	6	later.	20	1					
9	5.1	BG	265	17		XX	>10		U1	6	basso	18	1					
10	5.9	JN2	345	85		dx	0.6		P2	4	later.	34	1				,	
11	7.5	JN1	60	73		dx	0.3	5	P2	6	later.	38	1	2				
12	6.2	JN2	345	85		dx	0.3	5	P2	6	later.	28	1	2				
13	8.2	JIN INI1	5	80		dx	1.2	5	D2	10	later.	2/	1	2				
15	9.5	JN2	338	88		x	0.2	3	P2	6	later.	22	1	2				
16	10.3	JN1	65	72		dd	0.6		P2	6	later.	24	1					
17	10.3	JN	0	84		xd	0.1	10	P2	10	later.	36	1					
18	11.7	JN1	65	89		dd	1.2		U2	8	later.	40	1					
19	11.9	JN IN1	180	89		dx	0.25	2	02 P2	12	later.	38	1	2				
20	12.3	JN	180	80		dd	0.25	2	U2	14	later.	34	1	2				
22	13.6	JN1	65	70		dx	1.3	_	U2	10	later.	36	1					
23	13.6	JN2	350	85		dx	0.3	1	P2	6	later.	40	1					
24	14.8	JN1	60	72		dd	1.2		P2	6	later.	40	1					
25	15.1	JN2	350	85		dx	0.6	20	02	6	later.	26	1	2		ED		
20	16.2	JN1 JN2	05	70		x	0.5	50	H2 U2	6	later.	20	1	2		FZ		
28	17.2	JN2				x		20	02		lucen		-					
29	19.4	JN2				х		10										
30	20.7	JN2	5	89		x					later.	38	1					
31																		
33																		
34																		
35																		
36																		
37																		
30																		
40																		
41																		
42																		
43																		
44																		
46																		
47																		
48																		
49																		
Note		da 16.2	2 m a fi	ne stenc	limento	il set JN	2 taglia	il JN1 che	è paralle	elo all'affi	oramento							
							0											
(1) +i	no disci	ontinuit	à	(2) torn	ninazior	0.0		(A) resiste	070		(6) rien	onimo	nto		(7) filtra	vione		
(1) U BG - s	tratifica:	zione	a	x - oltre	affioram	ento		S1 - molto	molle (<2	5 kPa)	0 - asse	nte	nto		U1 - chius	a/secca		
JN - g	iunto			r - contr	o roccia			S2 - molle (25-50 kP	a)	1 - color	azione	sup.		U2 - aper	ta asciut	ta	
FL - fa	aglia			d - conti	ro discon	tinuità		S3 - moder	. consist.	(50-100 k	Pa) 2 - terra	coesiv	а		U3 - aper	ta tracce	flusso	
FR - fe FS - fi	essura ssilità			s - contr	o strato			54 - consist S5 - molto	. (100-25 consist. (о крај 250-500 ki	3 - terra Pa) 4 - ceme	granu entazio	are ne	U4 - aperta umida U5 - aperta bagnata				
ST - st	- stilolite (3) rugosità S6 - estrem. con				. consist	. (>500 kPa	a) 5 - calcit	te	-	U6 - flusso continuo								
SC - s	C - scistosità S - a gradini				6 - clorite, talco, gesso Riempi					Riempime	ento							
CL - cl	CL - clivaggio U - ondulato (5) degradazion				radazione 7 - altro (specificare) F1 - asciutto													
P - planare 0 - fresca VN - vena 1 - liscio, 2 - scabro, 3 - striato 1 - decolorata					ata						F2 - umid F3 - bagn	u ato						
SH - z	ona di ta	glio				.,		2 - decomp	osta						F4 - trace	e dilavan	nento	
3 - disgregata										F5 - dilava	ato							

