

AUTUNNO 2020 (A20), INVERNO 2021 (I21) PRIMAVERA 2021 (P21), ESTATE 2021 (E21)

FASE DI ESERCIZIO VIII REPORT ANNUALE VOLUME 2

Rev. 1	1105.22	Emissione definitiva	AMDB	GB	СР	
Rev. 0	Rev. 0 22.02.22 Emissione per commenti committente		AMDB GB		СР	
Rev	Data	Descrizione della revisione	Preparato da	Verificato da	Approvato da	

V0	LUME II		
1	RISULT	ATI SURVEY PRIMAVERA 2021	11
	1.1		
		1.1.1 Profili lorologici	
		1.1.2 Caratteristiche fisiche, chimiche e microbiologiche	
		l ensioattivi	
		Analisi microbiologiche	
		1.1.3 FidilClUII Analisi guantitativa e gualitativa del fitonlancton da hottiglia	
	1.2	Вюта	
		1.2.1 Macrozoobenthos	
		1.2.2 Bioaccumulo	
		Metalli	
		Idrocarburi totali	
		Cloroderivati	
		Analisi microbiologiche	
		1.2.1 Biomarkers	
		1.2.2 Cetacei e tartarughe marine	40
	4.2		41
	1.3	131 Biogenstica	
2	RISULTA	ATI SURVEY ESTATE 2021	43
-	1.00217		
	2.1	COLONNA D'ACQUA	
		2.1.1 Profili idrologici	
		Misure di irradianza e irradianza spettrale	44
		2.1.1 Caratteristiche fisiche, chimiche e microbiologiche	46
		Nutrienti inorganici disciolti	
		lensioattivi	
		Idrocarburi totali	
		Analisi microbiologicne	
		2.1.2 Saggi eco tossicologici su campioni di acqua	
		VIDIO IISCHEH	
		Dicentrarchus labray	
		Paracentrotus lividus	
		2.1.3 Plancton	
	2.2	SEDIMENTI	
		2.2.1 Caratteristiche fisiche, chimiche e microbiologiche	
		Analisi granulometrica	
		Metalli	
		Analisi microbiologiche	
		2.2.2 Saggi ecotossicologici su campioni di sedimento	
		Falacentrolus Involus	
		Vibrio fischeri	
	2.3	Вюта	74
		2.3.1 Macrozoobenthos	74
		2.3.2 Meiobenthos	
		2.3.3 Bioaccumulo	
		Metalli	
		Idrocarburi totali	
		Cloroderivati	

		Analisi microbiologiche	
		2.3.4 Biomarkers	
		2.3.5 Fauna ittica bentonectonica	
		2.3.6 Fauna ittica pelagica	
		2.3.7 Cetacei e tartarughe marine	
		v	
	2.4	INDAGINI GENERALI	
		2.4.1 Bioacustica	101
3	CONFR	ONTO INTERSTAGIONALE E CON LA CAMPAGNA DI BIANCO	
	3.1		
		3.1.1 Profili idrologici	
		Metodi di elaborazione dati	
		Risultati	
		3.1.2 Caratteristiche fisiche, chimiche e microbiologiche	
		Risultati	
		Misure di irradianza e irradianza spettrale	
		Clorofilla e diversità pigmentaria	
		Tensioattivi, cloroderivati, Idrocarburi totali e analisi microbiologiche	
		3.1.3 Saggi ecotossicologici su campioni di acqua	
		3.1.4 Plancton	
		Metodi di elaborazione dati	
		Risultati	
		Metodi di elaborazione dati	114
		Risultati	
	3.2	SEDIMENTI	
		3.2.1 Caratteristiche fisiche, chimiche e microbiologiche	
		Metodi di elaborazione dati	
		3.2.2 Saggi ecotossicologici su campioni di sedimento	120
	3.3	ΒΙΟΤΑ	
	••••	3.3.1 Macrozoobenthos	
		Metodi di elaborazione dati	
		Risultati	
		3.3.2 Meiobenthos	
		Metodi di elaborazione dati	
		Risultati	
		3.3.3 Bioaccumulo	
		3.3.4 Biomarkers	
		Metodi di elaborazione dati	
		Risultati	
		3.3.5 Fauna ittica bentonectonica	
		Metodi di elaborazione dati	
		Risultati	
		3.3.6 Fauna ittica pelagica	
		3.3.7 Cetacei e tartarughe marine	
4	CONCLU	ISIONI	
5	RIFERIN	ENTI BIBLIOGRAFICI	

INDICE DELLE FIGURE

Figura 1 – Profili di temperatura (°C), salinità (ppt), pH e torbidità (NTU); survey primavera 2021.	. 11
Figura 2 – Profili di ossigeno disciolto (% saturazione), clorofilla (µg/l), e potenziale di ossidoriduzione (mV); survey primavera 2021	. 12
Figura 3 - Profilo del rapporto fra l'irradianza quantica PAR (Photosynthetic Available Radiation) disponibile alle varie profondità con quella	
contemporanea in superficie, PAR (0 m), nelle stazioni P21 MG7 e P21 MG10. Dati relativi alla Primavera 2021	. 13
Figura 4 - Irradianza spettrale discendente superficiale e subacquea alle profondità indicate. E' inoltre riportata la irradianza spettrale ascendente a 5 m	1
(5m up). Ogni spettro è stato normalizzato per il proprio massimo (E _{max} (λ)) riportato nella legenda insieme con la lunghezza d'onda dove si colloca (λ _{ma}	x).
Dati relativi alla Primavera 2021	. 13

	era 15
Figura 6 - Profili delle concentrazioni (mg/l) dei solidi sospesi (TSM) e delle concentrazioni di particellato organico (POM). Dati relativi alla Primavera 2	10 021. 16
Figura 7 - Profili degli assorbimenti (m ⁻¹) della CDOM a 325 nm (accom(325) m ⁻¹). Dati relativi alla Primavera 2021	17
Figura 8 - Profili delle concentrazioni (mg/m3) di clorofilla a tot. Dati relativi alla Primavera 2021.	18
Figura 9 – Concentrazione relativa dei singoli pigmenti diagnostici in rapporto al totale delle concentrazioni dei nove Pigmenti Diagnostici (PD=	
Fuco+Perid+Hex-Fuco+But-Fuco+Allo+Prasino+Chlb+DVA+Zea). Dati relativi alla Primavera 2021.	20
Figura 10 - Profili delle densità fitoplanctoniche totali (cell/ml). Dati relativi alla Primavera 2021.	24
Figura 11 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale (P21).	24
Figura 12 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Primavera 2021. Altro= nemertini, nematodi,	
cnidari, emicordati	34
Figura 13 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (P21).	35
Figura 14 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata	
ottenuta tramite l'indice di Brav-Curtis (P21)	35
Figura 15 - Valutazione del danno cellulare mediante la misura del tempo di ritenzione del colorante vitale Rosso Neutro (NRRT) nei lisosomi degli em	ociti
di mitilo. Valori alti del tempo di ritenzione corrispondono ad una maggiore integrità	38
Figura 16 - Valutazione del grado di integrità del DNA mediante Comet assay. Valori elevati della percentuale di DNA migrato corrispondono ad una	
magaiore entità del danno	39
Figura 17 - Analisi istologica delle branchie di mitilo. Il parametro rappresentato nel grafico è il punteggio medio (score) per ciascuna delle stazioni	
indagate La scala va da 1 a 5 il punteggio 1 indica una condizione di integrità mentre il punteggio 5 indica una forte compromissione della struttura d	iد
	″ 40
Figura 18 - Sono riportate le rotte percorse per il monitoraggio visivo e bioquetico condotto a partire da giugno 2021 (P21)	10
Figura 19 - Erame di registrane dell'11 giugno 2022	40
Figure 20 - Profile di temperatura (°C), salinità (not) nH e torbidità (NTLI): survey estate 2021	42
Figure 20 - From diferingendidi (O), sama (pr), pri e torofila (100), sovey estate 2021	5
rigura 21 - Trollin di caporto fra l'irradianza quantica DD (Dhotosynthetic Aviallable Dadiation) disponibile alle varie profondizione di caso di caporto fra l'irradianza quantica DD (Dhotosynthetic Aviallable Dadiation) disponibile alle varie profondizione di caso di caporto di caport	++
	15
Contemporate an superincie, FAR (0 m), tene stazioni E21 MGT e 21 MGT e 21 MGT .	40
	111
$(\sin up)$. Ogni spetro e stato normalizzato per li proprio massimo ($E_{max}(\Lambda)$) nportato nella regenda insieme con la fungitezza a onda dove si colloca (Λ_m	ax). 1 E
	40
Figure 24 - Prolini delle concentrazioni (pini) del numenti morganici discioni. No2 (mini di), PO4 (losiali), SIO2 (sincal)	41
Figure 25 - Proliti delle concentrazioni (mg/h) dei sono sospesi (15%) e delle concentrazioni di particellato organico (POM).	40
Figura 20 - Proliti degli assorbimenti (m.) della CDDW a 223 mil (acDom(323))	49
Figure 26 - Prolini delle concentrazioni (ing/m ²) di circonti di grane ta il table delle concentrazioni dei acce Dispersiti (ing/m ²) di circonti di grane ta il table delle concentrazione Dispersiti Dispersiti di grane ta il table delle concentrazione della concentrazione di grane ta il table delle concentrazione della concentrazione di grane ta il table delle concentrazione della concentrazione d	50
Figure 26 – Concentrazione relativa dei singon pigmenti diagnostici in rapporto ai totale delle concentrazioni dei nove Pigmenti Diagnostici (PD-	50
Fuco+Periot+Rex-Fuco+But-Fuco+Alio+Prasino+Chi0+DVA+Zea).	~ ~ /
Figure 20 Drefili delle densità fitenleneteniche totoli (cell/ml)	52
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml)	60
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale	60 61
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid	60 61 ari,
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati	60 61 ari, 76
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 32 - Disclinatione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21).	62 60 ari, 76 76
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata	62 60 61 ari, 76 76
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis.	62 60 ari, 76 76 77
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala	62 60 61 ari, 76 76 77
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento metopentonico complessivo (dx).	60 61 ari, 76 76 77 78
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala	62 60 ari, 76 76 77 78
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).	62 60 ari, 76 76 77 78 79
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. V	32 60 61 ari, 76 76 77 78 79
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. V	32 60 61 ari, 76 76 77 78 79 80
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. V	32 60 ari, 76 76 77 78 79 80
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind /10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind /10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind /10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind /10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind /10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind /10 cm ²) dei taxa principali e del popolamento com	32 60 61 ari, 76 76 76 77 78 80 80
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml). Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale . Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento comples	32 60 61 ari, 76 76 76 77 78 80
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale. Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valor	62 60 61 ari, 76 76 77 78 79 80 81
Figura 39 - Profili delle densità fitoplanctoniche totali (cell/ml). Figura 30 - Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo	62 60 61 ari, 76 76 77 78 79 80 81
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml) Figura 30 - Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 39 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo	62 60 61 ari, 76 76 76 77 78 80 80 81
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml). Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale. Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori	60 61 ari, 76 76 77 78 79 80 81 81
Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml). Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 39 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Val	60 61 ari, 76 76 77 78 79 80 81 81 82
Figura 30 – Abbondanza relativa delle classi fitoplanctoniche totali (cell/ml). Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 39 - Stazione E21 MG8. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (62 60 61 ari, 76 76 77 78 79 80 81 81 82
Figura 30 – Abbondanza relativa delle classi fitoplanctoniche iotali (cell/ml). Figura 31 – Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 39 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (62 60 61 ari, 76 76 77 78 79 80 81 81 82 83
Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale	62 60 61 ari, 76 76 77 78 79 80 81 81 82 83
Figura 32 - Profil delle densità fitoplanctoniche totali (cell/ml). Figura 33 - Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati	62 60 61 ari, 76 76 77 78 79 80 80 81 81 82 83 83
Figura 30 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale	62 60 61 ari, 76 77 78 79 80 81 81 81 82 83 83
Figura 32 - Profili delle densità fitoplanctoniche totali (cell/ml). Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 38 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 39 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figur	62 60 61 ari, 76 77 78 77 78 79 80 81 81 81 82 83 83 84
Figura 32 - Profili delle densità fitoplanctoniche totali (cell/ml). Figura 30 - Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Riparfizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 39 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 41 - Stazione E21 MG61. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Val	62 60 61 ari, 76 77 78 77 78 79 80 81 81 81 82 83 83
Figura 32 - Profili delle densità fitoplanctoniche totali (cell/ml). Figura 30 - Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnid emicordati. Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21). Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis. Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind/10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind/10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind/10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind/10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 39 - Stazione E21 MG7. Densità media ± deviazione standard (ind/10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx). Figura 40 - Stazione E21 MG8. Densità media ± deviazione standard (ind/10 cm²) dei taxa principali e del popolamento complessivo. Valori in	62 60 61 ari, 76 76 76 76 77 78 78 80 81 81 81 83 83 84 84
Figura 32 - Profili delle densità fitoplanctoniche totali (cell'ml)	62 60 61 ari, 76 76 77 78 78 79 80 81 81 81 82 83 83 84

Figura 46 - A sinistra: dendrogramma per il raggruppamento gerarchico delle stazioni basato sul valore delle abbondanze medie dei taxa principali e similarità di Bray-Curtis, previa trasformazione logaritmica dei dati. A destra: piano di ordinamento ottenuto dal non-metric Multi Dimensional Scaling Figura 47 - Valutazione del danno cellulare mediante la misura del tempo di ritenzione del colorante vitale Rosso Neutro (NRRT) nei lisosomi degli emociti Figura 48 - Valutazione del grado di integrità del DNA mediante Comet assay. Valori elevati della percentuale di DNA migrato corrispondono ad una Figura 49- Analisi istologica delle branchie di mitilo. Il parametro rappresentato nel grafico è il punteggio medio (score) per ciascuna delle stazioni indagate. La scala va da 1 a 5; il punteggio 1 indica una condizione di integrità mentre il punteggio 5 indica una forte compromissione della struttura dei Figura 50 - Reti da posta: composizione percentuale delle catture, espressa come nº individui/1000m/24h e kg/1000m/24h, dei principali gruppi Figura 51 - Rete a strascico: composizione percentuale delle catture, espressa come nº individui/km² e kg/km², dei principali gruppi tassonomici Figura 52 - Reti da posta: indici di densità e biomassa, stimati per le stazioni E21 P1-P4 e per la stazione E21 PC, per specie. Sono riportati i valori medi + Figura 53 - Rete a strascico: indici di densità e biomassa, stimati per le stazioni E21 S1-S4 e per la stazione E21 SC, per specie. Sono riportati i valori medi + la deviazione standard. In blu n° individui/km², in azzurro chiaro kg/km²......96 Figura 60 - Rete a strascico: distribuzione taglia-frequenza del gambero bianco (Parapenaeus longirostris). Nº individui: 503 (E21 S1-S4); 120 (E21 SC). Figura 61 - Sono riportate le rotte percorse per il monitoraggio visivo e biocustico condotto a partire da settembre 2021 (E21) 101 Figura 63 – Andamento della temperatura media dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF15)...... 105 Figura 64 – Andamento della salinità media dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono Figura 65 – Andamento del pH medio dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati Figura 66 – Andamento della torbidità media dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Figura 67 – Andamento della percentuale di saturazione di ossigeno medio dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF2)..... Figura 68 - Andamento della clorofilla a media dal bianco (2012) all'estate 2021 nelle guattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Figura 69 – Andamento del potenziale di ossido-riduzione medio dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico Figura 70 – Variazione della profondità (m) della zona eufotica (Z_{eu}) nelle due stazioni rappresentative, per tutte le campagne effettuate; sono riportati Figura 71 - Relazione fra il log del rapporto fra le riflettanze a 443 nm e quelle a 555 nm (R(443)/R(555)) ed il log della concentrazione della chl-a. Sono riportati l'equazione della retta di regressione ed il coefficiente di determinazione R². I simboli pieni rappresentano le stazioni più vicine al Terminale e Figura 72 - Andamenti temporali delle concentrazioni della chl-a, medie per campagna delle 4 stazioni (MG6, MG7, MG12, MG13) più vicine al Terminale Figura 75 – Principali classi granulometriche nei sedimenti campionati durante la campagna di Bianco (E12) e nelle successive campagne estive (da E14, Figura 77 - Piano di ordinamento ottenuto dal n-MultiDimensional Scaling applicato alla matrice generi x stazioni dopo aver selezionato i generi con contributo >5% e mediato le repliche. La matrice triangolare è stata ottenuta tramite l'indice di Brey-Curtis. Dall'analisi sono stati rimossi i punti relativi Figura 78 - Piano di ordinamento ottenuto dal n-MultiDimensional Scaling applicato alla matrice "generi con contributo >5% x stazioni" (limitatamente ai campionamenti estivi). La matrice triangolare è stata ottenuta tramite l'indice di Brey-Curtis. Nel plot sono stati superimposte le label (C, FSRU, I) che Figura 79 - Analisi grafica dei residui per valutare le assunzioni di omogeneità e normalità dei residui nella analisi di regressione lineare multipla sull'indice Figura 80 - Analisi grafica dei residui per valutare le assunzioni di omogeneità e normalità dei residui nella analisi di regressione lineare multipla sulla

Figura 81 – Plano di ordinamento delle 12 stazioni investigate ottenuto dai non-metric MultiDimensional Scaling (n-MDS), basato sul valore delle	
abbondanze medie dei taxa principali e similarità di Bray-Curtis, previa trasformazione logaritmica dei dati. Sono stati analizzati i dati acquisti nel corso	, di
17 campagne di prelievo, dal Bianco (B) all'Estate 2021 (E21).	127
Figura 82 – Piano di ordinamento delle 12 stazioni investigate ottenuto dal non-metric MultiDimensional Scaling (n-MDS), basato sul valore delle	
abbondanze medie dei taxa principali e similarità di Bray-Curtis, previa trasformazione logaritmica dei dati. Sono stati analizzati i dati acquisti nel corso	, di
nove campagne estive, dal Bianco (B) all'Estate 2021 (E21). Nel plot sono sovrapposti i label in base alle distanze delle stazioni dal Terminale (FSRU:	
vicine al Terminale, I: distanze intermedie, C: controlli).	128
Figura 83 - Variazione temporale del grado di danno del DNA nelle cellule branchiali di mitilo (non significativa)	130
Figura 84 - Integrazione ponderata dei risultati dei biomarker mediante il programma Sediqualsoft, da cui emerge un impatto assente o moderato del	
Terminale nella quasi totalità delle campagne di monitoraggio effettuate.	131
Figura 85 - Dati storici sulla presenza di cetacei risalenti agli anni 2000	139
Figura 86 - Avvistamenti a partire dalla campagna di Bianco (B12) fino al 8° anno (A20-I21-P21-E21).	140

INDICE DELLE TABELLE Tabella 4 - Concentrazioni (mg/m³) della Clorofilla a totale (Chl a tot = Clorofilla a + Divinil Clorofilla a + Alloclorofilla a, se presenti). Dati relativi alla Tabella 6 - Concentrazione tensiotattivi anionici e tensioattivi non ionici presenti nei campioni di acqua di mare lungo il profilo batimetrico (P21). Le Tabella 8 - Concentrazione degli idrocarburi totali presenti nei campioni di acqua di mare lungo il profilo batimetrico (P21). I dati sono espressi in Tabella 10 - Densità fitoplanctonica totale (cell/ml) e delle classi o gruppi identificati (P21)......23 Tabella 11 - Numero di specie, generi e altre categorie tassonomiche individuate per ogni classe o raggruppamento fitoplanctonico nei campioni osservati Tabella 13 - Numero di specie, generi e altre categorie tassonomiche individuate per ogni classe o raggruppamento fitoplanctonico nei campioni osservati Tabella 14 - Lista dei taxa dalle analisi gualitative dei campioni raccolti con retino nelle stazioni P21 MG6. P21 MG7. P21 MG10. P21 MG12 e P21 MG13 Tabella 15 – Oloplancton (P21). O.le=orizzontale, 50-0=campionamento verticale da 50 a 0 metri, 100-50=campionamento verticale da 100 a 50 metri. * Tabella 16 - Biomassa (P21): volumi di sedimentazione dell'oloplancton (espressi in ml). OR = campionamento orizzontale; 50-0 = campionamento Tabella 17- Meroplancton (P21). O.le = orizzontale, 50-0 = campionamento verticale da 50 a 0 metri, 100-50 = campionamento verticale da 100 a 50 Tabella 18- Ittioplancton (P21). O.le = orizzontale, 50-0 = campionamento verticale da 50 a 0 metri, 100-50 = campionamento verticale da 100 a 50 metri. Tabella 20 - Indici strutturali (±DS) relativi al popolamento macrobentonico. Numero di taxa (S), Numero di individui (N), Diversità specifica di Shannon-Tabella 21 - Concentrazione dei metalli nei mitili. Dati relativi alla campagna P21 espressi in mg/kg. Sono riportati i dati riferiti sia alla sostanza secca (s.s.) sia al peso fresco (p.f.) in accordo alla prescrizione 13 delle Determine 2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-09-2017. Tabella 23 - Concentrazione degli IPA e dei composti organostannici presenti nei campioni di mitili. I dati, relativi alla campagna P21, sono espressi in Tabella 24 - Concentrazione degli cloroderivati presenti nei campioni di mitili. I dati relativi alla campagna P21 sono espressi in µg/kg. Per il calcolo delle Tabella 26 - Analisi istologica. Lo score indica lo stato dell'epitelio branchiale secondo la seguente scala: 1, normale morfologia epitelio branchiale; 2, lieve riduzione dello spessore dell'epitelio branchiale e dello sviluppo delle ciglia; 3, marcata riduzione dello spessore dell'epitelio e delle ciglia; 4, erosione Tabella 32 - Concentrazione tensiotattivi anionici e tensioattivi non ionici presenti nei campioni di acqua di mare lungo il profilo batimetrico. Le profondità

Tabella 35 - Risultati delle analisi microbiologiche condotte nelle acque superficiali durante la stagione estiva. I dati sono espressi in ufc/100ml Tabella 36 - Parametri registrati nell'acqua dei campioni testati con V. fischeri, P. lividus, P. tricornutum e D. labrax. Salinità (‰); Ossigeno disciolto (i	55 (mg/l).
Tabella 37 - Risultati del test con il <i>V. fischeri</i> eseguito su campioni di acqua (incubazione 15', 30') prelevati a diverse profondità. EC20/50, max. effet 15', max. effetto 30', espressi in %.	tto 55
Tabella 38 - Risultati del test con <i>Phaeodactylum tricornutum</i> condotti sui campioni di acqua (incubazione 72 h) prelevati a diverse profondità (espres metri). EC _{20/50} (L.C. 95%) espressa in %	3se in 56
Tabella 39 - Risultati del test con giovanili di <i>Dicentrarchus labrax</i> esposte a campioni di colonna d'acqua (96 h). Screening test su campioni tal quale (senza diluizioni). Il controllo è costituito da acqua di stabulazione. Volume 5000 ml, aerazione, % saturazione ossigeno disciolto >90%, pH range 8,0	э 06- 56
Tabella 40 - Risultati del test di embriotossicità (72 ore) con <i>P lividus</i> e successiva stima della tossicità cronica	50
Tabella 41 - Densità fitoplanctonica totale (cell/ml) e delle classi o gruppi identificati.	59
Tabella 42 - Numero di specie, generi e altre categorie tassonomiche individuate per ogni classe o raggruppamento fitoplanctonico nei campioni osse (prelievo con Niskin).	ervati 61
Tabella 43 - Lista dei taxa individuati dalle analisi quantitative microscopiche.	62
(prelievo con retino)	ervati 63
Tabella 45 - Lista dei taxa dalle analisi qualitative dei campioni raccolti con retino nelle stazioni E21 MG6, E21 MG7, E21 MG10, E21 MG12 e E21 MG (indicate come 6, 7, 10, 12 e 13).	1G13 64
Tabella 46 – Oloplancton. O.le=orizzontale, 50-0=campionamento verticale da 50 a 0 metri, 100-50=campionamento verticale da 100 a 50 metri. * presente in almeno un sub-campione. ** presente solo nell'osservazione <i>in toto</i> .	67
Tabella 47 - Biomassa: volumi di sedimentazione dell'oloplancton (espressi in ml). OR = campionamento orizzontale; 50-0 = campionamento vertical	ile da
Tabella 48 – Meroplancton, O.I.e = orizzontale, 50-0 = campionamento verticale da 50 a 0 metri. 100-50 = campionamento verticale da 100 a 50 metri.	oo ri. *
presente in almeno un sub-campione, ** presente solo nell'osservazione <i>in toto</i> . La lista include specie determinate a fresco.	69 *
rabella 49– Ittioplancton. O.le = onzzontale, 50-0 = campionamento verticale da 50 a 0 metri, 100-50 = campionamento verticale da 100 a 50 metri.	70
Tabella 50 – Ripartizione delle principali classi granulometriche e relativa classificazione dei sedimenti. I dati sono espressi in percentuale Tabella 51 – Concentrazione dei metalli. I dati sono espressi in mg/kg. tranne Al e Fe espressi in %. Sono riportati gli Standard di Qualità (SQ. DM	70
56/2009) e i Livelli Chimici di Riferimento Nazionale (L1, L2) tratti dal DM 173/16. In neretto sono indicati i valori maggiori di SQ o di L1, in rosso quell maggiori di I 2	lli 70
Tabella 52 – Concentrazione dei contaminanti organici nei sedimenti campionati nell'estate 2021. Standard di Qualità (SQ D.M. 260/2010), e Limite	
Chimico di Riferimento Nazionale L1 e L2 (DM 173/2016) sono tutti espressi in mg/kg. In neretto i valori >SQ e L1, in rosso >L2.	71
Tabella 53 – Concentrazione dei composti cioro derivati nei sedimenti campionati nell'Estate 2021	/ I 72
Tabella 55 - Parametri registrati negli elutriati da utilizzare per il saggio con <i>P</i> lividus	72
Tabella 56 - Risultati del saggio biologico di embriotossicità (72ore) e successiva stima della tossicità cronica	73
Tabella 57 - Parametri chimico-fisici dell'acqua sovrastante i sedimenti testati registrati all'inizio e al termine del test di tossicità a 28 giorni con il C.	73
Tabella 58 - Percentuali di mortalità degli organismi di C. orientale osservate nei sedimenti testati e successiva stima della tossicità cronica	74
Tabella 59 - Risultati del test con il V. fischeri su sedimento tal quale. R ² (%)=coeff. di determinazione; TU=unità tossiche; STI - sediment toxicity inde	ex. 74
Tabella 60 - Lista delle specie macrobentoniche rinvenute nella Estate 2021 (E21)	74 74
Tabella 61 – Indici strutturali (±DS) relativi al popolamento macrobentonico. Numero di taxa (S). Numero di individui (N). Diversità specifica di Shann	/ 4 10n-
Weaver (H'), Ricchezza specifica di Margalef (d), Equitabilità di Pielou (J). In rosso le stazioni poste a 100 m dal Terminale	78
(ind./10 cm ²) dei taxa principali e del popolamento complessivo. L'abbondanza relativa (%) dei singoli taxa è stata calcolata in relazione alla densità t	totale.
Tabella 63 - Struttura della comunità meiobentonica nelle stazioni E21 MG9 E21 MG10 E21 MG11 E21 MG12 E21 MG13 E21 MG14 Densità me	/9 edia
(±DS) (ind./10 cm ²) dei taxa principali e del popolamento complessivo. L'abbondanza relativa (%) dei singoli taxa è stata calcolata in relazione alla de totale	ensità 82
Tabella 64 - Indici strutturali relativi al popolamento meiobentonico calcolati sui valori medi di abbondanza. Numero di taxa (S), Numero medio di indiv	ividui
Tabella 65 - Struttura della comunità meiobentonica dell'area interessata dal posizionamento del terminale rigassificatore, incluse le stazioni di contro	00 ollo.
Densità media ± deviazione standard (ind./10 cm ²) dei taxa principali e del popolamento complessivo rinvenuto. L'abbondanza relativa (%) dei singol è stata calcolata in relazione alla densità totale.	li taxa 86
Tabella 66 - Concentrazione dei metalli nei mitili. Dati relativi alla campagna E21 espressi in mg/kg. Sono riportati i dati riferiti sia alla sostanza secca	a (s.s.)
sia al peso fresco (p.f.) in accordo alla prescrizione 13 delle Determine 2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-09-20 Tabella 67 - Concentrazione degli idrocarburi totali presenti nei campioni di mitili. I dati, relativi alla campagna E21, sono espressi in mg/kg,)17.87 87
Tabella 68 - Concentrazione degli IPA e dei composti organostannici presenti nei campioni di mitili. I dati, relativi alla campagna E21, sono espressi ir mo/kg	in 87
Tabella 69 - Concentrazione degli cloroderivati presenti nei campioni di mitili. I dati, relativi alla campagna E21, sono espressi in µg/kg	88
Tabella 70 - Risultati delle analisi microbiologiche effettuate sui campioni di mitili. I dati, relativi alla campagna E21, sono espressi in ufc/g	88
Tabella 71 - Analisi istologica. Lo score indica lo stato dell'epitelio branchiale secondo la seguente scala 1, normale morfologia epitelio branchiale; 2, riduzione dello spessore dell'epitelio branchiale e dello sviluppo delle ciglia; 3, marcata riduzione dello spessore dell'epitelio e delle ciglia; 4, erosione	, lieve e
aeli epitello branchiale e dello sviluppo ciliare; 5, destrutturazione del filamenti con estesa erosione dell'epitello branchiale ed assenza delle ciglia Tabella 72 – Lista delle specie catturate con la rete a strascico e le reti da posta. Strascico: E21 S1-S4 = stazioni campionate in prossimità del termin	90 nale:
$E_{21} = e_{12} = e$	

Tabella 73 - Reti da posta: indici di densità e biomassa (± DS), espressi in n° individui/1000m/24h e kg/1000m/24h, stimati per le specie catturate
Tabella 74 - Rete a strascico: indici di densità e biomassa (± DS), espressi in n° individui/km² e kg/km², stimati per le specie catturate nelle stazioni 94
Tabella 75 - Valori di p value in funzione della variabile (1a colonna), della stagione (2° colonna) e del fattore (ultime tre colonne). In grassetto i valori
statisticamente significativi. Legenda: I = Inverno, P = Primavera, E = Estate, A = Autunno
Tabella 76 - ANOVA ad un fattore per i fattori anno di campionamento, distanza dal Terminale, profondità di prelievo, sulle campagne estive (Bianco, E14,
E15, E16, E17, E18, E19, E20, E21). * 0,01 <p<0,05; **="" p<0,01<="" td=""></p<0,05;>
Tabella 77 - ANOVA ad un fattore per i fattori anno di campionamento, distanza dal Terminale, profondità di prelievo, sulle campagne estive (Bianco, E14,
E15, E16, E17, E18, E19, E20). * 0,01 <p<0,05; **="" p<0,01<="" td=""></p<0,05;>
Tabella 78 – Output del modello GLM (Generalized Linear Model) applicato ai risultati delle analisi ecotossicologiche trattati come dati di Presenza-
Assenza (0-1)
Tabella 79 - ANOVA ad un fattore per i fattori anno di campionamento, distanza dal Terminale, profondità di prelievo, sulle campagne estive (Bianco, E14,
E15, E16, E17, E18, E19, E20). * 0,01 <p<0,05; **="" p<0,01<="" td=""></p<0,05;>
Tabella 80 – PAIRWISE test tra Bianco (B) e le campagne estive. R (globale) = 0,546, p = 0,0001. Sono indicati gli R (**p<0,0001)
Tabella 81 - Pairwise test di confronto tra fase di Bianco (B) e stagioni estive (E) dal 2014 al 2021. Valore di R del global test = 0,497. P = 0,001. * =
0,01< <i>P</i> <0,05; **= <i>P</i> <0,01
Tabella 82 – Valori medi delle frazioni principali calcolate sull'intero periodo di studio per singola stazione e confronto col Bianco. B = Bianco. In grigio le
stazioni più vicine al Terminale
Tabella 83 - Coefficienti delle combinazioni lineari degli assi. Matrice sedimenti con dati abiotici (normalizzati). Dati dal Bianco all'E21119
Tabella 84 - Risultati complessivi dei test ecotossicologici condotti dal Bianco all'Estate 2021. A = tossicità Assente; B = tossicità Bassa; M = tossicità
Media. Le stazioni MG6, MG7, MG12, MG13 sono quelle in prossimità del Terminale
Tabella 85 – Risultati della routine 2 nd -stage e perdita di informazione dovuta ad una riduzione delle variabili analizzate. 5% indica che sono stati
selezionati i generi con un contributo maggiore del 5%
Tabella 86 – Risultati della PERMANOVA. S (Sito) random 4 livelli gerarchizzato in D, T (Tempo) random 8 livelli; D (Distanza) 3 livelli fisso. I dati
significativi sono indicati in neretto
Tabella 87 – Risultati della analisi di regressione lineare multipla sull'indice di biodiversità di Shannon
Tabella 88 – Risultati della analisi di regressione lineare multipla sulla ricchezza specifica (S)
Tabella 89 – Risultati della PERMANOVA (Permutational Multivariate Analysis of Variance). T: Tempo, D: Distanza, S: Sito. I dati significativi sono indicati
in neretto
Tabella 90 – Mullus barbatus: coefficienti stimati attraverso analisi della regressione lineare multipla. EDF = Gradi di libertà della funzione di smooting;
Ref.DF = gradi di liberta di riferimento; F = Test F
Tabella 91 – Meruccius meruccius: coefficienti stimati attraverso analisi con modello GAM. EDF = Gradi di liberta della funzione di smoothing. Ref.DF =
gradi di liberta di riferimento; F = Test F
Tabella 92 – Parapenaeus longirostris: coefficienti stimati attraverso analisi con modello GAM. EDF = Gradi di liberta della funzione di smoothing. Ret. D
= gradi di liberta di riferimento; F = lest F
Tabella 93 – Scyliorninus canicula: coefficienti stimati attraverso analisi con modello GAM. EDF = Gradi di liberta della funzione di smootning. Ref. DF =
gradi di liberta di riferimento; F = Test F
Tabelia 94 – Pesci Ossei: coemicienti stimati attraverso analisi con modello GAM. EDF = Gradi di liberta della funzione di smootning. Ref.DF = gradi di
ilioenta ol menimento; r = 1est r
Tabelia 95 – Pesci Carniaginei: coemicienti stimati attraverso analisi con modello GAIVI. EDF = Gradi di liberta della funzione di smootning. Rei.DF = gradi
a ilberta a melimento, r rest r
Tabella 90 – Moltuschi Celalopoul. Coefficienti suntai attaverse analisi della regressione intere multipla.
yraur ur nuorita ur meninentu, r – Test r
rabella $50 -$ induce di biodiversita di Sharihori T. Coefficienti attraverso analisi con nodello GAM. EDI – Gradi di iberta della farizione di sinorta della farizione di 137
Tahella 99 – Ricchezza specifica S: coefficienti stimati attraverso analisi della regressione lineare multinla 137
Tabella 100 – Scyliorhinus canicula: coefficienti stimati attraverso analisi con modello CAM EDE = Cradi di libertà della funzione di emoothing. Def DE -
radi di libertà di riferimento: E = Test F
Tabella 101 – <i>Raia clavata</i> : coefficienti stimati attraverso analisi con modello GAM_EDE = Gradi di libertà della funzione di smoothing. Ref DE = gradi di
libertà di riferimento: F = Test F
Tabella 102 – Tabella riassuntiva degli effetti del Terminale su specie target (o taxa superiori) raccolte con rete a strascico o a imbrocco con approccio
"Traffic light". Con lo stesso approccio sono valutate la Ricchezza specifica e la Diversità specifica

LISTA DEGLI ACRONIMI

A, I, P, E	Indicano le stagioni (Autunno, Inverno, Primavera, Estate)
Allo	Alloxantina
В	Bianco effettuato nell'estate 2012
BP	Secondo Bianco effettuato unicamente per lo studio della fauna ittica (settembre, 2013)
But-Fuco	Butanoiloxifucoxantina
CDOM	Chromophoric Dissolved Organic Matter o sostanza organica disciolta cromoforica
Chl b	Clorofilla b + Divinilclorofilla b
DIN	Azoto Inorganico Disciolto (nitriti + nitrati)
DO %	Prcentuale di Ossigeno Disciolto
DVA	Divinilclorofilla a

cib

Fuco	Fucoxantina
Hex-Fuco	Hesanoiloxifucoxantina
LAS	Sostanze otticamente attive
ORP	Potenziale di Ossido Riduzione
PAR	Photosynthetic Available Radiation
Perid	Peridinina
POM	Particulate organic matter o frazione organica del particellato
Prasino	Prasinoxantina
PSDf	Power Spectral Density function
TSM	Total supended matter o solidi sospesi
Zea	Zeaxantina
Zeu	Zona eufotica

ELENCO ALLEGATI

Allegato 1: Attività del Terminale durante il VIII anno di monitoraggio.

Allegato 2: Minuta di Meeting (MOM) del 25/05/2017 ed azioni intraprese in risposta alle prescrizioni delle Determine.

Allegato 3: Elenco dei campioni con relative date di campionamento.

Allegato 4: Matrice macrobenthos di abbondanza specie x stazioni.

Allegato 5: Matrice popolamento ittico reti da posta.

Allegato 6: Matrice popolamento ittico reti da fondo.

Allegato 7: Condizioni meteo-marine.

Allegato 8: Dati grezzi profili CTD.

Allegato 9: Idrofono digitale e sonda CTD

1 RISULTATI SURVEY PRIMAVERA 2021

1.1 COLONNA D'ACQUA

1.1.1 Profili idrologici

Nel survey condotto in primavera 2021, i profili di temperatura (Figura 1) mostrano valori superficali intornoa 19 °C che diminuiscono gradualmente fino ad arrivare a 14.5 °C sul fondo.

La salinità presenta valori intorno a 38 ppt in superficie che tendono ad aumentare leggermente ed arrivare a 38,2 ppt sul fondo. Il pH presenta valori omogenei su tutta la colonna d'acqua intorno a 8,2.

La torbidità presenta valori intorno a 0.5 NTU dalla superficie a 110 m per poi aumentare leggeremente fino ad arrivare a valori compresi fra 1 NTU e 2 NTU sul fondo.

I profili di **ossigeno** disciolto (**Figura 2**) mostrano valori decrescenti dalla superficie al fondo con valori intorno al 100-105% di saturazione in superficie che arrivano a 89-90% sul fondo. I profili di **clorofilla** presentano valori che aumentano da 0,1 µg/l in superfice a 0.5 µg/l a 70-80 m per poi diminuire leggermente ed arrivare a 0,4 µg/l sul fondo. I profili di **ORP** risultano omogenei dalla superficie al fondo con valori di 170-200mV.

Figura 1 – Profili di temperatura (°C), salinità (ppt), pH e torbidità (NTU); survey primavera 2021.

Figura 2 – Profili di ossigeno disciolto (% saturazione), clorofilla (µg/l), e potenziale di ossidoriduzione (mV); survey primavera 2021.

Misure di irradianza e irradianza spettrale

cib

In **Figura 3** sono mostrati i profili di irradianza PAR (Photosynthetic Available Radiation) sottomarina normalizzati rispetto a quella contemporanea superficiale alle stazioni P21 MG7 e P21 MG10. La profondità della zona eufotica (Z_{eu}) nei due punti è rispettivamente 76,5m e 66,5m e costituiscono il valore massimo e minimo di Z_{eu} registrati durante il campionamento. I valori si collocano nell'ambito di quelli registrati nelle campagne primaverili precedenti e non si osservano anomalie dovute alla presenza del terminale.

cib

Figura 3 - Profilo del rapporto fra l'irradianza quantica PAR (Photosynthetic Available Radiation) disponibile alle varie profondità con quella contemporanea in superficie, PAR (0 m), nelle stazioni P21 MG7 e P21 MG10. Dati relativi alla Primavera 2021.

Figura 4 - Irradianza spettrale discendente superficiale e subacquea alle profondità indicate. E' inoltre riportata la irradianza spettrale ascendente a 5 m (5m up). Ogni spettro è stato normalizzato per il proprio massimo ($E_{max}(\lambda)$) riportato nella legenda insieme con la lunghezza d'onda dove si colloca (λ_{max}). Dati relativi alla Primavera 2021.

In **Figura 4** sono riportati gli spettri dell'irradianza discendente tra 400 e 700 nm in superficie e alle varie profondità insieme con quelli dell'irradianza ascendente a 5m, tutti normalizzati per i loro massimi, in P21 MG7 e P21 MG10. I massimi (λ_{max}) degli spettri dell'irradianza discendente si collocano nel range di lunghezze d'onda comprese fra 478 e 482 nm. La radiazione che raggiunge la maggior profondità, ovvero quella più penetrante (λ_{max} a 70m), si trova a 482 nm in entrambe le stazioni. Anche nel caso dell'irradianza spettrale non si evidenziano anomalie.

1.1.2 Caratteristiche fisiche, chimiche e microbiologiche

Nutrienti inorganici disciolti

In **Tabella 1** sono riportate le concentrazioni di nitriti (NO₂), nitrati (NO₃), ortofosfati (PO₄), silicati (SiO₂), rilevate nelle 8 stazionii campionate. Le medie dei singoli nutrienti in tutta la campagna sono: SiO₂ 1,029 µM, PO₄ 0,017 µM, NO₂ 0,028 µM e NO₃ 0,075 µM (**Figura 5**).

Tabella 1 - Concentrazioni (µM) dei nutrienti inorganici disciolti. Dati relativi alla Primavera 2021.											
Stazione	Prof. m	SiO ₂	PO ₄	NO ₂	NO ₃	Stazione	Prof. m	SiO ₂	PO ₄	NO ₂	NO ₃
	0,5	1,072	<0,03	<0,03	0,198		0,5	0,943	<0,03	<0,03	0,051
D21 MG2	12,5	0,931	<0,03	<0,03	0,272	D21 MG0	12,5	1,000	<0,03	<0,03	0,047
FZT WOJ	50	1,123	<0,03	<0,03	0,081	F21 W03	50	1,186	<0,03	<0,03	0,099
	70	0,997	<0,03	0,031	0,097		70	1,004	<0,03	0,044	0,056
	0,5	0,885	<0,03	0,040	0,036		0,5	0,908	<0,03	<0,03	0,030
D21 MG5	12,5	0,967	<0,03	<0,03	0,030	D21 MC10	12,5	0,955	<0,03	<0,03	0,065
FZTWIGJ	50	1,111	<0,03	<0,03	<0,03	P21 MG10	50	1,110	<0,03	<0,03	<0,03
	70	1,004	<0,03	<0,03	<0,03		70	1,063	<0,03	<0,03	<0,03
	0,5	1,023	<0,03	<0,03	0,132	P21 MG12	0,5	0,971	<0,03	0,069	0,137
D21 MG6	12,5	0,992	<0,03	0,044	<0,03		12,5	0,973	<0,03	0,047	0,121
FZT WOU	50	1,208	<0,03	<0,03	<0,03		50	1,150	<0,03	0,071	0,118
	70	1,107	<0,03	0,141	0,176		70	1,062	<0,03	0,133	0,166
	0,5	1,006	<0,03	<0,03	0,120		0,5	0,989	<0,03	<0,03	<0,03
D21 MG7	12,5	0,993	<0,03	<0,03	0,092	D21 MG13	12,5	0,975	<0,03	<0,03	<0,03
FZT WO	50	1,100	<0,03	<0,03	0,063	FZT WIGTS	50	1,085	<0,03	<0,03	<0,03
	70	1,010	<0,03	0,103	0,125		70	1,006	<0,03	<0,03	0,050

Tranne quella dei silicati, le concentrazioni degli altri nutrienti si presentano estremamente basse, come è apparso in molti casi di campionamenti in tarda primavera, tutte o in maggioranza al di sotto della rilevabilità del metodo per quanto riguarda rispettivamente i fosfati e i nitriti (**Tabella 1**). Nei profili verticali sono state comunque riportate le concentrazioni derivate dalle letture fornite dalla misura spettrofotometrica, che evidenzia comunque l'estrema scarsità dei composti. Lungo la colonna d'acqua (**Figura 5**) le concentrazioni sono sostanzialmente omogenee, in alcuni casi con una tendenza ad aumentare verso i 70m (nitriti) o i 50m (silicati).

I nitriti arrivano ai massimi di 0,133 (P21 MG12 70m) e 0,141 μM (P21 MG06 70m). Anche i nitrati presentano massimi valori in profondità, 0,176 μM in P21 MG06 70m e 0,166 μM in P21 MG12 70m e, in alcuni casi, anche in acque superficiali, come il massimo di 0,272 μM in P21 MG03 12,5m e altri valori in superficie, con poca variabilità verticale come per i fosfati (**Figura 5**). Anche i fosfati seguono lo stesso andamento generale e le concentrazioni sono tutte al di sotto del limite della rilevabilità del metodo, essendo comprese tra 0,007 e 0,027 μM. L'intervallo di variazione dei silicati è molto ristretto (**Figura 5**), tra 0,885 μM (P21 MG05 0,5m) e 1,208 μM (P21 MG06 50m) e l'andamento verticale è lo stesso per tutte le stazioni.

Si può presumere che le basse concentrazioni siano dovute ad un consumo fitoplanctonico precedentemente avvenuto nelle acque più superficiali e la variabilità non appare attribuibile ad anomalie.

Solidi sospesi (Total Suspended Matter)

Le concentrazioni di TSM in tutte le stazioni sono riportate in **Tabella 2**. Il valore medio generale è 0,98 mg/l (<u>+</u> 0,54), con minimo di 0,47 mg/l in P21 MG3 50m e massimo di 3,10 mg/l in P21 MG12 12,5m.

Figura 5 - Profili delle concentrazioni (µM) dei nutrienti inorganici disciolti: NO₂ (nitriti), NO₃ (nitrati), PO₄ (fosfati), SiO₂ (silicati). Dati relativi alla Primavera 2021.

Tabella 2 - Concentrazioni (mg/l) dei solidi sospesi (TSM). Dati relativi alla Primavera 2021.							
Prof. m	Stazione	Stazione TSM (mg/l) Stazione		TSM (mg/l)			
0,5		0,870		1,708			
12,5	D21 MC2	0,566	D21 MC0	1,237			
50	P21 WG3	0,469 P21 MG3		0,554			
70		0,715		1,896			
0,5		1,108		1,051			
12,5	D21 MC5	0,615	D21 MG10	0,828			
50	P21 WGJ	0,585	F21 WG10	1,156			
70		0,711		0,760			
0,5		0,674		0,856			
12,5	D21 MC6	0,630	D21 MG12	3,102			
50	P21 WG0	1,642	PZT MGTZ	0,584			
70		0,768		1,124			
0,5		1,631		0,893			
12,5	D21 MC7	0,577	D21 MC13	0,711			
50	PZIWGI	0,617	PZTWGTS	1,210			
70		0,860		0,790			

Figura 6 - Profili delle concentrazioni (mg/l) dei solidi sospesi (TSM) e delle concentrazioni di particellato organico (POM). Dati relativi alla Primavera 2021.

