

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS)
VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA
INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA
3° LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

PROGETTO ESECUTIVO DI STRALCIO E COMPLETAMENTO C - 3° TRATTO

PROGETTO ESECUTIVO

GE265

TECHINT

Ing. Fabrizio CARDONE	Ing. Alessandro RODINO	Ing. Paolo Alberto COLETTI	Dott. Domenico TRIMBOLI
	_		
	PRESTAZIONI SPECIALISTICHE		PROGETTAZIONE
DEL PROCEDIMENTO	DELL'INTEGRAZIONE DELLE		SICUREZZA IN FASE DI

OPERE MINORI

OPERE DI SOSTEGNO: MURI SVINCOLO DI MELARA MURO PREFABBRICATO DI CONTRORIPA IN DX RAMPA N (MU67) RELAZIONE DI CALCOLO

CODICE PROGETTO	NOME FILE 0000_V04OM040STRRE01_B	REVISIONE	SCALA:
PROGETTO LIV. PROG. N. PROG.			
DPGE0265 E 20	CODICE V04 OM04 STR RE01	В	-

С					
В	EMISSIONE	Novembre 21	M. Barale	A. Rodino	D. Morgera
Α	EMISSIONE	Marzo 2021	M. Barale	A. Rodino	D. Morgera
REV.	DESCRIZIONE	DATA	REDATTO	VERIFICATO	APPROVATO

IND	PICE pag.
1.	INTRODUZIONE
2.	NORMATIVE DI RIFERIMENTO
3.	CARATTERISTICHE DEI MATERIALI
	3.1 Calcestruzzo
	3.1.1 Calcestruzzo prefabbricato per pannelli – C35/45
	3.1.2 Calcestruzzo in opera per suola di stabilizzazione – C25/30 5
	3.1.3 Calcestruzzo in opera per piano d'appoggio – C16/20
	3.2 Acciaio B450C
4.	PARAMETRI GEOTECNICI 6
	4.1 Terreno di riempimento
	4.2 Terreno di fondazione
5.	CARATTERIZZAZIONE DELLA STRUTTURA7
6.	CLASSIFICAZIONE DELLE AZIONI
	6.1 Azioni permanenti (G)
	6.2 Azioni sismiche (E)
7.	COMBINAZIONI DELLE AZIONI
	7.1 Combinazioni SLU
	7.2 Combinazioni SLE
8.	CARATTERISTICHE GEOMETRICHE DEL MURO
	8.1 Muro di altezza fino a 10.10 m
9.	VERIFICHE DI STABILITA' E VERIFICHE STRUTTURALI -SLU 11
	9.1 Verifica a capacità portante
10.	COEFFICIENTI SULLE AZIONI
11.	COEFFICIENTI SUI MATERIALI
12.	COEFFICIENTI SULLE RESISTENZE
13.	VERIFICHE S.L.E
	13.1 Verifica a fessurazione

	13.2 Verifica delle tensioni di esercizio	15
14.	VERIFICHE PANNELLO PREFABBRICATO	17
	14.1 Verifica a flessione nel piano verticale	17
	14.2 Verifica a flessione nel piano orizzontale	17
	14.3 Verifica a taglio	18
15.	SOLETTA DI FONDAZIONE	19
	15.1 Verifica a flessione	19
16.	VERIFICHE DI STABILITÀ GLOBALE MURO-TERRENO	20
	16.1 Metodo di analisi	20
	16.2 Descrizione combinazioni di carico	21
	16.3 Risultati delle analisi	22
17.	ALLEGATO A: SEZIONE 1 – H=2.75M	24
18.	ALLEGATO B: SEZIONE 2 – H=3.30M	34
19.	ALLEGATO C: SEZIONE 3 – H=3.85M	44
20.	ALLEGATO D: SEZIONE 4 – H=4.40M	54
21.	ALLEGATO E: SEZIONE 5 – H=4.95M	64

1. Introduzione

La presente Relazione viene redatta nell'ambito del Contratto applicativo per la progettazione esecutiva dell'intervento S.S. 1 "Lavori di costruzione della variante alla S.S. 1 Aurelia (Aurelia bis), viabilità di accesso all'HUB portuale di La Spezia, interconnessione tra i caselli della A 12 e il porto di La Spezia – 3. lotto tra Felettino ed il raccordo autostradale - Progetto Esecutivo di stralcio e completamento C – 3. tratto".

Lo "Stralcio C" inizia appena prima della spalla Nord del Viadotto "San Severio II", indicativamente alla Progressiva km 2+780 (ex Sez. N. 140).

Nel tratto iniziale è presente il viadotto "San Venerio II" (L=114m) e lo svincolo di San Venerio. Successivamente il tracciato prosegue con tre gallerie, intervallate da due brevi tratti in sede naturale: la galleria artificiale "Felettino II" (L=191,30 m), la galleria naturale "Felettino III" (L=245 m) e la galleria naturale "Fornaci I" (L=447.34 m).

Successivamente, nel tratto terminale, sono previste le rampe dello svincolo "Melara" di collegamento col "Raccordo autostradale". Delle rampe che si dipartono dalla galleria artificiale "Fornaci II", due proseguono in galleria naturale: galleria naturale "Fornaci III" (L=86.50 m) e "Fornaci IV" (L=165 m). Successivamente le rampe si innalzano per portarsi alla quota del viadotto autostradale esistente, al quale si vanno ad affiancare con viadotti che realizzano le corsie di entrata ed uscita al Raccordo autostradale.

Nella l'ambito dello svincolo finale di Melara è da realizzare una generale rivisitazione della viabilità locale che interferisce con i lavori.

Sia per la realizzazione delle rampe dello svincolo Melara che per la realizzazione della viabilità locale sono da realizzare un numero elevato di muri di sostegno delle terre, comunque tutti di modesta altezza, oggetto della presente relazione.

Già nei precedenti livelli di progettazione si era ricorso diffusamente a soluzioni in prefabbricato. L'impostazione progettuale è stata mantenuta anche perché alcuni muri in parte sono stati realizzati e sono da completare.

In sede esecutiva l'impresa appaltatrice potrà scegliere il fornitore delle strutture, che dovranno essere approvate e accette dalla Direzione dei lavori. In tale sede l'impresa di prefabbricazione dovrà presentare tutta la documentazione tecnica necessaria per l'approvazione.

Nel seguito si riportano gli stralci planimetrici con indicazione delle strutture previste.

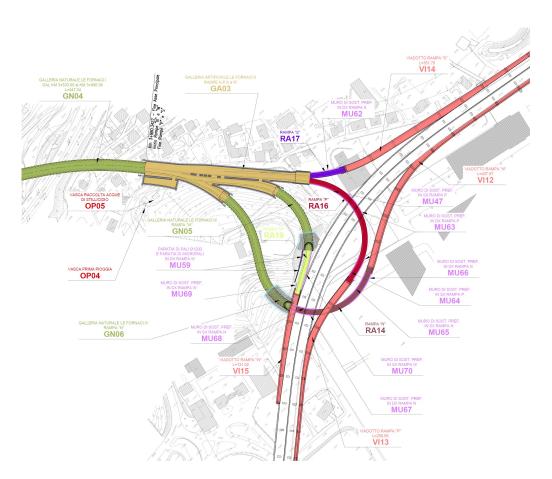


Figura 1: Stralcio planimetrico dello Svincolo Melara.

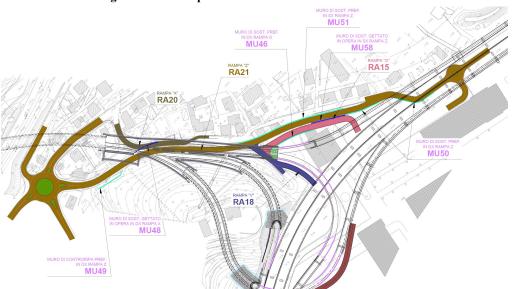


Figura 2: Stralcio planimetrico della viabilità secondaria.

2. Normative di riferimento

Con riferimento al quadro normativo di riferimento progettuale per le strutture, si evidenzia che, il D.M. 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»", prevede, all'Art. 2 "Ambito di applicazione e disposizioni transitorie", che "per le opere pubbliche o di pubblica utilità in corso di esecuzione, per i contratti pubblici di lavori già affidati, nonché per i progetti definitivi o esecutivi già affidati prima della data di entrata in vigore delle norme tecniche per le costruzioni, si possono continuare ad applicare le previgenti norme tecniche per le costruzioni fino all'ultimazione dei lavori ed al collaudo statico degli stessi".

Pertanto, essendo l'attività da svolgere il progetto di completamento di opere già parzialmente realizzate il riferimento normativo di riferimento restano le Norme tecniche per le costruzioni» di cui al Decreto Ministeriale 14 gennaio 2008.

Per quanto sopra la normativa di riferimento per il calcolo e la verifica delle strutture risulta essere la seguente:

- Decreto 14 gennaio 2008 "Norme tecniche per le costruzioni".
- Circolare Ministero Infrastrutture e Trasporti n. 617 del 2 Febbraio 2009 "Istruzioni
 per l'applicazione delle Nuove Norme Tecniche per le costruzioni di cui al decreto
 ministeriale 14 Gennaio 2008".
- Legge 5 novembre 1971, n. 1086 Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- Circolare Ministero dei Lavori pubblici 14 febbraio 1974, n.11951 Applicazione delle norme sul cemento armato.
- Calcestruzzo specificazione, prestazione, produzione e conformità (UNI EN 206-1:2006);
- D.M. LL. PP. 11 marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione" e le relative istruzioni (Circolare Ministero Lavori Pubblici 24 settembre 1988, N. 30483 Circolare Ministero Lavori Pubblici 9 gennaio 1996, N. 218/24/3).
- D.M. LL. PP. 14 febbraio 1992 "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche" e le relative istruzioni (Circolare Ministero Lavori Pubblici 24 giugno 1993, N. 37406/STC).
- D.M. LL. PP. 9 gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche" e le relative istruzioni (Circolare Ministero Lavori Pubblici 15 ottobre 1996, N. 252).

- D.M. LL. PP. 16 gennaio 1996 "Norme tecniche relative ai «Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e dei sovraccarichi»" e le relative istruzioni (Circolare Ministero Lavori Pubblici 4 luglio 1996, N. 156AA.GG./STC).
- Legge 2 Febbraio 1974 n° 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. LL. PP. 16/01/1996 "Norme tecniche per le costruzioni in zone sismiche" e le relative istruzioni (Circolare Ministero L. P. Pubblici 10/04/1997, N. 65/AA.GG.).
- Ordinanza n. 3274 20 marzo 2003 della Presidenza del Consiglio dei Ministri "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e normative tecniche per le costruzioni in zona sismica" e s.m.i.
- Presidenza del Consiglio dei Ministri Ordinanza n. 3519 del 28 Aprile 2006 "Criteri generali per l'individuazione delle zone sismiche e per la formazione e
 l'aggiornamento degli elenchi delle medesime zone".
- Circolare Ministero dei Lavori pubblici 14 febbraio 1974, n.11951 Applicazione delle norme sul cemento armato.
- Calcestruzzo specificazione, prestazione, produzione e conformità (UNI EN 206-1:2006).
- Eurocodici UNI EN 1990:2006; UNI EN 1991; UNI EN 1993; UNI EN 1994; UNI EN 1997; UNI EN 1998
- UNI EN 1992-1-1:2005 EC 2: PROGETTAZIONE DELLE STRUTTURE DI CALCESTRUZZO;
- UNI EN 1992-1-2:2006 EC 2 parte 2: CONCRETE BRIDGES (per quanto applicabile);
- MODEL CODE 90 CEB/FIP.

3. Caratteristiche dei materiali

3.1 Calcestruzzo

3.1.1 Calcestruzzo prefabbricato per pannelli – C35/45

resistenza caratteristica cilindrica	fck =	350	kg/cmq
resistenza caratteristica cubica	fck(c) =	450	kg/cmq
valore medio resistenza caratteristica cilindrica	fcm =	430	kg/cmq
valore medio resistenza a trazione assiale	fctm =	32.1	kg/cmq
modulo di elasticità secante	Ecm=	340771	kg/cmq

3.1.2 Calcestruzzo in opera per suola di stabilizzazione – C25/30

resistenza caratteristica cilindrica	fck =	250	kg/cmq
resistenza caratteristica cubica	fck(c) =	300	kg/cmq
valore medio resistenza caratteristica cilindrica	fcm =	330	kg/cmq
valore medio resistenza a trazione assiale	fctm =	25.7	kg/cmq
modulo di elasticità secante	Ecm=	314.758	kg/cmq

3.1.3 Calcestruzzo in opera per piano d'appoggio – C16/20

fck =	160	kg/cmq
fck(c) =	200	kg/cmq
fcm =	240	kg/cmq
fctm =	19,05	kg/cmq
Ecm=	286079	kg/cmq
	fck(c) = fcm = fctm =	fck(c) = 200 fcm = 240 fctm = 19,05

3.2 Acciaio B450C

Tensione caratteristica di snervamento	fyk =	4500	kg/cmq
Tensione caratteristica di rottura	ftk = 4	5400	kg/cma

4. Parametri geotecnici

4.1 Terreno di riempimento

 $\Phi = 32^{\circ}$ angolo di attrito interno $\gamma = 1900 \text{ daN/mc}$ peso specifico del terreno

c'= 0 daN/cmq coesione

4.2 Terreno di fondazione

 $\Phi = 28^{\circ}$ angolo di attrito interno $\gamma = 1900 \text{ daN/mc}$ peso specifico del terreno

c'= 0 daN/cmq coesione

La falda si assume a profondità non significative per le verifiche dei muri.

5. Caratterizzazione della struttura

Secondo quanto prescritto dal D.M. 14/01/2008, ai fini delle verifiche di sicurezza di una struttura devono essere definiti i seguenti parametri:

- VITA NOMINALE : vista l'importanza strategica dell'opera si considera VN≥50 anni;
- CLASSE D'USO : III
- PERIODO DI RIFERIMENTO (per l'azione sismica) : 75 anni.

6. Classificazione delle azioni

6.1 Azioni permanenti (G)

Pesi Propri: prefabbricato, fondazione e terreno sulla fondazione;

Spinte del terreno : l'interazione terreno-struttura è tale da consentire che si sviluppi un regime di spinta attiva.

Inclinazione piano campagna $\varepsilon = 25^{\circ}$.

6.2 Azioni sismiche (E)

Parametri sismici adottati :

TEMPO DI RITORNO: 712 anni

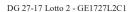
CATEGORIA SOTTOSUOLO:

CATEGORIA TOPOGRAFICA:

FATTORE DI AMPLIFICAZIONE TOPOGRAFICA:

FATTORE DI AMPLIFICAZIONE STRATIGRAFICA:

1.2


ACC. ORIZZ. MASSIMA SU SITO RIGIDO:

0.142

7. Combinazioni delle azioni

Con riferimento al D.M. 14/01/2008 – par. 2.5.3 e tabella 2.5.I, si riportano i coefficienti di combinazione adottati:

7.1 Combinazioni SLU

COMBINAZIONE	PERMA	NENTI	ACCIDE	ENTALI	VEN	OTI	SISN	ИA	URT	O
	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ
Comb A1+M1	1.3	1.0	1.5	1.0	1.5	0.6	0.0	0.0	0.0	0.0
Comb A1+M1	1.3	1.0	1.5	0.7	1.5	1.0	0.0	0.0	0.0	0.0
Comb A2+M2	1.0	1.0	1.3	1.0	1.3	0.6	0.0	0.0	0.0	0.0
Comb A2+M2	1.0	1.0	1.3	0.7	1.3	1.0	0.0	0.0	0.0	0.0
Comb EQ	1.1	1.0	1.5	1.0	1.5	0.6	0.0	0.0	0.0	0.0
Comb EQ	1.1	1.0	1.5	0.7	1.5	1.0	0.0	0.0	0.0	0.0
Sisma (ag/g=0.142)	1.0	1.0	1.0	0.3	1.0	0.0	1.0	0.0	0.0	0.0
URTO	1.0	1.0	1.0	0.3	1.0	0.0	0.0	0.0	1.0	0.0

7.2 Combinazioni SLE

COMBINAZIONE	PERMA	NENTI	ACCIDE	ENTALI	VEN	OT	SISN	ЛA	URT	O
	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ
RARA	1.0	1.0	1.0	1.0	1.0	0.6	0.0	0.0	0.0	0.0
FREQUENTE	1.0	1.0	1.0	0.5	1.0	0.2	0.0	0.0	0.0	0.0
Q. PERMANENTE	1.0	1.0	1.0	0.3	1.0	0.0	0.0	0.0	0.0	0.0

8. Caratteristiche geometriche del muro

8.1 Muro di altezza fino a 10.10 m

L'analisi viene condotta prendendo come riferimento un elemento modulare prefabbricato di larghezza 2.50 m, considerando il contributo delle due nervature di irrigidimento a tergo del paramento verticale.

