

RELAZIONE

CONCESSIONE DI COLTIVAZIONE DI IDROCARBURI "GORGOGLIONE" IN PROVINCIA DI POTENZA E MATERA

STUDIO DI IMPATTO AMBIENTALE DEL PROGETTO DI PERFORAZIONE DEL POZZO ESPLORATIVO DENOMINATO "GORGOGLIONE 3" E SUA EVENTUALE MESSA IN PRODUZIONE

CAPITOLO 8 - Scenario di base Componenti Fisiche - Sismicità

Presentato a:

TotalEnergies EP Italia S.p.A. Via della Tecnica, 4 85100 – Potenza – ITALIA

Inviato da: WSP Italia S.r.I. Via Antonio Banfo 43, 10155 Torino, Italia	
+39 011 23 44 211	
21502709/20736_7	
Maggio 2023	

i

Lista di distribuzione

1 copia TotalEnergies EP Italia S.p.A.

1 copia WSP Italia S.r.l.

Indice

8.1.5	Sismicità	6
8.1.5.1	Sismicità storica	6
8.1.5.2	Sorgenti sismogenetiche e assetto sismotettonico	77
8.1.5.3	Valutazioni geomeccaniche	123
8.1.5.4	Monitoraggio sismico	141

TABELLE

Tabella 1: Elenco dei terremoti principali che hanno interessato il settore irpino-lucano dell'Appennino meridionale
Tabella 2: Piano quotato del terremoto del 19 agosto 1561. Dati dal Catalogo dei (http://storing.ingv.it/cfti4med/)9
Tabella 3: Piano quotato del terremoto del 8 Settembre 1694; per brevità, i dati sono tagliati al grado VII. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)11
Tabella 4: Piano quotato del terremoto del 26 Gennaio 1708. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/) 19
Tabella 5: Piano quotato del terremoto del 29 Novembre 1732. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/) 20
Tabella 6: Piano quotato del terremoto del 1° febbraio 1826. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)
Tabella 7: Piano quotato del terremoto del 20 Novembre 1836. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)
Tabella 8: Piano quotato del terremoto del 14 Agosto 1851. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)
Tabella 9: Piano quotato del terremoto del 16 Dicembre 1857; per brevità, i dati sono tagliati al grado VII. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)35
Tabella 10: Piano quotato del terremoto del 23 Luglio 1930; per brevità, i dati sono tagliati al grado VII. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)42
Tabella 11: Piano quotato del terremoto del 23 Novembre 1980; per brevità, i dati sono tagliati al grado VII. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)51
Tabella 12: Piano quotato del terremoto del 5 Maggio 1990; per brevità, i dati sono tagliati al grado 5-6. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)61
Tabella 13: Piano quotato del terremoto del 26 Maggio 1991; per brevità, i dati sono tagliati al grado 5. Dati dal Catalogo dei forti terremoti: CFTI4Med (http://storing.ingv.it/cfti4med/)69
Tabella 14: Storia di sito della località di Gorgoglione, ubicata nel settore orientale della concessione74
Tabella 15: Storia di sito della località di Corleto Perticara, ubicata nel settore occidentale della concessione75
Tabella 16: Elenco delle Composite Sources in figura (fonte: http://diss.rm.ingv.it/diss, versione 3.2.0)78
Tabella 17: Elenco delle Individual Sources in figura (fonte: http://diss.rm.ingv.it/diss, versione 3.2.0)78
Tabella 18: Elenco delle <i>Debated Sources</i> in figura (fonte: http://diss.rm.ingv.it/diss, versione 3.2.0)78

Tabella 19: Stazioni sismiche Tempa Rossa	
---	--

FIGURE

Figura 1: Quadro complessivo della sismicità italiana nel settore dell'appennino meridionale e avampaese8
Figura 2: Quadro dei danni causati dal terremoto del 19 Agosto 1561. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 3: Quadro dei danni causati dal terremoto del 8 Settembre 1694. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 4: Quadro dei danni causati dal terremoto del 26 Gennaio 1708. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)19
Figura 5: Quadro dei danni causati dal terremoto del 29 Novembre 1732. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 6: Quadro dei danni causati dal terremoto del 1° febbraio 1826. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 7: Quadro dei danni causati dal terremoto del 20 Novembre 1836. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 8: Quadro dei danni causati dal terremoto del 14 Agosto 1851. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 9: Quadro dei danni causati dal terremoto del 16 Dicembre 1857. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 10: Quadro dei danni causati dal terremoto del 23 Luglio 1930. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 11: Quadro dei danni causati dal terremoto del 23 Novembre 1980. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 12: Quadro dei danni causati dal terremoto del 5 Maggio 1990. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 13: Quadro dei danni causati dal terremoto del 26 Maggio 1991. Dati dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it)
Figura 14: Posizione dei comuni di Gorgoglione e Corleto Perticara all'interno della concessione in oggetto. In bianco: perimetro della concessione
Figura 15: Sintesi delle sorgenti sismogenetiche che insistono sul settore dell'appennino-avampaese apulo che circoscrive la concessione (evidenziata con perimetro bianco)
Figura 16: Geometria spaziale e parametri delle <i>Composite Sources</i>
Figura 17: Geometria spaziale e parametri delle <i>Composite Sources</i>
Figura 18: Inquadramento delle sorgenti sismogenetiche più vicine alla Concessione Gorgoglione
Figura 19: Distribuzione degli aftershock della sequenza 1990-1991 di Potenza (Di Luccio et al., 2005)84
Figura 20: Terremoti principali dell'Appennino meridionale rispetto alle principali direttici tettoniche (Di Luccio et al., 2005)
Figura 21: La "Faglia Sud-Appenninica" (Pantosti e Valensise, 1988)86
Figura 22: Carta strutturale/morfologica del bacino del Mercure (Bousquet and Gueremy, 1968)88

Figura 23: Carta delle faglie attive negli ultimi 50.000 anni nell'Appennino centro-meridionale (Cinque et al 2000)	., 90
Figura 24: Carta geologica della valle del Fiume Ufita tra Castel Baronia e Grottaminarda (Basso et al., 19	96) 92
Figura 25: Pattern dei lineamenti nel sottosuolo individuati con la tecnica Gravity Gradient Tensor (Fedi et 2005)	al., 95
Figura 26: Carta dei terrazzi marini Pleistocenici marini e dei trend strutturali (Santoro et al., 2013)	97
Figura 27: Carta geomorfologica del settore orientale della valle del F. Ufita con la posizione dei profili ER (Giocoli et al., 2008)	T 99
Figura 28: Profilo ERT profondo attraverso la valle del F. Ufita (Giocoli et al., 2008)	99
Figura 29: Principali unità ai fianchi dell'alta Val d'Agri (Maschio et al., 2005)	.101
Figura 30: Evoluzione strutturale dell'alta Val d'Agri secondo Maschio et al. (2005)	.102
Figura 31: Epicentro del terremoto del 1857 come calcolato da R. Mallet e corrispondenza con area mesosismica e sorgenti sismogenetiche (Burrato and Valensise, 2008)	.102
Figura 32: Relazione spaziale tra pozzo di estrazione e strutture tettoniche individuate	.103
Figura 33: Distribuzione dei valori di sollevamento nelle valli del Melandro e dell'alto Agri (Schiattarella et a 2003)	al., 105
Figura 34: Isobate della base dei depositi Quaternari nel bacino del F. Mercure (De Martini, 1996)	.107
Figura 35: Analisi strutturale e geomorfologica dei depositi lacustri del Pleistocene superiore che colmano bacino del F. Mercure (De Martini, 1996)	il . 108
Figura 36: Rotture superficiali causate dal terremoto del 1980 (Pantosti and Valensise, 1990)	.110
Figura 37: Modello di sorgente per il terremoto del 1980 (Pantosti and Valensise, 1990)	.110
Figura 38: Isosisme che confrontano gli effetti del terremoto del 1851 con quelli del terremoto del 1857 (Alessio et al., 1995)	.114
Figura 39: Isosisme del terremoto del 1990 (Alessio et al., 1995)	.116
Figura 40: Localizzazione, ipocentro e ruolo del terremoto del 1930 (Pino et al., 2008)	.118
Figura 41: Line-drawing ed interpretazione di una sezione sismica attraverso il Bacino di Sant'Arcangelo c illustra la posizione della Faglia di Scorciabuoi (da Bonini e Sani, 2000)	he .119
Figura 42: Schema geologico della Faglia di Scorciabuoi (Caputo et al., 2007)	.120
Figura 43: Modello sismotettonico crostale 3D, strutture sismogenetiche, faglia Scorciabuoi e ipocentri	.121
Figura 44: Interpretazione dell'analisi congiunta (ERT-sismica a rifrazione) relativa all'area di Acinello	.123
Figura 45: Mappa della Concessione Gorgoglione	.124
Figura 46: Colonna litologica incontrata nel pozzo GG-2	.125
Figura 47: Sezione strutturale del campo di Tempa Rossa	.125
Figura 48: Principi costruttivi del modello geomeccanico	.127
Figura 49: Sezione sismica interpretata NW-SE del campo di Tempa Rossa	.128
Figura 50: Evoluzione della pressione media di giacimento calcolata dal simulatore: caso a sei pozzi e cas 7 pozzi	ю а 128
Figura 51: Esempio di distribuzione delle pressioni per unità stratigrafiche	.129

Figura 52: Rappresentazione delle faglie integrate nel modello	130
Figura 53: Rappresentazione strutturale del modello, incluse le faglie	131
Figura 54: Rappresentazione globale del modello geomeccanico	132
Figura 55: Esempio di calibrazione della porosità/densità su un set parziale di dati provenienti da log	133
Figura 56: Esempio di risultato del modello 1D (modulo di Young e coefficiente di Poisson per GG-2 – pozesistente – e GG-3 pozzo pianificato)	zzo 134
Figura 57: Distribuzione del modulo di Young (GPa)	134
Figura 58: Zone in sovrappressione nel campo di Tempa Rossa (esempio di GG-2)	135
Figura 59: Profilo delle tensioni in Tempa Rossa (GG-3)	136
Figura 60: Orientazione dello stress principale a partire dall'analisi dei break-outs	136
Figura 61: Traiettoria e obiettivo minerario del pozzo GG3	137
Figura 62: Qualità dell'olio - variazione delle caratteristiche chimico-fisiche con la profondità	138
Figura 63: Test di interferenza tra pozzi – Propagazione del segnale di pressione	139
Figura 64: Tempa Rossa, modello di deformazione (Pleistocene→presente)	139
Figura 65: Mappa mondiale degli stress (World Stress Map): Regione Basilicata	140
Figura 66: Geometria della rete temporanea di monitoraggio per la definizione del "punto zero" della sismi	icità 142
Figura 67: Eventi sismici "punto zero"	143
Figura 68: Tracce sezioni Vp e Vp/Vs e distribuzione della sismicità	144
Figura 69: Mappa di localizzazione del modello 3D con strutture sismogenetiche, faglia Scorciabuoi ed epicentri terremoti	147
Figura 70: Rete microsismica Tempa Rossa	149
Figura 71: Griglie utilizzate per le localizzazioni degli eventi sismici	151

APPENDICI

Appendice 8

Rete di monitoraggio microsismico installata presso la concessione Gorgoglione, Rapporto periodico di monitoraggio (campagne 2018 - 2022)

Appendice 9

Monitoraggio sismico di Baseline – Campagna di sismica passiva per lo studio della sismicità di fondo nell'area della Concessione Gorgoglione – Report finale (INGV, 2016)

Appendice 10

SECRETATA

8.1.5 Sismicità

La descrizione di baseline della componente sismicità e subsidenza è stata estesa, come Area Vasta (ossia esterna all'area del sito di Progetto): (i) a una scala regionale in relazione alla caratterizzazione delle zone sismogenetiche, dei lineamenti tettonico/strutturali e della sismicità storica, (ii) alla scala della Concessione Gorgoglione per quanto concerne la caratterizzazione geomeccanica del reservoir e (iii) ad un ambito di ulteriori 8 km dal limite della Concessione per la definizione dello stato attuale della componente in termini di sismicità e deformazioni del suolo (ambito territoriale relativo ai Domini di rilevazione Interno ed Esteso considerati per il monitoraggio della componente, come meglio specificato nel seguito).

Per la caratterizzazione della componente sismicità e subsidenza, nel presente paragrafo vengono riportate le valutazioni prodotte da TotalEnergies nel corso dello sviluppo del progetto del Pozzo Gorgoglione 3 (relazioni TotalEnergies: "Concessione Gorgoglione - Inquadramento sismotettonico dell'area e sismicità storica" del febbraio 2018 e "Progetto Interregionale Tempa Rossa - Pozzo Gorgoglione 3 - Valutazione geomeccanica" del marzo 2019), integrate da ulteriori approfondimenti sviluppati dal Dipartimento Geoscienze di TotalEnergies.

In questa sede viene inoltre riportata la sintesi dei risultati acquisiti da TotalEnergies dalla rete di monitoraggio sismico in continuo installata presso la Concessione Gorgoglione, di cui al Progetto di Monitoraggio Ambientale ("PMA") predisposto a cura di TotalEnergies e definito di concerto con ARPAB in base a quanto disposto dalla prescrizione n. 8 della delibera CIPE di approvazione del progetto definitivo di sviluppo della Concessione (denominato "Progetto Interregionale Tempa Rossa") e dalla corrispondente prescrizione n. 11 della D.G.R. 1888/2011).

Al fine di fornire un quadro di analisi organico e il più completo possibile degli elementi che concorrono a definire lo stato del sottosuolo dal punto di vista sismico in relazione ai rischi di potenziali eventi indotti dalla produzione del campo petrolifero di Tempa Rossa, il presente paragrafo è stato strutturato nelle seguenti sezioni:

- sismicità storica;
- sorgenti sismogenetiche e assetto sismotettonico;
- valutazioni geomeccaniche;
- monitoraggio sismico;
- monitoraggio della pressione di poro;
- subsidenza;
- sestione monitoraggio componente sismicità e subsidenza.

Per informazioni sull'acquisizione/elaborazione dati e dettagli sui risultati delle analisi dei monitoraggi eseguiti, si rimanda ai report prodotti a cura TotalEnergies allegati al presente SIA (**Appendice 8**).

Per ogni ulteriore dettaglio sulla caratterizzazione sismica dell'area in studio, si rimanda invece all'elaborato redatto a cura dell'INGV "Monitoraggio sismico di Baseline – Campagna di sismica passiva per lo studio della sismicità di fondo nell'area della Concessione Gorgoglione – Report finale", del giugno 2016 (**Appendice 9** al presente SIA).

8.1.5.1 Sismicità storica

L'area che include la concessione di Gorgoglione è situata nel settore dell'Appennino meridionale dove concorrono:

1) la terminazione meridionale della catena s.s, orientata NW-SE (a W);

- 2) le strutture profonde ereditate dal dominio apulo, orientate E-W (a N);
- 3) l'innesto settentrionale dell'Arco Calabro (a S).

Il campo di sforzi attuale (D'Agostino et al., 2004; Devoti et al., 2011; Carafa et al., 2013) si esplica ad Ovest come un regime estensionale dovuto al collasso della catena (con locali complessità strutturali), a Nord come riattivazione trascorrente-obliqua destra di elementi strutturali dell'avampaese Apulo dalla storia tettonica polifasica e a Sud, in Calabria, in parte come estensione assiale sul versante tirrenico e in parte come compressione ai margini del cuneo d'accrezione attivo nel Golfo di Taranto.

Questa sintesi suggerisce la complessità spaziale di questo settore dell'Appennino meridionale, sia in termini geometrici sia cinematici, in parte noti da lungo tempo in letteratura e in parte oggetto di recente dibattito. In questa sezione vengono illustrati i principali terremoti che hanno interessato questo settore dell'Appennino e le sorgenti sismogenetiche che lo caratterizzano, preceduti da un quadro sismotettonico di sintesi.

Il settore dell'Appennino meridionale in cui ricade la concessione è stato sede di numerosi terremoti significativi (M > 6.0), sia in epoca storica (pre-XX secolo) che in epoca strumentale (vd. tabella e figura seguenti). La zona in esame è collocata nel cuore dell'Appennino lucano e, come tale, è parte del sistema catena-avampaese apulo, avendo quindi risentito anche di forti terremoti (M \leq 7).

Si fa presente che l'area della concessione non è stata sede di terremoti importanti, né vede la presenza di sorgenti sismogenetiche accertate.

Data	Ora	Località Lat		Lon	Intensità	м
aaaa mm gg	hh:mm		dd.xx	dd.xx	MCS	
1561 8 19	14:10	Vallo di Diano	40.52	15.48	9.5	6.4
1694 9 8	11:40	Irpinia-Basilicata	40.88	15.35	10.5	6.9
1708 1 26		Pollino	39.92	16.13	7.5	5.6
1732 11 29	07:40	Irpinia	41.7	15.06	10.5	6.6
1826 2 1		Basilicata	40.52	15.73	8	5.7
1836 11 20	7:30	Basilicata meridionale	40.15	15.78	8	5.8
1851 8 14	13:20	Basilicata	40.95	15.67	9.5	6.3
1857 12 16	21:15	Basilicata	40.35	15.85	10.5	7
1930 7 23	0:08	Irpinia	41.05	15.37	10	6.7
1980 11 23	19:34	Irpinia-Basilicata	40.85	15.28	10	6.9
1990 5 5	7:38	Potentino	40.66	15.88	7.5	5.8
1991 5 26	12:26	Potentino	40.65	15.81	6.5	5.1
1998 9 9	11:27	Appennino Calabro -Lucano	40.04	15.94	6.5	5.7
2012 10 25	23:05	Pollino	39.87	16.02	6	5,3

Tabella 1: Elenco dei terremoti principali che hanno interessato il settore irpino-lucano dell'Appennino
meridionale

Nota alla tabella: L'elenco è coincidente con i terremoti le cui date sono riportate nella seguente figura. In neretto gli eventi più energetici i cui epicentri sono più vicini alla concessione in oggetto. Dati dal catalogo parametrico nazionale pubblicato nel 2022 e aggiornato con i terremoti registrati al 2020: DBMI15 (http://emidius.mi.ingv.it)

Alcuni di questi eventi sono particolarmente significativi per magnitudo e/o prossimità all'area in esame (in neretto in tabella). Si segnala in primo luogo il terremoto multiplo (M = 7) che ha colpito l'alta Val d'Agri il 16 dicembre 1857 (a questo evento, peraltro, si può far risalire la nascita della sismologia moderna in Italia, grazie allo studio di Robert Mallet per conto della Royal Society of London, 1862). Un altro terremoto cruciale per questo settore dell'Appennino meridionale è certamente l'evento multiplo dell'Irpinia (M = 6.9) del 23 novembre 1980 (per una parziale sintesi: Boschi et al., 1993 e riferimenti). Dieci anni dopo, infine, si verificò l'evento multiplo di Potenza (M = 5.8) del 5 maggio 1990, con una replica il 26 maggio 1991 (M = 5.2). Sino ad alcuni anni fa, questo terremoto era stato relativamente poco studiato, in parte perché avvenne "nell'ombra" del terremoto del 1980 e, in parte, per via del suo ipocentro (Ekström, 1994) significativamente più profondo di quello del terremoto del 1980 in Irpinia (Del Pezzo et al., 1983; Deschamps e King, 1983; Bernard e Zollo, 1989). Successivamente al terremoto multiplo del Molise (M = 5.8) del 31 ottobre e 1 novembre 2002 (Di Bucci e Mazzoli, 2003; Valensise et al., 2004; Vallée e Di Luccio, 2005) è emerso un parallelo importante tra questi terremoti e quelli del potentino, ovverosia l'aver nucleato nel basamento, al di sotto del dominio di avampaese, ben ad E dell'asse estensionale della catena e immediatamente al di sotto del fronte della catena apula sepolta (Menardi-Noguera e Rea, 2000; Di Bucci et al., 2006; Nicolai e Gambini, 2007). Questa e altre caratteristiche hanno consentito di rileggere in una chiave nuova i terremoti del 1990-91, contribuendo da un lato ad arricchire il quadro delle conoscenze nella regione e, dall'altro, a esprimerne il grado di complessità (Di Luccio et al., 2005a, b).

Figura 1: Quadro complessivo della sismicità italiana nel settore dell'appennino meridionale e avampaese

Nota alla figura: Le date (anno mm gg) si riferiscono ai terremoti maggiori che hanno interessato questa regione (vedi tabella precedente). In giallo: perimetro della concessione in oggetto. In blu (quadrati): terremoti dal catalogo parametrico nazionale (DBMI11, http://emidius.mi.ingv.it); le diagonali sono proporzionali alle magnitudo. In marrone (punti): sismicità 1980-2014 dal Bollettino sismico INGV (ISIDe, http://side.rm.ingv.it)

Nel seguito viene fornita una disamina dei terremoti principali che hanno interessato il settore irpino-lucano dell'Appennino meridionale (indicati nella precedente tabella), integrando, ove disponibili, i dati dal Catalogo parametrico (Rovida et al., 2011) e dal Catalogo dei Forti Terremoti (Guidoboni et al., 2007).

Data	Ora	Lat	Lon	Int epic.	Int. max	Siti	Mw	L calità
19 08 1561	14:10	40.517	15.483	9.5	10	32	6.4	Vallo di Diano

Le fonti contemporanee riportano due scosse distruttive, avvenute il 31 luglio e il 19 agosto, e numerose repliche di intensità minore. La scossa del 31 luglio avvenne intorno alle 18:40 e distrusse il paese di Buccino, causando la morte di circa 100 persone. Lesioni diffuse si ebbero ad Avellino; a Napoli e Benevento la scossa fu avvertita fortemente.

La scossa del 19 agosto avvenne alle 14:10 e causò distruzioni estese e circa 500 morti in numerose località delle valli del Tanagro e del Calore, già danneggiate dalla scossa precedente. Gli abitati di Tito, Sant'Arsenio e San Pietro al Tanagro furono quasi interamente distrutti e in altri 6 paesi vi furono crolli diffusi. A Potenza crollarono alcune abitazioni; la scossa fu avvertita sensibilmente a Napoli e Salerno.

Una frana innescata dal terremoto investì l'abitato di San Rufo causando gravi danni agli edifici; presso Polla il corso del fiume Tanagro fu interrotto per 24 ore, forse a causa di un'altra frana. Fenditure e spaccature nel terreno avvennero a Bella, Balvano e Muro Lucano. Nelle vicinanze di Bella due sorgenti si disseccarono; una volta tornata l'acqua, le sorgenti si intorbidarono e divennero calde.

Tabella 2: Piano quotato del terremoto	del 19 agosto	1561. Dati dal	Catalogo dei
(http://storing.ingv.it/cfti4med/)			

Località	Provincia	Lat	Lon	Intensità
Tito	PZ	40.5819	15.6753	Х
San Pietro al Tanagro	SA	40.4553	15.4817	IX-X
Sant'Arsenio	SA	40.4689	15.4814	IX-X
Atena Lucana	SA	40.4539	15.5525	IX
Balvano	PZ	40.6503	15.5119	IX
Caggiano	SA	40.5675	15.4886	IX
Polla	SA	40.5139	15.4936	IX
San Rufo	SA	40.4336	15.4639	IX
Sicignano degli Alburni	SA	40.5583	15.3083	IX
Muro Lucano	PZ	40.7525	15.4856	VIII-IX
Ottati	SA	40.4622	15.3158	VIII-IX
Palo	SA	40.6617	15.2919	VIII-IX
Picerno	PZ	40.6397	15.6378	VIII-IX
Vietri di Potenza	PZ	40.5992	15.5083	VIII-IX
Atella	PZ	40.8772	15.6531	VIII
Avigliano	PZ	40.7303	15.7169	VIII

Località	Provincia	Lat	Lon	Intensità
Buccino	SA	40.6325	15.3756	VIII
Castelgrande	PZ	40.7853	15.4308	VIII
Pantoliano	SA	40.47	15.2733	VIII
Pignola	PZ	40.5731	15.7864	VIII
Potenza	PZ	40.6378	15.8053	VIII
Ruoti	PZ	40.7172	15.6794	VIII
Sala Consilina	SA	40.3981	15.5958	VIII
San Fele	PZ	40.8189	15.5406	VIII
San Giacomo	SA	40.3417	15.5422	VIII
San Licandro	SA	40.6014	15.2803	VIII
Sant'Angelo le Fratte	PZ	40.545	15.5583	VIII
Bella	PZ	40.7583	15.5378	VII-VIII
Calitri	AV	40.9	15.4353	VII-VIII
Napoli	NA	40.8553	14.2603	V
Montemurro	PZ	40.2969	15.9908	F
Salerno	SA	40.6786	14.7653	F

Figura 2: Quadro dei danni causati dal terremoto del 19 Agosto 1561. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int. max	Siti	Mw	Località
08 09 1694	11:40	40.867	15.4	10	10	251	6.8	Irpinia-Basilicata

La scossa distruttiva avvenne l'8 settembre alle ore 11:40; a Napoli fu percepita di durata variabile tra 30 e 60 secondi, distinti in una prima scossa e in un'immediata replica, in direzione NS.

Il terremoto causò estese distruzioni nell'area appenninica al confine tra le attuali province di Avellino e Potenza e danni ingenti in gran parte della Campania e della Basilicata e parte della Puglia. L'area dei massimi effetti risultò localizzata nell'alta valle dell'Ofanto; le distruzioni gravi e diffuse si estesero a Nord fino all'alta valle del fiume Ufita e a Sud fino ai Monti della Maddalena. Furono quasi completamente distrutti 14 paesi: Atella, Bella, Cairano, Calitri, Carife, Castelgrande, Guardia Lombardi, Muro Lucano, Pescopagano, Rapone, Ruvo del Monte, Sant'Andrea di Conza, Sant'Angelo dei Lombardi, Teora; altri 18 paesi della dorsale appenninica campano-lucana subirono distruzioni estese a circa la metà dell'abitato. Numerosi crolli totali e gravi lesioni furono riscontrati in 40 località, tra cui Potenza; in altri 130 centri abitati circa, fra cui Avellino, Napoli e Salerno, furono rilevati crolli sporadici e lesioni diffuse; danni leggeri si ebbero a Bari, Benevento, Foggia e in altre 30 località circa. La scossa fu sentita senza danni a Lecce e Brindisi e più leggermente fino a Chieti e Fano a N, e Messina a S.

Nell'area dei massimi effetti si attivarono frane, si aprirono spaccature nel terreno (in alcuni casi con esalazioni di gas) e furono osservate variazioni nel regime delle acque.

A Bisaccia si riattivarono o aggravarono estesi movimenti franosi in quasi tutte le zone del paese che resero instabili le fondazioni degli edifici e causarono l'apertura di spaccature nel suolo, aggravando notevolmente i danni subiti dai fabbricati. A Calitri e a Colliano i danni sismici furono aggravati da frane di massi rocciosi che precipitarono sulle abitazioni sottostanti. Nelle vicinanze di Teora e Tito si aprirono grandi spaccature nel suolo; fenditure di dimensioni minori, con fuoriuscita di gas, furono rilevate a Ricigliano e Tricarico.

Nel porto di Brindisi l'acqua si "sommosse" secondo le fonti contemporanee e in seguito per circa mezz'ora fu sentito in città un forte odore di fango.