I profili batimetrici di TSM (Figura 6) mostrano concentrazioni scarsamente variabili lungo la colonna d'acqua, tranne il caso del massimo in P21 MG12 12,5m (Figura 6), valore di entità già misurata in altre campagne. La concentrazione della frazione organica del TSM (POM) è in media 0,43 mg/l (±0,16) con minimo di 0,27 mg/l in P21 MG5 50m e massimo di 1,02 mg/l in P21 MG12 12,5m. I profili batimetrici del POM (Figura 6) presentano lo stesso andamento descritto per il TSM, e la frazione organica particellata rappresenta in media il 46% del TSM, variabile tra il 33% in P21 MG12 12,5m e il massimo del 60% in P21 MG7 12,5m.

Sostanza Organica Disciolta Cromoforica (CDOM)

Gli assorbimenti della CDOM a 325 nm $a_{CDOM}(325)$ sono in media 0,216 m⁻¹ (<u>+</u> 0,03) e variano da un minimo di 0,170 m⁻¹ in P21 MG9 in superficie ad un massimo di 0,27 m⁻¹ in P21 MG7 50m (**Tabella 3**). I profili batimetrici (**Figura 7**) presentano andamento simile in tutte le stazioni, con concentrazioni minime in superficie e massime a 50 m, senza che si presentino valori anomali.

Tabella 3 - Assorbimento (m ⁻¹) della CDOM alla lunghezza d'onda di 325 nm (P21).									
Prof. m	Stazione	а _{сром} (325) m ⁻¹	Stazione	а _{соом} (325) m⁻¹					
0,5		0,207		0,170					
12,5	D24 MC2	0,222	D24 MC0	0,173					
50	P21 WG3	0,268	PZTWG9	0,242					
70		0,236		0,231					
0,5		0,178		0,189					
12,5	D24 MC5	0,180	D24 MC40	0,196					
50	P21 WG5	0,243	PZTWGTU	0,247					
70		0,229		0,218					
0,5		0,223		0,202					
12,5	D21 MC6	0,175	D21 MC12	0,184					
50	P21 WIG0	0,245	FZT WIGTZ	0,269					
70		0,210		0,210					
0,5		0,199		0,180					
12,5	D21 MG7	0,227	D21 MC12	0,190					
50	FZ1 WG7	0,270	P21 WIG15	0,224					
70		0,246		0,223					

Figura 7 - Profili degli assorbimenti (m⁻¹) della CDOM a 325 nm (a_{CDOM}(325) m⁻¹). Dati relativi alla Primavera 2021.

Clorofilla a e diversità pigmentaria

Le concentrazioni di clorofilla a variano tra 0,053 mg/m³ in P21 MG7 0,5m e 0,392 mg/m³ sempre in P21 MG7 70m (**Tabella 4**), concentrazioni scarse come da attendere per la stagione tardo-primaverile-estiva con minimi tra la superficie e 12,5m e massimi a 70m. I profili lungo la

colonna d'acqua (Figura 8) mostrano andamento molto simile in tutte le stazioni, senza che si evidenzino anomalie attribuibili alla presenza del terminale.

Tabella 4 - Concentrazioni (mg/m ³) della Clorofilla <i>a</i> totale (Chl <i>a</i> tot = Clorofilla <i>a</i> + Divinil Clorofilla <i>a</i> + Alloclorofilla <i>a</i> , se presenti). Dati relativi alla Primavera 2021.									
Prof. m	Stazione	Chl a mg/m ³	Stazione	Chl a mg/m ³					
0,5		0,0826		0,0770					
12,5	D21 MC2	0,0782	D31 MC0	0,1140					
50	FZI WOJ	0,1329	P21 WIG5	0,1559					
70		0,3305		0,3253					
0,5		0,0955		0,1054					
12,5	D21 MC5	0,0947	D21 MC10	0,1065					
50	P21 WG5	0,1524	PZIWGIU	0,2003					
70		0,3318		0,3517					
0,5		0,0739		0,0929					
12,5	D21 MC6	0,0775	D21 MC12	0,0770					
50	FZI MOU	0,1125	P21 WIG12	0,1248					
70		0,3174		0,3918					
0,5		0,0530		0,0917					
12,5	P21 MG7	0,0801	D21 MC13	0,1175					
50		0,1459	P21 WIG13	0,1670					
70		0,3921		0,3018					

Figura 8 - Profili delle concentrazioni (mg/m³) di clorofilla a tot. Dati relativi alla Primavera 2021.

Le concentrazioni dei nove pigmenti diagnostici principali sono riportate in **Tabella 5**. Il pigmento a maggiore concentrazione media (mg/m³) è Hex-Fuco (media 0,059, dev. st. = $\pm 0,03$), seguono Chl *b* (media 0,035, dev. st. = $\pm 0,02$), Zea (media 0,032, dev. st. = $\pm 0,003$), But-Fuco (media 0,027, dev. st. = $\pm 0,025$), DVA (media 0,014, dev. st. = $\pm 0,023$), Perid (media 0,013, dev. st. = $\pm 0,001$), Fuco (media 0,01, dev. st. = $\pm 0,005$), Prasino (media 0,003, dev. st. = $\pm 0,003$) e Allo (media 0,001, dev. st. = $\pm 0,006$).

La composizione pigmentaria presenta una differenziazione generalmente comune alle varie stazioni e dai rapporti tra i singoli pigmenti e la loro somma totale si ottiene una stima della composizione tassonomica del popolamento fitoplanctonico (**Figura 9**).

Tabella 5 - Concentrazioni (mg/m ³) dei principali pigmenti diagnostici fitoplanctonici (acronimi in Tabella 7). Dati relativi alla Primavera 2021.											
Stazione	Prof.m	Fuco	Perid	Hex-Fuco	But-Fuco	Prasino	Allo	Zea	DVA	Chl b	
	0,5	0,0057	0,0123	0,0358	0,0112	0,0008	0,0012	0,0208	0,0000	0,0144	
D24 MC2	12,5	0,0053	0,0123	0,0320	0,0098	0,0013	0,0009	0,0185	0,0000	0,0173	
PZT WIG5	50	0,0102	0,0120	0,0523	0,0175	0,0016	0,0011	0,0290	0,0023	0,0281	
	70	0,0118	0,0133	0,1105	0,0552	0,0095	0,0018	0,0830	0,0753	0,0895	
	0,5	0,0069	0,0116	0,0401	0,0157	0,0017	0,0015	0,0174	0,0000	0,0214	
D21 MC5	12,5	0,0068	0,0124	0,0394	0,0148	0,0010	0,0014	0,0154	0,0000	0,0249	
PZTWGJ	50	0,0193	0,0112	0,0508	0,0215	0,0027	0,0009	0,0350	0,0020	0,0291	
	70	0,0172	0,0137	0,0989	0,0835	0,0097	0,0018	0,0486	0,0467	0,0817	
	0,5	0,0047	0,0119	0,0287	0,0096	0,0012	0,0008	0,0114	0,0019	0,0181	
D24 MC6	12,5	0,0058	0,0106	0,0293	0,0100	0,0008	0,0014	0,0116	0,0000	0,0220	
P21 WG0	50	0,0084	0,0118	0,0520	0,0132	0,0020	0,0008	0,0202	0,0011	0,0307	
	70	0,0108	0,0152	0,0972	0,0510	0,0042	0,0012	0,0869	0,0605	0,0579	
	0,5	0,0046	0,0137	0,0261	0,0011	0,0000	0,0006	0,0094	0,0000	0,0206	
D24 MC7	12,5	0,0053	0,0131	0,0391	0,0081	0,0014	0,0015	0,0107	0,0000	0,0200	
PZTWG7	50	0,0095	0,0137	0,0613	0,0162	0,0014	0,0007	0,0202	0,0000	0,0334	
	70	0,0218	0,0168	0,1413	0,0975	0,0109	0,0032	0,0543	0,0523	0,0940	
	0,5	0,0082	0,0127	0,0427	0,0155	0,0008	0,0017	0,0116	0,0000	0,0184	
D21 MG0	12,5	0,0083	0,0123	0,0448	0,0144	0,0016	0,0023	0,0126	0,0000	0,0191	
FZT WIG9	50	0,0150	0,0125	0,0576	0,0222	0,0026	0,0009	0,0241	0,0016	0,0259	
	70	0,0140	0,0144	0,0924	0,0484	0,0044	0,0013	0,0894	0,0532	0,0586	
	0,5	0,0072	0,0124	0,0405	0,0121	0,0007	0,0012	0,0090	0,0000	0,0193	
D21 MC10	12,5	0,0069	0,0150	0,0443	0,0124	0,0000	0,0007	0,0165	0,0000	0,0232	
PZIWGIU	50	0,0170	0,0167	0,0781	0,0266	0,0035	0,0006	0,0279	0,0034	0,0311	
	70	0,0136	0,0163	0,1307	0,0551	0,0048	0,0012	0,0685	0,0351	0,0534	
	0,5	0,0059	0,0128	0,0387	0,0116	0,0019	0,0014	0,0090	0,0000	0,0223	
D24 MC42	12,5	0,0063	0,0122	0,0357	0,0096	0,0006	0,0015	0,0161	0,0000	0,0174	
	50	0,0095	0,0112	0,0506	0,0131	0,0026	0,0007	0,0220	0,0018	0,0285	
	70	0,0223	0,0138	0,1161	0,0935	0,0098	0,0029	0,0612	0,0542	0,0846	
	0,5	0,0071	0,0128	0,0360	0,0147	0,0020	0,0025	0,0165	0,0000	0,0225	
D21 MC12	12,5	0,0091	0,0119	0,0433	0,0143	0,0012	0,0024	0,0181	0,0000	0,0253	
	50	0,0188	0,0130	0,0525	0,0190	0,0024	0,0010	0,0377	0,0041	0,0294	
	70	0,0101	0,0143	0,0734	0,0345	0,0032	0,0013	0,0942	0,0441	0,0528	

Anche percentualmente i pigmenti più abbondanti sono Hex-Fuco, pigmento diagnostico dei coccolitofori, che costituisce in media circa il 33% della diversità pigmentaria, ChI *b*, pigmento diagnostico delle Chlorophyta, con circa il 19%. Seguono Zea (Cyanobatteri *Synechococcus*-like) con il 15,4%, But-Fuco con il 12%, Perid in media il 9%, Fuco in media il 6%, DVA (Cyanobatteri *Prochlorococcus*-like), con circa 4% e Prasino in media l'1,3%. Minimo contributo <1% è attribuito ad Allo (Cryptophyceae). La somma dei due pigmenti Zea (Cyanobatteri *Synechococcus*-like) e DVA (Cyanobatteri *Prochlorococcus*-like) ci da una stima della componente picoplanctonica che rappresenta mediamente il 19% del popolamento con DVA più abbondante a 70m (arrivando a costituire il 17% della diversità pigmentaria in P21 MG3 70m) e scarso o assente in superficie e Zea più similmente abbondante lungo tutta la colonna d'acqua. Il contributo dei diversi pigmenti si presenta coerente con l'atteso del periodo stagionale in cui prevale la presenza di diverse classi fitoplanctoniche, della frazione dei picocianobatteri e la scarsissima presenza delle diatomee.

cib

Figura 9 – Concentrazione relativa dei singoli pigmenti diagnostici in rapporto al totale delle concentrazioni dei nove Pigmenti Diagnostici (PD= Fuco+Perid+Hex-Fuco+But-Fuco+Allo+Prasino+Chlb+DVA+Zea). Dati relativi alla Primavera 2021.

Tensioattivi

Le concentrazioni dei tensioattivi risultano al di sotto del limite di quantificazione della metodica in tutti i campioni (Tabella 6).

I abella 6 - Concentrazione tensiotattivi anionici e tensioattivi non ionici presenti nei campioni di acqua di mare lungo il profilo batimetrico (P21). Le profondita																
sono espresse in metri. I c	dati sono	o espres	si in mill	igrammi	/litro.											
		P21	MG3		P21 MG5			P21 MG6			P21 MG7					
Profondità	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
tensiotattivi anionici	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
tensioattivi non ionici	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03
		P21	MG9		P21 MG10			P21 MG12				P21 MG13				
Profondità	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
tensiotattivi anionici	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
tensioattivi non ionici	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03

Cloroderivati

Questi composti non sono stati rilevati (Tabella 7).

Tabella 7 - Concentrazione dei cloroderivati nelle acque. I livelli indicano la profondità di prelievo del campione (P21).																
		P21	MG3			P21	MG5			P21	MG6			P21	MG7	
Profondità (m)	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
Acidi aloacetici (µg/l)																
Dalapon	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Dibromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Tribromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Monobromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromodicloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromocloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Dicloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Tricloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Monocloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Clorodibromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Aloacetonitrili (µg/l)																
Dibromoacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Dicloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Tricloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
1,1,1-Tricloro-2-Propanone	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
1,1-Dicloro-2-Propanone	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Cloropicrina	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Alometani e VOC (µg/l)																
Cloroformio	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Carbonio Tetracloruro	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Tricloro Etilene	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Dicloro Bromo Metano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Tetracloro Etilene	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Dibromo Cloro Metano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Bromoformio	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,013	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
1,2-Dibromo Etano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
1,1,1-Tricloro Etano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
1,1,2-Tricloro Etano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Alofenoli (µg/l)																
2,4-Diclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
4-Cloro-3-Metilfenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
2,4,6-Triclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Pentaclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
		P21	MG9			P21 I	MG10			P21 I	MG12			P21 I	MG13	
Profondità (m)	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
Acidi aloacetici (µg/l)																
Dalapon	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Dibromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5

Tabella 7	- Concer	ntrazion	e dei clo	roderiva	ti nelle a	acque. I	livelli in	dicano la	a profon	dità di p	relievo	del cam	pione (P	21).		
Acido Tribromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Monobromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromodicloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromocloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Dicloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Tricloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Monocloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Clorodibromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Aloacetonitrili (µg/l)																
Dibromoacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Dicloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Tricloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
1,1,1-Tricloro-2-Propanone	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
1,1-Dicloro-2-Propanone	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Cloropicrina	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Alometani e VOC (µg/l)																
Cloroformio	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Carbonio Tetracloruro	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Tricloro Etilene	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Dicloro Bromo Metano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Tetracloro Etilene	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Dibromo Cloro Metano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Bromoformio	< 0,01	< 0,01	0,021	< 0,01	< 0,01	< 0,01	< 0,01	0,017	< 0,01	< 0,01	< 0,01	0,024	< 0,01	< 0,01	< 0,01	< 0,01
1,2-Dibromo Etano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
1,1,1-Tricloro Etano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
1,1,2-Tricloro Etano	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Alofenoli (µg/l)																
2,4-Diclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
4-Cloro-3-Metilfenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
2,4,6-Triclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Pentaclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2

Idrocarburi totali

Nella seguente tabella sono riportati i risultati ottenuti dalla ricerca degli idrocarburi totali (**Tabella 8**) che sono stati rilevati ovunque. Dal calcolo dei valori medi dei corrispondenti livelli effettuato tra stazioni poste alla medesima distanza (MG6, MG7, MG12, MG13 vs MG9, MG10vs MG3, MG5) emerge che questi composti sono leggermente superiori presso il Terminale unicamente nella quota superficiale. Alle altre quote, le concentrazioni maggiori sono state rilevate nelle stazioni più distanti dall'FSRU.

Tabella	Tabella 8 - Concentrazione degli idrocarburi totali presenti nei campioni di acqua di mare lungo il profilo batimetrico (P21). I dati sono espressi in														
microgra	microgrammi/litro. In neretto (0,5 - 12,5 – 50 - 70) sono indicate le profondità di prelievo in metri.														
P21 MG3 P21 MG5 P21 MG6 P21 MG7															
0,5	12,5	50,0	70,0	0,5	12,5	50,0	70,0	0,5	12,5	50,0	70,0	0,5	12,5	50,0	70,0
153,78	113,05	121,43	127,17	94,15	96,13	121,89	124,20	128,90	115,37	120,04	104,49	81,50	76,34	98,51	129,34
	P21	MG9			P21 M	/IG10		P21 MG12					P21	MG13	
0,5 82.01	12,5	50,0	70,0 110 0/	0,5	12,5	50,0	70,0	0,5	12,5	50,0	70,0	0,5	12,5	50,0	70,0 138.91
02,01	127,40	100,10	113,34	127,00	131,50	104,02	175,57	200,02	100,22	107,40	100,02	107,00	127,01	51,55	100,01

Analisi microbiologiche

Dall'analisi microbiologica (Tabella 9) emerge la totale assenza di contaminazione fecale.

Tabella 9 - Risultati delle analisi microbiologiche effettuate sui campioni di acqua superficiale (P21). I dati sono espressi in ufc/100 ml.										
	P21 MG3	P21 MG5	P21 MG6	P21 MG7	P21 MG9	P21 MG10	P1 MG12	P21 MG13		
Coliformi fecali	<10	<10	<10	<10	<10	<10	<10	<10		
Streptococchi fecali (enterococchi)	<10	<10	<10	<10	<10	<10	<10	<10		
Coliformi totali	<10	<10	<10	<10	<10	<10	<10	<10		

1.1.3 Plancton

1.1.3.1 Fitoplancton

Analisi quantitativa e qualitativa del fitoplancton da bottiglia

Le densità fitoplanctoniche totali variano tra circa 45 cell/ml (P21 MG12 70m) e 124 cell/ml (P21 MG10 12,5m) (**Tabella 10**), con in media circa 71 cell/ml. Sono quindi densità scarse, che rappresentano le frazioni nano- micro-fitoplanctoniche che si distribuiscono lungo la colonna d'acqua con un andamento diverso rispetto a quello mostrato dalla biomassa (clorofilla *a*) che evidenzia i massimi profondi dovuti alla componente dei picocianobatteri (**Figura 8**).

Tabella 10 - Densità fitoplanctonica totale (cell/ml) e delle classi o gruppi identificati (P21).										
Stazione	prof. (m)	Diatomee	Dinoflagellati	Coccolitofori	Altro	Totale				
	0,5	8,63	10,47	8,44	33,81	61,35				
DO4 MC6	12,5	6,96	14,94	8,63	27,09	57,62				
PZTWG0	50	19,10	13,97	15,11	22,09	70,27				
	70	6,26	8,44	21,57	11,23	47,51				
	0,5	7,79	7,93	8,26	29,83	53,82				
D21 MG7	12,5	10,60	10,89	8,07	28,40	57,96				
PZT WG7	50	16,66	13,20	15,09	36,77	81,71				
	70	13,41	10,27	23,57	28,28	75,53				
	0,5	4,70	8,85	10,79	93,76	118,09				
D21 MG10	12,5	4,12	14,54	12,37	92,91	123,94				
FZTWOTU	50	8,58	13,46	9,96	28,08	60,07				
	70	4,39	10,07	24,00	39,43	77,89				
	0,5	8,98	11,49	4,16	29,01	53,64				
D21 MG12	12,5	4,52	13,89	7,34	19,65	45,39				
FZTWOTZ	50	15,40	12,47	13,30	21,16	62,33				
	70	5,66	7,23	15,82	16,24	44,94				
	0,5	3,74	5,36	5,16	69,67	83,93				
D21 MG13	12,5	5,63	12,67	6,82	55,89	81,01				
121 1013	50	12,07	17,22	13,64	40,69	83,63				
	70	4,93	11,39	23,97	30,76	71,05				

Le densità mostrano infatti minimi principalmente a 70m e massimi variabili tra la superficie e 50m (**Figura 10**). Il popolamento fitoplanctonico è dominato dal gruppo "Altro plancton" (**Tabella 10**), costituito dalle molte classi di nanoflagellati (Cryptophyceae, Chrysophyceae, Dictyochophyceae, Clorophyceae, Euglenoidea, Prasinophyceae, Prymnesiophyceae non Coccolitofori), Cyanophyceae filamentose più flagellati non identificati, e variabile tra circa 11 cell/ml in P21 MG6 70m e 94 cell/ml in P21 MG10 0,5m. Tra le altre classi presenti dominano coccolitofori, fino a 24 cell/ml (P21 MG10 70m), tendenti a prevalere alle maggiori profondità, e dinoflagellati, fino a circa 17 cell/ml (P21 MG13 50m), con una distribuzione verticale più omogenea (**Figura 10**). Le diatomee, infine, variano tra circa 4 cell/ml (P21 MG13 0,5m) e 19 cell/ml (P21 MG6 50m).

Osservando i contributi percentuali delle diverse classi presenti (**Figura 11**), il gruppo "Altro plancton" contribuisce in media con il 50%, particolarmente per la presenza di *Phaeocystis* sp., *Leucocryptos marina* e piccoli flagellati indeterminati, i coccolitofori rappresentano in media il 19% del popolamento, principalmente con *Emiliania huxleyi*, i dinoflagellati sono in media il 17% con individui appartenenti allle Gymnodiniaceae e da forme tecate come *Heterocapsa minima*, *Heterocapsa rotundata* ed *Oxytoxum variabile*. Le diatomee, infine, contribuiscono mediamente con il 13% grazie a *Pseudo-nitzschia delicatissima*, *Pseudo-nitzschia galaxiae* e *Cylindrotheca closterium*.

cib

Figura 10 - Profili delle densità fitoplanctoniche totali (cell/ml). Dati relativi alla Primavera 2021.

Figura 11 – Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale (P21).

In totale sono stati identificati a diverso livello tassonomico 174 taxa (più la categoria Flagellati indeterminati) (**Tabella 11**) suddivisi tra le principali classi o raggruppamenti fitoplanctonici di cui si fornisce l'elenco completo in **Tabella 12**.

La maggior parte dei taxa appartiene ai dinoflagellati che sono rappresentati da 62 specie, 5 forme identificate a livello di genere e 4 categorie soprageneriche. Anche le diatomee sono ben rappresentate con 42 specie, 7 forme identificate a livello di genere e 5 categorie. I coccolitofori, infine, risultano meno diversificati con 22 specie insieme a 1 forma individuata a livello di genere e 1 categoria sopragenerica. Il gruppo "Altro plancton", che caratterizza di più il popolamento in termini quantitativi, è anche spesso meno identificabile nella sua diversificazione tassonomica, ed è rappresentato da un totale di 25 taxa suddivisi in 17 specie, 5 generi e 3 categorie superiori. Il popolamento fitoplanctonico primaverile del 2021 presenta valori di diversità specifica (Shannon) e di equitabilità (Pielou) piuttosto alti, in media rispettivamente, 3,85 bit/cell e 0,68 variando tra 3,06 e 4,59 bit/cell e tra 0,58 e 0,78. Si tratta quindi di un popolamento di scarsa entità e fortemente differenziato in una situazione di limitazione nutritizia, come prevalentemente atteso per il periodo stagionale.

Tabella 11 - Numero di specie, genraggruppamento fitoplanctonico nei ca2021.	eri e altre ampioni os	categorie tas servati (prelie	ssonomiche indivi evo con Niskin). Da	duate per ogni classe o ati relativi alla Primavera
Classe		Specie	Generi	Categorie superiori*
Diatomee		42	7	5
Dinoflagellati		62	5	4
Prymnesiophyceae coccolitofori		22	1	1
Cryptophyceae		1		1
Chrysophyceae/Dictyochophyceae		5		1
Chlorophyta/Euglenoidea		1		1
Prasinophyceae		3	2	
Prymnesiophyceae non coccolitofori			2	
Raphidophyceae		4		
Altro		3	1	
	Totale	143	18	13
*Con il termine "Categorie superiori" s	i intendono	o livelli tasso	nomici sopragener	rici

Tabella 12 - Lista dei taxa individuati dalle analisi quantitative microscopiche (P21).										
DIATOMEE										
Bacteriastrum furcatum Shadbolt 1854 Bacteriastrum jadranum Godrijan, Maric & Pfannkuchen 2012 Chaetoceros anastomosans Grunow 1882 Chaetoceros cf. costatus Pavillard 1911 Chaetoceros curvisetus Cleve 1889 Chaetoceros didymus Ehrenberg 1845 Chaetoceros neogracile Van Landingham 1968 Chaetoceros neogracile Van Landingham 1968 Chaetoceros peruvianus Brightwell 1856 Chaetoceros simplex Ostenfeld 1901 Chaetoceros spila Lauder 1864 Chaetoceros spp. Chaetoceros spila Kauder 1913	Hemidiscus cuneiformis Wallich 1860 Leptocylindrus convexus Nanjappa & Zingone 2013 Leptocylindrus danicus Cleve 1889 Leptocylindrus mediterraneus (Peragallo) Hasle 1975 Leptocylindrus minimus Gran 1915 Minidiscus comicus Takano 1981 Proboscia alata (Brightwell) Sundström 1986 Rhizosolenia decipiens Sundström 1986 Rhizosolenia imbricata Brightwell 1858 Rhizosolenia app. Thalassiosira aestivalis Gran 1931 Thalassiosira app.	Dimeregramma fulvum (Gregory) Ralfs in Pritchard 1861 Entomoneis spp. Fragilariopsis spp. Navicula spp. Nitzschia (sez. sigmatae) sp. Nitzschia bicapitata Cleve 1901 Nitzschia longissima (Brébisson) Ralfs 1861 Nitzschia sicula (Castracane) Hustedt Plagiotropis sp. Pseudo-nitzschia delicatissima (Cleve) Hasle 1993 Pseudo-nitzschia delicatissima (Cleve) Haiden 1928 Pseudo-nitzschia delicatissima (Cleve) Heiden 1928								
Chaetoceros throndsenii (Marino, Montresor & Zingone) Marino, Montresor & Zingone 1991	Triceratium favus Ehrenberg 1839	Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle 1993								
Chaetoceros wighamii Brightwell 1856 Dactyliosolen fragilissimus (Bergon) Hasle 1996	Asterionellopsis glacialis (Castracane) Round 1990 Cylindrotheca closterium (Ehrenberg) Reimann & Lewin 1964	Pseudo-nitzschia subtraudulenta (Hasle) Hasle 1993 Ctenophora pulchella (Ralfs ex Kützing) Williams & Round 1986								
Diatomee centriche ≤ 20 µm n.i. Diatomee centriche > 20 µm n.i. <i>Hemiaulus hauckii</i> Grunow ex Van Heurck 1882	Diatomea pennata n.i. (forma p) Diatomee pennate ≤ 20 μm n.i. Diatomee pennate > 20 μm n.i.	Thalassionema cf. bacillare (Heiden) Kolbe 1955 Thalassionema frauenfeldii (Grunow) Hallegraeff 1986 Thalassionema nitzschioides (Grunow) Mereschkowsky 1902								
	DINOFLAGELLATI	· · · · · · · · · · · · · · · · · · ·								
Achradina pulchra Lohmann 1903 Akashiwo sanguinea (Hirasaka) Hansen & Moestrup 2000 Amphidinium cf. globosum Schröder 1911 Amphidinium cf. sphenoides Wulff 1916 Amphidinium spp. Cochlodinium pulchellum Lebour 1917 Cochlodinium sp. Gymnodiniaceae ≤ 20 µm n.i. Gymnodiniaceae > 20 µm n.i. Gyrodinium aciculatum Hansen & Larsen 1992	Azadinium spp. Azadinium spinosum Elbrächter & Tillmann 2009 Dinoflagellati tecati ≤ 20 µm n.i. Dinoflagellati tecati > 20 µm n.i. Dinophysis fortii Pavillard 1924 Dinophysis ovum (Schütt) Abé Dinophysis similis Kofoid & Skogsberg 1928 Gonyaulax spinifera (Claparède & Lachmann) Diesing 1866 Heterocapsa circularisquama Horiguchi 1995 Heterocapsa minima Pomroy 1989	Oxytoxum ovale Schiller 1937 Oxytoxum rampii Sournia Oxytoxum sceptrum (Stein) Schroder 1906 Oxytoxum scolopax Stein 1883 Oxytoxum strophalatum Dodge & Saunders 1985 Oxytoxum variabile Schiller 1937 Oxytoxum viride Schiller 1937 Phalacroma elongatum Jørgensen 1923 Phalacroma rotundatum (Claparéde & Lachmann) Kofoid &								
Gyrodinium fusiforme Kofoid & Swezy 1921 Gyrodinium spp. Karenia brevis (Davis) Hansen & Moestrup 2000 Karenia mikimotoi (Miyake & Kominami ex Oda) Hansen & Moestrup 2000	Heterocapsa niei (Loeblich III) Morrill & Loeblich III 1981 Heterocapsa pygmaea Lobelich III, Schmidt & Sherley 1981 Heterocapsa rotundata (Lohmann) Hansen 1995 Heterocapsa triquetra (Ehrenberg) Stein 1883	Michener 1911 Prorocentrum balticum (Lohmann) Loeblich 1970 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Prorocentrum concavum Fukuyo 1981 Prorocentrum cordatum (Ostenfeld) Dodge 1975								

Tabella 12 - Lista dei taxa individuati dalle analisi quantitative microscopiche (P21).								
Karenia papilionacea Haywood & Steidinger 2004 Karenia selliformis Haywood, Steidinger & MacKenzie 2004 Karenia spp. Pronoctiluca pelagica Fabre-Domergue 1889	Lessardia elongata Saldarriaga & Taylor 2003 Mesoporos adriaticus (Schiller) Lillick Mesoporos perforatus (Gran) Lillick 1937 Neoceratium furca (Ehrenberg) Gómez, Moreira & López- Garcia 2010	Prorocentrum gracile Schütt 1895 Prorocentrum rathymum Loeblich, Sherley & Schmidt 1979 Prorocentrum triestinum Schiller 1918 Protoceratium reticulatum (Claparède & Lachmann) Butschli 1885						
Spatulodinium pseudonoctiluca (Pouchet) Cachon & Cachon	Neoceratium fusus (Ehrenberg) Gómez, Moreira & López-	Protoperidinium breve Paulsen 1907						
Torodinium robustum Kofoid & Swezy 1921 Torodinium teredo (Pouchet) Kofoid & Swezy 1921 Alexandrium cf. minutum Halim 1960 Alexandrium ostenfeldii (Paulsen) Balech & Tangen 1985 Amphidoma lanquida Tillmann, Salas & Elbrachter 2012	Ostreopsis ovata Fukuyo 1981 Oxytoxum caudatum Schiller 1937 Oxytoxum coronatum Schiller 1937 Oxytoxum laticeps Schiller 1937 Oxytoxum mediterraneum Schiller	Protoperidinium brochii (Kofoid & Swezy) Balech Protoperidinium depressum (Bailey) Balech 1974 Protoperidinium steinii (Jørgensen) Balech 1974 Scrippsiella trochoidea (Stein) Balech ex Loeblich III 1965						
	PRYMNESIOPHYCEAE COCCOLITOFORI							
Acanthoica quattrospina Lohmann 1903 Algirosphaera robusta (Lohmann) Norris 1984 Anacanthoica acanthos (Schiller) Deflandre 1952	Coronosphaera binodata (Kamptner) Gaarder 1977 Coronosphaera mediterranea (Lohmann) Gaarder 1977 Daktylethra pirus (Kamptner) Norris 1985	Pontosphaera sp. Rhabdosphaera clavigera Murray & Blackman 1898 Sphaerocalyptra quadridentata (Schiller) Deflandre 1952						
Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978	Emiliania huxleyi (Lohmann) Hay & Mohler 1967	Syracosphaera anthos (Lohman) Janin 1987						
Calciosolenia brasiliensis (Lohmann) Young 2003 Calyptrosphaera oblonga Lohmann 1902 Calyptrosphaera sphaeroidea Schiller 1913 Coccolitofoni < 10 um n.i.	Florisphaera profunda Okada & Honjo 1973 Helicosphaera carterii (Wallich) Kamptner 1954 Helladosphaera cornifera (Schiller) Kamptner 1937 Ophiaster hydroideus (Lohmann) Lohmann 1913	Syracosphaera cf. molischii Schiller 1925 Syracosphaera histrica Kamptner 1941 Syracosphaera pulchra Lohmann 1902 Zygosphaera hellenica Kamptner 1937						
	CRYPTOPHYCEAE	73 • <i>r</i> • • • • • • • • • • • • • • • • • • •						
Cryptophyceae n.i.	Plagioselmis prolonga Butcher ex Novarino, Lucas & Morrall 1994							
	CHRYSOPHYCEAE/DICTYOCHOPHYCEAE							
Apedinella radians (Lohmann) Campbell 1973 Chrysophyceae spp. <10	Dictyocha fibula Ehrenberg 1839 Dictyocha speculum Ehrenberg 1839	Meringosphaera mediterranea Lohmann 1902 Ollicola vangoorii (Conrad) Vørs 1992						
	PRASINOPHYCEAE							
Halosphaera viridis Schmitz 1878 Pachvsphaera pelagica Ostenfeld 1899	Pseudoscourfieldia marina (Throndsen) Manton 1975 Pvramimonas sop.	Tetraselmis sp.						
	PRYMNESIOPHYCEAE NON COCCOLITOFORI							
Prymnesium sp.	Phaeocystis sp.	Phaeocystis forma coloniale						
	CHLORO/EUGLENO							
Euglenoidea n.i.	Monoraphidium griffithii (Berkeley) Komárková-Legnerová 1969							
	RAPHIDOPHYCEAE							
Chattonella marina (Subrahmanyan) Hara & Chihara 1982 Chattonella subsalsa Biecheler 1936	Commation cryoporinum Thomsen & Larsen 1993 Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987							
	ALTRO							
Flagellati indeterminati < 10 μm <i>Leucocryptos marina</i> (Braarud) Butcher 1967	Mesodinium rubrum Paulinella ovalis (Wulff) Johnson, Hargraves & Sieburth 1988	Telonema sp.						

Analisi qualitativa del fitoplancton da retino

Dall'analisi qualitativa dei campioni sono stati individuati 239 taxa, di cui 218 identificati a livello di specie, 17 come genere e 4 attribuibili a categorie soprageneriche (**Tabella 13**).

Tabella 13 - Numero di specie, generi e altre categori raggruppamento fitoplanctonico nei campioni osservati (prelie)	rie tassonomic evo con retino).	ne individua Dati relativi a	te per ogni classe o Ila Primavera 2021.
Classe	Specie	Generi	Categorie superiori*
Diatomee	67	9	2
Dinoflagellati	121	6	2
Prymnesiophyceae coccolitofori	15	1	
Chrysophyceae/Dictyochophyceae	4		
Euglenoideae	4		
Prasinophyceae	1		
Prymnesiophyceae non Coccolitofori		1	
Raphidophyceae	4		
Altro	2		
Totale	218	17	4
*Con il termine "Categorie superiori" si intendono livelli tassor	nomici sopragen	erici	

In **Tabella 14** è fornito l'elenco dei taxa presenti nelle diverse stazioni di campionamento: 78 taxa appartengono alle diatomee, 129 alla classe dei dinoflagellati e 16 ai coccolitofori. Sono stati, inoltre, individuati 4 taxa di Chrysophyceae/Dictyochophyceae, 4 alle Euglenoideae e 4 alle Rhaphidophyceae, 1 taxon appartenente alle Prasinophyceae e 1 alle Prymnesiophyceae non Coccolitofori.

La numerosità dei taxa presenti nelle diverse stazioni varia da un minimo di 110 in P21 MG13 ad un massimo di 133 in P21 MG6.

Dall'osservazione non è emersa una differenza nel numero dei taxa individuati che, in tutte le stazioni, sono principalmente appartenenti ai dinoflagellati (con rispettivamente 65 taxa in P21 MG6, 72 in P21 MG7, 61 in P21 MG10, 66 in P21 MG12 e 55 in P21 MG13) ed in secondo luogo alle diatomee (con 48 taxa in P21 MG6, 41 in P21 MG7, 49 in P21 MG10, 38 in P21 MG12 e 40 in P21 MG13). Anche la classe dei coccolitofori risulta piuttosto differenziata con 16 taxa, 15 dei quali individuati a livello di specie, diventando così la terza classe più rappresentativa (con 13 taxa in P21 MG6, 10 taxa in P21 MG7 e P21 MG13 e 8 taxa in P21 MG10 e Pl21 MG12).

Sono stati, inoltre, identificati ed aggiunti 10 nuovi taxa, 1 dei quali appartiene alla classe delle diatomee (*Leptocylindrus convexus*), 8 alla classe dei dinoflagellati (*Alexandrium andersonii, Alexandrium pseudogonyaulax, Azadinium* sp., *Cochlodinium helix, Dinophysis pulchella, Gymnodinium catenatum, Gyrodinium* cf. *flavum* e *Karenia bicuneiformis*) e 1 attribuibile alla classe dei coccolitofori (*Papposphaera lepida*), che non erano stati rilevati nei campionamenti dei precedenti anni.

MG13 (indicate come 6, 7, 10, 12 e 13).											
Specie	6	7	10	12	13	Specie	6	7	10	12	13
					DIAT	OMEE					
Asterionellopsis glacialis (Castracane) Round 1990	Х		х	х	Х	Hantzschia amphioxys (Ehrenberg) Grunow 1880			Х		Х
Asterolampra marylandica Ehrenberg 1844			х			Haslea wawrikae (Hustedt) Simonsen 1974					Х
Asteromphalus flabellatus Ehrenberg 1844	Х			х		Hemiaulus hauckii Grunow ex Van Heurck 1882	х	Х	х	х	Х
Bacteriastrum delicatulum Cleve 1897	Х	Х	х	Х		Hemiaulus sinensis Greville 1865		Х	Х		Х
Bacteriastrum furcatum Shadbolt 1854	Х					Hemidiscus cuneiformis vvallich 1860	X				
Cerataulina pelagica (Cleve) Hendey 1937 Chastasaraa offinia Laudar 1964	X		х			Leptocylindrus convexus Nanjappa & Zingone 2013	X	X	X	X	X
Chaetoceros aminis Lauder 1864	X	X		х		Leptocylindrus danicus Cieve 1889	X	Х	X	X	Х
Chaetoceros anastomosans Grunow 1882 Chaetoceros bravia Sabiitt 1905	Х	Х		~		Leptocylindrus mediterraneus (Peragalio) Hasie 1975	X	v	X	х	v
Chaeloceros de dociniono Clove 1972		v		X		Leptocymulus minimus Gran 1915	X	X	X		X
Chaetoceros ci. decipieris Cieve 1675		X	v	X		Navicula distans (Siniti) Rais 1001	v	v	v	v	X
Chaetoceros compressus Lauder 1864	v		X	v	v	Navicula spp.	X	X	X	X	
Chaetoceros constrictus Gran 1807	~			^	^	Nitzechia (soz. sigmatao) sp		~			v
Chaetoceros constituius Grain 1097	~	v	v	v		Nitzschia (sez. signate) sp.	v	v	v	v	~
Chaetoceros cunisetus Cleve 1889	×	Ŷ	Ŷ	Ŷ		Nitzschia longissima (Bréhisson) Ralfs 1861	^	^	Ŷ	^	
Chaetoceros deciniens Cleve 1873	Ŷ	~	Ŷ	^	Y	Nitzschia sigma (Kützing) Smith 1853	Y		~		
Chaetoceros didymus Ebrenberg 1845	Ŷ		Ŷ		Ŷ	Nitzschia snn	~		Y	Y	Y
Chaetoceros lorenzianus Grunow 1863	x		~	¥	Ŷ	Plagiotronis spp.	¥	¥	x	Ŷ	Ŷ
Chaetoceros neogracile Van Landingham 1968	x		x	~	x	Pleurosigma majus (Grunow) Cleve 1894	X	~	X	X	x
Chaetoceros peruvianus Brightwell 1856	x		x		~	Proboscia alata (Brightwell) Sundström 1986	x	x	x	x	x
Chaetoceros simplex Ostenfeld 1901	х	х	x	х	х	Psammodictvon panduriforme (Gregory) Mann 1990			х		
Chaetoceros socialis Lauder 1864			x	x	x	Pseudo-nitzschia cf. galaxiae Lundholm & Moestrup 2002	х	х	x	х	х
Chaetoceros spp.	х	х	х	х	х	Pseudo-nitzschia delicatissima (Cleve) Heiden 1928	х	х	х	х	х
Chaetoceros wighamii Brightwell 1856		х				Pseudo-nitzschia fraudulenta (Cleve) Hasle 1993	х	х	х	х	х
Cocconeis scutellum Ehrenberg 1838				х		Pseudo-nitzschia multistriata (Takano) Takano 1995	х		х		
Coscinodiscus cf. curvatulus Grunow ex Schmidt 1878			х			Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle 1993	х	х	х	х	х
Coscinodiscus granii Gough 1905				х		Pseudo-nitzschia subfraudulenta (Hasle) Hasle 1993	х	х	х	х	х
Coscinodiscus lineatus Ehrenberg 1841	Х	Х				Pseudo-nitzschia turgidula (Hustedt) Hasle 1993				х	
Cylindrotheca closterium (Ehrenberg) Reimann & Lewin 1964	х	х	х	х	х	Pseudosolenia calcar-avis (Schultze) Sundström 1986		х			
Dactyliosolen fragilissimus (Bergon) Hasle 1996	Х	Х	х	х	х	Rhizosolenia decipiens Sundström 1986	х	Х	х	х	Х
Dactyliosolen phuketensis (Sundström) Hasle 1996		Х	х		Х	Rhizosolenia imbricata Brightwell 1858	х	Х	Х	х	х
Diatomee centriche > 20 µm n.i.	Х	Х				Thalassionema bacillare (Heiden) Kolbe 1955	х	Х	Х	х	х
Diatomee pennate > 20 µm n.i.	Х	Х	х	х	Х	Thalassionema frauenfeldii (Grunow) Hallegraeff 1986	х	Х	х	х	Х
Dimeregramma sp.	Х		х			Thalassionema nitzschioides (Grunow) Mereschkowsky 1902	х	Х	Х	х	Х
Diploneis crabro (Ehrenberg) Ehrenberg 1854			Х		Х	Thalassiosira aestivalis Gran 1931	Х	Х			
Entomoneis spp.		Х	Х		Х	Thalassiosira angulata (Gregory) Hasle 1978					Х
Fragilariopsis sp.		Х	Х			Thalassiosira anguste-lineata (Schmidt) Fryxell & Hasle 1977		Х			
Guinardia flaccida (Castracane) Peragallo 1892					Х	Thalassiosira spp.	х				
Guinardia striata (Stolterfoth) Hasle 1996		Х				Triceratium sp.			Х		
				DIN	IOFLA	AGELLATI					
Achradina pulchra Lohmann 1903			Х			Mesoporos perforatus (Gran) Lillick 1937	Х	Х	Х	Х	Х
Alexandrium andersonii Balech 1990				х		Micracanthodinium setiferum (Lohmann) Deflandre 1937	х	Х	Х	х	Х
Alexandrium catenella (Whedon & Kofoid) Balech 1985	х					Neoceratium candelabrum (Ehrenberg) Gómez, Moreira & López-				х	х
						Garcia 2010					
Alexandrium cf. minutum Halim 1960	Х	Х	х	х	х	Neoceratium compressum (Gran) Gomez, Moreira & Lopez-		х			
Alexandrium pseudegenuaulax (Piecholer) Heriquehi ex Vuki 8						Galcia 2010 Neocoratium declinatum (Karston) Gómoz, Moraira & Lópoz					
Alexandrium pseudogonyaulax (blecheler) Honguchi ex Tuki &					Х	Garcia 2010	х	Х		х	
1 ukuyo 1992						Neoceratium falcatiforme (lörgensen) Gómez Moreira & Lónez-					
Alexandrium tamarense (Lebour) Balech 1995		Х				Garcia 2010		Х			
						Neoceratium furca (Ehrenberg) Gómez, Moreira & López-Garcia					
Alexandrium taylori Balech 1994		Х	х			2010	х	Х	Х	х	Х
Amphidama languida Tillmann, Salaa & Elbrachtar 2012	v	v				Neoceratium fusus (Ehrenberg) Gómez, Moreira & López-Garcia	v	v	v	v	v
Amphidoma languida Tilimann, Salas & Elbrachter 2012	Х	Х				2010	х	Х	х	х	х
Amphidama nucula Stain 1883				v	v	Neoceratium pentagonum (Gourret) Gómez, Moreira & López-					v
				^	^	Garcia 2010					~
Amphisolenia bidentata Schröder 1900			x			Neoceratium symmetricum (Pavillard) Gómez, Moreira & López-	x		x	x	x
			~			Garcia 2010	~		~	~	~
Azadinium caudatum var. caudatum Nézan & Chomérat 2012			х			Neoceratium tricnoceros (Enrenberg) Gomez, Moreira & López-		х		х	х
Anadiaium acudatum una margalafi Nidara (Obarra a 10040						Garcia 2010 Ou douwe odvictioum Schiller 1027					
Azadınlum caudatum var. margaletil Nezan & Chomerat 2012				Х		Oxytoxum adriaticum Schiller 1937	Х		х		