					SCHI	EDA DI	SINTES	I PER LA	DES	CRIZION	E DELL'	AMMA	SSO P		so					
				1 11				0 11 1	DATI	GENER	ALI									
n. sch	eda:	9	1	Rilevat	tore:			Galleria	naolo	Marian	nelli		10	Stazior Data ri	ne: Ievam	ento:		07/	06/202	2
n. iott		AFFIO	RAMEN	TO	tore.			Olum	paolo	/ wiai lan	nem	M	ATERI	ALE RO	CCIA	iento.		077	00/202	2
Tipo (1):		1 - n	aturale	;	i. It	Forma	zione:						Mar	noso A	Arenacea	£			
Imme	rsione [:		35		1	Litolog	gia:		alterr	nanza di	arenar	ie, ma	arne e s	iltiti		_	Colore	:	
Inclina	zione [1:		80		Ē.	Granu	lometria	1:						India	a di Datat	T	essitura	-	7 1 7
Largh	a [m]: 2773 [m]			21		-	Note:	enza (3):				sonor	inorta	ti due Is	50 dist	e di Point	t Loa	e e marn	:). P	/ - 1./
Luight	Led [m]	•		21		1	note.	LINE	EE DI	STENDI	MENTO	501101	porca	a due is	oo aloo	and per di	Cindin	e e mann	-	
	orient	azione	lung	gh.	n. disc.	fre	eq.		RQD	01.						note				
Ν.	α	β	L		N	λ=	N/L	100(0.17	(+1)e>	κp(-0.1 λ)										
_	[°]	[°]	[m		[-]	[1/	m]	2	[%]							DC.				
2	35	80	13	,	1/	1.307	63636	24	99.2							BG				
3	135	0	21		30	1.428	57143		99.1		×.				J	N1. JN2				
4	100				50															
5																				
						10.		FAMIG	LIE D	I DISCO	NTINUI	TA'					-		-	
	orient	azione		spaziat	ura	-	persis	tenza		apert.	rugo	osità	r	esisten	za	degrad.	rie	mpim.	filt	razione
sigla	Ω [9]	β [•]	X	θ [°]	X=x cost	1X	1 d	[r	L	e	JRC	JRCn	R	JCS [Mpa]	JCSn	r/R	tipo (5)	(2)	tipo	portata [l/min]
(2) IN1	64	72	1.61	72	0.50	26	[70]	[70]	11	[mm] 12	77	5 32	27.2	[ivipa]	-	0.68	(5)	(3)	(4)	[l/mm]
JN2	353	85	2.33	46.2	1.61	50	46.7	0	0.4	14	7.8	6.28	25.0			0.6757	2	2 S2-S3		
BG	298	14	2.45	77.6	0.53	100	0	0	15	0	6.3	3.35	15.8			0.7524				
a					a	DAT		NTEC C	1115	CANALCI		CONT	NUUT	A'	5	6				
Sigla	ella fan	niglia				DA		IN IESISU	JLLE	IN1			NUII	N4	Ĩ	BG	<i>.</i>			
angol	di attr	ito di ba	ise	ob (tilt	t test) [°]				-	and.	7112	CNIC	,			55	1			
angolo	di attr	ito resid	luo	φr = (φ	b-20)+(20r	/R) [°]		1			6 6						1			
angolo	o di attr	ito di pi	ссо	φp = 2	JRC + \operatorname{blue} JRC + \operatorname{blue} b ['	°]														
perme	abilità												2							
					_	~							8	n fam	igliot	AMMA	1550	ROCCIO	50	2
					1	Ņ								degrad	lazion	e (6):			1	5 W3
														struttu	ra (7)	:				L - F
			100											dim. B	locchi	(m3) Pal	mstr	om:	1	0.47
														lato bl	occo (cubico) [m]:			0.78
			1						X					indice	$Jv = \Sigma$	(1/Xi) [1/	/m3]		17	4.53
		>							- 2	-				RQD=	115-3.	SUFICAZ	IONE			100
														resiste	nzaro	occia inta	tta		NIA VV S	7
		1												indice	RQD				Î	17
		-												spaziat	tura di	iscontinu	ıità			15
														condiz	ioni di	iscontinu	iità			12
	V	N-				192				-E				acqua	sotter	ranea				10
		-				BG								RMR b	ase no	on corret	to			61
															tamen	to	,			-5
		1	JN	1						-				RMR c	orrett	0				56
															CL	ASSIFICA	AZIOI	VE DI B	ARTON	
		1							1	~				indice	RQD					75
			X	1				0	1					n. fam	Iglie d	isc. Jn				9
					15			~						n. rugo	usita d	e disc. Jr	ĸ		+	1.5 8
														fattore	riduz	tension	i SRF	1		5
						JN								fattore	riduz	. acqua J	W			1
						Ś								Q = (RG)	QD/Jn)(Jr/Ja)(J	w/SR	F)		0.31
	1007 Adust 18400 - 1						Sal Martin			a made a de trace a com			9	00	P	ARAMET	RI G	EOMECO	CANICI	50
(1) affior	amento		(3) resisten	za	10-1	(4) filtrazi	one		(5) rien	npimento				GSI	ola les	tatta			-	50
1 -natura	ie SUD		s1 - molto r S2 - molle /	nolle (<25 25-50 kP=1	kra)	senza rien U1 - chive	npimento alsecca		U - asse	ente eraz, sun				The free	ccia in	tatta) [M	Inal		2	3-83
3 - scavo	sotterraneo	,	S3 - moder.	cons. (50-	-100 kPa)	U2 - apert	a asciutta		2 - terra	a coesiva				mb	ccid Iff	tatta) IV	ihal			
(2) tipo d	iscont.		S4 - consist.	(100-250	kPa)	U3 - apert	a tracce fl	usso	3 - terra	a granulare				s						
BG - strat	ificazione		S5 - monto	cons. (250	- 500 kPa)	U4 - apert	a umida		4 - cem	entazione				а						
JN - giunt	0		S6 - estrem	. cons. (>5	00 kPa)	U5 - apert	a bagn <mark>ata</mark>		5 - calci	ite				c [Mpa]					
FL - faglia			R0 - estrem	debole (<1 Mpa)	U6 - flusso	continuo		6 - clori	ite, gesso				φ [°]	1					
FR - fessu	ra		R1 - molto d	iebole (1-	5 Mpa)	Riempime	into		7 - altro	0				sigt [IV	[Mpa]					
ra-rusama n.2-dedde (5-50 Mpa) r1-ascutto (6) degradazione SigCIII [Wipd]				-																
SC - sciste	osità		R4 - resister	nte (50-10	0 Mpa)	F3 - bagna	ato		W2 - de	ecolorata		(7) strutt	ura	- Loba	-	(8) dimensi	oni bloo	chi (max)	L	
CL - cliva	gio		R5 - molto r	esist. <mark>(</mark> 100	0-250 Mpa)	F4 - tracce	e dilavame	nto	W3 - m	oder. alter.	(<50%)	B - a bloc	chi	I - irregola	re	1 - molto gr	andi (>2	2 m)	4-piccoli	(0.06-0.2 m)
FO - folia:	tione		R6 - estrem	. resist. (>	250 Mpa)	F5 - local.	dilavato		W4 - fo	ortem. altera	ita (>50%)	L - lastrifo	orme	F - frantur	nato	2 - grandi (0).6-2 m)		5-molto	oicco!i (<0.06
						F6 - comp	let. dilava	to	W5 - co	omplet. alter	rata	C - coloni	nare			3 - medi (0.3	2-0.6 m)	m)	