Località	Provincia	Lat	Lon	Intensità
Atella	PZ	40.8772	15.6531	Х
Bella	PZ	40.7583	15.5378	Х
Cairano	AV	40.8953	15.3692	Х
Calitri	AV	40.9	15.4353	Х
Carife	AV	41.0275	15.2092	Х
Castelgrande	PZ	40.7853	15.4308	Х
Guardia Lombardi	AV	40.9536	15.2086	Х
Muro Lucano	PZ	40.7525	15.4856	Х
Pescopagano	PZ	40.8356	15.3986	Х
Rapone	PZ	40.8464	15.5014	Х
Ruvo del Monte	PZ	40.8475	15.5397	Х

Tabella 3: Piano quotato del terremoto del 8 Settembre 1694; per brevità, i dati sono tagliati al grado VII. Dati dal Catalogo dei forti terremoti: CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>

Località	Provincia	Lat	Lon	Intensità
Sant'Andrea di Conza	AV	40.8428	15.37	х
Sant'Angelo dei Lombardi	AV	40.9269	15.1764	Х
Teora	AV	40.8539	15.2547	х
Caposele	AV	40.8128	15.225	IX-X
Vallata	AV	41.0336	15.2525	IX-X
Abbazia di San Guglielmo al Goleto	AV	40.9064	15.1444	А
Andretta	AV	40.9317	15.3233	IX
Balvano	PZ	40.6503	15.5119	IX
Bisaccia	AV	41.0136	15.3753	IX
Castel Baronia	AV	41.0483	15.1892	IX
Conza della Campania	AV	40.87	15.3306	IX
Lioni	AV	40.8761	15.1867	IX
Morra	AV	40.9278	15.2442	IX
Ricigliano	SA	40.6681	15.4822	IX
Rocca San Felice	AV	40.9511	15.1642	IX
Ruoti	PZ	40.7172	15.6794	IX
San Fele	PZ	40.8189	15.5406	IX
Santa Menna	SA	40.8069	15.3206	IX
Tito	PZ	40.5819	15.6753	IX
Torella dei Lombardi	AV	40.9408	15.115	IX
Trevico	AV	41.0478	15.2336	IX
Vietri di Potenza	PZ	40.5992	15.5083	IX
Nusco	AV	40.8867	15.0847	VIII-IX
Pietrafesa	PZ	40.5431	15.6394	VIII-IX
Abbazia di San Michele a Monticchio	PZ	40.9364	15.6172	VIII
Abriola	PZ	40.5072	15.8128	VIII
Accadia	FG	41.1581	15.3336	VIII
Ariano	AV	41.1531	15.0894	VIII
Atena Lucana	SA	40.4539	15.5525	VIII
Bagnoli Irpino	AV	40.8294	15.0694	VIII
Baragiano	PZ	40.6811	15.5911	VIII
Barile	PZ	40.945	15.6731	VIII
Carbonara	AV	40.9958	15.4939	VIII
Castel Lagopesole	PZ	40.8047	15.7339	VIII

Località	Provincia	Lat	Lon	Intensità
Castelnuovo di Conza	SA	40.8153	15.32	VIII
Flumeri	AV	41.0775	15.1483	VIII
Garaguso	MT	40.5475	16.2269	VIII
Grottaminarda	AV	41.0689	15.0575	VIII
Lacedonia	AV	41.0494	15.4239	VIII
Lauro	AV	40.8792	14.6325	VIII
Laviano	SA	40.7842	15.3047	VIII
Melfi	PZ	40.9936	15.6528	VIII
Mirabella Eclano	AV	41.0422	14.9961	VIII
Montella	AV	40.8417	15.0181	VIII
Oliveto Citra	SA	40.6903	15.2317	VIII
Paterno	AV	40.9714	15.0317	VIII
Picerno	PZ	40.6397	15.6378	VIII
Polla	SA	40.5139	15.4936	VIII
Potenza	PZ	40.6378	15.8053	VIII
Pulcarino	AV	41.1153	15.1583	VIII
Rapolla	PZ	40.9753	15.675	VIII
Rionero in Vulture	PZ	40.9239	15.6739	VIII
Ripacandida	PZ	40.91	15.7231	VIII
Rocchetta Sant'Antonio	FG	41.1017	15.46	VIII
Salandra	MT	40.5264	16.3172	VIII
San Mango sul Calore	AV	40.9606	14.9744	VIII
San Nicola Baronia	AV	41.0575	15.2003	VIII
San Pietro al Tanagro	SA	40.4553	15.4817	VIII
San Rufo	SA	40.4336	15.4639	VIII
San Sossio Baronia	AV	41.07	15.2006	VIII
Sant'Angelo all'Esca	AV	41.0058	14.9939	VIII
Sant'Angelo le Fratte	PZ	40.545	15.5583	VIII
Sant'Arsenio	SA	40.4689	15.4814	VIII
Villamaina	AV	40.9692	15.09	VIII
Zungoli	AV	41.1233	15.2025	VIII
Antessano	SA	40.7369	14.7811	VII-VIII
Atripalda	AV	40.9186	14.835	VII-VIII
Avigliano	PZ	40.7303	15.7169	VII-VIII

Località	Provincia	Lat	Lon	Intensità
Beato	AV	40.8717	14.6278	VII-VIII
Bosagro	AV	40.87	14.6319	VII-VIII
Brindisi Montagna	PZ	40.6089	15.9392	VII-VIII
Cancellara	PZ	40.7308	15.9231	VII-VIII
Casola	AV	40.8872	14.5997	VII-VIII
Diano	SA	40.3783	15.5397	VII-VIII
Domicella	AV	40.8789	14.5864	VII-VIII
Frigento	AV	41.0114	15.0989	VII-VIII
Ima	AV	40.8742	14.6414	VII-VIII
Lavello	PZ	41.0464	15.795	VII-VIII
Marzano di Nola	AV	40.9022	14.5833	VII-VIII
Migliano	AV	40.8786	14.6142	VII-VIII
Montefusco	AV	41.0369	14.8547	VII-VIII
Monteverde	AV	40.9989	15.535	VII-VIII
Montoro Superiore	AV	40.8169	14.7997	VII-VIII
Moschiano	AV	40.8736	14.6586	VII-VIII
Mugnano del Cardinale	AV	40.9411	14.6394	VII-VIII
Padula	SA	40.3397	15.6586	VII-VIII
Pago del Vallo di Lauro	AV	40.8969	14.6069	VII-VIII
Pernosano	AV	40.8944	14.6119	VII-VIII
Pignano	AV	40.8728	14.6181	VII-VIII
Quindici	AV	40.8622	14.6483	VII-VIII
San Gregorio Magno	SA	40.6561	15.4036	VII-VIII
Sant'Agata di Puglia	FG	41.1503	15.3794	VII-VIII
Solofra	AV	40.8283	14.8483	VII-VIII
Sopravia	AV	40.9003	14.5967	VII-VIII
Sorbo	AV	40.9164	14.8864	VII-VIII
Taurano	AV	40.8839	14.6336	VII-VIII
Trivigno	PZ	40.5803	15.99	VII-VIII
Vaglio Basilicata	PZ	40.6653	15.9208	VII-VIII
Visciano	NA	40.9244	14.5831	VII-VIII
Acerno	SA	40.7353	15.0581	VII
Albano di Lucania	PZ	40.5844	16.0361	VII
Ascoli Satriano	FG	41.205	15.5611	VII

Località	Provincia	Lat	Lon	Intensità
Avella	AV	40.9606	14.6014	VII
Avellino	AV	40.9142	14.7906	VII
Aversa	CE	40.9736	14.2067	VII
Buccino	SA	40.6325	15.3756	VII
Buonabitacolo	SA	40.27	15.6206	VII
Caggiano	SA	40.5675	15.4886	VII
Calabritto	AV	40.7858	15.2181	VII
Calvello	PZ	40.4753	15.8489	VII
Campagna	SA	40.6653	15.1067	VII
Camposano	NA	40.9544	14.5294	VII
Canosa di Puglia	BA	41.2228	16.0664	VII
Carpineto	SA	40.7794	14.8042	VII
Casamarciano	NA	40.9325	14.5539	VII
Castellammare di Stabia	NA	40.7	14.4861	VII
Castelluccia	SA	40.495	15.2317	VII
Castelmezzano	PZ	40.53	16.0467	VII
Cava de' Tirreni	SA	40.7003	14.7061	VII
Cimitile	NA	40.9394	14.5272	VII
Ciorani	SA	40.8058	14.7297	VII
Colliano	SA	40.7261	15.2894	VII
Comiziano	NA	40.9522	14.5506	VII
Contursi Terme	SA	40.6492	15.2378	VII
Craco	MT	40.3772	16.4394	VII
Faibano	NA	40.9319	14.4686	VII
Forenza	PZ	40.8589	15.8547	VII
Forino	AV	40.8608	14.7375	VII
Gallo	NA	40.9436	14.5397	VII
Genzano di Lucania	PZ	40.8486	16.0317	VII
Gesualdo	AV	41.0058	15.0694	VII
Grassano	MT	40.6317	16.2803	VII
Lancusi	SA	40.7617	14.7853	VII
Leonessa	PZ	41.0753	15.6042	VII
Livardi	NA	40.9103	14.5589	VII
Liveri	NA	40.9033	14.5669	VII

Località	Provincia	Lat	Lon	Intensità
Marsico Nuovo	PZ	40.4214	15.7347	VII
Maschito	PZ	40.9083	15.8308	VII
Massa di Somma	NA	40.8464	14.3747	VII
Matera	МТ	40.6647	16.6067	VII
Mercato San Severino	SA	40.785	14.7592	VII
Mercogliano	AV	40.9178	14.7347	VII
Montecorvino Rovella	SA	40.6939	14.9769	VII
Monteleone di Puglia	FG	41.1658	15.2589	VII
Monticelli	SA	40.7689	14.7569	VII
Napoli	NA	40.8553	14.2603	VII
Nola	NA	40.9256	14.5286	VII
Oscato	SA	40.7667	14.7483	VII
Ottati	SA	40.4622	15.3158	VII
Palo	SA	40.6617	15.2919	VII
Penta	SA	40.7606	14.7939	VII
Pietragalla	PZ	40.7467	15.8811	VII
Pignola	PZ	40.5731	15.7864	VII
Pizzolano	SA	40.7833	14.7828	VII
Pollena	NA	40.8558	14.3808	VII
Pomarico	MT	40.5142	16.5489	VII
Prata di Principato Ultra	AV	40.9861	14.8406	VII
Prepezzano	SA	40.7278	14.8914	VII
Risigliano	NA	40.9575	14.5581	VII
Romagnano al Monte	SA	40.6272	15.4569	VII
Sala Consilina	SA	40.3981	15.5958	VII
Salerno	SA	40.6786	14.7653	VII
Salza Irpina	AV	40.9189	14.89	VII
San Barbato	AV	40.95	14.8461	VII
San Martino d'Agri	PZ	40.2389	16.0519	VII
San Mauro Forte	MT	40.4861	16.2503	VII
San Michele di Serino	AV	40.8769	14.8564	VII
San Paolo Bel Sito	NA	40.9147	14.5464	VII
Santa Lucia di Serino	AV	40.8697	14.8758	VII
Sant'Anastasia	NA	40.8667	14.4031	VII

Località	Provincia	Lat	Lon	Intensità
Sant'Erasmo	NA	40.6833	14.5406	VII
Santuario di Montevergine	AV	40.9183	14.7489	VII
Sarconi	PZ	40.2469	15.8897	VII
Sasso di Castalda	PZ	40.4883	15.6767	VII
Saviano	NA	40.9089	14.5108	VII
Senerchia	AV	40.7394	15.2025	VII
Serino	AV	40.8525	14.8728	VII
Settefichi	SA	40.7742	14.8081	VII
Sicignano degli Alburni	SA	40.5583	15.3083	VII
Somma Vesuviana	NA	40.8719	14.4372	VII
Sorrento	NA	40.6242	14.3781	VII
Spinazzola	ВА	40.9683	16.0889	VII
Stigliano	MT	40.4033	16.2289	VII
Tramonti	SA	40.6944	14.6414	VII
Tricarico	MT	40.6217	16.1442	VII
Trocchia	NA	40.86	14.39	VII
Tufino	NA	40.9528	14.5667	VII
Valva	SA	40.7378	15.2703	VII
Venosa	PZ	40.9611	15.8183	VII
Vico Equense	NA	40.6625	14.4256	VII
Vignola	NA	40.9567	14.5597	VII
Villa	SA	40.7875	14.7947	VII

Figura 3: Quadro dei danni causati dal terremoto del 8 Settembre 1694. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int. max	Siti	Mw	L calità
26 01 1708	-	39.95	16.017	8.5	8.5	9	5.9	Pollino

Tabella 4: Piano quotato del terremoto de	l 26 Gennaio 1708	8. Dati dal Catalogo d	dei forti terremoti:
CFTI4Med (http://storing.ingv.it/cfti4med/)		-	

Località	Provincia	Lat	Lon	Intensità
Castelluccio Inferiore	PZ	40.0022	15.9808	VIII-IX
Viggianello	PZ	39.9725	16.0864	VIII-IX
Cassano allo Ionio	CS	39.7839	16.3175	VII-VIII
Laino Borgo	CS	39.9536	15.9742	VII-VIII
Rotonda	PZ	39.9522	16.0392	VII-VIII
Tortora	CS	39.9411	15.8042	VII-VIII
Maratea	PZ	39.9933	15.7214	V-VI
Mormanno	CS	39.8892	15.9889	V-VI
Catanzaro	CZ	38.9142	16.5858	111

Figura 4: Quadro dei danni causati dal terremoto del 26 Gennaio 1708. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
29 11 1732	07:40	41.067	15.067	10.5	10.5	183	6.6	Irpinia

Tabella 5: Piano quotato del terremoto del 29 Novembre 1732. Dati dal Catalogo dei forti terremoti: CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>

Località	Provincia	Lat	Lon	Intensità
Carife	AV	41.0275	15.2092	X-XI
Mirabella Eclano	AV	41.0422	14.9961	X-XI
Apice	BN	41.1183	14.9308	Х
Ariano	AV	41.1531	15.0894	Х
Bonito	AV	41.1017	15.0039	Х
Flumeri	AV	41.0775	15.1483	Х
Grottaminarda	AV	41.0689	15.0575	Х
Guardia Lombardi	AV	40.9536	15.2086	Х
San Mango sul Calore	AV	40.9606	14.9744	Х
Vallata	AV	41.0336	15.2525	IX-X
Avellino	AV	40.9142	14.7906	IX
Castel Baronia	AV	41.0483	15.1892	IX
Lioni	AV	40.8761	15.1867	IX
Monterocchetta	BN	41.0561	14.815	IX
Montorsi	BN	41.0722	14.7989	IX
Pietradefusi	AV	41.0364	14.8889	IX
San Michele di Serino	AV	40.8769	14.8564	IX
San Sossio Baronia	AV	41.07	15.2006	IX
Teora	AV	40.8539	15.2547	IX
Torella dei Lombardi	AV	40.9408	15.115	IX
Zungoli	AV	41.1233	15.2025	IX
Caposele	AV	40.8128	15.225	VIII-IX
Conza della Campania	AV	40.87	15.3306	VIII-IX
Cucciano	BN	41.0489	14.8422	VIII-IX
Fragneto Monforte	BN	41.2461	14.7608	VIII-IX
Gesualdo	AV	41.0058	15.0694	VIII-IX
San Giorgio la Montagna	BN	41.0628	14.8544	VIII-IX
San Nicola Baronia	AV	41.0575	15.2003	VIII-IX
San Nicola Manfredi	BN	41.0711	14.8244	VIII-IX

Località	Provincia	Lat	Lon	Intensità
Sant'Angelo dei Lombardi	AV	40.9269	15.1764	VIII-IX
Trevico	AV	41.0478	15.2336	VIII-IX
Bisaccia	AV	41.0136	15.3753	VIII
Buonalbergo	BN	41.2222	14.98	VIII
Calabritto	AV	40.7858	15.2181	VIII
Calvi	BN	41.0717	14.8656	VIII
Candida	AV	40.9417	14.8753	VIII
Castelfranci	AV	40.9314	15.0431	VIII
Cesinali	AV	40.8947	14.8289	VIII
Dentecane	AV	41.0358	14.8939	VIII
Fontanarosa	AV	41.0158	15.0194	VIII
Fontanelle	AV	40.8481	14.8736	VIII
Frigento	AV	41.0114	15.0989	VIII
Guanni	AV	40.8617	14.8892	VIII
Laurino	SA	40.3358	15.3361	VIII
Mancusi	BN	41.0669	14.8272	VIII
Manocalzati	AV	40.9408	14.8478	VIII
Montecalvo Irpino	AV	41.1958	15.0336	VIII
Montefusco	AV	41.0369	14.8547	VIII
Montella	AV	40.8417	15.0181	VIII
Morra	AV	40.9278	15.2442	VIII
Paduli	BN	41.1642	14.8797	VIII
Parolise	AV	40.9303	14.8819	VIII
Paterno	AV	40.9714	15.0317	VIII
Ponte	AV	40.8547	14.8597	VIII
Pulcarino	AV	41.1153	15.1583	VIII
Roccabascerana	AV	41.0172	14.7164	VIII
Rocca San Felice	AV	40.9511	15.1642	VIII
San Barbato	AV	40.95	14.8461	VIII
San Biagio	AV	40.8531	14.8878	VIII
San Giacomo	AV	40.8569	14.8719	VIII
San Martino Valle Caudina	AV	41.0231	14.6631	VIII
San Nazzaro	BN	41.0508	14.8564	VIII
San Potito Ultra	AV	40.9269	14.8711	VIII

Località	Provincia	Lat	Lon	Intensità
San Sossio	AV	40.8597	14.8869	VIII
Sant'Agnese	BN	41.0633	14.8586	VIII
Santa Lucia di Serino	AV	40.8697	14.8758	VIII
Santa Maria a Toro	BN	41.0697	14.8158	VIII
Sant'Angelo a Cancelli	AV	41.0444	14.8633	VIII
Sant'Angelo all'Esca	AV	41.0058	14.9939	VIII
Santa Paolina	AV	41.025	14.8469	VIII
Solofra	AV	40.8283	14.8483	VIII
Summonte	AV	40.9492	14.7469	VIII
Taurasi	AV	41.0081	14.9575	VIII
Troiani	AV	40.8647	14.8833	VIII
Abbazia di San G. al Goleto	AV	40.9064	15.1444	VII-VIII
Airola	BN	41.0597	14.5544	VII-VIII
Arpaia	BN	41.035	14.5469	VII-VIII
Atripalda	AV	40.9186	14.835	VII-VIII
Benevento	BN	41.1289	14.7769	VII-VIII
Campolattaro	BN	41.2869	14.7322	VII-VIII
Capriglia Irpina	AV	40.9583	14.7733	VII-VIII
Cassano Irpino	AV	40.8706	15.0267	VII-VIII
Cervinara	AV	41.0211	14.6167	VII-VIII
Chianche	AV	41.0464	14.7892	VII-VIII
Forino	AV	40.8608	14.7375	VII-VIII
Fossaceca	BN	41.0183	14.7492	VII-VIII
Ginestra	BN	41.0706	14.8531	VII-VIII
Grotta Castagnara	AV	40.9719	14.7869	VII-VIII
Lentace	BN	41.0597	14.8303	VII-VIII
Melito	AV	41.1006	15.0269	VII-VIII
Mercogliano	AV	40.9178	14.7347	VII-VIII
Montaperto	AV	41.0067	14.8881	VII-VIII
Montefalcione	AV	40.9606	14.8831	VII-VIII
Monteforte Irpino	AV	40.8919	14.7114	VII-VIII
Montefredane	AV	40.9592	14.8136	VII-VIII
Montemale	BN	41.1661	14.9394	VII-VIII
Montemiletto	AV	41.0114	14.9089	VII-VIII

Località	Provincia	Lat	Lon	Intensità
Montesarchio	BN	41.0642	14.6394	VII-VIII
Monteverde	AV	40.9989	15.535	VII-VIII
Nusco	AV	40.8867	15.0847	VII-VIII
Ospedaletto d'Alpinolo	AV	40.9386	14.7442	VII-VIII
Petruro Irpino	AV	41.0308	14.7958	VII-VIII
Pietrastornina	AV	40.9911	14.7281	VII-VIII
Prata di Principato Ultra	AV	40.9861	14.8406	VII-VIII
Salza Irpina	AV	40.9189	14.89	VII-VIII
Santa Maria Ingrisone	BN	41.0731	14.8358	VII-VIII
Sant'Angelo a Scala	AV	40.9742	14.7403	VII-VIII
Santo Stefano del Sole	AV	40.8931	14.8686	VII-VIII
Santuario di Montevergine	AV	40.9183	14.7489	VII-VIII
Sorbo	AV	40.9164	14.8864	VII-VIII
Tavernola San Felice	AV	40.8939	14.8219	VII-VIII
Toccanisi	BN	41.0458	14.8172	VII-VIII
Torre le Nocelle	AV	41.0225	14.9092	VII-VIII
Tufo	AV	41.0103	14.8206	VII-VIII
Villamaina	AV	40.9692	15.09	VII-VIII
Accadia	FG	41.1581	15.3336	VII
Altavilla Irpina	AV	41.0064	14.7789	VII
Andretta	AV	40.9317	15.3233	VII
Apollosa	BN	41.0928	14.7014	VII
Bagnoli Irpino	AV	40.8294	15.0694	VII
Bellizzi Irpino	AV	40.8892	14.7981	VII
Cairano	AV	40.8953	15.3692	VII
Calitri	AV	40.9	15.4353	VII
Casalbore	AV	41.2322	15.0119	VII
Casalduni	BN	41.2597	14.695	VII
Castelvetere sul Calore	AV	40.9286	14.9864	VII
Ceppaloni	BN	41.0444	14.76	VII
Chianchetelle	AV	41.0381	14.7856	VII
Chiusano di San Domenico	AV	40.9322	14.9167	VII
Lacedonia	AV	41.0494	15.4239	VII
Lapio	AV	40.9811	14.9492	VII

Località	Provincia	Lat	Lon	Intensità
Molinara	BN	41.2953	14.9083	VII
Montemarano	AV	40.9186	14.9967	VII
Napoli	NA	40.8553	14.2603	VII
Pago Veiano	BN	41.2472	14.8714	VII
Pannarano	BN	41.0097	14.7036	VII
Paupisi	BN	41.1947	14.6661	VII
Pescolamazza	BN	41.2336	14.8117	VII
Piano di Sorrento	NA	40.6353	14.4083	VII
Pietrelcina	BN	41.1969	14.8478	VII
Pontelandolfo	BN	41.2858	14.6928	VII
Pratola Serra	AV	40.9864	14.8517	VII
Reino	BN	41.2908	14.8236	VII
Rocchetta Sant'Antonio	FG	41.1017	15.46	VII
Rotondi	AV	41.0308	14.5967	VII
San Giorgio la Molara	BN	41.2703	14.9186	VII
San Marco dei Cavoti	BN	41.3083	14.8783	VII
San Pietro Indelicato	AV	41.055	14.8006	VII
Sant'Andrea di Conza	AV	40.8428	15.37	VII
Serra	AV	40.97	14.8542	VII
Sorrento	NA	40.6242	14.3781	VII
Torrecuso	BN	41.1892	14.6794	VII
Torrioni	AV	41.0325	14.8122	VII
Vitulano	BN	41.1736	14.6456	VII
Volturara Irpina	AV	40.8778	14.9156	VII
Aversa	CE	40.9736	14.2067	VI-VII
Barile	PZ	40.945	15.6731	VI-VII
Biccari	FG	41.3964	15.1942	VI-VII
Capua	CE	41.1056	14.2139	VI-VII
Fragneto l'Abate	BN	41.2589	14.785	VI-VII
Melfi	PZ	40.9936	15.6528	VI-VII
Roccamonfina	CE	41.2883	13.9831	VI-VII
Ruvo del Monte	PZ	40.8475	15.5397	VI-VII
Salerno	SA	40.6786	14.7653	VI-VII
Santa Maria Capua Vetere	CE	41.0778	14.2556	VI-VII

Località	Provincia	Lat	Lon	Intensità
Baia	NA	40.8172	14.0706	VI
Castelfranco in Miscano	BN	41.2969	15.085	VI
Castelluccio Valmaggiore	FG	41.3408	15.1983	VI
Celle di San Vito	FG	41.3256	15.1806	VI
Gaeta	LT	41.2178	13.5681	VI
Ginestra degli Schiavoni	BN	41.2778	15.0403	VI
Ischia	NA	40.7428	13.9419	VI
Sant'Agata de' Goti	BN	41.0883	14.5042	VI
Savignano Irpino	AV	41.2278	15.1811	VI
Carbonara	AV	40.9958	15.4939	V-VI
Montefalcone di Val Fortore	BN	41.3253	15.01	V-VI
Monteleone di Puglia	FG	41.1658	15.2589	V-VI
San Lupo	BN	41.2597	14.6353	V-VI
Bisceglie	BA	41.2403	16.5019	V
Castellammare di Stabia	NA	40.7	14.4861	V
Matera	MT	40.6647	16.6067	V
Pozzuoli	NA	40.8217	14.1233	V
Roma	RM	41.8953	12.4822	IV

Figura 5: Quadro dei danni causati dal terremoto del 29 Novembre 1732. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

wsp

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
01 02 1826	16:00	40.517	15.733	8	9	18	5.8	Basilicata

La prima scossa fu avvertita alle ore 16 circa del 1° febbraio 1826; seguirono altre 2 scosse più leggere nell'arco dell'ora successiva, con un intervallo di circa mezz'ora fra l'una e l'altra.

Il terremoto colpì la zona nord-occidentale della provincia di Potenza e danneggiò gravemente una decina di centri situati alle prime propaggini dell'Appennino lucano. Il paese più danneggiato fu Tito, dove 60 case crollarono e tutte le altre furono danneggiate e in parte demolite; crolli di abitazioni avvennero anche a Potenza, Satriano di Lucania e Tramutola. La scossa fu avvertita ad Avellino, Matera e Napoli.

Nei dintorni di Tito si verificarono frane, scaturirono nuove sorgenti e si intorbidarono le acque dei pozzi.

Tabella 6: Piano quotato del terremoto del	1° febbraio	1826. Dati	dal Catalogo	dei forti terremoti:
CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>				

Località	Provincia	Lat	Lon	Intensità
Tito	PZ	40.5819	15.6753	IX
Pietrafesa	PZ	40.5431	15.6394	VIII
Potenza	PZ	40.6378	15.8053	VIII
Tramutola	PZ	40.3147	15.7897	VIII
Atena Lucana	SA	40.4539	15.5525	VII-VIII
Calvello	PZ	40.4753	15.8489	VII-VIII
Marsico Nuovo	PZ	40.4214	15.7347	VII-VIII
Sala Consilina	SA	40.3981	15.5958	VII-VIII
Balvano	PZ	40.6503	15.5119	VII
Brienza	PZ	40.4778	15.6283	VII
Montemurro	PZ	40.2969	15.9908	VII
Sasso di Castalda	PZ	40.4883	15.6767	VII
Sant'Arsenio	SA	40.4689	15.4814	VI-VII
Avellino	AV	40.9142	14.7906	F
Lagonegro	PZ	40.1239	15.7636	F
Matera	MT	40.6647	16.6067	F
Melfi	PZ	40.9936	15.6528	F
Napoli	NA	40.8553	14.2603	F

Figura 6: Quadro dei danni causati dal terremoto del 1° febbraio 1826. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
20 11 1836	07:30	40.15	15.783	8	9	17	6	Basilicata meridionale

Il terremoto colpì una quindicina di località tra la Campania e la Basilicata, nella zona del massiccio del monte Sirino. Il paese più danneggiato fu Lagonegro, dove 804 abitazioni furono distrutte o danneggiate, su un patrimonio edilizio probabilmente di poco superiore a un migliaio di case. La perizia fu effettuata per "stanze", per cui non è possibile desumerne il numero preciso dei crolli totali; complessivamente furono rilevati 311 vani crollati, 589 gravemente danneggiati e da demolire e 1485 lesionati. Crolli di abitazioni si verificarono anche a Casalbuono, Castelsaraceno, Lauria, Montesano sulla Marcellana e Nemoli. La scossa fu avvertita a Napoli e a Potenza.

Nell'area dei maggiori danni vi furono numerose frane, scivolamenti e spaccature del terreno, causati anche dalle violente precipitazioni di pioggia precedenti e seguenti il terremoto.

La scossa principale delle ore 7:30 del 20 novembre 1836 fu seguita da nuove scosse fino alla fine dell'anno. Le repliche più intense si verificarono il 26 novembre e il 2 dicembre.

Altre scosse, più lievi, si avvertirono il 13 febbraio 1837.

Tabella 7: Piano quotato del terremoto del	20 Novembre 1836	. Dati dal Catalogo	dei forti terremoti:
CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>			

Località	Provincia	Lat	Lon	Intensità
Lagonegro	PZ	40.1239	15.7636	IX
Casalnuovo	SA	40.2147	15.6806	VIII
Castelsaraceno	PZ	40.1625	15.9917	VIII
Lauria	PZ	40.0458	15.8364	VIII
Montesano sulla Marcellana	SA	40.2753	15.7019	VIII
Nemoli	PZ	40.0667	15.8003	VIII
Carbone	PZ	40.1403	16.0878	VII-VIII
Chiaromonte	PZ	40.1236	16.2125	VII-VIII
Corleto Perticara	PZ	40.3825	16.0411	VII-VIII
Latronico	PZ	40.0867	16.0114	VII-VIII
Montemurro	PZ	40.2969	15.9908	VII-VIII
Rivello	PZ	40.0772	15.7564	VII-VIII
Tramutola	PZ	40.3147	15.7897	VII-VIII
Trecchina	PZ	40.0261	15.7772	VII
Napoli	NA	40.8553	14.2603	V

Località	Provincia	Lat	Lon	Intensità
Potenza	PZ	40.6378	15.8053	IV
Scalea	CS	39.8136	15.7917	NC

Terremoto del 20 novembre 1836 07.30.--, Basilicata meridionale Studio macrosismico Guidoboni et al., 2007 [Np 17, Imax 9]

Figura 7: Quadro dei danni causati dal terremoto del 20 Novembre 1836. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
14 08 1851	13:20	40.95	15.667	10	10	103	6.4	Basilicata

Tabella 8: Piano quotato del terremoto del 14 Agosto 1851. Dati dal Catalogo dei forti terremoti: CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>

Località	Provincia	Lat	Lon	Intensità
Barile	PZ	40.945	15.6731	Х
Melfi	PZ	40.9936	15.6528	Х
Rapolla	PZ	40.9753	15.675	IX-X
Abbazia di San Michele a Monticchio	PZ	40.9364	15.6172	IX
Rionero in Vulture	PZ	40.9239	15.6739	IX
Venosa	PZ	40.9611	15.8183	VIII-IX
Atella	PZ	40.8772	15.6531	VIII
Lavello	PZ	41.0464	15.795	VIII
Ripacandida	PZ	40.91	15.7231	VIII
Ascoli Satriano	FG	41.205	15.5611	VII-VIII
Candela	FG	41.1358	15.515	VII-VIII
Canosa di Puglia	BA	41.2228	16.0664	VII-VIII
Ginestra	PZ	40.9297	15.7342	VII-VIII
Monteverde	AV	40.9989	15.535	VII-VIII
Rocchetta Sant'Antonio	FG	41.1017	15.46	VII-VIII
Accadia	FG	41.1581	15.3336	VII
Carbonara	AV	40.9958	15.4939	VII
Cerignola	FG	41.2636	15.8981	VII
Deliceto	FG	41.2219	15.3864	VII
Avellino	AV	40.9142	14.7906	VI-VII
Baragiano	PZ	40.6811	15.5911	VI-VII
Barletta	BA	41.3178	16.2792	VI-VII
Bovino	FG	41.2508	15.3417	VI-VII
Casaltrinità	FG	41.3556	16.0881	VI-VII
Ordona	FG	41.3147	15.6278	VI-VII
San Severo	FG	41.6853	15.3806	VI-VII
Sant'Agata di Puglia	FG	41.1503	15.3794	VI-VII
Stornara	FG	41.2872	15.7694	VI-VII
Trani	BA	41.2767	16.4183	VI-VII

Località	Provincia	Lat	Lon	Intensità
Acerenza	PZ	40.7956	15.94	VI
Alvano	AV	40.9589	15.3075	VI
Andria	BA	41.2264	16.2956	VI
Anzano	FG	41.1203	15.2881	VI
Apricena	FG	41.7842	15.4439	VI
Avigliano	PZ	40.7303	15.7169	VI
Bari	BA	41.1064	16.8464	VI
Bella	PZ	40.7583	15.5378	VI
Biccari	FG	41.3964	15.1942	VI
Bisaccia	AV	41.0136	15.3753	VI
Bitonto	BA	41.1075	16.6906	VI
Cagnano Varano	FG	41.8256	15.7753	VI
Cairano	AV	40.8953	15.3692	VI
Calitri	AV	40.9	15.4353	VI
Campagna	SA	40.6653	15.1067	VI
Carapelle	FG	41.3628	15.6917	VI
Casalnuovo Monterotaro	FG	41.6203	15.1047	VI
Cassano delle Murge	BA	40.8886	16.7708	VI
Castelgrande	PZ	40.7853	15.4308	VI
Castel Lagopesole	PZ	40.8047	15.7339	VI
Castelluccio dei Sauri	FG	41.3039	15.4764	VI
Castelnuovo di Conza	SA	40.8153	15.32	VI
Cervaro	FG	41.395	15.5936	VI
Conza della Campania	AV	40.87	15.3306	VI
Corato	BA	41.1528	16.4111	VI
Foggia	FG	41.46	15.5525	VI
Forenza	PZ	40.8589	15.8547	VI
Genzano di Lucania	PZ	40.8486	16.0317	VI
Gravina in Puglia	BA	40.8189	16.42	VI
Lacedonia	AV	41.0494	15.4239	VI
Laviano	SA	40.7842	15.3047	VI
Lucera	FG	41.5075	15.335	VI
Maschito	PZ	40.9083	15.8308	VI
Masseria Torretta	FG	41.1722	15.7856	VI

Località	Provincia	Lat	Lon	Intensità
Matera	MT	40.6647	16.6067	VI
Minervino Murge	ВА	41.0858	16.0786	VI
Montemilone	PZ	41.0317	15.9719	VI
Muro Lucano	PZ	40.7525	15.4856	VI
Oppido Lucano	PZ	40.7639	15.9928	VI
Orta Nova	FG	41.3272	15.7069	VI
Palazzo San Gervasio	PZ	40.9303	15.9861	VI
Pescopagano	PZ	40.8356	15.3986	VI
Pietragalla	PZ	40.7467	15.8811	VI
Rapone	PZ	40.8464	15.5014	VI
Rodi Garganico	FG	41.9289	15.8844	VI
Ruoti	PZ	40.7172	15.6794	VI
Ruvo del Monte	PZ	40.8475	15.5397	VI
San Fele	PZ	40.8189	15.5406	VI
Sannicandro Garganico	FG	41.8347	15.5669	VI
Santa Menna	SA	40.8069	15.3206	VI
Sant'Andrea di Conza	AV	40.8428	15.37	VI
Sant'llario	PZ	40.7903	15.6661	VI
Serracapriola	FG	41.8056	15.1594	VI
Spinazzola	ВА	40.9683	16.0889	VI
Stornarella	FG	41.2556	15.7306	VI
Tenuta Quarto	FG	41.2936	15.9311	VI
Troia	FG	41.3606	15.3086	VI
Bisceglie	ВА	41.2403	16.5019	V-VI
Castelfranco in Miscano	BN	41.2969	15.085	V
Celle di San Vito	FG	41.3256	15.1806	V
Faeto	FG	41.3239	15.1619	V
Napoli	NA	40.8553	14.2603	V
Orsara di Puglia	FG	41.2806	15.2656	V
Salerno	SA	40.6786	14.7653	V
Savignano Irpino	AV	41.2278	15.1811	V
Vieste	FG	41.8822	16.1794	V
Caserta	CE	41.0711	14.3331	F
Lecce	LE	40.3511	18.1689	F

Località	Provincia	Lat	Lon	Intensità
Portici	NA	40.8192	14.3414	F
Pozzuoli	NA	40.8217	14.1233	F
Santa Maria Capua Vetere	CE	41.0778	14.2556	F
Castellammare di Stabia	NA	40.7	14.4861	IV
Chieti	СН	42.3511	14.1683	IV
Ischia	NA	40.7428	13.9419	IV

Terremoto del 14 agosto 1851 13.20 --, Basilicata Epicentro CPTI11 D Mar 6.38 ±0.17 Studio macrosismico Guidoboni et al., 2007 [Np 103. Imax 10]

Figura 8: Quadro dei danni causati dal terremoto del 14 Agosto 1851. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
16 12 1857	21:15	40.35	15.85	11	11	340	7	Basilicata

Il terremoto devastò una vasta area della Basilicata e una parte della Campania: in particolare, furono colpite l'attuale provincia di Potenza e la zona centro-orientale di quella di Salerno. I danni più gravi furono risentiti nelle zone montuose, in particolare nella vallata dell'Agri. Più di 180 località, comprese in un'area di oltre 20.000 kmq, subirono danni gravissimi al patrimonio edilizio, tanto da rendere inagibili gran parte delle case. Più di 30 centri subirono danni disastrosi: interi paesi e villaggi sparsi su una superficie di 3.150 kmq, furono rasi al suolo. Negli attuali comuni di Montemurro, Grumento Nova (allora Saponara), Viggiano, Tito, Marsico Nuovo e Polla si ebbe il maggior numero di morti. Complessivamente vi furono 3.313 case crollate e 2.786 pericolanti e inabitabili.