Tabella 14 - Lista dei taxa dalle analisi qualitative dei campioni raccolti con retino nelle stazioni P21 MG6, P21 MG7, P21 MG10, P21 MG12 e P21 MG13 (indicate come 6, 7, 10, 12 e 13). Azadinium obesum Tillmann & Elbrächter 2010 Oxvtoxum caudatum Schiller 1937 Azadinium sp. Oxvtoxum coronatum Schiller 1937 Azadinium spinosum Elbrächter & Tillmann 2009 Oxytoxum curvatum (Kofoid) Kofoid 1911 x х Ceratocorys armata (Schütt) Kofoid 1910 Oxytoxum gladiolus Stein 1883 Ceratocorvs horrida Stein 1883 Oxytoxum globosum Schiller Cladopyxis brachiolata Stein 1883 Oxytoxum laticeps Schiller 1937 х Х Х Cochlodinium helix Schütt 1895 Oxytoxum longiceps Schiller Х Х Corythodinium reticulatum (Stein) Taylor 1976 х Oxytoxum mediterraneum Schiller х х Corythodinium tesselatum (Stein) Loeblich Jr. & Loeblich III 1966 Oxytoxum mitra Stein 1883 Х Х Dinoflagellati tecati > 20 µm n.i. Oxytoxum ovale Schiller 1937 Х х х х х Dinophysis amandula (Balech) Sournia 1973 Oxytoxum parvum Schiller 1937 х х Dinophysis caudata Saville-Kent 1881 х Oxytoxum scolopax Stein 1883 х х Х Х Х Dinophysis dens Pavillard 1915 Oxytoxum sphaeroideum Stein 1883 х х Х х х Dinophysis fortii Pavillard 1923 Oxytoxum spinosum Rampi Х Х х х Х х Х Dinophysis hastata Stein 1883 Oxytoxum variabile Schiller 1937 Х х Х Х Х Dinophysis infundibula Schiller 1928 Oxytoxum viride Schiller 1937 Х Х Х х Phalacroma doryphorum Stein 1883 Dinophysis operculoides (Schütt) Balech 1967 х х х Phalacroma rotundatum (Claparéde & Lachmann) Kofoid & Dinophysis ovum (Schütt) Abé х х Х х х Х Michener 1911 Dinophysis parva Schiller 1928 Х Х Podolampas elegans Schütt 1895 Dinophysis parvula (Schütt) Balech 1967 Podolampas palmipes Stein 1883 Х Dinophysis pulchella (Lebour) Balech 1967 Podolampas spinifer Okamura 1912 Х Х Dinophysis recurva Kofoid & Skogsberg 1928 Pronoctiluca pelagica Fabre-Domergue 1889 Х Dinophysis sacculus Stein 1883 х х Prorocentrum balticum (Lohmann) Loeblich 1970 х х Dinophysis schuettii Murray & Whitting 1899 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Х Dinophysis similis Kofoid & Skogsberg 1928 Prorocentrum dentatum Stein 1883 Х Х Х Prorocentrum gracile Schütt 1895 Dinophysis sphaerica Stein 1883 х Х Х Х Diplopsalis spp. Prorocentrum lima (Ehrenberg) Stein 1878 х х Х Х Goniodoma polyedricum (Pouchet) Jörgensen 1899 Prorocentrum maximum (Gourret) Schiller 1937 х Х Х х Х Gonyaulax cf. sphaeroidea Kofoid 1911 Prorocentrum micans Ehrenberg 1833 х х х Х х Gonyaulax digitale (Pouchet) Kofoid 1911 Prorocentrum rathymum Loeblich, Sherley & Schmidt 1979 х х х Gonyaulax polygramma Stein 1883 Prorocentrum scutellum Schröder 1900 х х Х Х Gonyaulax spinifera (Claparède & Lachmann) Diesing 1866 Protoceratium reticulatum (Claparède & Lachmann) Bütschli 1885 х Х Х Х Х Х Х Х Gymnodiniaceae > 20 µm n.i. Protoperidinium breve Paulsen 1907 х Х Х Х х Х Х Х Х Gymnodinium catenatum Graham 1943 Protoperidinium cerasus (Paulsen) Balech 1973 х Gymnodinium spp. Protoperidinium cf. brevipes (Paulsen) Balech 1974 х х х Х Х х Gyrodinium aciculatum Hansen & Larsen 1992 Protoperidinium compressum (Abé) Balech 1974 X х х х Gyrodinium cf. flavum Kofoid 1931 Protoperidinium crassipes (Kofoid) Balech 1974 х х Х Gvrodinium spp. Protoperidinium depressum Bailey 1854 х х х Heterocapsa horiguchii Iwataki, Takayama & Matsuoka 2002 Protoperidinium divergens (Ehrenberg) Balech 1974 х х х х х Heterocapsa minima Pomroy 1989 Protoperidinium globulus (Stein) Balech 1974 х х х х х х Heterocapsa niei (Loeblich III) Morrill & Loeblich III 1981 Protoperidinium grande (Kofoid 1907) Balech 1974 х х Х х Protoperidinium ovum (Schiller) Balech 1974 Heterocapsa ovata Iwataki & Fukuyo 2003 Х Protoperidinium pellucidum Bergh ex Loeblich Jr.& Loeblich III Heterocapsa spp. х 1881 Heterocapsa triquetra (Ehrenberg) F.Stein 1883 Protoperidinium pyriforme (Paulsen) Balech 1974 х х Histioneis joergensenii Schiller 1928 Protoperidinium quarnerense (Schröder) Balech 1974 х Karenia bicuneiformis Botes Sym & Pitcher 2003 Protoperidinium steinii (Jørgensen) Balech 1974 х х Х Karenia brevis (Davis) Gert Hansen & Moestrup 2000 Protoperidinium subpyriforme (Dangeard 1927) Balech 1974 Protoperidinium tuba (Schiller) Balech 1974 Karenia selliformis Haywood, Steidinger & MacKenzie 2004 х х х X Protoperidinium wiesneri (Schiller) Balech 1974 Karenia sp. х х Karenia mikimotoi (Miyake & Kominami ex Oda) Gert Hansen & Pyrocystis lunula (Schütt) Schütt 1896 Х Moestrup Lessardia elongata Saldarriaga & Taylor 2003 Pyrophacus horologicum Stein 1883 Х х Х Х Х х Lingulodinium polyedrum (Stein) Dodge 1989 Scrippsiella trochoidea (Stein) Balech ex Loeblich III 1965 х х х х Х Х Х Mesoporos adriaticus (Schiller) Lillick PRYMNESIOPHYCEAE COCCOLITOFORI Rhabdosphaera clavigera Murray & Blackman 1898 Anacanthoica acanthos (Schiller) Deflandre 1952 Rhabdosphaera stylifera Lohmann Calyptrosphaera oblonga Lohmann 1902 х ¥ Scyphosphaera apsteinii Lohmann 1902 Coccolitofori spp. х х Х Coronosphaera binodata (Kamptner) Gaarder 1977 Syracosphaera histrica Kamptner 1941 Coronosphaera mediterranea (Lohmann) Gaarder 1977 Syracosphaera pulchra Lohmann 1902 Х Х Daktylethra pirus (Kamptner) R.E.Norris 1985 Syracosphaera quadriperforata Kamptner 1937 Х х Х Х Helicosphaera carterii (Wallich) Kamptner 1954 х Umbilicosphaera sibogae (Weber-van Bosse) Gaarder 1970 Х Х Papposphaera lepida Tangen 1972 Zygosphaera hellenica Kamptner 1937 х Х х Х Х CHRISOPHYCEAE/DICTYOCHOPHYCEAE Dictyocha epiodon subsp. subaculeata (Bukry) Desikachary & Х х Dictyocha speculum Ehrenberg 1839 х Х Prema 1996 Dictyocha fibula Ehrenberg 1839 Meringosphaera mediterranea Lohmann 1902 Х EUGLENOIDEAE Eutreptiella eupharyngea Moestrup & Norris 1986 Euglena acusformis Schiller 1925 х Х Х Euglena viridis (Müller) Ehrenberg 1830 Eutreptiella gymnastica Throndsen 1969 RAPHIDOPHYCEAE Chattonella marina (Subrahmanyan) Hara & Chihara 1982 х Commation cryoporinum Thomsen & Larsen 1993 Х Chattonella subsalsa Biecheler 1936 Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987 PRASINOPHYCEAE

Tabella 14 - Lista dei taxa dalle analisi qualitative dei campioni raccolti con retino nelle stazioni P21 MG6, P21 MG7, P21 MG10, P21 MG12 e P21 MG13 (indicate come 6, 7, 10, 12 e 13).

Halosphaera viridis Schmitz 1878 (forma coloniale)	х х			
	PRYMNESIOPHYCEAE	NON COCCOLITOFORI		
Phaeocystis sp. (forma coloniale)	X X			
	AL	TRO		
Ebria tripartita (Schumann) Lemmermann 1899	х х х	Mesodinium rubrum (Lohmann 1908)	Х	Х

Il numero di taxa individuati (176) dalle analisi quantitative (**Tabella 12**) è inferiore a quello ottenuto (239) dalle analisi qualitative (**Tabella 14**). In particolare il I numero di taxa attribuiti a diatomee, dinoflagellati e Euglenoideae è superiore nei campioni da retino, come atteso data la numerosa presenza di specie rare che testimoniano la notevole diversità del popolamento microfitoplanctonico.

Le specie rare appartengono soprattutto ai dinoflagellati, principalmente attribuibili ai generi Alexandrium, Azadinium, Dinophysis, Neoceratium (=Ceratium) Oxytoxum, Prorocentrum, Protoperidinium, insieme a taxa quali Cladopyxis brachiolata, Corythodinium reticulatum, Corythodinium tesselatum, Goniodoma polyedricum, Lingulodinium polyedrum e Protoceratium reticulatum. Da segnalare anche la presenza di taxa appartenenti alla classe delle Euglenoideae (Euglena acusformis, Euglena viridis, Eutreptiella eupharyngea, Eutreptiella gymnastica), tipicamente di acque dolci e probabilmente imputabili all'apporto fluviale dell'Arno.

1.1.3.2 Zooplancton

Oloplancton

I risultati relativi alla primavera 2021 sono in linea con quelli delle precedenti campagne di monitoraggio in cui i crostacei Copepodi rappresentano il gruppo tassonomico dominante all'interno del comparto oloplanctonico.

Tutti i principali gruppi trofici caratteristici della copepodofauna quali erbivori, onnivori e carnivori sono stati identificati, sia nelle stazioni in prossimità del Terminale sia nella stazione di controllo. Tale osservazione conferma che, complessivamente, la colonna d'acqua non si troava in uno stato perturbato.

L'analisi dei dati quali-quantitativi (ind. per m⁻³) evidenzia che la frazione a Copepodi tende ad aumentare con la profondità in accordo con quanto osservato nelle recenti campagne primaverili. Le stazioni di campionamento, comprese tra la batimetrica di 50 e 100 m, mostrano i massimi valori di abbondanza, in media 794,41 ind/m³ (max: 935,82 ind/m³ P21 MG7; min: 582,29 ind/m³ P21 MG10). Le pescate verticali intermedie, comprese tra la superficie e la batimetrica di 50 m, esibiscono abbondanze medie inferiori pari a 670,93 ind/m³ (max: 852,64 ind/m³ P21 MG7; min: 354,83 ind/m³ P21 MG10), mentre le pescate orizzontali superficiali registrano dati di abbondanza nettamente più bassi con una media di 92,26 ind/m³ (max: 169,86 ind/m³ P21 MG13; min: 34,92 ind/m³ P21 MG10).

Nel complesso i dati acquisti consentono di affermare che la generale scarsa presenza di crostacei Copepodi planctonici nella porzione superficiale della colonna d'acqua è sovrapponibile con quanto osservato nelle precedenti campagne e, analogamente a P20, i campioni superficiali (orizzontali) sono caratterizzati da un'elevata concentrazione di stadi adulti di *Pelagia noctiluca* (Scyphozoa). Così come già riportato in report precedenti, è stata riscontrata un'alta variabilità nella presenza di stadi giovanili, dominanti nelle campagne P15 e P17, praticamente assenti in P14, P16 e P19.

Negli ultimi 2 anni invece il ciclo vitale di *P. noctiluca* risulta anticipato tanto che in primavera sono stati campionati individui adulti di grossa taglia, in età riproduttiva. In particolare in P21, gli individui di tale specie raggiungono dimensioni considerevoli e determinano una forte pressione predatoria sulla comunità a copepodi.

Nel complesso l'abbondanza di copepodi risulta ridotta rispetto a tutte le precedenti stagioni primaverili, eccezione fatta per P20.

In totale sono stati identificati 85 taxa di Copepodi (Tabella 15) appartenenti a 23 famiglie.

La famiglia più rappresentata all'interno della colonna d'acqua è quella dei Calanoida Clausocalanidae, presente con 10 *taxa*. La distribuzione verticale di tale famiglia è direttamente proporzionale alla profondità (superficiale: 51,16 ind./m³; 0 – 50 m: 252,67 ind./m³; 50 – 100 m: 333,78 ind./m³). Fra i Clausocalanidae le specie più abbondanti sono *Clausocalanus lividus* (superficiale 18,89 ind./m³; 0 – 50 m: 36,91 ind./m³; 50 – 100 m: 79,29 ind./m³) e *C. pergens* (superficiale 4,50 ind./m³; 0 – 50 m: 34,31 ind./m³; 50 – 100 m: 49,13 ind./m³). Anche *Ctenocalanus vanus*, regolarmente abbondante nelle precedenti campagne primaverili, raggiunge notevoli abbondanze, concentrandosi però quasi esclusivamente nello strato più profondo della colonna (50 – 100 m: 26,26 ind./m³).

Centropages typicus, specie primaverile regolarmente dominante nelle precedenti campagne (es. P17, P18 e P19) è presente in numero ridotto in P21 soprattutto per quanto riguarda la porzione più superficiale della colonna. I dati di abbondanza medi sono i seguenti: superficiale 6,69 ind./m³; 0 – 50 m: 62,39 ind./m³; 50 – 100 m: 29,89 ind./m³.

La famiglia Paracalanidae, presente con 11 taxa (generi *Calocalanus* e *Paracalanus*) è scarsamente rappresentata nelle pescate orizzontali superficiali, con valori progressivamente crescenti spostandosi verso i 100 m di profondità (superficiale: 7,39 ind./m³; 0 – 50 m: 67,07 ind./m³; 50 – 100 m: 78,77 ind./m³). La specie più abbondante è *Paracalanus parvus* (superficiale: 4,71 ind./m³; 0 – 50 m: 34,31 ind./m³; 50 – 100 m: 34,05 ind./m³).

Fra i calanoidi costantemente presenti nell'area investigata, è scarsa la presenza di *Acartia negligens* (superficiale: 0,62 ind./m³; 0 – 50 m: 12,74 ind./m³; 50 – 100 m: 2,60 ind./m³), *Nannocalanus minor* (superficiale: 1,32 ind./m³; 0 – 50 m: 4,42 ind./m³; 50 – 100 m: 1,04 ind./m³) e *Temora stylifera* (superficiale: 1,17 ind./m³; 0 – 50 m: 5,98 ind./m³; 50 – 100 m: 3,38 ind./m³).

La famiglia Oithonidae, seconda per abbondanza solo a Clausocalanidae (superficiale: 7,89 ind./m³; 0 – 50 m: 166,89 ind./m³; 50 – 100 m: 227,46 ind./m³), mostra ii maggiori valori di abbondanza nei campioni profondi così come osservato nella stagione P20. *O. similis* è la specie più abbondante (superficiale: 4,92 ind./m³; 0 – 50 m: 68,63 ind./m³; 50 – 100 m: 95,92 ind./m³).

Fra i Corycaeidae (superficiale: 5,56 ind./m³; 0 – 50 m: 31,45 ind./m³; 50 – 100 m: 36,29 ind./m³), la specie più abbondante è *Farranula rostrata* (superficiale: 2,75 ind./m³; 0 – 50 m: 9,10 ind./m³; 50 – 100 m: 5,98 ind./m³), mentre torna ad avere abbondanze contenute *Corycaeus (Onchocorycaeus) giesbrechti,* specie quest'ultima che aveva fatto registrare un inatteso picco di abbondanza nella stagione P20. I copepodi Harpacticoida (superficiale: 1,48 ind./m³; 0 – 50 m: 8,06 ind./m³; 50 – 100 m: 4,16 ind./m³), sono rappresentati dalle famiglie Ectinosomatidae (2 taxa), Euterpinidae (1 taxa), Miracidae (2 taxa), e *Peltidiidae* (2 taxa), sempre con abbondanze contenute.

Tabella 15 – Oloplancton (P2	21). O.le	orizzor=	itale, 50	-0=campionamento verticale	da 50	a 0 metri,	100-50)=campionamento verticale o	la 100	a 50 r	netri. *
presente in almeno un sub-car	mpione,	** prese	nte solo	nell'osservazione in toto.							
	O.le	50-0	100-50		O.le	50-0	100-50		O.le	50-0	100-50
Famiglia Acartiidae				Lucicutia flavicornis			*	Farranula rostrata	*	*	*
Acartia negligens	*	*	*	Famiglia Mecynoceridae				Famiglia Oithonidae			
Acartia sp	*	*	*	Mecynocera clausi		*	*	Oithona decipiens	*	*	*
Famiglia Aetideidae				Famiglia Metridinidae				Oithona longispina	*	*	*
Euchirella rostrata			*	Pleuromamma abdominalis	*	*	*	Oithona nana		*	*
Famiglia Calanidae				Pleuromamma gracilis	*	*	*	Oithona plumifera	*	*	*
Calanus helgolandicus	*	*	*	Famiglia Paracalanidae				Oithona setigera			**
Mesocalanus tenuicornis	*	*	*	Calocalanus contractus		*	*	Oithona similis	*	*	*
Nannocalanus minor	*	*	*	Calocalanus neptunus			*	Oithona tenuis	*	*	*
Neocalanus gracilis	*	**	*	Calocalanus ovalis		*		Oithona spp	*	*	*
Famiglia Candaciidae				Calocalanus pavo		*		Famiglia Oncaeidae			
Candacia armata	*	*	*	Calocalanus plumulosus		*	*	Oncaea curta	*		*
Candacia ethiopica	*			Calocalanus styliremis	**	*	*	Oncaea media	*		*
Candacia giesbrechti		*	*	Calocalanus spp		*	*	Oncaea mediterranea			*
Candacia juv			*	Paracalanus denudatus		**	*	Oncaea scottodicarloi	*	*	*
Famiglia Centropagidae				Paracalanus nanus	*	*	*	Oncaea venusta	*	*	*
Centropages bradyi		*	*	Paracalanus parvus	*	*	*	Oncaea spp	*	*	*
Centropages typicus	*	*	*	Paracalanus spp	*	*	*	Triconia conifera			*
Centropages violaceus	*			Famiglia Pontellidae				Famiglia Sapphirinidae			
Isias clavipes	*	*		Pontella mediterranea	*			Copilia mediterranea			*
Famiglia Clausocalanidae				Pontellina plumata	*			Sapphirina auronitens	*		
Clausocalanus arcuicornis	*	*	*	Pontellopsis villosa	*			Sapphirina iris			*
Clausocalanus furcatus	*	*	*	Famiglia Scolecitrichidae				Vettoria granulosa	*		
Clausocalanus jobei	*	*	*	Scolecithrix bradyi				Famiglia Ectinosomatidae			
Clausocalanus lividus	*	*	*	Scolecithrix danae				Microsetella norvegica		*	*
Clausocalanus mastigophorus	*	*	*	Famiglia Temoridae				Microsetella rosea	*	*	
Clausocalanus parapergens	*	*	*	Temora stylifera	*	*	*	Famiglia Euterpinidae			
Clausocalanus paululus	*	*	*	Famiglia Corycaeidae				Euterpina acutifrons		*	*
Clausocalanus pergens	*	*	*	Corycaeus brehmi	*			Famiglia Miraciidae			
Clausocalanus spp	*	*	*	Corycaeus clausi		*	*	Distioculus minor	*	*	*
Ctenocalanus vanus	*	*	*	Corycaeus flaccus	*	*	*	Macrosetella gracilis	*		
Famiglia Eucalanidae				Corycaeus furcifer			*	Famiglia Peltidiidae			
Pareucalanus attenuatus			*	Corycaeus giesbrechti	*	*	*	Clytemnestra scutellata		*	*
Famiglia Euchaetidae				Corycaeus limbatus			*	Goniopsyllus rostratus	*	*	*
Euchaeta juv	*	*	*	Corycaeus ovalis	*	*	*				
Paraeuchaeta hebes			*	Corycaeus typicus	*	*	*				
Famiglia Lucicutiidae				Corycaeus spp		*	*				

Nella tabella seguente (**Tabella 16**) sono indicati i volumi di sedimentazione (dopo 24 h), espressi in ml, della componente mesozooplanctonica raccolta nella campagna primaverile 2021. I valori, così come discusso nella sezione relativa alla componente oloplanctonica, sono in linea con quanto ossrevato nella precedente campagna primaverile P20, confermando un *trend* in diminuzione per quanto riguarda la biomassa generale. Fattore importante è sicuramente, durante il campionamento notturno, la massiccia presenza di esemplari di grossa taglia di *Pelagia noctiluca* in superficie, in grado di esercitare una notevole pressione predatoria sulla componente mesozooplanctonica. Tali condizioni ambientali non sono ascrivibili a un impatto di natura antropica, bensì alle più generali caratteristiche del bacino mediterraneo che, negli ultimi anni, vede l'alternanza di ingenti *bloom* di plancton gelatinoso. Fra le specie maggiormente interessate e da tali esplosioni numeriche, *P. noctiluca* è sicuramente fra quelle che generano il maggiore impatto sia dal punto di vista ecologico (predazione) sia economico (impatto negativo sulla balneazione turistica).

Tabella 16 – Biomassa (P21): volumi di sedimentazione dell'oloplancton (espressi in ml). OR = campionamento orizzontale; 50-0 = campionamento verticale da 0 a 50 metri.												
(ml)	(ml) P21 MG6 P21 MG7 P21 MG10 P21 MG12 P21 MG13											
OR	31	28	47	88	32.5							
50-0	7	14	4.5	6.5	6.5							
100-50	6	7	5	4.5	5.5							

Meroplancton

La campagna primaverile P21, (**Tabella 17**), ha consentito di determinare complessivamente 45 *taxa* meroplanctonici appartenenti a 7 *phyla* di invertebrati marini (Cnidaria, Mollusca, Annelida, Nemertea, Arthropoda, Echinodermata e Bryozoa).

A livello qualitativo le larve di crostacei decapodi sono il gruppo animale più rappresentato, assommando complessivamente 25 taxa (55,5%), seguito dagli echinodermi presenti nel campione con 9 taxa (20%) e i policheti con 3 taxa (6,6%).

Da un punto di vista quantitativo invece il gruppo di larve planctoniche più abbondante nel campione primaverile è quello dei molluschi, suddivisi tra larve di gasteropodi (stadio post veliger) e bivalvi che assommano in totale in tutte le stazioni investigate 20,03 ind./m³ (il 38,9% di tutti gli organismi raccolti). Tra larve di bivalvi e larve di gasteropodi conchigliati a prevalere sono le seconde, con un totale di 13,07 ind./m³ (65,2% del totale dei molluschi). Nel complesso le larve di molluschi si concentrano in prevalenza nei campioni profondi tra 100 e 50 m (sono il 75,4% del campione raccolto). La stazione con il maggior numero di esemplari larvali è MG13 con 3,45 ind./m³, l'unica anche nella quale prevalgono le larve di bivalvi 2,22 ind./m³, rispetto a quelle di gasteropodi (1,82 ind./m³). Il dato generale conferma che la stagione primaverile rappresenta il momento culminante della fase riproduttiva di questi organismi invertebrati e che in genere si prolunga anche per gran parte della stagione estiva. Anche il gruppo degli echinodermi, durante la fase primaverile-estiva mostra dati di abbondanza superiori alla media delle altre stagioni. I 9 taxa di echinodermi larvali, tra i quali figurano specie di echinoidi regolari e irregolari, ofiuroidei e asteroidei (larva bipinnaria), assommano 13,88 ind./m³ che rappresenta il 27% del totale delle larve raccolte nella primavera 21. Anche in questo caso la maggior parte delle larve si concentra nelle stazioni profonde (56,5%), con il valore più alto nella stazione 100-50 m MG7 con 2,64 ind./m³. A livello qualitativo la specie dominante è l'ofiuroideo *Ophiotrix fragilis*, stella serpentina tra i taxa più abbondanti nell'area di studio già dalle prime campagne di raccolta. Il 44% infatti delle larve di echinodermi identificati nel campione P21 appartiene infatti a questa inconfondibile larva. La stazione che concentra il maggior numero di larve di *O. fragilis* è MG7 con 1,89 ind./m³.

Tabella 17– Meroplancton 50 metri. * presente in alme	(P21). eno un :	O.le = sub-ca	orizzor	ntale, 50-0 = campionamen e, ** presente solo nell'osse	to vertio rvazion	cale da e <i>in to</i>	a 50 a 0 to. La li) metri, 100-50 = campionamen sta include specie determinate	ito ver a fres	ticale co.	da 100 a
	O.le	50-0	100-50	•	O.le	50-0	100-50	·	O.le	50-0	100-50
CNIDARIA				Athanas nitescens		*	*	Sergia robusta			*
Efira larvae ind			*	Callianassa sp		*	*	Sergestes hensenii	*	*	
MOLLUSCA				Deoseraestes corniculum	*	*		Upogebia sp	*		*
Gastropoda larvae ind	*	*	*	Ebalia nux	*	*	*	Xantho granulicarpus	*		*
Bivalvia larvae ind	*	*	*	Eualus sp		*		Solenocera membranacea			*
POLYCHAETA				Ebalia tuberosa	*		*	Stomatopoda			
Phyllodocidae ind		*		Gervon longipes	*			Platysquilla eusebia	*		
Svllidae ind	*		*	Inachus dorsettensis		*		ECHINODERMATA			
Spionidae ind		*	*	Latreillia elegans		*	*	Bipinnaria ind	*	*	*
Trocofora larvae ind	*	*	*	Lucifer typus	*	*		Brissopsis Ivrifera	*	*	*
NEMERTEA				Palinurus elephas	*			Echinocardium sp	*	*	*
Pilidium larvae ind			*	Parapenaeus longirostris			*	Ophiura sp		*	*
CRUSTACEA				Parasergestes vigilax	*	*		Ophiotrix fragilis	*	*	*
Cirripedia larvae ind	*	*	*	Periclimenes sp	*			Paracentrotus lividus		*	*
Cypris larvae ind			*	Pirimela denticulata	*	*	*	Psammechinus microtuberculatus		*	
Decapoda				Plesionika sp	*	*	*	Spatangus purpureus	*	*	*
Alpheus glaber	*	*	*	Processa edulis edulis	*	*	*	Sphaerechinus granularis			*
Anapagurus breviaculeatus	*		*					BRYOZOA			
Anapagurus laevis	*	*						Cifonauta larvae ind			*

Ai crostacei decapodi appartiaene il 13,6% delle larve raccolte, tra esse la specie dominante è il carideo processide *Processa edulis edulis*, specie di gambero assai comune nell'area di studio. La stessa specie infatti, più volte e in stagioni differenti, è risultata in termini quantitativi, la più abbondante tra i crostacei decapodi. Nella Primavera 21 tra i crostacei decapodi oltre una larva su tre (36,7%) appartiene a questa specie, con il picco massimo nella stazione P21 MG6 (0,72 ind./m³). La larva di questo carideo predilige le stazioni profonde, al contrario della maggior parte delle larve di decapodi che tendono invece a concentrarsi, durante le ore notturne – quelle durante le quali viene svolta la raccolta – in prossimità della superficie. La larva di *P. edulis edulis* infatti è stata raccolta prevalentemente nella fascia più profonda della colonna d'acqua (il 44,3% delle larve di *P. edulis edulis*) con il picco massimo in P21 MG10 100-50 m (0,32 ind./m³). In termini qualitativi invece i crostacei decapodi si concentrano nei primi metri di profondità. Il 68% dei taxa viene quindi raccolto durante le pescate orizzontali. È una condizione ricorrente del mesozooplancton marino, dettata dalle abitudini alimentari e dalla strategia di difesa adottata da gran parte delle larve di decapodi, sebbene solo 3 *taxa* siano esclusivi della fascia più superficiale, mentre le altre figurano anche nella fascia intermedia o in quella profonda. Cinque *taxa* in tutto figurano contemporaneamente nei tre settori investigati della colonna d'acqua. In questa campagna si segnala un nuovo ritrovamento: lo stomatopode *Platysquilla eusebia* del quale sono stati rinvenuti tre esemplari di zoea nella fascia

superficiale della stazione P21 MG7. Nel complesso il campione P21 non presenta anomalie attribuibili all'esercizio del rigassificatore, ma si presenta coerente in tutti gli aspetti, alla media del periodo.

Ittioplancton

Il survey primaverile (P21) condotto sulle fasi larvali dell'ittiofauna ha complessivamente registrato la presenza di 14 taxa tutti appartenenti agli osteitti, i pesci ossei. (**Tabella 18**). La specie larvale largamente dominante è quella del Gonostomatidae *Cyclothone braueri*, specie abissale sempre presente durante le campagne di raccolta ittioplanctoniche nell'area di studio. La specie assomma il 37% del totale delle specie larvali ittiche campionate ed è presente in tutte le fasce investigate della colonna d'acqua, da – 100, alle raccolte orizzontali superficiali, con valore massimo raggiunto nella stazione P21 MG12 (0,44 ind./m³). Sono, inoltre, presenti altre larve di specie abissali appartenenti alla famiglia Myctophidae, a livello qualitativo la famiglia più rappresentata con tre taxa, tra i quali per la prima volta compare anche la specie *Lampanyctus crocodilus* (pesce lanterna coccodrillo). Unitamente alla presenza di uova di *Maurolicus muelleri*, piccola specie anch'essa abissale, confermando che l'area indagata è caratterizzata dalla presenza di acque di risalita per fenomeni di upwelling che si verificano in prossimità della scarpata continentale localizzata nei pressi del Terminale. È un risultato ormai che trova conferma in tutte le campagne di raccolta e durante tutte le stagioni di campionamento in quanto, molte delle specie abissali presenti nell'area, hanno una stagione riproduttiva che si prolunga per tutto l'anno solare. Le uova, a livello quantitativo, rappresentano il contingente maggiore raccolto (72,5%) molto più elevato rispetto alle larve ittioplanctoniche (27,5%).

Nella stazione P21 MG10, per esempio, addirittura l'86,9% del contingente ittico raccolto è costituito da uova, come quelle di *Engraulis encrasicolus*, uova di acciuga, dall'inconfondibile morfologia ellittica e perfettamente compatibili con il periodo di campionamento. È dalla primavera in poi e, per tutta la stagione estiva, che le acciughe attraversano, in questo settore del Mar Mediterraneo, la loro stagione riproduttiva. Il campione proveniente dalla stazione P21 MG10 esibisce la maggiore presenza di uova (4,65xm-3), l'88% delle quali raccolte nella stazione intermedia verticale, da – 50 m alla superficie. Per tutte le altre uova non è possibile confermare la determinazione specifica, fatta eccezione per quelle di *M. muelleri*, sebbene sia comprovato anche dalle raccolte passate, che molte specie ittiche hanno durante il periodo primaverile il loro picco riproduttivo, quello che corrisponde con l'aumento del fotoperiodo, delle fioriture fitoplanctoniche e del riscaldamento della colonna d'acqua superficiale.

Nel complesso il popolamento ittico larvale della stagione P21 è coerente con le precedenti raccolte e non presenta alcuna anomalia riconducibile all'esercizio del rigassificatore.

Tabella 18– Ittioplancton (P2 ⁻ metri. * presente in almeno ur	1). O.l∉ ℩ sub-c	e = oriz campio	zontale, ne, ** pr	50-0 = campionamento ver esente solo nell'osservazior	ticale (ne <i>in to</i>	da 50 a oto.	a 0 meti	i, 100-50 = campionamento	vertic	ale da	100 a 50
	O.le	50-0	100-50		O.le	50-0	100-50		O.le	50-0	100-50
BOTHIDAE				GONOSTOMATIDAE				SPARIDAE			
Arnoglossus laterna	*	*		Cyclothone braueri	*	*	*	Boops boops	*		
CALLIONYMIDAE				LÁBRIDAE				Sparidae ind	*		*
Callionymus maculatus	*	*		Labridae ind	*			ZEIDAE			
CARANGIDAE				MULLIDAE				Zeus faber	*		
Trachurus trachurus		*		Mullus surmuletus	*	*	*	Larve ind			
ENGRAULIDAE				MYCTOPHIDAE				Uova di E. encrasicolus	*		*
Engraulis encrasicolus	*	*		Benthosema glaciale			*	Uova di Maurolicus muelleri	*		
GOBIIDAE				Ceratoscopelus maderensis	*	*	*	Uova ind	*	*	*
Gobiidae ind		*	*	Lampanyctus crocodilus	*						

1.2 BIOTA

1.2.1 Macrozoobenthos

Lo studio ha portato alla raccolta e determinazione di 9065 individui appartenenti a 215 specie (**Tabella 19**) comprendenti anellidi (policheti), molluschi, artropodi (crostacei), sipunculidi, echinodermi, nemertini, emicordati, cnidari, nematodi.

Tabella 19 - Lista delle specie macrobentoniche rinvenute nella Primavera 2021 (P21).										
Anellidi										
Abyssoninoe hibernica (McIntosh, 1903)	Glycera tridactyla Schmarda, 1861	Ophelina abranchiata Støp-Bowitz, 1948								
Adercodon pleijeli Mackie, 1994	Glycera unicornis Lamarck, 1818	Orbinia cuvieri (Audouin & Milne-Edwards, 1833)								
Ampharete acutifrons (Grube,1860)	Glycinde nordmanni (Malmgren, 1866)	Paradiopatra lepta (Chamberlin, 1919)								
Amphicteis gunneri (M. Sars, 1835)	Goniada maculata Oersted, 1844	Paradoneis lyra (Southern, 1914)								
Amphictene auricoma (O. F. Müller, 1776)	Goniadella gracilis (Verrill, 1873)	Paralacydonia paradoxa Fauvel, 1913								
Ancystrosyllis groenlandica Mc Intosh, 1879	<i>Gyptis</i> sp.	Paraprionospio pinnata (Ehlers, 1901)								
Anobothrus gracilis (Malmgren, 1866)	Harmothoe antilopes Mc Intosh, 1876	Paucibranchia bellii (Audouin & Milne Edwards, 1833)								
Aphelochaeta marioni (Saint-Joseph, 1894)	Harmothoe sp.	Phyllodoce sp.								
Apistobranchus tullbergi (Théel, 1879)	Heteromastus filiformis (Claparède, 1864)	Phylo grubei (McIntosh, 1910)								
Aponuphis brementi (Fauvel, 1916)	Heterospio mediterranea Laubier, Picard & Ramos, 1972	Pilargis verrucosa (Saint-Joseph, 1899)								
Aricidea assimilis Tebble, 1959	Hyalinoecia tubicola (O. F. Müller, 1776)	Pista cristata (O. F. Müller, 1776)								

Tabella 19 - Li	sta delle specie macrobentoniche rinvenute nella Prir	mavera 2021 (P21).
Aricidea claudiae Laubier, 1967	Jasmineira elegans Saint-Joseph, 1894	Pista unibranchia Day, 1963
Aricidea mariannae Katzmann & Laubier, 1975	Kirkegaardia heterochaeta (Laubier, 1961)	Poecilochaetus fauchaldi Pilato & Cantone, 1976
Aricidea monicae Laubier 1967	Lagis koreni (Malmoren, 1866)	Polycirrus sp
Auchenonlax crinita Ehlers 1887	Lanice conchilega (Pallas 1766)	Polyaordius sp
Chaetozone carpenteri McIntosh 1911	Lannice en	Pravillalla gracilis (M. Sare 1861)
Chaetozone calpenten Molmoorn, 1911	Labino sp.	Provillelle en
	Leiocapitella dolliusi (Fauvel, 1950)	Praxiliella sp.
Chloeia venusta Quatretages, 1865	Leiochone leiopygos (Grube, 1860)	Prionospio enlersi Fauvel, 1928
Cirrophorus branchiatus Ehlers, 1908	Levinsenia demiri Çinar, Dagli & Acik, 2011	Prionospio fallax Soderstrom, 1920
Dasybranchus caducus (Grube, 1846)	Levinsenia gracilis (Tauber, 1879)	Prionospio sp.
Dialychone sp.	Lumbrineriopsis paradoxa (Saint-Joseph, 1888)	Scalibregma inflatum Rathke, 1843
Diplocirrus glaucus (Malmgren, 1867)	Lumbrineris latreilli Audouin & Milne-Edwards 1834	Schistomeringos rudolphi (Delle Chiaie, 1828)
	Lumbrineris luciliae Martins, Carrera-Parra, Quintino &	
Drilonereis filum (Claparède, 1868)	Padriauaa 2012	Scolelepis sp.
Evolution of the dis (Cloner) do (1962)	Roungues, 2012	Cinemples tente culate (Treadurell, 1011)
Euclymene oerstedii (Claparede, 1863)	Lumbrineris sp.	Sigambra tentaculata (Treadwell, 1941)
Euclymene palermitana (Grube, 1840)	Lysidice unicornis (Grube, 1840)	Spio multioculata (Rioja, 1918)
Eulalia sp.	Maldane glebifex Grube, 1860	Spiochaetopterus costarum (Claparède, 1869)
Eumida sanguinea (Örsted, 1843)	Malmgrenia lunulata (Delle Chiaje, 1841)	Spiophanes kroyeri Grube, 1860
Eumida sp.	Melinna palmata Grube, 1860	Sternaspis scutata (Ranzani, 1817)
Eunice vittata (Delle Chiaie, 1828)	Metasvchis gotoj (Izuka, 1902)	Syllis alternata Moore 1908
Eunanthalis kinhergi McIntosh 1876	Micropenbthys stammeri (Augener 1032)	Syllis amica Quatrefages 1866
Eupanitialis Kinbergi Weittesit, 1070	Mustidee en	Syllis annica Qualielages, 1000
Exogone verugera (Claparede, 1868)	Mystides sp.	Syllis garcial Campoy, 1982
Fauveliopsis sp. McIntosh, 1922	Nephtys hystricis Mc Intosh, 1900	Syllis parapari San Martin & Lopez, 2000
Calathowenia oculata Zacha 1002	Nenhtus incise Malmaron, 1865	Terebellides mediterranea Parapar, Mikac & Fiege,
Galathowerlia oculata Zacris, 1923	mepritys incisa maingren, 1000	2013
Gallardoneris iberica Martins. Carrera-Parra.	N'	Teachallide alexa "NLO 1007
Quintino & Rodrigues 2012	Ninoe armoricana Glémarec, 1968	i erebellides stroemii M. Sars, 1835
Glucora tossolata Grupo 1863	Notomastus profondus (Fisia 1887)	
Artronadi	reconducto protonduo (Libiy, 1007)	
Alter (here here and the (life man 4040)	1000	Den (h
Akanthophoreus gracilis (Krøyer, 1842)	Haploops dellavallel Chevreux, 1900	Paranthura higropunctata (Lucas, 1846)
Alpheus glaber (Olivi, 1792)	Haploops nirae Kaim Malka, 1976	Paranthura sp.
Ampelisca sp.	Harpinia antennaria Meinert, 1890	Paraphoxus oculatus (G.O. Sars, 1879)
Anapagurus petiti Dechancé & Forest, 1962	Harpinia crenulata (Boeck, 1871)	Pardaliscella boeckii (Malm, 1870)
Anapagurus sp.	Harpinia dellavallei Chevreux, 1910	Perioculodes longimanus (Bate & Westwood, 1868)
Araphura brevimanus (Lillieborg, 1864)	Hinnomedon hidentatus Chevreux 1903	Philocheras hispinosus (Hailstone 1835)
Athenee an	Hippomodon magailianaia Ballan Santini 1065	Photic longicoudate (Pate 8 Mastured 1962)
Allanas sp.		Philip marine Clabban 1700
Carangoliopsis spinulosa Ledoyer, 1970	Kupellonura mediterranea Barnard, 1925	Phusica marina Slabber, 1769
Collettea cylindrata (Sars, 1882)	Leucon (Epileucon) longirostris Sars, 1871	Pilumnus spinifer H. Milne-Edwards, 1834
Desmosoma sp.	Leucothoe oboa G. Karaman, 1971	Processa macrophthalma Nouvel & Holthuis, 1957
Diastvlis sp. Sav. 1818	Lilieborgia dellavallei Stebbing, 1906	Pseudotanais sp.
Eriopisa elongata (Bruzelius, 1859)	Liocarcinus maculatus (Risso, 1827)	Scalpellum scalpellum (Linnaeus, 1767)
Eudorella nana Sars 1870	Lysianassia longicornis (Lycas, 1849)	Stenethoe sp
	Madiaaranhium ratundiraatra (Stanhanaan 1015)	Tratenur similia (C.O. Core 1901)
Eurydice spinigera Hansen, 1090	Medicorophium rolundirostre (Stephensen, 1915)	
Gammaropsis maculata (Johnston, 1827)	Melita palmata (Montagu, 1804)	Tuberapseudes echinatus (Sars, 1882)
Gammaropsis sp.	Melphidippella macra (Norman, 1869)	Upogebia deltaura (Leach, 1815)
Gnathia oxyuraea (Lilljeborg, 1855)	Metaphoxus simplex Bate, 1857	Urothoe elegans (Costa, 1853)
Goneplax rhomboides (Linnaeus, 1758)	Natatolana borealis Lilljeborg, 1851	Westwoodilla rectirostris (Della Valle, 1893)
Cnidari	Virgularia mirabilis (Müller, 1776)	· · · /
Alcyonium palmatum Pallas. 1766		
Echinodermi		
Amphipholis squamata (Dollo Chioia, 1020)	Antedon mediterranos (Lamarok, 1916)	Onbionsila annulosa (M. Sare 1950)
Amphium object Earthan (Delle Ollidje, 1020)	Astronauton i nonta sorthus (Della Oblatic 4005)	Ophiothaiu aufinauosa (IVI. Sais, 1039)
Amphilura chiajer Fordes, 1843	Astropecten I. pentacantnus (Delle Uniaje, 1825)	Ophiothrix quinquemaculata Muller-Troschel, 1842
Amphiura filiformis (O. F. Muller, 1776)	Oestergrenia digitata (Montagu, 1815)	Opniura albida Forbes, 1839
Emicordati		
Glandiceps talaboti Marion, 1876		
Molluschi		
Abra longicallus Scacchi 1834)	Falcidens gutturosus (Kowalevsky, 1901)	Pandora pinna (Montagu 1803)
Abra nitida ($\Omega \in Muller (1776)$	Histolla arctica (Linnaeus, 1767)	Panillicardium minimum (Philippi 1836)
Acteon ternetilia (Linnoque 1759)	Hude vitree (Menteru, 1902)	Dhiling actong (Montagu, 1902)
Acteon tomatins (Linnaeus, 1750)	Hydia villea (Molitayu, 1005)	Primine Calena (Montagu, 1003)
Antalis inaequicostata (Dautzenberg, 1891)	Kelliella abyssicola (Forbes, 1844)	Pitar rudis (Poll, 1795)
Bathyarca pectunculoides (Scacchi, 1834)	Kurtiella bidentata (Montagu, 1803)	Prochaetoderma raduliterum (Kowalevsky, 1901)
Cardiomya costellata (Deshayes, 1835)	Melanella polita (Linnaeus, 1758)	Pteria hirundo (Linnaeus, 1758)
Clathrella clathrata (Philippi, 1844)	Mendicula ferruginosa (Forbes, 1844)	Saccella commutata (Philippi, 1844)
Corbula gibba (Olivi, 1792)	Modiolus barbatus (Linnaeus, 1758)	Theora lubrica Gould 1861
Cuspidaria cuspidata (Olivi 1792)	Musculus subnictus (Cantraine 1835)	Thyasira alleni Carozza, 1981
Cuspidaria rostrata (Olivi 1702)	Mutes spinifors (Montagu 1903)	Thyacira hinlicata (Dhilinni 1936)
Culiphua audindroose (Deseast 4777)	Noonvonadenta aasta == (D-1: 4705)	Thussing aronuloss (Martarasta 1074)
Cylichna cylindracea (Pennant, 1///)	Neopychodonie cochiear (Poli, 1795)	Tinyasira granulosa (Monterosato, 1874)
Ennucula aegeensis (Forbes, 1844)	ivucuia suicata (Bronn, 1831)	I Imociea ovata (Pennant, 1///)
Euspira guilleminii (Payraudeau, 1826)	Nudibranchia ind.	Trophonopsis muricata (Montagu, 1803)
Nematodi		
Nemertini		
Sipunculidi		
Golfingia vulgaris vulgaris (Rlainville 1827)	Onchnesoma s steenstrunii Koren & Danilsson 1976	
Nenhasoma dianhanes (Gerould 1913)	Phascolion strombus strombus (Montagu 1804)	
nophasolila ulapilalies (Geloulu, 1913)	i nasoonon suonnus suonnus (ivionayu, 1004)	

Gli anellidi, rappresentati unicamente da policheti, risultano essere il gruppo dominante che con 7217 individui rappresentano il 79,6% dell'abbondanza totale. I molluschi e i crostacei, secondi e terzi in ordine di abbondanza, forniscono, rispettivamente, l'8 e l'8,9% di contributo, mentre i sipunculidi si fermano al 2,9%. Gli echinodermi (35 individui) non raggiungono lo 0,5% in totale (**Figura 12**).

Più equilibrata risulta essere la ripartizione delle specie tra i vari gruppi, sebbene anche da questo punto di vista gli anellidi policheti si confermino il taxon dominante fornendo quasi la metà delle specie rinvenute (104 specie). Crostacei e Molluschi sono rappresentati da 54 e 39 specie, fornendo il 25% e il 18% delle specie totali, rispettivamente.

Gli echinodermi e i sipunculidi forniscono, rispettivamente, il 4% e il 2% di specie al panorama faunistico.

Figura 12 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Primavera 2021. Altro= nemertini, nematodi, cnidari, emicordati.

Ai policheti appartengono le specie rinvenute col maggior numero di individui. Le prime quattro specie dominanti, sono, infatti, policheti e rappresentano più della metà dell'abbondanza totale (56,8%).

Levinsenia demiri (3853 individui) è in assoluto il polichete più abbondante e da solo rappresenta il 42,5% dell'abbondanza totale. *Paradiopatra lepta* seconda in ordine di abbondanza, fornisce poco più del 6% di contributo all'abbondanza totale seguita da *Kirkegaardia heterochaeta* (496 individui) con un contributo del 5,5% (**Figura 13**). *Aphelochaeta marioni*, la quarta specie in ordine di abbondanza, con 250 individui, non raggiunge il 3% di contributo. Questo risultato, che conferma quanto emerso dalla fase di "bianco", dimostra che l'area è caratterizzata da un panorama faunistico dominato da poche specie molto abbondanti affiancate da un elevato numero di specie presenti con pochi individui. Infatti 201 specie (ossia 93,5% del totale) contribuiscono per meno dell'1% (nell'insieme apportano un contributo del 26%) all'abbondanza totale. Inoltre il 23,7% delle specie è presente con un solo individuo.

Le specie dominanti e diffuse, fanno sì che le repliche esibiscano una elevata similarità tra di loro, inferiore al 65% solo nelle stazioni P21 MG9 (58,5%) e P21 MG10 (56,7%) e con un picco in P21 MG13 dove supera l'80%.

Levinsenia demiri dà il contributo maggiore a tale similarità in tutte le stazioni, contributo che nel caso di P21 MG13 supera il 65%.