Figura 28 – scheda di sintesi dell'ammasso roccioso

Rilievo geomeccanico Guinza Imbocco Nord 11.07.2022

Firenze, 11-07-2022

Geol. Giampaolo Mariannelli OGT n. 1596 FIRMA DIGITALE

Mandanti

pizzi terra

0

geoplanning

Geofisi Misure

RTI

Capogruppo

AN58 - S.G.C. Grosseto – Fano (E78)

galleria della Guinza (lotto 2) e tratto Guinza – Mercatello Ovest (lotto 3 1º Stralcio)

Progetto	Gallerie della Guinza, Valpiana, S. Veronica e S. Antonio S/N
Nr. Progetto	AN58
Oggetto	Analisi Chimiche Acque Galleria Guinza
Emesso da	ATI monitoraggio
Emesso per	ANAS Direzione Progettazione e Realizzazione Lavori
	Progettazione, Indirizzo e Controllo – Geotecnica e Gallerie
Data	Agosto 2022

Revisione Documento

Autore	
Controllato	
Approvato	

Versione	Descrizione	Iniziali	Data

Perugia 16.09.2022

CERTIFICATO DI ANALISI Nº22091213C

IDENTIFICAZIONE DEL CAMPIONE

Committente :	Pizzi Terra S.r.1.
Prelievo effettuato da :	Vs. Tecnici
Data ricevimento campione :	06.09.2022
Etichettatura campione :	N° 1213/22 – acqua sotterranea - acqua P. Km 1,475 Galleria Guinza