Il terremoto causò in circa 30 località, fra Atella, Polla e Latronico, vasti movimenti franosi, smottamenti e abbassamenti del terreno, con l'apertura di numerose spaccature, di cui una di 270 m a Polla. Molte sorgenti aumentarono la loro portata. A Marsico Nuovo, Moliterno, Salandra ed Episcopia vi furono esalazioni gassose e solforose.

Questo periodo sismico fu caratterizzato da circa cento scosse di varia intensità. Due di queste - quella del 16 dicembre 1857 alle ore 21.18 e quella del 26 dicembre alle ore 5 - sono valutate nell'attuale Catalogo con una intensità uguale o superiore al IX grado MCS. La ricerca ha evidenziato che la scossa principale fu preceduta di circa due minuti da un fortissimo *foreshock*, che causò le prime rovine nei paesi della zona epicentrale e fu sentito fortemente in un'area molto vasta comprendente Avellino, Bari, Caserta, Napoli e Salerno. Le repliche si susseguirono frequenti nel corso del mese di dicembre. In particolare, quelle avvenute il 26 dicembre alle ore 2 e alle ore 5 causarono il crollo delle ultime costruzioni ancora in piedi a Montemurro. Nei mesi successivi le scosse continuarono fino al maggio 1859; tra queste causò danni a Potenza e a Tramutola quella avvenuta l'8 marzo 1858 alle ore 0.15.

Località	Provincia	Lat	Lon	Intensità
Montemurro	PZ	40.2969	15.9908	XI
Saponara	PZ	40.2853	15.8906	XI
Alianello	MT	40.2772	16.2433	х
Atena Lucana	SA	40.4539	15.5525	х
Brienza	PZ	40.4778	15.6283	х
Calvello	PZ	40.4753	15.8489	х
Castelsaraceno	PZ	40.1625	15.9917	х
Marsico Nuovo	PZ	40.4214	15.7347	х
Missanello	PZ	40.2811	16.1656	х
Paterno	PZ	40.3772	15.7322	х
Polla	SA	40.5139	15.4936	х
Sant'Angelo le Fratte	PZ	40.545	15.5583	х
Sant'Arcangelo	PZ	40.2453	16.2739	x

Tabella 9: Piano quotato del terremoto del 16 Dicembre 1857; per brevità, i dati sono tagliati al grado VII. Dati dal Catalogo dei forti terremoti: CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>
Località	Provincia	Lat	Lon	Intensità
Sarconi	PZ	40.2469	15.8897	х
Spinoso	PZ	40.2686	15.9664	х
Tito	PZ	40.5819	15.6753	х
Tramutola	PZ	40.3147	15.7897	х
Viggiano	PZ	40.3389	15.8994	х
Guardia Perticara	PZ	40.36	16.0989	IX-X
Marsicovetere	PZ	40.3761	15.8244	IX-X
Pertosa	SA	40.5419	15.4497	IX-X
Aliano	МТ	40.3128	16.2303	IX
Auletta	SA	40.5583	15.4256	IX
Corleto Perticara	PZ	40.3825	16.0411	IX
Laurenzana	PZ	40.4594	15.9714	IX
Padula	SA	40.3397	15.6586	IX
Picerno	PZ	40.6397	15.6378	IX
Pignola	PZ	40.5731	15.7864	IX
Roccanova	PZ	40.2133	16.205	IX
Armento	PZ	40.3058	16.0653	VIII-IX
Avella	AV	40.9606	14.6014	VIII-IX
Caggiano	SA	40.5675	15.4886	VIII-IX
Carbone	PZ	40.1403	16.0878	VIII-IX
Grassano	MT	40.6317	16.2803	VIII-IX
Montesano sulla Marcellana	SA	40.2753	15.7019	VIII-IX
Pietrafesa	PZ	40.5431	15.6394	VIII-IX
Potenza	PZ	40.6378	15.8053	VIII-IX
Salandra	МТ	40.5264	16.3172	VIII-IX
San Chirico Raparo	PZ	40.19	16.075	VIII-IX
San Martino d'Agri	PZ	40.2389	16.0519	VIII-IX
San Pietro al Tanagro	SA	40.4553	15.4817	VIII-IX
Abriola	PZ	40.5072	15.8128	VIII
Aieta	CS	39.9275	15.8231	VIII
Albano di Lucania	PZ	40.5844	16.0361	VIII
Arenabianca	SA	40.2939	15.6919	VIII
Balvano	PZ	40.6503	15.5119	VIII
Baragiano	PZ	40.6811	15.5911	VIII

Località	Provincia	Lat	Lon	Intensità
Barile	PZ	40.945	15.6731	VIII
Bosco	SA	40.0725	15.4569	VIII
Buccino	SA	40.6325	15.3756	VIII
Buonabitacolo	SA	40.27	15.6206	VIII
Calvera	PZ	40.1481	16.1433	VIII
Cancellara	PZ	40.7308	15.9231	VIII
Canosa di Puglia	BA	41.2228	16.0664	VIII
Caselle in Pittari	SA	40.1722	15.5461	VIII
Castelluccia	SA	40.495	15.2317	VIII
Castronuovo di Sant'Andrea	PZ	40.1883	16.1856	VIII
Celle di Bulgheria	SA	40.0956	15.4042	VIII
Colobraro	МТ	40.1875	16.425	VIII
Corleto Monforte	SA	40.4361	15.38	VIII
Diano	SA	40.3783	15.5397	VIII
Episcopia	PZ	40.0722	16.0986	VIII
Ferrandina	МТ	40.4947	16.4567	VIII
Gallicchio	PZ	40.2881	16.1389	VIII
Gorgoglione	МТ	40.3928	16.145	VIII
Grottole	МТ	40.6003	16.3847	VIII
Latronico	PZ	40.0867	16.0114	VIII
Lauria	PZ	40.0458	15.8364	VIII
Laurino	SA	40.3358	15.3361	VIII
Laurito	SA	40.1678	15.405	VIII
Lavello	PZ	41.0464	15.795	VIII
Maratea	PZ	39.9933	15.7214	VIII
Moliterno	PZ	40.24	15.8681	VIII
Montano Antilia	SA	40.1614	15.3664	VIII
Montemilone	PZ	41.0317	15.9719	VIII
Ottati	SA	40.4622	15.3158	VIII
Pietrapertosa	PZ	40.5172	16.0614	VIII
Poderia	SA	40.0933	15.3847	VIII
Policastro Bussentino	SA	40.0744	15.5208	VIII
Ricigliano	SA	40.6681	15.4822	VIII
Rivello	PZ	40.0772	15.7564	VIII

Località	Provincia	Lat	Lon	Intensità
Sala Consilina	SA	40.3981	15.5958	VIII
San Rufo	SA	40.4336	15.4639	VIII
Sant'Arsenio	SA	40.4689	15.4814	VIII
Santo Spirito	МТ	40.3892	16.2883	VIII
Sanza	SA	40.2419	15.5511	VIII
Sapri	SA	40.0744	15.6306	VIII
Sasso di Castalda	PZ	40.4883	15.6767	VIII
Sicignano degli Alburni	SA	40.5583	15.3083	VIII
Stigliano	MT	40.4033	16.2289	VIII
Tortora	CS	39.9411	15.8042	VIII
Trecchina	PZ	40.0261	15.7772	VIII
Trivigno	PZ	40.5803	15.99	VIII
Vaglio Basilicata	PZ	40.6653	15.9208	VIII
Vietri di Potenza	PZ	40.5992	15.5083	VIII
Anzi	PZ	40.5158	15.9236	VII-VIII
Campagna	SA	40.6653	15.1067	VII-VIII
Casone	PZ	40.6106	15.8911	VII-VIII
Castelluccio Inferiore	PZ	40.0022	15.9808	VII-VIII
Castelluccio Superiore	PZ	40.0094	15.9753	VII-VIII
Сгасо	МТ	40.3772	16.4394	VII-VIII
Garaguso	MT	40.5475	16.2269	VII-VIII
Genzano di Lucania	PZ	40.8486	16.0317	VII-VIII
Ginosa	ТА	40.5781	16.7575	VII-VIII
Gragnano	NA	40.6886	14.5203	VII-VIII
Lagonegro	PZ	40.1239	15.7636	VII-VIII
La Torre	SA	40.4833	15.4833	VII-VIII
Montescaglioso	MT	40.5522	16.6664	VII-VIII
Nocera Inferiore	SA	40.7428	14.6417	VII-VIII
Nocera Superiore	SA	40.7425	14.6728	VII-VIII
Pisticci	MT	40.3897	16.5567	VII-VIII
Pomarico	МТ	40.5142	16.5489	VII-VIII
Roscigno	SA	40.3992	15.3464	VII-VIII
Ruoti	PZ	40.7172	15.6794	VII-VIII
Salvitelle	SA	40.5911	15.4597	VII-VIII

Località	Provincia	Lat	Lon	Intensità
San Gregorio Magno	SA	40.6561	15.4036	VII-VIII
San Mauro Forte	MT	40.4861	16.2503	VII-VIII
Scalea	CS	39.8136	15.7917	VII-VIII
Seiano	NA	40.6564	14.4211	VII-VIII
Senise	PZ	40.1439	16.2886	VII-VIII
Tolve	PZ	40.6958	16.0189	VII-VIII
Tursi	МТ	40.2469	16.4711	VII-VIII
Venosa	PZ	40.9611	15.8183	VII-VIII
Viggianello	PZ	39.9725	16.0864	VII-VIII
Accettura	МТ	40.4917	16.1578	VII
Acquaviva delle Fonti	BA	40.8961	16.8431	VII
Ascoli Satriano	FG	41.205	15.5611	VII
Atella	PZ	40.8772	15.6531	VII
Avigliano	PZ	40.7303	15.7169	VII
Baronissi	SA	40.7456	14.77	VII
Bella	PZ	40.7583	15.5378	VII
Bollita	МТ	40.1478	16.5403	VII
Bovino	FG	41.2508	15.3417	VII
Bracigliano	SA	40.8219	14.7117	VII
Campomaggiore	PZ	40.5653	16.0717	VII
Casalnuovo	PZ	40.0353	16.3347	VII
Castel San Giorgio	SA	40.7794	14.6978	VII
Certosa di San Lorenzo	SA	40.3367	15.6517	VII
Cirigliano	MT	40.3917	16.1714	VII
Eboli	SA	40.6172	15.0547	VII
Fardella	PZ	40.1136	16.1689	VII
Francavilla in Sinni	PZ	40.08	16.2039	VII
Gioia del Colle	BA	40.7981	16.9228	VII
Laterza	ТА	40.6244	16.7964	VII
Matera	МТ	40.6647	16.6067	VII
Melfi	PZ	40.9936	15.6528	VII
Miglionico	MT	40.5689	16.5	VII
Moio della Civitella	SA	40.2497	15.2675	VII
Montalbano Jonico	МТ	40.2894	16.5672	VII

Località	Provincia	Lat	Lon	Intensità
Montepeloso	MT	40.7444	16.2417	VII
Noia	PZ	40.0869	16.3292	VII
Oliveto Lucano	MT	40.5336	16.1847	VII
Oppido Lucano	PZ	40.7639	15.9928	VII
Palo del Colle	BA	41.0572	16.7022	VII
Pescopagano	PZ	40.8356	15.3986	VII
Piaggine Soprane	SA	40.3425	15.3783	VII
Piaggine Sottane	SA	40.3428	15.3686	VII
Pimonte	NA	40.6736	14.5136	VII
Postiglione	SA	40.5578	15.2314	VII
Rotonda	PZ	39.9522	16.0392	VII
Ruvo del Monte	PZ	40.8475	15.5397	VII
Sacco	SA	40.3781	15.3769	VII
Salerno	SA	40.6786	14.7653	VII
San Chirico Nuovo	PZ	40.6764	16.0814	VII
San Giorgio Lucano	MT	40.1122	16.3875	VII
San Giovanni a Piro	SA	40.0503	15.4497	VII
San Mauro Cilento	SA	40.2256	15.0447	VII
San Michele di Serino	AV	40.8769	14.8564	VII
Sassano	SA	40.3356	15.5608	VII
Serino	AV	40.8525	14.8728	VII
Solofra	AV	40.8283	14.8483	VII
Spinazzola	BA	40.9683	16.0889	VII
Torre Orsaia	SA	40.1319	15.4739	VII
Tricarico	МТ	40.6217	16.1442	VII
Vallo della Lucania	SA	40.2283	15.2669	VII
Villa d'Agri	PZ	40.3575	15.8286	VII

Figura 9: Quadro dei danni causati dal terremoto del 16 Dicembre 1857. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
23 07 1930	00:08	41.05	15.367	10	10	509	6.7	Irpinia

La scossa avvenne il 23 luglio 1930 alle ore 0:08 e colpì un'area di circa 6.300 kmq compresa tra il fiume Garigliano, la valle del Crati, il Biferno e le Murge, area comprendente le zone dell'alta Irpinia, del Vulture, del Sannio, del Salernitano, del Napoletano, del Materano e dell'alta Puglia.

La scossa ebbe i suoi massimi effetti nella zona montuosa compresa tra Melfi e Ariano Irpino, nelle provincie di Benevento, Avellino e Foggia. I danni maggiori si ebbero ad Aquilonia, Lacedonia, Villanova del Battista e Trevico, dove il 70% circa delle abitazioni crollò totalmente. Le distruzioni furono aggravate dalla scarsa qualità delle tipologie edilizie.

In 68 paesi delle provincie di Avellino, Potenza, Foggia, Benevento e Salerno furono riscontrati crolli e lesioni profonde, estese a gran parte del patrimonio edilizio.

In provincia di Potenza, a Melfi crollò il 22% degli edifici e il 72% rimase lesionato; rimasero abitabili solo gli edifici della parte alta della città; fu chiusa la cattedrale, fu danneggiato l'ospedale e il castello di Federico II fu semidistrutto. A Rapolla rimasero lesionate tutte le case; a Rionero in Vulture, dove si ebbe il 90% degli edifici lesionati, crollarono molti edifici e molti altri risultarono inagibili; fra essi la chiesa madre ebbe la facciata nettamente distaccata e le navate laterali gravemente lesionate. A Ripacandida l'80% del patrimonio abitativo fu lesionato.

La scossa causò danni anche ad Avellino, a Benevento e a Napoli. A Benevento fu lesionato il 40% degli edifici, a Napoli gli edifici lesionati furono il 20%.

In molte località si aprirono fenditure nel terreno: vicino a Zungoli e a Vallata si formarono spaccature di oltre 500 m di lunghezza; a Trevico si formò una spaccatura simile a una voragine; a Melfi nella parte bassa del paese si aprì una voragine molto profonda di 5 m di larghezza. Altre spaccature furono osservate presso Villanova del Battista, Flumeri, Andretta, Tocco Caudio e San Giorgio la Molara. Numerose furono le frane e i crolli di massi: a San Giorgio la Mora una frana fece deviare per un breve tratto il fiume Tammaro in un nuovo alveo e strade e sentieri furono interrotti con tratti di percorso trascinati a valle anche di 8 m. A Savignano Irpino si osservò lo sprofondamento di una porzione di terreno collinoso. Ad Aquilonia Vecchia la scossa causò varie frane e furono osservate variazioni nella portata d'acqua dell'acquedotto della sorgente di Monte della Guardia. A Bisaccia si aprirono dei crepacci da cui uscirono fiammate di gas.

Tabella '	10: Piano quotato	del terremoto del 23	Luglio 193	0; per brevità,	i dati sono	tagliati al grac	lo VII.
Dati dal	Catalogo dei forti	terremoti: CFTI4Med	(http://sto	ring.ingv.it/cft	<u>i4med/)</u>		

Località	Provincia	Lat	Lon	Intensità
Aquilonia Vecchia	AV	40.9958	15.4939	Х
Lacedonia	AV	41.0494	15.4239	Х
Villanova del Battista	AV	41.1153	15.1583	Х
Anzano degli Irpini	FG	41.1203	15.2881	IX-X
Scampitella	AV	41.0931	15.2997	IX-X
Castel Baronia	AV	41.0483	15.1892	IX
Melfi	PZ	40.9936	15.6528	IX
Montecalvo Irpino	AV	41.1958	15.0336	IX

Località	Provincia	Lat	Lon	Intensità
Rocchetta Sant'Antonio	FG	41.1017	15.46	IX
San Nicola Baronia	AV	41.0575	15.2003	IX
Trevico	AV	41.0478	15.2336	IX
Barile	PZ	40.945	15.6731	VIII-IX
Flumeri	AV	41.0775	15.1483	VIII-IX
Guardia Lombardi	AV	40.9536	15.2086	VIII-IX
Melito Irpino	AV	41.1006	15.0269	VIII-IX
San Fele	PZ	40.8189	15.5406	VIII-IX
Accadia	FG	41.1581	15.3336	VIII
Airola	BN	41.0597	14.5544	VIII
Amorosi	BN	41.2019	14.4622	VIII
Apice	BN	41.1183	14.9308	VIII
Ariano Irpino	AV	41.1531	15.0894	VIII
Arpaia	BN	41.035	14.5469	VIII
Ascoli Satriano	FG	41.205	15.5611	VIII
Atella	PZ	40.8772	15.6531	VIII
Benevento	BN	41.1289	14.7769	VIII
Bisaccia	AV	41.0136	15.3753	VIII
Bonito	AV	41.1017	15.0039	VIII
Bovino	FG	41.2508	15.3417	VIII
Buonalbergo	BN	41.2222	14.98	VIII
Calitri	AV	40.9	15.4353	VIII
Calvi	BN	41.0717	14.8656	VIII
Cancellara	PZ	40.7308	15.9231	VIII
Candela	FG	41.1358	15.515	VIII
Carife	AV	41.0275	15.2092	VIII
Castelfranco in Miscano	BN	41.2969	15.085	VIII
Castelnuovo di Conza	SA	40.8153	15.32	VIII
Cervinara	AV	41.0211	14.6167	VIII
Deliceto	FG	41.2219	15.3864	VIII
Dentecane	AV	41.0358	14.8939	VIII
Durazzano	BN	41.0628	14.4464	VIII
Filiano	PZ	40.8094	15.7075	VIII
Frigento	AV	41.0114	15.0989	VIII

Località	Provincia	Lat	Lon	Intensità
Gesualdo	AV	41.0058	15.0694	VIII
Ginestra	PZ	40.9297	15.7342	VIII
Greci	AV	41.2503	15.1692	VIII
Grottaminarda	AV	41.0689	15.0575	VIII
Lavello	PZ	41.0464	15.795	VIII
Mercogliano	AV	40.9178	14.7347	VIII
Mirabella Eclano	AV	41.0422	14.9961	VIII
Montaguto	AV	41.2481	15.2508	VIII
Monteleone di Puglia	FG	41.1658	15.2589	VIII
Monteverde	AV	40.9989	15.535	VIII
Pellezzano	SA	40.7247	14.7575	VIII
Pescopagano	PZ	40.8356	15.3986	VIII
Rapolla	PZ	40.9753	15.675	VIII
Rionero in Vulture	PZ	40.9239	15.6739	VIII
Ripacandida	PZ	40.91	15.7231	VIII
Rotondi	AV	41.0308	14.5967	VIII
Ruvo del Monte	PZ	40.8475	15.5397	VIII
San Martino Sannita	BN	41.0653	14.8364	VIII
San Sossio Baronia	AV	41.07	15.2006	VIII
Sant'Agata di Puglia	FG	41.1503	15.3794	VIII
Sant'Angelo a Cupolo	BN	41.0689	14.8039	VIII
Savignano di Puglia	AV	41.2278	15.1811	VIII
Terra Murata	BN	41.0611	14.4547	VIII
Tocco Caudio	BN	41.1236	14.6269	VIII
Vallata	AV	41.0336	15.2525	VIII
Zungoli	AV	41.1233	15.2025	VIII
Acerenza	PZ	40.7956	15.94	VII-VIII
Acerra	NA	40.9431	14.3728	VII-VIII
Alvignano	CE	41.2447	14.3375	VII-VIII
Atripalda	AV	40.9186	14.835	VII-VIII
Avellino	AV	40.9142	14.7906	VII-VIII
Avigliano	PZ	40.7303	15.7169	VII-VIII
Baiano	AV	40.9506	14.6175	VII-VIII
Bella	PZ	40.7583	15.5378	VII-VIII

Località	Provincia	Lat	Lon	Intensità
Bucciano	BN	41.0753	14.5733	VII-VIII
Capodimonte	NA	40.8697	14.2497	VII-VIII
Casalbore	AV	41.2322	15.0119	VII-VIII
Castelvenere	BN	41.2339	14.5458	VII-VIII
Cava de' Tirreni	SA	40.7003	14.7061	VII-VIII
Cervino	CE	41.0403	14.4222	VII-VIII
Conza della Campania	AV	40.87	15.3306	VII-VIII
Coperchia	SA	40.7194	14.765	VII-VIII
Foglianise	BN	41.1642	14.6667	VII-VIII
Forchia	BN	41.0297	14.5367	VII-VIII
Frasso Telesino	BN	41.1558	14.5269	VII-VIII
Ginestra degli Schiavoni	BN	41.2778	15.0403	VII-VIII
Marcianise	CE	41.0333	14.2947	VII-VIII
Melizzano	BN	41.16	14.5047	VII-VIII
Meta	NA	40.64	14.4158	VII-VIII
Moiano	BN	41.0803	14.5436	VII-VIII
Molinara	BN	41.2953	14.9083	VII-VIII
Orsara di Puglia	FG	41.2806	15.2656	VII-VIII
Paduli	BN	41.1642	14.8797	VII-VIII
Pago Veiano	BN	41.2472	14.8714	VII-VIII
Paolisi	BN	41.0361	14.5797	VII-VIII
Paupisi	BN	41.1947	14.6661	VII-VIII
Pescolamazza	BN	41.2336	14.8117	VII-VIII
Piano di Sorrento	NA	40.6353	14.4083	VII-VIII
Polvica	SA	40.6944	14.6414	VII-VIII
Reino	BN	41.2908	14.8236	VII-VIII
San Felice a Cancello	CE	41.0117	14.485	VII-VIII
San Giorgio del Sannio	BN	41.0628	14.8544	VII-VIII
San Nazzaro	BN	41.0508	14.8564	VII-VIII
Sant'Agnello	NA	40.6308	14.3981	VII-VIII
Scisciano	NA	40.9158	14.485	VII-VIII
Solopaca	BN	41.1917	14.5483	VII-VIII
Sturno	AV	41.0192	15.1092	VII-VIII
Tramonti	SA	40.6944	14.6414	VII-VIII

Località	Provincia	Lat	Lon	Intensità
Vallesaccarda	AV	41.0633	15.2528	VII-VIII
Venosa	PZ	40.9611	15.8183	VII-VIII
Albano di Lucania	PZ	40.5844	16.0361	VII
Altavilla Irpina	AV	41.0064	14.7789	VII
Andretta	AV	40.9317	15.3233	VII
Angri	SA	40.7375	14.5714	VII
Apollosa	BN	41.0928	14.7014	VII
Arpaise	BN	41.0294	14.7436	VII
Aversa	CE	40.9736	14.2067	VII
Baragiano	PZ	40.6811	15.5911	VII
Baronissi	SA	40.7456	14.77	VII
Bonea	BN	41.0753	14.6181	VII
Boscotrecase	NA	40.775	14.4664	VII
Caiazzo	CE	41.1767	14.3669	VII
Campinola	SA	40.7042	14.6422	VII
Campoli del Monte Taburno	BN	41.1306	14.6461	VII
Canosa di Puglia	BA	41.2228	16.0664	VII
Capriglia	SA	40.7319	14.7594	VII
Capua	CE	41.1056	14.2139	VII
Carinola	CE	41.1878	13.9778	VII
Casola di Napoli	NA	40.6944	14.53	VII
Castel Campagnano	CE	41.1817	14.4519	VII
Castelluccio dei Sauri	FG	41.3039	15.4764	VII
Castelpagano	BN	41.3992	14.8064	VII
Castelpoto	BN	41.14	14.7044	VII
Cautano	BN	41.1492	14.6367	VII
Ceppaloni	BN	41.0444	14.76	VII
Cerignola	FG	41.2636	15.8981	VII
Cerreto Sannita	BN	41.2844	14.5597	VII
Cesarano	SA	40.6983	14.6128	VII
Chiusano di San Domenico	AV	40.9322	14.9167	VII
Cicciano	NA	40.9622	14.5378	VII
Circello	BN	41.3569	14.8081	VII

Località	Provincia	Lat	Lon	Intensità
Colle Sannita	BN	41.3639	14.8331	VII
Dragoni	CE	41.2731	14.3042	VII
Faicchio	BN	41.2772	14.4789	VII
Fisciano	SA	40.7703	14.7986	VII
Foggiano	PZ	40.9569	15.5736	VII
Foiano di Val Fortore	BN	41.3519	14.98	VII
Forino	AV	40.8608	14.7375	VII
Formicola	CE	41.2106	14.2322	VII
Fragneto l'Abate	BN	41.2589	14.785	VII
Frattamaggiore	NA	40.9408	14.2722	VII
Genzano di Lucania	PZ	40.8486	16.0317	VII
Gete	SA	40.6922	14.6489	VII
Gragnano	NA	40.6886	14.5203	VII
Gravina in Puglia	BA	40.8189	16.42	VII
Grumo Nevano	NA	40.9375	14.2608	VII
Guardia Sanframondi	BN	41.255	14.5964	VII
Laterza	ТА	40.6244	16.7964	VII
Limatola	BN	41.14	14.3928	VII
Liveri	NA	40.9033	14.5669	VII
Lucera	FG	41.5075	15.335	VII
Maddaloni	CE	41.0381	14.3867	VII
Manocalzati	AV	40.9408	14.8478	VII
Marigliano	NA	40.9242	14.4575	VII
Marzano Appio	CE	41.3164	14.0397	VII
Marzano di Nola	AV	40.9022	14.5833	VII
Maschito	PZ	40.9083	15.8308	VII
Massa Lubrense	NA	40.61	14.3428	VII
Mercato San Severino	SA	40.785	14.7592	VII
Minervino Murge	BA	41.0858	16.0786	VII
Montefalcone di Val Fortore	BN	41.3253	15.01	VII
Montefusco	AV	41.0369	14.8547	VII
Montella	AV	40.8417	15.0181	VII
Montemarano	AV	40.9186	14.9967	VII
Montemiletto	AV	41.0114	14.9089	VII

Località	Provincia	Lat	Lon	Intensità
Montemilone	PZ	41.0317	15.9719	VII
Montesarchio	BN	41.0642	14.6394	VII
Monticchio Bagni	PZ	40.9486	15.5692	VII
Muro Lucano	PZ	40.7525	15.4856	VII
Napoli	NA	40.8553	14.2603	VII
Nocera Inferiore	SA	40.7428	14.6417	VII
Nola	NA	40.9256	14.5286	VII
Orta Nova	FG	41.3272	15.7069	VII
Oscato	SA	40.7667	14.7483	VII
Ottaviano	NA	40.8486	14.4778	VII
Palazzo San Gervasio	PZ	40.9303	15.9861	VII
Palma Campania	NA	40.8683	14.5539	VII
Pannarano	BN	41.0097	14.7036	VII
Panni	FG	41.2217	15.275	VII
Paternopoli	AV	40.9714	15.0317	VII
Piana di Caiazzo	CE	41.1678	14.3325	VII
Pietrelcina	BN	41.1969	14.8478	VII
Pignataro Maggiore	CE	41.1903	14.1722	VII
Pimonte	NA	40.6736	14.5136	VII
Poggiomarino	NA	40.7981	14.5406	VII
Poggiorsini	BA	40.9153	16.2539	VII
Pompei	NA	40.7486	14.5008	VII
Pontelandolfo	BN	41.2858	14.6928	VII
Pratola Serra	AV	40.9864	14.8517	VII
Quindici	AV	40.8622	14.6483	VII
Roccamonfina	CE	41.2883	13.9831	VII
Roccapiemonte	SA	40.7622	14.6925	VII
Roccarainola	NA	40.9714	14.5614	VII
Ruviano	CE	41.2094	14.4094	VII
Salerno	SA	40.6786	14.7653	VII
San Gennaro Vesuviano	NA	40.8606	14.5272	VII
San Giacomo	BN	41.0628	14.845	VII
San Giorgio la Molara	BN	41.2703	14.9186	VII
San Leucio del Sannio	BN	41.0733	14.7575	VII

Località	Provincia	Lat	Lon	Intensità
San Lorenzello	BN	41.2767	14.5428	VII
San Marco dei Cavoti	BN	41.3083	14.8783	VII
San Nicola Manfredi	BN	41.0711	14.8244	VII
San Salvatore Telesino	BN	41.2358	14.4986	VII
Sant'Agata de' Goti	BN	41.0883	14.5042	VII
Santa Maria a Vico	CE	41.0278	14.4625	VII
Sant'Andrea di Conza	AV	40.8428	15.37	VII
Sant'Angelo d'Alife	CE	41.3625	14.2597	VII
Sant'Angelo dei Lombardi	AV	40.9269	15.1764	VII
Sarno	SA	40.8133	14.6211	VII
Saviano	NA	40.9089	14.5108	VII
Solofra	AV	40.8283	14.8483	VII
Sorrento	NA	40.6242	14.3781	VII
Spinazzola	BA	40.9683	16.0889	VII
Striano	NA	40.8136	14.5753	VII
Taurasi	AV	41.0081	14.9575	VII
Telese	BN	41.2158	14.5267	VII
Teora	AV	40.8539	15.2547	VII
Tolve	PZ	40.6958	16.0189	VII
Tora e Piccilli	CE	41.3375	14.0225	VII
Troia	FG	41.3606	15.3086	VII
Vico Equense	NA	40.6625	14.4256	VII
Vitulano	BN	41.1736	14.6456	VII
Volturara Irpina	AV	40.8778	14.9156	VII

Figura 10: Quadro dei danni causati dal terremoto del 23 Luglio 1930. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
23 11 1980	18:34	40.85	15.283	10	10	1395	6.7	Irpinia- Basilicata

La scossa distruttiva avvenne il 23 novembre 1980 alle ore 18:35 GMT circa ed ebbe effetti devastanti in una vasta area dell'Appennino meridionale, in particolare in Irpinia e nelle zone adiacenti delle province di Salerno e Potenza. L'area dei massimi effetti comprese le alte valli dell'Ofanto e del Sele; le distruzioni gravi e diffuse si estesero a N fino alle alte valli del Sabato e del Calore e a Sud fino ai rilievi salernitani e potentini; l'area dei danni comprese quasi tutta la Campania e la Basilicata e parte della Puglia; l'area in cui la scossa fu sentita risultò estesa dalla Pianura Padana alla Sicilia.