In questa stazione, infatti, tale polichete esibisce l'abbondanza più elevata pari a 190,25±5,56 (dato medio tra repliche). Una situazione analoga si osserva anche nelle altre stazioni prossime al rigassificatore dove il contributo di tale specie non scende al di sotto del 43,3% rilevato in P21 MG12.

Fra le rimanenti stazioni (escluse quelle più prossime al Terminale) *L. demiri* esibisce contributi elevati sempre superiori al 40% con l'eccezione delle stazioni P21 MG2 (32,24%), P21 MG8 (39,7%), P21 MG10 (29,7%) con un picco in P21 MG11 (63,3%).

I policheti Paradiopatra lepta e Kirkegaardia heterochaeta seppur molto meno abbondanti di L. demiri, sono specie che maggiormente contribuiscono alla similarità tra repliche in 10 stazioni su 12, apportando comunque sempre un contributo modesto che in nessun caso supera il 15%.

Levinsenia demiri e in minor misura Paradiopatra lepta e Kirkegaardia heterochaeta sono anche quelle che maggiormente spiegano la distribuzione dei punti nel piano di ordinamento (Figura 14) ottenuto dal non-Metric Multidimensional Scaling (n-MDS).

Le stazioni non distribuite nel plot in accordo alla loro posizione geografica o alla distanza dall'FSRU rispecchiano prevalentemente, da sinistra destra, un gradiente crescente dei valori di abbondanza di tali specie.

La posizione delle stazioni situate nella parte destra del plot (P21 MG7, P21 MG11, P21 MG12, P21 MG13 e P21 MG6) è dovuta al comportamento di *Levinsenia demiri* che mostra, in queste stazioni abbondanze più alte. Ad essa si affiancano *Lumbrineris* sp. e *Scalibregma inflatum* segnalate unicamente in P21 MG7, P21 MG11, P21 MG13 e P21 MG6, ma in tutti i casi con trascurabili valori di abbondanza.

A questo gruppo di stazioni si contrappone la stazione P21 MG9 caratterizzata da un basso numero di individui e di specie. Inoltre, la posizione dei questa stazione nel piano di ordinamento, è anche dovuta alla presenza di specie esclusive: *Eriopisa elongata, Paranthura* sp., *Melphidippella macra, Nephtys hystricis.*

La posizione intermedia delle altre stazioni è per lo più legata ad un gradiente decrescente di abbondanza di L. demiri.

Figura 13 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (P21).

Anche dal punto di vista strutturale (**Tabella 20**) i parametri indagati risultano variabili da stazione a stazione. Il numero di specie medio (ossia ottenuto dopo il calcolo della media tra repliche) varia tra 22,5 minimo rilevato in P21 MG9 e 59,25, massimo osservato presso il rigassificatore (P21 MG7).

Le stazioni P21 MG2, P21 MG1, P21 MG4, P21 MG9, P21 M14, nessuna delle quali è vicina all'FSRU, hanno un numero di specie più basso rispetto alla media totale (42,46±11,98). In totale il numero di specie rilevato complessivamente nelle quattro stazioni più vicine all'FSRU è pari a 170 di cui 39 esclusive ossia non rilevate nelle altre stazioni. Il numero totale di specie rilevato nelle stazioni più lontane (MG1, MG2, MG9, MG10) è 139 (di cui 24 esclusive), mentre quelle trovate nelle stazioni intermedie (MG4, MG8, MG11, MG14) è pari a 135 (di cui 15 esclusive).

Analogamente al numero di specie, anche l'abbondanza totale media delle stazioni esibisce il minimo (63,25) in P21 MG9 e il massimo (335,5) in P21 MG13, ossia presso l'FSRU. Nel complesso, N, esibisce una elevata variabilità tra stazioni, oscillando intorno al valore medio di 188,85±81,5. Presso il Terminale (MG6, MG7, MG12, MG13) si osservano valori di abbondanza tutti superiori alla media generale. Le restanti stazioni, tranne P21 MG10 e P21 MG14, hanno una abbondanza totale minore rispetto alla media.

La diversità di Shannon-Weaver mostra il suo minimo in P21 MG14 (3,06) ed il massimo in P21 MG10 (4,47) con una media complessiva di 3,79±0,52. Tra le stazioni poste presso il Terminale, due (P21 MG7, P21 MG12) hanno una diversità specifica maggiore rispetto al valore medio e 2 (P21 MG6, P21 MG13) minore.

Fra le stazione più lontane (MG1, MG2, MG9, MG10) solo P21 MG9 esibisce una diversità specifica inferiore alla media generale. Fra quelle intermedie (MG4, MG8, MG11, MG14) solo P21 MG8 esibisce una diversità specifica inferiore alla media generale La ricchezza specifica di Margalef mostra i valori più elevati presso il Terminale dove oscilla tra il massimi di P21 MG7 (10,59) il minimo di P21 MG13 (8,29). Tutti questi valori sono maggiori della media complessiva pari a 7,95±1,83. Fra le restanti stazioni, solo P21 MG8, P21 MG10, P21 MG11 ha una ricchezza specifica maggiore di tale media.

Infine l'equitabilità oscilla tra 0,82 (P21 MG2) e 0,56 (P21 MG13) con un valore medio di 0,72±0,09. Tra le stazioni poste presso il Terminale solo in P21 MG12, questo parametro, ha un valore maggiore di tale media.

Nelle restanti stazioni, tranne P21 MG11 e P21 MG14, l'equitabilità mostra valori maggiori di tale media.

Nessun dato indica che presso il Terminale ci siano condizioni che comportano impoverimento del popolamen

Tabella 20 – Indici strutturali (±DS) relativi al popolamento macrobentonico. Numero di taxa (S), Numero di individui (N), Diversità specifica di Shannon-Weaver (H'), Ricchezza specifica di Margalef (d), Equitabilità di Pielou (J). In rosso le stazioni poste a 100 m dal Terminale.

Stazioni		S			Ν			d		ł	H'(log ₂)		J	
P21 MG1	38,50	±	6,14	156,50	±	21,05	7,42	±	1,08	4,07	±	0,36	0,77	±	0,03
P21 MG2	39,25	±	1,71	144,00	±	7,16	7,70	±	0,33	4,32	±	0,11	0,82	±	0,01
P21 MG4	23,75	±	2,50	86,25	±	6,18	5,11	±	0,54	3,27	±	0,33	0,72	±	0,05
P21 MG6	51,50	±	4,43	304,00	±	54,31	8,85	±	0,79	3,45	±	0,24	0,61	±	0,03
P21 MG7	59,25	±	5,56	244,50	±	16,52	10,59	±	0,95	3,98	±	0,20	0,68	±	0,02
P21 MG8	43,25	±	5,85	143,00	±	19,61	8,51	±	0,94	4,32	±	0,39	0,80	±	0,05
P21 MG9	22,50	±	1,73	63,25	±	2,36	5,19	±	0,43	3,60	±	0,24	0,80	±	0,04
P21 MG10	44,75	±	4,35	152,25	±	11,15	8,71	±	0,85	4,47	±	0,38	0,81	±	0,05
P21 MG11	49,75	±	5,74	229,50	±	18,16	8,98	±	1,16	3,45	±	0,22	0,61	±	0,02
P21 MG12	56,75	±	4,79	217,00	±	17,38	10,36	±	0,77	4,34	±	0,08	0,75	±	0,01
P21 MG13	49,25	±	4,57	335,50	±	18,81	8,29	±	0,72	3,12	±	0,20	0,56	±	0,03
P21 MG14	31,00	±	2,16	190,50	±	15,86	5,72	±	0,48	3,06	±	0,32	0,62	±	0,06

1.2.2 Bioaccumulo

Metalli

Le concentrazioni nei mitili lungo il Terminale sono per lo più inferiori o paragonabili a quelle dei mitili al tempo "0" o al bianco.

Tabella 21 - C	Fabella 21 - Concentrazione dei metalli nei mitili. Dati relativi alla campagna P21 espressi in mg/kg. Sono riportati i dati riferiti sia alla sostanza secca												
(s.s.) sia al pe	(s.s.) sia al peso fresco (p.f.) in accordo alla prescrizione 13 delle Determine 2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-												
09-2017.	J9-2017.												
	Tama		Stazio	Stazione A		Stazione B		Stazione C		one D	Stazio	one E	
	Tempo	o zero	Pos. 1		Pos. 2		Pos. 3		Pos	6. 4	(Bianco Gorgona)		
	S.S.	p.f.	S.S.	p.f.	S.S.	p.f.	S.S.	p.f.	S.S.	p.f.	S.S.	p.f.	
Arsenico	10,53	2,11	12,09	2,42	12,78	2,56	12,97	2,59	13,01	2,60	12,91	2,58	
Bario	1,38	0,28	< 1	-	< 1	-	2,04	0,41	1,37	0,27	1,20	0,24	
Cadmio	0,32	0,06	0,38	0,08	0,39	0,08	0,43	0,09	0,38	0,08	0,40	0,08	
Cromo totale	1,23	0,25	< 1	-	< 1	-	< 1	-	< 1	-	< 1	-	
Rame	6,01	1,20	4,20	0,84	4,26	0,85	4,66	0,93	4,14	0,83	4,44	0,89	
Ferro	205,43	41,09	84,09	16,82	83,07	16,61	110,32	22,06	76,34	15,27	102,41	20,48	
Manganese	6,89	1,38	< 5	-	< 5	-	< 5	-	< 5	-	< 5		
Mercurio	0,10	0,02	0,094	0,02	0,10	0,02	0,091	0,02	0,10	0,02	0,11	0,02	
Nichel	1,27	0,25	< 1	-	< 1	-	< 1	-	< 1	-	1,09	0,22	
Piombo	3,40	0,68	3,22	0,64	2,82	0,56	4,03	0,81	3,69	0,74	3,29	0,66	
Vanadio	1,67	0,33	< 1	-	< 1	-	< 1	-	< 1	-	< 1	-	
Zinco	222,02	44,40	225,47	45,09	265,49	53,10	253,26	50,65	232,70	46,54	263,80	52,76	
Idrocarburi totali

Nella **Tabella 22** sono riportati i risultati ottenuti dalla ricerca degli idrocarburi (C<10 e C10-C40). Si rilevano Idrocarburi C<10 unicamente nella stazione A. Le concentrazioni degli idrocarburi C10-C40 risulta più elevata nelle stazioni A e B rispetto a C e D e sono tutte maggiori rispetto al controllo in Gorgona. Solo le stazioni A e B esibiscono una concentrazione maggiore rispetto al Tempo "0".

Tabella 22 - Concentrazione degli idrocarburi totali presenti nei campioni di mitili. I dati, relativi alla campagna P21, sono espressi in mg/kg.												
	Tempo zero	Stazione A Pos. 1	Stazione B Pos. 2	Stazione C Pos. 3	Stazione D Pos. 4	Stazione E (Bianco Gorgona)						
ldrocarburi C<10 (µg/kg)	< 500	633,70	< 500	< 500	< 500	< 500						
Idrocarburi C10-C40 (mg/kg)	18,03	33,63	21,93	11,52	10,34	6,36						

IPA e composti organo stannici

Quesi composti sono pressochè assenti. Quelli rilevati presentano concentrazioni trascurabili prossime al limite di quantificazione.

Tabella 23 - Concentrazione degli IPA e dei composti organostannici presenti nei campioni di mitili. I dati, relativi alla campagna P21, sono espressi in mg/kg.

	Tempo zero	Stazione A Pos. 1	Stazione B Pos. 2	Stazione C Pos. 3	Stazione D Pos. 4	Stazione E (Bianco Gorgona)
Acenaftene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Acenaftilene	0,001	0,001	0,002	0,002	0,002	0,004
Antracene	0,001	< 0,001	< 0,001	< 0,001	0,001	0,001
Benzo (a) antracene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
Benzo (a) pirene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Benzo (b) fluorantene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
Benzo (g,h,i) perilene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Benzo (k) fluorantene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
Crisene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
Dibenzo (a,h) antracene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
Fenantrene	0,002	0,001	0,001	0,001	0,001	0,002
Fluorantene	0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
Fluorene	0,001	0,001	< 0,001	< 0,001	0,001	< 0,001
Indeno (1,2,3 - c,d) pirene	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
Naftalene	0,003	0,003	0,004	0,004	0,003	0,005
Pirene	0,001	0,001	0,001	< 0,001	< 0,001	0,001
Dibutilstagno	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Monobutilstagno	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Tributilstagno	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001

Cloroderivati

Questi composti sono generalmente assenti o trascurabili perché prossimi al limite di quantificazionei (Tabella 24).

Tabella 24 - Concentrazione degli cloroderivati presenti nei campioni di mitili. I dati relativi alla campagna P21 sono espressi in µg/kg. Per il calcolo delle medie, nel caso di valori al di sotto del limite di quantificazione, è stato usata una concentrazione pari alla metà di quest'ultimo.												
	Tempo zero	Stazione A Pos. 1	Stazione B Pos. 2	Stazione C Pos. 3	Stazione D Pos. 4	Stazione E (Bianco Gorgona)						
Acidi Aloacetici												
Dalapon	< 2	< 2	< 2	< 2	< 2	< 2						
Acido Dibromoacetico	< 1	< 1	< 1	< 1	< 1	< 1						
Acido Tribromoacetico	< 10	< 10	< 10	< 10	< 10	< 10						
Acido Monobromoacetico	< 2	< 2	< 2	< 2	< 2	< 2						
Acido Bromodicloroacetico	< 5	< 5	< 5	< 5	< 5	< 5						
Acido Bromocloroacetico	< 2	< 2	< 2	< 2	< 2	< 2						
Acido Dicloroacetico	< 3	< 3	< 3	< 3	< 3	< 3						
Acido Tricloroacetico	< 2	< 2	< 2	< 2	< 2	< 2						
Acido Monocloroacetico	< 3	< 3	< 3	< 3	< 3	< 3						
Acido Clorodibromoacetico	< 5	< 5	< 5	< 5	< 5	< 5						
Fenoli												
2,4,6-tricloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5						
2,4-dicloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5						
4-cloro-3-metl fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5						

Tabella 24 - Concentrazione degli cloroderivati presenti nei campioni di mitili. I dati relativi alla campagna P21 sono espressi in µg/kg. Per il calcolo												
delle medie, nel caso di valori al d	li sotto del limite di qua	intificazione, è sta	to usata una conc	entrazione pari all	a metà di quest'u	ltimo.						
	Tompo zoro	Stazione A	Stazione D	Stazione E								
	rempo zero	Pos. 1	Pos. 2	Pos. 3	Pos. 4	(Bianco Gorgona)						
pentacloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5						
V.O.C.												
1,1,1-Tricloroetano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2						
1,1,2-Tricloroetano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2						
1,2,3-Tricloropropano	< 0,6	< 0,6	< 0,6	< 0,6	< 0,6	< 0,6						
1,2-Dibromoetano	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25						
Bromodiclorometano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2						
Bromoformio	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5						
Cloroformio	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2						
Dibromoclorometano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2						
Dibromoacetonitrile	< 0,8	< 0,8	< 0,8	< 0,8	< 0,8	< 0,8						
Tetracloroetilene	< 0,15	< 0,15	< 0,15	< 0,15	< 0,15	< 0,15						
Tetracloruro di carbonio	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2						
Tricloroacetonitrile	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5						
Tricloroetilene	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25						

Analisi microbiologiche

Le indagini sui mitili non rilevano la presenza di contaminazione fecale (Tabella 25).

Tabella 25 - Risultati delle analisi microbiologiche effettuate sui campioni di mitili. I dati, relativi alla campagna P21, sono espressi in ufc/g.												
	Tempo	Stazione A	Stazione B	Stazione C	Stazione D	Stazione E						
	zero	Pos. 1	Pos. 2	Pos. 3	Pos. 4	(Bianco Gorgona)						
Coliformi fecali	< 10	< 10	< 10	< 10	< 10	< 10						
Streptococchi fecali (enterococchi)	< 10	< 10	< 10	< 10	< 10	< 10						
Coliformi totali	< 10	< 10	< 10	< 10	< 10	< 10						

1.2.1 Biomarkers

Neutral Red Retention Time (NRRT)

L'analisi del Neutral Red Retention Time non ha evidenziato differenze significative tra i mitili situati nella stazione di controllo (Stazione E – Gorgona) e quelli posizionati presso le stazioni di monitoraggio del Terminale FSRU e del Tempo Zero. Il tempo di ritenzione del colorante, catore del livello di stabilità lisosomiale, è risultato in tutte le stazioni maggiore di 120 minuti, mostrando un buono stato di salute degli ematociti (Figura 15).

Comet Assay

I risultati relativi alla valutazione del grado di integrità della molecola di DNA nelle cellule branchiali di mitilo non mostrano alcun decremento significativo rispetto ai valori del controllo (Stazione E-Gorgona), in termini di danno genetico, in nessuna delle quattro stazioni di monitoraggio, suggerendo quindi una assenza di impatto da parte delle attività del Terminale FSRU (Figura 16).

Figura 16 - Valutazione del grado di integrità del DNA mediante Comet assay. Valori elevati della percentuale di DNA migrato corrispondono ad una maggiore entità del danno.

Analisi istologia del tessuto branchiale.

L'analisi istologica dell'epitelio branchiale dei mitili trapiantati presso il Terminale FSRU ha mostrato nelle quattro stazioni indagate (**Figura 17**, **Tabella 26**) una morfologia comparabile a quelli trapiantati nella stazione di controllo: non sono infatti state rilevate differenze statisticamente significative tra le stazioni monitorate presso il terminale e quella di controllo (Stazione E – Gorgona). Le condizioni dell'epitelio branchiale hanno rilevato inoltre condizioni paragonabili a quelle dei mitili del Tempo zero.

Tabella 26 - Analisi istologica. Lo score indica lo stato dell'epitelio branchiale secondo la seguentescala: 1, normale morfologia epitelio branchiale; 2, lieve riduzione dello spessore dell'epiteliobranchiale e dello sviluppo delle ciglia; 3, marcata riduzione dello spessore dell'epitelio e delle ciglia;4, erosione dell'epitelio branchiale e dello sviluppo ciliare; 5, destrutturazione dei filamenti con estesaerosione dell'epitelio branchiale ed assenza delle ciglia.											
Stazione	I	II		IV	V						
Mitili tempo zero	1	1	1	1	1						
Stazione A (Pos. 1)	1	1	1	1	2						
Stazione B (Pos. 2)	2	2	1	1	3						
Stazione C (Pos. 3	1	1	1	1	2						
Stazione D (Pos. 4)	1	1	1	1	1						
Stazione E (Bianco Gorgona)	1	2	1	1	1						

La campagna primaverile 2021 (P21), relativamente ai risultati complessivi dei biomarker selezionati, non ha mostrato alterazioni a carico dei mitili trapiantati lungo il Terminale FSRU rispetto sia a quelli di controllo (Stazione E - Gorgona) che del Tempo zero per nessuno dei biomarker indagati (stabilità lisosomiale, integrità del DNA e valutazione istologica). Pertanto è possibile dedurre una sostanziale assenza di impatto da parte del Terminale FSRU nel periodo di riferimento.

Figura 17 - Analisi istologica delle branchie di mitilo. Il parametro rappresentato nel grafico è il punteggio medio (score) per ciascuna delle stazioni indagate. La scala va da 1 a 5; il punteggio 1 indica una condizione di integrità mentre il punteggio 5 indica una forte compromissione della struttura dei filamenti branchiali.

1.2.2 Cetacei e tartarughe marine

Per questa indagine sono state percorse 237 nm per un totale di 54,3h di navigazione.

Figura 18 - Sono riportate le rotte percorse per il monitoraggio visivo e biocustico condotto a partire da giugno 2021 (P21).

E' stato effettuato n°1 avvistamento in data 10 giugno: in posizione Latitudine 43 39 46 N e Longitudine 010 03 411 E, in totale 3 delfini appartenenti alla specie tursiope (*Tursiops truncatus*) a 2,8nm in posizione E dal Terminale (**Foto 1** e **Foto 2**). Nessun avvistamento di tartarughe.

Foto 1 – Tursiope.

Foto 2 – Tursiopi.

1.3 INDGINI GENERALI

1.3.1 Bioacustica

I transetti di bioacustica sono stati effettuati in data 11 giugno. Seguendo tali transetti, su rotte prefissate, è stato effettuato l'ascolto in continuum dell'ambiente marino attraverso specifico idrofono dedicato. Tale strumento è stato trainato ad una distanza di 30m secondo una delle due modalità da effettuare: a motore al minimo di velocità (2-3knt) in quanto in assenza di vento (la seconda modalità prevede la traina dell'idrofono ma a vela, sempre ad una velocità di 2-3knt ed in presenza di vento con direzione idonea ad effettuare i transetti). Questo al fine di rendere l'ascolto il più possibile non inguinato dai rumori dell'imbarcazione e ascoltare prevalentemente il rumore ambientale.

La fase di ascolto è stata effettuata da biologi marini esperti in bioacustica che si sono alternati alla postazione del computer e all'osservazione con binocolo. L'operatore al computer è rimasto in ascolto tramite cuffie per tutto il tempo delle misure ed ha osservato contemporaneamente il video dove, tramite un software dedicato, viene visualizzato il risultato dell'ascolto/registrazione dei suoni ambientali. L'ascolto è stato effettuato ad una sampling rate di 48.000 Hz e visualizzazione di 24.000 Hz che rappresenta l'intervallo ottimale di vocalizzazione e comunicazione dei tursiopi (i cetacei residenti in questa area Santuario Pelagos). Il protocollo di ascolto in presenza prevede che in caso di percezione diretta (il suono biologico, fischio o clik, viene distintamente udito) e/o contemporanea osservazione visiva sullo spettrogramma di "segni marcati" (un esempio è riportato in anche in assenza di suono udito), l'operatore deve far partire la registrazione per tutto il tempo della durata del suono biologico.

I transetti per la campagne dell'11 giugno, della lunghezza totale di circa 16 km, sono stati percorsi in circa 210 min che rappresentano il tempo totale di ascolto.

Durante questo intervallo di tempo nessun suono biologico è stato rilevato.

Di seguito riportiamo un frame di spettro che rappresenta quanto osservato/ascoltato durante i transetti dove si può osservare l'assenza di segni marcati (Figura 19).

Figura 19 - Frame di registrazione dell'11 giugno 2021.

2 RISULTATI SURVEY ESTATE 2021

2.1 COLONNA D'ACQUA

2.1.1 Profili idrologici

Nel survey condotto in estate 2021, i profili di **temperatura** (Figura 20) mostrano un netto termoclino posto a circa 18m di profondità in accordo con le caratteristiche tipiche del periodo estivo. Questo strato d'acqua superficiale rimescolato mostra valori intorno a 24.8°C che dimuiscono rapidamente fino ad arrivare a circa 15°C intorno a 60m di profondità. Da qui fino a 90 m i valori esibiscono una ulteriore graduale diminuzione fino ad arrivare a circa 14.8 °C, per poi mantenersi pressochè costanti fino al fondo.

La **salinità** presenta valori omogenei intorno a 38.3 ppt dalla superficie fino a 20m per poi diminuire rapidamente fino raggiungere 37.7 ppt a 30m e da qui aumentare gradualmente fino ad arrivare a valori intorno a 38.2 sul fondo. Il **pH** presenta valori omogenei su tutta la colonna d'acqua con valori intorno a 8.

In tutte le stazioni campionate, la **torbidità** esibisce valori bassi e omogenei nell'area di indagine intorno a 0.8 NTU con un lieve aumento a 1.5-2 NTU negli ultimi 5m dal fondo. I profili di **ossigeno** disciolto (**Figura 21**) presentano valori costanti compresi fra 98% e 108% dalla superficie fino a 30m di profondità per poi diminuire e raggiungere valori intorno compresi fra 73-75 % di saturazione sul fondo. I profili di **clorofilla** presentano bassi valori su tutta la colonna d'acqua intorno a 0.2 µg/l con un leggero aumento fino a 0,5 µg/l a circa 75m di profondità. I profili di **ORP** sono omogenei su tutta la colonna d'acqua con valori compresi fra 198 mV e 225 mV.

Figura 20 – Profili di temperatura (°C), salinità (ppt), pH e torbidità (NTU); survey estate 2021.

Figura 21 – Profili di ossigeno disciolto (% saturazione), clorofilla (µg/l), e potenziale di ossidoriduzione (mV); survey estate 2021.

Misure di irradianza e irradianza spettrale

In **Figura 22** sono mostrati i profili di irradianza PAR (Photosynthetic Available Radiation) sottomarina normalizzati rispetto a quella contemporanea superficiale alle stazioni E21 MG7 e E21 MG10. La profondità della zona eufotica (Z_{eu}) nei due punti è rispettivamente 73,5 m e 71,5 m e considerando tulle le stazioni Z_{eu} ha mostrato una variazione compresa tra 70 m e 73,5 m.

cib

Figura 22 - Profilo del rapporto fra l'irradianza quantica PAR (Photosynthetic Available Radiation) disponibile alle varie profondità con quella contemporanea in superficie, PAR (0 m), nelle stazioni E21 MG7 e E21 MG10.

Figura 23 - Irradianza spettrale discendente superficiale e subacquea alle profondità indicate. E' inoltre riportata la irradianza spettrale ascendente a 5 m (5m up). Ogni spettro è stato normalizzato per il proprio massimo ($E_{max}(\lambda)$) riportato nella legenda insieme con la lunghezza d'onda dove si colloca (λ_{max}).

In **Figura 23** sono riportati gli spettri della irradianza discendente tra 400 e 700 nm in superficie e alle varie profondità insieme con quelli della irradianza ascendente a 5 m, tutti normalizzati per i loro massimi, in E21 MG7 e E21 MG10. I massimi (λ_{max}) degli spettri dell'irradianza discendente si collocano nel range di lunghezze d'onda comprese fra 462 e 482 nm. La radiazione che raggiunge la maggior profondità, ovvero quella più penetrante (λ_{max} a 70 m), si trova a 482 nm in entrambe le stazioni. Non si osservano anomalie imputabili alla presenza del terminale.

2.1.1 Caratteristiche fisiche, chimiche e microbiologiche

Nutrienti inorganici disciolti

In **Tabella 27** sono riportate le concentrazioni di silicati (SiO₂), ortofosfati (PO₄), nitriti (NO₂) e nitrati (NO₃), nelle 8 stazioni campionate. Le concentrazioni dei nutrienti, risultano essere piuttosto basse e in generale comparabili con quelle rilevate nella stessa stagione degli anni precedenti. I nitriti, in particolare, sono molto bassi e in tutte le stazioni si riscontrano concentrazioni al di sotto del limite di rilevabilità del metodo (**Tabella 27**).

Per i nitriti le concentrazioni sono in media 0,03 µM, variando tra minimi al limite di rilevabilità e un massimo di 0,097 µM in E21 MG9 0,5 m (**Tabella 27**). I profili batimetrici (**Figura 24**) presentano una tendenza all'aumento dei valori verso le maggiori profondità, con un massimo superficiale in E21 MG09.

I nitrati hanno concentrazione media di 0,30 μM variando tra 0,144 μM in E21 MG7 70 m e circa 0,6 μM in E21 MG7 50 m (**Tabella 27**). Lungo la colonna d'acqua presentano una distribuzione sostanzialmente omogenea (**Figura 24**) con valori maggiori prevalentemente superficiali. Si discosta da questa condizione la stazione E21 MG7 che presenta un massimo a 50 m e minimo a 70 m.

La concentrazione dei fosfati è in media 0,06 µM con minimi di 0,006 µM in E21 MG12 12,5 m e massimi di circa 0,01 µM a varie profondità (**Tabella 27**), con scarse variazioni lungo la colonna d'acqua (**Figura 24**).

I silicati hanno una concentrazione media di 1,29 μM e variano in un range compreso tra 0,63 μM in E21 MG7 0,5 m e 4,3 μM in E21 MG9 70 m (**Tabella 27**). I loro profili batimetrici (**Figura 24**) si presentano raggruppati con valori piuttosto simili a parità di profondità; unica eccezione è rappresentata dalla stazione E21 MG9 che presenta i massimi rilevati lungo tutta la colonna d'acqua.

In generale le concentrazioni non si discostano dalle attese stagionali e non si rilevano situazioni di anomalia.

	Tabella 27 - Concentrazioni (μM) dei nutrienti inorganici disciolti.												
Stazione	Prof. m	SiO ₂	PO ₄	NO ₂	NO ₃	Stazione	Prof. m	SiO ₂	PO ₄	NO ₂	NO ₃		
	0,5	0,716	0,098	<0,03	0,163		0,5	3,831	0,086	0,097	0,467		
E21 MG3	12,5	0,749	0,075	<0,03	0,163	E21 MG0	12,5	3,624	0,057	0,033	0,380		
EZT WIG5	50	0,715	0,098	<0,03	0,322	EZT WIG5	50	4,092	0,076	0,048	0,394		
	70	1,532	0,090	0,049	0,263		70	4,304	0,092	0,065	0,466		
E21 MG5	0,5	0,661	0,075	<0,03	0,348		0,5	1,055	0,056	<0,03	0,297		
	12,5	0,775	0,086	<0,03	0,207	E21 MG10	12,5	0,902	0,056	<0,03	0,267		
	50	0,716	0,078	<0,03	0,224		50	1,649	0,042	<0,03	0,291		
	70	1,282	0,094	<0,03	0,189		70	0,814	0,035	<0,03	0,222		
	0,5	0,722	0,081	0,047	0,368		0,5	0,838	<0,03	<0,03	0,331		
E21 MG6	12,5	0,893	0,099	<0,03	0,275	E21 MG12	12,5	0,768	<0,03	<0,03	0,261		
	50	0,840	0,096	0,065	0,344		50	0,752	<0,03	<0,03	0,256		
	70	1,349	0,079	0,046	0,245		70	1,517	<0,03	<0,03	0,342		
	0,5	0,629	0,070	<0,03	0,502		0,5	0,853	<0,03	<0,03	0,408		
E21 MG7	12,5	0,639	0,066	<0,03	0,216	E21 MG13	12,5	0,875	0,039	<0,03	0,455		
	50	1,262	0,072	0,065	0,599		50	0,902	0,056	<0,03	0,276		
	70	0,634	0,075	<0,03	0,144		70	1,468	0,037	<0,03	0,289		

Figura 24 - Profili delle concentrazioni (µM) dei nutrienti inorganici disciolti: NO2 (nitriti), NO3 (nitrati), PO4 (fosfati), SiO2 (silicati).

Solidi sospesi (Total Suspended Matter)

cib

Le concentrazioni di TSM in tutte le stazioni sono riportate in **Tabella 28**. Il valore medio generale è 0,74 + 0,20 mg/l, il minimo è 0,33 mg/l in E21 MG9 in superficie ed il massimo è 1,15 mg/l sempre in E21 MG9 a 70 m.

Tabella 28 - Concentrazioni (mg/l) dei solidi sospesi (TSM).											
Prof. m	Stazione	TSM (mg/l)	Stazione	TSM (mg/l)							
0,5		0,7428		0,3300							
12,5	E21 MG2	0,7943	E21 MG0	0,9803							
50	EZTIVIOS	0,5172		0,5580							
70		0,8520		1,1748							
0,5		0,8060		0,8757							
12,5	E21 MG5	0,7380	E21 MG10	0,5737							
50	EZTWOJ	0,9720	EZTWIGTU	0,5008							
70		0,7715		0,8193							
0,5		0,6058		0,8790							
12,5	E21 MG6	0,6850	E21 MG12	0,7027							
50		0,4765		0,5332							
70		0,6435		1,0700							
0,5		0,6725		0,7668							
12,5	E21 MG7	0,7380	E21 MG13	0,5323							
50		0,8305		0,4883							
70		1,1458		0,7877							

Figura 25 - Profili delle concentrazioni (mg/l) dei solidi sospesi (TSM) e delle concentrazioni di particellato organico (POM).

I profili batimetrici di TSM (**Figura 25**) mostrano concentrazioni minime per la maggior parte delle stazioni a 50 m (differiscono E21 MG5 con concentrazioni minime a 12,5 m, E21 MG7 ed E21 MG9 con minimo in superficie) e massimi prevalentemente a 70 m tranne E21 MG5, con massimo a 50 m, E21 MG6 con massimo a 12,5 m ed E21 MG10 con massimo in superficie. La concentrazione della frazione organica del TSM (POM) è in media 0,342 ± 0,074mg/l con minimo di 0,215 mg/l in E21 MG9 in superficie e massimo di 0,50 mg/l in E21 MG12 sempre in superficie. I profili batimetrici del POM (**Figura 25**) nelle varie stazioni presentano concentrazioni minime prevalentemente a 50 m ad eccezione di: E21 MG7 ed E21 MG9 con minimo in superficie, E21 MG5 con minimo a 12,5 m ed E21 MG3 con minimo a 70 m. Le concentrazioni massime si trovano principalmente tra la superficie e 12,5 m tranne E21 MG6, E21 MG7 ed E21 MG9 che presentano massimi

a 70 m. La frazione organica particellata (POM) rappresenta in media il 48% del TSM con minimo di 32,5% in E21 MG3 a 70 m e massimo di circa 65% in E21 MG9 in superficie. Le variazioni si mantengono in uno stretto intervallo e non si riscontrano valori anomali.

Sostanza Organica Disciolta Cromoforica (CDOM)

Gli assorbimenti della CDOM a 325 nm a_{CDOM}(325) sono in media 0,279<u>+</u> 0,09 m⁻¹ e variano da un minimo di 0,148 m⁻¹ in E21 MG9 in superficie ad un massimo di 0,413 m⁻¹ in E21 MG3 a 70 m (**Tabella 29**).

I profili batimetrici (Figura 26) presentano andamento molto simile tra le diverse stazioni con concentrazioni minime tra la superficie e 12,5 m e concentrazioni massime tra 50 e 70 m.

Tabella 29 - Assorbimento (m ⁻¹) della CDOM alla lunghezza d'onda di 325 nm										
Prof. m	Stazione	а _{сром} (325) m ⁻¹	Stazione	а _{соом} (325) m ⁻¹						
0,5		0,1567		0,1483						
12,5	E24 MC2	0,2133	E24 MC0	0,1865						
50	EZIWGS	0,3344	EZT WIG9	0,3666						
70		0,4129		0,3758						
0,5		0,1693		0,1928						
12,5	E21 MC5	0,1692	E21 MC10	0,1927						
50	E21 MG5	0,3606		0,3652						
70		0,3772		0,3266						
0,5		0,1803		0,2069						
12,5	E21 MC6	0,1998	E21 MC12	0,1779						
50		0,3827		0,3616						
70		0,3653		0,3872						
0,5		0,2266		0,2089						
12,5	E21 MG7	0,2128	E21 MG13	0,2349						
50		0,3928		0,3558						
70		0,3233		0,3674						

Figura 26 - Profili degli assorbimenti (m⁻¹) della CDOM a 325 nm (a_{CDOM}(325)).

Clorofilla a e diversità pigmentaria

La concentrazione di clorofilla *a* è in media 0,156±0,13 mg/m³ e mostra un range di variazione compreso tra 0,064 mg/m³ in E21 MG7 in superficie e 0,602 mg/m³ in E21 MG10 a 70 m (**Tabella 30**). I profili batimetrici delle concentrazioni di Chl *a* lungo la colonna d'acqua (**Figura 27**) mostrano lo stesso andamento a tutte le stazioni con valori prevalentemente minori di 0,1 mg/m³ nello strato superficiale e maggiori a 50 e 70 m, come atteso nella stagione estiva.

Tabella 30 - Concentrazioni (mg/m ³) della Clorofilla <i>a</i> totale (Chl <i>a</i> tot = Clorofilla <i>a</i> + Divinil Clorofilla <i>a</i> + Alloclorofilla <i>a</i> , se presenti).											
Prof. m	Stazione	Chl a mg/m ³	Stazione	Chl a mg/m ³							
0,5		0,0676		0,0743							
12,5	E24 MG2	0,0713	E21 MG9	0,0655							
50	E21 MG3	0,1228		0,1215							
70		0,4137		0,2231							
0,5		0,0714		0,0802							
12,5	E21 MG5	0,1148	E21 MC10	0,1027							
50	E21 MG5	0,1406	EZTWIGTU	0,1613							
70		0,3218		0,6022							
0,5		0,0838		0,0771							
12,5	E21 MG6	0,0935	E21 MC12	0,0690							
50		0,1062		0,1085							
70		0,2636		0,3581							
0,5		0,0640		0,0795							
12,5	E21 MG7	0,0861	E21 MG13	0,0763							
50		0,1184		0,0893							
70		0,3212		0,2561							

Figura 27 - Profili delle concentrazioni (mg/m³) di clorofilla a tot.

Le concentrazioni dei nove pigmenti diagnostici principali sono riportate in **Tabella 31**. Il pigmento a maggiore concentrazione media è Chl $b (0,047\pm0,04 \text{ mg/m}^3)$, seguono Hex-Fuco $(0,037\pm0,02)$, DVA $(0,034\pm0,047)$, Zea $(0,029\pm0,021)$, But-Fuco $(0,018\pm0,023)$, Perid $(0,013\pm0,001)$, Fuco $(0,007\pm0,007)$, Prasino $(0,003\pm0,004)$ e Allo $(0,0005\pm0,0009)$.

La composizione pigmentaria presenta una differenziazione generalmente comune alle varie stazioni e dai rapporti tra i singoli pigmenti e la loro somma totale si ottiene una stima della composizione tassonomica del popolamento fitoplanctonico (Figura 28).

Tabella 31 - Concentrazioni (mg/m³) dei principali pigmenti diagnostici fitoplanctonici (acronimi in Tabella 7).													
Stazione	Prof.m	Fuco	Perid	Hex-Fuco	But-Fuco	Prasino	Allo	Zea	DVA	Chl b			
	0,5	0,0029	0,0120	0,0164	0,0050	0,0001	0,0000	0,0158	0,0000	0,0178			
Stazione E21 MG3 E21 MG5 E21 MG6 E21 MG7 E21 MG7 E21 MG9 E21 MG10 E21 MG12	12,5	0,0042	0,0129	0,0232	0,0050	0,0026	0,0000	0,0167	0,0000	0,0140			
E21 MG3	50	0,0038	0,0113	0,0333	0,0111	0,0030	0,0005	0,0267	0,0167	0,0357			
	70	0,0183	0,0145	0,0789	0,0544	0,0136	0,0008	0,0940	0,1238	0,1389			
	0,5	0,0051	0,0125	0,0257	0,0090	0,0002	0,0000	0,0194	0,0000	0,0239			
E21 MG5	12,5	0,0047	0,0112	0,0340	0,0097	0,0008	0,0000	0,0200	0,0064	0,0248			
	50	0,0051	0,0118	0,0355	0,0156	0,0024	0,0005	0,0278	0,0242	0,0380			
	70	0,0116	0,0132	0,0610	0,0341	0,0069	0,0019	0,0087	0,1101	0,0839			
	0,5	0,0080	0,0116	0,0220	0,0063	0,0014	0,0000	0,0168	0,0000	0,0206			
F24 MOC	12,5	0,0074	0,0116	0,0221	0,0059	0,0010	0,0002	0,0199	0,0032	0,0198			
E21 MG6	50	0,0035	0,0116	0,0297	0,0134	0,0023	0,0005	0,0265	0,0174	0,0360			
	70	0,0109	0,0136	0,0641	0,0347	0,0053	0,0013	0,0626	0,0947	0,0824			
	0,5	0,0044	0,0121	0,0158	0,0046	0,0032	0,0001	0,0163	0,0000	0,0256			
E24 MO7	12,5	0,0031	0,0168	0,0198	0,0062	0,0004	0,0000	0,0181	0,0067	0,0280			
	50	0,0032	0,0140	0,0271	0,0104	0,0014	0,0003	0,0321	0,0235	0,0327			
	70	0,0120	0,0153	0,0652	0,0334	0,0038	0,0010	0,0649	0,1113	0,0917			
	0,5	0,0039	0,0115	0,0173	0,0048	0,0002	0,0002	0,0168	0,0020	0,0293			
E21 MG0	12,5	0,0034	0,0117	0,0204	0,0049	0,0000	0,0000	0,0168	0,0000	0,0251			
EZT WG9	50	0,0048	0,0115	0,0320	0,0112	0,0027	0,0004	0,0333	0,0191	0,0344			
	70	0,0094	0,0131	0,0647	0,0311	0,0021	0,0000	0,0520	0,0764	0,0649			
	0,5	0,0032	0,0121	0,0227	0,0073	0,0015	0,0002	0,0131	0,0000	0,0244			
E21 MG10	12,5	0,0044	0,0128	0,0264	0,0099	0,0010	0,0003	0,0195	0,0058	0,0246			
	50	0,0044	0,0128	0,0400	0,0188	0,0027	0,0000	0,0290	0,0386	0,0348			
	70	0,0363	0,0171	0,1259	0,1179	0,0153	0,0049	0,0106	0,1628	0,1915			
	0,5	0,0031	0,0113	0,0151	0,0052	0,0002	0,0001	0,0118	0,0044	0,0235			
F21 MG12	12,5	0,0039	0,0121	0,0234	0,0061	0,0002	0,0000	0,0183	0,0012	0,0261			
	50	0,0031	0,0113	0,0279	0,0102	0,0027	0,0011	0,0219	0,0145	0,0342			
	70	0,0187	0,0146	0,0662	0,0524	0,0096	0,0011	0,0809	0,1216	0,1222			
	0,5	0,0054	0,0129	0,0178	0,0054	0,0009	0,0006	0,0202	0,0035	0,0284			
F21 MG13	12,5	0,0053	0,0123	0,0206	0,0052	0,0016	0,0000	0,0135	0,0000	0,0233			
	50	0,0014	0,0118	0,0189	0,0073	0,0011	0,0001	0,0170	0,0116	0,0174			
	70	0,0096	0,0136	0,0590	0,0320	0,0042	0,0009	0,0586	0,0856	0,0775			

Anche percentualmente i pigmenti più abbondanti sono Chl b, pigmento diagnostico delle Chlorophyta, che costituisce in media circa il 25,3% della diversità pigmentaria, Hex-Fuco, pigmento diagnostico dei coccolitofori, con il 21,7%, Zea (Cyanobatteri *Synechococcus*-like) con il 17,7%, DVA (Cyanobatteri *Prochlorococcus*-like), con 11,2%, Perid in media con 10,1%, But-Fuco con 8,3%, Fuco in media il 4,1%, e Prasino in media 1,4 % mentre Allo presenta un contributo al di sotto dell'1%. La somma dei due pigmenti Zea (Cyanobatteri *Synechococcus*-like) e DVA (Cyanobatteri *Prochlorococcus*-like) ci da una stima della componente picoplanctonica che in E21 rappresenta mediamente il 28,9% del popolamento con DVA abbondante tra 50 e 70 m dove raggiunge il massimo (33,2% in E21 MG5 a 70 m) e scarsa o non rilevata in superficie, mentre Zea, seppur ben rappresentata lungo tutta la colonna d'acqua, risulta più abbondante tra la superficie e 12,5 m. Anche in questo caso si rileva una situazione attesa per la stagione, con scarse concentrazioni di Fuco (diatomee) e tipico contributo della frazione picoplanctonica, particolarmente alle profondità maggiori (**Figura 28**).

cib

Figura 28 – Concentrazione relativa dei singoli pigmenti diagnostici in rapporto al totale delle concentrazioni dei nove Pigmenti Diagnostici (PD= Fuco+Perid+Hex-Fuco+But-Fuco+Allo+Prasino+Chlb+DVA+Zea).

Tensioattivi

Le concentrazioni dei tensioattivi risultano al di sotto del limite di quantificazione della metodica in tutti i campioni Tabella 32.

Tabella 32 - Concentrazione tensiotattivi anionici e tensioattivi non ionici presenti nei campioni di acqua di mare lungo il profilo batimetrico. Le profondità																
sono espresse in metri. I dati sono espressi in milligrammi/litro.																
		E21	MG3		E21 MG5			E21 MG6				E21 MG7				
Profondità	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
tensiotattivi anionici	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
tensioattivi non ionici	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
		E21	MG9		E21 MG10			E21 MG12			E21 MG13					
Profondità	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
tensiotattivi anionici	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
tensioattivi non ionici	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03

Cloroderivati

Questi composti non sono stati rilevati, tranne il bromoformio che comunque esibisce concentrazioni prossime al limite di quantificazione (Tabella 33).

Tabella	elli indica	ano la p	rofondit	à di pre	lievo de	l campio	one.									
		E21 I	NG3			E21	MG5			E21	MG6			E21	MG7	
Profondità (m)	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
Acidi aloacetici (µg/l)																
Dalapon	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Dibromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Tribromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Monobromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromodicloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromocloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Dicloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Tricloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Monocloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Clorodibromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Aloacetonitrili (µg/l)																
Dibromoacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Dicloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Tricloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
1,1,1-Tricloro-2-Propanone	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
1,1-Dicloro-2-Propanone	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Cloropicrina	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Alometani e VOC (µg/l)																
Cloroformio	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbonio Tetracloruro	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tricloro Etilene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dicloro Bromo Metano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetracloro Etilene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromo Cloro Metano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoformio	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,011	< 0.01	< 0.01	< 0.01	0,013	< 0.01	0,042	0,027	< 0.01	< 0.01	< 0.01
1,2-Dibromo Etano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-Tricloro Etano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-Tricloro Etano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Alofenoli (µg/l)																
2,4-Diclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
4-Cloro-3-Metilfenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
2,4,6-Triclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Pentaclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
		E21 I	MG9		,2,2 .		MG10			E21 I	MG12			E21	MG13	
Profondità (m)	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
Acidi aloacetici (µg/l)																
Dalapon	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5

Tabella	33 - Con	icentraz	ione dei	clorode	elli indica	ano la p	rofondit	à di prel	lievo de	l campio	one.					
		E21 I	MG3			E21	MG5			E21	MG6			E21	MG7	
Profondità (m)	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
Acido Dibromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Tribromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Monobromoacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromodicloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Bromocloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Dicloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Tricloroacetico	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Acido Monocloroacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Acido Clorodibromoacetico	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0
Aloacetonitrili (µg/l)																
Dibromoacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Dicloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Tricloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
1,1,1-Tricloro-2-Propanone	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
1,1-Dicloro-2-Propanone	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Cloropicrina	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Alometani e VOC (µg/l)																
Cloroformio	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbonio Tetracloruro	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tricloro Etilene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dicloro Bromo Metano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetracloro Etilene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromo Cloro Metano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoformio	< 0.01	0,013	< 0.01	< 0.01	< 0.01	0,011	< 0.01	< 0.01	< 0.01	0,013	< 0.01	< 0.01	< 0.01	0,015	< 0.01	< 0.01
1,2-Dibromo Etano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-Tricloro Etano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-Tricloro Etano	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Alofenoli (µg/l)																
2,4-Diclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
4-Cloro-3-Metilfenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
2,4,6-Triclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Pentaclorofenolo	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2

Idrocarburi totali

Questi composti sono stati rilevati in tutte le stazioni (**Tabella 34**). Dal calcolo dei valori medi dei corrispondenti livelli effettuato tra stazioni poste alla medesima distanza (MG6, MG7, MG12, MG13 vs MG9, MG10vs MG3, MG5) emerge che questi composti sono leggermente superiori presso il Terminale in tutte le quote tranne quella profonda.