Le nervature di irrigidimento di spessore 15/18 cm presentano un primo tratto a sezione costante di altezza h=30 cm ed un secondo ad altezza variabile secondo un'inclinazione del 20% sulla verticale. Il paramento può essere verticale o inclinato fino ad un massimo del 10%, anche se a favore di sicurezza nel dimensionamento si considera sempre verticale. Le due nervature sono collegate fra loro da una soletta di spessore costante s=10 cm.

I bordi presentano un giunto "a sella" maschio-femmina in modo da trattenere i materiali e da permettere il montaggio degli elementi anche seguendo una curva, sia concava che convessa.

Alla base del muro le nervature presentano ciascuna un'apertura trasversale per il passaggio delle armature della trave di collegamento che si realizza fra i pannelli; l'altezza dell'apertura viene determinata in base all'altezza della suola di stabilizzazione, assicurando un adeguato ricoprimento dell'armatura superiore della trave.

I muri in oggetto sono tipo "T" dove il tipo di fondazione è sia a valle, sia a monte.

9. Verifiche di stabilita' e verifiche strutturali -SLU

Secondo quanto riportato dal D.M. 14/01/2008:

$$E_d \le R_d \tag{6.2.1}$$

dove Ed è il valore di progetto dell'azione o dell'effetto dell'azione

$$E_{d} = E \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 (6.2.2a)

ovvero

$$E_{d} = \gamma_{E} \cdot E \left[F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right], \tag{6.2.2b}$$

con $\gamma_E = \gamma_F$, e dove R_d è il valore di progetto della resistenza del sistema geotecnico:

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]. \tag{6.2.3}$$

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - stabilità globale del complesso opera di sostegno-terreno;
 - scorrimento sul piano di posa;
 - collasso per carico limite dell'insieme fondazione-terreno;
 - ribaltamento;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali,

accertando che la condizione (6.2.1) sia soddisfatta per ogni stato limite considerato.

Le verifiche sono condotte secondo l'approccio 2:

• Combinazione (A1+M1+R3)

Per la sola verifica a ribaltamento si considera la sola combinazione (EQ+M2+R2).

9.1 Verifica a capacità portante

La valutazione della capacità portante delle fondazioni superficiali viene condotta in accordo all'equazione:

$$q_{lim} = 0.5 \gamma_c B' N_{\gamma} s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} + c' N_c s_c d_c i_c b_c g_c + q N_q s_q d_q i_q b_q g_q$$

Le espressioni che forniscono i valori dei fattori di capacità portante (N) e dei fattori correttivi (s, i, b, g) sono riportate nella tabella seguente:

= .50	N _c	(Nq-1)cot\phi	Hansen
Fattori di capacità portante	N_{γ}	1,5*(Nq-1)tanφ	Hansen
Fattori di capacità portante	N_q	$e^{\pi \tan \phi} \tan^2(45 + \phi/2)$	Hansen
	forma		
	Sc	1 per fondazioni nastriformi	Hansen
	Sγ	1 per fondazioni nastriformi	Hansen
	s_q	1 per fondazioni nastriformi	Hansen
	approfondimento		
	d_c	1+0,4k	Hansen e Vesic
	d_{γ}	1	Hansen e Vesic
	d_{q}	1+2tanφ(1-sinφ)k	Hansen e Vesic
	Inclinazione carico		
ţż.	ic	iq -(1-iq)/(Nq-1)	Hansen e Vesic
ırret	iγ	$(1-(0,7*H)/(N+B'*c*cotg\phi))^5$	Hansen
Fattori correttivi	i_q	(1-(0,5*H)/(N+B'*c*cotgf))^5	Hansen
attc	Inclinazione		
许	fondazione*		
	b_c	1-η/147°	Hansen
	b_{γ}	exp(-2,7*ηtanφ)	Hansen
	b_q	exp(-2*ηtanφ)	Hansen
	Inclinazione piano		
	campagna**		
	g_{c}	$gq-[(1-gq)/(Nc*tan\phi)]$	Hansen
	gγ	(1- tanβ)^2	Hansen
	$\mathbf{g}_{ ext{q}}$	\mathbf{g}_{γ}	Hansen

^{*} η = inclinazione base fondazione

Tabella 1 – Coefficienti per il calcolo della capacità portante in condizioni drenate

Le formule utilizzate si riferiscono alla fondazione efficace equivalente ovvero quella fondazione rispetto alla quale il carico verticale N risulta centrato; la fondazione equivalente è caratterizzata dalle dimensioni B' e L' valutate sulla base dei criteri proposti da Meyerhof.

Il coefficiente di sicurezza a capacità portante è dato da:

qamm - q

dove:

q_{lim} = capacità portante limite del terreno

^{**} β = inclinazione pendio (dipende dall'angolo d'inclinazione del rilevato e dall'altezza del rilevato)

q = pressione verticale efficace agente alla quota di imposta della fondazione

qamm = pressione verticale uniforme sulla fondazione di area ridotta (N/Br)

 F_S = coefficiente di sicurezza (R1;R2;R3 \leq kp).

10. Coefficienti sulle azioni

- Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	EFFETTO Coefficiente Parziale γ _F (ο γ _E)		(A1) STR	(A2) GEO
D	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γG1	1,1	1,3	1,0
Permanenti non strutturali ⁽¹⁾	Favorevole	0.000	0,0	0,0	0,0
rermanenti non strutturan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
17	Favorevole		0,0	0,0	0,0
Variabili	Sfavorevole	γ _{Qi}	1,5	1,5	1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

11. Coefficienti sui materiali

- Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γ _M		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γφ.	1,0	1,25
Coesione efficace	c'k	γc	1,0	1,25
Resistenza non drenata	cuk	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ _Y	1,0	1,0

12. Coefficienti sulle resistenze

- Coefficienti parziali n per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)
Capacità portante della fondazione	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$
Scorrimento	$\gamma_{R} = 1.0$	$\gamma_R = 1.0$	$\gamma_{R} = 1,1$
Resistenza del terreno a valle	$\gamma_{R} = 1.0$	$\gamma_R = 1.0$	$\gamma_{R} = 1.4$

13. Verifiche S.L.E.

Due sono le verifiche condotte:

- 1. Verifiche a fessurazione;
- 2. Verifiche delle tensioni di esercizio

13.1 Verifica a fessurazione

Secondo le prescrizioni riportate nella norma UNI EN 206-1 il muro tipo **Paver** può essere soggetto alle condizioni ambientali corrispondenti alle seguenti classi di esposizione: XD1 e XC3 (per le classi XF e XA è necessario fare riferimento ai parametri qualitativi del calcestruzzo).

Per la definizione del limite di apertura delle fessure si assumono i seguenti parametri:

- · Condizioni ambientali aggressive
- Armature poco sensibili

Quindi:

- combinazione frequente : wk=1.7*wm<w2=0,3 mm
- combinazione quasi permanente : wk=1.7*wm<w3=0,2 mm

13.2 Verifica delle tensioni di esercizio

Secondo quanto riportato dal D.M. 14/01/2008:

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO

TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

4.1.2.2.5 Verifica delle tensioni di esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

4.1.2.2.5.1 Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

$$\sigma_c < 0.60 \text{ f}_{ck} \text{ per combinazione caratteristica (rara)}$$
 (4.1.40)

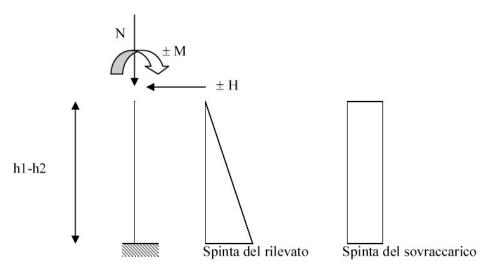
$$\sigma_c < 0.45 \text{ f}_{ck} \text{ per combinazione quasi permanente.}$$
 (4.1.41)

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.

4.1.2.2.5.2 Tensione massima dell'acciaio in condizioni di esercizio

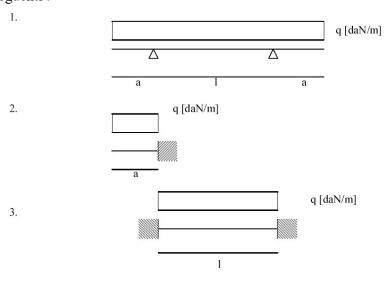
Per l'acciaio avente caratteristiche corrispondenti a quanto indicato al Cap. 11, la tensione massima, σ_s , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_s < 0.8 \text{ f}_{vk}$$
 (4.1.42)



14. Verifiche pannello prefabbricato

14.1 Verifica a flessione nel piano verticale


Si adotta lo schema statico di mensola incastrata nella fondazione, secondo lo schema seguente:

Viene condotta una verifica a presso flessione di un'equivalente sezione a T, con una sola nervatura data dalla somma delle due nervature, a partire dal bordo superiore del paramento prefabbricato, con passo di esplorazione "d"

14.2 Verifica a flessione nel piano orizzontale

Gli schemi statici adottabili per la verifica della soletta nel piano orizzontale sono i seguenti:

In quanto per le caratteristiche geometriche del pannello è sempre a>l/2 lo schema di carico più gravoso si ha per la condizione 2, per cui nel calcolo si adotta lo schema di mensola incastrata nella nervatura.

Viene valutato lo sforzo di flessione a cui sono sottoposti i due sbalzi laterali del pannello, alla sezione d'attacco con le nervature verticali.

14.3 Verifica a taglio

Secondo quanto riportato dal D.M. 14/01/2008:

4.1.2.1.3.2 Elementi con armature trasversali resistenti al taglio

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le \operatorname{ctg} \theta \le 2,5 \tag{4.1.16}$$

La verifica di resistenza (SLU) si pone con

$$V_{Rd} \ge V_{Ed} \tag{4.1.17}$$

dove VEd è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$
 (4.1.18)

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$
(4.1.19)

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$
 (4.1.20)

dove d, b_w e σ_{cp} hanno il significato già visto in § 4.1.2.1.3.1. e inoltre si è posto:

- A_{sw} area dell'armatura trasversale;
- s interasse tra due armature trasversali consecutive;
- α angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;
- f'_{cd} resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd} = 0.5 \cdot f_{cd}$);
- α_c coefficiente maggiorativo pari a 1 per membrature non compresse

 $\begin{array}{lll} 1 + \sigma_{ep}/f_{ed} & per & 0 \leq \sigma_{ep} < 0.25 \ f_{ed} \\ 1.25 & per \ 0.25 \ f_{ed} \leq \sigma_{ep} \leq 0.5 \ f_{ed} \\ 2.5(1 - \sigma_{ep}/f_{ed}) & per \ 0.5 \ f_{ed} < \sigma_{ep} < f_{ed} \end{array}$

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

15. Soletta di fondazione

15.1 Verifica a flessione

Si verifica la sezione resistente della soletta di fondazione, sollecitata a momento flettente per effetto del carico del terreno insistente su di essa, del sovraccarico e della reazione scambiata all'interfaccia con il terreno d'appoggio.

Si adotta lo schema statico di mensola incastrata nel cordolo armato passante nei fori delle nervature stesse.

16. Verifiche di stabilità globale muro-terreno

16.1 Metodo di analisi

In accordo con la normativa vigente, le verifiche di stabilità sia in condizioni statiche che sismiche sono state effettuate con l'Approccio 1- Combinazione 2: A2+M2+R2 tenendo conto dei vari coefficienti parziali riportati nelle tabelle 6.2.I, 6.2.II e 6.8.I. In particolare per la condizione sismica i coefficienti parziali sulle azioni (A2) risultano essere unitari (paragrafo 7.11 NTC).

Le analisi sono state condotte con i metodi all'equilibrio limite. Il livello di sicurezza è espresso come rapporto tra la resistenza a taglio disponibile e lo sforzo di taglio mobilitato lungo la potenziale superficie di scorrimento. In particolare, nei metodi delle strisce la massa di terreno viene discretizzata in strisce verticali e si determina la superficie di scorrimento critica in corrispondenza della quale si ha il minimo coefficiente di sicurezza.

La condizione di verifica $E_d \le R_d$ equivale ad avere un coefficiente di sicurezza in corrispondenza della superficie di scorrimento critica $F_{min} \ge \gamma_R$:

$$F = R_d / E_d \ge 1.1$$

Nelle analisi è stato adottato il metodo di Bishop: la superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

In condizioni sismiche, la stabilità è stata analizzata mediante un approccio pseudostatico. Gli effetti del sisma sono stati quindi rappresentati con delle forze d'inerzia orizzontali e verticali applicate alla massa instabile:

$$F_h = k_h \cdot W$$

$$F_{v} = k_{v} \cdot W$$

W è il peso totale della massa di terreno al disopra della superficie di scorrimento. I coefficienti k_h e k_v vengono determinati mediante le seguenti espressioni:

$$k_h = \beta_m \cdot \frac{a_{\text{max}}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

In base ai criteri progettuali riportati nel paragrafo 4 si sono determinati i parametri sismici impiegati nelle analisi:

a _g (g) (SLV)	0.142
Categoria di sottosuolo	В
Coefficiente di amplificazione stratigrafica Ss	1.2
Coefficiente di amplificazione topografica St	1.2
a _{max} (g) attesa al sito	0.204
Coefficiente di riduzione dell'a $_{max}$ attesa al sito β_m	0.24
k _h	0.049
k _v (+/-)	0.025

Tabella 16.1 – parametri azione sismica relativi alle analisi di stabilità

I calcoli sono stati svolti mediante l'ausilio del codice di calcolo MAX 10.0 [Aztec Informatica].

Nelle analisi si è tenuto conto dell'inclinazione del pendio a monte dei muri di controripa.

16.2 Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione nº 4 STAB

	γ	Ψ	C
Peso proprio	1,00	1.00	1,00
Spinta terreno	1,00	1.00	1,00

Combinazione n° 11 STAB - Sisma Vert. positivo

	γ	Ψ	C
Peso proprio	1,00	1.00	1,00
Spinta terreno	1,00	1.00	1,00

Combinazione nº 12 STAB - Sisma Vert. negativo

	γ	Ψ	C
Peso proprio	1,00	1.00	1,00
Spinta terreno	1,00	1.00	1,00

16.3 Risultati delle analisi

I quadri riassuntivi dei coefficienti di sicurezza calcolati per le varie altezze sono di seguito riportati:

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{STAB} Coeff. di sicurezza a stabilità globale

C Tipo Sisma csstab 4 STAB - [1] 1,64 11 STAB - [2] Orizzontale + Verticale positivo 1,48 12 STAB - [2] Orizzontale + Verticale negativo	C 4 11 12	Tipo STAB - [1] STAB - [2] STAB - [2]	Sisma Orizzontale + Verticale positivo Orizzontale + Verticale negativo Tabella 16.2 – Stabilità globale H= 2.75m	cs _{stab} 1,70 1,54 1,53
11 STAB - [2] Orizzontale + Verticale positivo 1,48 12 STAB - [2] Orizzontale + Verticale negativo 1,48 12 Tipo Sisma csstab 4 STAB - [1] 1,65 11 STAB - [2] Orizzontale + Verticale positivo 1,50 12 STAB - [2] Orizzontale + Verticale negativo 1,49 Tabella 16.4 - Stabilità globale H= 3.85m csstab C Tipo Sisma csstab 4 STAB - [1] 1,62 11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo 1,47 12 STAB - [2] Orizzontale + Verticale negativo 1,46 Tabella 16.5 - Stabilità globale H= 4.40m 1,46		•	Sisma	
12 STAB - [2] Orizzontale + Verticale negativo Tabella 16.3 – Stabilità globale H= 3.30m 1,48 C Tipo Sisma csstab 4 STAB - [1] 1,65 11 STAB - [2] Orizzontale + Verticale positivo 1,50 12 STAB - [2] Orizzontale + Verticale negativo Tabella 16.4 – Stabilità globale H= 3.85m csstab C Tipo Sisma csstab 4 STAB - [1] 1,62 11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo Tabella 16.5 – Stabilità globale H= 4.40m 1,46			Orizzantala + Varticala nositiva	· ·
4 STAB - [1] 1,65 11 STAB - [2] Orizzontale + Verticale positivo 1,50 12 STAB - [2] Orizzontale + Verticale negativo 1,49 Tabella 16.4 - Stabilità globale H= 3.85m C Tipo Sisma csstab 4 STAB - [1] 1,62 11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo 1,46 Tabella 16.5 - Stabilità globale H= 4.40m			Orizzontale + Verticale negativo	The state of the s
11 STAB - [2] Orizzontale + Verticale positivo 1,50 12 STAB - [2] Orizzontale + Verticale negativo Tabella 16.4 - Stabilità globale H= 3.85m C Tipo Sisma csstab 4 STAB - [1] 1,62 11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo Tabella 16.5 - Stabilità globale H= 4.40m	C	Tipo	Sisma	CSstab
12 STAB - [2] Orizzontale + Verticale negativo Tabella 16.4 - Stabilità globale H= 3.85m C Tipo Sisma csstab 4 STAB - [1] 1,62 11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo Tabella 16.5 - Stabilità globale H= 4.40m	4	STAB - [1]		1,65
Tabella 16.4 – Stabilità globale H= 3.85m C Tipo Sisma cs _{stab} 4 STAB - [1] 1,62 11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo 1,46 Tabella 16.5 – Stabilità globale H= 4.40m	11	STAB - [2]	Orizzontale + Verticale positivo	1,50
4 STAB - [1] 1,62 11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo 1,46 Tabella 16.5 – Stabilità globale H= 4.40m	12	STAB - [2]	<u> </u>	1,49
11 STAB - [2] Orizzontale + Verticale positivo 1,47 12 STAB - [2] Orizzontale + Verticale negativo 1,46 Tabella 16.5 - Stabilità globale H= 4.40m	C	Tipo	Sisma	CSstab
12 STAB - [2] Orizzontale + Verticale negativo 1,46 Tabella 16.5 – Stabilità globale H= 4.40m	4	STAB - [1]		1,62
Tabella 16.5 – Stabilità globale H= 4.40m	11	STAB - [2]	Orizzontale + Verticale positivo	1,47
C Tipo Sisma csstab	12	STAB - [2]		1,46
1	C	Tipo	Sisma	CSstab
4 STAB - [1] 1,48	4	STAB - [1]		1,48
11 STAB - [2] Orizzontale + Verticale positivo 1,35	11	STAB - [2]	Orizzontale + Verticale positivo	1,35
12 STAB - [2] Orizzontale + Verticale negativo 1,35 Tabella 16.6 – Stabilità globale H= 4.95	12	STAB - [2]	C	1,35

La verifica di stabilità è soddisfatta in entrambe le condizioni analizzate ($F_{min} \ge 1.1$).