RISULTATI ANALITICI

Parametri	Met. di riferimento	u.m.	Conc.	C.L.
Alluminio	ISO 11885:2009	μg/l	39,2	200
Antimonio	ISO 11885:2009	μg/l	< 0,5	5
Argento	ISO 11885:2009	μg/l	< 3	10
Arsenico	ISO 11885:2009	μg/l	< 6	10
Berillio	ISO 11885:2009	μg/l	< 0,8	4
Cadmio	ISO 11885:2009	μg/l	< 0,5	5
Cobalto	ISO 11885:2009	μg/l	< 0,7	50
Cromo totale	ISO 11885:2009	μg/1	< 3	50
Cromo VI	APAT / IRSA 3150	μg/l	< 0,3	5
Ferro	ISO 11885:2009	μg/l	< 3	200
Manganese	ISO 11885:2009	μg/l	< 1,7	50
Mercurio	UNI EN 1483	μg/1	< 0,5	1
Nichel	ISO 11885:2009	μg/l	< 0,9	20

Certificato di analisi valido a tutti gli effetti di legge ai sensi dell'art. 16 del R.D. n. 842 del 01.03.1928, artt. 16 e 18 della L. n. 679 del 19.07.1957, D.M. 21.06.1978, art. 8 c. 3 D.M. 25.03.1986

analisi eseguite presso

Laboratorio di analisi Chimiche e Microbiologiche ERICA s.r.1.

www.erica-ambiente.it

azienda con sistema di gestione della qualità certificato UNI EN ISO 9001:2015

ERICA s.r.l. Via Bruno Colli, 12, Ponte S. Giovanni – 06135 Perugia Tel. 075.5997593 Fax. 075.5997563 P.IVA 029 389 20 549 C.C.I.A.A. R.E.A. n. 251939 e-mail: info@erica-ambiente.it

certificato Nº 22091213C, pag. 1 di 2

Dott. Renato Antonio Presilla

ALBO DEI CHIMICI DEL LAZIO UMBRIA ABRUZZO E MOLISE n. 2153 / A

RISULTATI ANALITICI

Parametri	Met. di riferimento	u.m.	Conc.	C.L.
Piombo	ISO 11885:2009	μg/l	< 4,5	10
Rame	ISO 11885:2009	μg/1	< 6,7	1000
Selenio	ISO 11885:2009	μg/l	< 6	10
Tallio	ISO 11885:2009	μg/l	< 0,9	2
Zinco	ISO 11885:2009	μg/l	5,4	3000
pН	APAT / IRSA 2060	un. pH	8,9	
Solfati	APAT / IRSA 4020	mg/l	38,0	250
Ammoniaca	ISO 7150-1:1984 / DIN 38406 E5-1	mg/l	0,2	
Magnesio	ISO 11885:2009	mg/l	2,0	
Benzene	EPA 5030C 2003 - EPA 8260C 2006	μg/1	< 0,1	1
Etilbenzene	EPA 5030C 2003 - EPA 8260C 2006	μg/l	< 0,1	50
Stirene	EPA 5030C 2003 – EPA 8260C 2006	µg/1	< 0,1	25
Toluene	EPA 5030C 2003 - EPA 8260C 2006	μg/l	< 0,1	15
Xilene	EPA 5030C 2003 – EPA 8260C 2006	µg/l	< 0,1	10
Benzo[a]antracene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	0,1
Benzo[a]pirene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,01
Benzo[b]fluorantene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	0,1
Benzo[k]fluorantene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	0,05
Benzo[g,h,i]perilene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,01
Crisene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	5
Dibenzo[a,h]antracene	IRSA CNR, Quad. 64/25	µg/1	< 0,01	0,01
Indenopirene (1,2,3-c,d) pirene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	0,1
Pirene	IRSA CNR, Quad. 64/25	μg/1	< 0,01	50

Note:

C.L. Le concentrazioni limite riportate sopra sono riferite ai valori della tabella di cui al Decreto Legislativo 03 aprile 2006, nº 152, Tabella 2, dell'allegato 5 del titolo V della parte quarta.

P.IVA 029 389 20 549 C.C.I.A.A. R.E.A. n. 251939 e-mail: info@erica-ambiente.it

certificato Nº 22091213C, pag. 2 di 2

Perugia 16.09.2022

CERTIFICATO DI ANALISI N°22091214C

IDENTIFICAZIONE DEL CAMPIONE

Committente :	Pizzi Terra S.r.1.
Prelievo effettuato da :	Vs. Tecnici
Data ricevimento campione :	06.09.2022
Etichettatura campione :	N° 1214/22 – acqua sotterranea - acqua P. Km 3,285 Galleria Guinza