Tabella profondi	Tabella 34 - Risultati della ricerca di idrocarburi totali in acqua di mare lungo il profilo batimetrico. I dati sono espressi in microgrammi/litro. Le profondità di prelievo (0,5; 12,5; 50; 70) sono espresse in metri.														
E21 MG3 E21 MG5 E21 MG6 E21 MG7															
0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
242,38	201,42	221,87	190,20	251,36	235,78	248,99	235,29	340,00	339,31	340,00	339,31	290,87	313,33	380,79	148,80
	E21	MG9			E21 I	/IG10			E21 I	MG12			E21	MG13	
0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70	0,5	12,5	50	70
195,31	193,88	232,98	204,76	172,36	183,09	205,43	194,76	185,10	136,98	198,95	151,84	237,85	337,81	184,02	208,86

Analisi microbiologiche

Dall'analisi microbiologica condotta nelle acque superficiali (**Tabella 35**) non è stata rilevata la presenza né di coliformi, né di streptococchi fecali.

Tabella 35 - Risultati delle analisi microbi	ologiche co	ndotte nelle	e acque sup	perficiali du	rante la sta	igione estiva	. I dati sono	espressi in
ufc/100ml.								
	E21 MG3	E21 MG5	E21 MG6	E21 MG7	E21 MG9	E21 MG10	E21 MG12	E21 MG13
Streptococchi fecali (Enterococchi)	<10	<10	<10	<10	<10	<10	<10	<10
Coliformi Fecali	<10	<10	<10	<10	<10	<10	<10	<10
Coliformi totali	<10	<10	<10	<10	<10	<10	<10	<10

2.1.2 Saggi eco tossicologici su campioni di acqua

I valori chimico-fisici delle acque prelevate con cui sono stati effettuati i saggi biologici sono riportati in Tabella 36.

Tabella 36 tricornutum	 Paran e D. labr 	netri regis ax. Salinit	trati ne à (‰); (ll'acqua dei Dssigeno di	campioni te sciolto (mg/l).	stati con	V. fisch	eri, P.	lividus, P.
Campione	Prof. m	Salinità	pН	Ossigeno disciolto	Campione	Prof. m.	Salinità	pН	Ossigeno disciolto
Controllo		36	8,18	6,71					
	0,5	40	7,99	6,28		0,5	39	8,10	7,49
E21 MG3	12,5	40	8,04	7,11	E21 MG9	12,5	39	8,09	6,03
	50	40	8,07	6,98		50	38	8,05	7,09
	0,5	39	8,05	6,18		0,5	40	8,12	7,48
E21 MG5	12,5	40	8,11	6,17	E21 MG10	12,5	39	8,09	7,83
	50	39	8,06	6,74		50	39	8,07	6,14
	0,5	40	8,12	6,51		0,5	40	8,12	7,40
E21 MG6	12,5	40	8,11	7,14	E21 MG12	12,5	39	8,10	7,11
	50	40	8,10	7,28		50	39	8,09	7,19
	0,5	40	8,10	7,03		0,5	40	8,15	7,41
E21 MG7	12,5	40	8,11	7,14	E21 MG13	12,5	39	8,11	7,50
	50	39	8,10	7,98		50	39	8,12	6,84

Vibrio fischeri

Nella Tabella 37 sono riportati i risultati relativi al test di inibizione della bioluminescenza batterica di V. fischeri.

<u>QA-QC</u> - II test è stato effettuato con il lotto batterico n. 10141120A (scadenza 12/22). Il valore della EC50(15') = 9,12,mg/l (LC= 7,25mg/l e UC=11,46mg/l) ottenuto con la sostanza di riferimento ZnSO₄ \cdot 7H₂O rientra nei limiti della carta di controllo del laboratorio. I valori dell'EC20>90 e dell'EC50 >90 mostrano l'assenza di tossicità in tutti i campioni di acqua testati.

Tabella 37 - Risultati del test con il V. fischeri eseguito su campioni di acqua (incubazione 15', 30') prelevati a diverse profondità. EC20/50, max. effetto 15', max. effetto 30', espressi in %.

Campione	Prof. (m)	EC20	EC50	max. effetto 15'	max. effetto 30'	Tossicità	Campione	Prof. (m)	EC20	EC50	max. effetto 15'	max. effetto 30'	Tossicità
	0,5	≥90	>90	-16,32	-19,11			0,5	≥90	>90	-8,89	-10,37	
E21 MG3	12,5	≥90	>90	-23,58	-26,54		E21 MG9	12,5	≥90	>90	-6,62	-8,64	
	50	≥90	>90	-14,91	-17,85			50	≥90	>90	-12,97	-14,91	
	0,5	≥90	>90	-25,48	-29,18	-		0,5	≥90	>90	-13,47	-14,92	
E21 MG5	12,5	≥90	>90	-25,89	-29,57		E21 MG10	12,5	≥90	>90	-17,26	-18,22	
	50	≥90	>90	-15,44	-18,50	Acconto		50	≥90	>90	-25,79	-27,73	Accento
	0,5	≥90	>90	-24,67	-26,82	Assente		0,5	≥90	>90	-14,27	-15,11	Assente
E21 MG6	12,5	≥90	>90	-13,85	-19,05		E21 MG12	12,5	≥90	>90	-21,51	-22,42	
	50	≥90	>90	-16,92	-18,97			50	≥90	>90	-12,15	-12,49	
	0,5	≥90	>90	-13,82	-15,27			0,5	≥90	>90	-18,17	-18,10	
E21 MG7	12,5	≥90	>90	-1,41	-3,22		E21 MG13	12,5	≥90	>90	-19,16	-18,85	
	50	≥90	>90	-19,12	-21,10			50	≥90	>90	-14,57	-15,00	

Pheodactylum tricornutum

Nella **Tabella 38** sono riportati i risultati del test d'inibizione della crescita algale (72 h) con *P. tricornutum*. I risultati sono espressi come la media \pm DS del numero di cellule (n. di repliche/campione=3) e come EC20/50 %. In tabella è anche riportata la media \pm DS del numero di cellule del controllo negativo rappresentato da acqua di mare naturale.

<u>QA-QC -</u> Il test con il tossico di riferimento (dicromato di potassio-come ione cromo) ha fornito il valore dell'EC50 =2,33 mg/l (L.C. 95%: 2,06 - 2,67), rientra all'interno della carta di controllo del laboratorio. Il test è stato ritenuto valido in quanto la crescita algale nei controlli negativi, rispetto all'inoculo iniziale, ha superato il fattore 17, come indicato nelle linee guida.

Tabella 38 - Risultati del test con *Phaeodactylum tricornutum* condotti sui campioni di acqua (incubazione 72 h) prelevati a diverse profondità (espresse in metri). EC_{20/50} (L.C. 95%) espressa in %.

Campione	Prof.	EC _{20/50} %	N° x	Media cell.± 10 ⁵ /n	a DS nl	Tossicità	Campione	Prof.	EC _{20/50} %	N° x	Media cell.± 10 ⁵ /n	a DS nl	Tossicità
Controllo			8,90	±	0,40								
	0,5	79,4/>100	5,93	±	0,65	Deese		0,5	≥90/>100	8,80	±	0,80	
E21 MG3	12,5	86,7/>100	6,60	±	0,36	Bassa	E21 MG9	12,5	≥90/>100	8,47	±	0,25	Assente
	50	≥90/>100	7,33	±	0,35	Assente		50	≥90/>100	8,53	±	0,50	
	0,5	≥90/>100	8,03	±	0,47			0,5	≥90/>100	8,07	±	0,75	
E21 MG5	12,5	≥90/>100	8,07	±	0,65	Assente	E21 MG10	12,5	≥90/>100	8,37	±	1,15	Assente
	50	≥90/>100	8,30	±	0,90			50	≥90/>100	8,07	±	0,15	
	0,5	≥90/>100	9,50	±	0,46			0,5	≥90/>100	7,90	±	0,20	
E21 MG6	12,5	≥90/>100	8,53	±	0,50	Assente	E21 MG12	12,5	≥90/>100	7,63	±	0,60	Assente
	50	≥90/>100	8,73	±	0,35			50	≥90/>100	8,63	±	0,35	
	0,5	≥90/>100	8,97	±	0,35			0,5	≥90/>100	8,03	±	0,40	
E21 MG7	12,5	≥90/>100	9,60	±	0,30	Assente	E21 MG13	12,5	≥90/>100	7,73	±	0,38	Assente
	50	≥90/>100	7,90	±	0,36			50	≥90/>100	7,57	±	0,21	

I campioni di acqua prelevati a diverse profondità mostrano assenza di tossicità ad eccezione dei livellli superficiale (0,5 m) ed intermedio (12,5 m) della stazione E21 MG3.

Dicentrarchus labrax

Nella **Tabella 39** sono riportati i risultati relativi al saggio di tossicità acuta condotto sui campioni di colonna d'acqua utilizzando giovanili di *D. labrax* (73±10 mm). Pur non essendo disponibile una scala di tossicità per questa tipologia di saggio biologico, tutti i campioni hanno mostrato una % di mortalità inferiore al 10%, limite indicato come mortalità accettabile nel controllo. Il saggio con tossico di riferimento ha mostrato valori di LC50 pari a 2,05 mg/L (L.C. 95%: 1,84 mg/L-2,72 mg/L), valore che rientra all'interno della carta di controllo del laboratorio (1,64-2,91 mg/L).

Tabella 39 - Risultati del test con giovanili di *Dicentrarchus labrax* esposte a campioni di colonna d'acqua (96 h). Screening test su campioni tal quale (senza diluizioni). Il controllo è costituito da acqua di stabulazione. Volume 5000 ml, aerazione, % saturazione ossigeno disciolto >90%, pH range 8,06-8,12, salinità 38 ‰, temperatura 20,5±1 °C.

0,00 0,12,1													
		Ν.	pesci esp	osti					Ν.	pesci espo	sti		
Campione	Prof. (m)	repl. 1	repl. 2	repl. 3	% mortalità (media)	Tossicità acuta	Campione	Prof. (m)	repl. 1	repl. 2	repl. 3	% mortalità (media)	Tossicità acuta
Controllo	-	10	10	10	3,33								
	0.5	10	10	10	6,67			0.5	10	10	10	3,33	
E21 MG3	12.5	10	10	10	3,33		E21 MG9	12.5	10	10	10	3,33	
	50	10	10	10	3,33			50	10	10	10	0,00	
	0.5	10	10	10	3,33			0.5	10	10	10	0,00	
E21 MG5	12.5	10	10	10	0,00	Assente	E21 MG10	12.5	10	10	10	3,33	Accento
	50	10	10	10	6,67			50	10	10	10	0,00	Assente
	0.5	10	10	10	6,67			0.5	10	10	10	6,67	
E21 MG6	12.5	10	10	10	0,00		E21 MG12	12.5	10	10	10	3,33	
	50	10	10	10	0,00			50	10	10	10	0,00	

Tabella 39) - Risulta	ati del test	t con giova	anili di <i>Dic</i>	entrarchus	labrax esp	oste a campior	ni di coloni	na d'acqua	(96 h). Sci	reening tes	st su campio	oni tal quale	
(senza dilu	(senza diluizioni). Il controllo e costituito da acqua di stabulazione. Volume 5000 ml, aerazione, % saturazione ossigeno discipito >90%, pH range 8,06-8,12, salinità 38 ‰, temperatura 20,5±1 °C.													
0,00-0,12,	Samina J	00 /00, ten	iperatura 2	20,3±1 C	<i>.</i>									
	0.5	10	10	10	0,00			0.5	10	10	10	3,33		
E21 MG7	12.5	10	10	10	6,67		E21 MG13	12.5	10	10	10	6,67		
	50	10	10	10	0,00			50	10	10	10	3,33		

Paracentrotus lividus

<u>QA-QC</u> – Il test eseguito con la sostanza di riferimento ha fornito una EC₅₀ di 23,71µg l-1 di Cu (LC=22,40e UC=25,09), che rientra nei limiti della carta di controllo del laboratorio, La percentuale media di embrioni allo stadio di pluteo ($87 \pm 2,08\%$) è risultata conforme, in quanto superiore al limite del 75% e inferiore al limite del 95%,

Le percentuali degli embrioni che hanno raggiunto lo stadio di pluteo nel test di embriotossicità (72ore) con *P.lividus* e successiva stima della tossicità cronica (EC20/50) dei campioni della colonna d'acqua sono riportati nella tabella **Tabella 40**.

Tabella	1 40 - Risultati del t	est di e	embrio	otossicità	a (72 ore) con <i>P.I</i>	<i>ividus</i> e successi	va stima della	tossicità cron	ica,
	Concentrazione (%) del campione	% m((±	edia d dev,s	i plutei t %)	% media di embrioni non sviluppati	Correzione ABBOTT (embrioni non sviluppati)	EC 20 (%)	EC 50 (%)	Tossicità
Controllo		87	±	2,08	13	0	≥ 90	>100	Assente
	100	72	±	2,08	28	18			
E21 MG3/0,5	50	81	±	2,08	19	8	≥ 90	>100	Assente
	25	85	±	2,00	15	3			
	100	67	±	2,31	33	23			
E21MG3/12,5	50	78	±	1,53	22	10	87,5	>100	Bassa
	25	84	±	1,53	16	3			
	100	0	±	0,00	100	100			
E21 MG3/50	50	66	±	1,53	34	24	49,6	55,7	Media
	25	82	±	1,53	18	6			
	100	62	±	2,00	38	29			
E21 MG5/0,5	50	71	±	1,53	29	18	61	>100	Bassa
	25	82	±	1,53	18	6			
	100	71	±	1,15	29	19			
E21 MG5/12,5	50	80	±	2,00	21	8	≥ 90	>100	Assente
	25	85	±	1,53	15	3			
	100	60	±	1,53	40	31			
E21 MG5/50	50	70	±	1,53	30	19	56,9	>100	Bassa
	25	81	±	1,53	19	7			
	100	48	±	2,00	52	45			
E21 MG6/0,5	50	70	±	1,53	30	19	51	>100	Bassa
	25	83	±	1,53	17	5			
	100	62	±	1,53	38	29			
E21 MG6/12,5	50	71	±	1,73	29	19	60,9	>100	Bassa
	25	83	±	2,08	17	5			
	100	51	±	1,15	49	42			_
E21 MG6/50	50	71	±	2,00	29	19	51,9	>100	Bassa
	25	82	±	1,53	18	6			
	100	65	±	1,73	35	26		100	_
E21 MG7/0,5	50	//	±	2,08	23	12	77,9	>100	Bassa
	25	85	±	1,73	15	3			
	100	74	±	2,00	26	15		100	
E21 MG//12,5	50	/8	±	1,53	22	10	≥ 90	>100	Assente
-	25	85	±	1,53	15	2			
F04 M07/56	100	69	±	1,15	31 00	21	> ^^	. 400	A
E21 MG7/50	50	/8	±	1,53	22	11	≥ 90	>100	Assente
ļ	25	83	±	2,08	1/	5			
F04 1100/6 -	100	/1	±	1,00	29	19	> 00	. 400	
E21 MG9/0,5	50	78	±	1,53	22	10	≥ 90	>100	Assente
	25	86	±	1,53	14	2			

Tabella	1 40 - Risultati del t	est di e	embrio	otossicită	à (72 ore) con <i>P.I</i>	<i>ividus</i> e successi	va stima della	i tossicità cron	ica,
	Concentrazione (%) del campione	% m((±	edia d dev,s	i plutei t %)	% media di embrioni non sviluppati	Correzione ABBOTT (embrioni non sviluppati)	EC 20 (%)	EC 50 (%)	Tossicità
	100	77	±	1,15	23	12			
E21 MG9/12,5	50	79	±	1,53	21	9	≥ 90	>100	Assente
	25	86	±	1,15	14	1			
	100	77	±	1,53	23	12			
E21 MG9/50	50	81	±	2,08	19	8	≥ 90	>100	Assente
	25	86	±	1,53	14	2			
	100	60	±	1,53	40	31			
E21 MG10/0,5	50	76	±	2,08	24	13	60	>100	Bassa
	25	84	±	2,08	16	4			
	100	72	±	1,53	28	18			
E21 MG10/12,5	50	80	±	1,53	21	9	≥ 90	>100	Assente
	25	86	±	1,15	14	1			
	100	71	±	1,73	29	19			
E21 MG10/50	50	81	±	0,58	19	8	≥ 90	>100	Assente
	25	85	±	1,53	15	3			
	100	78	±	1,53	22	11			
E21 MG12/0,5	50	80	±	1,53	21	8	≥ 90	>100	Assente
	25	86	±	1,15	14	1			
	100	72	±	2,00	28	18			
E21 MG12/12,5	50	79	±	2,08	21	9	≥ 90	>100	Assente
	25	86	±	1,53	14	2			
	100	75	±	1,53	25	15			
E21 MG 12/50	50	80	±	2,00	21	8	≥ 90	>100	Assente
	25	86	±	0,58	14	1			
	100	72	±	2,00	28	18			
E21 MG13/0,5	50	78	±	2,00	22	11	≥ 90	>100	Assente
	25	86	±	1,53	14	2			
	100	76	±	1,53	24	13			
E21 MG13/12,5	50	80	±	2,00	21	8	≥ 90	>100	Assente
	25	86	±	1,15	14	1			
	100	70	±	0,58	30	21			
E21 MG13/50	50	77	±	1,53	23	11	≥ 90	>100	Assente
	25	85	±	1,53	15	3			

Il campione E21 MG3/50 mostra una tossicità cronica media, mentre in un terzo dei campioni analizzati è stata rilevata tossicità bassa. I restanti campioni sono privi di tossicità.

2.1.3 Plancton

2.1.3.1 Fitoplancton

Analisi quantitativa e qualitativa del fitoplancton da bottiglia

La densità fitoplanctonica totale media è di circa 53 cell/ml, con una variazione tra un minimo di 31 cell/ml in E21 MG7 in superficie e un massimo di 147 cell/ml in E21 MG10 a 70 m (Tabella 41).

L'andamento delle densità lungo la colonna d'acqua è simile tra tutte le stazioni, con valori leggermente inferiori tra la superficie e 12,5 m e massimi a 70 m (**Figura 29**). Mediamente le maggiori abbondanze sono date dal gruppo denominato "Altro plancton" costituito dalle classi di nanoflagellati (Cryptophyceae, Chrysophyceae, Dictyochophyceae, Clorophyceae, Euglenoidea, Prasinophyceae, Prymnesiophyceae non Coccolitofori, Cyanophyceae più i flagellati non identificati) che varia tra 11 cell/ml in E21 MG7 a 0,5 m e 44 cell/ml in E21 MG10 a 70 m. La singola classe più abbondante è risultata quella delle diatomee a causa di alcuni massimi a 70 m (E21 MG10, E21 MG12, E21 MG13), mentre sono generalmente inferiori a 10 cell/ml alee altre profondità. I dinoflagellati mostrano un più costante contributo, generalmente maggiore in superficie rispetto ai 50 e 70 m. I coccolitofori, infine, variano da un minimo di circa 6 cell/ml in E21 MG10 a 50 m ad un massimo di 14 cell/ml sempre alla E21 MG10 ma a 70 m.

Osservando il contributo percentuale delle classi (**Figura 30**) si nota che il popolamento estivo del 2021 è rappresentato principalmente dal gruppo Altro plancton, in media circa il 39%, con *Phaeocystis* sp., *Telonema* sp., *Pyramimonas* spp., *Leucocryptos marina* e Cryptophyceae sp. I dinoflagellati costituiscono in media il 21% con individui appartenenti allle Gymnodiniaceae e da forme tecate come *Heterocapsa minima*, *Heterocapsa rotundata* ed *Oxytoxum variabile*. Per quanto riguarda le diatomee, i massimi si sono rilevati particolarmente a 70 m, evidenziando la presenza di un popolamento (*Pseudo-nitzschia galaxiae*, forma grande e piccola, *Cylindrotheca closterium* e *Leptocylindrus minimus*) ipotizzabile in uno stato di mantenimento stazionario piuttosto che di accrescimento attivo, data la scarsa presenza del pigmento diagnostico fucoxantina. La classe dei coccolitofori, infine, risulta la meno rappresentata rispetto alle altre pur costituendo in media il 18% del popolamento, principalmente con *Emiliania huxleyi* e *Syracosphaera anthos*.

Tabe	lla 41 - Densita	à fitoplanctonica	a totale (cell/ml) e	e delle classi o gr	uppi identifi	cati.
Stazione	prof. (m)	Diatomee	Dinoflagellati	Coccolitofori	Altro	Totale
	0,5	9,16	9,55	10,01	15,92	44,64
E24 MC6	12,5	11,63	11,69	12,02	18,33	53,66
EZTINGO	50	0,80	14,28	7,24	26,29	48,62
	70	11,51	8,29	8,42	19,86	48,08
	0,5	6,56	6,37	7,21	10,92	31,06
E24 MC7	12,5	3,35	8,58	12,42	14,30	38,65
	50	0,74	11,18	7,74	23,27	42,92
	70	15,68	8,10	7,39	17,81	48,98
	0,5	1,53	10,35	8,50	21,04	41,42
E21 MC10	12,5	1,04	11,50	9,68	14,88	37,11
	50	0,71	17,42	5,85	33,10	57,08
	70	80,66	8,80	14,12	43,68	147,26
	0,5	2,39	11,77	6,77	13,75	34,69
E24 MG42	12,5	3,58	14,67	12,68	13,94	44,87
	50	1,26	13,25	8,93	14,02	37,46
	70	55,17	5,45	11,82	13,14	85,59
	0,5	6,04	10,71	8,08	13,27	38,10
E21 MG12	12,5	9,28	11,45	11,65	22,02	54,40
	50	0,37	14,25	9,03	26,16	49,80
	70	20,68	8,55	7,23	34,19	70,65

cib

Figura 29 - Profili delle densità fitoplanctoniche totali (cell/ml).

In totale sono stati identificati a diverso livello tassonomico 216 taxa (più la categoria Flagellati indeterminati) (**Tabella 42**) suddivisi tra le principali classi o raggruppamenti fitoplanctonici di cui si fornisce l'elenco in **Tabella 43**.

La maggior parte dei taxa appartiene ai dinoflagellati che sono rappresentati da 82 specie, 5 forme identificate a livello di genere e 4 categorie soprageneriche. Anche le diatomee sono ben rappresentate con 52 specie, 10 forme identificate a livello di genere e 5 categorie. I coccolitofori, infine, risultano meno diversificati con 26 specie insieme a 3 forme individuate a livello di genere e 1 categoria sopragenerica. Il gruppo Altro plancton, nonostante sia quello che caratterizza di più il popolamento in termini quantitativi, è meno diversificato ed è rappresentato da un totale di 28 taxa suddivisi in 17 specie, 8 generi e 3 categorie superiori. Il popolamento fitoplanctonico estivo del 2021 presenta valori di diversità specifica (Shannon) e di equitabilità (Pielou) media piuttosto alti, pari, ripsettivamente, a 4,36 bit/cell e 0,73. Entrambi questi indici mostrano, però, un ampio range di variaizione: il primo tra 2,56 (E21 MG12 70 m) e 5,07 (E21 MG7 0,5 m) bit/cell e il secondo tra 0,44 (E21 MG12 50 m) e 0,85 (E21 MG7 0,5 m). I minimi di diversità si raggiungono in profondità dove prevalgono le diatomee con Pseudo-nitzschia galaxiae (forma piccola), *Phaeocystis* sp (inserita nel gruppo Altro) e *Emiliania huxleyi* appartenente ai coccolitofori.

cib

Figura 30 - Abbondanza relativa delle classi fitoplanctoniche indicate in legenda in rapporto all'abbondanza totale

 Tabella 42 - Numero di specie, generi e altre categorie tassonomiche individuate per ogni classe o raggruppamento fitoplanctonico nei campioni osservati (prelievo con Niskin).

Classe		Specie	Generi	Categorie superiori*
Diatomee		52	10	5
Dinoflagellati		82	5	4
Prymnesiophyceae coccolitofori		26	3	1
Cryptophyceae		1	1	1
Chrysophyceae/Dictyochophyceae		5		
Chlorophyta/Euglenoidea		1		1
Prasinophyceae		3	3	
Prymnesiophyceae non coccolitofori			2	
Cyanophyceae				
Raphydophyceae		3		
Altro		4	1	
	Totale	177	25	12
*Con il termine "Categorie superiori" s	si intendon	o livelli tasso	nomici soprageneri	ci