Furono quasi completamente distrutti i paesi di Castelnuovo di Conza, Conza della Campania, Laviano, Lioni, Sant'Angelo dei Lombardi e Santomenna; distruzioni estese a oltre il 50% del costruito furono riscontrate a Balvano, Calabritto, Caposele, Guardia Lombardi, Pescopagano, San Mango sul Calore, Senerchia, Teora e Torella dei Lombardi. In circa altri 50 comuni furono rilevati crolli e gravi lesioni, 450 circa subirono danni più leggeri. Nelle regioni Campania e Basilicata, su un totale di 1.843.304 abitazioni censite, 77.342 risultarono distrutte, 275.263 gravemente danneggiate, 479.973 lievemente lesionate.

Numerose altre forti scosse si succedettero nelle ore e nei giorni immediatamente seguenti e si protrassero quindi per diversi mesi. La replica più forte avvenne il 14 febbraio 1981 alle ore 18:30 GMT; fu localizzata nei Monti d'Avella, a circa 55 km a Ovest-Nordovest dell'area epicentrale della scossa principale e causò nuovi crolli e altre vittime.

Furono segnalate spaccature nel terreno, in alcuni casi molto profonde, a Campagna, Conza della Campania, Rocca San Felice, Valva e Volturara Irpina. Nei pressi di Caposele, a Senerchia e a Calitri il terremoto riattivò movimenti franosi preesistenti, che causarono il crollo di molte case; frane di minore entità avvennero anche a Valva e a Rocca San Felice.

Località	Provincia	Lat	Lon	Intensità
Castelnuovo di Conza	SA	40.8153	15.32	х
Conza della Campania	AV	40.87	15.3306	х
Laviano	SA	40.7842	15.3047	х
Lioni	AV	40.8761	15.1867	х
Sant'Angelo dei Lombardi	AV	40.9269	15.1764	х
Santomenna	SA	40.8069	15.3206	х
Abbazia di San Guglielmo al Goleto	AV	40.9064	15.1444	A
Balvano	PZ	40.6503	15.5119	IX
Calabritto	AV	40.7858	15.2181	IX
Caposele	AV	40.8128	15.225	IX
Guardia Lombardi	AV	40.9536	15.2086	IX
Pescopagano	PZ	40.8356	15.3986	IX

Tabella 11: Piano quotato del terremoto del 23 Novembre 1980; per brevità, i dati sono tagliati a	il grado
VII. Dati dal Catalogo dei forti terremoti: CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>	

Località	Provincia	Lat	Lon	Intensità
San Mango sul Calore	AV	40.9606	14.9744	IX
Senerchia	AV	40.7394	15.2025	IX
Teora	AV	40.8539	15.2547	IX
Torella dei Lombardi	AV	40.9408	15.115	IX
Colliano	SA	40.7261	15.2894	VIII-IX
Romagnano al Monte	SA	40.6272	15.4569	VIII-IX
Salvitelle	SA	40.5911	15.4597	VIII-IX
San Michele di Serino	AV	40.8769	14.8564	VIII-IX
Acerno	SA	40.7353	15.0581	VIII
Atena Lucana	SA	40.4539	15.5525	VIII
Atripalda	AV	40.9186	14.835	VIII
Auletta	SA	40.5583	15.4256	VIII
Avellino	AV	40.9142	14.7906	VIII
Baronissi	SA	40.7456	14.77	VIII
Bella	PZ	40.7583	15.5378	VIII
Bisaccia	AV	41.0136	15.3753	VIII
Brienza	PZ	40.4778	15.6283	VIII
Buccino	SA	40.6325	15.3756	VIII
Calitri	AV	40.9	15.4353	VIII
Calvanico	SA	40.7739	14.8275	VIII
Campagna	SA	40.6653	15.1067	VIII
Castelgrande	PZ	40.7853	15.4308	VIII
Celzi	AV	40.8544	14.7506	VIII
Fisciano	SA	40.7703	14.7986	VIII
Marsico Nuovo	PZ	40.4214	15.7347	VIII
Materdomini	AV	40.8156	15.2344	VIII
Mirabella Eclano	AV	41.0422	14.9961	VIII
Montella	AV	40.8417	15.0181	VIII
Montoro Inferiore	AV	40.8197	14.7592	VIII
Montoro Superiore	AV	40.8169	14.7997	VIII
Morra De Sanctis	AV	40.9278	15.2442	VIII
Muro Lucano	PZ	40.7525	15.4856	VIII
Pertosa	SA	40.5419	15.4497	VIII
Polla	SA	40.5139	15.4936	VIII

Località	Provincia	Lat	Lon	Intensità
Quaglietta	AV	40.7444	15.2361	VIII
Ricigliano	SA	40.6681	15.4822	VIII
Ruvo del Monte	PZ	40.8475	15.5397	VIII
Salza Irpina	AV	40.9189	14.89	VIII
San Gregorio Magno	SA	40.6561	15.4036	VIII
San Pietro al Tanagro	SA	40.4553	15.4817	VIII
Sant'Andrea di Conza	AV	40.8428	15.37	VIII
Serino	AV	40.8525	14.8728	VIII
Solofra	AV	40.8283	14.8483	VIII
Sorbo Serpico	AV	40.9164	14.8864	VIII
Valva	SA	40.7378	15.2703	VIII
Vietri di Potenza	PZ	40.5992	15.5083	VIII
Villaggio Laceno	AV	40.8042	15.1164	VIII
Villamaina	AV	40.9692	15.09	VIII
Volturara Irpina	AV	40.8778	14.9156	VIII
Carife	AV	41.0275	15.2092	VII-VIII
Cassano Irpino	AV	40.8706	15.0267	VII-VIII
Mercato San Severino	SA	40.785	14.7592	VII-VIII
Accadia	FG	41.1581	15.3336	VII
Afragola	NA	40.9208	14.3089	VII
Aiello del Sabato	AV	40.8864	14.8192	VII
Airola	BN	41.0597	14.5544	VII
Altavilla Irpina	AV	41.0064	14.7789	VII
Amorosi	BN	41.2019	14.4622	VII
Andretta	AV	40.9317	15.3233	VII
Angri	SA	40.7375	14.5714	VII
Anzano di Puglia	FG	41.1203	15.2881	VII
Apice	BN	41.1183	14.9308	VII
Apollosa	BN	41.0928	14.7014	VII
Aquilonia	AV	40.9861	15.4767	VII
Arienzo	CE	41.0217	14.4989	VII
Arpaia	BN	41.035	14.5469	VII
Arpaise	BN	41.0294	14.7436	VII
Atella	PZ	40.8772	15.6531	VII

Località	Provincia	Lat	Lon	Intensità
Avella	AV	40.9606	14.6014	VII
Bagnoli Irpino	AV	40.8294	15.0694	VII
Baiano	AV	40.9506	14.6175	VII
Baragiano	PZ	40.6811	15.5911	VII
Battipaglia	SA	40.6069	14.9828	VII
Benevento	BN	41.1289	14.7769	VII
Bonea	BN	41.0753	14.6181	VII
Bonito	AV	41.1017	15.0039	VII
Boscotrecase	NA	40.775	14.4664	VII
Bovino	FG	41.2508	15.3417	VII
Bracigliano	SA	40.8219	14.7117	VII
Bucciano	BN	41.0753	14.5733	VII
Buonalbergo	BN	41.2222	14.98	VII
Caggiano	SA	40.5675	15.4886	VII
Cairano	AV	40.8953	15.3692	VII
Calvello	PZ	40.4753	15.8489	VII
Calvi	BN	41.0717	14.8656	VII
Camaldoli	SA	40.6525	15.1767	VII
Candela	FG	41.1358	15.515	VII
Candida	AV	40.9417	14.8753	VII
Capriglia Irpina	AV	40.9583	14.7733	VII
Capua	CE	41.1056	14.2139	VII
Carinola	CE	41.1878	13.9778	VII
Casalbore	AV	41.2322	15.0119	VII
Casalduni	BN	41.2597	14.695	VII
Casalnuovo di Napoli	NA	40.9147	14.3528	VII
Casola di Napoli	NA	40.6944	14.53	VII
Castel Baronia	AV	41.0483	15.1892	VII
Castelfranci	AV	40.9314	15.0431	VII
Castelfranco in Miscano	BN	41.2969	15.085	VII
Castellammare di Stabia	NA	40.7	14.4861	VII
Castello	AV	40.8528	14.7603	VII
Castelpagano	BN	41.3992	14.8064	VII
Castelvenere	BN	41.2339	14.5458	VII

Località	Provincia	Lat	Lon	Intensità
Castelvetere sul Calore	AV	40.9286	14.9864	VII
Castiglione del Genovesi	SA	40.7244	14.8486	VII
Cava de' Tirreni	SA	40.7003	14.7061	VII
Ceppaloni	BN	41.0444	14.76	VII
Cerreto Sannita	BN	41.2844	14.5597	VII
Cervinara	AV	41.0211	14.6167	VII
Cesinali	AV	40.8947	14.8289	VII
Chianche	AV	41.0464	14.7892	VII
Chiusano di San Domenico	AV	40.9322	14.9167	VII
Circello	BN	41.3569	14.8081	VII
Contrada	AV	40.8672	14.775	VII
Controne	SA	40.5089	15.205	VII
Contursi Terme	SA	40.6492	15.2378	VII
Corleto Perticara	PZ	40.3825	16.0411	VII
Deliceto	FG	41.2219	15.3864	VII
Domicella	AV	40.8789	14.5864	VII
Durazzano	BN	41.0628	14.4464	VII
Eboli	SA	40.6172	15.0547	VII
Filiano	PZ	40.8094	15.7075	VII
Flumeri	AV	41.0775	15.1483	VII
Fontanarosa	AV	41.0158	15.0194	VII
Forchia	BN	41.0297	14.5367	VII
Forino	AV	40.8608	14.7375	VII
Fragneto l'Abate	BN	41.2589	14.785	VII
Fragneto Monforte	BN	41.2461	14.7608	VII
Frattamaggiore	NA	40.9408	14.2722	VII
Frattaminore	NA	40.9561	14.2708	VII
Frigento	AV	41.0114	15.0989	VII
Gesualdo	AV	41.0058	15.0694	VII
Giffoni Sei Casali	SA	40.7175	14.9036	VII
Giffoni Valle Piana	SA	40.7158	14.9425	VII
Gragnano	NA	40.6886	14.5203	VII
Grassano	MT	40.6317	16.2803	VII
Greci	AV	41.2503	15.1692	VII

Località	Provincia	Lat	Lon	Intensità
Grottaminarda	AV	41.0689	15.0575	VII
Grottolella	AV	40.9719	14.7869	VII
Lacedonia	AV	41.0494	15.4239	VII
Lapio	AV	40.9811	14.9492	VII
Lauro	AV	40.8792	14.6325	VII
Liveri	NA	40.9033	14.5669	VII
Luogosano	AV	40.985	14.9922	VII
Maddaloni	CE	41.0381	14.3867	VII
Manocalzati	AV	40.9408	14.8478	VII
Marigliano	NA	40.9242	14.4575	VII
Marzano di Nola	AV	40.9022	14.5833	VII
Melfi	PZ	40.9936	15.6528	VII
Melito Irpino	AV	41.1006	15.0269	VII
Melizzano	BN	41.16	14.5047	VII
Mercogliano	AV	40.9178	14.7347	VII
Meta	NA	40.64	14.4158	VII
Mignano Monte Lungo	CE	41.4044	13.9825	VII
Moiano	BN	41.0803	14.5436	VII
Molinara	BN	41.2953	14.9083	VII
Montaguto	AV	41.2481	15.2508	VII
Montecalvo Irpino	AV	41.1958	15.0336	VII
Montecorvino Pugliano	SA	40.6786	14.9458	VII
Montefalcione	AV	40.9606	14.8831	VII
Monteforte Irpino	AV	40.8919	14.7114	VII
Montefredane	AV	40.9592	14.8136	VII
Montefusco	AV	41.0369	14.8547	VII
Monteleone di Puglia	FG	41.1658	15.2589	VII
Montemarano	AV	40.9186	14.9967	VII
Montemiletto	AV	41.0114	14.9089	VII
Montemurro	PZ	40.2969	15.9908	VII
Montesarchio	BN	41.0642	14.6394	VII
Moschiano	AV	40.8736	14.6586	VII
Mugnano del Cardinale	AV	40.9411	14.6394	VII
Napoli	NA	40.8553	14.2603	VII

Località	Provincia	Lat	Lon	Intensità
Nocera Inferiore	SA	40.7428	14.6417	VII
Nocera Superiore	SA	40.7425	14.6728	VII
Nola	NA	40.9256	14.5286	VII
Nusco	AV	40.8867	15.0847	VII
Olevano sul Tusciano	SA	40.6567	15.0231	VII
Oliveto Citra	SA	40.6903	15.2317	VII
Orsara di Puglia	FG	41.2806	15.2656	VII
Ospedaletto d'Alpinolo	AV	40.9386	14.7442	VII
Ottati	SA	40.4622	15.3158	VII
Paduli	BN	41.1642	14.8797	VII
Pagani	SA	40.7433	14.6158	VII
Pago del Vallo di Lauro	AV	40.8969	14.6069	VII
Palazzo San Gervasio	PZ	40.9303	15.9861	VII
Palma Campania	NA	40.8683	14.5539	VII
Palomonte	SA	40.6617	15.2919	VII
Pannarano	BN	41.0097	14.7036	VII
Panni	FG	41.2217	15.275	VII
Paolisi	BN	41.0361	14.5797	VII
Parolise	AV	40.9303	14.8819	VII
Paternopoli	AV	40.9714	15.0317	VII
Paupisi	BN	41.1947	14.6661	VII
Pellezzano	SA	40.7247	14.7575	VII
Petina	SA	40.5325	15.3747	VII
Petruro Irpino	AV	41.0308	14.7958	VII
Piano di Sorrento	NA	40.6353	14.4083	VII
Pianura	NA	40.8625	14.1769	VII
Pietradefusi	AV	41.0364	14.8889	VII
Pietramelara	CE	41.2708	14.1872	VII
Pietrastornina	AV	40.9911	14.7281	VII
Pietrelcina	BN	41.1969	14.8478	VII
Pomigliano d'Arco	NA	40.9094	14.3872	VII
Ponte	BN	41.2133	14.6956	VII
Pontecagnano-Faiano	SA	40.6461	14.8714	VII
Potenza	PZ	40.6378	15.8053	VII

Località	Provincia	Lat	Lon	Intensità
Prata di Principato Ultra	AV	40.9861	14.8406	VII
Pratola Serra	AV	40.9864	14.8517	VII
Quindici	AV	40.8622	14.6483	VII
Rapone	PZ	40.8464	15.5014	VII
Rionero in Vulture	PZ	40.9239	15.6739	VII
Roccabascerana	AV	41.0172	14.7164	VII
Roccapiemonte	SA	40.7622	14.6925	VII
Roccarainola	NA	40.9714	14.5614	VII
Rocca San Felice	AV	40.9511	15.1642	VII
Rocchetta Sant'Antonio	FG	41.1017	15.46	VII
Rotondi	AV	41.0308	14.5967	VII
Ruoti	PZ	40.7172	15.6794	VII
Sala Consilina	SA	40.3981	15.5958	VII
Salerno	SA	40.6786	14.7653	VII
San Cipriano Picentino	SA	40.7189	14.8711	VII
San Fele	PZ	40.8189	15.5406	VII
San Felice a Cancello	CE	41.0117	14.485	VII
San Giorgio del Sannio	BN	41.0628	14.8544	VII
San Giorgio la Molara	BN	41.2703	14.9186	VII
San Leucio del Sannio	BN	41.0733	14.7575	VII
San Lorenzello	BN	41.2767	14.5428	VII
San Lorenzo Maggiore	BN	41.2508	14.6258	VII
San Mango Piemonte	SA	40.7033	14.8336	VII
San Marco dei Cavoti	BN	41.3083	14.8783	VII
San Martino Sannita	BN	41.0653	14.8364	VII
San Martino Valle Caudina	AV	41.0231	14.6631	VII
San Nazzaro	BN	41.0508	14.8564	VII
San Nicola Baronia	AV	41.0575	15.2003	VII
San Nicola Manfredi	BN	41.0711	14.8244	VII
San Potito Ultra	AV	40.9269	14.8711	VII
San Prisco	CE	41.0856	14.2789	VII
San Rufo	SA	40.4336	15.4639	VII
San Salvatore Telesino	BN	41.2358	14.4986	VII
San Sossio Baronia	AV	41.07	15.2006	VII

Località	Provincia	Lat	Lon	Intensità
Sant'Agata de' Goti	BN	41.0883	14.5042	VII
Sant'Agata di Puglia	FG	41.1503	15.3794	VII
Sant'Agnello	NA	40.6308	14.3981	VII
Santa Lucia di Serino	AV	40.8697	14.8758	VII
Santa Maria a Vico	CE	41.0278	14.4625	VII
Santa Maria Capua Vetere	CE	41.0778	14.2556	VII
Sant'Angelo a Cupolo	BN	41.0689	14.8039	VII
Sant'Angelo a Fasanella	SA	40.4553	15.3442	VII
Sant'Angelo all'Esca	AV	41.0058	14.9939	VII
Sant'Angelo a Scala	AV	40.9742	14.7403	VII
Sant'Angelo le Fratte	PZ	40.545	15.5583	VII
Santa Paolina	AV	41.025	14.8469	VII
Sant'Arcangelo Trimonte	BN	41.1661	14.9394	VII
Sant'Arsenio	SA	40.4689	15.4814	VII
Sant'Egidio del Monte Albino	SA	40.7314	14.6011	VII
Santo Stefano del Sole	AV	40.8931	14.8686	VII
Santuario di Montevergine	AV	40.9183	14.7489	VII
San Valentino Torio	SA	40.7919	14.6006	VII
Savignano Irpino	AV	41.2278	15.1811	VII
Savoia di Lucania	PZ	40.5686	15.5511	VII
Scampitella	AV	41.0931	15.2997	VII
Siano	SA	40.8006	14.6931	VII
Sicignano degli Alburni	SA	40.5583	15.3083	VII
Solopaca	BN	41.1917	14.5483	VII
Sorrento	NA	40.6242	14.3781	VII
Sperone	AV	40.9517	14.6031	VII
Sturno	AV	41.0192	15.1092	VII
Summonte	AV	40.9492	14.7469	VII
Taurano	AV	40.8839	14.6336	VII
Taurasi	AV	41.0081	14.9575	VII
Teano	CE	41.2506	14.0678	VII
Tito	PZ	40.5819	15.6753	VII
Tocco Caudio	BN	41.1236	14.6269	VII
Torre le Nocelle	AV	41.0225	14.9092	VII

Località	Provincia	Lat	Lon	Intensità
Torrioni	AV	41.0325	14.8122	VII
Tramonti	SA	40.6944	14.6414	VII
Trecase	NA	40.7706	14.4236	VII
Trevico	AV	41.0478	15.2336	VII
Trivigno	PZ	40.5803	15.99	VII
Tufo	AV	41.0103	14.8206	VII
Vallata	AV	41.0336	15.2525	VII
Vallesaccarda	AV	41.0633	15.2528	VII
Venticano	AV	41.0458	14.9114	VII
Vietri sul Mare	SA	40.67	14.7289	VII
Villanova del Battista	AV	41.1153	15.1583	VII
Visciano	NA	40.9244	14.5831	VII
Zungoli	AV	41.1233	15.2025	VII

Figura 11: Quadro dei danni causati dal terremoto del 23 Novembre 1980. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
5 5 1990	07:21	40.65	15.92	6.5	7	1374	5.8	Potentino

Tabella 12: Piano quotato del terremoto del 5 Maggio 1990; per brevità, i dati sono tagliati al grado 5-6. Dati dal Catalogo dei forti terremoti: CFTI4Med (<u>http://storing.ingv.it/cfti4med/)</u>

Località	Lat	Lon	Intensità
Cancellara	40.731	15.923	7
Castiglione del Genovesi	40.725	14.849	7
Missanello	40.281	16.166	7
Nocera Superiore	40.743	14.673	7
Paupisi	41.195	14.666	7
Rapolla	40.976	15.675	7
Sacco	40.378	15.377	7
Acerenza	40.796	15.940	6-7
Altavilla Silentina	40.530	15.131	6-7
Anzi	40.516	15.924	6-7
Atena Lucana	40.454	15.553	6-7
Avigliano	40.730	15.717	6-7
Baronissi	40.746	14.770	6-7
Bellosguardo	40.422	15.313	6-7
Buonalbergo	41.222	14.980	6-7
Castelfranci	40.931	15.043	6-7
Castelfranco in Miscano	41.297	15.085	6-7
Cirigliano	40.392	16.172	6-7
Frattamaggiore	40.941	14.272	6-7
Grottole	40.600	16.385	6-7
Matera	40.665	16.607	6-7
Monte San Giacomo	40.342	15.542	6-7
Pagani	40.744	14.616	6-7
Pannarano	41.010	14.704	6-7
Pietragalla	40.747	15.881	6-7
Ruoti	40.717	15.680	6-7
Salvitelle	40.591	15.460	6-7
San Lorenzo Bellizzi	39.888	16.329	6-7
San Marcellino	40.987	14.174	6-7

Località	Lat	Lon	Intensità
San Martino Sannita	41.065	14.837	6-7
Sant'Angelo le Fratte	40.545	15.559	6-7
Sassano	40.336	15.561	6-7
Savoia di Lucania	40.569	15.551	6-7
Scampitella	41.093	15.300	6-7
Scanzano Jonico	40.248	16.699	6-7
Serre	40.582	15.185	6-7
Sparanise	41.189	14.097	6-7
Tolve	40.696	16.019	6-7
Trivigno	40.580	15.990	6-7
Vaglio Basilicata	40.666	15.921	6-7
Valsinni	40.169	16.443	6-7
Venafro	41.485	14.044	6-7
Zungoli	41.123	15.203	6-7
Andretta	40.932	15.323	6
Anzano di Puglia	41.120	15.288	6
Apice Nuovo	41.119	14.914	6
Apollosa	41.093	14.701	6
Atella	40.877	15.653	6
Balvano	40.650	15.512	6
Banzi	40.861	16.014	6
Baragiano	40.681	15.591	6
Barile	40.945	15.673	6
Battipaglia	40.607	14.983	6
Bella	40.759	15.538	6
Boscotrecase	40.775	14.467	6
Brindisi Montagna	40.609	15.939	6
Calciano	40.588	16.193	6
Calitri	40.900	15.435	6
Calvanico	40.774	14.828	6
Calvi	41.072	14.866	6
Campomaggiore	40.565	16.072	6
Capodrise	41.042	14.300	6
Castel Lagopesole	40.805	15.734	6

Località	Lat	Lon	Intensità
Castelmezzano	40.530	16.047	6
Cava de' Tirreni	40.700	14.706	6
Circello	41.357	14.808	6
Controne	40.509	15.205	6
Contursi Terme	40.649	15.238	6
Ferrandina	40.495	16.457	6
Filiano	40.809	15.708	6
Foiano di Val Fortore	41.352	14.980	6
Forchia	41.030	14.537	6
Gallicchio	40.288	16.139	6
Garaguso	40.548	16.227	6
Genzano di Lucania	40.849	16.032	6
Lapio	40.981	14.949	6
Laurenzana	40.459	15.971	6
Lettere (Piazza Roma)	40.704	14.545	6
Liveri	40.903	14.567	6
Marsico Nuovo	40.421	15.735	6
Melfi	40.994	15.653	6
Montalbano Jonico	40.290	16.567	6
Montesano sulla Marcellana	40.275	15.702	6
Oppido Lucano	40.764	15.993	6
Paterno	40.377	15.732	6
Perito	40.298	15.147	6
Picerno	40.640	15.638	6
Pietrapertosa	40.517	16.062	6
Pignola	40.573	15.787	6
Potenza	40.638	15.805	6
Quadrelle	40.949	14.640	6
Rapone	40.846	15.501	6
Rionero in Vulture	40.924	15.674	6
Ripacandida	40.910	15.723	6
Sala Consilina	40.398	15.596	6
San Chirico Nuovo	40.677	16.082	6
San Cipriano Picentino	40.719	14.871	6

Località	Lat	Lon	Intensità
San Fele	40.819	15.541	6
San Gregorio Magno	40.656	15.404	6
San Lorenzo Maggiore	41.251	14.626	6
San Pietro al Tanagro	40.455	15.482	6
San Potito Ultra	40.927	14.871	6
San Salvatore Telesino	41.236	14.499	6
Sant'Agata di Puglia	41.150	15.380	6
Sant'Arsenio	40.469	15.481	6
Sant'Egidio del Monte Albino	40.732	14.601	6
Santa Croce del Sannio	41.387	14.732	6
Sanza	40.242	15.551	6
Sarconi	40.247	15.890	6
Sasso di Castalda	40.488	15.677	6
Scafati	40.749	14.527	6
Siano	40.801	14.693	6
Solofra	40.829	14.849	6
Stigliano	40.403	16.229	6
Tito	40.582	15.675	6
Trevico	41.048	15.234	6
Tricarico	40.622	16.144	6
Tursi	40.247	16.471	6
Valle dell'Angelo	40.343	15.369	6
Venosa	40.961	15.818	6
Villanova del Battista	41.115	15.159	6
Abriola	40.507	15.813	5-6
Airola	41.060	14.554	5-6
Albanella	40.479	15.116	5-6
Albano di Lucania	40.584	16.036	5-6
Alfano	40.177	15.426	5-6
Altavilla Irpina	41.007	14.779	5-6
Angri	40.738	14.571	5-6
Aquara	40.443	15.254	5-6
Aquilonia	40.986	15.477	5-6
Armento	40.306	16.066	5-6

Località	Lat	Lon	Intensità
Arpaise	41.030	14.744	5-6
Auletta	40.559	15.426	5-6
Biccari	41.397	15.194	5-6
Bovino	41.251	15.342	5-6
Bracigliano	40.822	14.712	5-6
Brienza	40.478	15.629	5-6
Caggiano	40.568	15.489	5-6
Calvello	40.475	15.849	5-6
Campagna	40.665	15.107	5-6
Campoli del Monte Taburno	41.131	14.646	5-6
Candela	41.136	15.515	5-6
Canosa di Puglia	41.223	16.067	5-6
Сариа	41.106	14.214	5-6
Carbone	40.140	16.088	5-6
Casal Velino	40.188	15.110	5-6
Casalbore	41.232	15.012	5-6
Casandrino	40.935	14.249	5-6
Caselle in Pittari	40.172	15.546	5-6
Castel San Lorenzo	40.416	15.231	5-6
Castelgrande	40.785	15.431	5-6
Castellabate	40.279	14.953	5-6
Castelnuovo Cilento	40.218	15.178	5-6
Castelnuovo di Conza	40.815	15.320	5-6
Celle di San Vito	41.326	15.181	5-6
Colle Sannita	41.364	14.833	5-6
Corleto Perticara	40.383	16.041	5-6
Craco (Peschiera)	40.377	16.439	5-6
Episcopia	40.072	16.099	5-6
Fisciano	40.770	14.799	5-6
Forenza	40.859	15.855	5-6
Fragneto l'Abate	41.259	14.785	5-6
Ginosa	40.578	16.758	5-6
Giungano	40.394	15.107	5-6
Gorgoglione	40.393	16.145	5-6

Località	Lat	Lon	Intensità
Grassano	40.632	16.280	5-6
Gravina in Puglia	40.819	16.420	5-6
Grottaminarda	41.069	15.058	5-6
Grumento Nova	40.285	15.891	5-6
Grumo Nevano	40.938	14.261	5-6
Irsina	40.744	16.242	5-6
Lacedonia	41.050	15.424	5-6
Lagonegro	40.124	15.764	5-6
Laureana Cilento	40.300	15.039	5-6
Laurino	40.336	15.336	5-6
Lustra	40.287	15.070	5-6
Mariglianella	40.927	14.438	5-6
Marsicovetere	40.376	15.824	5-6
Moiano	41.080	14.544	5-6
Moliterno	40.240	15.868	5-6
Montalto Uffugo	39.405	16.158	5-6
Montecorvino (Pugliano)	40.679	14.946	5-6
Montescaglioso	40.552	16.667	5-6
Morigerati	40.139	15.555	5-6
Morra De Sanctis	40.928	15.244	5-6
Moschiano	40.874	14.659	5-6
Muro Lucano	40.753	15.486	5-6
Nola	40.926	14.529	5-6
Novi Velia	40.224	15.286	5-6
Olevano sul Tusciano (Ariano)	40.657	15.023	5-6
Oliveto Citra	40.691	15.232	5-6
Oliveto Lucano	40.534	16.185	5-6
Omignano	40.249	15.084	5-6
Paduli	41.164	14.880	5-6
Palazzo San Gervasio	40.930	15.986	5-6
Paolisi	41.036	14.580	5-6
Papasidero	39.871	15.906	5-6
Perdifumo	40.266	15.017	5-6
Pertosa	40.542	15.450	5-6