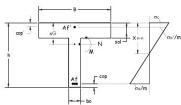
VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

I tabulati di calcolo sono riportati negli allegati in corrispondenza di ogni altezza di calcolo.

17. ALLEGATO A: SEZIONE 1 – H=2.75m

N333 28		DI SOSTEGNO PREFABBRICA	-	H =	2,75 m
Approccio	2			Muro T	їро Т
1	DATI DI PROGETTO				
1a)	Dati geotecnici			.70	
	Angolo di attrito interno Peso specifico		gradi daN / m3	φ	32 1.900
	Angolo di attrito terra - muro (valor	re prudenziale)	gradi	γ δ	21
	Angolo di inclinazione piano di car		gradi	ε	25
	Coesione		daN / cm2	С	0
1b)	Carichi agenti				
	Sovraccarico variabile stradale / fe	rroviario	daN / m2	qa	0
	Sovraccarico permanente	(daN / m2	qp	0
	Forza orizzontale in testa variabile Forza orizzontale in testa eccezion	(positivo tende lato monte)	daN / elemento daN / elemento	fv fe	0
	Sovraccarico sulla fondazione a m		daN / m2	q1	0
	Momento in testa variabile (positiv		daNm / elemento	momv	0
	Momento in testa eccezionale (po		daNm / elemento	mome	0
	Forza verticale in testa (positivo di		daN / elemento	N	0
		verticale (positivo verso nervature)	m	braccio	0,00
1c)	Dati sismici Classe d'Uso			SLV	1.5
	Vita Nominale		anni	Cu Vn	1,5 50
	Periodo di Riferimento		anni	Vr	75
	Tempo di Ritorno		anni	Tr	712
	Accelerazione orizzontale massim	a su un sito rigido	[g]	ag(g)	0,142
	Categoria sottosuolo Categoria topografica				B T1
	Fattore di ampificazione stratigrafi	na .		Ss	1,20
	Fattore di ampificazione topografio			St	1,00
1d)	Morfologia del muro				.,
iu,	Altezza del muro		m	h1	2.75
	Distanza tra il punto di ribaltament	o e il baricentro dell'elemento prefabbricato	m	X _G	1,31
	Distanza tra il baricentro del panno	ello e la soletta	m	_	0,11
	Peso elemento prefabbricato	. Library and a state of the st	daN	P	2.150
	Angolo di inclinazione parete prefa Larghezza elemento prefabbricato		gradi m	b b1	90 2,50
	Dimensione appoggio muro		m	appoggio	0,55
	Altezza sezione in sommità (tratto	a sezione costante)	m	-PF-33	0,30
	Pendenza nervatura		m	pendenza	20%
	Larghezza nervatura / e		m	s	0,30
	Spessore soletta		m	sol	0,10
1e)	Morfologia della fondazione				0.05
	Spessore massimo soletta di fonda Spessore minimo soletta di fondaz		m m	h2 h3	0,25 0,25
	Spessore minimo soletta di fondaz		m	h4	0,25
	Larghezza fondazione		m	1	2,20
	Dimensione sbalzo anteriore		m	sbalzo	1,20
	Larghezza suola fondazione a mo Larghezza suola fuori nervatura	nte	m m	11 fo	0,90 0,50
	Larghezza sottofondazione		m m	fo If	0,00
	Altezza sottofondazione		m	hf	0,00
	Sbalzo a valle sottofondazione		m	sbf	0,00
1f)	Dati geotecnici terreno di fonda	zione			
	Angolo di attrito interno		gradi	φ	28
	Peso specifico		daN / m3	γ	1.800
	Coesione Ricoprimento fondazione a valle		daN / cm2 m	c hr	0,70
	ė.				0,70
2a)	Verifica a traslazione	combinazione dimensionante	A1+M1	k _T	> 1,10
2b)	Verifica a ribaltamento	combinazione dimensionante	EQ	k _R	> 1,00
2c)	Verifica a capacità portante	combinazione dimensionante	A1+M1	k _P	> 1,40
			237-1111	σ _{Tmax}	daN / cm2
3	VERIFICHE FONDAZIONE		10. 01		
		6d 12			
		6d 12	As/Ac =	0,23%	
	92	As			
			_		
	H fondazione = [cm]				
	25				
	23				
		A's	_		
		A's 6d 12		0,23%	


TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

3a)	Verifica fondazione di monte SLU (sezione d'incastro)		M_u/M_d	Veri	fica soddisfatta
	Verifica fondazione di monte SISMICO (sezione d'incastro)	M_u/M_d	Veri	Verifica soddisfatta	
3b)	Verifica fondazione di valle SLU (sezione d'incastro)		M_u/M_d	Veri	fica soddisfatta
	Verifica fondazione di valle SISMICO (sezione d'incastro)		M_u/M_d	Veri	fica soddisfatta
3c)	Verifica fondazione di monte SLE RARA (sezione d'incastro)	$\begin{array}{l} \sigma_c \ \mbox{[daN / cm2]} \\ \sigma_s \ \mbox{[daN / cm2]} \end{array}$		$<\sigma_c lim \\ <\sigma_s lim$	150 3520
	Verifica fondazione di monte SLE FREQUENTE (sezione d'incastro)	Mcr [daNm]		> Me	
	Verifica fondazione di monte SLE QUASI PERMANENTE (sezione d'incastro)	σ _c [daN / cm2] Mcr [daNm]		< σ _c lim > Me	112,5

VERIFICHE PREFABBRICATO :

4a) Verifica prefabbricato

Af'	4	Φ	8			
Af 1	4	Φ	12			
Af2	4	Φ	14	L 2	1,25	m
Af3	0	Φ	0	L 3	0,00	m
Af4	0	Φ	0	L 4	0,00	m
Af 5	0	Φ	0	L 5	0.00	m

_										diam. [mm]	passo [cm]
I				Ka		STAFFE	6	30			
I	d	h	A _s	A _i	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
Ι	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
[148	30	4,52	2,01	1327	1270	4485	3,38	11115	36863	3146
1	159	31,8	6,16	2,01	1658	1368	6426	3,88	11904	39480	3649
2	250	50,0	6,16	2,01	6433	2149	10699	1,66	19765	65551	9011
3				,				100			
4		٥	- 20								
5											

									STAFFE	diam. [mm]	passo [cm]
	SISMICO					Ka		STAFFE	6	30	
Ε	р	J	A _s	Ai	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
Ε	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
	148	30	4,52	2,01	1412	1270	4485	3,18	11115	36863	2719
1	159	31,8	6,16	2,01	1748	1368	6426	3,68	11904	39480	3135
2	250	50,0	6,16	2,01	6486	2149	10699	1,65	19765	65551	7526
3		44						7.00	,		
4			99								
5			2								

						FF	REQUENTE		RA	RA
		SLE		Ka				wk<0,3	σ _c <210	$\sigma_{\rm s}$ <3520
d	h	A _s	A _i	Mor	srm	Me	εsm	wk	$\sigma_{\rm c}$	$\sigma_{\rm s}$
cm	cm	cm ²	cm ²	daN m	mm	daNm		mm	daN/cmq	daN/cmq
148	30	4,52	2,01	2317	-	1021	343	Mcr>Me	9	765
159	31,8	6,16	2,01	2881		1275	-	Mcr>Me	9	673
250	50,0	6,16	2,01	6241	-	4948	-	Mcr>Me	16	1650
	0	30	2							

		wk<0,2	σ_{c} <157,5
Me	esm-ecm	wk	σ_{c}
daNm		mm	daN/cmq
1021	1.51	Mcr>Me	9
1275	1-1	Mcr>Me	9
4948	-	Mcr>Me	16

4b)	Verifica soletta nel piano orizzontale SLU Verifica soletta nel piano orizzontale SISMICO	5 Ф 6	M _{u/} M M _{u/} M

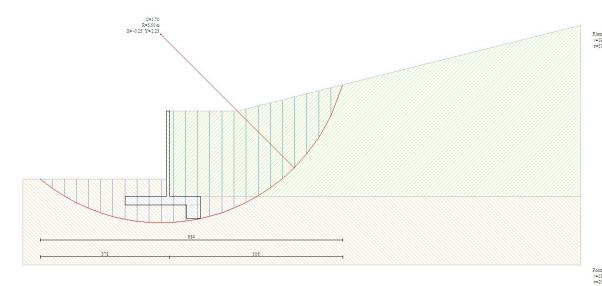
Verifica soletta nel piano orizzontale SLE RARA	$\sigma_c $ [daN / cm2] $\sigma_s $ [daN / cm2]	44 2.423	$<\sigma_c \text{lim} \\ <\sigma_s \text{lim}$	210 3520
Verifica soletta nel piano orizzontale SLE FREQUENTE	Mcr [daNm]	46	> Me	26
Verifica soletta nel piano orizzontale SLE QUASI PERMANENTE	σ _c [daN / cm2]	44	$<\sigma_c$ lim	157,5

1,02 1,25

VERIFICHE DI STABILITA' GLOBALE MURO-TERRENO (H=2.75m)

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata


C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{STAB} Coeff. di sicurezza a stabilità globale

\mathbf{C}	Tipo	Sisma	CS stab
4	STAB - [1]		1,70
11	STAB - [2]	Orizzontale + Verticale positivo	1,54
12	STAB - [2]	Orizzontale + Verticale negativo	1,53

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	2,50 [m]
Spessore in sommità	0,10 [m]
Spessore all'attacco con la fondazione	0,10 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	2,50 [m]
Spessore rivestimento	0,30 [m]
Peso sp. rivestimento	25,0000 [kN/mc]

4000	azione
I Oliv	uZiOiic

Lunghezza mensola fondazione di valle	1,20 [m]
Lunghezza mensola fondazione di monte	0,90 [m]
Lunghezza totale fondazione	2,20 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	0,25 [m]
Spessore magrone	0,20 [m]
Altezza dello sperone di fondazione	0,40 [m]
Spessore dello sperone di fondazione	0,40 [m]

Contrafforti

Altezza contrafforti	2,50 [m]
Spessore contrafforti	0,15 [m]
Larghezza in sommità	0,20 [m]
Larghezza alla base	0,50 [m]
Interasse contrafforti	1,50 [m]
Numero contrafforti	2
Posizione:	Monte
Disposizione:	Sfalsati

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 24,517 [kN/mc] Resistenza caratteristica a compressione R_{bk} 250,0 [kg/cmq]

Acciaio

Tipo FeB44K

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Y	A
1	2,00	0,00	0,00
2	12.00	2.50	14.04

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,50 [m]

Descrizione terreni

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno

γ Peso di volume del terreno espresso in [kN/mc]

 γ_s Peso di volume saturo del terreno espresso in [kN/mc]

 ϕ Angolo d'attrito interno espresso in [°] δ Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [kg/cmq]

 c_a Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c	Ca
Riempimento	19,00	19,00	32.00	21.33	0,000	0,000
Fondazione	18,00	18,00	28.00	18.67	0,000	0,000

Stratigrafia

Simbologia adottata

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta
Terreno Terreno dello strato

Nr.	H	a	Kw	Ks	Terreno
1	2,50	0,00	0,00	0,00	Riempimento
2	2,00	0,00	1,88	0,00	Fondazione

Stabilità globale muro + terreno

Combinazione n° 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.25 Y[m] = 2.23

Raggio del cerchio R[m] = 5,50

Ascissa a valle del cerchio Xi[m]=-3,78Ascissa a monte del cerchio Xs[m]=5,06Larghezza della striscia dx[m]=0,35Coefficiente di sicurezza C=1.70

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	α(°)	Wsina	b/cosa	ф	c	u
1	284.99	68.97	266.00	0.99	26.56	0.000	0.000
2	754.47	60.56	657.06	0.72	26.56	0.000	0.000
3	1073.69	53.70	865.30	0.60	26.56	0.000	0.000
4	1311.98	47.84	972.54	0.53	26.56	0.000	0.000
5	1496.69	42.59	1012.93	0.48	26.56	0.000	0.000
6	1641.41	37.76	1005.11	0.45	26.56	0.000	0.000
7	1754.10	33.23	961.15	0.42	26.56	0.000	0.000
8	1836.89	28.92	888.27	0.40	23.33	0.000	0.000
9	1896.25	24.78	794.93	0.39	23.04	0.000	0.000
10	1979.61	20.78	702.49	0.38	23.04	0.000	0.000
11	2058.07	16.89	597.91	0.37	23.04	0.000	0.000
12	2150.30	13.07	486.36	0.36	23.04	0.000	0.000
13	2291.44	9.31	370.87	0.36	23.04	0.000	0.000
14	2247.01	5.60	219.12	0.36	23.04	0.000	0.000
15	1860.20	1.90	61.73	0.35	23.04	0.000	0.000
16	894.97	-1.78	-27.87	0.35	23.04	0.000	0.000
17	880.31	-5.48	-84.05	0.36	23.04	0.000	0.000
18	850.02	-9.20	-135.84	0.36	23.04	0.000	0.000
19	750.56	-12.95	-168.23	0.36	23.04	0.000	0.000
20	689.54	-16.77	-198.92	0.37	23.04	0.000	0.000

21	611.64	-20.66	-215.80	0.38	23.04	0.000	0.000	
22	515.62	-24.66	-215.10	0.39	23.04	0.000	0.000	
23	399.80	-28.79	-192.51	0.40	23.04	0.000	0.000	
24	257.39	-33.09	-140.51	0.42	26.56	0.000	0.000	
25	85.01	-37.61	-51.88	0.45	26.56	0.000	0.000	

 $\Sigma W_i = 299,8131 [kN]$

 $\Sigma W_i \sin \alpha_i = 82,6818 \text{ [kN]}$

 $\Sigma W_i \tan \phi_i = 133,9668 [kN]$

 $\Sigma tan\alpha_i tan \phi_i = 3.89$

Stabilità globale muro + terreno

Combinazione nº 11

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [kg/cmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.25 Y[m] = 2.23

Raggio del cerchio R[m] = 5,50

Ascissa a valle del cerchio Xi[m] = -3,78Ascissa a monte del cerchio Xs[m] = 5,06Larghezza della striscia dx[m] = 0,35Coefficiente di sicurezza C = 1.54

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	$\alpha(^{\circ})$	Wsinα	b/cosa	ф	c	u
1	284.99	68.97	266.00	0.99	26.56	0.000	0.000
2	754.47	60.56	657.06	0.72	26.56	0.000	0.000

3	1073.69	53.70	865.30	0.60	26.56	0.000	0.000
4	1311.98	47.84	972.54	0.53	26.56	0.000	0.000
5	1496.69	42.59	1012.93	0.48	26.56	0.000	0.000
6	1641.41	37.76	1005.11	0.45	26.56	0.000	0.000
7	1754.10	33.23	961.15	0.42	26.56	0.000	0.000
8	1836.89	28.92	888.27	0.40	23.33	0.000	0.000
9	1896.25	24.78	794.93	0.39	23.04	0.000	0.000
10	1979.61	20.78	702.49	0.38	23.04	0.000	0.000
11	2058.07	16.89	597.91	0.37	23.04	0.000	0.000
12	2150.30	13.07	486.36	0.36	23.04	0.000	0.000
13	2291.44	9.31	370.87	0.36	23.04	0.000	0.000
14	2247.01	5.60	219.12	0.36	23.04	0.000	0.000
15	1860.20	1.90	61.73	0.35	23.04	0.000	0.000
16	894.97	-1.78	-27.87	0.35	23.04	0.000	0.000
17	880.31	-5.48	-84.05	0.36	23.04	0.000	0.000
18	850.02	-9.20	-135.84	0.36	23.04	0.000	0.000
19	750.56	-12.95	-168.23	0.36	23.04	0.000	0.000
20	689.54	-16.77	-198.92	0.37	23.04	0.000	0.000
21	611.64	-20.66	-215.80	0.38	23.04	0.000	0.000
22	515.62	-24.66	-215.10	0.39	23.04	0.000	0.000
23	399.80	-28.79	-192.51	0.40	23.04	0.000	0.000
24	257.39	-33.09	-140.51	0.42	26.56	0.000	0.000
25	85.01	-37.61	-51.88	0.45	26.56	0.000	0.000