DATOME Matches Applote algobic Charles of Sorteril (175) Distance service (2 g) (in fill. Matches and/a (Castracer) Handal Applote algobic Charles (190) Distance service (2 g) (in fill. Matches and/a (Castracer) Handal Matches and/a (Castracer) Handal Constance parking (10km) Hands (190) Distance service (2 g) (in fill. Matches and/a (Castracer) Handal Matches and/a (Castracer) Handal Constance parking (10km) Hands (190) Distance service (2 g) (in fill. Parking (10km) Handal Parking (10km) Handal <th>Tabella 43 -</th> <th>Lista dei taxa individuati dalle analisi quantitative n</th> <th>nicroscopiche.</th>	Tabella 43 -	Lista dei taxa individuati dalle analisi quantitative n	nicroscopiche.
Applete spike Distance spreads al., Lothin al., Distance spreads al., Lothin al., Distance spreads al., Lothin al., Distance spreads al.		DIATOMEE	
Ampletes BD Determine over ticker 3 20 µm n.1. Mitchel Sop. Ampletes BD Determine over ticker 3 20 µm n.1. Packadowski (Sop. 2000) Constance applicit Clear Header 1957 Determine over ticker 3 20 µm n.1. Packadowski (Sop. 2000) Constance applicit Clear Header 1957 Determine over ticker 3 20 µm n.1. Packadowski (Sop. 2000) Constance applicit Clear Header 1957 Determine over ticker 3 20 µm n.1. Packadowski (Sop. 2000) Constance applicit Clear Header 1957 Extension over ticker 3 20 µm n.1. Packadowski (Sop. 2000) Constance applicit Clear Header 1957 Extension over ticker 3 20 µm n.1. Packadowski (Sop. 2000) Constance applicit Clear Header 1957 Canavaka 1968 Packadowski (Sop. 2000) Constance applicit Clear Header 1957 Canavaka 1968 Packadowski (Sop. 2000) Constance applicit Clear Header 1951 Canavaka 1968 Packadowski (Sop. 2000) Constance applicit Clear Header 1951 Packadowski (Sop. 2000) Packadowski (Sop. 2000) Constance applicit Clear Header 1951 Packadowski (Sop. 2000) Packadowski (Sop. 2000) Constance applicit Clear Header 1951 Packadowski (Sop. 2000) Packadowski (Sop. 2000) Constance applicit Cle	Amphora bigibba Grunow ex Schmidt 1875	Diatomea pennata n.i. (forma p)	Nitzschia sicula (Castracane) Hustedt
Alexanders particular particular product (Januar 1993) Alexander and the second of th	Amphora spp.	Diatomee centriche \leq 20 µm n.i.	Nitzschia spp.
Development product (Sove) Handbell (SS) Development (SS) Product-Status (SS) Construction of April (SS) Development (SS) Product (SS) Construction of April (SS)	Asterionellopsis glacialis (Castracane) Round 1990	Diatomee centriche > 20 μ m n.i.	Plagiotropis sp. Brobassia alata (Brightwell) Sundaträm 1086
Careaccess affines Lander (194) Dimespagmann namer (Forgary) Rafin 1861 Proceed-microsite optical sectors and the construction of	Cerataulina nelagica (Cleve) Hendey 1937	Diatomee pennate > 20 μ m n.i.	Pseudo-nitzschia delicatissima (Cleve) Heiden 1928
Cheskoores alexito, Case 1173 Cheskoores davids (Case 189 Pascio-discuss in publishing Haaring TATS Cheskoores protections (Davids Case) Biological Pascio Case 1173 Cheskoores protections (Davids Case) Cheskoores protecti	Chaetoceros affinis Lauder 1864	Dimeregramma nanum (Gregory) Ralfs 1861	Pseudo-nitzschia galaxiae Lundholm & Moestrup 2002
Checkonson andrue (Persiter) 1913 Checkonson andrue (Persiter) 1913 Checkonson andrue (Persiter) 1913 Checkonson andrue (Persiter) 1914 Checkonson andrue (Persiter) 1914 Checko	Chaetoceros atlanticus Cleve 1873	Diploneis spp.	Pseudo-nitzschia multistriata (Takano) Takano 1995
Chebtoces davises Chen (199) Chebtoces davises Chen (199) Chebtoces davises Chen (199) Chebtoces source (Chen (199) Chebtoces source	Chaetoceros dadayi Pavillard 1913	Entomoneis cf. paludosa (Smith) Reimer 1975	Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle 1993
Operational angle (and angle (angle (an	Chaetoceros danicus Cleve 1889	Fragilariopsis spp.	Pseudo-nitzschia seriata (Cleve) Peragallo 1899
Constructions from the Constructions Granup 1931 Characterizes and the Lemmer 1932 Characterizes and the Lemmer 1934 Characterizes and the Lemmer 1935 Characterizes and the Lem	Chaetoceros decipiens Cleve 1873	Grammatophora serpentina Enrenberg 1844	Pseudo-nitzschia subtraudulenta (Hasle) Hasle 1993 Pseudo-nitzschia turgidula (Hustadt) Hasle 1993
Crastocors provider Lammen may 1885 Hermiteds Audor Groups are van Heart 1822 Prozentine activity Biologie 1881 Crastocors apprive Displayer 1895 Leptocylicity a diverse (1995 Substance pacubic contains and part of the Single	Chaetoceros lorenzianus Grunow 1863	Haslea wawrikae (Hustedt) Simonsen 1974	Rhizosolenia decipiens Sundström 1986
Chastences peruisaus Brighten 1955 Ladeconfectus dentical (Sen 1954) Chastences sankib Laufer 1954 Chastences chasten (Frenden) Reham 3 Lein 1955 Chastences chasten (Frenden) Reham 3 Lein 1957 Chastences and Khasten 1958 Chastences and Khasten 1958 Chastences and Khasten 1958 Chastences and Khasten 1958 Chasten 1958 Chastences and Khasten 195	Chaetoceros muelleri Lemmermann 1898	Hemiaulus hauckii Grunow ex Van Heurck 1882	Rhizosolenia setigera Brightwell 1858
Chardcons angles Obsteffel 19101 Laptocinforta minutaria (Perganja) Hale 1975 Survival sp. Chardcons sp. Mini dicas consolar 1915 Mini dicas consolar 1916 Transcriptions di publica p. Chardcons sp. Mini dicas consolar 1915 Mini dicas consolar 1915 Transcriptions di publica p. Chardcons pheriotica 1916 Mini dicas consolar 1915 Transcriptions di publica p. Transcriptions di publica p. Chardcons pheriotica 1916 Mini dicas consolar 1915 Transcriptions di publica p. Transcriptions di publica (Durono) Haning 1907 Chardcons pheriotica (Bergeri Hale 1916) Mini dicas consolarità (Durono) Haning 1907 Transcriptions di publica (Durono) Haning 1908 Adrivida publica Charanti 1915 Mini conso andische 1916 Transcriptions di publica (Durono) Haning 1908 Adrivida publica Charanti 1915 Mini conso andische 1916 Mini conso andische 1916 Adrivida publica Charanti 1916 Mini conso andische 1916 Orytoxam mellementers Shile Adrivida publica Charanti 1916 Mini conso andische 1916 Orytoxam mellementers Shile Adrivida publica Charanti 1916 Mini conso andische 1916 Orytoxam mellementers Shile Adrivida publica Charanti 1916 Mini conso andische 1916 Orytoxam meles	Chaetoceros peruvianus Brightwell 1856	Leptocylindrus danicus Cleve 1889	Skeletonema pseudocostatum Medlin 1991
L'herbores acoute Lador 1994 Dechorons sont Dechorons frondomi (Manne 1913 Annoue de l'anoutes france 1917 Dechorons frondomi (Manne Nortieso & Zingene Sanchas sp. Chindrobae actuelle (Fielden) Kote 1913 Marcuée d'Ennant 1913 Annoue de l'anoutes france 1917 Dechorons frondomi (Manne Nortieso & Zingene Sanchas sp. Dechorons (Sanchar) (Heater) Dechorons frondomi (Manne Statum) (Heater) Dechorons frondomi (Manne Statum) (Heater) Dechorons (Sanchar) (Heater) Antonia Balance a Children (Heater) Dechorons (Sanchar) (Heater) Dechorons (Heater)	Chaetoceros simplex Ostenfeld 1901	Leptocylindrus mediterraneus (Peragallo) Hasle 1975	Surirella sp.
Consistences Manuschimes Manumer 1913 Marcical et furstales Heimidel 1970 Tradisasioneren af Loading (Heiden) Kolte 1955 Conscipcios Principality (Eventering) Ferenting 1966 Marcical et furstales laceptality (Construction) Heimidel (Structure) Heimidel (Structure) Heimidel (Structure) Heimidel (Structure) Heimidel 1970 Tradisasioneren af Loading (Heimidel) (Kolte 1955 Dackforscore Instiguences (Structure) Heimidel 1970 Marcical et alterature in Reader Heimidel (Structure) Heimidel (Heimidel (Heimide	Chaetoceros socialis Lauder 1864	Leptocylindrus minimus Gran 1915 Minidiscus comicus Takano 1981	Syneara spp. Tenuicylindrus helaicus (Meunier) Nanianna & Zingone 2013
CreateDoors Providence Montes A Zingons 194 Marko, Montes Zingons 194 Marko, Montes Zingons 194 Marko, Montes Zingons 194 Markoka spp. Thelassionera Revention (Montes Zingons) Markoka spp. Marko	Chaetoceros spp. Chaetoceros tenuissimus Meunier 1913	Navicula cf. transitans Heimdal 1970	Thalassionema cf. bacillare (Heiden) Kolbe 1955
Marin, Montesor & Zingone 191 Instructuo laguin Instructuo laguin Instructuo laguin Optimizativo construit Exercision (Exercision) Instructuo laguin Instructuo laguin <td>Chaetoceros throndsenii (Marino, Montresor & Zingone)</td> <td></td> <td>Thelessionema frequenteldii (Crunow) Hellessoff 1006</td>	Chaetoceros throndsenii (Marino, Montresor & Zingone)		Thelessionema frequenteldii (Crunow) Hellessoff 1006
Cyinchronic Public Cleve 1901 Decification International (Pengle) Hale 1975 Decification International Cleve 1901 Decification International Cleve 1901 Decification International Cleve 1901 Decification International Cleve 1901 Mitzschein orgenitatione Cleve 1901 Alexandrum of mitaschuld Res 1905 Alexandrum of mitaschuld Res 1905 Angholdmin dr. globaus Schuld Res 1905 Angholdmin dr. globaus Sch	Marino, Montresor & Zingone 1991	Navicula spp.	marassionema trauemeruli (Grunow) Hallegraen 1966
Lacy Coston (July Male, (Hengell)) Hales (1956) Dack for each probability (Lensen)	Cylindrotheca closterium (Ehrenberg) Reimann & Lewin 1964	Nitzschia bicapitata Cleve 1901	Thalassionema nitzschioides (Grunow) Mereschkowsky 1902
The physical production physical physi	Dactyliosolen blavyanus (Peragalio) Hasle 1975 Dactyliosolen fragilissimus (Peragan) Hasle 1995	Nitzschia longissima (Brebisson) Kalts 1861 Nitzschia loronziana Grupow 1879	i nalassiosira spp.
Ampliane publics Gunow ex Schmidt 1875 Didoms permata n. (forms a) Mittachia Scula (Castracane) Hustett Achradin publics (Ehrenberg) Beneberg 1844 Heiroccapsa inclustry and Mittacoba Scula (Castracane) Hustett Optionum mittacina in 1883 Aksachivo sanguines (Hirasaka) Hansen & Moestup 2000 Heiroccapsa inclustry and Mittacoba Scula (Castracane) Hustett Optionum mittacina in 1883 Aksachivo sanguines (Hirasaka) Hansen & Moestup 2000 Heiroccapsa inclustry (Leakin II) Morrill & Leakin II) Optionum rinks cells 1937 Araphidnium d, spinostam Ebrischer P11 Heiroccapsa inclustry (Leakin II) Morrill & Leakin II) Optionum stoppa: Scien 1883 Anghidnium d, spinostam Ebrischer & Tilmann 2009 Karein Avia (Leakin II) Morrill & Scientify 2000 Optionum stoppa: Scientify 200 Aradinium spinosum Ebrischer & Tilmann 2009 Karein Avia (Castracane) Huster (Erroteags) 2010 Protocentrum Scientify 2011 Aradinium spinosum Ebrischer & Tilmann 2009 Karein Avia (Castracane) Huster (Scientify 1) Protocentrum Scientify 2011 Aradinium spinosum Ebrischer & Tilmann 2009 Karein Avia (Castracane) Huster (Scientify 1) Protocentrum Scientify 2011 Aradinium spinosum Ebrischer & Tilmann 2009 Karein Avia (Castracane) Huster (Horitary 2011 Protocentrum Scientify 2011 Aradinium spinosum Ebrischer & Tilmann 2009 Karein Kavia (Castrac	Dactyliosolen nuginssinus (Bergon) hasie 1990	Nitzschia recta Hantzsch ex Rabenhors 1862	
DINCH AGELLATI Ovycoum medileraraeum Schlier Achardian pukkra Lohnann 1903 Hetrocogaes individensiouma Horgenia (1995 Ovytoum medileraraeum Schlier Actantious pentastrias (Ehrenberg) Ehronberg 1844 Hetrocogaes individentia, Takayama & Matsucka 2002 Ovytoum medileraraeum Schlier Aksardnum C. Innitum Haltin 1960 Hetrocogaes individentia, Saveenia) Morrill & Loeblich III 981 Ovytourn anable Schlier 1937 Aksardnum C. Innitum Haltin 1960 Hetrocogaes individentia (Lohnamn) Kassen 1985 Ovytourn anable Schlier 1937 Amphölnium C. Sphondosk VIII 1916 Hetrocogaes individentia (Lohnamn) Hansen 1985 Ovytourn anable Schlier 1937 Amphölnium C. Sphondosk VIII 1916 Hetrocogaes individentia (Lohnamn) Hansen 1985 Phalecocagaes individentia (Lohnamn) Loeblich 1970 Arabidinium spin. Ebrachter 2011 Karenia bunchandia (Lohnamn) Loeblich 1970 Prococantum gradies Schlier 1937 Azadinium spin. Ebrachter 2011 Karenia bunchandia (Lohnam) Loeblich 1970 Prococantum gradies Schlier 1937 Azadinium spin. Karenia bunchandia (Lohnam) Loeblich 1970 Prococantum gradies Schlier 1971 Azadinium spin. Karenia bunchandia (Lohnam) Loeblich 1970 Prococantum gradies Schlier 1971 Azadinium spin. Karenia spin. Karenia spin.	Amphora bigibba Grunow ex Schmidt 1875	Diatomea pennata n.i. (forma p)	Nitzschia sicula (Castracane) Hustedt
Achrading putkris Lahman 1903 Heterozges orizularisyama Horiguchi 1995 Oytoxum micelleraneum Schlier Achradins putkris (Ehrenberg) 1844 Asashieo sanguinea (Hrasaka) Hansen & Moestrup 2000 Oytoxum micelleraneum Schlier Aksanden sanguinea (Hrasaka) Hansen & Moestrup 2000 Heterozges nichtering & Sweeney) Mortil & Loebich III 1937 Oytoxum micelleraneum Schlier Aksanden sanguinea (Hrasaka) Hansen & Moestrup 2000 Heterozges nichter 1957 Oytoxum micelleraneum Schlier Anschlen sanguides Tillmann, Sales & Elbrachter 2012 Heterozges nichteral kenkel 5 Fakurg 2003 Oytoxum spänebeller 1937 Amphidolum Exp, Papel Heterozges nichteral kenkel 5 Fakurg 2003 Oytoxum spänebeller 1937 Anghidolum Roppun Heterozges nichteral Kenkel 2011 Heterozges nichteral kenkel 101 Pataleraneurin Kenkel 3 Kenkel 101 Arashinu spinschwarter 2011 Heterozges nichteral Kenkel 2011 Heterozges nichteral kenkel 1020 Procentrum compressing Kenkel 3 Kenkel 101 Arashinu spinschwarter 2011 Heterozges nichteral Kenkel 2020 Procentrum compressing Kenkel 3 Kenkel 101 Arashinu spinschwarter 2014 Linsschle Kenkel 101 Heterozges nichteral 101 Procentrum neinforma A Kenkel 101 Arashinu spinschwarter 2014 Linsschle Kenkel 101 Heterozges nichteral 101 Hetero		DINOFLAGELLATI	
Actimizes pentations (Extending and the seture 2004) Hearing and match in the 2004 Optional perturbations (Second Differences) Hearing and match in the 2004 Optional perturbations (Second Differences) Advances of the second Differences (Second Differences) Advances of the second Differences (Second Differences) Advances of the second Differences Advances of the second Differen	Achradina pulchra Lohmann 1903	Heterocapsa circularisquama Horiguchi 1995	Oxytoxum mediterraneum Schiller
Akasahiu enginang (Hinasak) Hanena & Moesting 2000 minisan Pennory 199 Optionum account Schlin 1937 Alexanchium of multum Halim 190 Haliorocapsa nimina Pennory 199 Optionum account Schlin 1937 Alexanchium of multum Halim 190 Haliorocapsa nimina Pennory 199 Optionum account Schlin 1937 Angendrium Internet Lebiou Basich 1905 Haliorocapsa nimina Pennory 199 Optionum reiches Schling Schlin 1937 Angehördinum d. sphenoldes Wulff 1916 Haliorocapsa nine Neeroly 1905 Palloricals tentoculfer Schling Alexan 2007 Angehördinum asp. Haliorocapsa nine Neeroly 1905 Haliorocapsa nine Neeroly 1905 Azadinium sp. Haliorocapsa nine Neeroly 1905 Pallorical tentoculfera Schling Alexan 2009 Azadinium sp. Karania bervin (Kohai) 1970 Karania bervin (Kohai) 1970 Azadinium sp. Karania bervin (Kohai) 1970 Karania bervin (Kohai) 1970 Azadinium sp. Karania bervin (Kohai) 1970 Karania bervin (Kohai) 1970 Azadinium curvicaudum (Kobai) 1976 Lissaudi alexan 2014 Lissaudi alexan 2014 Cardindum unicautum Malium (Kolai) 1976 Messparos perforatis (Gran) Lilick 1937 Protoperintima naesing (Kohai) 1974 Dinodapsia zeuminata Caparede & Lachmann 1859 Miniscula bias (Carna) Lilick 1937 Protoperintim aniscula bias (Carna) Lilick 1937	Actiniscus pentasterias (Ehrenberg) Ehrenberg 1844	Heterocapsa horiguchii Iwataki, Takayama & Matsuoka 2002	Oxytoxum mitra Stein 1883
Alezandrum dimulum Haim 1960 Heirrocaps minime Pomory 1969 Orytourus schopas Stein 1883 Alezandrum dimuterikii (Paulsen) Balech 1965 Heirrocaps anicitabit Ivaalik Botes & Fukyo 2003 Orytourus schopas Stein 1883 Alezandrum dimuterikii (Paulsen) Balech 1965 Heirrocaps anicitabit Ivaalik Botes & Fukyo 2003 Orytourus schopas Stein 1883 Amphidiniar gip. Heirrocaps anicitabit Ivaalik Botes & Fukyo 2003 Orytourus schopas Stein 1883 Amphidiniar spin. Heirrocaps and Ivaalik & Fukyo 2003 Orytourus schopas Stein 1833 Azadinium spin. Rameia bizurus (Baviy Alexano 2014 Karenia barwis (Baviy Hansen & Neastup 2000 Proncentrum capprate 1891 Azadinium spin. Neastup 2000 Rameia barwis (Baviy Hansen & Neastup 2003 Proncentrum capprate 1891 Azadinium popurum Tilinaan & Neasa 2014 Lessardia lengads Taylor. 2003 Proncentrum capprate 1891 Azadinium popurum Tilinaan 2014 Lessardia lengads Taylor. 2003 Proncentrum capprate 1807 Azadinium popurum Tilinaan S. Neasa 2014 Lessardia lengads Taylor. 2003 Proncentrum capprate 1807 Aradinium popurum Tilinaan 2014 Lessardia lengads Taylor. 2003 Proncentrum capprate 1807 Aradinium popurum Tilinaan S. Neasa 2014 Lessardia lengads Taylor. 2004 Proncentr	Akashiwo sanguinea (Hirasaka) Hansen & Moestrup 2000	III 1981	Oxytoxum parvum Schiller 1937
Alezandrum manerse (Labor) Balch 1950 Heterocapas niel (Loeblich III) Morill & Loeblich III 1981 Orykoum aphaenideum Stein 1883 Alezandrum manerse (Labor) Balch 1951 Heterocapas orelatis Weakla K Fukuyo 2003 Orykoum anable Schiller 1937 Amphidinium c. Spennodes Wulff 1916 Heterocapas orelatis Weakla K Fukuyo 2003 Orykoum anable Schiller 1937 Amphidinium sp. Heterocapas niculucal Echenberg) Stein 1883 Michaer 1911 Aradinium poprom Tillnam & Elizachter & Tillnann 2009 Karnin biourelformis Boles, Syn & Pitcher 2003 Proncochrum aphaenideum (Laparéde & Lachmann) Kobid & Michaer 1911 Azadinium spin. Karnin biourelformis Boles, Syn & Pitcher 2003 Proncochrum aphaenideum (Laparéde & Lachmann) Kobid & Michaer 1911 Azadinium spin. Karnin biourelformis Boles, Syn & Pitcher 2003 Proncochrum apheenideum (Laparéde & Lachmann) Kobid & Michaer 1911 Azadinium spin. Karnin biourelformis Boles, Syn & Pitcher 2003 Proncochrum apheenideum (Laparéde & Lachmann) Kobid & Michaer 1911 Azadinium spin. Karnin biourelformis Boles, Syn & Pitcher 2003 Proncochrum apheenideum Labor Azadinium spin. Karnin biourelformis Boles, Syn & Pitcher 2003 Proncochrum apheenideum Labor Azadinium spin. Karnin biourelformis Boles, Syn & Pitcher 2003 Proncochrum apheenideum Labor	Alexandrium cf. minutum Halim 1960	Heterocapsa minima Pomroy 1989	Oxytoxum scolopax Stein 1883
Alexandrium tameranes (Labour) Balech 1955 Hetrocapsa orientalis Netaki Botes & Fukuyo 2003 Oxyloxum variable Schiller 1937 Amphidimum d. joboxms Schider 1911 Hetrocapsa oriat Nataki & Fukuyo 2003 Oxyloxum variable Schiller 1937 Amphidimum d. joboxms Schider 1916 Hetrocapsa oriat Nataki & Fukuyo 2003 Oxyloxum variable Schiller 1937 Amphidomi anguida Tiliman, Salas & Ebrachter 2012 Karenia brevis (Davis) Hansen & Moestrup 2000 Proacentrum contradiatum (Claparde & Lachmann) Kobid & Meterocapsa triugetra (Ehrenberg) Slein 1883 Azadinium spin. Azadinium spin. Karenia brevis (Davis) Hansen & Moestrup 2000 Proacentrum compressum (Balley) Abé ex Dodge 1975 Azadinium cuneatum Tilimann & Nezan 2014 Lassardia elongafa Sadariaga & Taylor 2003 Proocentrum caprice Schill 1959 Azadinium spin. Nezan 2014 Lassardia elongafa Sadariaga & Taylor 2003 Proocentrum caprice Schill 1959 Azadinium spin. Nesoporos adriaticus (Schiller) Lilick 37 Protoperidinium caversasse (Moci) Balen 1974 Dicordinium durbellum Lebour 1917 Mesoporos adriaticus (Schiller) Lilick 37 Protoperidinium diversasse (Schicl) Balen 1974 Dinolegaleit lecais > 20 µm n.i. Mesocardiam adiferum (Lohmann) Defander 1937 Protoperidinium diversasse (Schicl) Balen 1974 Dinolegaleit tecais > 20 µm n.i. Neocoratiam	Alexandrium ostenfeldii (Paulsen) Balech & Tangen 1985	Heterocapsa niei (Loeblich III) Morrill & Loeblich III 1981	Oxytoxum sphaeroideum Stein 1883
Amplindium dr. globosun Schröder 1911 Peterocapsa ovala wakak & Fukuy 2003 Pavillariai di amplichium dr. globosun Schröder 1911 Amplichium sp. Hetrocapsa briquetra (Ehrenberg) Stein 1883 Pavillariai di ambullita (Schröde & Swezy, 1921 Amplichium sp. Hetrocapsa briquetra (Ehrenberg) Stein 1883 Michene 1911 Aradinium opportini Tilmam & Ehrischter 2011 Karenia bicumelformis Botes, Syn & Pitcher 2003 Proncochrun aplagica fabre-Domegue 1889 Azadinium spinosum Ebrächter & Tilmann 2009 Karenia bicumelformis Botes, Syn & Pitcher 2003 Prococentrum compressum (Balley) Abé ex Dodge 1975 Azadinium spinosum Ebrächter & Tilmann 2009 Karenia bicumelformis Botes, Syn & Pitcher 2003 Prococentrum compressum (Balley) Abé ex Dodge 1975 Azadinium spinosum Ebrächter & Tilmann 2009 Karenia bicumelformis Botes, Syn & Pitcher 2003 Prococentrum compressum (Balley) Abé ex Dodge 1975 Azadinium spinosum (Kolida Taylor 1977 Lessardinia compatine (Schiller) 1974 Protoperidinium crassige (Kolida Baleth 1974 Conthodinum purchellum Lebour 1917 Mesoporos perforatus (Gran) Lilick 1937 Protoperidinium diversite (Schiller) 1974 Dinoflegiellat tecal > 20 µm ni. Minuscula bipes (Pausen) Lebour 1925 Protoperidinium diversite (Schiller) 1974 Dinoflegiellat tecal > 20 µm ni. Garcia 2010 Minuscula bipes (Pausen)	Alexandrium tamarense (Lebour) Balech 1995	Heterocapsa orientalis Iwataki Botes & Fukuyo 2003	Oxytoxum variabile Schiller 1937
Amphidminn C. Splinitode I. Commann, Tailean 1930 Prevailable and commany frames of the splinistic of the spli	Amphidinium cf. globosum Schroder 1911	Heterocapsa ovata Iwataki & Fukuyo 2003	Oxytoxum viride Schiller 1937 Pavillardia toptaculifora Kofoid & Swozy, 1921
Amptidoma sp. Heterocapsa Briguetra (Ehrenberg) Stein 1883 Michaerer 1911 Michaerer 1911 Amptidoma languida Tilmann, Salas & Ebrachter 2012 Karenia brueis (Davis) Hansen & Mossitrup 2000 Procoentrum calicac palagioz Fabre-Domergue 1889 Azadinium spin. Azadinium spin. Karenia brueis (Davis) Hansen & Mossitrup 2000 Procoentrum cancipressum (Balley) Abé ex Dodge 1975 Azadinium spin. Karenia brueis (Davis) Hansen & Mossitrup 2000 Procoentrum cancipressum (Balley) Abé ex Dodge 1975 Azadinium spin. Karenia brueis (Davis) Hansen & Mossitrup 2000 Procoentrum cancipressum (Balley) Abé ex Dodge 1975 Azadinium spin. Karenia brueis (Davis) Hansen & Mossitrup 2000 Procoentrum cancipressum (Balley) Abé ex Dodge 1975 Cadinguis provide Schüt 1835 Languidotinum polyedrum (Stein) Obge 1983 Procoentrum cancipressum (Balley) Abé ex Dodge 1974 Corditodinum provide Schüt 1970 Missopros perforatus (Gran) Lilik: 1937 Protoperdinium araitigene (Cloade) 1974 Dinolagellati tecat: 20 µm n.i. Minuscula bage (Paulsen) Lebour 1925 Protoperdinium grani diversent (Schiller) 1974 Dinophysis parva Schiller 1928 Caraita 2010 Minuscula bage (Renberg) Gémez, Moreira & López- Garcia 2010 Protoperdinium mesner 1974 Dinophysis parva Schiller 1928 Minuscula bage (Renberg) Géme	Amphamanian di sphenolaes wan 1910	neterocapsa rotundata (Loninanin) mansen 1995	Phalacroma rotundatum (Claparéde & Lachmann) Kofoid &
Amphidoma languida Tillman, Salas & Eltrachter 2012 Karenia bicunfformis Botes, Sym & Pitcher 2003 Proncofluce palagica Fabre-Domergue 1889 Azadinium poporum Tillman & Eltrachter 2011 Karenia bicunfformis Botes, Sym & Pitcher 2003 Proncentrum adalium (Lohman), Loebilch 1970 Azadinium spo. Karenia mikinotol (Myske & Kominami ex Oda) Hansen & Meestrug 2000 Proncentrum adalium (Lohman), Loebilch 1970 Azadinum spo. Karenia spo. Proncentrum adalium (Lohman), Loebilch 1970 Azadinum spo. Karenia spo. Proncentrum adalium (Lohman), Loebilch Shelter & Schnidt 1979 Cachiodinum pulchelium Lebux 1917 Lessardia elongata Saldarriaga & Taylor. 2003 Protoperidinium dragges (Entenberg) Balech 1974 Dirondaguella tecati > 20 µm n.i. Microcanthorial minum selferum (Lohman), Detandrei) Bale Protoperidinium dragges (Estherberg) Balech 1974 Dirondaguella tecati > 20 µm n.i. Microcanthorial minum selferum (Cleve) Gómez, Moreira & López- Garcia 2010 Protoperidinium viechter) Scheter 1983 Dinophysis arunnatul (Balech) Sournia 1973 Mecocaratium ariaditum (Karsten) Gómez, Moreira & López- Garcia 2010 Protoperidinium viechter) Scheter 1984 Gonyaulax polygramma Stein 1883 López- Garcia 2010 Protoperidinium viechter) Scheter 1983 Protoperidinium viechter) Scheter 1984 Gonyaulax polygramma Stein 1883	Amphidinium spp.	Heterocapsa triquetra (Ehrenberg) Stein 1883	Michener 1911
Azadinium spinosum Elbrächter & Tillmann 2009 Azafrikum spinosum Elbrächter & Tillmann & Nezan 2014 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Azadinium spin Azadinium spinosum Elbrächter & Tillmann & Nezan 2014 Lessettivp 2000 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Azadinium spinosum Elbrächter & Tillmann & Nezan 2014 Lessettivp 2000 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Azadinium spinosum Elbrächter & Tillmann & Nezan 2014 Lessettivp 2000 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Azadinum spinosum Elbrächter & Tillmann & Nezan 2014 Lessettivp 2000 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Cadriduum cuneatum Tillmann & Nezan 2014 Lessettivp 2000 Prorocentrum compressum (Bailey) Abé ex Dodge 1975 Corbidonium cunvicuadutum (Kohol) Taylor 1976 Mesoporas parforatus (Gran) Lilick 1937 Protoperidinium divergens (Ehrenberg) Balech 1974 Dinoflagellati tecati > 20 µm n.i. Minuscula bipes (Paulsen) Lebour 1925 Protoperidinium ovum (Schiller 1911) Balech 1974 Dinophysis auruniata Claparède & Lachmann 1859 Carcia 2010 Mecceratium macricum (Cleve) Gómez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schiller 1917) Gonyaulax polygramma Stein 1883 López- Garcia 2010 Mecceratium maschiller 1937 Scrippsiella Lachtrymoso Lewis 1991 Gonyaulax polygramma Stein 1883 <td>Amphidoma languida Tillmann, Salas & Elbrachter 2012 Azadinium poporum Tillmann & Elbrächter 2011</td> <td>Karenia bicuneiformis Botes, Sym & Pitcher 2003 Karenia brevis (Davis) Hansen & Moestrup 2000</td> <td>Pronoctiluca pelagica Fabre-Domergue 1889 Prorocentrum balticum (Lohmann) Loeblich 1970</td>	Amphidoma languida Tillmann, Salas & Elbrachter 2012 Azadinium poporum Tillmann & Elbrächter 2011	Karenia bicuneiformis Botes, Sym & Pitcher 2003 Karenia brevis (Davis) Hansen & Moestrup 2000	Pronoctiluca pelagica Fabre-Domergue 1889 Prorocentrum balticum (Lohmann) Loeblich 1970
Azadinum spp. Karenia spp. Procontrum gracile Schült 1995 Azadinum cuneatum Tilmana & Nezan 2014 Lessardia elongade Saldariaga & Taylor 2003 Procontrum gracile Schült 1995 Cachdonium pukchelum Tilmana & Nezan 2014 Lessardia elongade Saldariaga & Taylor 2003 Procontrum gracile Schült 1997 Cochodinium pukchelum Lebour 1917 Mesopores adraticus (Schiller) Lillick Protoperidinium breve Paulsen 1907 Dicorbirsing pisionereielle Taylor & Cattell 1969 Minscula biges (Paulsen) Lebour 1917 Protoperidinium grani (Ostenteid) Balech 1974 Dinoflagelatit teceti > 20 µm n.i. Garcia 2010 Mescoreratum aratelinum (Cleve) Gómez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schiller 1911) Balech 1974 Dinophysis amandula (Balech) Sournia 1973 Neccoratilum macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schülle 1911) Balech 1974 Gonyaukar polygramma Stein 1883 López-Garcia 2010 Pyrocystis fusiomis Thomson 1876 Gonyaukar polygramma Stein 1883 López-Garcia 2010 Pyropacitum mosciller 1937 Gyrodinium spiele Schüller 1912 Oxytorum adridicum Schiller 1937 Scrippsiella toroloidea (Stein) Balech ex Loeblich III 1965 Gyrodinium spiele Schüller 1911 Cocreatilum macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyropacus Morologicum Stein 1883 Gyrodinium	Azadinium spinosum Elbrächter & Tillmann 2009	Moestrup 2000	Prorocentrum compressum (Bailey) Abé ex Dodge 1975
Azadinum cuneatum Tillmann & Nézan 2014 Lessardia elongata Saldariaga & Taylor. 2003 Procoentrum rathymum Loebulch, Sherley & Schmidt 1979 Cidadopxis brachiolala Stein 1883 Linguclatium polydowdrum (Stein Dodge 1989 Protoperidinium curv raturymum Loebulch, Sherley & Schmidt 1979 Cochidatium pulchellum Lebour 1917 Mesoporos adriaticus (Schiller) Lillick Protoperidinium curve aduatum (Kotoid) Taylor 1976 Dinoflagellati tecati < 20 µm n.i.	Azadinium spp.	Karenia spp.	Prorocentrum gracile Schütt 1895
Cladopysk brachidals stein 1863Linguloalnum poyedrum (stein) Lodge 1989Protoperialnum arev Paulsen 1907Cochtodinium curvicaudatum (Kofold) Talkor 1976Mesoporos andraitus (Schille) LillickProtoperialnum arev Paulsen 1907Dinoflagellati tecati < 20 µm n.i.	Azadinium cuneatum Tillmann & Nézan 2014	Lessardia elongata Saldarriaga & Taylor 2003	Prorocentrum rathymum Loeblich, Sherley & Schmidt 1979
Controdinium curvicaudium (Kotoi) Taylor 1976 Inscription curvicaudium (Kotoi) Taylor 1976 Inscription curvicaudium (Kotoi) Taylor 1976 Dicrogriam psilonereidle Taylor & Cattell 1969 Microcanthodinium selferum (Lohmann) Dellandre 1937 Protoperidinium durgens (Ehrenberg) Balech 1974 Dinoftagelial tecati > 20 µm ni. Microcanthodinium selferum (Cleve) Gómez, Moreira & López-Garcia 2010 Protoperidinium durgens (Ehrenberg) Balech 1974 Dinophysis acuminata Claparède & Lachmann 1859 Neocoratium arétinum (Cleve) Gómez, Moreira & López-Garcia 2010 Protoperidinium wesner (Schiller 1911) Balech 1974 Dinophysis anandula (Balech) Sournia 1973 Neocoratium acticutum (Karsten) Gómez, Moreira & López-Garcia 2010 Protoperidinium wesner (Schiller 1911) Balech 1974 Gonyaulax polygramma Stein 1883 López-Carcia 2010 Protoperidinium wesner (Schiller 1911) Gonyaulax polygramma Stein 1883 López-Carcia 2010 Protoperidinium wesner (Schiller 1937) Gymnodiniaceae < 20 µm ni.	Ciadopyxis brachiolata Stein 1883	Linguloainium polyearum (Stein) Doage 1989 Mesonoros adriaticus (Schiller) Lillick	Protoperidinium preve Paulsen 1907 Protoperidinium crassines (Kofoid) Balech 1974
Dicossima pellonereidle Taylor & Cattell 1969 Microcanthodinium selferum (Lohmann) Deflandre 1937 Protoperdinium graiil (Ostenledi) Balech 1974 Dinoflagellati tecati < 20 µm n.i.	Corvthodinium curvicaudatum (Kofoid) Taylor 1976	Mesoporos perforatus (Gran) Lillick 1937	Protoperidinium divergens (Ehrenberg) Balech 1974
Dinoflagellati tecati ≤ 20 µm n.i. Minuscula bipes (Paulsen) Lebour 1925 Protoperidinium ovum (Schiller) Balech 1974 Dinoflagellati tecati > 20 µm n.i. Minuscula bipes (Paulsen) Lebour 1925 Protoperidinium ovum (Schiller) Balech 1974 Dinophysis acuminata Claparède & Lachmann 1859 Meoceratium arietinum (Cleve) Gómez, Moreira & López- Garcia 2010 Protoperidinium viesneri (Schiller 1911) Balech 1974 Dinophysis arandula (Balech) Sournia 1973 Neoceratium declinatum (Karsten) Gómez, Moreira & López- Garcia 2010 Protoperidinium viesneri (Schiller 1911) Balech 1974 Gonyaulax polygramma Stein 1883 Neoceratium massiliense (Gouret) Gómez, Moreira & López- Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax sphaeroidea Kofoid 1911 Neoceratium massiliense (Gouret) Gómez, Moreira & López- Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gymodiniaceae < 20 µm n.i.	Dicroerisma psilonereiella Taylor & Cattell 1969	Micracanthodinium setiferum (Lohmann) Deflandre 1937	Protoperidinium granii (Ostenfeld) Balech 1974
Dinoflagellati tecati > 20 µm n.i. Neoceratium aretinum (Cleve) Gómez, Moreira & López- Garcia 2010 Protoperidinium pellucidum Bergh 1881 Dinophysis acuminata Claparède & Lachmann 1859 Neoceratium decinatum (Cleve) Gómez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schiller 1911) Balech 1974 Dinophysis anandula (Balech) Sournia 1973 Neoceratium decinatum (Karsten) Gómez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schiller 1911) Balech 1974 Dinophysis parva Schiller 1928 Neoceratium fusus (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schiller 1917) Gonyaulax polygramma Stein 1883 Neoceratium massiliense (Gourret) Gómez, Moreira & López- Garcia 2010 Pyrocystis lurula (Schüt) Schüt 1896 Gymodiniaceae < 20 µm n.i.	Dinoflagellati tecati <u><</u> 20 µm n.i.	Minuscula bipes (Paulsen) Lebour 1925	Protoperidinium ovum (Schiller) Balech 1974
Dinophysis acuminata Claparède & Lachmann 1859 Neoceratium acorcum (Leve) Gomez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schiller 1911) Balech 1974 Dinophysis amandula (Balech) Sournia 1973 Secoratium declinatum (Karsten) Gómez, Moreira & López- Garcia 2010 Protoperidinium wiesneri (Schiller 1911) Balech 1974 Dinophysis parva Schiller 1928 Neoceratium fusus (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax polygramma Stein 1883 Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax sphaeroidea Kofoid 1911 Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyropystis lunula (Schütt) Schütt 1896 Gyrmodiniaceae ≤ 20 µm n.i. Oxytoxum adriaticum Schiller 1937 Scrippsiella lachrymosa Lewis 1991 Gyrdonium duciutatum Hansen & Larsen 1992 Oxytoxum adriaticum Schiller 1937 Scrippsiella lachrymosa Lewis 1991 Gyrdonium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum adriates Schiller 1937 Scrippsiella lachrymosa Lewis 1991 Gyrdonium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum adriates Schiller 1937 Torodinium robustum Kofoid & Swezy 1921 Gyrdonium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum adriates Schiller 1937 Periphyllophora mirabilis (Schiller) Kamptner 1937 Zalgriosphaera robusta (Lohmann) Norris 1984 Coccoli	Dinoflagellati tecati > 20 µm n.i.	Neoceratium arietinum (Cleve) Gómez, Moreira & López- Garcia 2010	Protoperidinium pellucidum Bergh 1881
Dinophysis amandula (Balech) Sournia 1973 Neoceratium declinatum (Karsten). Gómez, Moreira & López- Garcia 2010 Ptychodiscus noctiluca Stein 1883 Dinophysis parva Schiller 1928 Scria 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax polygramma Stein 1883 Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax sphaeroidea Kofoid 1911 Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyrophacus horologicum Stein 1883 Gymodiniaceae ≤ 20 µm n.i. Oxytoxum adriaticum Schiller 1937 Scrippsiella gop. Gyrodinium aciculatum Hansen & Larsen 1992 Oxytoxum adriaticum Schiller 1937 Scrippsiella spp. Gyrodinium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum globusum Schiller 1937 Scrippsiella spp. Gyrodinium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum globusus (Klaith) Schiller 1937 Torodinium robustum Kofoid & Swezy 1921 Algirosphaera robusta (Lohmann) Norris 1984 Coccolithoris ≤ 10 µm n.i. Periphyllophora mirabilis (Schiller) Kamptner 1937 Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978 Coroonsphaera mediterranee (Lohmann) Gaarder 1977 Schiller 1977 Calciosolenia brasiliensis (Lohmann) 1902 Coronsphaera mediterranee (Lohmann) Gaarder 1977 Sphaecoalphaera anthos (Lohmann 1902	Dinophysis acuminata Claparède & Lachmann 1859	Garcia 2010 Garcia 2010	Protoperidinium wiesneri (Schiller 1911) Balech 1974
Dinophysis parva Schiller 1928 Neoceratium fusus (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax polygramma Stein 1883 López-Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax sphaeroidea Kofoid 1911 Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyrocystis fusiformis Thomson 1876 Gonyaulax sphaeroidea Kofoid 1911 Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López- Garcia 2010 Pyrophacus horologicum Stein 1883 Gymodiniaceae ≥ 20 µm n.i. Oxytoxum adriaticum Schiller 1937 Scrippsiella lachrymosa Lewis 1991 Gyrodinium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum curvatum (Kofoid) Kofoid 1911 Scrippsiella trochoidea (Stein) Balech ex Loeblich III 1965 Gyrodinium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum curvatum (Kofoid) Kofoid 1911 Scrippsiella spp. Gerdinium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum curvatum (Kofoid) Kofoid 1917 Scrippsiella rochoidea (Stein) Balech ex Loeblich III 1965 Agrosphaera robusta (Lohmann) Norris 1984 Coccolithus pelagicus (Wallich) Schiller 1937 Periphyllophora mirabilis (Schiller) Kampther 1937 Alsphaera ordinata (Kampther) Heimdal 1973 Coccolithus pelagicus (Wallich) Schiller 1930 Periphyllophora mirabilis (Schiller) Kampther 1937 Alsicosolenia brasiliensis (Lohmann) 1903 Coccolithus pelagicus (Wallich) Schiller 1937	Dinophysis amandula (Balech) Sournia 1973	Neoceratium declinatum (Karsten) Gómez, Moreira & López- Garcia 2010	Ptychodiscus noctiluca Stein 1883
Gonyaulax polygramma Stein 1883 Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López-Garcia 2010 Pyrocystis lunula (Schütt) Schütt 1896 Gonyaulax sphaeroidea Kofoid 1911 Cápez-Garcia 2010 Pyrophacus horologicum Stein 1883 Gymnodiniaceae < 20 µm n.i.	Dinophysis parva Schiller 1928	Neoceratium fusus (Ehrenberg) Gómez, Moreira & López- Garcia 2010	Pyrocystis fusiformis Thomson 1876
Gonyaulax sphaeroidea Kofoid 1911Neoceratium massiliense (Gourret) Gómez, Moreira & López- Garcia 2010Pyrophacus horologicum Stein 1883Gymodiniaceae < 20 µm n.i.	Gonyaulax polygramma Stein 1883	Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López-Garcia 2010	Pyrocystis lunula (Schütt) Schütt 1896
Gymnodiniaceae ≤ 20 µm n.i. Gymodiniaceae > 20 µm n.i. Gymodiniaceae > 20 µm n.i. Gyrodinium aciculatum Hansen & Larsen 1992 Gyrodinium aciculatum Hansen & Larsen 1992 Gyrodinium aciculatum Hansen & Larsen 1992 Gyrodinium spirale (Bergh) Kofoid & Swezy 1921 Gyrodinium spirale (Bergh) Kofoid & Swezy 1921 Gyrodinium spirale (Bergh) Kofoid & Swezy 1921 Oxytoxum curvatum (Kofoid) Kofoid 1911 Oxytoxum aldiceps Schiller 1937 Oxytoxum laticeps Schiller 1937 Pontosphaera actusta (Kamptner) Heimdal 1973 Schiller 1937 Schaera athona (Murray & Blackman 1898 Schiller 191	Gonyaulax sphaeroidea Kofoid 1911	Neoceratium massiliense (Gourret) Gómez, Moreira & López- Garcia 2010	Pyrophacus horologicum Stein 1883
Gymodiniaceae > 20 μm n.i. Gyrodinium aciculatum Hansen & Larsen 1992Oxytoxum curvatum (Kofoid) Kofoid 1911 Oxytoxum laticeps Schiller 1937 Oxytoxum laticeps Schiller 1937 Portosphaera robusta (Lohmann) Norris 1984 Calciciscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978 Calciosolenia murrayi Gran 1912 Calciosolenia murrayi Gran 1912 Calvptrosphaera ableorate achinata (Kamptner) Norris 1985 Calvptrosphaera ablea Schiller 1913 Calvptrosphaera aphaeroidea Schiller 1913 Calvptrosphaera aphaeroidea Schiller 1913 Calvptrosphaera sp. Calvptrosphaera sp. Calvptrosphae	Gymnodiniaceae ≤ 20 µm n.i.	Oxytoxum adriaticum Schiller 1937	Scrippsiella lachrymosa Lewis 1991
Gyrodinium aciculatum Hansen & Larsen 1992Oxytoxum curvatum (Kofoid) Kofoid 1911Scrippsiella trochoidea (Stein) Balech ex Loeblich III 1965Gyrodinium fusiforme Kofoid & Swezy 1921Oxytoxum curvatum (Kofoid) Kofoid 1911Scrippsiella trochoidea (Stein) Balech ex Loeblich III 1965Gyrodinium spirale (Bergh) Kofoid & Swezy 1921Oxytoxum curvatum (Kofoid) Schiller 1937Torodinium robustum Kofoid & Swezy 1921Gyrodinium spi.Oxytoxum longum Schiller 1937Oxytoxum longum Schiller 1937Gyrodinium spi.PRYMNESIOPHYCEAE COCCOLITOFORIAcanthoica quattrospina Lohmann 1903Coccolithus pelagicus (Wallich) Schiller 1930Algirosphaera robusta (Lohmann) Norris 1984Coccolitofori ≤ 10 μm n.i.Alisphaera ordinata (Kamptner) Heimdal 1973Coccolitofori ≤ 10 μm n.i.Calciciscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978Coronosphaera sp.Calciosolenia brasiliensis (Lohmann) Young 2003Coronosphaera mediterranea (Lohmann) Gaarder 1977Calciosolenia murrayi Gran 1912Daktylethra pirus (Kamptner) Norris 1985Calyptrosphaera oblonga Lohmann 1902Emiliania huxley (Lohmann) Hay & Mohler 1967Calyptrosphaera sphaeroidea Schiller 1913Helicosphaera carterii (Wallich) Kamptner 1954Calyptrosphaera sp.Syracosphaera chirica Kamptner 1941Calvptrosphaera sp.Syracosphaera hellenica Kamptner 1937Ceratolithus cristatus Kamptner 1950Ophiaster hydroideus (Lohmann 1913Ophiaster hydroideus (Lohmann 1913Zygosphaera hellenica Kamptner 1937	Gymnodiniaceae > 20 µm n.i.	Oxytoxum caudatum Schiller 1937	Scrippsiella spp.
Gyrodinium fusitome Kotol & Swezy 1921Oxytoxum globusum SchillerTorodinium robustum Kotol & Swezy 1921Gyrodinium spirale (Bergh) Kofoid & Swezy 1921Oxytoxum laticeps Schiller 1937Torodinium robustum Kotold & Swezy 1921Gyrodinium spi.Oxytoxum longum Schiller 1937Oxytoxum longum Schiller 1937Acanthoica quattrospina Lohmann 1903Coccolithus pelagicus (Wallich) Schiller 1930Periphyllophora mirabilis (Schiller) Kamptner 1937Alighaera ordinata (Kamptner) Heimdal 1973Coccolithus pelagicus (Wallich) Schiller 1930Periphyllophora mirabilis (Schiller) Kamptner 1937Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978Coronosphaera binodata (Kamptner) Gaarder 1977Scyphosphaera apsteinii Lohmann 1902Calciosolenia brasiliensis (Lohmann) Young 2003Coronosphaera mediterranea (Lohmann) Gaarder 1977Sphaerocalyptra quadridentata (Schiller) Deflandre 1952Calyptrosphaera oblonga Lohmann 1902Emiliania huxley (Lohmann) Hay & Mohler 1967Syracosphaera anthos (Lohman) Janin 1987Calyptrosphaera sp.Helicosphaera carterii (Wallich) Kamptner 1954Syracosphaera histrica Kamptner 1941Calyptrosphaera sp.Helicosphaera cortifera (Schiller) Kamptner 1937Syracosphaera hurra hurra 1937Ceratolithus cristatus Kamptner 1950Ophiaster hydroideus (Lohmann 1913Syracosphaera hurra 1937	Gyrodinium aciculatum Hansen & Larsen 1992	Oxytoxum curvatum (Kofoid) Kofoid 1911	Scrippsiella trochoidea (Stein) Balech ex Loeblich III 1965
Gyrodinium spin a (beigh) Kolod & Swezy 1921 Corytoxum longum Schiller 1937 Gyrodinium spin. Oxytoxum longum Schiller 1937 Acanthoica quattrospina Lohmann 1903 Coccolithus pelagicus (Wallich) Schiller 1930 Aligosphaera robusta (Lohmann) Norris 1984 Coccolithus pelagicus (Wallich) Schiller 1930 Aligosphaera ordinata (Kamptner) Heimdal 1973 Coccolithos pelagicus (Wallich) Schiller 1930 Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978 Coronosphaera binodata (Kamptner) Gaarder 1977 Calciosolenia brasiliensis (Lohmann) Young 2003 Coronosphaera mediterranea (Lohmann) Gaarder 1977 Calciosolenia murrayi Gran 1912 Daktylethra pirus (Kamptner) Norris 1985 Calyptrosphaera oblonga Lohmann 1902 Ermiliania huxley (Lohmann) Hay & Mohler 1967 Calyptrosphaera sphaeroidea Schiller 1913 Helicosphaera cateriri (Wallich) Kamptner 1954 Calyptrosphaera sp. Syracosphaera histrica Kamptner 1941 Calyptrosphaera sp. Syracosphaera histrica Kamptner 1941 Calvptrosphaera sp. Ophiaster hydroideus (Lohmann 1913 Syracosphaera hellenica Kamptner 1937	Gyrodinium fusiforme Kotold & Swezy 1921 Gyrodinium spirale (Pergh) Kofold & Swezy 1921	Oxytoxum globosum Schiller	Torodinium robustum Kotoid & Swezy 1921
Prymmesion Prymmesion<	Gyrodinium spirale (Beign) Koloid & Swezy 1921	Oxytoxum longum Schiller 1937	
Acanthoica quattrospina Lohmann 1903 Coccolithus pelagicus (Wallich) Schiller 1930 Periphyllophora mirabilis (Schiller) Kamptner 1937 Aligirosphaera robusta (Lohmann) Norris 1984 Coccolithos pelagicus (Wallich) Schiller 1930 Periphyllophora mirabilis (Schiller) Kamptner 1937 Alisphaera ordinata (Kamptner) Heimdal 1973 Coccolitofori ≤ 10 μm n.i. Pontosphaera sp. Calcidiscus leptoporus (Murray & Blackman) Loeblich & Corisphaera sp. Rhabdosphaera apsteinii Lohmann 1902 Calciosolenia brasiliensis (Lohmann) Young 2003 Coronosphaera mediterranea (Lohmann) Gaarder 1977 Sphaerocalyptra quadridentata (Schiller) Deflandre 1952 Calciosolenia murrayi Gran 1912 Daktylethra pirus (Kamptner) Norris 1985 Syracosphaera anthos (Lohman) Janin 1987 Calyptrosphaera spaeroidea Schiller 1913 Helicosphaera carterii (Wallich) Kamptner 1954 Syracosphaera histrica Kamptner 1941 Calyptrosphaera sp. Ophiaster hydroideus (Lohmann Julan 1902 Syracosphaera hellenica Kamptner 1937		PRYMNESIOPHYCEAE COCCOLITOFORI	
Algirosphaera robusta (Lohmann) Norris 1984 Coccolitofori ≤ 10 µm n.i. Pontosphaera sp. Alisphaera ordinata (Kamptner) Heimdal 1973 Corisphaera sp. Rhabdosphaera agteinii Lohmann 1898 Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978 Coronosphaera binodata (Kamptner) Gaarder 1977 Scyphosphaera apsteinii Lohmann 1902 Calciosolenia murrayi Gran 1912 Daktylethra pirus (Kamptner) Norris 1985 Syracosphaera anthos (Lohman) Janin 1987 Calyptrosphaera sp. Emiliania huxleyi (Lohmann) Helicosphaera carterii (Wallich) Kamptner 1954 Syracosphaera d. molischii Schiller 1915 Calyptrosphaera sp. Helladosphaera corrifera (Schiller) Kamptner 1957 Syracosphaera pulchra Lohmann 1902 Ceratolithus cristatus Kamptner 1950 Ophiaster hydroideus (Lohmann) Lohmann 1913 Syracosphaera pulchra Lohmann 1902	Acanthoica quattrospina Lohmann 1903	Coccolithus pelagicus (Wallich) Schiller 1930	Periphyllophora mirabilis (Schiller) Kamptner 1937
Alisphaera ordinata (Kamptner) Heimdal 1973 Corisphaera spp. Rhabdosphaera clavigera Murray & Blackman 1898 Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan 1978 Coronosphaera binodata (Kamptner) Gaarder 1977 Scyphosphaera apsteinii Lohmann 1902 Calciosolenia brasiliensis (Lohmann) Young 2003 Coronosphaera mediterranea (Lohmann) Gaarder 1977 Sphaerocalyptra quadridentata (Schiller) Deflandre 1952 Calciosolenia murrayi Gran 1912 Daktylethra pirus (Kamptner) Norris 1985 Syracosphaera anthos (Lohman) Janin 1987 Calyptrosphaera sphaeroidea Schiller 1913 Helicosphaera carterii (Wallich) Kamptner 1954 Syracosphaera f. molischii Schiller 1925 Calyptrosphaera spp. Helladosphaera corrifera (Schiller) Kamptner 1937 Syracosphaera pulchra Lohmann 1902 Ceratolithus cristatus Kamptner 1950 Ophiaster hydroideus (Lohmann) Lohmann 1913 Zygosphaera hellenica Kamptner 1937	Algirosphaera robusta (Lohmann) Norris 1984	Coccolitofori < 10 µm n.i.	Pontosphaera sp.
Coronosphaera binodata (Kamptner) Gaarder 1977Scyphosphaera apsteinii Lohmann 1902Tappan 1978Coronosphaera binodata (Kamptner) Gaarder 1977Scyphosphaera apsteinii Lohmann 1902Calciosolenia brasiliensis (Lohmann) Young 2003Coronosphaera mediterranea (Lohmann) Gaarder 1977Sphaerocalyptra quadridentata (Schiller) Deflandre 1952Calciosolenia murrayi Gran 1912Daktylethra pirus (Kamptner) Norris 1985Syracosphaera anthos (Lohman) Janin 1987Calyptrosphaera oblonga Lohmann 1902Emiliania huxleyi (Lohmann) Hay & Mohler 1967Syracosphaera of. molischii Schiller 1925Calyptrosphaera sphaeroidea Schiller 1913Helicosphaera carterii (Wallich) Kamptner 1954Syracosphaera histrica Kamptner 1941Calyptrosphaera spp.Helladosphaera corrifera (Schiller) Kamptner 1937Syracosphaera pulchra Lohmann 1902Ceratolithus cristatus Kamptner 1950Ophiaster hydroideus (Lohmann) Lohmann 1913Zygosphaera hellenica Kamptner 1937	Alisphaera ordinata (Kamptner) Heimdal 1973	Consphaera spp.	Rhabdosphaera clavigera Murray & Blackman 1898
Calciosolenia brasiliensis(Lohmann) Young 2003Coronosphaera mediterranea (Lohmann) Gaarder 1977Sphaerocalyptra quadridentata (Schiller) Deflandre 1952Calciosolenia murrayi Gran 1912Daktylethra pirus (Kamptner) Norris 1985Syracosphaera anthos (Lohman) Janin 1987Calyptrosphaera oblonga Lohmann 1902Emiliania huxleyi (Lohmann) Hay & Mohler 1967Syracosphaera cf. molischii Schiller 1925Calyptrosphaera sphaeroidea Schiller 1913Helicosphaera carterii (Wallich) Kamptner 1954Syracosphaera histrica Kamptner 1941Calyptrosphaera spp.Helladosphaera corrifera (Schiller) Kamptner 1937Syracosphaera pulchra Lohmann 1902Ceratolithus cristatus Kamptner 1950Ophiaster hydroideus (Lohmann) Lohmann 1913Zygosphaera hellenica Kamptner 1937	Tappan 1978	Coronosphaera binodata (Kamptner) Gaarder 1977	Scyphosphaera apsteinii Lohmann 1902
Calciosolenia murrayi Gran 1912Daktylethra pirus (Kamptner) Norris 1985Syracosphaera anthos (Lohman) Janin 1987Calyptrosphaera oblonga Lohmann 1902Emiliania huxleyi (Lohmann) Hay & Mohler 1967Syracosphaera anthos (Lohman) Janin 1987Calyptrosphaera sphaeroidea Schiller 1913Helicosphaera carterii (Wallich) Kamptner 1954Syracosphaera histrica Kamptner 1941Calyptrosphaera spp.Helladosphaera cornifera (Schiller) Kamptner 1937Syracosphaera pulchra Lohmann 1902Ceratolithus cristatus Kamptner 1950Ophiaster hydroideus (Lohmann) Lohmann 1913Zygosphaera hellenica Kamptner 1937	Calciosolenia brasiliensis (Lohmann) Young 2003	Coronosphaera mediterranea (Lohmann) Gaarder 1977	Sphaerocalyptra quadridentata (Schiller) Deflandre 1952
Calyptrosphaera oblonga Lohmann 1902Emiliania huxleyi (Lohmann) Hay & Mohler 1967Syracosphaera cf. molischii Schiller 1925Calyptrosphaera sphaeroidea Schiller 1913Helicosphaera carterii (Wallich) Kamptner 1954Syracosphaera histrica Kamptner 1941Calyptrosphaera spp.Heliadosphaera cornifera (Schiller) Kamptner 1937Syracosphaera pulchra Lohmann 1902Ceratolithus cristatus Kamptner 1950Ophiaster hydroideus (Lohmann) Lohmann 1913Zygosphaera hellenica Kamptner 1937	Calciosolenia murrayi Gran 1912	Daktylethra pirus (Kamptner) Norris 1985	Syracosphaera anthos (Lohman) Janin 1987
Caryprosphaera spinaero ucea scrimer 1915Helicospinaera carterin (waincr) Kamptner 1954Syracospinaera nistrica Kamptner 1941Calyptrosphaera spinHeliadosphaera cornifera (Schiller) Kamptner 1937Syracospinaera pulchra Lohmann 1902Ceratolithus cristatus Kamptner 1950Ophiaster hydroideus (Lohmann) Lohmann 1913Zygospinaera hellenica Kamptner 1937	Calyptrosphaera oblonga Lohmann 1902	Emiliania huxleyi (Lohmann) Hay & Mohler 1967	Syracosphaera ct. molischii Schiller 1925
Ceratolithus cristatus Kamptner 1950 Ophiaster hydroideus (Lohmann) Lohmann 1913 Zygosphaera hellenica Kamptner 1937	Calvptrosphaera spraerouea Schiller 1913	nencosphaera caneni (Wallich) Nampther 1954 Helladosphaera cornifera (Schiller) Kampther 1937	Syracosphaera nisurca Nampliner 1941 Svracosphaera pulchra Lohmann 1902
	Ceratolithus cristatus Kamptner 1950	Ophiaster hydroideus (Lohmann) Lohmann 1913	Zygosphaera hellenica Kamptner 1937

Tabella	43 - Lista dei taxa individuati dalle analisi quantitativ	e microscopiche.
	CRYPTOPHYCEAE	
Cryptomonas sp.	Cryptophyceae n.i.	Plagioselmis prolonga Butcher ex Novarino, Lucas & Morrall 1994
	CHRYSOPHYCEAE/DICTYOCHOPHYCEAE	
Dictyocha aculeata Ehrenberg 1840 Dictyocha fibula Ehrenberg 1839	Meringosphaera mediterranea Lohmann 1902 Meringosphaera tenerrima Schiller 1925	Ollicola vangoorii (Conrad) Vørs 1992
	PRASINOPHYCEAE	
Halosphaera viridis Schmitz 1878 Pachysphaera pelagica Ostenfeld 1899	Pseudoscourfieldia marina (Throndsen) Manton 1975 Pterosperma sp.	Pyramimonas spp. Tetraselmis sp.
	PRYMNESIOPHYCEAE NON COCCOLITOFORI	
Chrysochromulina spp.	Phaeocystis sp.	Phaeocystis forma coloniale
	CHLORO/EUGLENO	
Chlorophyta n.i. Crucigenia sp.	Euglenoidea n.i.	Monoraphidium griffithii (Berkeley) Komárková-Legnerová1969
	RAPHIDOPHYCEAE	
Commation cryoporinum Thomsen & Larsen 1993	Fibrocapsa japonica Toriumi & Takano 1973	Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987
	ALTRO	
Flagellati indeterminati < 10 μm <i>Hermesinum adriaticum</i> Zacharias 1906	Leucocryptos marina (Braarud) Butcher 1967 Mesodinium rubrum	Paulinella ovalis (Wulff) Johnson, Hargraves & Sieburth 1988 Telonema sp.

Analisi qualitativa del fitoplancton da retino

Per l'identificazione della comunità microfitoplanctonica lungo tutta la colonna d'acqua, sono stati raccolti con retino 5 campioni nelle stazioni E21 MG6, E21 MG7, E21 MG10, E21 MG12 e E21 MG13.

Dall'analisi qualitativa dei campioni sono stati individuati 279 taxa, di cui 253 identificati a livello di specie, 20 come genere e 6 attribuibili a categorie soprageneriche (**Tabella 44**).

Classe	Specie	Generi	Categorie superiori*
Diatomee	72	7	3
Dinoflagellati	146	11	2
Prymnesiophyceae coccolitofori	20	1	1
Chrysophyceae/Dictyochophyceae	5		
Euglenoideae	5		
Prasinophyceae	1		
Cyanophyceae		1	
Raphidophyceae	2		
Altro	2		
Totale	253	20	6

In **Tabella 45** è fornito l'elenco dei taxa presenti nelle diverse stazioni: 82 taxa appartengono alle diatomee, 159 alla classe dei dinoflagellati e 22 ai coccolitofori. Sono stati, inoltre, individuati 5 taxa attribuibili alle classi delle Chrysophyceae/Dictyochophyceae, 5 alle Euglenoideae e 2 alle Rhaphidophyceae, 1 taxon appartenente alle Prasinophyceae e 1 alle Cyanophyceae, mentre per la categoria Altro plancton sono stati identificati 2 taxa.

Nel complesso il numero di taxa presenti oscilla da un minimo di 112 in E21 MG7 ad un massimo di 172 in E21 MG13.

Tali taxa sono principalmente appartenenti ai dinoflagellati (con rispettivamente 73 taxa in E21 MG6, 62 in E21 MG7, 78 in E21 MG10 e in E21 MG12 e 89 in E21 MG13) ed in secondo luogo alle diatomee (con 51 taxa in E21 MG6, 33 in E21 MG7, 19 in E21 MG10, 45 in E21 MG12 e 58 in E21 MG13). Anche la classe dei coccolitofori risulta piuttosto differenziata in tutte le stazioni (con 11 taxa in E21 MG6, 12 taxa in E21 MG7, 15 in E21 MG10 e in E21 MG12 e 16 in E21 MG13) diventando così la terza classe più rappresentativa.

Le restanti classi sopracitate rappresentano la frazione più piccola del popolamento, con un numero esiguo di taxa in tutte le stazioni.

Sono stati, inoltre, identificati ed aggiunti 15 nuovi taxa, 3 dei quali appartenenti alla classe delle diatomee (*Chaetoceros muelleri*, *Rhizosolenia antennata* e *Tenuicylindrus belgicus*), 9 alla classe dei dinoflagellati (*Ostreopsis ovata, Prorocentrum vaginula, Gonyaulax milneri, Achradina sulcata, Monaster* sp., *Alexandrium ostenfeldii, Dinophysis ellipsoidea, Neoceratium dens* e *Phalacroma sphaeroideum*), 1 taxon attribuibile alla classe dei coccolitofori (*Lohmannosphaera paucoscyphos*), 1 alla classe delle Euglenoideae (*Eutreptiella braarudii*) e 1 alle Raphidophyceae (*Fibrocapsa japonica*) che non erano stati rilevati nei campionamenti dei precedenti anni.

Nel complesso, il numero totale di taxa osservati nei campioni da retino (279) è superiore a quello ottenuto dall'analisi dei campioni da bottiglia (216).

L'osservazione qualitativa del microfitoplancton ha permesso di rilevare la presenza di numerose specie rare appartenenti alla classe dei dinoflagellati, principalmente attribuibili ai generi Alexandrium, Amphidoma, Dinophysis, Gonyaulax, Histioneis, Neoceratium (=Ceratium)

Ornithocercus, Oxytoxum, Podolampas Protoperidinium, e Pyrocystis insieme a taxa come Cladopyxis brachiolata, Corythodinium tesselatum, Goniodoma polyedricum, Lingulodinium polyedrum, Pyrophacus horologicum, Protoceratium reticulatum e Ptychodiscus noctiluca. Da segnalare anche la presenza di taxa appartenenti alla classe delle Euglenoideae (Euglena viridis, Eutreptia viridis, Eutreptiella braarudii, Eutreptiella eupharyngea, Eutreptiella gymnastica), tipicamente di acque dolci. E' stata quindi rilevata una notevole ricchezza specifica comune a tutte le stazioni campionate.

Tabella 45 - Lista dei taxa dalle analisi qualitative dei campioni raccolti con retino nelle stazioni E21 MG6, E21 MG7, E21 MG10, E21 MG12 e E21 MG13 (indicate come 6, 7, 10, 12 e 13).