Località	Lat	Lon	Intensità
Pescopagano	40.836	15.399	5-6
Petruro Irpino	41.031	14.796	5-6
Pietrastornina	40.991	14.728	5-6
Poggiorsini	40.915	16.254	5-6
Polla	40.514	15.494	5-6
Pomarico	40.514	16.549	5-6
Pompei	40.749	14.501	5-6
Ponte	41.214	14.696	5-6
Roccanova	40.213	16.205	5-6
Roccaromana	41.273	14.223	5-6
Rocchetta Sant'Antonio	41.102	15.460	5-6
Ruvo del Monte	40.848	15.540	5-6
Salerno	40.679	14.765	5-6
San Chirico Raparo	40.190	16.075	5-6
San Giorgio la Molara	41.270	14.919	5-6
San Giovanni Rotondo	41.706	15.728	5-6
San Marzano sul Sarno	40.774	14.589	5-6
San Nicola Arcella	39.847	15.795	5-6
San Nicola Manfredi	41.071	14.825	5-6
Sant'Angelo a Fasanella	40.456	15.344	5-6
Sant'Arcangelo	40.245	16.274	5-6
Sapri	40.075	15.631	5-6
Satriano di Lucania	40.543	15.639	5-6
Savignano Irpino	41.228	15.181	5-6
Spinazzola	40.968	16.089	5-6
Stio	40.309	15.252	5-6
Teggiano	40.378	15.540	5-6
Torchiara	40.323	15.052	5-6
Tramutola	40.315	15.790	5-6
Vallesaccarda	41.064	15.253	5-6
Vietri sul Mare	40.670	14.729	5-6
Villaricca	40.921	14.194	5-6

Figura 12: Quadro dei danni causati dal terremoto del 5 Maggio 1990. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Data	Ora	Lat	Lon	Int epic.	Int max	Siti	Mw	Località
26 5 1991	12:26	40.65	15.81	6.5	7	597	5.1	Potentino

Tabella 13: Piano quotato del terremoto del 26 Maggio 1991; per brevità, i dati sono tagliati al grado 5. Dati dal Catalogo dei forti terremoti: CFTl4Med (<u>http://storing.ingv.it/cfti4med/)</u>

Località	Lat	Lon	1
Abb. S. Michele a Monticchio	40.936	15.617	7
Abriola	40.507	15.813	7
Accadia	41.158	15.334	6-7
Accettura	40.492	16.158	6-7
Acerenza	40.796	15.940	6-7
Acerno	40.735	15.058	6-7
Acquaviva delle Fonti	40.896	16.843	6-7
Afragola	40.921	14.309	6
Agerola (Pianillo)	40.638	14.543	6
Agropoli	40.350	14.990	6
Aiello del Sabato	40.887	14.819	6
Aieta	39.928	15.823	6
Albano di Lucania	40.584	16.036	6
Alberobello	40.784	17.238	6
Alberona	41.432	15.123	6
Alfano	40.177	15.426	6
Aliano	40.313	16.230	6
Alife	41.328	14.331	6
Altamura	40.827	16.553	6
Altavilla Silentina	40.530	15.131	6
Alvignano	41.245	14.338	6
Amalfi	40.634	14.603	6
Amorosi	41.202	14.462	6
Andretta	40.932	15.323	6
Andria	41.226	16.296	6
Angri	40.738	14.571	6
Anzano di Puglia	41.120	15.288	6
Anzi	40.516	15.924	6
Apice Nuovo	41.119	14.914	5-6

Località	Lat	Lon	I
Apricena	41.784	15.444	5-6
Aquara	40.443	15.254	5-6
Aquilonia	40.986	15.477	5-6
Ariano Irpino	41.153	15.090	5-6
Armento	40.306	16.066	5-6
Arpaia	41.035	14.547	5-6
Arpaise	41.030	14.744	5-6
Ascea	40.140	15.186	5-6
Ascoli Satriano	41.205	15.561	5-6
Atella	40.877	15.653	5-6
Atena Lucana	40.454	15.553	5-6
Atrani	40.636	14.609	5-6
Atripalda	40.919	14.835	5-6
Auletta	40.559	15.426	5-6
Avellino	40.914	14.791	5-6
Aversa	40.974	14.207	5-6
Avigliano	40.730	15.717	5-6
Bagnoli Irpino	40.830	15.070	5-6
Baiano	40.951	14.618	5-6
Balvano	40.650	15.512	5-6
Banzi	40.861	16.014	5-6
Baragiano	40.681	15.591	5-6
Baranello	41.527	14.554	5-6
Bari	41.128	16.864	5-6
Barile	40.945	15.673	5-6
Barletta	41.318	16.279	5-6
Baselice	41.393	14.973	5-6
Battipaglia	40.607	14.983	5-6
Bella	40.759	15.538	5-6
Bellosguardo	40.422	15.313	5-6
Benevento	41.129	14.777	5-6
Bernalda	40.407	16.688	5-6
Biccari	41.397	15.194	5-6
Bisaccia	41.014	15.375	5-6

Località	Lat	Lon	I
Bisceglie	41.241	16.502	5-6
Bitonto	41.108	16.691	5-6
Bojano	41.484	14.469	5-6
Bonea	41.075	14.618	5-6
Bonefro	41.704	14.935	5-6
Bonito	41.102	15.004	5-6
Boscotrecase	40.775	14.467	5
Bracigliano	40.822	14.712	5
Brienza	40.478	15.629	5
Brindisi Montagna	40.609	15.939	5
Brusciano	40.923	14.426	5
Bucciano	41.075	14.573	5
Buccino	40.633	15.376	5
Buonabitacolo	40.270	15.621	5
Buonalbergo	41.222	14.980	5
Busso	41.556	14.559	5
Caggiano	40.568	15.489	5
Cagnano Varano	41.826	15.776	5
Calabritto	40.786	15.218	5
Calciano	40.588	16.193	5
Calitri	40.900	15.435	5
Calvello	40.475	15.849	5
Calvera	40.148	16.144	5
Calvi	41.072	14.866	5
Calvizzano	40.905	14.193	5
Campagna	40.665	15.107	5
Campobasso	41.557	14.667	5
Campochiaro	41.449	14.505	5
Campodipietra	41.557	14.748	5
Campolieto	41.633	14.766	5
Campomaggiore	40.565	16.072	5
Cancellara	40.731	15.923	5
Candela	41.136	15.515	5
Candida	40.942	14.875	5
Località	Lat	Lon	I
----------------------------	--------	--------	---
Canosa di Puglia	41.223	16.067	5
Capaccio	40.422	15.083	5
Capodrise	41.042	14.300	5
Caposele	40.813	15.225	5
Capri	40.550	14.243	5
Capriglia Irpina	40.958	14.774	5
Сариа	41.106	14.214	5
Carapelle	41.363	15.692	5
Carbonara di Nola	40.875	14.578	5
Carbone	40.140	16.088	5
Cardito	40.945	14.295	5
Carife	41.028	15.209	5
Carinaro	40.982	14.216	5
Carpinone	41.592	14.325	5
Casagiove	41.078	14.310	5
Casal Velino	40.188	15.110	5
Casalbuono	40.215	15.681	5
Casalduni	41.260	14.695	5
Casaletto Spartano	40.150	15.620	5
Casalvecchio di Puglia	41.594	15.113	5
Caselle in Pittari	40.172	15.546	5
Casola di Napoli	40.694	14.530	5
Cassano delle Murge	40.889	16.771	5
Castel Baronia	41.049	15.189	5
Castel di Sasso (Cisterna)	41.192	14.278	5
Castel Lagopesole	40.805	15.734	5

Figura 13: Quadro dei danni causati dal terremoto del 26 Maggio 1991. Dati dal catalogo parametrico nazionale (DBMI11, <u>http://emidius.mi.ingv.it</u>)

Al fine di mostrare le intensità dovute ai vari terremoti occorsi nella regione in studio, aventi epicentro sia nel campo vicino che lontano, è stata ricostruita la storia di sito per due località all'interno della concessione: Gorgoglione e Corleto Perticara (vd. tabelle seguenti), collocate rispettivamente nei settori orientale ed occidentale della concessione (vd. figura successiva).

Gorgoglione		Lat 40	.393 - Lon 16.145			
Intensità	ID		Località	N	Int. Epic.	Μ
MCS	aaaa mm hh:mm	99		totale località	MCS	
8	1857 12 1 21:15	6	Basilicata	340	11	7.03 ±0.08
4	1988 01 0 13:05	8	Appennino lucano	112		4.73 ±0.09
3	1989 05 2 11:19	9	VAL D'AGRI	77	5	4.50 ±0.14
5-6	1990 05 0 07:21	5	Potentino	1374		5.80 ±0.09
NF	1991 04 1 19:24	8	Golfo di Taranto	26	5-6	4.56 ±0.21
5-6	1991 05 2 12:26	6	Potentino	597	7	5.11 ±0.09
NF	1996 04 0 13:04	3	Irpinia	557	6	4.93 ±0.09
NF	2002 04 1 20:56	8	Vallo di Diano	165	5	4.38 ±0.09
NF	2004 09 0 00:04	3	Appennino lucano	156	6	4.49 ±0.09

T - I II 4	4. 01		- 1 114311	O		44		
Tapella 1	4: Storia	ai sito aeli	a localita d	i Gorgogiione.	udicata nei	settore c	prientale della	concessione

Nota alla tabella: Dati dal catalogo parametrico nazionale: DBMI11 (http://emidius.mi.ingv.it). "NF" indica che per il dato terremoto gli effetti al sito non sono stati classificati come risentimenti (ad es., per insufficiente documentazione macrosismica)

Tabella 15: Storia di sito della località di Corleto Perticara, ubicata nel settore occidentale della concessione

Corleto Perticara Lat 40.383 - Lon 16.041					
Intensità	ID	Località	Ν	Int. Epic.	Μ
MCS	S aaaa mm gg hh:mm		total local	e MCS lità	
7-8	1836 11 20 07:30	Basilicata merid	ionale 17	8	6.02 ±0.36
9	1857 12 16 21:15	Basilicata	340	11	7.03 ±0.08
F	1894 05 28 20:15	POLLINO	122	7	5.08 ±0.14
5	1895 07 19 09:45	MONTESANO M	И. 23	5	4.35 ±0.39
F	1899 10 02 14:17	POLLA	22	5-6	4.57 ±0.35
3	1905 09 08 01:43	Calabria meridio	onale 895		7.04 ±0.16
4	1910 10 03 11:04	MONTEMURRO) 36	5-6	4.74 ±0.32
NF	1915 01 13 06:52	Avezzano	1047	1 11	7.00 ±0.09
4	1934 07 03 16:11	CASTELSARAC	ENO 18	6	4.59 ±0.37
4	1978 09 25 10:08	Matera	120	6	4.88 ±0.13
7	1980 11 23 18:34	Irpinia-Basilicata	a 1394	4 10	6.89 ±0.09
4	1986 07 23 08:19	Potentino	48	6	4.68 ±0.14
6	1988 01 08 13:05	Appennino luca	no 112		4.73 ±0.09
5-6	1988 04 13 21:28	Costa calabra	272	6-7	5.01 ±0.10
3	1989 05 29 11:19	VAL D'AGRI	77	5	4.50 ±0.14
5-6	1990 05 05 07:21	Potentino	1374	1	5.80 ±0.09
5-6	1991 05 26 12:26	Potentino	597	7	5.11 ±0.09
2	1996 04 03 13:04	Irpinia	557	6	4.93 ±0.09
NF	1998 04 26	Potentino	67	4-5	4.26 ±0.24

Corleto Pertic	ara	Lat 40.	t 40.383 - Lon 16.041			
	05:38					
NF	2002 04 1 20:56	8	Vallo di Diano	165	5	4.38 ±0.09
NF	2004 09 0 00:04	3	Appennino lucano	156	6	4.49 ±0.09

Nota alla tabella: Dati dal catalogo parametrico nazionale: DBMI11 (http://emidius.mi.ingv.it). "F" indica che per il dato terremoto non è nota l'entità degli effetti al sito. "NF" indica che per il dato terremoto gli effetti al sito non sono stati classificati come risentimenti (ad es., per insufficiente documentazione macrosismica)

Figura 14: Posizione dei comuni di Gorgoglione e Corleto Perticara all'interno della concessione in oggetto. In bianco: perimetro della concessione

8.1.5.2 Sorgenti sismogenetiche e assetto sismotettonico

Il quadro della sismogenesi in questo settore del sistema appennino-avampaese apulo risulta dalla "sovrapposizione" tra i due domini paleogeografici e del loro diverso comportamento rispetto alla spinta africana, sia per modulo che per direzione, come suggeriscono i dati GPS (Devoti et al., 2011). Ne risulta, in sintesi, una famiglia di grandi strutture normali con direzione ca. NW-SE, lunghe \geq 30 km, con immersione a NE, che hanno causato terremoti sino a M \leq 7 e ipocentri sino a 13 km, come quello dell'Irpinia-Basilicata del 23 novembre 1980 (scossa principale: M 6.9), risentito in tutto l'Appennino centro-meridionale, o quello del 16 dicembre 1857 (M = 7), che interessò a W l'area oggetto di studio. Un'altra famiglia di strutture interessa più direttamente l'avampaese apulo, con orientazione circa W-E, tendente a WNW-ESE andando verso l'asse della catena, sedi di terremoti fino a M = 6.7, come quello dell'Irpinia del 23 luglio 1930, o anche di magnitudo minore, come quello di Potenza del 5 maggio 1990 (M = 5.8), con ipocentri più profondi (15-25 km). Per quanto noto, le sorgenti di questa seconda categoria di terremoti sono pressoché sempre collocate a E dell'asse principale della catena apula, coperta dalle falde appenniniche, ovverosia immediatamente a E del fronte sepolto della catena apula (Valensise et al., 2004; Di Bucci et al., 2006; Fracassi e Valensise, 2007; Figura seguente).

Figura 15: Sintesi delle sorgenti sismogenetiche che insistono sul settore dell'appennino-avampaese apulo che circoscrive la concessione (evidenziata con perimetro bianco)

Nota alla figura: In bianco: anno e magnitudo dei principali terremoti di cui sono note le *Individual Sources* (IS, rettangoli giallo-arancio). In sfondo arancio: *Composite Sources* (CS). In sfondo blu: *Debated Sources* (DS). Dati: DISS (http://diss.rm.ingv.it/diss, versione 3.2.0) – per la descrizione delle terminologie si veda testo nel seguito

Le sorgenti sismogenetiche nella figura sopra riportata sono suddivise nelle seguenti tre categorie, individuate dalla banca dati DISS (http://diss.rm.ingv.it/diss) (approfondimenti sul database disponibili in Basili et al., 2008):

 Composite Sources (strutture sismogenetiche di portata regionale che seguono trend tettonici di cui non sia sempre nota la segmentazione)

Tabella 16: Elenco delle Composite Sources in figura (fonte: http://diss.rm.ingv.it/diss, versione 3.2.0)

ID	Nome sorgente	SlipRate min	SlipRate max	M max
ITCS005	Baragiano-Palagianello	0.1	0.5	5.8
ITCS034	Irpinia-Agri Valley	0.1	1	6.8
ITCS038	Rimendiello-Mormanno	0.1	1	6.4
ITCS063	Andretta-Filano	0.1	1	6.9
ITCS084	Mirabella Eclano-Monteverde	0.1	1	6.7
ITCS087	Conza della Campania-Tolve	0.4	0.6	6.2
ITCS089	Rapolla-Spinazzola	0.1	0.5	6.3
ITCS104	Amendolara	0.5	0.9	6.3

 Individual Sources (segmenti di faglia che siano stati riconosciuti come causa di uno specifico terremoto di M ≥ 5.5 o gap sismici)

ID	Nome sorgente	SlipRateMin	SlipRateMax	M max
ITIS006	Ufita Valley	0.1	1	6.6
ITIS008	Agri Valley	0.1	1	6.5
ITIS010	Melandro-Pergola	0.1	1	6.3
ITIS023	Mercure Basin	0.1	1	6.4
ITIS077	Colliano	0.4	0.6	6.8
ITIS078	San Gregorio Magno	0.4	0.6	6.2
ITIS079	Pescopagano	0.4	0.6	6.2
ITIS081	Melfi	0.1	0.5	6.3
ITIS084	Potenza	0.1	0.5	5.8
ITIS088	Bisaccia	0.1	1	6.7

Tabella 17: Elenco delle Individual Sources in figura (fonte: http://diss.rm.ingv.it/diss, versione 3.2.0)

 Debated Sources (elementi strutturali ritenuti sismogenetici da alcuni autori ma che non sono completi degli elementi e parametri geometrici e cinematici ed il cui ruolo sismogenetico rimane quindi dubbio)

Tabella 18: Elenco delle Debated Sources in figura (fonte: http://diss.rm.ingv.it/diss, versione 3.2.0)

ID	Nome sorgente
ITDS003	Tanagro
ITDS004	Eastern Agri Fault System
ITDS010	Castelluccio-Rotonda

ID	Nome sorgente
ITDS016	Scorciabuoi
ITDS031	Caggiano
ITDS033	Ufita Valley
ITDS048	Vallo di Diano
ITDS049	Maratea
ITDS070	Piana Perretti

Nota alla tabella: La sorgente ITDS016 (auct.), evidenziata in grassetto, attraversa la zona della concessione

Le *Composite Sources* sono basate su dati geologici e geofisici e sono corredate di parametri geometrici (strike, dip, width, depth) e cinematici (rake) (vd. figura seguente).

Figura 16: Geometria spaziale e parametri delle Composite Sources

Le sorgenti che ricadono in questa categoria sono strutture interpretate mediante dati regionali, sia di superficie che di sottosuolo, sfruttati per individuare trend di grande estensione laterale piuttosto che singoli segmenti attivi. La lunghezza delle rotture attese, pertanto, non viene definita poiché i dati non consentono un'indagine di dettaglio; per questa ragione, non vengono associati terremoti specifici a queste sorgenti sismogenetiche; ne viene però indicato il potenziale sismogenetico attraverso la magnitudo massima attesa.

Lo scopo principale delle *Composite Sources* è quello di tendere alla completezza del database sul territorio nazionale e aree contermini, ovverosia di coprire al meglio (per quanto possibile con i dati disponibili) i sistemi di faglia ritenuti in grado di provocare terremoti in Italia di magnitudo ≥ 5.5 (soglia al di sopra delle quale è

possibile attendersi effetti geologici permanenti e misurabili da strumenti di indagine geologica/geofisica). Dunque, le *Composite Sources* sono pensate per scopi inerenti alle stime di pericolosità sismica su base probabilistica.

Similmente alle *Composite Sources*, le *Individual Sources* sono vincolate da dati geologici e geofisici e sono corredate da tutti i parametri geometrici (strike, dip, length, width e depth), cinematici (rake) e sismologici (rigetto per singolo evento, magnitudo, slip rate, intervallo di ricorrenza). Ogni parametro, inoltre, è associato a un qualificatore che ne indica il rating (figura seguente).

Figura 17: Geometria spaziale e parametri delle Composite Sources

Le *Individual Sources* sono concepite all'interno del modello di terremoto caratteristico per quanto riguarda length/width della rottura attesa, slip per evento e magnitudo massima attesa. Tutte queste grandezze sono confrontate con quelle disponibili nei database mondiali per verificarne la coerenza con l'osservato in termini di length, width, slip per evento e magnitudo. Ove disponibili, le misure sono integrate da dati su scarpate di faglia o altri elementi strutturali che testimonino un'attività tardo Pleistocenica-Olocenica del segmento di faglia in oggetto.

Questa categoria di sorgenti è pensata per fornire le informazioni più accurate possibili su specifici segmenti di faglia e, quindi, non viene assicurata la completezza territoriale, diversamente da quanto avviene con le *Composite Sources*. Dunque, le *Individual Sources* sono pensate per generare scenari da terremoto e da tsunami e per considerazioni di carattere geodinamico, ma non sono adeguate all'impiego nelle stime di pericolosità.

Oltre a queste due categorie di sorgenti sismogenetiche più vincolate sul piano parametrico, il database DISS include anche una famiglia di sorgenti ritenute sismogenetiche da alcuni autori, prive però dei parametri

geometrico-cinematici necessari per vincolarne tanto la posizione esatta, quanto il concreto ruolo sismogenetico. Questo poiché in letteratura esistono numerose faglie proposte da vari gruppi di ricerca, non necessariamente pensate per essere introdotte in un database geografico e parametrico come il DISS.

Dunque, nel tentativo di non smarrire informazioni che possono comunque rivelarsi preziose come complemento ai dati già disponibili e alle sorgenti già vagliate, il database contempla anche le *Debated Sources*, ovverosia sorgenti prive di sufficienti vincoli geologico-geofisici e/o di parametri necessari per renderle confrontabili con le altre due categorie e/o il cui ruolo sismogenetico resti dubbio o non suffragato.

I casi di "debated sources" contemplano:

- faglie per cui solo un'evidenza parziale è fornita in letteratura;
- faglie basate su evidenza geologica non chiara;
- faglie per cui in letteratura vi siano interpretazioni molto contrastanti;
- faglie collocate in zone di bassa o bassissima sismicità;
- faglie le cui caratteristiche siano in aperto contrasto con quelle di sorgenti adiacenti più note e già vincolate (secondo il principio della continuità laterale delle strutture regionali) o che violino evidenze tettoniche o sismologiche.

Sulla base dell'inquadramento sismogenetico dell'area, in sintesi, gli elementi più vicini alla Concessione Gorgoglione (esclusa la faglia Scorciabuoi ITDS016, per la quale si rimanda alla specifica trattazione di merito) sono: la sorgente *ITCS005 Baragiano-Palagianello*, individuata a circa 30 km a N della posizione di superficie del pozzo GG-3; mentre a SW a distanze comprese tra 14 e 50 km, si trova la successione delle sorgenti *ITIS008 - Agri Valley (individual), ITCS034 - Irpinia-Agri Valley (composite)* e *ITDS004 - Eastern Agri Fault System (debated)* (si veda la seguente figura per l'ubicazione di tali sorgenti, basata sul database DISS dell'INGV, disponibile al sito web https://diss.ingv.it/).

Figura 18: Inquadramento delle sorgenti sismogenetiche più vicine alla Concessione Gorgoglione

Nota alla figura: poligono nero: area della Concessione Gorgoglione; poligono grigio: area concessione Val d'Agri; linea blu: Dominio Interno; linea rossa: Dominio Esteso.

Nel seguito viene fornita una disamina delle sorgenti sismogenetiche sopra individuate, insistenti sul settore dell'appennino-avampaese apulo che circoscrive la concessione, elencando, nell'ordine, *Composite* e *Individual Sources*. Per ciascuna sorgente viene presentata una scheda sinottica comprendente tutti i parametri (con qualificatori ed eventuali riferimenti), una spiegazione sintetica, riferimenti a eventuali terremoti associati e immagini a corredo.

Per le *Debated Sources*, in virtù della loro natura, si rimanda ai *Questionnaires* disponibili nel database per ciascuna sorgente. Come già accennato, fa eccezione ITDS016 (Faglia Scorciabuoi), che attraversa in parte l'area della concessione in oggetto, per la quale viene fornita una disamina e uno specifico approfondimento.

DISS-ID	ITCS005			
Name	Baragiano-Palagianello			
Compiler(s)	Fracassi U.	(1)		
Contributor(s)	Barba S.(1) Valensise (), Basili R.(G.(1), Vann	1), Burrato P.(1), Fracassi U.(1), Tiberti M.M.(1), oli P.(1)	
Affiliation(s)	1) Istituto N Tettonofisio	lazionale d :a; Via di V	i Geofisica e Vulcanologia; Sismologia e igna Murata, 605, 00143 Roma, Italy	
Created	08-Jan-200	5		
Updated	24-Sep-2007			
Parameter		Quality	Evidence	
Min depth [km]	13	OD	Derived from seismological data.	
Max depth [km]	22	OD	Derived from seismological data.	
Strike [deg] min… max	80100	LD	Based on focal mechanisms.	
Dip [deg] min… max	8090	LD	Based on focal mechanisms.	
Rake [deg] min… max	170190	LD	Based on focal mechanisms.	
Slip Rate [mm/y] min… max	0.10.5 EJ Unknown, values assumed from geodynamic constraints.			
Max Magnitude [Mw]	5.8	OD	Derived from maximum magnitude of associated individual source(s).	

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=1&_page=pSAsources_d&IDSource=ITCS005

Questa sorgente copre un'area tra Basilicata e Puglia, da Potenza (a W) a Taranto (a E) e appartiene al sistema di sorgenti *strike-slip* oblique destre che coinvolge l'avampaese adriatico sud-orientale. E' una sorgente sub-verticale, immergente a S, a E dell'asse estensionale dell'Appennino meridionale.

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano diversi terremoti intermedi in quest'area. Il settore occidentale è stato affetto da alcuni eventi più importanti, ovverosia quello del 13/02/1963 (Mw 5.3, Tito) e del 06/08/1954 (Mw 5.3, Pietragalla). Inoltre, l'area è nota per il terremoto doppio del 05/05/1990-26/05/1991 (Mw 5.8 and 5.2, rispettivamente) del Potentino.

Questa sorgente è interpretata come una struttura profonda, cieca, a direzione ca. E-W, parte del dominio sismogenetico che caratterizza l'avampaese adriatico a E della catena nell'Appennino meridionale e, in parte, di quello centrale. Il settore occidentale di questa sorgente include la faglia responsabile del terremoto di Potenza del 1990, un evento le cui caratteristiche sismologiche sono confrontabili con quelle del terremoto doppio del Molise 2002 (vd. anche la trattazione dell'*Individual Source* ITIS084 più avanti).

Figura 19: Distribuzione degli aftershock della sequenza 1990-1991 di Potenza (Di Luccio et al., 2005)

Figura 20: Terremoti principali dell'Appennino meridionale rispetto alle principali direttici tettoniche (Di Luccio et al., 2005)

DISS-ID	ITCS034				
Name	Irpinia-Agri	Irpinia-Agri Valley			
Compiler(s)	Fracassi U.	(1)			
Contributor(s)	Valensise (D.(1), Fraca	G.(1), Burra assi U.(1)	ato P.(1), Basili R.(1), Vannoli P.(1), Pantosti		
Affiliation(s)	1) Istituto N Tettonofisio	lazionale d a; Via di V	i Geofisica e Vulcanologia; Sismologia e igna Murata, 605, 00143 Roma, Italy		
Created	08-Jan-200	5			
Updated	20-May-207	10			
Parameter		Quality	Evidence		
Min depth [km]	1	LD	Based on geological and seismological data from various authors.		
Max depth [km]	14	LD	Based on geological and seismological data from various authors.		
Strike [deg] min… max	300320	LD	Based on geological and seismological data from various authors.		
Dip [deg] min… max	5070	LD	Based on geological and seismological data from various authors.		
Rake [deg] min… max	260280	LD	Based on geological and seismological data from various authors.		
Slip Rate [mm/y] min… max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.		
Max Magnitude [Mw]	6.8	OD	Derived from maximum magnitude of associated individual source(s).		
L Del iterature Date: OD-Original Date: ED-Empirical Delationship: AD-Analytical Delationship: E L-Evrent					

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL&_tabber=1&_page=pSAsources_d&IDSource=ITCS034

Questa sorgente copre un settore dell'Appennino meridionale tra l'Irpinia e la Basilicata, attraverso le valli dell'alto Sele e dell'alto Agri, a W di Potenza. La sorgente è parte del sistema di faglie normali ad alto angolo, immergenti a NE lungo la dorsale appenninica.

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano un'importante sismicità distruttiva nell'area. Da N a S, i terremoti decisivi sono quelli dello 08/09/1694 (Mw 6.9, Irpinia-Basilicata), il noto evento multiplo del 23/11/1980 (Mw 6.9, Irpinia-

Basilicata), il 09/04/1853 (Mw 5.9, Irpinia), 190/8/1561 (Mw 6.4, Vallo di Diano – sebbene di dubbia localizzazione), 01/02/1826 (Mw 5.7, Basilicata) e il noto evento multiplo del 16/12/1857 (Mw 7.0, Basilicata).

La sorgente è collocata lungo la dorsale estensionale che percorre l'Appennino meridionale da NW verso SE. I terremoti del 1990 (a N) e del 1857 (a S) hanno svelato la presenza di rotture lunghe oltre 25-30 km in grado di modificare localmente la topografia e il drenaggio.

Figura 21: La "Faglia Sud-Appenninica" (Pantosti e Valensise, 1988)

DISS-ID	ITCS038		
Name	Rimendiello	-Mormann	10
Compiler(s)	Fracassi U.	(1), Mariar	o S.(1)
Contributor(s)	De Martini I	P.M.(1)	
Affiliation(s)	1) Istituto N Tettonofisic	azionale d a; Via di V	ii Geofisica e Vulcanologia; Sismologia e ′igna Murata, 605, 00143 Roma, Italy
Created	08-Jan-200	5	
Updated	03-Aug-200)6	
Parameter		Quality	Evidence
Min depth [km]	1	LD	Based on geological data from De Martini (1996).
Max depth [km]	12	EJ	Based on geological data.
Strike [deg] min… max	325345	LD	Based on geological data from De Martini (1996).
Dip [deg] min… max	5565	LD	Based on geological data from De Martini (1996).
Rake [deg] min… max	260280	LD	Based on geological data from De Martini (1996).
Slip Rate [mm/y] min… max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.
Max Magnitude [Mw]	6.4	OD	Derived from maxim m magnitude of associated individual source(s).

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL&_tabber=1&_page=pSAsources_d&IDSource=ITCS038

Questa sorgente copre un breve tratto dell'Appennino meridionale tra la Basilicata e la Calabria, attraverso l'alta valle del Sinni, sul fianco occidentale del Monte Pollino. La sorgente è parte del sistema di faglie normali ad alto angolo, immergenti a NE lungo la dorsale appenninica.

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano una distribuzione sparsa di terremoti sia intermedi che gravi in prossimità di questa regione: a NW, l'evento del 02/01/1831 (Mw 5.5, Lagonegro) e quello del 20/11/1836 (Mw 5.8, Basilicata meridionale); a SE, l'evento del 09/09/1998 (Mw 5.7, Appennino Calabro-Lucano) e quello del 26/01/1708 (Mw 5.6, Pollino).

Si può considerare questa sorgente come la terminazione meridionale dell'asse estensionale NW- SE lungo l'Appennino meridionale, a ridosso dell'Arco Calabro a Sud del Monte Pollino. Evidenze di terreno (es. Schiattarella et al., 1994; De Martini, 1996) suggeriscono l'esistenza della faglia del Mercure nel settore meridionale di questa sorgente, ritenuta un gap sismico.

Figura 22: Carta strutturale/morfologica del bacino del Mercure (Bousquet and Gueremy, 1968)

DISS-ID	ITCS063			
Name	Andretta-Filano			
Compiler(s)	Fracassi U	.(1)		
Contributor(s)	Fracassi U	.(1), Burrate	o P.(1), Vannoli P.(1)	
Affiliation(s)	1) Istituto N Tettonofisio	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 05, 00143 Roma, Italy		
Created	20-May-20	10		
Updated	17-Jun-201	15		
Parameter		Quality	Evidence	
Min depth [km]	2	EJ	Inferred from u per depth of instrumental major earthquakes in the region.	
Max depth [km]	15	EJ	Inferred from lower depth of instrumental major earthquakes in the region.	
Strike [deg] min… max	285305	OD	Based on macroseismic and seismological data.	
Dip [deg] min… max	4080	EJ	Inferred from fault plane of instrumental major earthquakes in the region.	
Rake [deg] min… max	230250	EJ	Inferred from fault plane of instrumental major earthquakes in the region.	
Slip Rate [mm/y] min… max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.	
Max Magnitude [Mw]	6.9	OD	Based on the strongest earthquake occurred in the region.	

http://diss.rm.ingv.it/dissnet/CadmoDriver? action do single=1& state=find& token=NULLNULL NULLNULL& tabber=1& page=pSAsources d&IDSource=ITCS063

Questa sorgente copre un'area tra la Campania e la Basilicata, a S del Monte Vulture, e appartiene al sistema di strutture *strike-slip* oblique destre che interessa l'avampaese adriatico centrale e meridionale. La struttura è sub-verticale, immergente a N, a E dell'asse estensionale dell'Appennino meridionale.