RISULTATI ANALITICI

Parametri	Met. di riferimento	u.m.	Conc.	C.L.
Alluminio	ISO 11885:2009	μg/l	75,7	200
Antimonio	ISO 11885:2009	μg/1	< 0,5	5
Argento	ISO 11885:2009	μg/l	< 3	10
Arsenico	ISO 11885:2009	μg/l	< 6	10
Berillio	ISO 11885:2009	μg/l	< 0,8	4
Cadmio	ISO 11885:2009	μg/l	< 0,5	5
Cobalto	ISO 11885:2009	μg/1	< 0,7	50
Cromo totale	ISO 11885:2009	μg/l	< 3	50
Cromo VI	APAT / IRSA 3150	μg/1	< 0,3	5
Ferro	ISO 11885:2009	μg/l	< 3	200
Manganese	ISO 11885:2009	μg/l	< 1,7	50
Mercurio	UNI EN 1483	μg/l	< 0,5	1
Nichel	ISO 11885:2009	μg/l	< 0,9	20

Certificato di analisi valido a tutti gli effetti di legge ai sensi dell'art. 16 del R.D. n. 842 del 01.03.1928, artt. 16 e 18 della L. n. 679 del 19.07.1957, D.M. 21.06.1978, art. 8 c. 3 D.M. 25.03.1986

analisi eseguite presso

Laboratorio di analisi Chimiche e Microbiologiche ERICA s.r.l.

www.erica-ambiente.it

azienda con sistema di gestione della qualità certificato UNI EN ISO 9001:2015

Doll. Renato Antonio Presilla

ALBO DEI CHIMICI DEL LAZIO UMBRIA ABRUZZO E MOLISE n. 2153 / A

RISULTATI ANALITICI

Parametri	Met. di riferimento	u.m.	Conc.	C.L.
Piombo	ISO 11885:2009	μg/l	< 4,5	10
Rame	ISO 11885:2009	μg/l	< 6,7	1000
Selenio	ISO 11885:2009	μg/l	< 6	10
Tallio	ISO 11885:2009	μg/l	< 0,9	2
Zinco	ISO 11885:2009	μg/l	2,9	3000
pH	APAT / IRSA 2060	un. pH	8,3	
Solfati	APAT / IRSA 4020	mg/l	80,4	250
Ammoniaca	ISO 7150-1:1984 / DIN 38406 E5-1	mg/l	0,2	
Magnesio	ISO 11885:2009	mg/l	2,3	
Benzene	EPA 5030C 2003 – EPA 8260C 2006	μg/l	< 0,1	1
Etilbenzene	EPA 5030C 2003 - EPA 8260C 2006	μg/1	< 0,1	50
Stirene	EPA 5030C 2003 – EPA 8260C 2006	µg/l	< 0,1	25
Toluene	EPA 5030C 2003 – EPA 8260C 2006	μg/l	< 0,1	15
Xilene	EPA 5030C 2003 – EPA 8260C 2006	μg/1	< 0,1	10
Benzo[a]antracene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,1
Benzo[a]pirene	IRSA CNR, Quad. 64/25	μg/1	< 0,01	0,01
Benzo[b]fluorantene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,1
Benzo[k]fluorantene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,05
Benzo[g,h,i]perilene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,01
Crisene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	5
Dibenzo[a,h]antracene	IRSA CNR, Quad. 64/25	μg/1	< 0,01	0,01
Indenopirene (1,2,3-c,d) pirene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	0,1
Pirene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	50

Note:

C.L. Le concentrazioni limite riportate sopra sono riferite ai valori della tabella di cui al Decreto Legislativo 03 aprile 2006, nº 152, Tabella 2, dell'allegato 5 del titolo V della parte quarta.

ERICA s.r.l. Via Bruno Colli, 12, Ponte S. Giovanni – 06135 Perugia Tel. 075.5997593 Fax. 075.5997563 P.IVA 029 389 20 549 C.C.I.A.A. R.E.A. n. 251939 e-mail: info@erica-ambiente.it

certificato Nº 22091214C, pag. 2 di 2

Perugia 16.09.2022

CERTIFICATO DI ANALISI Nº22091215C

IDENTIFICAZIONE DEL CAMPIONE

Committente :	Pizzi Terra S.r.l.
Prelievo effettuato da :	Vs. Tecnici
Data ricevimento campione :	06.09.2022
Etichettatura campione :	Nº 1215/22 – acqua sotterranea - acqua P. Km 5,205 Galleria Guinza