 $\Sigma W_i = 299,8131 [kN]$

 $\Sigma W_i \sin \alpha_i = 82,6818 [kN]$

 $\Sigma W_{i} \tan \phi_{i} = 133,9668 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 3.89$

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]=-0.25 Y[m]=2.23

Raggio del cerchio R[m]=5,50

Ascissa a valle del cerchio Xi[m]=-3,78Ascissa a monte del cerchio Xs[m]=5,06Larghezza della striscia dx[m]=0,35Coefficiente di sicurezza C=1.53

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	α(°)	Wsinα	b/cosa	ф	c	u
1	284.99	68.97	266.00	0.99	26.56	0.000	0.000
2	754.47	60.56	657.06	0.72	26.56	0.000	0.000
3	1073.69	53.70	865.30	0.60	26.56	0.000	0.000
4	1311.98	47.84	972.54	0.53	26.56	0.000	0.000
5	1496.69	42.59	1012.93	0.48	26.56	0.000	0.000
6	1641.41	37.76	1005.11	0.45	26.56	0.000	0.000
7	1754.10	33.23	961.15	0.42	26.56	0.000	0.000
8	1836.89	28.92	888.27	0.40	23.33	0.000	0.000
9	1896.25	24.78	794.93	0.39	23.04	0.000	0.000
10	1979.61	20.78	702.49	0.38	23.04	0.000	0.000
11	2058.07	16.89	597.91	0.37	23.04	0.000	0.000
12	2150.30	13.07	486.36	0.36	23.04	0.000	0.000
13	2291.44	9.31	370.87	0.36	23.04	0.000	0.000
14	2247.01	5.60	219.12	0.36	23.04	0.000	0.000
15	1860.20	1.90	61.73	0.35	23.04	0.000	0.000
16	894.97	-1.78	-27.87	0.35	23.04	0.000	0.000
17	880.31	-5.48	-84.05	0.36	23.04	0.000	0.000
18	850.02	-9.20	-135.84	0.36	23.04	0.000	0.000
19	750.56	-12.95	-168.23	0.36	23.04	0.000	0.000
20	689.54	-16.77	-198.92	0.37	23.04	0.000	0.000
21	611.64	-20.66	-215.80	0.38	23.04	0.000	0.000
22	515.62	-24.66	-215.10	0.39	23.04	0.000	0.000
23	399.80	-28.79	-192.51	0.40	23.04	0.000	0.000
24	257.39	-33.09	-140.51	0.42	26.56	0.000	0.000
25	85.01	-37.61	-51.88	0.45	26.56	0.000	0.000

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO

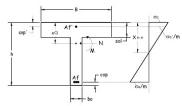
TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

$$\begin{split} \Sigma W_i &= 299,8131 \ [kN] \\ \Sigma W_i sin \alpha_i &= 82,6818 \ [kN] \\ \Sigma W_i tan \varphi_i &= 133,9668 \ [kN] \\ \Sigma tan \alpha_i tan \varphi_i &= 3.89 \end{split}$$

18. ALLEGATO B: SEZIONE 2 – H=3.30m

	NE TECNICA PER MURO DI S	H =	,	30 m		
proccio	2			Muro Ti	ро	Т
1	DATI DI PROGETTO					
1a)	<u>Dati geotecnici</u> Angolo di attrito interno		aradi		32	
	Peso specifico		gradi daN / m3	φ γ	1.900	
	Angolo di attrito terra - muro (valore pru	denziale)	gradi	δ	21	
	Angolo di inclinazione piano di campagi		gradi	ε	25	
	Coesione		daN / cm2	c	0	
1b)	Carichi agenti					
15)	Sovraccarico variabile stradale / ferrovia	ario	daN / m2	qa	0	
	Sovraccarico permanente		daN / m2	qp	0	
	Forza orizzontale in testa variabile (pos	tivo tende lato monte)	daN / elemento	fv	0	
	Forza orizzontale in testa eccezionale (positivo tende lato monte)	daN / elemento	fe	0	
	Sovraccarico sulla fondazione a monte	B 80	daN / m2	q1	0	
	Momento in testa variabile (positivo ten		daNm / elemento	momv	0	
	Momento in testa eccezionale (positivo Forza verticale in testa (positivo di com		daNm / elemento daN / elemento	mome N	0	
	Braccio di N rispetto al paramento vertic		m	braccio	0,00	
4-1		and (positive verse not value)		SLV	0,00	
1c)	Dati sismici Classe d'Uso			Cu	1,5	
	Vita Nominale		anni	Vn	50	
	Periodo di Riferimento		anni	Vr	75	
	Tempo di Ritorno		anni	Tr	712	
	Accelerazione orizzontale massima su	ın sito rigido	[g]	ag(g)	0,142	
	Categoria sottosuolo				В	
	Categoria topografica			C _r	T1	
	Fattore di ampificazione stratigrafica Fattore di ampificazione topografica			Ss St	1,20 1,00	
4 -41	Morfologia del muro			56	1,00	
1d)	Altezza del muro		m	h1	3.30	
	Distanza tra il punto di ribaltamento e il	baricentro dell'elemento prefabbricato	m	X _G	1,63	
	Distanza tra il baricentro del pannello e		m		0,13	
	Peso elemento prefabbricato		daN	P	2.675	
	Angolo di inclinazione parete prefabbrio	ato rispetto l'orizzontale	gradi	b	90	
	Larghezza elemento prefabbricato		m	b1	2,50	
	Dimensione appoggio muro	-itt-\	m	appoggio	0,66	
	Altezza sezione in sommità (tratto a se Pendenza nervatura	zione costante)	m m	pendenza	0,30 20%	
	Larghezza nervatura / e		m	S	0,30	
	Spessore soletta		m	sol	0,10	
1e)	Morfologia della fondazione					
,	Spessore massimo soletta di fondazion	e	m	h2	0.30	
	Spessore minimo soletta di fondazione		m	h3	0,30	
	Spessore minimo soletta di fondazione	lato valle	m	h4	0,30	
	Larghezza fondazione		m	. !.	2,70	
	Dimensione sbalzo anteriore		m	sbalzo	1,50	
	Larghezza suola fondazione a monte Larghezza suola fuori nervatura		m m	l1 fo	1,10 0,60	
	Larghezza sottofondazione		m	lf .	0,00	
	Altezza sottofondazione		m	hf	0,00	
	Sbalzo a valle sottofondazione		m	sbf	0,00	
1f)	Dati geotecnici terreno di fondazione					
	Angolo di attrito interno	•	gradi	φ	28	
	Peso specifico		daN / m3	γ	1.800	
	Coesione		daN / cm2	С	0	
	Ricoprimento fondazione a valle		m	hr	0,70	
					A	
a)	Verifica a traslazione	combinazione dimensionante	A1+M1	k _T		> 1,10
b)	Verifica a ribaltamento	combinazione dimensionante	EQ	k _R		> 1,00
(c)	Verifica a capacità portante	combinazione dimensionante	A1+M1	k _P σ _{T max}		> 1,40 daN / cm
	VERIFICHE FONDAZIONE					
		6d 14	200	222		
		6d 14	AsIA	to= 0,26%		
		As				
	H fondazione = [cm]					
	Hfondazione = [cm]					
	H fondazione = [cm] 30					
		A's				
		A's 6d 14	A'sIA	kc= 0,26%		


TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

3a)	Verifica fondazione di monte SLU (sezione d'incastro)		M _u /M _d	ven	nca soccistanta
	Verifica fondazione di monte SISMICO (sezione d'incastro)		$\mathbf{M}_{\mathbf{u}}/\mathbf{M}_{\mathbf{d}}$	Veri	fica soddisfatta
3b)	Verifica fondazione di valle SLU (sezione d'incastro)		M_u/M_d	Veri	fica soddisfatta
	Verifica fondazione di valle SISMICO (sezione d'incastro)		M_u/M_d	Veri	fica soddisfatta
3c)	Verifica fondazione di monte SLE RARA (sezione d'incastro)	σ _c [daN / cm2]		$< \sigma_c lim$	150
		σ_s [daN / cm2]		$<\sigma_s$ lim	3520
	Verifica fondazione di monte SLE FREQUENTE (sezione d'incastro)	Mcr [daNm]		> Me	
	Verifica fondazione di monte SLE QUASI PERMANENTE (sezione d'incastro)	σ _c [daN / cm2]		$< \sigma_c lim$	112,5
		Mcr [daNm]		> Me	

VERIFICHE PREFABBRICATO: 4

4a) Verifica prefabbricato

Af '	4	Φ	8			
Af 1	4	Φ	12			
Af 2	4	Φ	16	L 2	2,30	m
Af3	0	Φ	0	L 3	0,00	m
Af4	0	Φ	0	L 4	0,00	m
Af 5	0	Φ	0	L 5	0,00	m

									STAFFE	diam. [mm]	passo [cm]
[SLU					Ka		STAFFE	6	30
[d	h	As	A _i	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
	150	30	4,52	2,01	1392	1338	4492	3,23	11072	36720	3248
1	164	32,7	8,04	2,01	1807	1459	8573	4,74	12248	40622	3865
2	300	60,0	8,04	2,01	11127	2675	16957	1,52	24047	79751	12984
3											
4											
5											

											passo [cm]
Г			SIS	MICO			Ka		STAFFE	6	30
Γ	р	h	A _s	Ai	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
Γ	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
E	150	30	4,52	2,01	1517	1338	4492	2,96	11072	36720	2849
1	164	32,7	8,04	2,01	1945	1459	8573	4,41	12248	40622	3363
2[300	60,0	8,04	2,01	11216	2675	16957	1,51	24047	79751	10839
3											
4[
•Г											

	Г						REQUENTE		R/	IRA			
	SLE			SLE Ka							wk<0,3	σ_c <210	σ _s <3520
d	h	As	A _i	Mcr	srm	Me	εsm	wk	σ_{c}	σ_{s}			
cm	cm	cm ²	cm ²	daN m	mm	daNm		mm	daN/cmq	daN/cmq			
150	30	4,52	2,01	2314	-1	1071	-	Mcr>Me	10	803			
164	32,7	8,04	2,01	3389	-	1390	-	Mcr>Me	9	549			
300	60,0	8,04	2,01	9325	-	8559	-	Mcr>Me	19	1824			
								2					

QUASI PERMANENTE										
		wk<0,2	σ _c <157,5							
Me	εsm-εcm	wk	σ_{c}							
daNm		mm	daN/cmq							
1071	-	Mcr>Me	10							
1390	-	Mcr>Me	9							
8559	-	Mcr>Me	19							
		99	10							

4b)	Verifica soletta nel piano orizzontale SLU
	Verifica soletta nel piano orizzontale SISMICO

10 Ф 6 Verifica soletta nel piano orizzontale SLE RARA Verifica soletta nel piano orizzontale SLE FREQUENTE

Verifica soletta nel piano orizzontale SLE FREQUENTE	Mcr [daNm]
Verifica soletta nel piano orizzontale SLE QUASI PERMANENTE	$\sigma_{\rm c} $ [daN / cm2] Mcr $$ [daNm]

 $\begin{array}{ll} \sigma_c \;\; [\text{daN} \; / \; \text{cm2}] \\ \sigma_s \;\; [\text{daN} \; / \; \text{cm2}] \end{array}$ $<\sigma_c$ lim 210 1.486 $<\sigma_s^{\circ}$ lim 3520

> Me

59 [daN / cm2] 40 $<\sigma_c \, \text{lim}$ 157,5 /lcr [daNm] > Me 59 38

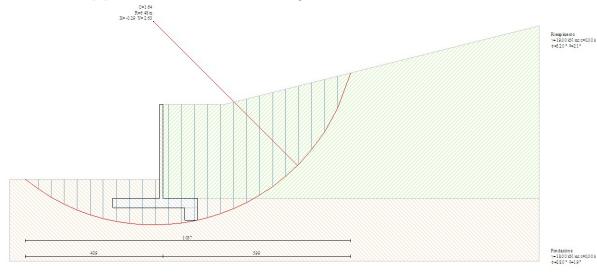
1,67 2,06

38

VERIFICHE DI STABILITA' GLOBALE MURO-TERRENO (H=3.30m)

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata


C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{STAB} Coeff. di sicurezza a stabilità globale

\mathbf{C}	Tipo	Sisma	CSstab
4	STAB - [1]		1,64
11	STAB - [2]	Orizzontale + Verticale positivo	1,48
12	STAB - [2]	Orizzontale + Verticale negativo	1,48

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	3,00 [m]
Spessore in sommità	0,10 [m]
Spessore all'attacco con la fondazione	0,10 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	2,50 [m]
Spessore rivestimento	0,30 [m]
Peso sp. rivestimento	25,0000 [kN/mc]

Land	lazioi	20
T'OHIC	IAZIOI	10
- 0110	WLI OI	

Lunghezza mensola fondazione di valle	1,50 [m]
Lunghezza mensola fondazione di monte	1,10 [m]
Lunghezza totale fondazione	2,70 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	0,30 [m]
Spessore magrone	0,20 [m]
Altezza dello sperone di fondazione	0,40 [m]
Spessore dello sperone di fondazione	0,40 [m]

Contrafforti

Altezza contrafforti	3,00 [m]
Spessore contrafforti	0,15 [m]
Larghezza in sommità	0,20 [m]
Larghezza alla base	0,60 [m]
Interasse contrafforti	1,50 [m]
Numero contrafforti	2
Posizione:	Monte
Disposizione:	Sfalsati

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 24,517 [kN/mc] Resistenza caratteristica a compressione R_{bk} 250,0 [kg/cmq]

Acciaio

Tipo FeB44K

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	\mathbf{X}	Y	A
1	2,00	0,00	0,00
2.	12 00	2.50	14 04

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,60 [m]

Descrizione terreni

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno

γ Peso di volume del terreno espresso in [kN/mc]

 γ_s Peso di volume saturo del terreno espresso in [kN/mc]

 ϕ Angolo d'attrito interno espresso in [°] δ Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [kg/cmq]

 c_a Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c	Ca
Riempimento	19,00	19,00	32.00	21.33	0,000	0,000
Fondazione	18,00	18,00	28.00	18.67	0,000	0,000

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta

Terreno dello strato

Nr.	\mathbf{H}	a	Kw	Ks	Terreno
1	3,00	0,00	0,00	0,00	Riempimento
2	2.00	0.00	2.30	0.00	Fondazione

Stabilità globale muro + terreno

Combinazione n° 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.29 Y[m] = 2.63

Raggio del cerchio R[m] = 6.48

Ascissa a valle del cerchio Xi[m]=-4,39Ascissa a monte del cerchio Xs[m]=5,99Larghezza della striscia dx[m]=0,41Coefficiente di sicurezza C=1.64

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	$\alpha(^{\circ})$	Wsina	b/cosa	ф	c	u
1	410.63	69.76	385.27	1.20	26.56	0.000	0.000
2	1080.94	61.04	945.76	0.86	26.56	0.000	0.000
3	1529.44	54.11	1239.10	0.71	26.56	0.000	0.000
4	1863.27	48.22	1389.53	0.62	26.56	0.000	0.000
5	2121.89	42.96	1446.02	0.57	26.56	0.000	0.000
6	2324.68	38.12	1434.95	0.53	26.56	0.000	0.000
7	2482.88	33.58	1373.28	0.50	26.56	0.000	0.000
8	2602.01	29.27	1272.26	0.48	24.49	0.000	0.000
9	2682.17	25.14	1139.45	0.46	23.04	0.000	0.000
10	2740.58	21.14	988.54	0.44	23.04	0.000	0.000
11	2835.56	17.25	841.00	0.43	23.04	0.000	0.000
12	2960.75	13.44	688.33	0.43	23.04	0.000	0.000
13	3131.06	9.69	527.21	0.42	23.04	0.000	0.000
14	3103.46	5.99	323.63	0.42	23.04	0.000	0.000
15	2657.66	2.30	106.78	0.42	23.04	0.000	0.000
16	1204.24	-1.37	-28.81	0.42	23.04	0.000	0.000
17	1186.41	-5.05	-104.43	0.42	23.04	0.000	0.000
18	1147.93	-8.75	-174.62	0.42	23.04	0.000	0.000
19	1032.93	-12.49	-223.34	0.43	23.04	0.000	0.000
20	930.30	-16.28	-260.79	0.43	23.04	0.000	0.000
21	826.17	-20.15	-284.57	0.44	23.04	0.000	0.000