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano una distribuzione sparsa di terremoti intermedi in questa regione, che però è stata interessata dagli eventi dello 08/09/1694 (Mw 6.9) e del noto 23/11/1980 (Mw 6.9) Irpinia-Basilicata. L'area è stata colpita anche dall'evento del 07/06/1910 (Mw 5.9, Irpinia-Basilicata).

Questa sorgente è interpretata come una struttura profonda, cieca, a direzione ca. E-W, parte del dominio sismogenetico che caratterizza l'avampaese adriatico a E della catena nell'Appennino meridionale e, in parte, di quello centrale. La regione è caratterizzata dalla presenza di due terremoti distruttivi con epicentri (ben localizzati) a 5-6 km di distanza. L'evidenza di terreno di Pantosti e Valensise (1990) e quella paleosismologica

di Pantosti et al. (1993) hanno mostrato che il terremoto del 1694 non è stato causato dalla faglia responsabile del terremoto del 1980. Considerando che per terremoti di queste magnitudo ci si attendono rotture di oltre 25-30 km di lunghezza, si ritiene che un'ulteriore grande faglia normale, di dimensioni confrontabili con quella responsabile per il 1980 (vd. trattazione sulla *Individual Source* ITIS077 Colliano più avanti), sia collocata immediatamente a E dell'area epicentrale del 1980 e, dunque, al bordo E della catena s.s.

Figura 23: Carta delle faglie attive negli ultimi 50.000 anni nell'Appennino centro-meridionale (Cinque et al., 2000)

DISS-ID	ITCS084			
Name	Mirabella Eclano-Monteverde			
Compiler(s)	Fracassi U.	(1), Vanno	li P.(1), Burrato P.(1)	
Contributor(s)	Vannoli P.(1), Burrato	P.(1), Fracassi U.(1)	
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy			
Created	04-Aug-200)6		
Updated	27-Sep-2007			
Parameter		Quality	Evidence	
Min depth [km]	1	OD	Based on seismological and geological data.	
Max depth [km]	16	OD	Based on seismological and macroseismic data.	
Strike [deg] min… max	270290	OD	Based on seismological and macroseismic data.	
Dip [deg] min… max	5575	OD	Based on seismological data.	
Rake [deg] min… max	230250	OD	Based on seismological data.	
Slip Rate [mm/y] min… max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.	
Max Magnitude [Mw]	6.7	OD	Derived from maximum magnitude of associated individual source(s).	

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=1& page=pSAsources d&IDSource=ITCS084

Questa sorgente è situata nella Campania interna, a E di Benevento e verso il fianco N del Monte Vulture e appartiene al sistema di strutture *strike-slip* oblique destre che interessa l'avampaese adriatico centrale e meridionale. La struttura è sub-verticale, immergente a N, a E dell'asse estensionale dell'Appennino meridionale.

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano una concentrazione di terremoti distruttivi in questa regione. Da W verso E: il terremoto multiplo del 21/08/1962 (Mw 6.2, Irpinia), l'evento del 14/03/1702 (Mw 6.3, Sannio-Irpinia), quello del 29/11/1732 (Mw 6.6, Irpinia), del 989 A.D. (Mw 6.0, Irpinia) e quello del 23/07/1930 (Mw 6.7, Irpinia).

La sorgente è ritenuta un sistema di faglie profondo, cieco, orientato WNW-ESE, parte del dominio sismogenetico a E della catena s.s. dell'Appennino centro-meridionale. Il settore occidentale di questa sorgente coincide con la faglia responsabile del terremoto del 1732 (vd. *Individual Source* ITIS006 Ufita Valley più avanti).

GROTTA INARD TREVICO ARONI 3 FRIGENTO × 6 M-FORMICOSO M.FORCUS 1 9 100 5 4 Km 0 . 2 1

Il settore orientale coincide invece con la faglia responsabile del terremoto del 1930 (vd. *Individual Source* ITIS088 Bisaccia più avanti), di cui Pino et al. (2008) ha fornito un meccanismo sorgente.

Figura 24: Carta geologica della valle del Fiume Ufita tra Castel Baronia e Grottaminarda (Basso et al., 1996)

DISS-ID	ITCS087				
Name	Conza della	Conza della Campania-Tolve			
Compiler(s)	Fracassi U.	(1)			
Contributor(s)	Valensise 0	G.(1), Burra	ato P.(1), Basili R.(1), Vannoli P.(1)		
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy				
Created	03-Aug-2006				
Updated	20-May-2010				
Parameter		Quality	Evidence		
Min depth [km]	1	OD	Based on seismological data.		
Max depth [km]	12	OD	Inferred from depth of major earthquakes of the region.		
Strike [deg] min… max	115135	OD	Based on seismological and macroseismic data.		
Dip [deg] min… max	6080	OD	Based on seismological data.		
Rake [deg] min… max	260280	OD	Based on seismological data.		
Slip Rate [mm/y] min… max	0.40.6	EJ	Based on paleoseismology.		
Max Magnitude [Mw]	6.2	OD	Derived from maximum magnitude of associated individual source(s).		

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=1&_page=pSAsources_d&IDSource=ITCS087

Questa sorgente copre un breve tratto dell'Irpinia, a N dell'alta valle del Sele. E' una struttura normale ad alto angolo, immergente a SW, immediatamente a E dell'asse estensionale dell'Appennino meridionale.

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano una notevole sismicità distruttiva in quest'area. I terremoti principali sono quello dello 08/09/1694 (Mw 6.9, Irpinia-Basilicata) e il noto terremoto multiplo del 23/11/1980 (Mw 6.9, Irpinia-Basilicata). Questa sorgente è collocata all'interno dell'asse estensionale NW-SE. Rappresenta la zona sorgente del terzo sub-evento della sequenza del 1980. Immediatamente a E di questa sorgente c'è il volume crostale che ha rilasciato il terremoto del 1694, un evento tuttora poco noto. Verso SW, questa struttura ha interagito con quella che ha rilasciato il secondo sub-evento del 1980.

DISS-ID	ITCS089			
Name	Rapolla-Spinazzola			
Compiler(s)	Fracassi U.	(1)		
Contributor(s)	Barba S.(1) M.M.(1), Va	, Basili R.(alensise G.	1), Burrato P.(1), Fracassi U.(1), Tiberti (1), Vannoli P.(1)	
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy			
Created	08-Jan-200	5		
Updated	24-Sep-200)7		
	•			
Parameter		Quality	Evidence	
Min depth [km]	12	EJ	Inferred from upper depth of instrumental major earthquakes in the region.	
Max depth [km]	23	EJ	Inferred from lower depth of instrumental major earthquakes in the region.	
Strike [deg] min… max	260280	OD	Based on macroseismic and geophysical data.	
Dip [deg] min… max	7090	OD	Based on macroseismic and geophysical data.	
Rake [deg] min… max	170190	OD	Estimated from rake of instrumental major earthquakes in the region.	
Slip Rate [mm/y] min… max	0.10.5	EJ	Unknown, values assumed from geodynamic constraints.	
Max Magnitude [Mw]	6.3	OD	Derived from maximum magnitude of associated individual source(s).	

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=1&_page=pSAsources_d&IDSource=ITCS089

Questa sorgente si trova tra la Campania e la Puglia, sul fianco N del Monte Vulture, e appartiene alla famiglia di strutture *strike-slip* oblique destre che riguardano l'avampaese adriatico centrale e meridionale. La struttura è sub-verticale, immergente a Nord, a Est dell'asse estensionale dell'Appennino meridionale.

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano una sparsa sismicità intermedia in questa regione, eccezion fatta per il forte terremoto del 14/08/1851 (Mw 6.3, Basilicata).

Questa sorgente è ritenuta parte del sistema di faglie profonde, cieche, a orientazione E-W che caratterizza il dominio sismogenetico a E della dorsale appenninica. Al settore occidentale di questa sorgente è associato il terremoto del 1851.

Figura 25: Pattern dei lineamenti nel sottosuolo individuati con la tecnica Gravity Gradient Tensor (Fedi et al., 2005)

DISS-ID	ITCS104				
Name	Amendolara				
Compiler(s)	Burrato P.(Burrato P.(1)			
Contributor(s)	Burrato P.(Passaro S.	1), Ferranti (5), Pepe F	L.(2), Santoro E.(3), annucci G.(4), F.(6), Morelli D.(7), Mazzella M.E.(8)		
Affiliation(s)	Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy Università di Napoli 'Federico II'; Dipartimento di Scienze della Terra; Largo S. Marcellino 10, 80138 Napoli, Italy ; Istituto Nazionale di Geofisica e Vulcanologia; Se ione di Bologna; Via Donato Creti, 12, 40128 Bologna, Italy CNR; Istituto per l'Ambiente Marino Costiero; Calata Porta di Massa, 80133, Napoli, Italy Università degli Studi di Palermo; Dipartimento di Scienze della Terra e del Mare; Via Archirafi, 22, 90123, Palermo, Italy Università degli Studi di Trieste; Dipartimento di Matematica e Geoscienze; Via Weiss 2, 34127, Trieste, Italy Università di Perugia; Dipartimento di Scienze della Terra; 06123 Perugia. Italy				
Created	08-Oct-201	3			
Updated	08-Oct-2013				
Parameter		Quality	Evidence		
Min depth [km]	1	OD	Interpretation of seismic lines and numerical modeling.		
Max depth [km]	10	OD	Interpretation of seismic lines and numerical modeling.		
Strike [deg] min… max	280300	OD	Derived from mapping of the fault system.		
Dip [deg] min… max	4050	OD	Interpretation of seismic lines and numerical modeling.		
Rake [deg] min… max	6590	EJ	Inferred from regional stress orientation and structural considerations.		
Slip Rate [mm/y] min… max	0.50.9	OD	Analytical modeling of growth strata and marine terrace elevation.		
Max Magnitude [Mw]	6.3	EJ	Based on the strongest earthquake that occurred in the region		

http://diss.rm.ingv.it/dissnet/CadmoDriver? action do single=1& state=find& token=NULLNULL NULL& tabber=1& page=pSAsources d&IDSource=ITCS104

Questa sorgente attraversa la zona costiera e l'offshore al confine tra Basilicata e Calabria nella parte S del Golfo di Taranto. E' una struttura a *thrust*, con vergenza SSW (ovverosia opposta a quella del fronte appenninico sepolto) che si sviluppa al margine tra crosta continentale della microplacca adriatica (a N) e crosta oceanica del Mar Ionio (a S).

I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano un basso livello di sismicità caratterizzato da piccoli eventi sparsi su un trend E-W parallelo alla linea di costa meridionale del Golfo di Taranto. L'eccezione da notare è l'evento del 24/04/1836 (Mw 6.2, Calabria Settentrionale), associato a uno tsunami che ha investito la costa Calabra nord-orientale. Altri terremoti in questa regione sono quello dell'11/12/1824 (Mw 5.4, Rossano), del 120/6/1917 (Mw 5.5, Mar Ionio) e del 13/04/1988 (Mw 4.6, Costa Calabra).

Questa sorgente include (da W verso E e da costa verso mare) la Satanasso Fault Zone e il sistema a *thrust* che confina a S con gli alti batimetrici di Amendolara e di Cariati che formano l'Amendolara Ridge. L'attività recente di questa struttura è testimoniata dalla deformazione di terrazzi tardo-pleistocenici che affiorano lungo costa (Santoro et al., 2013) e da pieghe su depositi assimilabili lungo l'Amendolara Ridge (Ferranti et al., 2014).

Figura 26: Carta dei terrazzi marini Pleistocenici marini e dei trend strutturali (Santoro et al., 2013)

DISS-ID	ITIS006				
Name	Ufita Valley				
Compiler(s)	Vannoli P.(1)	Vannoli P.(1), Burrato P.(1)			
Contributor(s)	Vannoli P.(1)	, Burrato F	P.(1)		
Affiliation(s)	1) Istituto Na Tettonofisica	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy			
Created	01-Jan-2001				
Updated	12-Sep-2007	,			
Parameter		Quality	Evidence		
Location [Lat/Lon]	41.07 / 15.10	OD	Based on geological and geomorphological data.		
Length [km]	25.6	OD	Based on geological and geomorphological observations.		
Width [km]	14.5	ER	Calculated using the relationships from Wells and Coppersmith (1994).		
Min depth [km]	1.5	OD	Based on geological and geomorphological observations.		
Max depth [km]	14.5	ER	Derived from dip, width and min depth.		
Strike [deg]	275	OD	Based on geological and geomorphological observations.		
Dip [deg]	64	OD	Based on geological observations.		
Rake [deg]	237	OD	Inferred from geological data, constrained by orientation of T axes.		
Slip Per Event [m]	0.9	ER	Calculated from Mo using the relationship from Hanks and Kanamori (1979).		
Slip rate [mm/y] min…max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.		
Recurrence [y] min… max	9009000	EJ	Inferred from slip rate and average displacement.		
Magnitude [Mw]	6.6	LD	Value adopted from the historical earthquake catalogue CPTI04.		

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL&_tabber=0&_page=pGGsources_d&IDSource=ITIS006

La geometria di questa sorgente è basata su osservazioni geologiche e geomorfologiche lungo la valle del Fiume Ufita e aree adiacenti e sull'analisi del piano quotato del terremoto del 1732. Ulteriori elementi sono venuti anche dallo studio della sorgente del terremoto del 1930, immediatamente a E.

L'indagine morfotettonica ha rivelato l'esistenza di un lineamento con direzione E-W, che si estende verso E ben oltre l'area in esame. Inoltre, l'esame di numerosi profili ERT (Electrical Resistivity Tomography, Giocoli et al., 2008) ha consentito di evidenziare la geometria dei depositi tardo-quaternari attraverso una scarpata NW-SE, tradizionalmente considerata l'espressione di una faglia riconducibile all'estensione in catena. Per contro, i due set di dati hanno consentito di escludere quest'ipotesi, favorendo invece quella di una struttura schiettamente a E dell'asse estensionale, con componente obliqua destra.

Figura 27: Carta geomorfologica del settore orientale della valle del F. Ufita con la posizione dei profili ERT (Giocoli et al., 2008)

Figura 28: Profilo ERT profondo attraverso la valle del F. Ufita (Giocoli et al., 2008)

DISS-ID	ITIS008			
Name	Agri Valley			
Compiler(s)	Burrato P.(1)	Burrato P.(1)		
Contributor(s)	Burrato P.(1)	, Valensise	e G.(1)	
Affiliation(s)	1) Istituto Na Tettonofisica	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy		
Created	01-Jan-2001			
Updated	21-Sep-2005	5		
Parameter		Quality	Evidence	
Location [Lat/Lon]	40.35 / 15.78	LD	Based on geological and geomorphic data from Maschio et al. (2005).	
Length [km]	23	LD	Based on geological and geomorphic data from Maschio et al. (2005).	
Width [km]	13.5	ER	Calculated using the relationships from Wells and Coppersmith (1994).	
Min depth [km]	1	OD	Based on geological and geomorphic data from Maschio et al. (2005).	
Max depth [km]	12.7	AR	Derived from dip, width and min depth.	
Strike [deg]	316	LD	Based on geological and geomorphic data from Maschio et al. (2005).	
Dip [deg]	60	LD	Based on geological and geomorphic data from Maschio et al. (2005).	
Rake [deg]	270	EJ	Inferred from geological and seismotectonic considerations.	
Slip Per Event [m]	0.74	ER	Calculated from Mo using the relationship from Hanks and Kanamori (1979).	
Slip rate [mm/y] min…max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.	
Recurrence [y] min… max	7407400	EJ	Inferred from slip rate and average displacement.	
Magnitude [Mw]	6.5	ER	Calculated using the relationships from Wells and Coppersmith (1994).	

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=0& page=pGGsources_d&IDSource=ITIS008

Il terremoto del 1857 ha storicamente suscitato un forte dibattito scientifico sulla faglia responsabile di questo evento complesso. La disputa sostanziale ha riguardato l'immersione della faglia, ovverosia il lato (orientale o

occidentale) dell'alta Val d'Agri e, dunque, la sua emersione in superficie rispetto ai depositi e alle notevoli complessità strutturali del sottosuolo.

Questa sorgente è una faglia normale, cieca, immergente a NE, sul lato occidentale della valle. Questa scelta è dettata dal fatto che una struttura in questa posizione si conforma agli elementi geomorfici recenti più adeguatamente di quanto non faccia una sorgente specularmente collocata e SE-immergente. La geometria individuata produce, infatti, un massimo di subsidenza a ridosso del fianco SW della valle, giustificando il drenaggio richiamato su quel lato.

Data la complessità del terremoto, Burrato and Valensise (2008) hanno ipotizzato che il terremoto del 1857 abbia rotto 'a cascata' due faglie adiacenti e relativamente ben conosciute: prima la faglia più piccola Meandro-Pergola immergente a NE (comunemente ritenuta essere un gap sismico tra le due faglie responsabili del terremoto del 1857 e del 1980) e poi la faglia più grande della Val d'Agri.

Figura 29: Principali unità ai fianchi dell'alta Val d'Agri (Maschio et al., 2005)

Figura 30: Evoluzione strutturale dell'alta Val d'Agri secondo Maschio et al. (2005)

Figura 31: Epicentro del terremoto del 1857 come calcolato da R. Mallet e corrispondenza con area mesosismica e sorgenti sismogenetiche (Burrato and Valensise, 2008)

Con riferimento alle relazioni spaziali esistenti tra il serbatoio petrolifero, il pozzo di estrazione GG3 e le strutture tettoniche individuate e, in particolare, la faglia "Agri Valley" qui analizzata, si riporta la seguente figura esplicativa, specificamente elaborata da TotalEnergies.

Figura 32: Relazione spaziale tra pozzo di estrazione e strutture tettoniche individuate

Dall'analisi eseguita da TotalEnergies è emerso che nessuno dei due domini di monitoraggio (Dominio Interno ed Esteso, i cui contorni sono rispettivamente a 3 km e 8 km di equidistanza dai limiti del volume che identifica il giacimento) risulta in relazione spaziale diretta con la faglia "Agri Valley" e/o con ulteriori strutture tettoniche diverse dalla già menzionata Faglia Scorciabuoi (la cui analisi è riportata nel seguito del presente SIA).

DISS-ID	ITIS010				
Name	Melandro-Pe	Melandro-Pergola			
Compiler(s)	Burrato P.(1)	, Valensise	e G.(1)		
Contributor(s)	Burrato P.(1)	, Valensise	e G.(1)		
Affiliation(s)	1) Istituto Na Tettonofisica	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy			
Created	01-Jan-2001				
Updated	21-Sep-2005	5			
Parameter		Quality	Evidence		
Location [Lat/Lon]	40.53 / 15.60	OD	Based on geological and geomorphological observations.		
Length [km]	17.9	OD	Based on geological and geomorphological observations.		
Width [km]	11.3	ER	Calculated using the relationships from Wells and Coppersmith (1994).		
Min depth [km]	1	OD	Based on the geometry of nearby sources and geomorphic observation.		
Max depth [km]	10.8	OD	Derived from dip, width and min depth.		
Strike [deg]	317	OD	Based on geological and geomorphological observations.		
Dip [deg]	60	OD	Based on the geometry of nearby sources.		
Rake [deg]	270	EJ	Inferred from geological and seismotectonic considerations.		
Slip Per Event [m]	0.57	ER	Calculated from Mo using the relationship from Hanks and Kanamori (1979).		
Slip rate [mm/y] min…max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.		
Recurrence [y] min… max	5705700	EJ	Inferred from slip rate and average displacement.		
Magnitude [Mw]	6.3	ER	Calculated using the relationships from Wells and Coppersmith (1994).		

http://diss.rm.ingv.it/dissnet/CadmoDriver? action do single=1& state=find& token=NULLNULL NULLNULL& tabber=0& page=pGGsources_d&IDSource=ITIS010 Questa sorgente è una delle numerose depressioni intermontane lungo l'asse estensionale dell'Appennino centro-meridionale colmate da depositi medio-Pleistocenici. Il pattern della successiva reincisione suggerisce un'asimmetria della valle dovuta a un controllo tettonico, con il fianco SW più acclive e un depocentro a metà strada tra i due corsi d'acqua, Melandro e Pergola. Questa configurazione è compatibile con l'azione di una faglia normale diretta NW-SE, immergente a NE.

Figura 33: Distribuzione dei valori di sollevamento nelle valli del Melandro e dell'alto Agri (Schiattarella et al., 2003)

DISS-ID	ITIS023				
Name	Mercure Basin				
Compiler(s)	De Martini P.	.M.(1)			
Contributor(s)	De Martini P	.M.(1)			
Affiliation(s)	1) Istituto Na Tettonofisica	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy			
Created	31-Oct-2001				
Updated	31-Oct-2001				
Parameter		Quality	Evidence		
Location [Lat/Lon]	39.97 / 15.99	LD	Based on geological data from De Martini (1996).		
Length [km]	22	LD	Based on geological data from De Martini (1996).		
Width [km]	12.7	LD	Based on geological data from De Martini (1996).		
Min depth [km]	1	LD	Based on geological data from De Martini (1996).		
Max depth [km]	12	AR	Derived from the geometry of the fault.		
Strike [deg]	335	LD	Based on geological data from De Martini (1996).		
Dip [deg]	60	LD	Based on geological data from De Martini (1996).		
Rake [deg]	270	LD	Based on geological data from De Martini (1996).		
Slip Per Event [m]	0.58	ER	Calculated from Mo using the relationship from Hanks and Kanamori (1979).		
Slip rate [mm/y] min…max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.		
Recurrence [y] min max	5805800	EJ	Inferred from slip rate and average displacement.		
Magnitude [Mw]	6.4	ER	Calculated using the relationships from Wells and Coppersmith (1994).		
LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert					

 Judgement;

 http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL

NULLNULL& tabber=0& page=pGGsources_d&IDSource=ITIS023

Questa sorgente è collocata in un gap sismico storico e strumentale, con due soli terremoti intermedi (08/01/1988, Md 4.1 e 09/09/1998, Ml 5.5). L'assenza di sismicità potrebbe essere dovuta a una o più di queste cause:

- a) incompletezza del catalogo;
- b) occorrenza di terremoti con tempi di ritorno più lunghi della copertura temporale del catalogo;
- c) effettiva assenza di sismicità, con comportamento asismico delle strutture.

Nella realistica ipotesi di una combinazione tra le cause a) e b), la faglia normale proposta da De Martini (1996) è in buon accordo con i dati strutturali e la ricostruzione tettonica di Schiattarella et al. (1994). Inoltre, questa sorgente mostra molte similitudini con la sorgente di Castrovillari (verso Sud).

Figura 34: Isobate della base dei depositi Quaternari nel bacino del F. Mercure (De Martini, 1996)

Figura 35: Analisi strutturale e geomorfologica dei depositi lacustri del Pleistocene superiore che colmano il bacino del F. Mercure (De Martini, 1996)

DISS-ID	ITIS077		
Name	Colliano		
Compiler(s)	Pantosti D.(1), Valensise G.(1), Burrato P.(1), Basili R.(1), Vannoli P.(1)		
Contributor(s)	Burrato P.(1), Basili R.(1), Vannoli P.(1)		
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00 43 Roma, Italy		
Created	01-Jan-2001		
Updated	27-mar-06		
Parameter		Quality	Evidence
Location [Lat/Lon]	40.80 / 15.29	LD	Based on geological and geomorphological observation.
Length [km]	28	LD	Based on geological and seismological data.
Width [km]	15	LD	Based on geological and seismological data.
Min depth [km]	1	LD	Based on geological and seismological data.
Max depth [km]	14	LD	Based on geological and seismological data.
Strike [deg]	310	LD	Based on geological and seismological data.
Dip [deg]	60	LD	Based on geological and seismological data.
Rake [deg]	270	LD	Based on geological and seismological data.
Slip Per Event [m]	1.65	LD	Based on geological and seismological data.
Slip rate [mm/y] min…max	0.40.6	LD	Based on paleoseismology.
Recurrence [y] min… max	16804125	LD	Based on paleoseismology.
Magnitude [Mw]	6.8	LD	Based on seismological data.

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement;

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=0& page=pGGsources_d&IDSource=ITIS077

Questa è la sorgente dell'evento principale del terremoto dell'Irpinia del 1980. Come noto, questo terremoto si compone di tre sub-eventi a 0 secondi (ITIS077), 20 secondi (ITIS078) e 40 secondi (ITIS079). Un consenso generale ritiene che questa struttura sia una faglia normale, ad alto angolo, immergente a NE.

Come già visto, un interrogativo interessante di questa struttura è sollevato dal fatto che i dati in Pantosti e Valensise (1990) e Pantosti et al. (1993) non consentono di associare questa faglia anche al terremoto del 1694, che ha una localizzazione a 5-6 km dall'epicentro del 1980 e un quadro di danni quasi coincidente per estensione e forma, sia pur spostato verso E. L'ipotesi corrente è che il terremoto del 1694 sia avvenuto su una struttura a tutt'oggi non nota (come non lo era quella del 1980 sino al giorno del terremoto), poiché di difficile identificazione con strumenti geologici.

Figura 36: Rotture superficiali causate dal terremoto del 1980 (Pantosti and Valensise, 1990)

Figura 37: Modello di sorgente per il terremoto del 1980 (Pantosti and Valensise, 1990)

DISS-ID	ITIS078		
Name	San Gregorio Magno		
Compiler(s)	Burrato P.(1), Basili R.(1), Vannoli P.(1)		
Contributor(s)	Pantosti D.(1), Valensise G.(1), Burrato P.(1), Basili R.(1), Vannoli P.(1)		
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00 43 Roma, Italy		
Created	01-Jan-2001		
Updated	27-mar-06		
Parameter		Quality	Evidence
Location [Lat/Lon]	40.68 / 15.48	LD	Based on geological and geomorphological observation.
Length [km]	9	LD	Based on geological and seismological data.
Width [km]	15	LD	Based on geological and seismological data.
Min depth [km]	1	LD	Based on geological and seismological data.
Max depth [km]	14	LD	Based on geological and seismological data.
Strike [deg]	300	LD	Based on geological and seismological data.
Dip [deg]	60	LD	Based on geological and seismological data.
Rake [deg]	270	LD	Based on geological and seismological data.
Slip Per Event [m]	0.7	LD	Based on geological and seismological data.
Slip rate [mm/y] min…max	0.40.6	LD	Based on paleoseismology.
Recurrence [y] min max	16804125	LD	Based on paleoseismology.
Magnitude [Mw]	6.2	LD	Based on seismolo ical data.
I Del iteratura Data: OD-Original Data: ED-Empirical Palationshin: AD-Analytical Palationshin: E I-Event			

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement;

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=0& page=pGGsources_d&IDSource=ITIS078

DISS-ID	ITIS079			
Name	Pescopagano			
Compiler(s)	Burrato P.(1), Basili R.(1), Vannoli P.(1)			
Contributor(s)	Valensise G.(1	Valensise G.(1), Burrato P.(1), Basili R.(1), Vannoli P.(1)		
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00 43 Roma, Italy			
Created	27-mar-06	27-mar-06		
Updated	27-mar-06	27-mar-06		
Parameter		Quality Evidence		
Location [Lat/Lon]	40.85 / 15.35	LD	Based on geological and geomorphological observation.	
Length [km]	15	LD	Based on geological and seismological data.	
Width [km]	10	LD	Based on geological and seismological data.	
Min depth [km]	1	LD	Based on geological and seismological data.	
Max depth [km]	10.4	LD	Based on geological and seismological data.	
Strike [deg]	124	LD	Based on geological and seismological data.	
Dip [deg]	70	LD	Based on geological and seismological data.	
Rake [deg]	270	LD	Based on geological and seismological data.	
Slip Per Event [m]	0.5	LD	Based on geological and seismological data.	
Slip rate [mm/y] min…max	0.40.6	LD	Based on paleoseismology.	
Recurrence [y] min… max	16804125	LD	Based on paleoseismology.	
Magnitude [Mw]	6.2	LD	Based on seismolo ical data.	
LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert				

Judgement;

http://diss.rm.ingv.it/dissnet/CadmoDriver? action do single=1& state=find& token=NULLNULL NULLNULL& tabber=0& page=pGGsources d&IDSource=ITIS079

DISS-ID	ITIS081			
Name	Melfi			
Compiler(s)	Fracassi U.(1)			
Contributor(s)	Fracassi U.(1), Valensise G.(1)			
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00 43 Roma, Italy			
Created	31-May-2005			
Updated	31-May-2005	31-May-2005		
Parameter		Quality	Evidence	
Location [Lat/Lon]	40.98 / 15.66	OD	Based on macroseismic and geophysical data.	
Length [km]	17.2	ER	Calculated using the relationships from Wells and Coppersmith (1994).	
Width [km]	11	ER	Calculated using the relationships from Wells and Coppersmith (1994).	
Min depth [km]	12	EJ	Inferred from upper depth of instrumental major earthquakes in the region.	
Max depth [km]	22.8	EJ	Inferred from lower depth of instrumental major earthquakes in the region.	
Strike [deg]	269	OD	Based on macroseismic and geophysical data.	
Dip [deg]	80	OD	Based on macroseismic and geophysical data.	
Rake [deg]	180	EJ	Inferred from rake of instrumental major earthquakes in the region.	
Slip Per Event [m]	0.66	ER	Calculated from M using the relationship from Hanks and Kanamori (1979).	
Slip rate [mm/y] min…max	0.10.5	EJ	Unknown, values assumed from geodynamic constraints.	
Recurrence [y] min max	13206600	EJ	Inferred from slip rate and average displacement.	
Magnitude [Mw]	6.3	LD	Value adopted from the historical earthquake catalogue CPTI04.	
I D=Literature Data: OD=Original Data: ER=Empirical Relationship: AR=Analytical Relationship: E I=Expert				

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement;

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL&_tabber=0&_page=pGGsources_d&IDSource=ITIS081 Quest'area è relativamente poco studiata dal punto di vista sismotettonico. Il terremoto del 1851 che insiste sull'area è stato approfondito da pochi autori; Alessio et al. (1995) hanno stabilito che probabilmente si tratta di un evento multiplo, possibilmente con differenti profondità ipocentrali tra i due sub-eventi.

La regione è invece più nota per la presenza e il ruolo dell'apparato vulcanico del Monte Vulture, estinto ma in parte correlato al chimismo del distretto dei Campi Flegrei (es. De Astis et al., 2006). La presenza del Monte Vulture può dunque essere la testimonianza di un significativo allineamento ca. E-W, peraltro in possibile concordanza con la famiglia di elementi regionali E-W riconoscibili nel pattern strutturale del top della piattaforma Apula (Sawyer, 2001; Nicolai e Gambini, 2007).

La sorgente proposta per il terremoto del 1851 è profonda, cieca, afferente al gruppo di strutture con direzione ca. E-W presenti nell'avampaese apulo.