RISULTATI ANALITICI

Parametri	Met. di riferimento	u.m.	Conc.	C.L.
Alluminio	ISO 11885:2009	μg/l	< 1	200
Antimonio	ISO 11885:2009	μg/l	< 0,5	5
Argento	ISO 11885:2009	μg/l	< 3	10
Arsenico	ISO 11885:2009	μg/l	< 6	10
Berillio	ISO 11885:2009	μg/l	< 0,8	4
Cadmio	ISO 11885:2009	μg/l	< 0,5	5
Cobalto	ISO 11885:2009	μg/l	< 0,7	50
Cromo totale	ISO 11885:2009	μg/1	< 3	50
Cromo VI	APAT / IRSA 3150	μg/l	< 0,3	5
Ferro	ISO 11885:2009	μg/l	< 3	200
Manganese	ISO 11885:2009	μg/1	< 1,7	50
Mercurio	UNI EN 1483	μg/1	< 0,5	1
Nichel	ISO 11885:2009	μg/l	< 0,9	20

Certificato di analisi valido a tutti gli effetti di legge ai sensi dell'art. 16 del R.D. n. 842 del 01.03.1928, artt. 16 e 18 della L. n. 679 del 19.07.1957, D.M. 21.06.1978, art. 8 c. 3 D.M. 25.03.1986

analisi eseguite presso

Laboratorio di analisi Chimiche e Microbiologiche ERICA s.r.l.

www.erica-ambiente.it

azienda con sistema di gestione della qualità certificato UNI EN ISO 9001:2015

ERICA s.r.l. Via Bruno Colli, 12, Ponte S. Giovanni – 06135 Perugia Tel. 075.5997593 Fax. 075.5997563 P.IVA 029 389 20 549 C.C.I.A.A. R.E.A. n. 251939 e-mail: info@erica-ambiente.it

certificato Nº 22091215C, pag. 1 di 2

Doll. Renato Antonio Presilla

ALBO DEI CHIMICI DEL LAZIO UMBRIA ABRUZZO E MOLISE n. 2153 / A

RISULTATI ANALITICI

Parametri	Met. di riferimento	u.m.	Conc.	C.L.
Piombo	ISO 11885:2009	μg/l	< 4,5	10
Rame	ISO 11885:2009	μg/1	< 6,7	1000
Selenio	ISO 11885:2009	μg/1	< 6	10
Tallio	ISO 11885:2009	μg/l	< 0,9	2
Zinco	ISO 11885:2009	μg/l	< 0,9	3000
pН	APAT / IRSA 2060	un. pH	7,7	
Solfati	APAT / IRSA 4020	mg/l	76,4	250
Ammoniaca	ISO 7150-1:1984 / DIN 38406 E5-1	mg/l	0,2	
Magnesio	ISO 11885:2009	mg/l	35,5	
Benzene	EPA 5030C 2003 - EPA 8260C 2006	μg/l	< 0,1	1
Etilbenzene	EPA 5030C 2003 - EPA 8260C 2006	μg/l	< 0,1	50
Stirene	EPA 5030C 2003 - EPA 8260C 2006	μg/l	< 0,1	25
Toluene	EPA 5030C 2003 – EPA 8260C 2006	μg/l	< 0,1	15
Xilene	EPA 5030C 2003 - EPA 8260C 2006	μg/l	< 0,1	10
Benzo[a]antracene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	0,1
Benzo[a]pirene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,01
Benzo[b]fluorantene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	0,1
Benzo[k]fluorantene	IRSA CNR, Quad. 64/25	μg/1	< 0,01	0,05
Benzo[g,h,i]perilene	IRSA CNR, Quad. 64/25	µg/1	< 0,01	0,01
Crisene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	5
Dibenzo[a,h]antracene	IRSA CNR, Quad. 64/25	μg/1	< 0,01	0,01
Indenopirene (1,2,3-c,d) pirene	IRSA CNR, Quad. 64/25	μg/l	< 0,01	0,1
Pirene	IRSA CNR, Quad. 64/25	µg/l	< 0,01	50

Note:

C.L. Le concentrazioni limite riportate sopra sono riferite ai valori della tabella di cui al Decreto Legislativo 03 aprile 2006, nº 152, Tabella 2, dell'allegato 5 del titolo V della parte quarta.

P.IVA 029 389 20 549 C.C.I.A.A. R.E.A. n. 251939 e-mail: info@erica-ambiente.it

certificato Nº 22091215C, pag. 2 di 2