22	697.47	-24.11	-284.96	0.45	23.04	0.000	0.000
23	541.87	-28.21	-256.13	0.47	23.04	0.000	0.000
24	349.69	-32.47	-187.72	0.49	26.56	0.000	0.000
25	118.14	-36.94	-71.00	0.52	26.56	0.000	0.000

 $\Sigma W_i = 417,3984 [kN]$

 $\Sigma W_i \sin \alpha_i = 119,8855 [kN]$

 $\Sigma W_i \tan \phi_i = 187,2948 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 4.09$

Stabilità globale muro + terreno

Combinazione n° 11

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [kg/cmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0,29 Y[m]= 2,63

Raggio del cerchio R[m] = 6.48

Ascissa a valle del cerchio Xi[m]=-4,39Ascissa a monte del cerchio Xs[m]=5,99Larghezza della striscia dx[m]=0,41Coefficiente di sicurezza C=1.48

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α(°)	Wsina	b/cosa	ф	c	u
1	410.63	69.76	385.27	1.20	26.56	0.000	0.000
2	1080.94	61.04	945.76	0.86	26.56	0.000	0.000
3	1529.44	54.11	1239.10	0.71	26.56	0.000	0.000
4	1863.27	48.22	1389.53	0.62	26.56	0.000	0.000

5	2121.89	42.96	1446.02	0.57	26.56	0.000	0.000
6	2324.68	38.12	1434.95	0.53	26.56	0.000	0.000
7	2482.88	33.58	1373.28	0.50	26.56	0.000	0.000
8	2602.01	29.27	1272.26	0.48	24.49	0.000	0.000
9	2682.17	25.14	1139.45	0.46	23.04	0.000	0.000
10	2740.58	21.14	988.54	0.44	23.04	0.000	0.000
11	2835.56	17.25	841.00	0.43	23.04	0.000	0.000
12	2960.75	13.44	688.33	0.43	23.04	0.000	0.000
13	3131.06	9.69	527.21	0.42	23.04	0.000	0.000
14	3103.46	5.99	323.63	0.42	23.04	0.000	0.000
15	2657.66	2.30	106.78	0.42	23.04	0.000	0.000
16	1204.24	-1.37	-28.81	0.42	23.04	0.000	0.000
17	1186.41	-5.05	-104.43	0.42	23.04	0.000	0.000
18	1147.93	-8.75	-174.62	0.42	23.04	0.000	0.000
19	1032.93	-12.49	-223.34	0.43	23.04	0.000	0.000
20	930.30	-16.28	-260.79	0.43	23.04	0.000	0.000
21	826.17	-20.15	-284.57	0.44	23.04	0.000	0.000
22	697.47	-24.11	-284.96	0.45	23.04	0.000	0.000
23	541.87	-28.21	-256.13	0.47	23.04	0.000	0.000
24	349.69	-32.47	-187.72	0.49	26.56	0.000	0.000
25	118.14	-36.94	-71.00	0.52	26.56	0.000	0.000

 $\Sigma W_i = 417,3984 [kN]$

 $\Sigma W_i \sin \alpha_i = 119,8855 [kN]$

 $\Sigma W_i \tan \phi_i = 187,2948 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 4.09$

Stabilità globale muro + terreno

Combinazione nº 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0,29 Y[m]= 2,63

Raggio del cerchio R[m] = 6.48

Ascissa a valle del cerchio Xi[m]=-4,39Ascissa a monte del cerchio Xs[m]=5,99Larghezza della striscia dx[m]=0,41Coefficiente di sicurezza C=1.48

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α(°)	Wsina	b/cosa	ф	c	u
1	410.63	69.76	385.27	1.20	26.56	0.000	0.000
2	1080.94	61.04	945.76	0.86	26.56	0.000	0.000
3	1529.44	54.11	1239.10	0.71	26.56	0.000	0.000
4	1863.27	48.22	1389.53	0.62	26.56	0.000	0.000
5	2121.89	42.96	1446.02	0.57	26.56	0.000	0.000
6	2324.68	38.12	1434.95	0.53	26.56	0.000	0.000
7	2482.88	33.58	1373.28	0.50	26.56	0.000	0.000
8	2602.01	29.27	1272.26	0.48	24.49	0.000	0.000
9	2682.17	25.14	1139.45	0.46	23.04	0.000	0.000
10	2740.58	21.14	988.54	0.44	23.04	0.000	0.000
11	2835.56	17.25	841.00	0.43	23.04	0.000	0.000
12	2960.75	13.44	688.33	0.43	23.04	0.000	0.000
13	3131.06	9.69	527.21	0.42	23.04	0.000	0.000
14	3103.46	5.99	323.63	0.42	23.04	0.000	0.000
15	2657.66	2.30	106.78	0.42	23.04	0.000	0.000
16	1204.24	-1.37	-28.81	0.42	23.04	0.000	0.000
17	1186.41	-5.05	-104.43	0.42	23.04	0.000	0.000
18	1147.93	-8.75	-174.62	0.42	23.04	0.000	0.000
19	1032.93	-12.49	-223.34	0.43	23.04	0.000	0.000
20	930.30	-16.28	-260.79	0.43	23.04	0.000	0.000
21	826.17	-20.15	-284.57	0.44	23.04	0.000	0.000
22	697.47	-24.11	-284.96	0.45	23.04	0.000	0.000
23	541.87	-28.21	-256.13	0.47	23.04	0.000	0.000
24	349.69	-32.47	-187.72	0.49	26.56	0.000	0.000
25	118.14	-36.94	-71.00	0.52	26.56	0.000	0.000

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3º LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

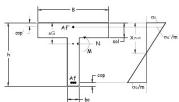
DG 27-17 Lotto 2 - GE1727L2C1

 $\Sigma W_i = 417,3984 [kN]$ $\Sigma W_i \sin \alpha_i = 119,8855 [kN]$ $\Sigma W_i tan \phi_i = 187,2948 [kN]$ $\Sigma tan\alpha_i tan \phi_i = 4.09$

19. ALLEGATO C: SEZIONE 3 – H=3.85m

ILLALIC	ONE TECNICA PER MURO D	TOOUTEONO I REI ABBRIO	A10		H =	3,85	m
Approccio	2				Muro T	ipo	Т
1	DATI DI PROGETTO						
1a)	Dati geotecnici Angolo di attrito interno Peso specifico Angolo di attrito terra - muro (valore Angolo di inclinazione piano di camp Coesione		gradi daN / m3 gradi gradi daN / cm2		φ γ δ ε	32 1.900 21 25	
1b)	Carichi agenti Sovraccarico variabile stradale / ferr Sovraccarico permanente Forza orizzontale in testa variabile (Forza orizzontale in testa ecceziona Sovraccarico sulla fondazione a mo Momento in testa variabile (positivo Momento in testa eccezionale (posit Forza verticale in testa (positivo di o Braccio di N rispetto al paramento v	daN / m2 daN / m2 daN / element daN / element daN / m2 daNm / element daN / element m	o nto nto	qa qp fv fe q1 momv mome N	000000000000000000000000000000000000000		
1c)	Dati sismici Classe d'Uso III Vita Nominale Periodo di Riferimento Tempo di Ritorno Accelerazione orizzontale massima Categoria sottosuolo Categoria topografica Fattore di ampificazione stratigrafica Fattore di ampificazione topografica	<u>-</u>	anni anni anni [9]		SLV Cu Vn Vr Tr ag(g) Ss St	1,5 50 75 712 0,142 B T1 1,20 1,00	
1d)	Morfologia del muro Altezza del muro Distanza tra il punto di ribaltamento Distanza tra il punto di ribaltamento Distanza tra il baricentro del pannell Peso elemento prefabbricato Angolo di inclinazione parete prefab Larghezza elemento prefabbricato Dimensione appoggio muro Altezza sezione in sommità (tratto a Pendenza nervatura / Larghezza nervatura / Spessore soletta	m m daN gradi m m m m m		h1 X _G P b b1 appoggio pendenza s sol	3,85 1,95 0,15 3,225 90 2,50 0,77 0,30 20% 0,30		
1e)	Morfologia della fondazione Spessore massimo soletta di fondazio Spessore minimo soletta di fondazio Spessore minimo soletta di fondazio Larghezza fondazione Dimensione sbalzo anteriore Larghezza suola fondazione a mont Larghezza suola fuori nervatura Larghezza suotofondazione Altezza sottofondazione Sbalzo a valle sottofondazione	m m m m m m m		h2 h3 h4 I sbalzo I1 fo If hf	0,35 0,35 0,35 3,20 1,80 1,30 0,70 0,00 0,00		
1f)	Dati geotecnici terreno di fondazi Angolo di attrito interno Peso specifico Coesione Ricoprimento fondazione a valle	<u>one</u>	gradi daN / m3 daN / cm2 m		φ γ c hr	28 1.800 0 0,70	
2a)	Verifica a traslazione	combinazione dimensionante	A1+M1		k _T	1 20	> 1,10
2b)	Verifica a ribaltamento	combinazione dimensionante	EQ		k _R		> 1,00
2c)	Verifica a capacità portante	combinazione dimensionante	A1+M1		\mathbf{k}_{P}		> 1,40 daN / cm
3	VERIFICHE FONDAZIONE				σ _{T max}		duit? diii
	H fondazione = [cm] 35	6d 14 6d 14 As T	_	As/Ac =	0,22%		
		A's 6d 14		\'s/Ac =	0,22%		

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO


TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

3a)	Verifica fondazione di monte SLU (sezione d'incastro)		, M _d	Verif	ica soddisfatta
	Verifica fondazione di monte SISMICO (sezione d'incastro)	М,	, M _d	Verif	fica soddisfatta
3b)	Verifica fondazione di valle SLU (sezione d'incastro)	M,	M_d	Veri	fica soddisfatta
	Verifica fondazione di valle SISMICO (sezione d'incastro)	M,	, M _d	Verif	fica soddisfatta
3c)	Verifica fondazione di monte SLE RARA (sezione d'incastro)	σ_c [daN / cm2] σ_s [daN / cm2]		$<\sigma_c lim \\ <\sigma_s lim$	150 3520
	Verifica fondazione di monte SLE FREQUENTE (sezione d'incastro)	Mcr [daNm]		> Me	
	Verifica fondazione di monte SLE QUASI PERMANENTE (sezione d'incastro)	σ _c [daN / cm2] Mcr [daNm]		< σ _c lim > Me	112,5

4 VERIFICHE PREFABBRICATO :

4a) <u>Verifica prefabbricato</u>

Af '	4	Φ	8			
Af 1	4	Φ	12			
Af 2	4	Φ	16	L 2	2,85	m
Af3	2	Φ	12	L 3	1,74	m
Af4	0	Φ	0	L 4	0,00	m
Af 5	0	Φ	0	L 5	0.00	m

100									STAFFE	diam. [mm]	passo [cm]
- [SLU			Ka		STAFFE	6	30
- [d	h	A _s	A _i	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
- [cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
- [143	30	4,52	2,01	1210	1319	4491	3,71	11072	36720	2958
1	159	31,8	8,04	2,01	1660	1466	8304	5,00	11857	39325	3652
2	191	38,2	10,30	2,01	2868	1759	12996	4,53	14610	48453	5259
3	350	70,0	10,30	2,01	17669	3225	25549	1,45	28372	94095	17673
4							,	8			
5	A						· · · · · · · · · · · · · · · · · · ·	A.			7

10										diam. [mm]	passo [cm]
			SIS	SMICO			Ka	S	STAFFE	6	30
	а	h	A _s	A	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
П	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
	143	30	4,52	2,01	1364	1319	4491	3,29	11072	36720	2652
1	159	31,8	8,04	2,01	1837	1466	8304	4,52	11857	39325	3236
2	191	38,2	10,30	2,01	3088	1759	12996	4,21	14610	48453	4577
3	350	70,0	10,30	2,01	17809	3225	25549	1,43	28372	94095	14748
4	2							2			
5											ř

33_							FR	EQUENTE		RA	RA .
[X-		SLE		Ka		7		wk<0,3	σ_c <210	$\sigma_{\rm s}$ <3520
ſ	d	h	As	A _i	Mcr	srm	Me	εsm	wk	σ_{c}	$\sigma_{\rm s}$
ſ	cm	cm	cm ²	cm ²	daN m	mm	daNm		mm	daN/cmq	daN/cmq
[143	30	4,52	2,01	2314	-	931	-	Mcr>Me	9	680
1	159	31,8	8,04	2,01	3237	-	1277	=	Mcr>Me	8	516
2	191	38,2	10,30	2,01	4916	0	2206	-	Mcr>Me	9	583
3	350	70,0	10,30	2,01	13171	119	13591	0,00	0,08	20	1941
4	3							8			
5	16) p)	9			7

	QUASI PERMANENTE								
		wk<0,2	σ_{c} <157,5						
Me	€SM-€CM	wk	$\sigma_{\rm c}$						
daNm		mm	daN/cmq						
931	-	Mcr>Me	9						
1277	-	Mcr>Me	8						
2206		Mcr>Me	9						
13591	0,00	80,0	20						
		1							

4b)	<u>Verifica soletta nel piano orizzontale SLU</u> <u>Verifica soletta nel piano orizzontale SISMICO</u>	10 Ф 6	$\mathbf{M}_{\mathbf{u}}/\mathbf{M}_{\mathbf{d}}$ $\mathbf{M}_{\mathbf{u}}/\mathbf{M}_{\mathbf{d}}$

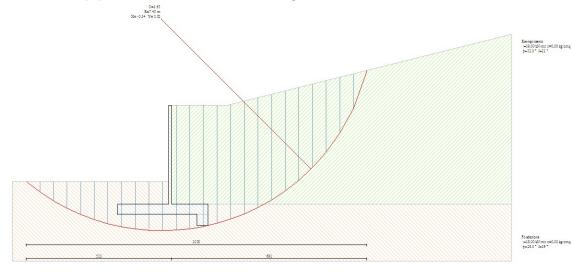
Verifica soletta nel piano orizzontale SLE RARA	$\sigma_{\rm c}~$ [daN / cm2] $\sigma_{\rm s}~$ [daN / cm2]	47 1.741	$<\sigma_c$ lim $<\sigma_s$ lim	210 3520
Verifica soletta nel piano orizzontale SLE FREQUENTE	Mcr [daNm]	69	> Me	52
Verifica soletta nel piano orizzontale SLE QUASI PERMANENTE	$\sigma_{\rm c}$ [daN / cm2] Mcr [daNm]	47 69	$<\sigma_c$ lim > Me	157,5 52

1,43 1,76

VERIFICHE DI STABILITA' GLOBALE MURO-TERRENO (H=3.85m)

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata


C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{STAB} Coeff. di sicurezza a stabilità globale

\mathbf{C}	Tipo	Sisma	CSstab
4	STAB - [1]		1,65
11	STAB - [2]	Orizzontale + Verticale positivo	1,50
12	STAB - [2]	Orizzontale + Verticale negativo	1,49

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	3,50 [m]
Spessore in sommità	0,10 [m]
Spessore all'attacco con la fondazione	0,10 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	2,50 [m]
Spessore rivestimento	0,30 [m]
Peso sp. rivestimento	25,0000 [kN/mc]

Land	071010
1,()11(lazione
1 Ollo	uZiciic

Lunghezza mensola fondazione di valle	1,80 [m]
Lunghezza mensola fondazione di monte	1,30 [m]
Lunghezza totale fondazione	3,20 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	0,35 [m]
Spessore magrone	0,20 [m]
Altezza dello sperone di fondazione	0,40 [m]
Spessore dello sperone di fondazione	0,40 [m]

Contrafforti

Altezza contrafforti	3,50 [m]
Spessore contrafforti	0,15 [m]
Larghezza in sommità	0,20 [m]
Larghezza alla base	0,70 [m]
Interasse contrafforti	1,50 [m]
Numero contrafforti	2
Posizione:	Monte
Disposizione:	Sfalsati

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 24,517 [kN/mc] Resistenza caratteristica a compressione R_{bk} 250,0 [kg/cmq]

Acciaio

Tipo FeB44K

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Y	A
1	2,00	0,00	0,00
2	12.00	2.50	14.04

DG 27-17 Lotto 2 - GE1727L2C1

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 $[^{\circ}]$

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,80 [m]

Descrizione terreni

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γs	Peso di volume saturo del terreno espresso in [kN/mc]

 ϕ Angolo d'attrito interno espresso in [°] δ Angolo d'attrito terra-muro espresso in [°]

Coesione espressa in [kg/cmq] c

Adesione terra-muro espressa in [kg/cmq] c_a

Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c	Ca
Riempimento	19,00	19,00	32.00	21.33	0,000	0,000
Fondazione	18,00	18,00	28.00	18.67	0,000	0,000