Figura 38: Isosisme che confrontano gli effetti del terremoto del 1851 con quelli del terremoto del 1857 (Alessio et al., 1995)

DISS-ID	ITIS084		
Name	Potenza		
Compiler(s)	Fracassi U.(1)		
Contributor(s)	Fracassi U.(1), Valensise G.(1)		
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00 43 Roma, Italy		
Created	31-May-2005		
Updated	31-May-2005		
Parameter		Quality	Evidence
Location [Lat/Lon]	40.68 / 15.85	LD	Based on instrumental epicenter.
Length [km]	7.9	ER	Calculated using the relationships from Wells and Coppersmith (1994).
Width [km]	6.2	ER	Calculated using the relationships from Wells and Coppersmith (1994).
Min depth [km]	14.8	LD	Based on seismological data.
Max depth [km]	21	LD	Based on seismological data.
Strike [deg]	95	LD	Based on seismological data.
Dip [deg]	88	LD	Based on seismological data.
Rake [deg]	175	LD	Based on seismological data.
Slip Per Event [m]	0.26	ER	Calculated from M using the relationship from Hanks and Kanamori (1979).
Slip rate [mm/y] min…max	0.10.5	EJ	Unknown, values assumed from geodynamic constraints.
Recurrence [y] min… max	5202600	EJ	Inferred from slip rate and average displacement.
Magnitude [Mw]	5.8	LD	Based on seismological data from Di Luccio et al. (2005).

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement;

http://diss.rm.ingv.it/dissnet/CadmoDriver? action do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=0& page=pGGsources_d&IDSource=ITIS084

Come detto in precedenza, il terremoto multiplo di Potenza 1990-91 colse di sorpresa la comunità sismologica italiana, poiché non somigliava in niente ai terremoti fino ad allora studiati e, soprattutto, perché si discostava molto dai terremoti per faglia normale appartenente all'asse estensionale della catena. Inoltre, erano passati

solo 10 anni dal terremoto del 1980 dell'Irpinia e i due epicentri distavano meno di 25 km. Ad ogni modo, i dati mostravano che, seppur 'vicini', i due terremoti esprimevano due stili tettonici molto diversi per due domini sismogenetici adiacenti ma a profondità diverse. Se, infatti, la sorgente del terremoto del 1980 è una faglia normale immergente a NE, radicata a 12-13 km e affiorante, quella del 1990 è un segmento di una struttura *strike-slip*, con movimento destro, profonda tra i 15 e i 25 km.

Subito dopo il terremoto doppio del 31 ottobre-1 novembre 2002 del Molise, l'evento del 1990 è tornato sotto esame per via di almeno tre similitudini decisive con i terremoti molisani: a) la posizione strutturale immediatamente a E del *leading edge* della catena apula sepolta; b) la posizione tra ca. 15 e 25 km; c) uno *stress drop* particolarmente basso (Di Luccio et al, 2005a, b). Questo particolare ha suggerito che questi terremoti, interamente contenuti nell'avampaese apulo, accadano per la riattivazione *strike-slip* in senso destro di segmenti di strutture regionali, oggi orientate ca. E-W, preesistenti.

Figura 39: Isosisme del terremoto del 1990 (Alessio et al., 1995)

DISS-ID	ITIS088		
Name	Bisaccia		
Compiler(s)	Burrato P.(1), Vannoli P.(1), Fracassi U.(1)		
Contributor(s)	Burrato P.(1), Fracassi U.(1), Valensise G.(1), Vannoli P.(1)		
Affiliation(s)	1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00 43 Roma, Italy		
Created	01-Jan-2006		
Updated	21-Sep-2007		
Parameter		Quality	Evidence
Location [Lat/Lon]	41.03 / 15.46	LD	Based on seismological and geophysical data.
Length [km]	31	LD	Based on seismological data from Pino et al. (2007).
Width [km]	15	LD	Based on seismological and geophysical data.
Min depth [km]	1.5	ER	Derived from dip, width and max depth.
Max depth [km]	15	LD	Based on seismological and geophysical data.
Strike [deg]	280	LD	Based on seismological data from Pino et al. (2007).
Dip [deg]	64	LD	Based on seismological data from Pino et al. (2007).
Rake [deg]	237	LD	Based on seismological data from Pino et al. (2007).
Slip Per Event [m]	0.95	LD	Based on seismological data from Pino et al. (2007).
Slip rate [mm/y] min…max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.
Recurrence [y] min… max	9509500	EJ	Inferred from slip rate and average displacement.
Magnitude [Mw]	6.7	LD	Based on seismological data from Pino et al. (2007).

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement;

http://diss.rm.ingv.it/dissnet/CadmoDriver?_action_do_single=1&_state=find&_token=NULLNULL NULLNULL& tabber=0& page=pGGsources_d&IDSource=ITIS088

Il terremoto del 23 luglio 1930 è uno tra i più forti dell'Appennino meridionale e anche tra i meglio documentati, essendo accaduto nel corso del XX secolo in un'area densamente popolata. Proprio l'area epicentrale e la forma del piano quotato, però, sono in parte fuorvianti, poiché l'analisi delle forme d'onda (Pino et al., 2008) ha consentito di ottenere un meccanismo focale per questa sorgente che, in sostanza, esprime un comportamento

"misto" tra l'estensione pura in catena (con direzione NW-SE) entro i primi 12-13 km della crosta e la trascorrenza pura in avampaese apulo (con direzione E-W) tra i 10 e i 25 km di profondità.

Il piano principale è circa E-W, con cinematica strike-slip e movimento obliquo destro; l'ipocentro è a circa 14 km.

Le caratteristiche sismologiche per molti versi sorprendenti di questo terremoto hanno consentito di: a) integrare le ipotesi sulla sismogenesi in questo settore sul fianco destro dell'Appennino meridionale e b) rileggere in modo nuovo anche terremoti molto più antichi ma fino ad allora poco compresi che si trovano nella stessa posizione strutturale, verso N (Fracassi e Valensise, 2007).

Figure 9. (a) Interpretative sketch of the Southern Apennine seismotectonic setting (data from Figure 1b). (b) Depth distribution of the seismicity in Southern Apennines on interpreted seismic reflection profile (modified from Fenturu et al. [2007]). Events fall within a ± 30 km band. Focal mechanisms of the 1980 and 1990 events are from *Di Luccio et al.* [2005b]. Focal mechanism of the 1930 earthquake is from this study (Figure 5b). The trace of the faults of the 1930 earthquake (this study) and 1980 events [*Amoruso et al.*, 2005] are also reported. The main geodynamic processes are summarized according to *Doglioni et al.* [1996, 1999] and *Ventiora et al.* [2007].

Figura 40: Localizzazione, ipocentro e ruolo del terremoto del 1930 (Pino et al., 2008)

La **sorgente ITDS016 Scorciabuoi** (evidenziata in grassetto nella precedente tabella relativa all'elenco delle *Debated Sources*) è l'unica a intercettare l'area della concessione in oggetto. Questa sorgente, identificata nella parte alta dell'alloctono (entro i primi 2 km; vd. figura seguente) viene ritenuta da alcuni autori una faglia attiva, con cinematica normale e immersione a SW (Bonini e Sani, 2000; Caputo et al., 2007; vd. figura successiva). Per contro, Hippolyte et al. (1994) e Patacca e Scandone (2001) assegnano a questa struttura una cinematica prevalente *strike-slip* sinistra, la cui attività è stata legata a quella dei fronti appenninici, quindi non oltre il Pliocene superiore-Pleistocene inferiore, dunque fossilizzata. Inoltre, l'esperienza nello studio della sismogenesi in Italia (es. Valensise e Pantosti, 2001; Basili et al., 2008) dimostra che terremoti oltre M 5 sono compatibili solo con segmenti di faglia che radicano a profondità sismogenetiche (es. oltre i 7-10 km per faglie normali ad alto angolo; Valensise et al., 2004; Basili et al., 2008; Bonini et al., 2011). Tutto questo, unitamente agli insufficienti vincoli geometrico-cinematici disponibili in letteratura per questa faglia, porta a dubitare del potenziale sismogenetico della sorgente ITDS016, non a caso annoverata nell'elenco delle *Debated Sources* (DISS Working Group, 2015).

Figura 41: Line-drawing ed interpretazione di una sezione sismica attraverso il Bacino di Sant'Arcangelo che illustra la posizione della Faglia di Scorciabuoi (da Bonini e Sani, 2000)

Figura 42: Schema geologico della Faglia di Scorciabuoi (Caputo et al., 2007)

In aggiunta, a integrazione di tale analisi, si sottolinea che la società GeoMORE (spin-off dell'Università degli Studi di Camerino), ha effettuato per TotalEnergies un ulteriore studio sismotettonico dell'area di Tempa Rossa al fine di fornire una caratterizzazione approfondita della Faglia Scorciabuoi e delle altre strutture tettoniche presenti nella regione (comprese le relazioni spaziali con il giacimento di Tempa Rossa e valutazioni di tipo paleosismologico sugli elementi tettonici che intersecano l'area della concessione). Questo studio include inoltre l'analisi della sismicità strumentale registrata durante il "Punto zero" nell'area comprendente la Concessione Gorgoglione (analisi tratta dal già citato studio dell'INGV sul monitoraggio sismico di Baseline).

Le principali conclusioni di tale studio,

 $^{
m J}$ sono riassunti nel seguito.

 La faglia Scorciabuoi (come le faglie localmente cartografate) non è una faglia attiva e capace e non ha carattere sismogenetico.

TESTO OMESSO

- La sismicità strumentale registrata durante il "Punto zero" dalla rete di monitoraggio temporanea TotalEnergies-INGV 2015-2016, integrata da eventi registrati a più ampia scala (fonti INGV), mostra basse magnitudo e con ipocentri arealmente diffusi, tali eventi potrebbero rappresentare la normale sismicità di fondo dell'area.
- La Figura 43, in cui sono riportati il modello crostale 3D, gli eventi sismici, la posizione dei pozzi e della faglia Scorciabuoi, mostra che:
 - nell'area della Concessione Gorgoglione e in prossimità della faglia Scorciabuoi non sono presenti importanti fenomeni sismici;
 - gli ipocentri degli eventi con magnitudo superiore a 3.5 sono localizzati nella zona di Potenza o nella zona della Val d'Agri / Vallo di Diano.

Nella seguente figura si riporta quindi il modello crostale 3D dell'area in oggetto (fonte: GeoMORE "Studio Sismotettonico dell'Area del Giacimento di Tempa Rossa e Caratterizzazione della Faglia Scorciabuoi", 2018), composto dal modello digitale del terreno (DEM), da due sezioni geologiche-crostali orientate SO-NE, dalla distribuzione degli ipocentri dei terremoti degli eventi più importanti e recenti e, infine, dalle faglie e strutture sismogenetiche documentate presenti nella porzione di sottosuolo investigata, con particolare attenzione alla faglia Scorciabuoi.

Il modello fornisce informazioni fino a una profondità di circa 40 km e mostra la relazione spaziale tra gli elementi sopra descritti, con particolare riferimento alla caratterizzazione delle faglie Scorciabuoi e Val d'Agri. All'interno del modello 3D crostale sono visibili gli ipocentri di tutti gli eventi, suddivisi e colorati per magnitudo crescenti.

Figura 43: Modello sismotettonico crostale 3D, strutture sismogenetiche, faglia Scorciabuoi e ipocentri

In relazione ai rapporti tra l'area del giacimento Tempa Rossa e la faglia Scorciabuoi, si possono formulare le seguenti considerazioni finali, che comprendono anche valutazioni di tipo paleosismologico sugli elementi tettonici che intersecano l'area della concessione.

Come già dettagliato in precedenza, l'area che circonda la concessione del giacimento Tempa Rossa è caratterizzata dalla presenza di diverse strutture sismogenetiche, composte da faglie che non risultano classificate (rif. DISS Working Group, 2005) come strutture sismogenetiche capaci di generare eventi sismici di Mw>5.5. Tuttavia, la Faglia Scorciabuoi, che interessa la porzione meridionale della Concessione Gorgoglione con un andamento (NO-SE), è contraddittoriamente segnalata in letteratura come attiva e capace. La recente attività della faglia (tardo Quaternario) è stata in precedenza interpretata da Caputo et al. (2008) attraverso uno studio morfotettonico di dettaglio riguardante i depositi alluvionali del fiume Sauro.

In base alla sua lunghezza e apparente mancanza di segmentazione in superficie gli autori hanno calcolato una magnitudo massima di Mw 6.8 e un possibile movimento cosismico verticale in superfice dell'ordine del metro. Di conseguenza, l'importanza della Faglia Scorciabuoi è rivestita dalla sua relativa vicinanza al pozzo GG3, dalla sua presunta incerta attività recente e quindi nella sua potenzialità di generare forti terremoti. Tali possibili

elementi di criticità sono da ritenere tuttavia superati sulla base delle conclusioni raggiunte nello studio specifico redatto dalla Società GeoMORE, di cui si forniscono le principali valutazioni nel seguito.

La Faglia Scorciabuoi è caratterizzata da una geometria approssimativamente verticale con immersione compresa tra 80° SO e 80° NE (Bonini e Sani, 2000; Caputo et al., 2007) e da una cinematica prevalente trascorrente sinistra (Hippolyte et al., 1994; Patacca e Scandone, 2001). Inoltre, la faglia sembra limitata all'interno dei depositi alloctoni, interessando solo i primi 2-4 km di crosta (Bonini e Sani, 2000; Progetto CARG). Dal 1985 ad oggi, entro un raggio di 15 km dal giacimento Tempa Rossa, sono stati registrati 6 terremoti di moderata magnitudo (Md 3.0-3.4), localizzati a profondità comprese tra 5 e 8 km (Rovida et al., 2016).

Va evidenziato che il dato relativo alla profondità degli ipocentri presenta un elevato grado di incertezza (che varia tra ±2 ad ±4 km) e che per gli eventi prossimi al giacimento Tempa Rossa non è disponibile alcun meccanismo focale. Di conseguenza, l'associazione di questi eventi sismici alla Faglia Scorciabuoi è incerta.

Considerando che parte delle analisi e delle conclusioni di Caputo et al (2008) riguardo all'attività della Faglia Scorciabuoi si basano su interpretazioni di tomografie di resistività elettrica calibrate con due sondaggi nella stessa area (Caputo et al., 2007), lo studio sismotettonico e di caratterizzazione della faglia Scorciabuoi, qui sintetizzato, ha proceduto con la reinterpretazione dei dati esistenti, sulla base di quanto ottenuto dalle nuove indagini eseguite.

L'interpretazione dei dati è basata sull'integrazione di metodi geofisici superficiali (tomografia di resistività elettrica e sismica a rifrazione) realizzati nell'aree di Acinello e Canile con i dati geologici derivanti dai rilievi in campagna e dai due sondaggi esistenti e reperibili in letteratura (Caputo et al., 2007).

I risultati acquisiti nell'area di Acinello hanno consentito di identificare e interpretare un modello a tre strati (vd. figura seguente): il primo strato comprende sedimenti sciolti (suolo recente) con una bassa velocità e resistività, il secondo strato è costituito da sedimenti fluviali che evidenziano la presenza di paleo-canali caratterizzati da una velocità intermedia e una alta resistività; l'ultimo strato rappresenta il substrato costituito da depositi marini (depositi arenacei e pelitici Plio-Pleistocenici del Bacino di Sant'Arcangelo), con una velocità relativamente alta e una resistività bassa. Tuttavia, la localizzazione esatta della faglia lungo lo stendimento è relativamente incerta, ma risulta non interessare i depositi fluviali recenti.

Figura 44: Interpretazione dell'analisi congiunta (ERT-sismica a rifrazione) relativa all'area di Acinello

Anche per quanto riguarda l'area Canile, sono stati individuati tre strati con caratteristiche simili al modello interpretativo sopra descritto.

In conclusione, le indagini geofisiche, geologiche e geomorfologiche non hanno mostrato elementi di deformazione superficiale legate alla faglia Scorciabuoi, escludendone la sua attività durante almeno gli ultimi 60.000 anni. Le differenze trovate con studi antecedenti sono da attribuire all'incertezza che caratterizza le prospezioni con metodi geofisici.

8.1.5.3 Valutazioni geomeccaniche

Nella presente sezione si riporta la definizione del modello geomeccanico del campo petrolifero di Tempa Rossa sviluppato a cura di TotalEnergies al fine di descrivere gli strumenti e le metodologie applicate per la valutazione della subsidenza e del rischio di sismicità indotta come conseguenza della variazione della pressione di formazione in conseguenza all'estrazione dal giacimento, che si ricorda avvenire in "*natural depletion*", ovverosia senza l'applicazione di tecniche di reiniezione di fluidi.

Pertanto, in questa sezione si riportano le valutazioni che hanno portato TotalEnergies a ricostruire il modello geomeccanico del sito, mentre i risultati delle simulazioni legati alla fase di produzione (comportamento geomeccanico del giacimento in funzione della produzione e quindi dell'abbassamento della pressione) e i correlati aspetti inerenti al rischio di attivazione di fenomeni indotti sono riportati nella sezione relativa all'analisi degli impatti.

Nello studio sviluppato da TotalEnergies sono stati utilizzati dei simulatori geomeccanici e di flusso dinamico accoppiati (nel caso specifico Visage®-Eclipse®). Il modello ottenuto rappresenta la geometria, la geologia e le proprietà delle varie litologie incontrate all'interno e nei dintorni del giacimento. Questo è stato costruito a partire dal modello geologico del giacimento, esteso nelle 3 direzioni al fine di includere le formazioni rocciose

circostanti, facendo in modo che i limiti modellizzati, laterali e sottostanti, fossero sufficientemente distanti da non far risentire effetti sulle simulazioni di calcolo. Inoltre, si è portata attenzione a rappresentare tutti gli elementi strutturali (ad esempio, le faglie) che potrebbero entrare in gioco nel comportamento meccanico della zona.

Nel caso di Tempa Rossa, i dati a disposizione sono il modello geologico e di flusso del giacimento e i log registrati sui pochi pozzi perforati sulla struttura. In fase di modellizzazione è stato necessario fare un certo numero di approssimazioni, per esempio la forma delle unità geologiche maggiori (in assenza di una sismica 3D sulla zona) o le proprietà delle formazioni al di fuori del giacimento (in assenza di log), come meglio specificato nel prosieguo della presente sezione del SIA. Comunque, l'esperienza acquisita in questo tipo di situazioni per studi simili ha permesso a TotalEnergies di dedurre il valore più appropriato dei parametri da utilizzare per questo modello e le conclusioni dello studio sono solo marginalmente influenzate da tali ipotesi.

Sono stati analizzati due casi: quello con i sei pozzi già perforati sulla struttura – caso di riferimento – e quello con sette pozzi che, oltre ai pozzi esistenti, integra l'effetto del pozzo Gorgoglione GG3. Il risultato delle simulazioni contiene, tra le altre cose, l'evoluzione dello stato tensionale *in situ* e i movimenti risultanti dai cambiamenti di pressione di giacimento. A partire da questi si può determinare una carta della subsidenza finale attesa in superficie come il calcolo degli spostamenti lungo le faglie (all'interno e al di fuori del giacimento); gli aspetti correlati ai risultati delle simulazioni, come già evidenziato, vengono riportati nella sezione relativa alla valutazione dei potenziali impatti del Progetto.

Il campo petrolifero di Tempa Rossa è situato nella Concessione Gorgoglione (vd. figura seguente) e il giacimento è costituito dalle formazioni carbonatiche della piattaforma Apula (Cretaceo e Terziario).

Figura 45: Mappa della Concessione Gorgoglione

La colonna litologica dalla superficie alla base del giacimento è riportata nella figura seguente (colonna 'tipo' incontrata dal pozzo GG-2).

Figura 46: Colonna litologica incontrata nel pozzo GG-2

Il giacimento è posizionato all'interno di un ambiente tettonico complesso (vd. figura seguente) interessato da un regime compressivo NE-SW che si esprime attraverso delle faglie a basso angolo (30-40°).

Figura 47: Sezione strutturale del campo di Tempa Rossa

Come anticipato in precedenza, le variazioni della pressione di poro in un giacimento dovute alla produzione, inducono una deformazione del giacimento stesso e delle formazioni che lo circondano, fenomeno che è accompagnato dalla variazione dello stato tensionale *in situ*.

Il modo migliore per quantificare l'entità di tali variazioni e valutarne le potenziali conseguenze è l'uso di un simulatore numerico nel quale la risposta meccanica delle formazioni interessate, che solitamente va al di là del giacimento stesso, può essere determinata a partire dalle variazioni di pressione legate alla produzione di idrocarburi.

Come ogni modello meccanico, un modello accoppiato flussi-tensioni necessita della descrizione del problema in termini di geometria, di parametri meccanici e delle proprietà di flusso attraverso il modello. Inoltre, devono essere definite le condizioni di carico e quelle al contorno.

La geometria complessiva del modello è costituita dalla griglia del simulatore di flusso integrata all'interno di una griglia più grande che si estende su un dominio più ampio, che comprende le formazioni rocciose circostanti il giacimento (vd. figura seguente). Le principali caratteristiche geologiche (orizzonti geologici, faglie, ...) sono rappresentati nel modello sulla base delle conoscenze disponibili, generalmente ottenute dai dati sismici.

Il modello si sviluppa dalla superficie, lateralmente e in profondità in maniera tale che non siano identificabili effetti di contorno sulla zona di studio. La griglia globale è quindi ben più estesa di quella del modello di simulazione di flusso.

Figura 48: Principi costruttivi del modello geomeccanico

Per quanto riguarda i parametri legati alla dinamica dei fluidi nel sottosuolo (porosità, permeabilità, ...) i valori sono quelli descritti dal modello di giacimento. Le zone esterne, considerate non facenti parte del giacimento, restano quindi a pressione di poro costante. Infine, si attribuiscono le proprietà meccaniche sull'intero modello, operazione ardua, vista la tipica mancanza di caratterizzazione delle rocce esterne al giacimento (assenza di carote rocciose e log).

Un ulteriore elemento nella preparazione del modello è il carico meccanico legato alle variazioni di pressione nel giacimento, mentre le condizioni al contorno sono espresse come tensioni imposte (ad esempio, lo stato tensionale prevalente nella zona di studio) sui limiti del modello.

La prima fase della simulazione è quella di determinare lo stato iniziale di equilibrio del campo prima della messa in produzione. Le fasi successive vedranno le variazioni incrementali di carico dell'intero modello legate alle variazioni di distribuzione delle pressioni di poro.

Costruito il modello, è importante garantire che questo sia calibrato al fine di ottenere dei risultati robusti. La calibrazione dipende dai dati disponibili (misure di stress, registrazioni di subsidenza,) che sono fortemente dipendenti dalla fase di produzione in cui si trova il giacimento al momento della valutazione.

Per lo studio è stato messo a disposizione un modello geologico integrante le caratteristiche strutturali e sedimentologiche del campo (vd. figura seguente).

Figura 49: Sezione sismica interpretata NW-SE del campo di Tempa Rossa

Un modello dinamico di giacimento è stato costruito sulla base del modello geologico sopra citato. Questo prende in considerazione le proprietà di flusso (permeabilità, contenuto in fluidi, pressione) dalle quali sono state ricavare le previsioni di distribuzione nel tempo della pressione in funzione del piano di sviluppo del campo e dello scenario di produzione (figura seguente).

Figura 50: Evoluzione della pressione media di giacimento calcolata dal simulatore: caso a sei pozzi e caso a 7 pozzi

L'evoluzione del valore medio della pressione per ogni singola unità stratigrafica (esempio nella figura seguente) nel tempo è stata utilizzata per alimentare il modello geomeccanico.

Figura 51: Esempio di distribuzione delle pressioni per unità stratigrafiche

Come già ricordato, il modello per le simulazioni geomeccaniche ha un'estensione superiore a quelle del modello geologico/di flusso al fine di evitare eventuali effetti di contorno durante le simulazioni: tipicamente, il modello geomeccanico è 8-10 volte più grande di quello geologico in termini di superficie e si estende in profondità per 20-30 km.

Normalmente, l'estensione geometrica si basa sui dati geofisici disponibili e, idealmente, un'acquisizione sismica 3D fornisce gli orizzonti geologici principali nel dominio d'interesse.

Nel caso di Tempa Rossa, non avendo a disposizione una copertura sismica 3D sul campo, alcune ipotesi sono state fatte per le zone esterne al giacimento. In particolare, l'estrapolazione dei principali orizzonti geologici al di fuori del giacimento è stata eseguita attraverso modellizzazione geologica e interpolazione degli orizzonti meglio definiti sulla sismica, integrando le informazioni resesi disponibili nel tempo (ad esempio dalla perforazione del pozzo GG2).

A riguardo, occorre innanzitutto sottolineare che la nuova posizione di GG3 ricade in una zona dove la qualità della sismica e delle interpretazioni è paragonabile a quella della *core area*. Il modello geologico è stato pertanto aggiornato con i risultati di GG2.

È stato inoltre eseguito un reprocessing (2016) delle due linee principali, migliorando notevolmente la qualità della sismica nell'overburden fino a 1.5-2.0 ms con miglioramento decrescente con la profondità (arrivando a diventare non più significativo sul "top Apula"). In seguito ai buoni risultati conseguiti è stato eseguito un reprocessing mediante tecniche *Pre Stack Depth Migration* (PSDM) + *Post Stack Time Migration* (PSTM) (2017) con reinterpretazione. Quindi, nella prima parte della zona in sovrapressione la qualità e la precisione dell'interpretazione sono migliorate.

Per quanto riguarda la descrizione geologica, gli orizzonti meglio definiti, in termini di estensione areale, sono la Base Messiniano e il Top Giurassico. La tipologia degli altri orizzonti è stata estrapolata facendo uso di questi orizzonti integrando, come ulteriore riferimento, le faglie identificate e il piano di superficie. Il modello finale è presentato nelle seguenti due figure (rispettivamente rappresentazione con faglie e con faglie e orizzonti principali).

Figura 52: Rappresentazione delle faglie integrate nel modello

Figura 53: Rappresentazione strutturale del modello, incluse le faglie

La mancanza di dati introduce inevitabilmente un grado di incertezza dal punto di vista strutturale nella parte di modello al di fuori della zona del giacimento. Tuttavia, a questo stadio, non ci sono metodi per meglio descrivere lo schema strutturale. Le implicazioni di questa incertezza saranno discusse nel seguito.

Il giacimento di Tempa Rossa è una struttura complessa intersecata da diverse faglie e sovrascorrimenti caratterizzati da ampi spostamenti relativi. L'utilizzo della griglia geologica, così come concepita per la dinamica dei fluidi, avrebbe portato a un alto livello di distorsione della griglia a detrimento delle simulazioni geomeccaniche. Conseguentemente, il modello geomeccanico è stato concepito sulla base della procedura seguente:

- costruzione di una griglia per la completa descrizione strutturale, incluse le faglie;
- propagazione delle proprietà geomeccaniche a tutta la griglia;
- costruzione di una griglia strutturale con superfici 'semplificate' su cui sono state ri-mappate le proprietà geomeccaniche precedentemente generate.

Questo procedimento permette di ottenere una griglia non distorta e tuttavia in grado di rispettare la struttura del campo, la distribuzione delle proprietà geologiche e di quelle meccaniche delle formazioni rocciose.

Le dimensioni del modello globale sono riportate nella figura seguente (mentre il modello per gli studi dinamici comporta circa un milione di celle, il modello finale geomeccanico ne contiene oltre 11 milioni).

Figura 54: Rappresentazione globale del modello geomeccanico

Definita la geometria complessiva del modello, il passo successivo consiste nell'assegnare le proprietà meccaniche (densità, modulo di Young, coefficiente di Poisson) ad ogni singola cella.

Per lo studio, i dati provenienti dai log costituiscono l'unica fonte per le proprietà meccaniche che, in aggiunta, sono circoscritte alle sezioni del giacimento. Per aggirare questa limitazione si è proceduto a una modellizzazione meccanica 1D sui pozzi. Questa modellizzazione comporta la definizione dei profili di alcune proprietà (parametri elastici e densità) lungo la traiettoria del pozzo utilizzando i dati disponibili e integrati da valori di sintesi – ottenuti tramite correlazioni – per gli intervalli dove non ci sono informazioni disponibili (si veda ad esempio la seguente figura).

Figura 55: Esempio di calibrazione della porosità/densità su un set parziale di dati provenienti da log

Il principio base che supporta il modello è la simulazione della compattazione della colonna litostatica, legata al peso dei sedimenti corrispondenti alla regione di studio. La colonna litostatica (come definita dal geologo o ricostruita a partire dai log disponibili - generalmente il log gamma-ray -) è il punto di partenza. Un modello di compattazione semplificato è applicato all'insieme e i parametri sono adattati in modo tale che i profili calcolati di porosità e densità coincidano con quelli misurati dai log. Questi log generalmente non sono disponibili su tutta la sezione perforata e conseguentemente la calibrazione deve essere fatta sulla sezione dove questi sono disponibili (solitamente nel giacimento – esempio della figura sopra riportata).

Una volta ottenuta la calibrazione si considera che i parametri del modello utilizzati sono corretti e che il modello è rappresentativo dell'intero intervallo, giacimento e sezione sovrastante (vd. figura seguente). In effetti, solo i dati di porosità combinati alla mineralogia attraverso un processo di omogeneizzazione, sono utilizzati per il calcolo dei profili delle proprietà elastiche. I dati di densità sono fondamentali per la determinazione dei profili di stress verticali e orizzontali. A partire da questi profili, utilizzando classiche relazioni della poro-elasticità, si può calcolare la distribuzione dello stato tensionale in situ lungo l'intera traiettoria del pozzo e la coerenza dei modelli ottenuti è quindi verificata con un'analisi di stabilità del foro sulla base dei dati registrati durante le operazioni di perforazione.

Figura 56: Esempio di risultato del modello 1D (modulo di Young e coefficiente di Poisson per GG-2 – pozzo esistente – e GG-3 pozzo pianificato)

Una volta ottenuti i profili di distribuzione di questi parametri su diversi pozzi, è possibile farne un'estrapolazione laterale (vd. esempio nella figura seguente). Nuovamente, il processo di estrapolazione spaziale dei parametri eredita le incertezze legate al modello strutturale.

Per la zona sovrastante il giacimento, si applica una semplice estrapolazione delle varie proprietà utilizzando una regressione in profondità ancorata sui valori della sezione in giacimento.

Infine, rimane la descrizione dal punto di vista meccanico delle faglie, cioè definire il loro angolo di frizione e la coesione. Data la caratterizzazione lacunosa delle faglie, le loro proprietà meccaniche sono definite attraverso dei valori comunemente derivati dalla letteratura scientifica. Nel caso specifico, sono stati presi in considerazione valori ragionevolmente bassi, seppur realistici (coesione nulla e angolo di frizione pari a 22°), al fine di fornire una valutazione cautelativa del rischio di sismicità indotta.

Figura 57: Distribuzione del modulo di Young (GPa)

Per quanto concerne la pressione di poro, la sua distribuzione iniziale è stata definita sulla base dei dati di giacimento e si considera come idrostatica al di fuori di esso, ad eccezione della sezione alloctona Sannio/Sicilide e Serra Palazzo dove delle sovrappressioni sono state identificate in fase di perforazione (vd. figura seguente). In realtà, visto che si ipotizza che queste formazioni rimarranno a pressione costante durante tutta la vita produttiva del campo, il valore attuale di pressione non ha effetto né sul calcolo della subsidenza né sulla valutazione del rischio sismico.