Specie	6	7	10	12	13	Specie	6	7	10	12	13
					DIAT	OMEE					
Amphora spp.		Х				Haslea wawrikae (Hustedt) Simonsen 1974	Х			х	
Asterionellopsis glacialis (Castracane) Round 1990	х	х		х	х	Hemiaulus hauckii Grunow ex Van Heurck 1882	х	х	х	х	х
Asterolampra marylandica Ehrenberg 1844		x		X		Leptocylindrus convexus Nanjappa & Zingone 2013	X			х	х
Asteromphalus flabellatus Enrenberg 1844	х	х	х	х	X	Leptocylindrus danicus Cleve 1889	X	х	X	X	X
Bacteriastrum comosum Pavillard	v				X	Leptocylindrus mediterraneus (Peragalio) Hasie 1975	X	~	х	X	X
Bacteriastrum hvalinum Lauder 1864	^			v	^	Licmonhora flahellata (Crey) Agardh 1831	^	^		×	^
Bacteriastrum iadranum Godrijan, Maric & Pfannkuchen 2012	¥			^	¥	Licmophora gracilis (Ehrenberg) Grunow 1867	¥			^	
Bacteriastrum mediterraneum Pavillard 1916	~				x	Lithodesmium undulatum Ehrenberg 1839	x			x	x
Cerataulina pelagica (Cleve) Hendev 1937	х			х	x	Navicula spp.	A		х	x	x
Chaetoceros affinis Lauder 1864	х			х	х	Naviculaceae > 20 µm n.i.	х	х	х		
Chaetoceros anastomosans Grunow 1882					х	Nitzschia (sez. sigmatae) sp.	х				х
Chaetoceros compressus Lauder 1864				х	х	Nitzschia bicapitata Cleve 1901		х			
Chaetoceros curvisetus Cleve 1889			х		х	Nitzschia cf. recta Hantzsch ex Rabenhorst 1862					х
Chaetoceros dadayi Pavillard 1913	х	х	х	х	х	Nitzschia longissima (Brébisson) Ralfs 1861		х			х
Chaetoceros danicus Cleve 1889	х	х		х		Nitzschia sicula (Castracane) Hustedt				х	х
Chaetoceros decipiens Cleve 1873	х	х		х	х	Pleurosigma majus (Grunow) Cleve 1894	х				
Chaetoceros diversus Cleve 1873	х	х	х	х	х	Proboscia alata (Brightwell) Sundström 1986	х	х	х	х	х
Chaetoceros laciniosus Schutt 1895					Х	Pseudo-nitzschia cf. galaxiae Lundholm & Moestrup 2002	X	х	х	х	х
Chaetoceros lorenzianus Grunow 1863	X	х				Pseudo-nitzschia delicatissima (Cleve) Helden 1928	X				X
Chaetocoros porturianus Brightwoll 1856	X	v	X	x	X	Pseudo-nitzschia pseudodelicalissima (Hasie) Hasie 1995 Pseudo nitzschia subfraudulonta (Hasia) Hasia 1993	X	x	v	X	x
Chaetocoros restratus Lauder 1864	x	x		x		Pseudo-nitzschia subiraudulenta (Hustodt) Hasle 1993	x	x	X	x	x
Chaetoceros similis Cleve 1896	^				Y	Pseudosolenia calcar-avis (Schultze) Sundström 1986	^	^		^	Ŷ
Chaetoceros simplex Ostenfeld 1901	x	x			^	Rhizosolenia antennata (Ehrenberg) Brown 1920					x
Chaetoceros socialis Lauder 1864	x	x			х	Rhizosolenia hebetata f. semispina (Hensen) Gran 1908	х	х	х		~
Chaetoceros spp.	x	x	х	х	x	Rhizosolenia imbricata Brightwell 1858	x				х
Chaetoceros teres Cleve 1896					х	Rhizosolenia setigera Brightwell 1858	х			х	
Chaetoceros tetrastichon Cleve 1897	х			х		Rhizosolenia styliformis Brightwell 1858				х	
Chaetoceros wighamii Brightwell 1856	х				х	Skeletonema costatum (Greville) Cleve 1873	х	х			х
Chaetoceros willei Gran 1897	х			х	х	Skeletonema pseudocostatum Medlin 1991				х	х
Coscinodiscus granii Gough 1905				х		Striatella unipunctata (Lyngbye) Agardh 1832	х				
Coscinodiscus spp.				х	х	Synedra cf. pulchella Kützing 1844				х	х
Cylindrotheca closterium (Ehrenberg) Reimann & Lewin 1964	х	х		х	х	Tabularia gaillonii (Bory de Saint-Vincent) Bukhtiyarova 1995					х
Dactyllosolen blavyanus (Peragallo) Hasle 1975				X	X	Tenuicylindrus beigicus (Meunier) Nanjappa & Zingone 2013					х
Dictorios contriche > 20 um n i	v	X	v	X	X	Thalassionema bacillare (Heiden) Kolbe 1955	X	X	X	v	~
Diatomee centricite > 20 µm n.i.	x	x	x	X	x	Thalassionema nitzschioides (Grunow) Mereschkowsky 1902	x	x	x	x	x
Fragilaria sp	Ŷ	^	^		^	Thalassionicina mitzschiolices (eranow) meresenkowsky 1962 Thalassiosira aestivalis Gran 1931	Ŷ	^		^	^
Guinardia striata (Stolterfoth) Hasle 1996	x			х		Thalassiosira spp.	A			х	х
Hantzschia amphioxys (Ehrenberg) Grunow 1880					х	Thalassiothrix longissima Cleve & Grunow 1880					х
				DIN	OFLA	AGELLATI					
Achradina nulchra Lohmann 1903	v	v	v		~	Neoceratium furca (Ehrenberg) Gómez, Moreira & López-Garcia		v	×	v	v
	^	^	^		^	2010	^	^	^	^	^
Achradina sulcata Lohmann 1920			х			Neoceratium fusus (Ehrenberg) Gómez, Moreira & López-Garcia	х	х	х	х	х
						2010 Noocoratium karstonii (Pavillard) Gómoz, Moraira & Lónaz Garcia					
Actiniscus pentasterias (Ehrenberg) Ehrenberg 1844		х			х	2010				х	
						Neoceratium macroceros (Ehrenberg) Gómez, Moreira & López-					
Alexandrium andersonii Balech 1990					х	Garcia 2010	х		х		
Alexandrium estanella (Mladen & Kafeid) Balach 1095					v	Neoceratium massiliense (Gourret) Gómez, Moreira & López-	v	~		v	
Alexanunum catenena (Wileuon & Koloid) Balech 1965					X	Garcia 2010	x	x		X	
Alexandrium cf. minutum Halim 1960	х	х	х	х	х	Neoceratium pentagonum (Gourret) Gómez, Moreira & López-	х	х	х	х	х
						Garcia 2010 Nacessratium pulabellum (Sebräder) Cémez, Mereire & Lénez					
Alexandrium ostenfeldii (Paulsen) Balech & Tangen, 1985					х	Garcia 2010	х			х	
						Neoceratium setaceum (Jörgensen) Gómez, Moreira & López-					
Alexandrium tamutum Montresor, Beran & John 2004					Х	Garcia 2010					х
Amphidinium sp				v		Neoceratium symmetricum (Pavillard) Gómez, Moreira & López-	~				
Amphilamian sp.				^		Garcia 2010	^				
Amphidoma languida Tillmann, Salas & Elbrachter 2012	x	x	x	x	x	Neoceratium trichoceros (Ehrenberg) Gómez, Moreira & López-	x			x	x
Amphidoma atainii Sahillar 1020	-					Garcia 2010					
Amphiluonna Steinin Schlier 1929 Azadinium obosum Tillmann & Elbrächter 2010			X			Omithocorous magnificus Stoin 1997	х		х	v	
Azadınlum obesulli Tilinanın a Elbiachler 2010 Azadinium sp	v		X			Ornithocercus quadratus Schütt 1000				x	
Ceratium azoricum Cleve 1900	^	y				Ostreonsis ovata Fukuvo 1981	¥			^	
Ceratium gibberum Gourret 1883		^		х		Oxytoxum adriaticum Schiller 1937	x		х	х	х
Ceratium limulus (Pouchet) Gourret 1883	х					Oxytoxum caudatum Schiller 1937	-		·		x

ING 13 (Indicate come 6, 7, 10, 12 e 13).	v				v	Ovutovum coronatium Schiller 1037		v	v		
Ceratocorys horrida Stein 1883	x	х	х	х	x	Oxytoxum coonatum Schiller 1937		^	^		х
Cladopyxis brachiolata Stein 1883	х	х	х	х	х	Oxytoxum curvatum (Kofoid) Kofoid 1911			х	х	х
Cochlodinium helix Schütt 1895					х	Oxytoxum globosum Schiller	x	Х	Х	х	
Cochodinium sp.			X X	¥	х	Oxytoxum laticeps Schiller	X	X	X	х	¥
Dinoflagellati tecati > $20 \ \mu m n.i.$	х	х	x	x	х	Oxytoxum mediterraneum Schiller	x	x	x	х	x
Dinophysis amandula (Balech) Sournia 1973	х	х	х	х	х	Oxytoxum mitra Stein 1883					х
Dinophysis caudata Saville-Kent 1881		Х			v	Oxytoxum parvum Schiller 1937	х	х	Х	х	X
Dinophysis enipsoidea Mangin Dinophysis fortii Pavillard 1923		x		x	X	Oxytoxum sceptrum (Stein) Schröder 1906				x	X
Dinophysis infundibula Schiller 1928		A	х	A	х	Oxytoxum scolopax Stein 1883	х	х	х	x	х
Dinophysis ovum (Schütt) Abé				х	х	Oxytoxum sphaeroideum Stein 1883	х		х	х	х
Dinophysis parva Schiller 1928	Х	Х	Х		X	Oxytoxum spinosum Rampi	х	X			
Dinophysis planiceps (Schiller) Balech 1967				x	x	Oxytoxum variabile Schiller 1937	x	x	X		
Dinophysis pusilla Jørgensen 1923			х	A	~	Oxytoxum viride Schiller 1937	x	x	x	х	х
Dinophysis similis Kofoid & Skogsberg 1928					х	Parahistioneis mediterranea Schiller 1928		х		х	
Dinophysis spp.	v	X	v	v	v	Phalacroma cuneus Schütt 1895				v	X
Goniodoma polvedricum (Pouchet) Jörgensen 1899	X	X	x	X	x	Phalacroma rana Jörgensen 1923				X	x
Convoltav of sphooroidea Kofeid 1911	v	v	v	v	v	Phalacroma rotundatum (Claparéde & Lachmann) Kofoid &	v	v	v	v	~
	X	X	X	X	X	Michener 1911	X	X	X	X	X
Gonyaulax ct. turbynei Murray & Whitting 1899 Gonyaulax diegensis Kofoid 1911	х	v				Praiacroma spnaeroideum Schiller 1928 Podolamnas bines Stein 1883				х	v
Gonyaulax kofoidii Pavillard 1909		^		х		Podolampas palmipes Stein 1883	х	х	х		x
Gonyaulax milneri (Murray & Whitting) Kofoid 1911		х			х	Podolampas spinifer Okamura 1912	х	х	х		х
Gonyaulax monacantha Pavillard 1916			х	Х		Pronoctiluca pelagica Fabre-Domergue 1889	х	х			
Gonyaulax polygramma Stein 1883	Х	X	Х	Х	х	Prorocentrum balticum (Lohmann) Loeblich 1970 Prorocentrum compressum (Bailey) Abé ex Dodge 1975	x	X	X	X	X
Gonyaulax scrippsae Koloid 1911 Gonyaulax spinifera (Claparède & Lachmann) Diesing 1866		X		х	х	Prorocentrum compressum (Balley) Abe ex Douge 1975	X	X	X	X	X
Gymnodiniaceae > 20 µm n.i.	х	х	х	х	х	Prorocentrum dentatum Stein 1883			x	х	х
Gymnodinium spp.	Х	Х	х	Х		Prorocentrum gracile Schütt 1895	х	х	Х	х	Х
Gyrodinium aciculatum Hansen & Larsen 1992	Х	Х	X	v	X	Prorocentrum lima (Ehrenberg) Stein 1878 Prorocentrum maximum (Courret) Schiller 1937		v	Х	х	
Gvrodinium spirale (Bergh) Kofoid & Swezy 1921	x		X	X	X	Prorocentrum maximum (Gourret) Schiller 1937 Prorocentrum minimum (Pavillard) Schiller 1933		x			
Gyrodinium spp.	A			х		Prorocentrum rathymum Loeblich, Sherley & Schmidt 1979		x			
Heterocapsa cf. illdefina (Herman & Sweeney) Morrill & Loeblich	х	х		х	х	Prorocentrum scutellum Schröder 1900	х		х	х	
III 1981 Heterocense circularisquama Horiquchi 1995		v	~	v	v	Prorocentrum sp	v				
Heterocapsa circularisquaria Hongucii 1995 Heterocapsa minima Pomroy 1989		^	^	^	x	Prorocentrum vaginula (Stein) Dodge 1975	x			х	
Heterocapsa niei (Loeblich III) Morrill & Loeblich III 1981	х		х	х		Protoceratium reticulatum (Claparède & Lachmann) Bütschli 1885	х		х		
Heterocapsa triquetra (Ehrenberg) F.Stein 1883		Х			х	Protoperidinium breve Paulsen 1907	х	Х	Х	х	Х
Histionels ct. Vouckil Schiller 1928 Histionels depressa Schiller 1928				¥	х	Protoperidinium brochii (Kotold & Swezy) Balech 1974 Protoperidinium cerasus (Paulsen) Balech 1973			х		X
Histioneis joergensenii Schiller 1928				x	х	Protoperidinium cf. brevipes (Paulsen) Balech 1974		х	х		^
Histioneis longicollis Kofoid 1907		х	х			Protoperidinium crassipes (Kofoid) Balech 1974				х	
Histioneis oxypteris Schiller 1928				Х	Х	Protoperidinium divergens (Ehrenberg) Balech 1974			Х		
Histioneis sp. Histioneis variabilis Schiller 1933		х			¥	Protoperidinium globulus (Stein) Balech 1974 Protoperidinium granii (Ostenfeld) Balech 1974			¥	X	
Karenia sp.			х	х	^	Protoperidinium Jeonis (Pavillard) Balech 1974			x	^	х
Karenia mikimotoi (Miyake & Kominami ex Oda) Gert Hansen &			x			Protoperidinium mediterraneum (Kofoid) Balech 1974				x	x
Moestrup	v	v	~	v		Protoporidinium quiforme (Dengoord 1027) Poloch 1074			v	~	~
Lingulodinium polvedrum (Stein) Dodge 1989	x	X	X	x	x	Protoperidinium ovum (Schiller) Balech 1974	x		x	x	x
Mesonoros adriaticus (Schiller) Lillick	v	v	v		 v	Protoperidinium pellucidum Bergh ex Loeblich Jr.& Loeblich III	v				v
Macaparaa parfaratus (Cran) Lillak 1027	^ 	^	^		^	1881 Protoporidinium puriforma (Daulaan) Balash 4074	^				^
Mesoporos perioratus (Gran) Lillick 1937 Micracanthodinium setiferum (Lohmann) Deflandre 1937	X Y	Х	х	X Y	X Y	Protoperidinium pyriforme (Paulsen) Balech 1974 Protoperidinium guarnerense (Schröder) Balech 1974		Y		х	
Minuscula bipes (Paulsen) Lebour 1925	^			x	^	Protoperidinium steinii (Jørgensen) Balech 1974	х	^	х	х	х
Monaster sp. Schütt 1895			х		х	Protoperidinium tuba (Schiller) Balech 1974	х		Х	х	
Neoceratium arietinum (Cleve) Gómez, Moreira & López-Garcia	х				х	Ptychodiscus noctiluca Stein 1883	х		х		
Neoceratium concilians (Jörgensen) Gómez, Moreira & López-											
Garcia 2010	Х		Х	Х	х	Pyrocystis ct. robusta Kotold 1907	х	х	Х	х	х
Neoceratium declinatum (Karsten) Gómez, Moreira & López-	х	х	х	х	х	Pyrocystis lunula (Schütt) Schütt 1896		х			х
Neoceratium dens (Ostenfeld & Schmidt) Gomez, Moreira &											
Lopez-Garcia 2010					х	Pyrophacus horologicum Stein 1883	х				
Neoceratium euarcatum (Jörgensen) Gómez, Moreira & López-					х	Scrippsiella sp.	х				
Venceratium extensum (Gourret) Gómez Moreira & López-Garcia											
2010					х	Scrippsiella trochoidea (Stein) Balech ex Loeblich III 1965			Х	х	х
Neoceratium falcatum (Kofoid) Gómez, Moreira & López-Garcia	х		х								
		PRY	MNES	SIOP	IYCE	AF COCCOLITOFORI					
Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan						Ophioster hydroideus (Lehmenn) Lehmenn 1042					
1978		х		х	х					х	
Gaiciosolenia brasiliensis (Lohmann) Young 2003	Х				х	Pontosphaera sp.					х

Tabella 45 - Lista dei taxa dalle analisi	qualitative dei campioni raccolti c	on retino nelle stazioni E2	21 MG6, E21 MG7	, E21 MG10, E2	21 MG12 e E21
MG13 (indicate come 6, 7, 10, 12 e 13).					

· · · · · · · · · · · · · · · · · · ·											
Calyptrosphaera oblonga Lohmann 1902	Х	Х	Х	Х	Х	Pontosphaera steueri Kamptner			Х	Х	Х
Ceratolithus cristatus Kamptner 1950				х	х	Pontosphaera syracusana Lohmann 1902			х		х
Coccolitofori spp.		х				Rhabdosphaera clavigera Murray & Blackman 1898		х	х	х	х
Coronosphaera binodata (Kamptner) Gaarder 1977	х		х	х		Rhabdosphaera stylifera Lohmann	х	х	х	х	х
Coronosphaera mediterranea (Lohmann) Gaarder 1977	х	х	х		х	Scyphosphaera apsteinii Lohmann 1902	х	х	х	х	х
Daktylethra pirus (Kamptner) R.E.Norris 1985	х	х	х	х	х	Syracosphaera histrica Kamptner 1941	х	х	х	х	
Discosphaera tubifer (Murray & Blackman) Ostenfeld 1900	х	х	х	х	х	Syracosphaera pulchra Lohmann 1902	х	х	х	х	х
Helicosphaera carterii (Wallich) Kamptner 1954	х	х	х	х	х	Umbilicosphaera sibogae (Weber-van Bosse) Gaarder 1970					х
Lohmannosphaera paucoscyphos Schiller 1914			х			Zygosphaera hellenica Kamptner 1937			х	х	
		CHRI	SOPH	IYCE/	AE/DI	CTYOCHOPHYCEAE					
Apedinella radians (Lohmann) Campbell 1973	х					Octactis octonaria (Ehrenberg) Hovasse 1946			х	х	х
Dictyocha epiodon subsp. subaculeata (Bukry) Desikachary &	v				v	Meringosphaera mediterranea Lohmann 1902		v	v		v
Prema 1996	^				^	Menngosphaera mediterranea Lonmann 1302		^	^		^
Dictyocha fibula Ehrenberg 1839	Х	Х	Х	Х	Х						
				EU	GLEN	IOIDEAE					
Euglena viridis (Müller) Ehrenberg 1830			Х	х		Eutreptiella eupharyngea Moestrup & Norris 1986		х	х		х
Eutreptia viridis Perty 1852	х					Eutreptiella gymnastica Throndsen 1969	х				
Futrentiella braarudii Throndson 1969											
		х	х		х						
		Х	Х	RAPI	x HIDO	PHYCEAE					
Fibrocapsa japonica Toriumi & Takano 1973	x	х	х	RAPI	x Hido	PHYCEAE Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987			х	x	
Fibrocapsa japonica Toriumi & Takano 1973	X	X	X	RAPI	x HIDO SINO	PHYCEAE Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987 PHYCEAE			X	x	
Fibrocapsa japonica Toriumi & Takano 1973 Halosphaera viridis Schmitz 1878 (forma coloniale)	x	X	X	RAPI PRAS	X HIDO SINO	PHYCEAE Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987 PHYCEAE			x	x	
Fibrocapsa japonica Toriumi & Takano 1973 Halosphaera viridis Schmitz 1878 (forma coloniale)	x x	X	X	RAPI PRAS		PHYCEAE Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987 PHYCEAE HYCEAE			x	x	
Fibrocapsa japonica Toriumi & Takano 1973 Halosphaera viridis Schmitz 1878 (forma coloniale) Spirulina sp.	X	X	X	RAPI PRAS X CYA		PHYCEAE Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987 PHYCEAE HYCEAE			X	X	
Fibrocapsa japonica Toriumi & Takano 1973 Halosphaera viridis Schmitz 1878 (forma coloniale) Spirulina sp.	x	X	x	RAPI PRAS X CYA	X HIDO SINO SINO ANOP X ALT	PHYCEAE Heterosigma akashiwo (Hada) Hada ex Hara & Chihara 1987 PHYCEAE HYCEAE HYCEAE			X	X	

2.1.3.2 Zooplancton

Oloplancton

Anche nell'estate 2021 la frazione a Crostacei Copepodi, risulta essere la componente dominante dell'oloplancton.

L'abbondanza mediaossia il numero di individui/m³ risulta di poco inferiore alla precedente campagna estiva (E20). Contrarimente alle campagne estive precedenti, è stata osservata una maggiore presenza di copepodi planctonici nella fascia di maggiore profondità (50-100 m) dove sono stati registrate le abbondanze medie più elevate (928,55 ind. m⁻³; max= 1531,11 ind. m⁻³E21 MG10; min= 566,69 ind. m⁻³E21 MG6). Talli valori calano nelle pescate verticali più superficiali (0-50 m) essendo pari a 710,19 ind. m⁻³ E21 MG10; min= 566,69 ind. m⁻³ E21 MG12; min= 629,08 ind. m⁻³ E21 MG7). La concentrazione di copepodi planctonici cala ulteriormente nella porzione prossima alla superficie, registrando nelle pescate orizzontali superficiali, una media di 461,52 ind. m⁻³ (max= 536,65 ind. m⁻³ E21 MG12; min= 256,34 ind. m⁻³ E21 MG17). Il corteggio faunistico dell'area oggetto del monitoraggio è conforme a quello delle precedenti stagioni estive, confermando anche i rapporti di dominanza tra le specie che maggiormente caratterizzano la comunità monitorata.

Nell'estate 2021 i *taxa* di copepodi identificati sono 94 (**Tabella 46**) appartenenti a 22 famiglie. La biodiversità osservata è sovrapponibile a quella riscontrata mediamente nelle stagioni estive (E15 - E20).

All'interno della colonna d'acqua è evidente la dominanza della famiglia Clausocalanidae, rappresentata complessivamente da 10 *taxa*, 9 dei quali appartenenti al genere *Clausocalanus*. Gli stadi giovanili (copepoditi) costituiscono la maggioranza degli individui campionati. In linea con quanto osservato nella stagione E20 (31,8%), i Clausocalanidae rappresentano in media il 27,5% del comparto a Copepodi: 28,2% 0 - 5 m; 24,7% 0 - 50 m; 29,8% 50 – 100 m), valori percentuali leggermente inferiori alle stagioni estive E18-E19. Tra i Clausocalanidae le specie dominanti estive sono *Clausocalanus lividus* (medie: 13,57 ind/m³ 0 – 5 m; 18,72 ind/m³ 0 – 50 m; 42,63 ind/m³ 50 – 100 m), *c. pergens* (medie: 13,33 ind/m³ 0 – 5 m; 21,84 ind/m³ 0 – 50 m; 20,20 ind/m³ 50 – 100 m) e *C. furcatus* (medie: 8,03 ind/m³ 0 – 5 m; 16,12 ind/m³ 0 – 50 m; 8,84 ind/m³ 50 – 100 m).

Le famiglie Corycaeidae (10 *taxa*; medie complessive: 113,54 ind/m³ 0 – 5 m; 168,45 ind/m³ 0 – 50 m; 127,90 ind/m³ 50 – 100 m) e Paracalanidae (10 *taxa*; medie complessive: 34,66 ind/m³ 0 – 5 m; 108,14 ind/m³ 0 – 50 m; 114,90 ind/m³ 50 – 100 m) sono rispettivamente seconda e terza per abbondanza. In particolare, il Corycaeidae *Farranula rostrata* è, in termini assoluti, la specie più abbondante del *survey* in esame (E21), con valori medi di abbondanza pari a: 80,33 ind/m³ 0 – 5 m; 132,06 ind/m³ 0 – 50 m; 87,86 ind/m³ 50 – 100 m. *F. rostrata* è specie ad ampia distribuzione geografica, presente in Mar Mediterraneo fino a 200 m di profondità, ma principalmente concentrata nei primi 100 m della colonna; nell'area oggetto del monitoraggio viene ciclicamente campionata nel periodo estivo con elevate abbondanze (es. E19). Nella famiglia Paracalanidae la specie più abbondante è *Paracalanus nanus*, avente distribuzione verticale direttamente proporzionale alla profondità (medie: 10,15 ind/m³ 0 – 5 m; 27,55 ind/m³ 0 – 50 m; 37,95 ind/m³ 50 – 100 m).

Caratterizzata da minor biodiversità (2 *taxa*), ma elevati valori di abbondanza, la Famiglia Acartiidae (medie: 68,05 ind/m³ 0 – 5 m; 88,90 ind/m³ 0 – 50 m; 68,93 ind/m³ 50 – 100 m) è principalmente rappresentata dalla specie *Acartia negligens* (medie: 27,34 ind/m³ 0 – 5 m; 56,15 ind/m³ 0 – 50 m; 22,36 ind/m³ 50 – 100 m).

Il Calanidae Nannocalanus minor si conferma specie prettamente estiva nell'area investigata, raggiungendo considerevoli abbondanze medie di esemplari adulti soprattutto nella porzione più superficiale della colonna d'acqua: 41,31 ind/m³ 0 – 5 m; 14,04 ind/m³ 0 – 50 m; 22,88 ind/m³ 50 - 100 m. Fra le specie tipiche di piattaforma continentale costantemente presenti nell'area investigata il Centropagidae

Centropages typicus (distribuzione profonda; 0,95 ind/m³ 0 – 5 m; 9,88 ind/m³ 0 – 50 m; 48,35 ind/m³ 50 - 100 m), il Temoridae *Temora stylifera* (distribuzione verticale omogenea; 36,26 ind/m³ 0 – 5 m; 37,43 ind/m³ 0 – 50 m; 28,07 ind/m³ 50 - 100 m) e l'Oithonidae *Oithona plumifera* (distribuzione profonda; 5,44 ind/m³ 0 – 5 m; 17,68 ind/m³ 0 – 50 m; 27,55 ind/m³ 50 - 100 m) completano il *pool* specifico della stagione estiva.

Scarsamente rappresentata la copepodofauna all'interno dell'iponeuston, con le 4 specie di Pontellidae (*Pontella mediterranea, Pontellina plumata, Pontellopsis regalis* e *P. villosa*) campionate sempre con abbondanze molto contenute. Quantitativamente trascurabile è la presenza della Famiglia Sapphirinidae, di cui però deve essere menzionata l'elevata biodiversità (la più alta di tutta la comunità a copepodi), pari a 12 *taxa*, appartenenti al generi *Copilia* e *Sapphirina*. Sono 2 invece le specie identificate appartenenti alla famiglia Scolecitrichidae. La famiglia Oncaeidae (7 *taxa*) ha sempre nel periodo estivo distribuzione prevalentemente profonda (2,97 ind/m³ 0 – 5 m; 10,40 ind/m³ 0 – 50 m; 43,15 ind/m³ 50 – 100 m). Generalmente scarsa la presenza di esemplari appartenenti all'Ordine Harpacticoida (3 famiglie, 5 *taxa* complessivamente), e in particolare nessun rinvenimento di esemplari del Miraciidae *Distioculus minor*. Così come osservato nel corso delle campagne estiva E19 e E20, più abbondanti del solito (comunque sporadici) i rappresentanti dell'ordine Monstrilloida, aventi forma larvale parassita e adulta effimera, priva di apparato digestivo.

Tabella 46 – Oloplancton. O.le=orizzontale, 50-0=campionamento verticale da 50 a 0 metri, 100-50=campionamento verticale da 100 a 50 metri. * presente in almeno un sub-campione, ** presente solo nell'osservazione *in toto*.

	O.le	50-0	100-50		O.le	50-0	100-50		O.le	50-0	100-50
Famiglia Acartiidae				Famiglia Metridinidae				Oithona plumifera	*	*	*
Acartia negligens	*	*	*	Pleuromamma abdominalis	*		*	Oithona setigera	*	*	*
Acartia spp	*	*	*	Pleuromamma gracilis	*	*	*	Oithona similis	*	*	*
Famiglia Calanidae				Famiglia Paracalanidae				Oithona tenuis	*	*	*
Calanus helgolandicus			*	Calocalanus contractus	*	*	*	Oithona spp	*	*	*
Mesocalanus tenuicornis			*	Calocalanus longisetosus	*	*		Famiglia Oncaeidae			
Nannocalanus minor	*	*	*	Calocalanus ovalis	*	*		Oncaea curta	*	*	*
Neocalanus gracilis	*	*	*	Calocalanus pavo	*	*	*	Oncaea media	*	*	*
Famiglia Candaciidae				Calocalanus plumulosus	*		**	Oncaea mediterranea			*
Candacia armata			*	Calocalanus styliremis	*	*	*	Oncaea scottodicarloi	*	*	*
Candacia ethiopica	*			Calocalanus spp	*	*	*	Oncaea venusta	*	*	*
Candacia giesbrechti	*	*	*	Paracalanus nanus	*	*	*	Oncaea spp	*	*	*
Candacia simplex	*	*	*	Paracalanus parvus	*	*	*	Triconia conifera			*
Candacia juv.	*	*	*	Paracalanus spp	*	*	*	Famiglia Sapphirinidae			
Famiglia Centropagidae				Famiglia Pontellidae				Copilia mediterranea	*	*	*
Centropages bradyi			*	Pontella mediterranea	*			Copilia juv spp		*	*
Centropages typicus	*	*	*	Pontella juv	*			Sapphirina angusta			*
Centropages violaceus	*	*	*	Pontellina plumata	*			Sapphirina auronitens	*		*
Isias clavipes	*	*	*	Pontellopsis regalis	*			Sapphirina bicuspitata	*		*
Famiglia Clausocalanidae				Pontellopsis villosa	*			Sapphirina gemma	*		
Clausocalanus arcuicornis	*	*	*	Famiglia Scolecitrichidae				Sapphirina intestinata	*		
Clausocalanus furcatus	*	*	*	Scolecithricella dentata			*	Sapphirina iris			*
Clausocalanus jobei	*	*	*	Scolecithrix bradyi			*	Sapphirina ovatolanceolata		*	
Clausocalanus lividus	*	*	*	Famiglia Temoridae				Sapphirina nigromaculata	*		
Clausocalanus mastigophorus	*	*	*	Temora stylifera	*	*	*	Sapphirina sali	*	*	*
Clausocalanus parapergens	*	*	*	Famiglia Corycaeidae				Sapphirina spp	*	*	*
Clausocalanus paululus	*	*	*	Corycaeus brehmi	*		*	Famiglia Ectinosomatidae			
Clausocalanus pergens	*	*	*	Corycaeus clausi	*	*	*	Microsetella norvegica	*	*	*
Clausocalanus spp	*	*	*	Corycaeus flaccus	*		*	Microsetella rosea	*	*	*
Ctenocalanus vanus		*	*	Corycaeus furcifer		*	*	Famiglia Euterpinidae			
Famiglia Euchaetidae				Corycaeus giesbrechti	*	*	*	Euterpina acutifrons			*
Euchaeta marina			*	Corycaeus limbatus		*	*	Famiglia Peltidiidae			
Euchaeta juv		*	*	Corycaeus ovalis	*	*	*	Clytemnestra scutellata	*	*	*
Paraeuchaeta hebes			*	Corycaeus typicus	**	*	*	Goniopsyllus rostratus		*	*
Famiglia Heterorhabdidae				Corycaeus spp	*	*	*	Famiglia Monstrillidae			
Heterorhabdus papilliger			*	Farranula rostrata	*	*	*	Cymbasoma sp	*	*	**
Famiglia Lucicutiidae				Famiglia Oithonidae							
Lucicutia flavicornis	*	*	*	Oithona decipiens	*	*	*				
Famiglia Mecynoceridae				Oithona longispina	*	*	*				
Mecynocera clausi		*	*	Oithona nana		*	*				

Nella tabella seguente (Tabella 47) sono indicati i volumi di sedimentazione (dopo 24 h), espressi in ml, della componente oloplanctonica raccolta nella campagna estiva 2021. In termini generali, tutte le stazioni investigate hanno restituito valori di biomassa umida inversamente

proporzionali alla profondità delle pescate. Le differenze apprezzabili nei volumi di sedimentazione, tra pescate orizzontali e verticali, possono essere generalmente ricondotte al differente volume di acqua filtrato dai retini, costantemente superiore nelle pescate orizzontali. L'andamento della biomassa risulta essere inferiore a quanto registrato nella precedente campagna estiva E20, particolarmente produttiva, ma in linea con la generale media stagionale. Complessivamente, le stazioni E21 MG7 e E21 MG12 sono caratterizzate dalla presenza di minor biomassa mesozooplanctonica.

Tabella 47- Biomassa: volumi di sedimentazione dell'oloplancton (espressi in ml).OR = campionamento orizzontale; 50-0 = campionamento verticale da 0 a 50 metri;100-50: campionamento verticale da 100 a 50 metri.										
(ml)	E21 MG6	E21 MG7	E21 MG10	E21 MG12	E21 MG13					
OR	36	17	38	25	38					
50-0	4,5	11	9,5	6	9					
100-50	5	8	7	5	6					

Meroplancton

Nella campagna estiva E21, (**Tabella 48**), sono stati determinati complessivamente 51 taxa appartenenti a 7 phyla di invertebrati marini (Mollusca, Annelida, Nemertea, Sipuncula, Artropoda, Echinodermata e Foronidae). Come già ampiamente documentato nelle campagne di monitoraggio precedenti, il gruppo che raccoglie il maggior numero di *taxa*, ovvero che rappresenta in termini qualitativi la componente principale della biodiversità dell'area di monitoraggio è quello dei crostacei decapodi, in particolare le fasi larvali di caridei e di brachiuri che assommano 30 *taxa* (il 58,8% del totale dei *taxa* determinati), seguono gli echinodermi con 8 (15,6%) e gli anellidi policheti con 3 (5,8%). Tra gli echinodermi figurano anche le fasi larvali precoci di crinoidi (larva doliolaria) e di oloturoidei (larva auricolaria) dei quali non è possibile stabilire, su sola base morfologica, l'appartenenza a una determinata specie.

In termini di abbondanza nel campione estivo 2021 prevalgono le fasi larvali degli echinodermi. Il 58% delle larve totali campionate sia nelle raccolte orizzontali, sia nei retinaggi verticali, tra 50 m di profondità e la superficie – dove si concentra il 77,4% delle larve di echinodermi raccolte - e nella sezione della colonna d'acqua più profonda tra - 100 e - 50 m, è rappresentato da questo importante gruppo di animali bentonici. All'interno di tale phylum sono largamente dominanti gli echinoidi irregolari che assommano l'86,4% delle larve presenti nel campione con due specie, Spatangus purpureus, Brissopsis lyrifera e il genere Echinocardium per il quale non è possibile a livello morfologico arrivare al rango di specie. Per tutti e tre i taxa la stazione che assomma il maggior numero di larve è MG13, rispettivamente con 23,46, 8,72 e 35,79 ind/m³. Nel dettaglio sono le stazioni intermedie quelle nelle quali si registra il maggior numero di esemplari larvali dei tre taxa. Ancora una volta i picchi di abbondanza maggiori sono nella stazione MG13, nella fascia intermedia – 50/superficie (S. purpureus = 22,04 ind/m³, Echinocardium sp = 29,44 ind/m³ e B. lyrifera = 8,21 ind/m³). Si tratta di un dato più volte confermato dalle precedenti raccolte estive. Per questo settore occidentale del Mar Mediterraneo i mesi estivi sono cruciali per la riproduzione e la dispersione di molte specie di invertebrati marini bentonici: tra essi anche gli echinodermi che si concentrano nella fascia intermedia, probabilmente a causa della loro caratteristica morfologia larvale e della presenza di gradini termici (termoclini) e di densità (aloclini) che ne impediscono il passaggio verso settori più superficiali come avviene per esempio durante l'inverno nella fase omoterma della colonna d'acqua. Se alle specie sopracitate si aggiunge anche la fase larvale dell'ofiuroideo Ophiotrix fragilis, presente in tutte le stazioni (max in MG10 0-50 m con 5,38 ind/m³) possiamo affermare che si tratti, per la zona in esame, del core stock del popolamento larvale ad echinodermi. A completare la biodiversità ad echinodermi gli echinoidi regolari, tra i quali i dominanti sono le larve del riccio di prateria Sphaerechinus granularis (max in MG6 0-50 m con 1,13 ind/m³), e di Arbacia lixula (erroneamente definito riccio maschio) (max in MG6 0-50 m con 3,11 ind/m³). Nel complesso emerge un'area di rilevante dispersione per questo gruppo di invertebrati marini, in particolare la gualità del substrato marino, prevalentemente costituito da fanghi del circalitorale, favorisce la presenza degli adulti di echinoidi irregolari e ne giustifica la massiccia presenza estiva.

Nonostante siano rappresentati nel campione E21 da 30 *taxa*, i crostacei decapodi assommano soltanto il 18,8% della dominanza quantitativa. La stazione nella quale è stato catturato il maggior numero di larve di decapodi è la MG10 con 20,57 ind/m³ distribuite tra retinaggio orizzontale e pescate verticali. I *taxa* larvali dominanti sono essenzialmente tre, ciascuno di essi sempre rappresentato nei campionamenti estivi e più in generale dominanti nella comunità meroplanctonica a decapodi dell'area del survey. Si tratta del carideo *Processa edulis edulis*, dell'anomuro *Anapagurus breviaculeatus* e della famiglia dei caridei alpheidi con le due specie *Alpheus glaber* (gamberetto schioccatore) e *Athanas nitescens*. I picchi di abbondanza per *P. edulis edulis* si registrano nella stazione MG6 (tot = 5,66 ind/m³), con max nella fascia -50 m e la superficie, 2,66 ind/m³), nella quale almeno una larva su tre tra i decapodi appartiene a questo gruppo, mentre per gli altri due *taxa* le densità larvali maggiori sono emerse nella stazione MG10 (alpheidi max: 8,03 ind/m³ e *A. breviaculeatus* max: 5,32 ind/m³). Qualitativamente le larve di crostacei decapodi mostrano maggiore biodiversità nelle stazioni superficiali (con 25 taxa), dato anch'esso sempre confermato dall'inizio dei monitoraggi stagionali, sebbene solo 5 siano esclusive del campione orizzontale, mentre 10 specie sono presenti in tutta la colonna, dalla superficie a – 100 m.

Caratteristica peculiare del campione meroplanctonico E21 è la presenza di numerose larve di sipunculidi, tutte riconducibili alla morfologia tipica della larva Pelagosphera che non consente una determinazione specifica sulla sola base morfologica. Il massimo è raggiunto nella fascia intermedia della stazione MG10 con 5,94 ind/m³. Non è la prima segnalazione di larve di sipunculidi nel campione estivo, ma in questa occasione, la maggiore densità larvale potrebbe essere ricondotta ad una fase di intensa dispersione. Come per gli echinoidi irregolari anche per le fasi adulte dei sipunculidi la qualità del substrato dell'area di studio è compatibile con la loro infaunale presenza. Infine, come già verificatosi nel campione di primavera P21 anche in questa fase si prolunga il periodo riproduttivo di numerosi molluschi gasteropodi. In particolare nelle stazioni intermedie si concentra il maggior numero di stadi larvali post veliger nei quali è possibile già distinguere l'abbozzo

di protoconca (max in MG10 0-50 m con 8,78 ind/m³). Tuttavia la determinazione specifica su base morfologica non è realizzabile e solo un'analisi genetica (tecnica del bar coding) potrebbe consentirne l'identificazione. Da segnalare, in conclusione, la presenza di ben tre *taxa* di crostacei stomatopodi tra le quali *Rissoides desmaresti* la più abbondante, con 0,57 ind/m³ nella fascia intermedia della stazione MG12. Nel complesso per il comparto meroplanctonico della stagione E21 non emergono discontinuità quali-quantitative tra la stazione di controllo MG10 e le quattro stazioni di esercizio posizionate in prossimità del terminale e questo aspetto consente di escludere qualunque forma di impatto sulla comunità meroplanctonica a carico del rigassificatore offshore.

Tabella 48 - Meroplancto	n. O.le	e = oriz	zzontale	e, 50-0 = campionamento v	verticale	da 50	a 0 me	etri, 100-50 = campionamer	nto ver	ticale	da 100
a 50 metri. * presente in a	Imeno	un sul	b-camp	ione, ** presente solo nell'	osserva	zione i	in toto.	La lista include specie deter	rminat	e a fre	SCO.
	O.le	50-0	100-50		O.le	50-0	100-50		O.le	50-0	100-50
								.			
MOLLUSCA				Ebalia nux	*	*	*	Stomatopoda			
Gastropoda laervae ind	*	*	*	Ebalia tuberosa		*	*	Platysquilla eusebia	*		
Bivalvia larvae ind	*	*	*	Goneplax rhomboides	*	*	*	Rissoides desmaresti	*		
ANNELIDA				Hippolytidae ind	*	*		Squilla mantis	*	*	
Chaetopterus variopedatus	*	*	*	Jaxea nocturna			*	ECHINODERMATA			
Spionidae ind	*	*	*	Lysmata seticaudata	*		*	Bipinnaria larvae ind	*		
Syllidae ind			*	Munida sp			*	Doliolaria larvae ind		*	*
Trocofora larvae ind	*	*	*	, Paqurus sp	*	*	*	Arbacia lixula	*	*	*
NEMERTEA				Palinurus elephas	*			Brissopsis lyrifera	*	*	*
Pilidium larvae ind	*	*		Pandalidae ind	*	*	*	Echinocardium sp	*	*	*
SIPUNCULA				Parasergestes vigilax	*	*		Echinus sp	*		*
Pelagosphera larvae ind	*	*	*	Periclimenes sp	*			Ophiotrix fragilis	*	*	*
CRUSTACEA				Philocheras bispinosus			*	Ophiura sp	*		*
Cirripedia				Pirimela denticulata	*	*	*	Spatangus purpureus	*	*	*
Cirripedia larvae ind	*	*		Plesionika sp	*		*	Sphaerechinus granularis		*	
Decapoda				Processa edulis edulis	*	*	*	FORONIDEA			
Alpheus glaber	*	*	*	Sirpus zariquievi	*			Actinotroca larvae ind		*	
Alpheus macrocheles	*			Sergestes henseni	*	*	*				
Anapagurus breviaculeatus	*	*	*	Solenocera membranacea			*				
Athanas nitescens	*	*	*	Stenopus spinosus	*						
Calcinus tubularis	*	*		Upogebia sp	*	*					
Callianassa sp	*		*	, , ,							
Cestopagurus timidus	*										
Dromia personata	*										
Liocarcinus sp	*	*									

Ittioplancton

Il survey estivo (E21) condotto sulle fasi larvali dell'ittiofauna ha complessivamente registrato la presenza di 21 *taxa* appartenenti a 16 famiglie di osteitti, i pesci ossei (**Tabella 49**), 19 dei quali raccolti nelle stazioni superficiali e solo 5 specie presenti nella colonna d'acqua da 0 a 100 m di profondità.

Due nuove specie sono state identificate per l'area di studio: il Chlopsidae Chlopsis bicolor (grongo bicolore) specie caratteristica di fondali fangosi compresi tra 35 e 350 m di profondità e il Paralepididae Sudys hyalina (luccio imperiale) specie abissale piuttosto rara per l'area mediterranea soprattutto in relazione alla fase adulta che vive tra 300 e 900 m di profondità. Complessivamente le specie identificate nell'area interessata dall'impianto di rigassificazione offshore dall'inizio dei survey sono 100.

A livello qualitativo la biodiversità maggiore è rappresentata dalla famiglia Paralepididae alla quale appartengono tre specie, tutte fasi larvali di pesci abissali. Proprio a questo proposito le larve di specie abissali rappresentano il 44% del campione ittioplanctonico complessivamente identificato. La specie largamente dominante è il Gonostomatidae *Cyclothone braueri* che raccoglie, da solo, il 93% del totale dei pesci abissali presenti nel campione. Si tratta di un *taxon* cosmopolita, sempre presente nell'area di raccolta dall'avvio del monitoraggio trimestrale. È una specie che durante la fase adulta vive a grandi profondità, lontano dalle coste, ma che in questo settore del basso Mar Ligure, area di forte risalita di acque profonde, sovente in fase larvale si riscontra anche a profondità inferiori proprio come altre specie abissali della medesima zona. La prossimità della piattaforma continentale, come già ribadito negli altri report, favorisce l'upwelling di fasi larvali generalmente distribuite più in profondità durante il ciclo di vita adulta. *C. braueri* ha il suo picco massimo di abbondanza nella stazione MG10 nella fascia intermedia tra 50 m e la superficie (19 ind/m³), densità larvale più alta mai riscontrata dall'inizio delle campagne di monitoraggio. Nel campione estivo, dato che trova conferma in tutti i survey, la fase ittioplanctonica larvale abbondante è quella dell'acciuga, *Engraulis encrasicolus* (44,03% del totale delle larve di pesce raccolte in E21). Settembre, periodo durante il quale si svolge il monitoraggio trimestrale estivo coincide ancora con la fase riproduttiva che ha inizio in giugno. Lo testimoniano il numero di larve nelle prime fasi di accrescimento e il contingente di uova (il 69,5% delle uova presenti nei campioni), le più riconoscibili nel campione per la caratteristica forma ellittica. Le densità larvali maggiori di *E. encrasicolus* sono state registrate nelle stazioni MG6 e MG13 della fascia intermedia tra 50 m e la superficie, rispettivamente 19,82 e 18,4 ind/m

Nel complesso il popolamento ittico larvale della stagione E21 è coerente con le precedenti raccolte e non presenta alcuna anomalia riconducibile all'esercizio del rigassificatore offshore, ma una variabilità della comunità ittica larvale attribuibile alla stagionalità.

Tabella 49- Ittioplancton.	O.le = oriz	zzonta	le, 50-0	= campionamento verticale	e da 5	0 a 0 r	netri, 1	00-50 = campionamento	/erticale	da 10	0 a 50
metri. * presente in almeno	o un sub-c	ampioi	ne, ** pr	esente solo nell'osservazior	ne in to	oto.					
	O.le	50-0	100-50		O.le	50-0	100-50		O.le	50-0	100-50
BOTHIDAE				MUGILIDAE				SERRANIDAE			
Arnoglossus laterna	*	*	*	Mugil cephalus	*			Anthias anthias	*	*	
Bothus podas	*			MYCTOPHIDAE				Serranus hepatus	*	*	
CALLYONIMIDAE				Benthosema glaciale	*	*	*	SPARIDAE			
Callyonimus maculatus	*			Ceratoscopelus maderensis	*	*		Sparidae ind	*	*	*
CHLOPSIDAE				PARALEPIDIDAE				SYNODONTIDAE			
Chlopsis bicolor	*		*	Lestidiops sphyrenoides	*			Synodus saurus	*		*
CLUPEIDAE				Paralepis coregonoides		*		TRACHINIDAE			
Sardinella aurita	*	*		Sudys hyalina	*			Trachinus draco	*		
ENGRAULIDAE				POMACENTRIDAE				Uova di E. encrasicolus	*	*	*
Engraulis encrasicolus	*	*	*	Chromis chromis	*			Uova ind	*	*	*
GOBIIDAE				SCORPAENIDAE							
Gobiidae ind			*	Scorpaena porcus	*						
GONOSTOMATIDAE											
Cyclothone braueri	*	*	*								

2.2 SEDIMENTI

2.2.1 Caratteristiche fisiche, chimiche e microbiologiche

Analisi granulometrica

Le stazioni E21 MG6, E21 MG7 e E21 MG13, poste in prossimità del rigassificatore, sono state classificate come pelite sabbiosa esibendo un sedimento costituto da percentuali maggiori di silt e argilla, mentre la stazione E21 MG12, classificata come sabbia pelitica, è caratterizzata per il 50% circa dalla frazione sabbiosa.