Stratigrafia

Simbologia adottata

HSpessore dello strato espresso in [m]

Inclinazione espressa in [°]

Costante di Winkler orizzontale espressa in Kg/cm²/cm Kw

Coefficiente di spinta Ks

Terreno dello strato **Terreno**

Nr.	H	a	Kw	Ks	Terreno
1	3,50	0,00	0,00	0,00	Riempimento
2	2,00	0,00	2,94	0,00	Fondazione

Stabilità globale muro + terreno

Combinazione n° 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α

angolo d'attrito del terreno lungo la base della striscia

- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0,34 Y[m]= 3,02

Raggio del cerchio R[m] = 7,45

Ascissa a valle del cerchio Xi[m]=-5,12Ascissa a monte del cerchio Xs[m]=6,91Larghezza della striscia dx[m]=0,48Coefficiente di sicurezza C=1.65

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α (°)	Wsina	b/cosa	ф	c	u
1	568.75	70.25	535.31	1.42	26.56	0.000	0.000
2	1490.69	61.28	1307.26	1.00	26.56	0.000	0.000
3	2099.43	54.26	1703.98	0.82	26.56	0.000	0.000
4	2550.69	48.31	1904.63	0.72	26.56	0.000	0.000
5	2899.43	42.99	1977.20	0.66	26.56	0.000	0.000
6	3172.34	38.11	1958.01	0.61	26.56	0.000	0.000
7	3384.82	33.54	1870.25	0.58	26.56	0.000	0.000
8	3545.52	29.20	1729.83	0.55	25.06	0.000	0.000
9	3653.57	25.04	1546.41	0.53	23.04	0.000	0.000
10	3722.33	21.02	1334.97	0.52	23.04	0.000	0.000
11	3793.33	17.10	1115.33	0.50	23.04	0.000	0.000
12	3979.48	13.26	912.95	0.49	23.04	0.000	0.000
13	4144.32	9.49	683.01	0.49	23.04	0.000	0.000
14	4147.30	5.75	415.57	0.48	23.04	0.000	0.000
15	3280.90	2.04	116.80	0.48	23.04	0.000	0.000
16	1666.38	-1.66	-48.33	0.48	23.04	0.000	0.000
17	1640.10	-5.37	-153.52	0.48	23.04	0.000	0.000
18	1585.78	-9.10	-250.88	0.49	23.04	0.000	0.000
19	1430.81	-12.87	-318.80	0.49	23.04	0.000	0.000
20	1287.34	-16.70	-370.01	0.50	23.04	0.000	0.000
21	1143.67	-20.61	-402.61	0.51	23.04	0.000	0.000

22	966.37	-24.62	-402.64	0.53	23.04	0.000	0.000
23	750.88	-28.77	-361.39	0.55	23.04	0.000	0.000
24	483.40	-33.09	-263.91	0.57	26.56	0.000	0.000
25	164.33	-37.63	-100.34	0.61	26.56	0.000	0.000

 $\Sigma W_i = 564,4010 [kN]$

 $\Sigma W_i \sin \alpha_i = 161,2151 [kN]$

 $\Sigma W_{i} \tan \phi_{i} = 253,8360 \text{ [kN]}$

 $\Sigma tan\alpha_i tan\phi_i = 4.09$

Stabilità globale muro + terreno

Combinazione nº 11

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [kg/cmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.34 Y[m] = 3.02

Raggio del cerchio R[m] = 7,45

Ascissa a valle del cerchio Xi[m]=-5,12Ascissa a monte del cerchio Xs[m]=6,91Larghezza della striscia dx[m]=0,48Coefficiente di sicurezza C=1.50

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α (°)	Wsina	b/cosa	ф	c	u
1	568.75	70.25	535.31	1.42	26.56	0.000	0.000
2	1490.69	61.28	1307.26	1.00	26.56	0.000	0.000
3	2099.43	54.26	1703.98	0.82	26.56	0.000	0.000

4	2550.69	48.31	1904.63	0.72	26.56	0.000	0.000
5	2899.43	42.99	1977.20	0.66	26.56	0.000	0.000
6	3172.34	38.11	1958.01	0.61	26.56	0.000	0.000
7	3384.82	33.54	1870.25	0.58	26.56	0.000	0.000
8	3545.52	29.20	1729.83	0.55	25.06	0.000	0.000
9	3653.57	25.04	1546.41	0.53	23.04	0.000	0.000
10	3722.33	21.02	1334.97	0.52	23.04	0.000	0.000
11	3793.33	17.10	1115.33	0.50	23.04	0.000	0.000
12	3979.48	13.26	912.95	0.49	23.04	0.000	0.000
13	4144.32	9.49	683.01	0.49	23.04	0.000	0.000
14	4147.30	5.75	415.57	0.48	23.04	0.000	0.000
15	3280.90	2.04	116.80	0.48	23.04	0.000	0.000
16	1666.38	-1.66	-48.33	0.48	23.04	0.000	0.000
17	1640.10	-5.37	-153.52	0.48	23.04	0.000	0.000
18	1585.78	-9.10	-250.88	0.49	23.04	0.000	0.000
19	1430.81	-12.87	-318.80	0.49	23.04	0.000	0.000
20	1287.34	-16.70	-370.01	0.50	23.04	0.000	0.000
21	1143.67	-20.61	-402.61	0.51	23.04	0.000	0.000
22	966.37	-24.62	-402.64	0.53	23.04	0.000	0.000
23	750.88	-28.77	-361.39	0.55	23.04	0.000	0.000
24	483.40	-33.09	-263.91	0.57	26.56	0.000	0.000
25	164.33	-37.63	-100.34	0.61	26.56	0.000	0.000

 $\Sigma W_i = 564,4010 [kN]$

 $\Sigma W_i \sin \alpha_i = 161,2151 [kN]$

 $\Sigma W_i tan \phi_i = 253,8360 [kN]$

 $\Sigma tan\alpha_i tan \phi_i = 4.09$

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0,34 Y[m]= 3,02

Raggio del cerchio R[m]=7,45

Ascissa a valle del cerchio Xi[m]=-5,12Ascissa a monte del cerchio Xs[m]=6,91Larghezza della striscia dx[m]=0,48Coefficiente di sicurezza C=1.49

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α(°)	Wsinα	b/cosa	ф	c	u
1	568.75	70.25	535.31	1.42	26.56	0.000	0.000
2	1490.69	61.28	1307.26	1.00	26.56	0.000	0.000
3	2099.43	54.26	1703.98	0.82	26.56	0.000	0.000
4	2550.69	48.31	1904.63	0.72	26.56	0.000	0.000
5	2899.43	42.99	1977.20	0.66	26.56	0.000	0.000
6	3172.34	38.11	1958.01	0.61	26.56	0.000	0.000
7	3384.82	33.54	1870.25	0.58	26.56	0.000	0.000
8	3545.52	29.20	1729.83	0.55	25.06	0.000	0.000
9	3653.57	25.04	1546.41	0.53	23.04	0.000	0.000
10	3722.33	21.02	1334.97	0.52	23.04	0.000	0.000
11	3793.33	17.10	1115.33	0.50	23.04	0.000	0.000
12	3979.48	13.26	912.95	0.49	23.04	0.000	0.000
13	4144.32	9.49	683.01	0.49	23.04	0.000	0.000
14	4147.30	5.75	415.57	0.48	23.04	0.000	0.000
15	3280.90	2.04	116.80	0.48	23.04	0.000	0.000
16	1666.38	-1.66	-48.33	0.48	23.04	0.000	0.000
17	1640.10	-5.37	-153.52	0.48	23.04	0.000	0.000
18	1585.78	-9.10	-250.88	0.49	23.04	0.000	0.000
19	1430.81	-12.87	-318.80	0.49	23.04	0.000	0.000
20	1287.34	-16.70	-370.01	0.50	23.04	0.000	0.000
21	1143.67	-20.61	-402.61	0.51	23.04	0.000	0.000
22	966.37	-24.62	-402.64	0.53	23.04	0.000	0.000
23	750.88	-28.77	-361.39	0.55	23.04	0.000	0.000
24	483.40	-33.09	-263.91	0.57	26.56	0.000	0.000
25	164.33	-37.63	-100.34	0.61	26.56	0.000	0.000

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

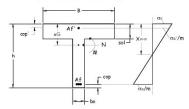
DG 27-17 Lotto 2 - GE1727L2C1

$$\begin{split} \Sigma W_i &= 564,\!4010 \; [kN] \\ \Sigma W_i sin \alpha_i &= 161,\!2151 \; [kN] \\ \Sigma W_i tan \varphi_i &= 253,\!8360 \; [kN] \\ \Sigma tan \alpha_i tan \varphi_i &= 4.09 \end{split}$$

20. ALLEGATO D: SEZIONE 4 - H=4.40m

27 60				_access		
Approccio	2			Mu	ro Tipo T	
1	DATI DI PROGETTO					
1a)	Dati geotecnici Angolo di attrito interno Peso specifico Angolo di attrito terra - muro (valore pr Angolo di inclinazione piano di campaç Coesione		gradi daN / m3 gradi gradi daN / cm2	φ γ δ ε c	32 1.900 21 25 0	
1b)	Carichi aqenti Sovraccarico variabile stradale / ferrov Sovraccarico variabile stradale / ferrov Sovraccarico permanente Forza orizzontale in testa variabile (po Forza orizzontale in testa eccezionale Sovraccarico sulla fondazione a monte Momento in testa variabile (positivo ter Momento in testa variabile (positivo ter Forza verticale in testa (positivo di con	daN / m2 daN / m2 daN / elemento daN / elemento daN / m2 daNm / elemento daNm / elemento daN / elemento	qa qp fv fe q1 momv mome N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
1c)	Braccio di N rispetto al paramento vert Dati sismici Classe d'Uso III Vita Nominale Periodo di Riferimento Tempo di Ritorno Accelerazione orizzontale massima su Categoria sottosuolo Categoria topografica Fattore di ampificazione stratigrafica Fattore di ampificazione topografica	icale (positivo verso nervature)	anni anni anni anni [g]	braccio SLV Cu Vn Vr Tr ag(g) Ss St	0,00 1,5 50 75 712 0,142 B T1 1,20 1,00	
1d)	Morfologia del muro Altezza del muro Distanza tra il punto di ribaltamento e i Distanza tra il punto di ribaltamento e i Distanza tra il baricentro del pannello e Peso elemento prefabbricato Angolo di inclinazione parete prefabbri Larghezza elemento prefabbricato Dimensione appoggio muro Altezza sezione in sommità (tratto a si Pendenza nervatura / e Spessore soletta	cato rispetto l'orizzontale	m m daN gradi m m m m	h1 X _s P b1 appoggio pendenza s	0,30	
1e)	Morfologia della fondazione Spessore massimo soletta di fondazione Spessore minimo soletta di fondazione Spessore minimo soletta di fondazione Larghezza fondazione Dimensione sbalzo anteriore Larghezza suola fondazione a monte Larghezza suola fondazione aronte Larghezza suola fondazione Altezza suola fondazione Altezza sutofondazione Sbalzo a valle sottofondazione	lato monte	m m m m m m m	h2 h3 h4 I sbalzo I1 fo If hf	0.40 0.40 0.40 3.80 2.00 1.70 1.00 0.00	
1f)	Dati geotecnici terreno di fondazion Angolo di attrito interno Peso specifico Coesione Ricoprimento fondazione a valle	<u>e</u>	gradi daN / m3 daN / cm2 m	φ γ c hr	28 1.800 0 0,70	
2a)	Verifica a traslazione	combinazione dimensionante	A1+M1		k _T	> 1,10
2b)	Verifica a ribaltamento	combinazione dimensionante	EQ		k _R	> 1,00
2c)	Verifica a capacità portante	combinazione dimensionante	A1+M1		k _P σ _{T max}	> 1,40 daN / cr
3	VERIFICHE FONDAZIONE				. Ones	
	H fondazione = [cm]	6d 16 6d 16 As		As/Ac =	0,25%	
		A's				

6d 16


TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

3a)	Verifica fondazione di monte SLU (sezione d'incastro)		M_u/M_d	Verifica soddisfatta
	Verifica fondazione di monte SISMICO (sezione d'incastro)		M_u/M_d	Verifica soddisfatta
3b)	Verifica fondazione di valle SLU (sezione d'incastro)		M_u / M_d	Verifica soddisfatta
	Verifica fondazione di valle SISMICO (sezione d'incastro)		M_u / M_d	Verifica soddisfatta
3c)	Verifica fondazione di monte SLE RARA (sezione d'incastro)	$\begin{array}{l} \sigma_c \ [\text{daN} / \text{cm2}] \\ \sigma_s \ [\text{daN} / \text{cm2}] \end{array}$		$<\sigma_c lim \qquad 150 \\ <\sigma_s lim \qquad 3520$
	Verifica fondazione di monte SLE FREQUENTE (sezione d'incastro)	Mcr [daNm]		> Me
	Verifica fondazione di monte SLE QUASI PERMANENTE (sezione d'incastro)	σ _c [daN / cm2] Mcr [daNm]		< σ _c lim 112,5 > Me

VERIFICHE PREFABBRICATO:

4a) Verifica prefabbricato

Af '	4	Φ	10			
Af 1	4	Φ	12			
Af2	4	Φ	16	L 2	2,90	m
Af3	4	Φ	12	L 3	1,45	m
Af4	0	Φ	0	L 4	0,00	m
Af 5	0	Φ	0	L 5	0.00	m

										diam. [mm]	passo [cm]
			,	SLU			Ka		STAFFE	6	30
	d	h	A _s	A _i	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
	145	30	4,52	3,14	1268	1391	4533	3,58	11072	36720	3052
1	164	32,7	8,04	3,14	1805	1565	8591	4,76	12254	40639	3862
2	273	54,5	12,57	3,14	8357	2608	23490	2,81	21689	71931	10729
3	400	80,0	12,57	3,14	26367	3825	35807	1,36	32697	108439	23078
4											
5											

			-700						STAFFE	diam. [mm]	passo [cm]
		SISMICO							STAFFE	6	30
	d	þ	As	A _i	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
	145	30	4,52	3,14	1504	1391	4533	3,01	11072	36720	2829
1	164	32,7	8,04	3,14	2089	1565	8591	4,11	12254	40639	3522
2	273	54,5	12,57	3,14	8893	2608	23490	2,64	21689	71931	9265
3	400	80,0	12,57	3,14	26885	3825	35807	1,33	32697	108439	19397
4											
5											

_			A44 045004				FR	EQUENTE		RARA	
			SLE		Ka				wk<0,3	σ_c <210	$\sigma_{\rm s}$ <3520
	Ω	h	A _s	A_i	Mcr	srm	Me	εsm	wk	σ_{c}	σ_{s}
	cm	cm	cm ²	cm ²	daN m	mm	daNm		mm	daN/cmq	daN/cmq
	145	30	4,52	3,14	2275		975	ŭ .	Mcr>Me	9	713
1	164	32,7	8,04	3,14	3346	-	1389	-	Mcr>Me	9	543
2	273	54,5	12,57	3,14	9487	0	6429	9	Mcr>Me	13	973
3	400	80,0	12,57	3,14	17471	111	20282	0,00	0,11	23	2155
4											
5											

	~	wk<0,2	σ_{c} <157,5
Me	esm-ecm	wk	σ_{c}
daNm		mm	daN/cmq
975	-	Mcr>Me	9
1389		Mcr>Me	9
6429	-	Mcr>Me	13
20282	0.00	0,11	23

4b)	Verifica soletta nel piano orizzontale SLU	10 Ф 6	$\mathbf{M_u}/\mathbf{M_d}$
	Verifica soletta nel piano orizzontale SISMICO		M_u / M_d

Verifica soletta nel piano orizzontale SLE RARA	$\sigma_c \;\; \mbox{[daN / cm2]} \\ \sigma_s \;\; \mbox{[daN / cm2]} \label{eq:sigmass}$	54 1.992	$<\sigma_c lim \\ <\sigma_s lim$	210 3520
Verifica soletta nel piano orizzontale SLE FREQUENTE	Mcr [daNm]	78	> Me	68
Verifica soletta nel piano orizzontale SLE QUASI PERMANENTE	σ _c [daN / cm2] Mcr [daNm]	54 78	$<\sigma_c$ lim > Me	157,5 68

VERIFICHE DI STABILITA' GLOBALE MURO-TERRENO (H=4.40m)

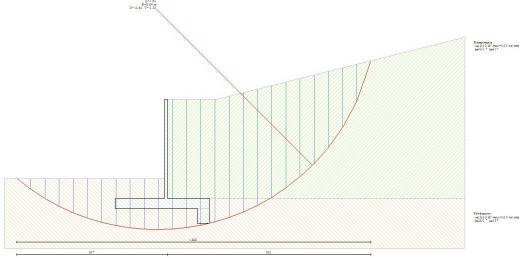
Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica


CS_{SCO} Coeff. di sicurezza allo scorrimento

CS_{RIB} Coeff. di sicurezza al ribaltamento

CS_{QLIM} Coeff. di sicurezza a carico limite

CSSTAB Coeff. di sicurezza a stabilità globale

\mathbf{C}	Tipo	Sisma	cs _{stab}
4	STAB - [1]		1,62
11	STAB - [2]	Orizzontale + Verticale positivo	1,47
12	STAB - [2]	Orizzontale + Verticale negativo	1,46
		C=1.61 z=1.64 m	

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	4,00 [m]
Spessore in sommità	0,10 [m]
Spessore all'attacco con la fondazione	0,10 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	2,50 [m]
Spessore rivestimento	0,30 [m]

Peso sp. rivestimento	25,0000 [kN/mc]
<u>Fondazione</u>	
Lunghezza mensola fondazione di valle	2,00 [m]
Lunghezza mensola fondazione di monte	1,70 [m]
Lunghezza totale fondazione	3,80 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	0,40 [m]
Spessore magrone	0,20 [m]
Altezza dello sperone di fondazione	0,60 [m]
Spessore dello sperone di fondazione	0,50 [m]
<u>Contrafforti</u>	
Altezza contrafforti	4,00 [m]
Spessore contrafforti	0,15 [m]
Larghezza in sommità	0,20 [m]
Larghezza alla base	0,80 [m]
Interasse contrafforti	1,50 [m]
Numero contrafforti	2
Posizione:	Monte
Disposizione:	Sfalsati
Materiali utilizzati per la struttura	
Calcestruzzo	
Peso specifico	24,517 [kN/mc]
Resistenza caratteristica a compressione R _{bk}	250,0 [kg/cmq]
Acciaio	
Tipo	FeB44K

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	\mathbf{Y}	A
1	2,00	0,00	0,00

2 12,00 2,50 14,04

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 $[^{\circ}]$

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,80 [m]

Descrizione terreni

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γs	Peso di volume saturo del terreno espresso in [kN/mc]
ϕ	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
c	Coesione espressa in [kg/cmq]
c_a	Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	γ_s	ф	δ	c	Ca
Riempimento	19,00	19,00	32.00	21.33	0,000	0,000
Fondazione	18,00	18,00	28.00	18.67	0,000	0,000

Stratigrafia

Simbologia adottata

N	Indice dello strato

Н Spessore dello strato espresso in [m]

Inclinazione espressa in [°] a

Costante di Winkler orizzontale espressa in Kg/cm²/cm Kw

Ks Coefficiente di spinta Terreno Terreno dello strato

Nr.	\mathbf{H}	a	Kw	Ks	Terreno
1	4,00	0,00	0,00	0,00	Riempimento
2	2.00	0.00	3.16	0.00	Fondazione

Stabilità globale muro + terreno

Combinazione nº 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.40 Y[m] = 3.59

Raggio del cerchio R[m]= 8,84

Ascissa a valle del cerchio Xi[m] = -6,07Ascissa a monte del cerchio Xs[m] = 8,21Larghezza della striscia dx[m] = 0,57Coefficiente di sicurezza C = 1.62

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α(°)	Wsina	b/cosa	ф	c	u
1	830.62	70.83	784.56	1.74	26.56	0.000	0.000
2	2165.33	61.53	1903.42	1.20	26.56	0.000	0.000
3	3032.97	54.45	2467.76	0.98	26.56	0.000	0.000
4	3674.59	48.47	2750.94	0.86	26.56	0.000	0.000
5	4169.95	43.14	2851.34	0.78	26.56	0.000	0.000
6	4557.44	38.24	2821.05	0.73	26.56	0.000	0.000
7	4859.17	33.66	2693.22	0.69	26.56	0.000	0.000
8	5082.26	29.31	2487.95	0.66	23.53	0.000	0.000
9	5233.12	25.14	2223.20	0.63	23.04	0.000	0.000
10	5331.26	21.11	1920.00	0.61	23.04	0.000	0.000
11	5382.78	17.18	1590.37	0.60	23.04	0.000	0.000
12	5687.98	13.34	1312.65	0.59	23.04	0.000	0.000
13	5796.08	9.56	962.73	0.58	23.04	0.000	0.000
14	5823.10	5.82	590.62	0.57	23.04	0.000	0.000
15	4496.41	2.11	165.27	0.57	23.04	0.000	0.000
16	2333.69	-1.60	-65.15	0.57	23.04	0.000	0.000
17	2297.30	-5.31	-212.70	0.57	23.04	0.000	0.000
18	2221.39	-9.05	-349.34	0.58	23.04	0.000	0.000
19	1969.75	-12.82	-437.16	0.59	23.04	0.000	0.000

TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

20	1805.39	-16.66	-517.45	0.60	23.04	0.000	0.000	
21	1603.33	-20.57	-563.25	0.61	23.04	0.000	0.000	
22	1353.85	-24.58	-563.19	0.63	23.04	0.000	0.000	
23	1052.55	-28.73	-505.95	0.65	23.04	0.000	0.000	
24	682.66	-33.05	-372.33	0.68	26.56	0.000	0.000	
25	233.31	-37.60	-142.36	0.72	26.56	0.000	0.000	

 $\Sigma W_i = 800,9835 [kN]$

 Σ W_isin α _i= 233,3650 [kN]

 $\Sigma W_i \tan \phi_i = 358,9084 [kN]$

 $\Sigma tan\alpha_i tan \phi_i = 4.15$

Stabilità globale muro + terreno

Combinazione n° 11

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.40 Y[m] = 3.59

Raggio del cerchio R[m]= 8,84

Ascissa a valle del cerchio Xi[m]= -6,07

Ascissa a monte del cerchio Xs[m]= 8,21

Larghezza della striscia dx[m]=0,57Coefficiente di sicurezza C=1.47

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	$\alpha(^{\circ})$	Wsina	b/cosa	ф	c	u
1	830.62	70.83	784.56	1.74	26.56	0.000	0.000

2165.33	61.53	1903.42	1.20	26.56	0.000	0.000
3032.97	54.45	2467.76	0.98	26.56	0.000	0.000
3674.59	48.47	2750.94	0.86	26.56	0.000	0.000
4169.95	43.14	2851.34	0.78	26.56	0.000	0.000
4557.44	38.24	2821.05	0.73	26.56	0.000	0.000
4859.17	33.66	2693.22	0.69	26.56	0.000	0.000
5082.26	29.31	2487.95	0.66	23.53	0.000	0.000
5233.12	25.14	2223.20	0.63	23.04	0.000	0.000
5331.26	21.11	1920.00	0.61	23.04	0.000	0.000
5382.78	17.18	1590.37	0.60	23.04	0.000	0.000
5687.98	13.34	1312.65	0.59	23.04	0.000	0.000
5796.08	9.56	962.73	0.58	23.04	0.000	0.000
5823.10	5.82	590.62	0.57	23.04	0.000	0.000
4496.41	2.11	165.27	0.57	23.04	0.000	0.000
2333.69	-1.60	-65.15	0.57	23.04	0.000	0.000
2297.30	-5.31	-212.70	0.57	23.04	0.000	0.000
2221.39	-9.05	-349.34	0.58	23.04	0.000	0.000
1969.75	-12.82	-437.16	0.59	23.04	0.000	0.000
1805.39	-16.66	-517.45	0.60	23.04	0.000	0.000
1603.33	-20.57	-563.25	0.61	23.04	0.000	0.000
1353.85	-24.58	-563.19	0.63	23.04	0.000	0.000
1052.55	-28.73	-505.95	0.65	23.04	0.000	0.000
682.66	-33.05	-372.33	0.68	26.56	0.000	0.000
233.31	-37.60	-142.36	0.72	26.56	0.000	0.000
	3032.97 3674.59 4169.95 4557.44 4859.17 5082.26 5233.12 5331.26 5382.78 5687.98 5796.08 5823.10 4496.41 2333.69 2297.30 2221.39 1969.75 1805.39 1603.33 1353.85 1052.55 682.66	3032.97 54.45 3674.59 48.47 4169.95 43.14 4557.44 38.24 4859.17 33.66 5082.26 29.31 5233.12 25.14 5331.26 21.11 5382.78 17.18 5687.98 13.34 5796.08 9.56 5823.10 5.82 4496.41 2.11 2333.69 -1.60 2297.30 -5.31 2221.39 -9.05 1969.75 -12.82 1805.39 -16.66 1603.33 -20.57 1353.85 -24.58 1052.55 -28.73 682.66 -33.05	3032.97 54.45 2467.76 3674.59 48.47 2750.94 4169.95 43.14 2851.34 4557.44 38.24 2821.05 4859.17 33.66 2693.22 5082.26 29.31 2487.95 5233.12 25.14 2223.20 5331.26 21.11 1920.00 5382.78 17.18 1590.37 5687.98 13.34 1312.65 5796.08 9.56 962.73 5823.10 5.82 590.62 4496.41 2.11 165.27 2333.69 -1.60 -65.15 2297.30 -5.31 -212.70 2221.39 -9.05 -349.34 1969.75 -12.82 -437.16 1805.39 -16.66 -517.45 1603.33 -20.57 -563.25 1353.85 -24.58 -563.19 1052.55 -28.73 -505.95 682.66 -33.05 -372.33	3032.97 54.45 2467.76 0.98 3674.59 48.47 2750.94 0.86 4169.95 43.14 2851.34 0.78 4557.44 38.24 2821.05 0.73 4859.17 33.66 2693.22 0.69 5082.26 29.31 2487.95 0.66 5233.12 25.14 2223.20 0.63 5331.26 21.11 1920.00 0.61 5382.78 17.18 1590.37 0.60 5687.98 13.34 1312.65 0.59 5796.08 9.56 962.73 0.58 5823.10 5.82 590.62 0.57 4496.41 2.11 165.27 0.57 2297.30 -5.31 -212.70 0.57 2297.30 -5.31 -212.70 0.57 2221.39 -9.05 -349.34 0.58 1969.75 -12.82 -437.16 0.59 1805.39 -16.66 -517.45 0.60 1603.33 -20.57 -563.25 0.61 1353	3032.97 54.45 2467.76 0.98 26.56 3674.59 48.47 2750.94 0.86 26.56 4169.95 43.14 2851.34 0.78 26.56 4557.44 38.24 2821.05 0.73 26.56 4859.17 33.66 2693.22 0.69 26.56 5082.26 29.31 2487.95 0.66 23.53 5233.12 25.14 2223.20 0.63 23.04 5382.78 17.18 1590.37 0.60 23.04 5687.98 13.34 1312.65 0.59 23.04 5796.08 9.56 962.73 0.58 23.04 5823.10 5.82 590.62 0.57 23.04 4496.41 2.11 165.27 0.57 23.04 2333.69 -1.60 -65.15 0.57 23.04 2297.30 -5.31 -212.70 0.57 23.04 2297.30 -5.31 -212.70 0.57 23.04 1969.75 -12.82 -437.16 0.59 23.04	3032.97 54.45 2467.76 0.98 26.56 0.000 3674.59 48.47 2750.94 0.86 26.56 0.000 4169.95 43.14 2851.34 0.78 26.56 0.000 4557.44 38.24 2821.05 0.73 26.56 0.000 4859.17 33.66 2693.22 0.69 26.56 0.000 5082.26 29.31 2487.95 0.66 23.53 0.000 5233.12 25.14 2223.20 0.63 23.04 0.000 5382.78 17.18 1590.37 0.60 23.04 0.000 5687.98 13.34 1312.65 0.59 23.04 0.000 5796.08 9.56 962.73 0.58 23.04 0.000 5823.10 5.82 590.62 0.57 23.04 0.000 2333.69 -1.60 -65.15 0.57 23.04 0.000 2297.30 -5.31 -212.70 0.57 23.04

 $\Sigma W_i = 800,9835 [kN]$

 $\Sigma W_i \sin \alpha_i = 233,3650 [kN]$

 $\Sigma W_i \tan \phi_i = 358,9084 [kN]$

 $\Sigma tan\alpha_i tan \phi_i = 4.15$

Stabilità globale muro + terreno

Combinazione nº 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.40 Y[m] = 3.59

Raggio del cerchio R[m]= 8,84

Ascissa a valle del cerchio Xi[m]=-6,07Ascissa a monte del cerchio Xs[m]=8,21Larghezza della striscia dx[m]=0,57Coefficiente di sicurezza C=1.46

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α (°)	Wsinα	b/cosa	ф	c	u
1	830.62	70.83	784.56	1.74	26.56	0.000	0.000
2	2165.33	61.53	1903.42	1.20	26.56	0.000	0.000
3	3032.97	54.45	2467.76	0.98	26.56	0.000	0.000
4	3674.59	48.47	2750.94	0.86	26.56	0.000	0.000
5	4169.95	43.14	2851.34	0.78	26.56	0.000	0.000
6	4557.44	38.24	2821.05	0.73	26.56	0.000	0.000
7	4859.17	33.66	2693.22	0.69	26.56	0.000	0.000
8	5082.26	29.31	2487.95	0.66	23.53	0.000	0.000
9	5233.12	25.14	2223.20	0.63	23.04	0.000	0.000
10	5331.26	21.11	1920.00	0.61	23.04	0.000	0.000
11	5382.78	17.18	1590.37	0.60	23.04	0.000	0.000
12	5687.98	13.34	1312.65	0.59	23.04	0.000	0.000
13	5796.08	9.56	962.73	0.58	23.04	0.000	0.000
14	5823.10	5.82	590.62	0.57	23.04	0.000	0.000
15	4496.41	2.11	165.27	0.57	23.04	0.000	0.000
16	2333.69	-1.60	-65.15	0.57	23.04	0.000	0.000
17	2297.30	-5.31	-212.70	0.57	23.04	0.000	0.000
18	2221.39	-9.05	-349.34	0.58	23.04	0.000	0.000
19	1969.75	-12.82	-437.16	0.59	23.04	0.000	0.000
20	1805.39	-16.66	-517.45	0.60	23.04	0.000	0.000
21	1603.33	-20.57	-563.25	0.61	23.04	0.000	0.000
22	1353.85	-24.58	-563.19	0.63	23.04	0.000	0.000
23	1052.55	-28.73	-505.95	0.65	23.04	0.000	0.000

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO

TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

24	682.66	-33.05	-372.33	0.68	26.56	0.000	0.000
25	233.31	-37.60	-142.36	0.72	26.56	0.000	0.000

 $\Sigma W_i = 800,9835 [kN]$

 $\Sigma W_i \sin \alpha_i = 233,3650 [kN]$

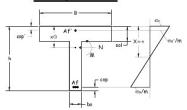
 $\Sigma W_i \tan \phi_i = 358,9084 [kN]$

 $\Sigma tan\alpha_i tan \phi_i = 4.15$

21. ALLEGATO E: SEZIONE 5 - H=4.95m

	NE TECNICA PER MURO DI S						
pproccio	2				Muro T	ipo	Т
1	DATI DI PROGETTO						
1a)	Dati geotecnici						
,	Angolo di attrito interno		gradi		φ	32	
	Peso specifico	d!-I-V	daN / m3		γ	1.900	
	Angolo di attrito terra - muro (valore pru Angolo di inclinazione piano di campagr		gradi gradi		δ	21 25	
	Coesione	ia	daN / cm2		ε C	(
1b)	Carichi agenti						
15)	Sovraccarico variabile stradale / ferrovia	rio	daN / m2		qa	()
	Sovraccarico permanente		daN / m2		qp	0	
	Forza orizzontale in testa variabile (posi		daN / eleme		fv	C	
	Forza orizzontale in testa eccezionale (p	ositivo tende lato monte)	daN / eleme	nto	fe	(
	Sovraccarico sulla fondazione a monte Momento in testa variabile (positivo tendo	te lato monte)	daN / m2 daNm / elem	nento	q1 momv	(
	Momento in testa eccezionale (positivo		daNm / elen		mome	Č	
	Forza verticale in testa (positivo di comp		daN / eleme		N	0)
	Braccio di N rispetto al paramento vertico	ale (positivo verso nervature)	m		braccio	0,00	
1c)	Dati sismici				SLV		
	Classe d'Uso				Cu	1,5	
	Vita Nominale		anni		Vn	50	
	Periodo di Riferimento Tempo di Ritorno		anni anni		Vr Tr	75 712	
	Accelerazione orizzontale massima su u	ın sito rigido	[g]		ag(g)	0,142	
	Categoria sottosuolo		101		0.07	Е	
	Categoria topografica					T1	
	Fattore di ampificazione stratigrafica				Ss	1,20	
0.00	Fattore di ampificazione topografica				St	1,00	'
1d)	Morfologia del muro Altezza del muro				h1	4.95	
	Distanza tra il punto di ribaltamento e il	haricentro dell'elemento prefabbricato	m m		X _G	2,39	
	Distanza tra il baricentro del pannello e		m		7.6	0,19	
	Peso elemento prefabbricato		daN		P	4.450	1
	Angolo di inclinazione parete prefabbric	ato rispetto l'orizzontale	gradi		b	90	
	Larghezza elemento prefabbricato		m		b1	2,50	
	Dimensione appoggio muro Altezza sezione in sommità (tratto a se:	zione costante)	m m		appoggio	0,99	
	Pendenza nervatura	elone costante)	m		pendenza	20%	
	Larghezza nervatura / e		m		S	0,30	
	Spessore soletta		m		sol	0,10)
1e)	Morfologia della fondazione						
	Spessore massimo soletta di fondazione		m		h2	0,45	
	Spessore minimo soletta di fondazione Spessore minimo soletta di fondazione		m		h3 h4	0,45 0,45	
	Larghezza fondazione	ato valle	m m		1	4,50	
	Dimensione sbalzo anteriore		m		sbalzo	2,20	
	Larghezza suola fondazione a monte		m		l1	2,20	
	Larghezza suola fuori nervatura		m		fo	1,40	
	Larghezza sottofondazione Altezza sottofondazione		m m		lf hf	0,00	
	Sbalzo a valle sottofondazione		m		sbf	0,00	
1f)	Dati geotecnici terreno di fondazione				001	0,00	
11)	Angolo di attrito interno		gradi		φ	28	3
	Peso specifico		daN / m3		γ	1.800	
	Coesione		daN / cm2		С	(
	Ricoprimento fondazione a valle		m		hr	0,70	
2a)	Verifica a traslazione	combinazione dimensionante	A1+M1		k_{T}	1.20	> 1,10
	Verifica a ribaltamento	combinazione dimensionante	EQ				> 1.00
2b)			EQ		k _R		> 1,00
2c)	Verifica a capacità portante	combinazione dimensionante	A1+M1		k _P σ _{T max}		> 1,40 daN / cm2
3	VERIFICHE FONDAZIONE						
		6d 18			15		
		6d 18		As/Ac =	0,28%		
		As w					
	H fondazione = [cm]						
	5. 550		l				
	45						
		A's					
		A's 6d 16		A's/Ac =	0,22%		