Figura 58: Zone in sovrappressione nel campo di Tempa Rossa (esempio di GG-2)

Sulla base delle proprietà meccaniche e della pressione di poro sopra definiti, è possibile costruire lo stato di stress *in situ*.

Il principio base sottostante il modello è la simulazione della compattazione della colonna litostatica sotto carico. Per questo, oltre alla pressione di poro, sono utilizzati il log di densità, quello di porosità e le composizioni mineralogiche. Quindi, lo stato tensionale è calcolato in due fasi: la componente verticale è ottenuta a partire dell'integrazione del log di densità; le componenti orizzontali sono poi calcolate a partire dallo stress verticale utilizzando i parametri elastici corretti per eventuali effetti tettonici (informazione ottenuta dalla geologia regionale o dai dati di pozzo quali i 'break-outs').

Nel caso di Tempa Rossa, dati interessanti sono stati recuperati dall'analisi di stabilità di pozzo registrati in fase di perforazione, i quali permettono di definire l'anisotropia degli stress orizzontali (vd. figura seguente).

Figura 59: Profilo delle tensioni in Tempa Rossa (GG-3)

Per quanto concerne la direzione dello stress orizzontale principale, l'analisi dei break-outs mostra una lieve evoluzione nel giacimento, N60° nella zona centrale verso N20° in prossimità di GG-2 (vd. figura seguente), probabilmente a causa dell'interferenza di una faglia.

Figura 60: Orientazione dello stress principale a partire dall'analisi dei break-outs

Al fine di integrare la caratterizzazione del serbatoio produttivo del giacimento con indicazioni relative alla perforazione del pozzo GG3 e, in particolare, alla sua posizione spaziale, geometria ed estensione nelle tre dimensioni e alla definizione delle caratteristiche strutturali e geologico-stratigrafiche del contesto, nel seguito si riportano specifiche valutazioni di merito.

Occorre innanzitutto premettere che l'obiettivo del pozzo GG3 è di valutare il potenziale della parte meridionale del campo Tempa Rossa, sinora mai perforata e, una volta verificata la sua produttività, lo stesso potrà essere convertito in pozzo di produzione in aggiunta ai pozzi di estrazione esistenti.

Il pozzo GG3 permetterà così di accertare l'attuale modello strutturale (profondità del tetto della Piattaforma Apula), il modello geologico (facies, distribuzione dei parametri petrofisici legati alle fratture e alla matrice rocciosa) e il modello dei fluidi in quest'area del campo, consolidando le conoscenze sull'accumulazione di idrocarburi.

L'obiettivo minerario principale del pozzo è quindi rappresentato dalle unità terziarie e cretaciche della Piattaforma Apula, di cui si vogliono verificare la produttività nella zona e confermare l'eventuale connettività con gli altri pozzi perforati fino ad oggi. Come sopra accennato, in caso di esito positivo, il pozzo GG3 sarà completato con pompe ESP come pozzo produttivo ad olio.

In Figura 61 sono riportati la traiettoria e l'obiettivo primario del pozzo GG3 nel contesto del campo Tempa Rossa precedentemente definito. In particolare, la parte sinistra della figura riporta la proiezione del pozzo GG3 su una sezione geologica orientata in direzione Ovest-Est in relazione agli orizzonti geologici e alle faglie, mentre la parte destra rappresenta la proiezione in pianta del pozzo GG3 sulla carta in profondità del tetto della Piattaforma Apula/tetto del giacimento in relazione alla proiezione degli altri pozzi esistenti del campo Tempa Rossa.

Figura 61: Traiettoria e obiettivo minerario del pozzo GG3

Nota alla figura: nella sezione di sinistra le diverse linee colorate raffigurano gli orizzonti geologici, mentre le faglie sono rappresentate in blu; nella sezione di destra la scala va da -2900 mSS (colore rosso) a -5400 mSS (colore blu), mentre il cerchio bianco con bordo rosso indica il punto d'entrata del pozzo nel giacimento.

In conclusione, della caratterizzazione del giacimento di Tempa Rossa effettuata da TotalEnergies, il reservoir è costituito da un complesso carbonatico formato da calcari compatti fratturati e da dolomie porose anch'esse fratturate. L'esperienza maturata da TotalEnergies ha mostrato che le fratture sono il parametro dominante nella definizione della permeabilità delle formazioni rocciose e, conseguentemente, nella circolazione dei fluidi nel sottosuolo e nella produttività dei pozzi.

Nessuno dei sei pozzi ad oggi perforati ha raggiunto il contatto olio-acqua. La profondità della colonna di olio fino a -5175 mSS, è stata definita nel pozzo Tempa d'Emma 1 ST Ter.

Le caratteristiche chimico-fisiche dell'olio variano con la profondità (vd. figura seguente): la densità API decresce da circa 24° alla quota di -3000 mSS ai circa 6° a -5675 mSS; sullo stesso intervallo di profondità il contenuto in H₂S passa da circa 0%mol a 20%mol e quello in CO₂ da circa 1%mol a 10%mol. Queste osservazioni sono in accordo con il modello PVT (Pressione-Volume-Temperatura) di segregazione gravitativa

dei fluidi e in coerenza con i più recenti dati di produzione. Secondo TotalEnergies non esistono al momento indicazioni di variazioni laterali delle caratteristiche dell'olio.

Figura 62: Qualità dell'olio - variazione delle caratteristiche chimico-fisiche con la profondità

Nota alla figura: i punti rappresentano le misure dei parametri chimico-fisici dell'olio (densità, contenuto in H₂S e CO₂) e il colore è funzione del livello geologico nel quale è stato prelevato il campione; le curve rappresentano i modelli matematici PVT che interpolano le misure.

L'interpretazione dell'insieme dei dati disponibili ha mostrato chiaramente che il giacimento di Tempa Rossa è costituito da un reservoir a comportamento sostanzialmente omogeneo, intensamente fratturato: ogni pozzo è in comunicazione con un volume importante di idrocarburi, con un raggio di drenaggio di diversi chilometri e buona comunicazione tra i diversi pannelli strutturali. TotalEnergies ha inoltre dedotto che la presenza di faglie, chiaramente evidenziate dall'interpretazione sismica (faglia a Sud del pozzo TE1 e faglie a Ovest del pozzo GG2), non comporta alcuna barriera alla circolazione degli idrocarburi.

La figura seguente riporta sinteticamente le velocità di propagazione dei segnali di pressione registrati in concomitanza con le prove di produzione da cui si evince una chiara connessione tra i pozzi.

Figura 63: Test di interferenza tra pozzi – Propagazione del segnale di pressione

Nota alla figura: le frecce indicano la direzione di propagazione del segnale di pressione, il valore sulla freccia corrisponde alla velocità media di propagazione. Queste velocità sono considerevoli e indicano che le faglie non sono impermeabili; quando sono registrati valori inferiori alla norma è stata messa in evidenza la possibilità di presenza di barriere parziali.

Tale sistema a permeabilità elevata è determinato da una serie di fratture, microfratture e fessure derivate dalle intense e molteplici spinte tettoniche applicate alla formazione carbonatica dagli importanti eventi geologici che hanno costruito la catena appenninica.

La permeabilità della roccia serbatoio, osservata nella valutazione dei dati di produzione, conferma, con un buon grado d'attendibilità, la favorevole trasmissibilità dei fluidi, sia in senso verticale che orizzontale.

L'interpretazione delle prove effettuate mostra, infatti, una comunicazione tra le serie cretacica e terziaria del reservoir, nonostante la presenza di un intervallo tufitico abbastanza impermeabile tra le due unità. La comunicazione verticale è ulteriormente testimoniata dalla continuità del gradiente di pressione iniziale in funzione della profondità. Questa comunicazione è facilmente ascrivibile alla connettività creata dai sistemi di fratturazione a larga scala.

Una volta costruito il modello, è definita la prima fase che permette di inizializzare il sistema in termini di stato tensionale *in situ*. Questo si ottiene cercando lo stato di equilibrio del sistema dopo aver applicato il carico gravitazionale e gli sforzi tettonici laterali. Lo stato di stress risultante dalla fase iniziale è verificato in relazione ai valori ottenuti sui diversi pozzi durante la modellizzazione 1D (cfr. Figura 60 relativa all'orientazione dello stress principale). Gli sforzi tettonici sono tali da rispettare l'orientazione degli stress orizzontali ottenuti dai dati strutturali regionali disponibili per Tempa Rossa¹ (vd. figura seguente) e dalla base dati del World Stress Map² (figura successiva).

Figura 64: Tempa Rossa, modello di deformazione (Pleistocene-->presente)

¹ Spina, V., Tempa Rossa Subsurface Evaluation, Seismic & Structural Interpretations. Report GSR/00837/12, April 2012

² http://www.world-stress-map.org/

Figura 65: Mappa mondiale degli stress (World Stress Map): Regione Basilicata

Tutte le valutazioni sino a qui riportate sono propedeutiche alla successiva valutazione dei potenziali impatti associati alla componente in esame, in particolare alle possibili interazioni ed effetti cumulativi legati all'estrazione dal nuovo pozzo GG3 in termini di variazione di pressione di poro, sismicità indotta/innescata e deformazioni del suolo.

Tali aspetti vengono pertanto ripresi e finalizzati nello specifico paragrafo dedicato all'analisi degli impatti (a cui si rimanda per i dettagli di merito), da intendere come valutazione sul rischio sismico dell'area in esame in relazione alle variazioni delle condizioni di stress associabili all'attività estrattiva dal Campo Tempa Rossa con potenziale innesco di terremoti e/o di fenomeni di subsidenza.

8.1.5.4 Monitoraggio sismico

Innanzi tutto occorre rilevare che, nell'ambito della coltivazione degli idrocarburi, la commissione ICHESE e, in supporto, il Ministero per lo Sviluppo Economico (MiSE), attraverso il lavoro svolto dalla Commissione Idrocarburi e Risorse Minerarie, hanno messo in rilievo l'interesse di monitorare l'evoluzione spazio-temporale di alcuni parametri descrittivi della sismicità al fine di distinguere un possibile effetto indotto dell'attività antropica rispetto alla sismicità naturale della zona interessata.

Sulla base dell'inquadramento sismotettonico dell'area e della sismicità storica, nonché della definizione del modello geomeccanico del campo petrolifero di Tempa Rossa, aspetti descritti nelle sezioni precedenti del presente paragrafo, TotalEnergies ha quindi predisposto il progetto di monitoraggio sismico a partire dal cosiddetto "Punto zero" della sismicità nell'area della Concessione, quest'ultimo definito nel rispetto di quanto espresso dal documento "Indirizzi e linee guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell'ambito delle attività antropiche" ("Indirizzi e linee guida MiSE 2014").

Pertanto, l'attività di monitoraggio sismico della Concessione condotto a cura di TotalEnergies ha avuto luogo prima della messa in produzione del giacimento Tempa Rossa e la rete microsismica è stata finalizzata al monitoraggio del volume individuato dai Domini di Rilevazione in accordo con il suddetto documento del MiSE.

Per il campo petrolifero di Tempa Rossa i Domini di Rilevazione sono stati così individuati:

- il Dominio di Rilevazione Interno (DI) è definito dal volume che si estende fino alla superficie comprendendo la zona mineralizzata e un'ulteriore fascia estesa ai lati e al di sotto della zona stessa sino a una distanza di 3 km dal bordo del giacimento;
- il Dominio di Rilevazione Esterno (DE), vista l'attività di estrazione di olio/gas dal giacimento senza reiniezione, è definito dal volume che si estende per una fascia di 5 km dal bordo del DI.

Al fine di determinare la sismicità naturale nella zona d'interesse, TotalEnergies ha attivato una rete temporanea composta di 12 stazioni sismiche per il rilevamento e la localizzazione di eventi di bassissima magnitudo (ML<1); tale rete, progettata e installata da INGV, è stata operativa da gennaio 2015 a febbraio 2016 (vd. figura seguente).

Figura 66: Geometria della rete temporanea di monitoraggio per la definizione del "punto zero" della sismicità

Le principali informazioni ottenute da questa attività di monitoraggio sono descritte nel seguito (per i dettagli si rimanda all'**Appendice 9** - "Monitoraggio sismico di Baseline – Campagna di sismica passiva per lo studio della sismicità di fondo nell'area della Concessione Gorgoglione – Report finale", da cui sono tratte le informazioni).

- Nel periodo di funzionamento della rete sismica temporanea sono stati rilevati 258 eventi sismici in un'area comprendente un volume crostale molto più ampio di quello della Concessione (denominata "area ristretta" e compresa tra 40.1643° e 40.5777° di latitudine N e tra 15.6725° e 16.4635° longitudine E); tra i suddetti eventi localizzati, solo 9 ricadono all'interno dei limiti della Concessione.
- Sono stati definiti i valori caratteristici dell'area "ristretta" di monitoraggio per: (i) la magnitudo locale (-0.4<ML<2.7), (ii) la magnitudo di completezza (Mc=0.4) e (iii) il coefficiente b della regressione della legge di Gutenberg-Richter (b = 0.943 +/- 0.09).
- La sismicità all'interno della Concessione è risultata scarsa e di bassa intensità, ad eccezione del bordo Nord che ha presentato dei piccoli sciami di bassa energia (ML<2.5): questa sismicità ricade sia nel DI che nel DE di rilevazione.
- In base ai risultati dello studio tomografico (vd. figura seguente), che oltre ai 258 eventi sopra citati ha considerato in aggiunta 72 eventi registrati dal 2007 al 2015 dalla rete temporanea PST2007 (Passive Seismic Tomography 2007 TotalEnergies) e dalle stazioni della Rete Sismica Nazionale (RSN), la

profondità della sismicità è risultata variare fra circa 8-10 km nei settori N del DI e del DE di rilevazione, a circa 15-20 km nella porzione nord-orientale degli stessi.

Figura 67: Eventi sismici "punto zero"

Nota alla figura: sono mostrati gli eventi sismici (grafico superiore: cerchi gialli; grafico inferiore: cerchi blu) e le stazioni sismiche (triangoli rossi) utilizzati nello studio tomografico. La mappa riporta i limiti della Concessione e la griglia di nodi del modello tomografico
Il monitoraggio sismico di baseline ha inoltre approfondito la distribuzione della sismicità nell'ambito dell'area della Concessione, riportando specifiche considerazioni sui valori di velocità (velocità onde P - Vp e rapporto velocità onde P e onde S - Vp/Vs) e sugli ipocentri dei terremoti a differenti profondità (4-8-12-16-20 km) e lungo 4 sezioni rappresentative (vd. figura seguente); in particolare, le prime tre sezioni attraversano con direzione SW-NE i settori meridionale, centrale e settentrionale della Concessione estendendosi dalla zona assiale di catena (Val d'Agri) al settore esterno del *thrust belt* appenninico, mentre la quarta sezione attraversa la Concessione con direzione NW-SE.

Figura 68: Tracce sezioni Vp e Vp/Vs e distribuzione della sismicità

Dalle interpretazioni dei profili di velocità delle onde sismiche è emerso quanto di seguito sintetizzato.

Tra 2-6 km di profondità non si riscontra sismicità all'interno della Concessione e lungo i suoi margini (strato 4 km). La sismicità si concentra a SW, dove micro-sismicità clusterizzata interessa l'area di re-iniezione di Costa Molina (Improta et al., 2015), il margine meridionale dell'invaso del Pertusillo (Valoroso et al., 2009; 2011) (sezione 2), il fianco occidentale della dorsale dei Monti della Maddalena (Improta et al., 2010) (sezione 3)

Tra 8 e 12 km di profondità l'area della Concessione può essere suddivisa in due settori: centro-occidentale ad alta Vp (Vp ~7.0 km/s) e orientale a "bassa" Vp (Vp ~6.0-6.5 km/s). Nel settore orientale, valori di Vp di circa 7.0 km/s sono osservati a profondità maggiori di 16 km. A 8 km di profondità anomalie di Vp/Vs moderatamente positive (fino a 1.95) caratterizzano i settori occidentale e orientale della Concessione, mentre lo strato a 12 km di profondità non mostra anomalie significative (strati 8 e 12 km).

Tra 6-14 km di profondità la sismicità interessa il bordo settentrionale della Concessione, oltre che la porzione occidentale del modello (strati 8 e 12 km). Tra 14 e 18 km di profondità, numerosi eventi sono localizzati alcuni chilometri oltre il limite orientale della Concessione, mentre a profondità maggiori la sismicità interessa solo il settore nord-orientale della stessa (strati 16 e 20 km).

Le quattro sezioni evidenziano l'assenza di sismicità nell'area della Concessione per profondità inferiori di 6 km, in contrasto con quanto osservato in zona assiale di catena. Inoltre, si osserva un generale approfondimento dei terremoti profondi in direzione SW-NE (sezioni 1-3) e NE-SW (sezione 4).

A complemento della definizione del "Punto zero", va inoltre ricordato che la verifica della sismicità storica (catalogo DBMI11 – http://emidius.mi.ingv.it), ben documentata regionalmente per gli eventi significativi degli ultimi 400 anni, ha mostrato che l'area della concessione non è stata sede di terremoti importanti, né vede la presenza di sorgenti sismogenetiche accertate (catalogo DISS – http://diss.rm.ingv.it/diss). Per approfondimento e maggiori dettagli su questo punto, si faccia riferimento a quanto riportato nelle precedenti sezioni del presente paragrafo.

Per ogni maggiore dettaglio sull'analisi della correlazione tra la sismicità registrata nel periodo gennaio 2015 – febbraio 2016 e le strutture tettoniche presenti si rimanda inoltre al citato documento "Studio Sismotettonico

dell'Area del Giacimento di Tempa Rossa e Caratterizzazione della Faglia Scorciabuoi" (**Appendice 10** al presente SIA), il quale, riprendendo l'analisi sopra sintetizzata, ha restituito un quadro comparativo di scarsi eventi sismici di bassa magnitudo con ipocentri a generale diffusione areale, indice di una normale sismicità di fondo dell'area associata a piccole fratture e faglie che interessano diffusamente le formazioni rocciose (vd. figura seguente).

Figura 69: Mappa di localizzazione del modello 3D con strutture sismogenetiche, faglia Scorciabuoi ed epicentri terremoti

Su proposta dell'INGV, a partire dalle informazioni acquisite con il monitoraggio di "Punto Zero" e in conformità alle indicazioni fornite dagli "Indirizzi e Linee Guida MiSE 2014", prendendo inoltre in considerazione le stazioni appartenenti alla Rete Sismica Nazionale (RSN), è stata quindi realizzata, a cura di TotalEnergies, la rete permanente di monitoraggio sismico, che garantisce una copertura congrua rispetto al DI e al DE di rilevazione.

La geometria della rete comprende:

- 6 siti della rete di monitoraggio "Punto zero" della sismicità TotalEnergies-INGV 2015-2016 (TT02, TT04, TN12, TT09, TN10 e TT11), che garantiscono il controllo della zona centro-meridionale del DI di rilevazione;
- i siti SP01, SP02 e SP03 che, integrati alle stazioni PZUN e PTRP della RSN, garantiscono un monitoraggio accurato del settore Nord del DI e del DE di rilevazione, dove si concentra la sismicità relativamente superficiale (8-10 km), individuata con il monitoraggio sismico effettuato da gennaio 2015 a febbraio 2016 sopra descritto;

- il sito SP04, sulla direttrice PTRP-CRAC della RSN, per la corretta localizzazione della sismicità più profonda (15-20 km) che avviene a Nord-Est della Concessione ma all'interno del DE (anche questa rilevata nel corso del monitoraggio del periodo gennaio 2015-febbraio 2016);
- il sito SP05, necessario al monitoraggio del settore meridionale dell'area di estrazione;
- il sito SP06, per la chiusura della rete nel settore meridionale dei domini di rilevazione.

È stato convenuto che tale geometria di rete risponde al meglio alle raccomandazioni degli "Indirizzi e Linee Guida MiSE 2014".

Si sottolinea che le stazioni sismiche sono state rinominate al fine di: (i) distinguere i punti della rete permanente, (ii) uniformare i codici identificativi e (iii) consentire la registrazione delle stazioni presso il Centro Internazionale di Sismologia (ISC)³ e presso la Federazione Internazionale delle Reti Sismografiche Digitali (FDSN)⁴.

In alcuni casi le stazioni permanenti sono state localizzate in funzione dei risultati del monitoraggio di baseline, per ottimizzare la copertura e minimizzare il rumore sismico di fondo.

La rete di monitoraggio permanente è quindi costituita dalle seguenti 12 stazioni, la cui installazione e messa in servizio è avvenuta tra il 9 agosto e il 21 settembre 2018.

Codice stazione	Ubicazione stazione (territorio comunale)	Est (ETRS89 – TM 33)	Nord (ETRS89 – TM 33)
TR01 (ex SP01)	Laurenzana	586282,86	4481629,81
TR02 (ex SP02)	Calvello	574145,86	4482437,71
TR03 (ex SP03)	Albano di Lucania	585115,04	4493422,84
TR04 (ex SP04)	San Mauro Forte	603013,33	4483621,49
TR05 (ex SP05)	Guardia Perticara	592964,44	4470870,04
TR06 (ex SP06)	Gallicchio	595333,64	4460873,05
TR07 (ex TN10)	Laurenzana	581093,25	4477609,84
TR08 (ex TN12)	Corleto Perticara	585877,37	4472011,46
TR09 (ex TT02)	Stigliano	601491,16	4472836,48
TR10 (ex TT04)	Corleto Perticara	592947,32	4476313,8
TR11 (ex TT09)	Pietrapertosa	593512,16	4480985,81

Tabella 19	: Stazioni	sismiche	Tempa	Rossa
------------	------------	----------	-------	-------

³ International Seismological Centre, UK. http://isc.ac.uk

⁴ International Federation of Digital Seismograph Networks, http://fdsn.org

Codice stazione	Ubicazione stazione (territorio comunale)	Est (ETRS89 – TM 33)	Nord (ETRS89 – TM 33)
TR12 (ex TT11)	Corleto Perticara	587700,36	4473991,06

Ogni stazione per il monitoraggio sismico comprende una strumentazione conforme alle indicazioni espresse dagli "Indirizzi e Linee Guida MiSE 2014", si citano in particolare le seguenti dotazioni/caratteristiche:

- un sismometro tri-assiale ad alta sensibilità;
- un accelerometro tri-assiale ad alta dinamica;
- i sensori sono corredati da corrispettivi sistemi di acquisizione e di ricetrasmissione GSM e da sistemi di alimentazione.
- una stazione interna alla rete è attrezzata con un sensore a banda larga.

Inoltre, come meglio specificato nella sezione relativa alla componente subsidenza, tre stazioni sono completate con una stazione permanente di precisione CGPS, al fine di integrare la funzione di rilevazione sismica con quella geodetica (tali stazioni costituiscono parte integrante del sistema di monitoraggio della deformazione del suolo).

Infine, si sottolinea che i sensori di ogni stazione sono installati su pilastrini alloggiati in pozzetti per assicurare un migliore accoppiamento sensore-roccia.

I siti in cui sono ubicate le stazioni di monitoraggio permanente sono mostrati nella seguente figura.

Figura 70: Rete microsismica Tempa Rossa

A partire dall'installazione e dalla verifica della adeguata funzionalità operativa della rete sismica, il monitoraggio in continuo ha quindi avuto inizio. Il periodo di registrazione è stato suddiviso nei seguenti cicli operativi:

- 01/09/2018 31/12/2018;
- 01/01/2019 31/03/2019;
- 01/04/2019 30/06/2019;
- 01/07/2019 30/09/2019;
- 01/10/2019 31/12/2019;
- 01/01/2020 30/06/2020;
- 01/07/2020 31/12/2020;
- 01/01/2021 30/06/2021;
- 01/07/2021 31/12/2021;
- 01/01/2022 30/06/2022;
- 01/07/2022 31/12/2022.

I dati della rete di monitoraggio sismico sono acquisiti in tempo reale tramite specifico software che esegue, durante la stessa fase di acquisizione, una pre-elaborazione dei segnali. I segnali così selezionati vengono inviati a un ulteriore software per la localizzazione automatica degli eventi sismici registrati. Le localizzazioni automatiche vengono quindi riviste da un operatore per i necessari controlli e le eventuali correzioni, da cui l'estrazione dei segnali e la localizzazione finale degli eventi registrati.

Per ogni ciclo di misura sono state redatte, a cura di TotalEnergies, specifiche relazioni riportanti i risultati del monitoraggio per il periodo di riferimento ("report sismici"), esplicitando inoltre la percentuale di copertura dei dati e gli eventuali interventi di manutenzione effettuati.

Con riferimento alla localizzazione degli eventi, si evidenzia che i report sismici riportano la descrizione degli eventi localizzati nella zona di interesse (volume indicato come "griglia locale"), che si estende in superficie per circa 41x43 km e in profondità per 50 km e che racchiude i Domini di Rilevazione; entro la griglia locale le uniche stazioni della RSN presenti sono quelle denominate MCEL e PTRP. Tuttavia, come evidenziato nei report sismici, occorre specificare che per ottenere una localizzazione migliore degli eventi è stata utilizzata una griglia più ampia di quella locale ("griglia grande"), così da considerare anche altre stazioni INGV.

Nella seguente figura sono mostrate entrambe le griglie (locale e grande), i limiti dei Domini di Rilevazione e le stazioni in esse contenute (INGV e TotalEnergies).

Figura 71: Griglie utilizzate per le localizzazioni degli eventi sismici

Nel seguito si riporta la sintesi degli eventi registrati in ciascun ciclo di monitoraggio e con epicentro entro la griglia locale o la griglia più estesa, specificando il numero di sismi riscontrati all'interno dei Domini di Rilevazione (DI e DE) e il numero di quelli rientranti nei limiti della Concessione Gorgoglione.

Per ogni ciclo di monitoraggio si riportano, inoltre: (i) la cartografia con la localizzazione degli eventi registrati entro 50 km dalla rete o entro la griglia locale, a seconda dei casi rilevati, (ii) il grafico della distribuzione della magnitudo locale calcolata e (iii) il grafico della distribuzione delle profondità degli ipocentri per i sismi registrati all'interno dei Domini di Rilevazione.

Per i dettagli di merito, come già evidenziato, si rimanda ai singoli report sismici (Appendice 8 al SIA).

 01/09/2018 – 31/12/2018: 50 eventi sismici con epicentro entro 50 km dalla rete di monitoraggio, di cui 12 entro i Domini di Rilevazione (7 nel DI, 5 nel DE) e 5 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.0 - 0.9

1102/11/06

102/11/00

8102/21/02

1102/21/04

102/01/11

21/10/201

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 7 e 23 km, ad eccezione di un evento (profondità pari a circa 49 km)

01/08/

11/08/11

11/08

 01/01/2019 – 31/03/2019: 17 eventi sismici con epicentro entro 50 km dalla rete di monitoraggio, di cui 4 entro i Domini di Rilevazione (3 nel DI, 1 nel DE) e 2 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione (in colore rosso) risulta compresa entro l'intervallo 1.2 – 2.4

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione (in colore rosso) risultano grossomodo comprese tra 11 e 18 km, ad eccezione di un evento (profondità pari a circa 31 km)

15.80

15.40 16.10 16.20 16.40 Grigis locale Beard samed Dennes Interno Donnes In

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.3 - 2.0

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 8 e 24 km

 01/04/2019-30/06/2019: 16 eventi sismici con epicentro entro la griglia locale, di cui 8 entro i Domini di Rilevazione (2 nel DI, 6 nel DE) e nessuno entro la Concessione 01/07/2019 – 30/09/2019: 38 eventi sismici con epicentro entro la griglia locale, di cui 14 entro i Domini di Rilevazione (3 nel DI, 11 nel DE) e 2 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.2 - 2.0

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 8 e 22 km

- 15.75 15.50 16.15 16.20 16.37 16.30 16.37 16.30 16.37 16.30 16.37 16.30
- Distribuzione della magnitudo

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.4 - 2.6

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 12 e 24 km

01/10/2019 – 31/12/2019: 18 eventi sismici con epicentro entro la griglia locale, di cui 11 entro i Domini di Rilevazione (4 nel DI, 7 nel DE) e 3 entro la Concessione

 01/01/2020 – 30/06/2020: 59 eventi sismici con epicentro entro la griglia locale, di cui 33 entro i Domini di Rilevazione (17 nel DI, 16 nel DE) e 12 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.0 - 1.5

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 8 e 42 km

 01/07/2020 – 31/12/2020: 47 eventi sismici con epicentro entro la griglia locale, di cui 30 entro i Domini di Rilevazione (12 nel DI, 18 nel DE) e 8 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.0 - 3.0

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 3 e 34 km

 01/01/2021 – 30/06/2021: 29 eventi sismici con epicentro entro la griglia locale, di cui 17 entro i Domini di Rilevazione (5 nel DI, 12 nel DE) e 4 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.0 - 3.8

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 1 e 38 km

 01/07/2021 – 31/12/2021: 44 eventi sismici con epicentro entro la griglia locale, di cui 16 entro i Domini di Rilevazione (8 nel DI, 8 nel DE) e 4 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.1 - 3.5

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 4 e 32 km

 01/01/2022 – 30/06/2022: 30 eventi sismici con epicentro entro la griglia locale, di cui 18 entro i Domini di Rilevazione (9 nel DI, 9 nel DE) e 9entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.2 - 2.1

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 1 e 40 km

 01/07/2022 – 31/12/2022: 45 eventi sismici con epicentro entro la griglia locale, di cui 21 entro i Domini di Rilevazione (15 nel DI, 6 nel DE) e 4 entro la Concessione

La Magnitudo Locale (M_L) riscontrata per gli eventi sismici registrati all'interno dei Domini di Rilevazione risulta compresa entro l'intervallo 0.2 - 1.6

Le profondità riscontrate per gli eventi sismici registrati all'interno dei Domini di Rilevazione risultano grossomodo comprese tra 3 e 19 km

Monitoraggio della pressione di poro

Facendo sempre riferimento a quanto previsto dal PMA, al fine di permettere la valutazione di eventuali eventi legati all'attività estrattiva, al monitoraggio della sismicità è affiancato quello della pressione di poro.

A tale scopo, tutti i pozzi del giacimento sono completati con pompe centrifughe di fondo equipaggiate con sensori per il monitoraggio in continuo della pressione nel sottosuolo.

Il monitoraggio delle pressioni di poro nel giacimento viene eseguito con regolari misure a testa-pozzo e a fondo-pozzo al fine di valutare la situazione del giacimento, sulla base di dati giornalieri di produzione e delle pressioni.

Le modalità di analisi, la tipologia e la frequenza di invio dei dati saranno definite come previsto nell'accordo quadro per l'applicazione degli indirizzi e linee guida nell'ambito del "Protocollo di trasmissione dati" (art. 8, comma 2) attualmente in fase di formalizzazione.

Alla **componente sismicità** viene attribuita una **sensibilità media** in quanto, pur non essendo riconosciute sorgenti sismogenetiche nell'area della concessione, il grado di sismicità del territorio a scala di area vasta è elevato, con occorrenza di terremoti anche di forte magnitudo (M=7).

Pagina delle firme

WSP Italia S.r.l.

These

Lorenzo Fassino Project Manager

WSP Italia S.r.l.

Line Illousane

Livia Manzone Project Director

C.F. e P.IVA 03674811009 Registro Imprese Torino R.E.A. Torino n. TO-938498 Capitale sociale Euro 105.200,00 i.v.