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3º LOTTO


TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

3a)	Verifica fondazione di monte SLU (sezione d'incastro)		M_u/M_d	Verifica	soddisfatta
	Verifica fondazione di monte SISMICO (sezione d'incastro)		M_u/M_d	Verifica	soddisfatta
3b)	Verifica fondazione di valle SLU (sezione d'incastro)		M_u/M_d	Verifica	soddisfatta
	Verifica fondazione di valle SISMICO (sezione d'incastro)		M_u/M_d	Verifica	soddisfatta
3c)	Verifica fondazione di monte SLE RARA (sezione d'incastro)	$\begin{array}{l} \sigma_c \; \left[\text{daN / cm2} \right] \\ \sigma_s \; \left[\text{daN / cm2} \right] \end{array}$			50 520
	Verifica fondazione di monte SLE FREQUENTE (sezione d'incastro)	Mcr [daNm]		> Me	
	Verifica fondazione di monte SLE QUASI PERMANENTE (sezione d'incastro)	σ _c [daN / cm2] Mcr [daNm]		< σ _c lim 1 > Me	12,5

4 VERIFICHE PREFABBRICATO:

4a) Verifica prefabbricato

Af '	4	Φ	10			
Af 1	4	Φ	12			
Af 2	4	Φ	16	L 2	3,45	m
Af3	4	Φ	16	L 3	1,81	m
Af4	0	Φ	0	L 4	0,00	m
Af 5	0	Φ	0	L 5	0.00	m

								STAFFE	diam. [mm]	passo [cm]	
	3		(SLU			Ka	3	STAFFE	6	30
Γ	р	h	A _s	Ai	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
	cm	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
	143	30	4,52	3,14	1209	1416	4535	3,75	11072	36720	2956
1	164	32,7	8,04	3,14	1805	1618	8597	4,76	12257	40650	3861
2	307	61,4	16,08	3,14	11895	3033	34023	2,86	24640	81716	13575
3	450	90,0	16,08	3,14	37529	4449	51726	1,38	37022	122783	29202
4							20				
5											

							STAFFE	diam. [mm]	passo [cm]		
			SIS	MICO			Ka	~	SIAFFL	6	30
	ρ	h	A _s	A _i	Ms _d	Ns _d	Mu	Mu/Ms _d	Vrsd	Vrcd	Vsd
	ä	cm	cm ²	cm ²	daN m	daN	daNm	>1.00	daN	daN	daN
	143	30	4,52	3,14	1536	1416	4535	2,95	11072	36720	2869
1	164	32,7	8,04	3,14	2214	1618	8597	3,88	12257	40650	3661
2	307	61,4	16,08	3,14	12912	3033	34023	2,64	24640	81716	11872
3	450	90,0	16,08	3,14	38805	4449	51726	1,33	37022	122783	24758
4							2	8			
5											

							FR	EQUENTE		R.A	RA
			SLE		Ka				wk<0,3	σ_c <210	σ _s <3520
	Ω	h	A _s	Ai	Mor	srm	Me	εsm	wk	σ_{c}	$\sigma_{\rm s}$
Е	cm	cm	cm ²	cm ²	daN m	mm	daNm		mm	daN/cmq	daN/cmq
	143	30	4,52	3,14	2275		930		Mcr>Me	9	669
1	164	32,7	8,04	3,14	3348		1388	-	Mcr>Me	9	539
2	307	61,4	16,08	3,14	12859	0	9150	_	Mcr>Me	15	1016
3	450	90,0	16,08	3,14	23239	107	28868	0,00	0,12	25	2120
4 Г											
cГ											

QUASI PERMANENTE					
		wk<0,2	σ _c <157,5		
Me	€SM-€CM	wk	σ_{c}		
daNm		mm	daN/cmq		
930	-	Mcr>Me	9		
1388		Mcr>Me	9		
9150	-	Mcr>Me	15		
28868	0,00	0,12	25		
	20				

4b)	Verifica soletta nel piano orizzontale SLU				
	Verifica soletta nel piano orizzontale SISMICO				

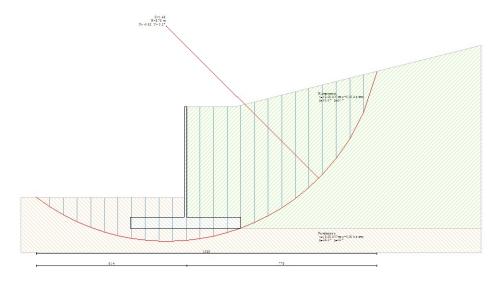
10 Ф 6		$\mathbf{M_u}/\mathbf{M_d}$ $\mathbf{M_u}/\mathbf{M_d}$	1,1° 1,39	
	$\begin{array}{ll} \sigma_c \;\; [\text{daN / cm2}] \\ \sigma_s \;\; [\text{daN / cm2}] \end{array}$	60 2.241	$<\sigma_c \text{lim} \\ <\sigma_s \text{lim}$	210 3520
	Mcr [daNm]	88	> Me	86

Verifica soletta nel piano orizzontale SLE RARA Verifica soletta nel piano orizzontale SLE FREQUENTE $\sigma_c \,\,$ [daN / cm2] Mcr $\,\,$ [daNm] $<\sigma_c lim$ 157,5 > Me 86 Verifica soletta nel piano orizzontale SLE QUASI PERMANENTE 60 88

VERIFICHE DI STABILITA' GLOBALE MURO-TERRENO (H=4.95m)

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata


C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{STAB} Coeff. di sicurezza a stabilità globale

\mathbf{C}	Tipo	Sisma	CSstab
4	STAB - [1]		1,48
11	STAB - [2]	Orizzontale + Verticale positivo	1,35
12	STAB - [2]	Orizzontale + Verticale negativo	1,35

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	4,50 [m]
Spessore in sommità	0,10 [m]
Spessore all'attacco con la fondazione	0,10 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	2,50 [m]
Spessore rivestimento	0,30 [m]
Peso sp. rivestimento	25,0000 [kN/mc]

4000	azione
I Oliv	uZiOiic

Lunghezza mensola fondazione di valle	2,20 [m]
Lunghezza mensola fondazione di monte	2,20 [m]
Lunghezza totale fondazione	4,50 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	0,45 [m]
Spessore magrone	0,20 [m]

Contrafforti

Contrarior	
Altezza contrafforti	4,50 [m]
Spessore contrafforti	0,15 [m]
Larghezza in sommità	0,20 [m]
Larghezza alla base	0,90 [m]
Interasse contrafforti	1,50 [m]
Numero contrafforti	2
Posizione:	Monte
Disposizione:	Sfalsati

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 24,517 [kN/mc] Resistenza caratteristica a compressione R_{bk} 250,0 [kg/cmq]

Acciaio

Tipo FeB44K

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	\mathbf{X}	\mathbf{Y}	A
1	2,00	0,00	0,00
2	12,00	2,50	14,04

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,80 [m]

Descrizione terreni

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γ_s	Peso di volume saturo del terreno espresso in [kN/mc]
ϕ	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
c	Coesione espressa in [kg/cmq]
c_a	Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c	Ca
Riempimento	19,00	19,00	32.00	21.33	0,000	0,000
Fondazione	18,00	18,00	28.00	18.67	0,000	0,000

Stratigrafia

Terreno spingente: Riempimento Terreno di fondazione: Fondazione

Stabilità globale muro + terreno

Combinazione nº 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [kg/cmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.82 Y[m] = 3.27

Raggio del cerchio R[m]= 8,76

Ascissa a valle del cerchio Xi[m]=-6,14Ascissa a monte del cerchio Xs[m]=7,76Larghezza della striscia dx[m]=0,56Coefficiente di sicurezza C=1.48

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	α(°)	Wsinα	b/cosa	ф	c	u
1	835.09	71.80	793.32	1.78	26.56	0.000	0.000
2	2166.47	62.35	1919.09	1.20	26.56	0.000	0.000
3	3019.09	55.24	2480.45	0.97	26.56	0.000	0.000
4	3648.08	49.27	2764.46	0.85	26.56	0.000	0.000
5	4134.40	43.96	2869.83	0.77	26.56	0.000	0.000
6	4516.34	39.09	2847.83	0.72	26.56	0.000	0.000
7	4815.74	34.54	2730.66	0.67	26.56	0.000	0.000
8	5046.44	30.23	2540.98	0.64	26.56	0.000	0.000
9	5217.80	26.11	2295.97	0.62	26.56	0.000	0.000
10	5336.41	22.12	2009.40	0.60	26.56	0.000	0.000
11	5573.42	18.24	1744.88	0.59	23.05	0.000	0.000
12	5731.08	14.45	1430.50	0.57	23.04	0.000	0.000
13	5858.39	10.73	1090.48	0.57	23.04	0.000	0.000
14	6004.85	7.05	736.66	0.56	23.04	0.000	0.000
15	2780.96	3.39	164.68	0.56	23.04	0.000	0.000
16	2036.74	-0.24	-8.64	0.56	23.04	0.000	0.000
17	2016.10	-3.88	-136.49	0.56	23.04	0.000	0.000
18	1958.79	-7.54	-256.92	0.56	23.04	0.000	0.000
19	1732.00	-11.22	-337.09	0.57	23.04	0.000	0.000
20	1585.61	-14.96	-409.23	0.58	23.04	0.000	0.000
21	1413.54	-18.76	-454.53	0.59	23.56	0.000	0.000
22	1191.03	-22.65	-458.58	0.60	26.56	0.000	0.000
23	916.10	-26.65	-410.88	0.62	26.56	0.000	0.000
24	587.66	-30.80	-300.89	0.65	26.56	0.000	0.000
25	198.81	-35.14	-114.42	0.68	26.56	0.000	0.000

 $\Sigma W_i = 768,0784 [kN]$

 $\Sigma W_i \sin \alpha_i = 250,3827 [kN]$

 $\Sigma W_i tan \phi_i = 357,2950 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 4.61$

Stabilità globale muro + terreno

Combinazione n° 11

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.82 Y[m] = 3.68

Raggio del cerchio R[m] = 9,15

Ascissa a valle del cerchio Xi[m] = -6,23Ascissa a monte del cerchio Xs[m] = 8,08Larghezza della striscia dx[m] = 0,57Coefficiente di sicurezza C = 1.35

Le strisce sono numerate da monte verso valle

Striscia	\mathbf{W}	α(°)	Wsina	b/cosa	ф	c	u
1	821.99	70.60	775.34	1.72	26.56	0.000	0.000
2	2154.75	61.73	1897.75	1.21	26.56	0.000	0.000
3	3036.53	54.83	2482.18	0.99	26.56	0.000	0.000
4	3693.03	48.98	2786.47	0.87	26.56	0.000	0.000
5	4203.17	43.77	2907.49	0.79	26.56	0.000	0.000
6	4605.24	38.98	2896.81	0.74	26.56	0.000	0.000
7	4921.41	34.50	2787.24	0.69	26.56	0.000	0.000
8	5165.83	30.25	2602.03	0.66	26.56	0.000	0.000
9	5348.15	26.17	2358.88	0.64	26.56	0.000	0.000
10	5475.17	22.24	2072.02	0.62	26.56	0.000	0.000
11	5666.50	18.41	1789.60	0.60	24.07	0.000	0.000
12	5855.30	14.67	1482.61	0.59	23.04	0.000	0.000
13	5992.97	10.99	1142.26	0.58	23.04	0.000	0.000

14	6090.57	7.35	779.56	0.58	23.04	0.000	0.000
15	3494.37	3.75	228.49	0.57	23.04	0.000	0.000
16	2072.23	0.16	5.77	0.57	23.04	0.000	0.000
17	2054.87	-3.43	-122.92	0.57	23.04	0.000	0.000
18	1999.19	-7.03	-244.75	0.58	23.04	0.000	0.000
19	1773.75	-10.66	-328.20	0.58	23.04	0.000	0.000
20	1620.34	-14.34	-401.26	0.59	23.04	0.000	0.000
21	1445.17	-18.07	-448.37	0.60	23.74	0.000	0.000
22	1217.60	-21.89	-454.00	0.62	26.56	0.000	0.000
23	936.56	-25.82	-407.87	0.64	26.56	0.000	0.000
24	600.75	-29.88	-299.25	0.66	26.56	0.000	0.000
25	203.53	-34.11	-114.13	0.69	26.56	0.000	0.000

 $\Sigma W_i = 788,9473 [kN]$

 $\Sigma W_i sin \alpha_i = 256,6812 [kN]$

 $\Sigma W_i \tan \phi_i = 367,9597 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 4.55$

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.82 Y[m] = 3.68

Raggio del cerchio R[m] = 9,15

Ascissa a valle del cerchio Xi[m] = -6,23

Ascissa a monte del cerchio Xs[m] = 8.08

Larghezza della striscia dx[m] = 0.57

Coefficiente di sicurezza C= 1.35

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	α(°)	Wsinα	b/cosα	ф	c	u
1	821.99	70.60	775.34	1.72	26.56	0.000	0.000
2	2154.75	61.73	1897.75	1.21	26.56	0.000	0.000
3	3036.53	54.83	2482.18	0.99	26.56	0.000	0.000
4	3693.03	48.98	2786.47	0.87	26.56	0.000	0.000
5	4203.17	43.77	2907.49	0.79	26.56	0.000	0.000
6	4605.24	38.98	2896.81	0.74	26.56	0.000	0.000
7	4921.41	34.50	2787.24	0.69	26.56	0.000	0.000
8	5165.83	30.25	2602.03	0.66	26.56	0.000	0.000
9	5348.15	26.17	2358.88	0.64	26.56	0.000	0.000
10	5475.17	22.24	2072.02	0.62	26.56	0.000	0.000
11	5666.50	18.41	1789.60	0.60	24.07	0.000	0.000
12	5855.30	14.67	1482.61	0.59	23.04	0.000	0.000
13	5992.97	10.99	1142.26	0.58	23.04	0.000	0.000
14	6090.57	7.35	779.56	0.58	23.04	0.000	0.000
15	3494.37	3.75	228.49	0.57	23.04	0.000	0.000
16	2072.23	0.16	5.77	0.57	23.04	0.000	0.000
17	2054.87	-3.43	-122.92	0.57	23.04	0.000	0.000
18	1999.19	-7.03	-244.75	0.58	23.04	0.000	0.000
19	1773.75	-10.66	-328.20	0.58	23.04	0.000	0.000
20	1620.34	-14.34	-401.26	0.59	23.04	0.000	0.000
21	1445.17	-18.07	-448.37	0.60	23.74	0.000	0.000
22	1217.60	-21.89	-454.00	0.62	26.56	0.000	0.000
23	936.56	-25.82	-407.87	0.64	26.56	0.000	0.000
24	600.75	-29.88	-299.25	0.66	26.56	0.000	0.000
25	203.53	-34.11	-114.13	0.69	26.56	0.000	0.000

 $\Sigma W_i = 788,9473 [kN]$

 $\Sigma W_i \sin \alpha_i = 256,6812 [kN]$

 $\Sigma W_i \tan \phi_i = 367,9597 [kN]$

 $\Sigma tan\alpha_i tan \phi_i = 4.55$