La stazione E21 MG9 è stata classificata come argilla siltosa: l'argilla risulta infatti, insieme al silt, la frazione più rappresentata, mentre la sabbia risulta poco più del 6%. La stazione E21 MG10 è stata classificata come Loam. Nelle stazioni E21 MG6, E21 MG7, E21 MG12 e E21 MG13, ossia presso il Terminale, è presente una percentuale di ghiaia che oscilla tra 6,4% e 19,3 %.

Tabella 50 – Ripartizione delle principali classi granulometriche e relativa classificazione dei sedimenti. I dati sono espressi in percentuale.									
	Ghiaia	Sabbia	Silt	Argilla	Classificazione secondo Shepard				
E21 MG6	19,3	27,5	31,2	22	Pelite sabbiosa				
E21 MG7	7,5	45,2	26,2	21,2	Pelite sabbiosa				
E21 MG9	0,0	6,3	38,5	55,3	Argilla siltosa				
E21 MG10	0,1	25,3	42,3	32,3	Loam				
E21 MG12	9,3	50,1	21,8	18,8	Sabbia pelitica				
E21 MG13	6,4	33,1	38	22,6	Pelite sabbiosa				

Metalli

Nel complesso la maggior parte degli elementi ricercati presentano concentrazioni basse e per lo più inferiori al L1 (**Tabella 51**), sebbene non manchino le eccezioni che riguardano As, Cr, Cu, Ni, Pb, Zn. Nei casi di Pb e Zn si tratta di superamenti molto modesti. Per quanto riguarda il cromo le concentrazioni sono in tutte le stazioni maggiori di L1 con tenori leggermente più elevati lontano dal Terminale. L'arsenico supera il limite L1 in tutte le stazioni e L2 in entrambe le stazioni lontane dall'Terminale, ma anche in E21 MG13. Il Nichel supera il limite L1 in tutte le stazioni e L2 in entrambe le stazioni lontane dall'Terminale, ma anche in E21 MG6. Infine, in un solo sito presso l'FSRU (E21 MG13) il rame risulta maggiore di L2.

Tabella 51 - Concentrazione dei metalli. I dati sono espressi in mg/kg, tranne AI e Fe espressi in %. Sono riportati gli Standard di Qualità												
(SQ, DM 56/2009) e i Livelli Chimici di Riferimento Nazionale (L1, L2) tratti dal DM 173/16. In neretto sono indicati i valori maggiori di SQ												
o di L1, in rosso q	o di L1, in rosso quelli maggiori di L2.											
	Al	Fe	As	Ba	Cr tot	Cu	Cd	Mn	Hg	Ni	Pb	Zn
E21 MG6	3,19	2,88	17,39	93,03	103,60	37,83	0,098	553,42	0,23	75,37	32,83	121,08
E21 MG7	3,27	2,35	16,58	101,69	87,39	23,14	0,048	459,71	0,20	59,06	23,81	84,06
E21 MG9	3,81	3,35	35,89	83,93	107,52	28,94	0,039	788,00	0,26	80,06	32,10	108,13
E21 MG10	3,49	3,12	27,86	84,73	104,53	25,99	0,035	715,61	0,22	78,02	28,59	97,96
E21 MG12	2,39	2,38	17,54	70,85	79,99	27,07	0,10	515,44	0,19	59,32	26,32	94,17
E21 MG13	3,11	2,85	26,17	77,80	95,36	91,58	0,053	726,00	0,23	70,54	30,56	107,70
S.Q.	-	-	12	-	50	-	0,30	-	0,30	30	30	-
L1 (DM 173/16)			12		50	40	0,30		0,30	30	30	100
L2 (DM 173/16)			20		150	52	0.8		0.8	75	70	150

Composti organici

Gli idrocarburi policiclici aromatici sono diffusamente presenti e mostrano i tenori più elevati presso il Terminale (Tabella 52). In particolare in E21 MG6, E21 MG12 e E21 MG13 gli IPA totali superano gli Standard di Qualità.

Il carbonio organico totale presenta presso l'FSRU un tenore medio inferiore rispetto ai controlli.

I composti organostannici sono stati rilevati ovunque (tranne mono e dibutile in E21 MG10). Il tributil stagno supera il limite L1 in tutte le stazioni tranne E21 MG10.

Tabella 52 – Concentrazione dei contaminanti organici nei sedimenti campionati nell'estate 2021. Standard di Qualità (SQ D.M. 260/2010), e Limite Chimico									
	E21 MG6	E21 MG7	E21 MG9	E21 MG10	E21 MG12	E21 MG13	50	14	12
		L21 MOT	LZT WO9			L21 MOIJ	0.02	L 1	LZ
Idrocarburi policiclici aromatici (mg /kg)									
Acenaftene	0,009	0,008	0,003	0,000	0,003	0,006			
Acenaftilene	0,029	< 0,001	0,013	0,003	0,016	0,021			
Antracene	0,073	< 0,001	0,027	0,006	0,032	0,054	0,045	0,024	0,245
Benzo (a) antracene	0,088	< 0,001	0,045	0,017	0,065	0,095		0,075	0,5
Benzo (a) pirene	0,186	< 0,001	0,082	0,021	0,112	0,160	0,030	0,030	0,1
Benzo (b) fluorantene	0,194	< 0,001	0,109	0,034	0,129	0,153	0,040	0,040	0,5
Benzo (g, h,i) perilene	0,111	< 0,001	0,062	0,018	0,073	0,101	0,055	0,055	0,1
Benzo (k) fluorantene	0,089	< 0,001	0,050	0,016	0,056	0,072	0,020	0,020	0,5
Crisene	0,095	< 0,001	0,047	0,017	0,068	0,098		0,108	0,846
Dibenzo (a, h) antracene	0,027	< 0,001	0,013	0,004	0,014	0,019			
Fenantrene	0,074	< 0,001	0,027	0,013	0,047	0,079		0,087	0,544
Fluorantene	0,165	< 0,001	0,078	0,026	0,122	0,184	0,110	0,110	1,494
Fluorene	0,014	0,015	0,005	0,002	0,006	0,012		0,021	0,144
Indeno (1,2,3 - c, d) pirene	0,121	< 0,001	0,071	0,019	0,077	0,110		0,070	0,1
Naftalene	0,010	0,008	0,004	0,002	0,006	0,008	0,035	0,035	0,391
Pirene	0,161	< 0,001	0,081	0,023	0,114	0,160		0,153	1,398
IPA Totali	1,445	0,031	0,720	0,222	0,940	1,333	0,800		
Idrocarburi C<10 (mg/kg)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
Idrocarburi C10-C40 (mg/kg)	79,1	90,3	30,0	26,1	83,4	67,9			
Composti organostannici									
Dibutilstagno (mg/kg)	0,0365	0,0146	0,00891	<0,001	0,0289	0,00639			
Monobutilstagno (mg/kg)	0,030	0,014	0,00804	<0,001	0,0197	0,00635			
Tributilstagno (mg/kg)	0,0742	0,0243	0,0183	0,00167	0,0526	0,00994		0,005	
Carbonio organico totale (TOC) (mg/kg)	7820	4910	7420	10550	4740	8350			

Cloroderivati

Questi composti risultano al di sotto del limite di rilevabilità del metodo, tranne sporadiche eccezioni (Tabella 53).

Tabella 53 – Concentrazione dei composti cloro derivati nei sedimenti campionati nell'Estate 2021.										
	E21 MG6	E21 MG7	E21 MG9	E21 MG10	E21 MG12	E21 MG13				
Acidi Aloacetici (µg/kg)										
Dalapon	<0,4	<0,4	<0,4	<0,4	<0,4	<0,4				
Acido Dibromoacetico	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2				
Acido Tribromoacetico	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0				
Acido Monobromoacetico	<0,4	<0,4	<0,4	<0,4	<0,4	<0,4				
Acido Bromodicloroacetico	<0,4	<0,4	<0,4	<0,4	<0,4	<0,4				
Acido Bromocloroacetico	<0,4	<0,4	<0,4	<0,4	<0,4	<0,4				
Acido Dicloroacetico	<1,6	<1,6	<1,6	<1,6	<1,6	<1,6				
Acido Tricloroacetico	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2				
Acido Monocloroacetico	<3,0	<3,0	<3,0	<3,0	<3,0	<3,0				
Acido Clorodibromoacetico	<1,2	<1,2	<1,2	<1,2	<1,2	<1,2				
1,1,1-Tricloro-2-propanone	< 1	< 1	< 1	< 1	< 1	< 1				
1,1,1-Tricloroetano	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05				

Tabella 53 – Concentrazione dei composti cloro derivati nei sedimenti campionati nell'Estate 2021.									
1,1,2-Tricloroetano	0,13	0,12	0,12	< 0.05	0,093	0,081			
1,1-dicloro-2-propanone	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5			
1,2,3-Tricloropropano	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
1,2-Dibromo-3-Cloro-propano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2			
1,2-Dibromoetano	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Bromodiclorometano	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Bromoformio	0,12	< 0,05	0,52	< 0,05	< 0,05	0,063			
Cloroformio	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Dibromoacetonitrile	< 5	< 5	< 5	< 5	< 5	< 5			
Dibromoclorometano	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Dicloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Tetracloroetilene	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Tetracloruro di carbonio	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Tricloroacetonitrile	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Tricloroetilene	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05			
Alofenoli (SVOC) (µg/kg)									
2,4,6-tricloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5			
2,4-dicloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5			
4-cloro-3-metl fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5			

Analisi microbiologiche

Nella seguente tabella sono riportati i risultati delle analisi microbiologiche dalle quali si evidenzia l'assenza di contaminazione fecale (Tabella 54).

Tabella 54 – Risultati delle analisi microbiologiche condotte nei sedimenti durante la stagione estiva 2021. I dati sono espressi in MPN/g.									
	E21 MG6	E21 MG7	E21 MG9	E21 MG10	E21 MG12	E21 MG13			
Conta di Streptococchi fecali (Enterococchi)	< 10	< 10	< 10	< 10	< 10	< 10			
Conta di Coliformi Fecali	< 10	< 10	< 10	< 10	< 10	< 10			
Conta di coliformi totali	< 10	< 10	< 10	< 10	< 10	< 10			

2.2.2 Saggi ecotossicologici su campioni di sedimento

Paracentrotus lividus

Nella Tabella 55 sono riportati i parametri registrati negli elutriati estratti dai sedimenti testati.

<u>QA-QC</u> – Il test eseguito con la sostanza di riferimento (Cu) ha fornito una EC₅₀ di 23,71µg l⁻¹ di Cu (LC=22,40 e UC=25,09), che rientra nei limiti della carta di controllo del laboratorio. La percentuale media di embrioni allo stadio di pluteo ($87 \pm 2,08\%$) è risultata conforme, in quanto superiore al limite del 75% e inferiore al limite del 95%.

Le percentuali degli embrioni che hanno raggiunto lo stadio di pluteo nel test di embriotossicità (72ore) con *P. lividus* e successiva stima della tossicità cronica (EC20/50) degli elutriati sono riportati nella **Tabella 56**.

	Tabella 55 - Parametri registrati negli elutriati da utilizzare per il saggio con P. lividus.									
Campione	Salinità (‰)	pН	Ossigeno disciolto (mg/l)	Campione	Salinità (‰)	pН	Ossigeno disciolto (mg/l)			
Controllo	36	8,18	6,71							
E21 MG6	36	7,89	6,98	E21 MG10	36	7,86	6,49			
E21 MG7	36	7,87	7,01	E21 MG12	36	7,85	7,11			
E21 MG9	36	7,91	6,51	E21 MG13	36	7,34	7,19			
Tabe	Ila 56 - Risultati de	l saggio biolog	jico di embriotos	sicità (72ore) e succ	cessiva stima de	ella tossicità cro	onica.			
-----------	-----------------------	----------------------	------------------------	------------------------------	---------------------	--------------------	-----------			
Campione	Concentrazione	% media di plutei	% media di embrioni	Correzione ABBOTT	— EC 20 (%)	EC 50 (%)	Stima di			
Campione	(%) dell'elutriato	(± dev.st %)	non sviluppati	(embrioni non sviluppati)	EG 20 (<i>1</i> 0)	EC 30 (%)	tossicità			
Controllo		87 ± 2,08	13	0	-	-				
	100	45 ± 1,53	55	49						
E21 MG6	50	70 ± 2,52	30	20	48,5	>100	Bassa			
	25	81 ± 1,53	19	7						
	100	56 ± 2,00	44	36						
E21 MG7	50	69 ± 2,00	31	21	52,1	>100	Bassa			
	25	82 ± 1,73	18	6						
	100	51 ± 2,08	49	42						
E21 MG9	50	70 ± 1,53	30	19	52,8	>100	Bassa			
	25	84 ± 2,00	16	4						
	100	52 ± 1,53	48	41						
E21 MG10	50	63 ± 2,00	37	28	52,5	>100	Bassa			
	25	81 ± 1,73	19	7						
	100	35 ± 1,15	65	60						
E21 MG12	50	51 ± 1,15	49	42	27,1	71,3	Media			
	25	74 ± 2,00	26	15						
	100	42 ± 2,00	58	52						
E21 MG13	50	60 ± 2,00	40	31	33,8	92,9	Media			
	25	76 ± 1,00	24	13						

I valori di EC50 determinati nelle stazioni E21 MG6, E21 MG7, E21 MG9 e E21 MG10 mostrano una tossicità cronica bassa. Solamente due campioni (E21 MG12 e MG13), situati nei pressi del Terminale, presentano una tossicità media.

Corophium orientale

Nella **Tabella 57** sono riportati i parametri chimico-fisici dell'acqua sovrastante i sedimenti, registrati all'inizio ed al termine del test di tossicità a 28 giorni con *C. orientale*.

		I	nizio del tes	st			ł	ine del tes	t	
campione	Temp. (°C)	Salinità (‰)	рН	NH₄⁺ (mg/l)	O2 (%)	Temp. (°C)	Salinità (‰)	рН	NH₄⁺ (mg/l)	O2 (%)
Controllo		36	8,12	1	·		37	8,09	0,5	
E21 MG6		36	7,95	0,5-1			37	8,01	0	
E21 MG7		36	7,94	0,5-1			37	8,00	0	
E21 MG9	16±1	36	7,97	0,5-1	>85	15±1	37	7,99	0	>8
21 MG10		36	7,97	0,5-1			37	7,98	0-0,5	
E21 MG12		36	7,95	0,5-1			37	8,00	0	
E21 MG13		36	7,93	0,5-1			37	8,00	0-0,5	

<u>QA-QC</u> - Il valore della LC50(96h) =2,37mg/l (LC= 2,10mg/l e UC=2,67mg/l) ottenuto con la sostanza di riferimento (CdCl₂) rientra nei limiti della carta di controllo del laboratorio. La sopravvivenza degli organismi sul sedimento di controllo dopo 28 giorni è risultata conforme, in quanto superiore al 85%.

Le percentuali di mortalità degli organismi di C.orientale, registrate nel test "a più lungo termine" e la stima della tossicità cronica sono riportate nella Tabella 58.

Tabella 58 - Percentuali di mortalità degli organismi di C. orientale osservate nei sedimenti testati e successiva stima della tossicità cronica.										
Campione	Numero degli organismi esposti	% degli organismi morti (± incertezza %)	% (corretta) degli organismi morti	Giudizio della tossicità						
controllo	100	2 ± 3,67	0	Assente						
E21 MG6	100	80 ± 5,19	80	Alta						
E21 MG7	100	75 ± 3,18	74	Alta						
E21 MG9	100	79 ± 6,09	79	Alta						
E21 MG10	100	74 ± 8,21	73	Alta						
E21 MG12	100	81 ± 6,09	81	Alta						
E21 MG13	100	90 ± 3,67	90	Alta						

Tutte le stazioni mostrano alte percentuali di organismi morti esibendo una diffusa tossicità cronica alta indipendetemente dalla distanza dall'FSRU. Come meglio specificato nella parte del report dedicata ai confronti, si precisa che la letteratura riporta che per il *C. volutator*, il test cronico (a 28 giorni) è da 7 a 18 volte volte più sensibile all'ammonio ed ai nitriti rispetto al test acuto (a 10 giorni), fatto che potrebbe influenzare il risultato del test. Inoltre anche il decreto del MATTM 173/16 ha incluso unicamente il test acuto, da affiancare ad altri test per costruire una appropriata batteria di saggi. Pertanto, nell'estate 2022 il test cronico sarà affiancato da quello acuto al fine di garantire una migliore interpretazione della batteria dei test nel suo complesso.

Vibrio fischeri

<u>QA-QC</u> - Il valore della EC50(17') = 9,12mg/l (LC= 7,25mg/l e UC=11,46mg/l) ottenuto con la sostanza di riferimento ZnSO₄ ·7H₂O rientra nei limiti della carta di controllo del laboratorio.

Tabella 59 - F sediment toxic	Tabella 59 - Risultati del test con il V. fischeri su sedimento tal quale. R ² (%)=coeff. di determinazione; TU=unità tossiche; STI - sediment toxicity index. Pelite espressa in %.											
Campione TU Intervallo di confidenza R² Pelite naturale stimata STI (TU) (TU)								Stima di tossicità				
E21 MG6	31,66	68,34	239	267,02	149,20	477,78	0,9202	Assente				
E21 MG7	46,17	53,83	194	518,02	382,31	702,13	0,9852	Assente				
E21 MG9	6,23	93,77	319	828,92	602,01	1141,63	0,9806	Assente				
E21 MG10	25,10	74,90	260	485,16	358,56	656,32	0,9734	Assente				
E21 MG12	51,79	48,21	176	323,18	287,36	363,58	0,9964	Assente				
E21 MG13	33,69	66,31	233	431,03	254,82	727,36	0,9315	Assente				

I valori di EC 50 rilevati nel test mostrano assenza di tossicità in tutti i campioni di sedimento analizzato (Tabella 59).

2.3 Вюта

2.3.1 Macrozoobenthos

Lo studio ha portato alla raccolta e determinazione di 7741 individui appartenenti a 183 specie (**Tabella 60**) comprendenti anellidi (policheti), molluschi, artropodi (crostacei), sipunculidi, echinodermi, nemertini, emicordati, cnidari, nematodi.

Tabella 00 - Lista delle specie maciobentoniche ninvenute nella Estate 2021 (E21).

Anellidi		
Abyssoninoe hibernica (McIntosh, 1903)	Gallardoneris iberica Martins, Carrera-Parra, Quintino & Rodrigues, 2012	Ophelina abranchiata Støp-Bowitz, 1948
Ampharete acutifrons (Grube,1860)	Glycera tesselata Grube, 1863	Oxydromus flexuosus (Delle Chiaje, 1827)
Amphicteis gunneri (M. Sars, 1835)	Glycera tridactyla Schmarda, 1861	Panthalis oerstedi Kinberg, 1855
Amphictene auricoma (O. F. Müller, 1776)	Glycera unicornis Lamarck, 1818	Paradiopatra lepta (Chamberlin, 1919)
Ancystrosyllis groenlandica Mc Intosh, 1879	Goniada maculata Oersted, 1844	Paradoneis lyra (Southern, 1914)
Anobothrus gracilis (Malmgren, 1866)	Goniadella gracilis (Verrill, 1873)	Paralacydonia paradoxa Fauvel, 1913
Aphelochaeta marioni (Saint-Joseph, 1894)	<i>Gyptis</i> sp.	Paraprionospio pinnata (Ehlers, 1901)
Apistobranchus tullbergi (Théel, 1879)	Harmothoe sp.	Paucibranchia bellii (Audouin & Milne Edwards, 1833)
Aponuphis brementi (Fauvel, 1916)	Heteromastus filiformis (Claparède, 1864)	Phyllodoce sp.
Aricidea assimilis Tebble, 1959	Heterospio mediterranea Laubier, Picard & Ramos, 1972	Phylo foetida (Claparède, 1870)
Aricidea claudiae Laubier, 1967	Hyalinoecia tubicola (O. F. Müller, 1776)	Pilargis verrucosa (Saint-Joseph, 1899)
Aricidea mariannae Katzmann & Laubier, 1975	Kirkegaardia heterochaeta (Laubier, 1961)	Pista cristata (O. F. Müller, 1776)
Aricidea monicae Laubier, 1967	Laonice sp.	Poecilochaetus fauchaldi Pilato & Cantone, 1976
Auchenoplax crinita Ehlers, 1887	Leiocapitella dollfusi (Fauvel, 1936)	Polycirrus sp.
Chaetozone carpenteri McIntosh, 1911	Levinsenia demiri Çinar, Dagli & Acik, 2011	Polygordius sp.
Chaetozone setosa Malmgern, 1867	Levinsenia gracilis (Tauber, 1879)	Praxillella gracilis (M. Sars, 1861)

Chirimia biceps (M. Sars, 1861) Cirrophorus branchiatus Ehlers, 1908	Levinsenia kosswigi Çinar, Dagli & Acik, 2011 Lumbrineriopsis paradoxa (Saint-Joseph, 1888)	Praxillella praetermissa (Malmgren, 1865) Prionospio ehlersi Fauvel, 1928
Cossura soyeri Laubier, 1962	Lumbrineris Iuciliae Martins, Carrera-Parra, Quintino &	Prionospio fallax Soderstrom, 1920
Dasybranchus caducus (Grube, 1846)	Lumbrineris sp.	Prionospio sp.
Dialychone dunerificta Tovar Hernandez, Licciano &	Lysidice unicornis (Grube, 1840)	Protodorvillea kefersteini (Mc Intosh, 1869)
Drilonereis filum (Claparède, 1868) Eteone sp. Euclymene oerstedii (Claparède, 1863) Euclymene sp. Eunice vittata (Delle Chiaje, 1828) Eupanthalis kinbergi McIntosh, 1876 Exogone verugera (Claparède, 1868) Fauveliopsis sp.	Magelona alleni Wilson, 1958 Maldane glebifex Grube, 1860 Malmgrenia lunulata (Delle Chiaje, 1841) Melinna palmata Grube, 1860 Metasychis gotoi (Izuka, 1902) Nephtys hystricis Mc Intosh, 1900 Nephtys incisa Malmgren, 1865 Ninoe armoricana Glémarec, 1968	Scalibregma inflatum Rathke, 1843 Scolelepis sp. Sigambra tentaculata (Treadwell, 1941) Spio multioculata (Rioja, 1918) Spiophanes kroyeri Grube, 1860 Sternaspis scutata (Ranzani, 1817) Syllis parapari San Martín & López, 2000 Syllis profunda Cognetti, 1955 Tembellidea madiumenco Decease Mileo & Fierd
Galathowenia oculata Zachs, 1923	Notomastus profondus (Eisig, 1887)	2013
Artropodi Akanthophoreus gracilis (Krøyer, 1842) Alpheus glaber (Olivi, 1792) Ampelisca sp. Araphura brevimanus (Lilljeborg, 1864) Athanas sp. Callianassa subterranea (Montagu, 1898) Carangoliopsis spinulosa Ledoyer, 1970 Collettea cylindrata (Sars, 1882) Diastylis sp. Say, 1818 Ebalia cranchii Leach, 1817 Eriopisa elongata (Bruzelius, 1859) Eudorella nana Sars, 1879 Eurydice spinigera Hansen. 1890	Gammaropsis sp. Gnathia oxyuraea (Lilljeborg, 1855) Goneplax rhomboides (Linnaeus, 1758) Haploops nirae Kaim Malka, 1976 Harpinia antennaria Meinert, 1890 Harpinia crenulata (Boeck, 1871) Harpinia dellavallei Chevreux, 1910 Hippomedon massiliensis Bellan-Santini, 1965 Kupellonura mediterranea Bamard, 1925 Leucon (Epileucon) longirostris Sars, 1871 Leucothoe lilljeborgi Boeck, 1861 Liljeborgia dellavallei Stebbing, 1906 Maera grossimana (Montagu, 1808)	Medicorophium rotundirostre (Stephensen, 1915) Metaphoxus simplex Bate, 1857 Natatolana borealis Lilljeborg, 1851 Nebalia clausi Dahl, 1985 Paranthura nigropunctata (Lucas, 1846) Paraphoxus oculatus (G.O. Sars, 1879) Pardaliscella boeckii (Malm, 1870) Perioculodes longimanus (Bate & Westwood, 1868) Photis longicaudata (Bate & Westwood, 1862) Pilumnus spinifer H. Milne-Edwards, 1834 Pisa sp. Tryphosella longidactyla Ruffo, 1985 Tuberapseudes echinatus (Sars, 1882)
Echinodermi		
Amphipholis squamata (Delle Chiaje, 1828) Amphiura chiajei Forbes, 1843	Antedon mediterranea (Lamarck, 1816) Astropecten irregularis pentacanthus (Delle Chiaje, 1825)	Neocucumis marioni (Marenzeller, 1878) Ophiacantha setosa (Bruzelius, 1805)
Amphiura filiformis (O. F. Müller, 1776)	Leptopentacta tergestina (M. Sars, 1859	Ophiothrix quinquemaculata Müller-Troschel, 1842
Abra Iongicallus Scacchi, 1834) Abra nitida (O.F. Muller, 1776) Acteon tormatilis (Linnaeus, 1758) Anadara inaequivalvis (Bruguière, 1789) Antalis inaequicostata (Dautzenberg, 1891) Arcopagia crassa (Pennant, 1777) Bathyarca pectunculoides (Scacchi, 1834) Capulus ungaricus (Linnaeus, 1758) Cardiomya costellata (Deshayes, 1835) Centrocardita aculeata (Poli, 1795) Clathrella clathrata (Philippi, 1844) Cylichna cylindracea (Pennant, 1777) Ennucula aegeensis (Forbes, 1844) Sinunculidi	Falcidens gutturosus (Kowalevsky, 1901) Flexopecten hyalinus (Poli, 1795) Hiatella arctica (Linnaeus, 1767) Hyala vitrea (Montagu, 1803) Kelliella abyssicola (Forbes, 1844) Kurtiella bidentata (Montagu, 1803) Lyonsia norwegica (Gmelin, 1791) Mendicula ferruginosa (Forbes, 1844) Modiolus barbatus (Linnaeus, 1758) Musculus subpictus (Cantraine, 1835) Myrtea spinifera (Montagu, 1803) Neopycnodonte cochlear (Poli, 1795) Nucula nitidosa Winckworth, 1930	Nucula sulcata (Bronn, 1831) Pandora pinna (Montagu, 1803) Papillicardium minimum (Philippi, 1836) Pitar rudis (Poli, 1795) Prochaetoderma raduliferum (Kowalevsky, 1901) Saccella commutata (Philippi, 1844) Tellimya ferruginosa (Montagu, 1808) Thyasira alleni Carozza, 1981 Thyasira biplicata (Philippi, 1836) Thyasira granulosa (Monterosato, 1874) Timoclea ovata (Pennant, 1777) Trophonopsis muricata (Montagu, 1803)
Golfingia (Golfingia) vulgaris vulgaris (Blainville, 1827) Cnidari	Onchnesoma steenstrupii steenstrupii Koren & Danilssen, 1876	Phascolion (Phascolion) strombus strombus (Montagu, 1804)
Pennatula rubra (Ellis, 1761)		
Emicordati		
Nematoda ind. Nemertea ind.		

Gli anellidi, rappresentati unicamente da policheti, risultano essere il gruppo dominante che con 6118 individui rappresentano il 79% dell'abbondanza totale. I molluschi e i crostacei, secondi e terzi in ordine di abbondanza, forniscono, rispettivamente, il 9,7 e il 6,7% di contributo, mentre i sipunculidi rimangono al di sotto del 4%. Gli echinodermi (43 individui) superano di poco lo 0,5% in totale (**Figura 31**). Più equilibrata risulta essere la ripartizione delle specie tra i vari gruppi, sebbene anche da questo punto di vista gli anellidi policheti si confermino il taxon dominante fornendo quasi la metà delle specie rinvenute (90 specie). Crostacei e Molluschi sono equamente rappresentati fornendo il 21% ciascuno delle specie totali.

Gli echinodermi e i sipunculidi forniscono, rispettivamente, il 5% e il 2% di specie al panorama faunistico.

Figura 31 - Ripartizione dell'abbondanza totale e del numero di specie tra i principali taxa rinvenuti nella Estate 2021. Altro= nemertini, nematodi, cnidari, emicordati.

Ai policheti appartengono le specie rinvenute col maggior numero di individui. Le prime quattro specie dominanti, sono, infatti, policheti e rappresentano più della metà dell'abbondanza totale (59,2%).

Levinsenia demiri (3260 individui) è in assoluto il polichete più abbondante e da solo rappresenta il 42,1% dell'abbondanza totale. *Kirkegaardia heterochaeta* seconda in ordine di abbondanza, fornisce meno del 7% di contributo all'abbondanza totale seguita da *Paradiopatra lepta* (514 individui) con un contributo del 6,6% (**Figura 32**). *Ophelina abranchiata*, la quarta specie in ordine di abbondanza, con 277 individui, non ragg il 4% di contributo. Questo risultato, che conferma quanto emerso dalla fase di "bianco", dimostra che l'area è caratterizzata da un panorama faunistico dominato da poche specie molto abbondanti affiancate da un elevato numero di specie presenti con pochi individui. Infatti 170 specie (ossia 92,9% del totale) contribuiscono per meno dell'1% (nell'insieme apportano un contributo del 25,6%) all'abbondanza totale. Inoltre il 24,6% delle specie è presente con un solo individuo.

Figura 32 - Abbondanza totale e contributo percentuale cumulativo delle specie dominanti (E21).

Le specie dominanti e diffuse, fanno sì che le repliche esibiscano una elevata similarità tra di loro, inferiore al 70% solo nelle stazioni E21 MG12 (69,8%) e E21 MG13 (66,9%) e con un picco in E21 MG14 dove supera l'80%. *Levinsenia demiri* dà il contributo maggiore a tale similarità in tutte le stazioni, contributo che nel caso di E21 MG14 e E21 MG4 supera il 60%.

In queste stazioni, infatti, tale polichete esibisce l'abbondanza più elevata pari a 145±17,4 e 148±25,5 (dato medio tra repliche). Nelle stazioni prossime al rigassificatore il contributo di tale specie non scende al di sotto del 37% rilevato in E21 MG13 e presenta un picco in E21 MG7 pari a 58,5%.

Fra le rimanenti stazioni (escluse quelle più prossime al Terminale e le già citate E21 MG4, E21 MG14) *L. demiri* esibisce contributi variabili dal 31,4% (E21 MG10) e 50,32% E21 MG9).

I policheti Paradiopatra lepta e Kirkegaardia heterochaeta seppur molto meno abbondanti di L. demiri, sono specie che maggiormente contribuiscono alla similarità tra repliche in 10 stazioni su 12, apportando comunque sempre un contributo modesto che in nessun caso supera il 11%.

Levinsenia demiri e in minor misura Paradiopatra lepta e Kirkegaardia heterochaeta sono anche quelle che maggiormente spiegano la distribuzione dei punti nel piano di ordinamento (Figura 33) ottenuto dal non-Metric Multidimensional Scaling (n-MDS).

Le stazioni non distribuite nel plot in accordo alla loro posizione geografica o alla distanza dall'FSRU rispecchiano prevalentemente, da sinistra destra, un gradiente decrescente dei valori di abbondanza di tali specie.

La posizione delle stazioni situate nella parte sinistra del plot (E21 MG6, E21 MG14, E21 MG14) è dovuta al comportamento di *Levinsenia demiri* che mostra, in queste stazioni abbondanze più alte. Ad essa si affiancano, oltre alle già citate *K. heterocheta* e *P. lepta, Phylo foetida, Carangoliopsis spinulosa, Prionospio elhersi* che, però, esibiscono tutti trascurabili valori di abbondanza.

Un cenno particolare merita la stazione E21 MG9 la cui posizione nel piano è dovuta ad un basso numero di individui e di specie.

La posizione delle altre stazioni è per lo più legata ad un gradiente decrescente di abbondanza di L. demiri.

Figura 33 - Risultati della cluster analysis (group average) a sinistra, piano di ordinamento ottenuto dal n-MDS, a destra. La matrice triangolare è stata ottenuta tramite l'indice di Bray-Curtis.

Anche dal punto di vista strutturale (**Tabella 61**) i parametri indagati risultano variabili da stazione a stazione. Il numero di specie medio (ossia ottenuto dopo il calcolo della media tra repliche) varia tra 26,25 minimo rilevato in E21 MG9 e 49,25, massimo osservato presso il rigassificatore (E21 MG6).

Le stazioni E21 MG2, E21 MG1, E21 MG8, E21 MG9, E21 MG11, E21 M14, nessuna delle quali è vicina all'FSRU, hanno un numero di specie più basso rispetto alla media totale (39,8±6,21). In totale il numero di specie rilevato complessivamente nelle quattro stazioni più vicine all'FSRU è pari a 145 di cui 29 esclusive ossia non rilevate nelle altre stazioni. Il numero totale di specie rilevato nelle stazioni più lontane (MG1, MG2, MG9, MG10) è 113 (di cui 16 esclusive), mentre quelle trovate nelle stazioni intermedie (MG4, MG8, MG11, MG14) è pari a 127 (di cui 14 esclusive).

L'abbondanza totale media delle stazioni esibisce il minimo (100,25) in E21 MG9 e il massimo (261,2) in E21 MG4. Nel complesso, N, esibisce una elevata variabilità tra stazioni, oscillando intorno al valore medio di 161,3±55,97. Presso il Terminale solo E21 MG6 presenta valori di abbondanza superiori alla media generale.

Tra le restanti stazioni, solo E21 MG4 e E21 MG14, hanno una abbondanza totale maggiore rispetto alla media.

La diversità di Shannon-Weaver mostra il suo minimo in E21 MG14 (2,77) ed il massimo in E21 MG13 (4,41) con una media complessiva di 3,81±0,55. Le stazioni poste presso il Terminale, hanno una diversità specifica maggiore rispetto al valore medio.

Fra le stazione più lontane (MG1, MG2, MG9, MG10) E21 MG9 esibisce una diversità specifica inferiore alla media generale.

Fra quelle intermedie (MG4, MG8, MG11, MG14) solo E21 MG8 esibisce una diversità specifica superiore alla media generale

La ricchezza specifica di Margalef mostra i valori più elevati presso il Terminale dove oscilla tra il massimo di E21 MG12 (9,28) il minimo di E21 MG7 (8,41). Tutti questi valori sono maggiori della media complessiva pari a 7,71±1,08. Fra le restanti stazioni, solo E21 MG10 ha una ricchezza specifica maggiore di tale media.

Infine l'equitabilità oscilla tra 0,82 (E21 MG8) e 0,53 (E21 MG14) con un valore medio di 0,72±0,10. Tra le stazioni poste presso il Terminale solo in E21 MG6, questo parametro, ha un valore inferiore di tale media.

Nelle restanti stazioni, tranne E21 MG4 e E21 MG14, E21 MG11, l'equitabilità mostra valori maggiori di tale media.

Nessun dato indica che presso il Terminale ci siano condizioni che comportano impoverimento del popolamento.

Tabella 61 – Indici strutturali (±DS) relativi al popolamento macrobentonico. Numero di taxa (S), Numero di individui (N), Diversità specifica di Shannon-Weaver (H'), Ricchezza specifica di Margalef (d), Equitabilità di Pielou (J). In rosso le stazioni poste a 100 m dal Terminale.

Stazioni		S			Ν			d		ł	H'(log ₂)		J	
E21 MG1	37,25	±	2,06	131,50	±	7,51	7,43	±	0,47	3,97	±	0,12	0,76	±	0,01
E21 MG2	36,25	±	1,26	123,00	±	9,49	7,33	±	0,22	4,15	±	0,09	0,80	±	0,02
E21 MG4	40,00	±	2,16	261,25	±	35,98	7,02	±	0,32	2,97	±	0,17	0,56	±	0,03
E21 MG6	49,25	±	2,87	250,00	±	14,63	8,75	±	0,61	3,47	±	0,18	0,62	±	0,03
E21 MG7	43,00	±	0,82	149,25	±	23,30	8,41	±	0,30	4,18	±	0,13	0,77	±	0,02
E21 MG8	35,00	±	1,15	106,50	±	8,10	7,29	±	0,28	4,20	±	0,10	0,82	±	0,02
E21 MG9	26,25	±	3,40	100,25	±	6,40	5,48	±	0,68	3,37	±	0,13	0,72	±	0,00
E21 MG10	43,25	±	2,63	147,75	±	16,13	8,46	±	0,38	4,38	±	0,09	0,81	±	0,03
E21 MG11	38,75	±	1,89	142,00	±	16,08	7,62	±	0,28	3,71	±	0,14	0,70	±	0,02
E21 MG12	47,50	±	3,11	150,00	±	5,72	9,28	±	0,56	4,17	±	0,30	0,75	±	0,05
E21 MG13	44,25	±	5,50	135,00	±	4,83	8,81	±	1,08	4,41	±	0,27	0,81	±	0,04
E21 MG14	37,25	±	4,03	238,75	±	32,60	6,62	±	0,59	2,77	±	0,09	0,53	±	0,01

2.3.2 Meiobenthos

Dati delle singole stazioni

Il sedimento della stazione E21 MG1 è costituito da sabbia fine mista a silt con detrito vegetale. La comunità meiobentonica rilevata mediante le analisi faunistiche è costituita da soli tre gruppi tassonomici, con una densità complessiva pari a 10,1 ± 6,5 ind ./10 cm².

Il taxon numericamente più abbondante è quello dei Nematodi, che raggiungono l'83,3% della meiofauna totale (8,4 ± 4,8 ind./10 cm²), seguiti dai Policheti (1,3 ± 1,6 ind./10 cm²; 12,5%) e dai Nauplii (0,4 ±0,8 ind./10 cm²; 4,2%).

I Copepodi, normalmente presenti nelle stazioni investigate risultano, in questa occasione, assenti in questo sito (**Tabella 62; Figura 34**). I valori degli indici di ricchezza di Margalef e di diversità di Shannon-Wiener corrispondono alla media calcolata per l'intera area, mentre l'equitabilità di Pielou risulta inferiore ad essa (**Tabella 64**).

Figura 34 - Stazione E21 MG1. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

Tabella 62 - Struttura della comunità meiobentonica nelle stazioni E21 MG1, E21 MG2, E21 MG4, E21 MG6, E21 MG7, E21 MG8. Densità media (±DS) (ind./10 cm²) dei taxa principali e del popolamento complessivo. L'abbondanza relativa (%) dei singoli taxa è stata calcolata in relazione alla densità totale.

densita totale.												
	E21 MG1		E21 MG2		E21 MG4		E21 MG6		E21 MG7		E21 MG8	
	Media±DS	%	Media±DS	%	Media±DS	%	Media±DS	%	Media±DS	%	Media±DS	%
Nematodi	8,4±4,8	83,3	5,9±6,2	77,8	9,3±4,2	91,7	30,3±9,9	86,7	107,4±117,2	87,0	109,9±146,2	78,4
Copepodi	-	-	0,4±0,8	5,6	0,4±0,8	4,2	0,4±0,8	1,2	2,9±5,9	2,4	9,3±15,3	6,6
Nauplii	0,4±0,8	4,2	-	-	0,4±0,8	4,2	-	-	1,7±3,4	1,4	7,6±10,9	5,4
Policheti	1,3±1,6	12,5	1,3±0,8	16,7	-	-	4,2±2,9	12,0	6,7±6,9	5,5	10,9±4,5	7,8
Chinorinchi	-	-	-	-	-	-	-	-	-	-	-	-
Isopodi	-	-	-	-	-	-	-	-	-	-	-	-
Bivalvi	-	-	-	-	-	-	-	-	-	-	0,4±0,8	0,3
Caudofoveati	-	-	-	-	-	-	-	-	-	-	0,4±0,8	0,3
Nemertini	-	-	-	-	-	-	-	-	0,4±0,8	0,3	-	-
Acari	-	-	-	-	-	-	-	-	-	-	0,4±0,8	0,3
Tanaidacei	-	-	-	-	-	-	-	-	0,4±0,8	0,3	0,8±1,7	0,6
Sipunculidi	-	-	-	-	-	-	-	-	0,8±1,7	0,7	-	-
Briozoi	-	-	-	-	-	-	-	-	2,5±5,1	2,0	-	-
Ciliati	-	-	-	-	-	-	-	-	0,4±0,8	0,3	0,4±0,8	0,3
Altri (ΣChino-Cili)	-	-	-	-	-	-	-	-	4,6±4,6	3,8	2,5±4,0	1,8
Meiofauna totale	10,1±6,5	-	7,6±6,2	-	10,1±5,8	-	35,0±11,1	-	123,4±121,1	-	140,2±176,3	-

La stazione E21 MG2, caratterizzata da un sedimento sabbioso fine con silt e detrito grossolano, presenta una comunità meiobentonica costituita da soli tre taxa principali, per un popolamento complessivo pari a 7,6 \pm 6,2 ind./10 cm², una delle densità più basse registrate nell'area. Dominano i Nematodi, che raggiungono il 77,8% della biocenosi, con una densità di 5,9 \pm 6,2 ind./10 cm². Seguono i Policheti (1,3 \pm 0,8 ind./10 cm²; 16,7%) e i Copepodi (0,4 \pm 0,8 ind./10 cm²; 5,6%). In questo sito risultano assenti i Nauplii (**Tabella 62; Figura 35**). I valori degli indici strutturali risultano inferiori alla media calcolata per l'area (**Tabella 64**).

Figura 35 - Stazione E21 MG2. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

La stazione E21 MG4 presenta un sedimento sabbioso fine misto a silt e detrito grossolano, che ospita tre gruppi meiobentonici, per una densità media complessiva di 10,1 \pm 5,8 ind./10 cm² (**Tabella 62**). I Nematodi risultano dominanti, con una densità di 9,3 \pm 4,2 ind./10 cm² (91,7% del popolamento). Seguono Copepodi (0,4 \pm 0,8 ind./10 cm²; 4,2%) e Nauplii (0,4 \pm 0,8 ind./10 cm²; 4,2%). In questo sito sono assenti i Policheti, usualmente rinvenuti nell'area di studio (**Tabella 62; Figura 36**). Il valore dell'indice di ricchezza di Margalef corrisponde alla media calcolata per l'intera area, mentre la diversità di Shannon-Wiener e l'equitabilità di Pielou sono superiori ad essa (**Tabella 64**).

Figura 36 - Stazione E21 MG4. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

La stazione E21 MG6 è caratterizzata da un sedimento sabbioso fine con silt e detrito grossolano, in cui sono stati rinvenuti i rappresentanti di soli tre gruppi tassonomici. La densità complessiva della comunità meiobentonica è pari a $35,0 \pm 11,1$ ind./10 cm² (**Tabella 62**). I Nematodi sono il taxon dominante, con una densità di $30,3 \pm 9,9$ ind./10 cm² (86,7% del totale). Seguono i Policheti ($4,2 \pm 2,9$ ind./10 cm²; 12,0%) e i Copepodi ($0,4 \pm 0,8$ ind./10 cm²; 1,2%). In questa stazione non sono stati rinvenuti Nauplii, gruppo tassonomico normalmente rilevato altrove (**Tabella 62; Figura 37**).

I valori dell'indice di ricchezza di Margalef e di diversità di Shannon-Wiener risultano inferiori alla media rilevata nell'area indagata, mentre l'equitabilità di Pielou corrisponde ad essa (**Tabella 64**).

Figura 37 - Stazione E21 MG6. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

Il sedimento della stazione E21 MG7, costituito da sabbia fine con silt e detrito grossolano, ospita nove major taxa meiobentonici, con una densità media totale di 123,4 \pm 121,1 ind./10 cm². I Nematodi dominano il popolamento, con una densità media di 107,4 \pm 117,2 ind./10 cm², corrispondente al 87,0% del totale. Seguono Policheti (6,7 \pm 6,9 ind./10 cm²; 5,5%), Copepodi (2,9 \pm 5,9 ind./10 cm²; 2,4%) e Nauplii (1,7 \pm 3,4 ind./10 cm²; 1,4%). I restanti cinque taxa, raggruppati nella categoria "Altri", costituiscono il 3,8% della biocenosi (4,6 \pm 4,6 ind./10 cm²); di questi, solo i Briozoi superano l'1% del popolamento totale (**Tabella 62; Figura 38**). I valori degli indici di ricchezza di Margalef e di diversità di Shannon-Wiener risultano superiori alla media calcolata per l'area oggetto di studio, mentre l'equitabilità di Pielou è inferiore ad essa (**Tabella 64**).

Figura 38 - Stazione E21 MG7. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

La stazione E21 MG8 presenta un sedimento sabbioso fine con silt e detrito grossolano In questo sito la comunità meiobentonica è costituita da nove gruppi tassonomici, con una densità complessiva pari a $140,2 \pm 176,3$ ind./10 cm², la più elevata riscontrata nell'area di studio in questa campagna di studio (**Tabella 62, Tabella 64**). I Nematodi sono il taxon dominante, costituendo il 78,4% del popolamento (densità: $109,9 \pm 146,2$ ind./10 cm²). Seguono i Policheti ($10,9 \pm 4,5$ ind./10 cm²; 7,8%), i Copepodi ($9,3 \pm 15,3$ ind./10 cm²; 6,6%) e, infine, i Nauplii ($7,6 \pm 10,9$ ind./10 cm²; 5,4%). I restanti cinque taxa rappresentano l'1,8% del totale ($2,5 \pm 4,0$ ind./10 cm²); nessuno di questi supera l'1% del popolamento (**Tabella 62; Figura 39**). In questo sito i valori degli indici di ricchezza di Margalef e di diversità di Shannon-Wiener risultano superiori alla media calcolata per l'area, mentre l'equitabilità di Pielou corrisponde ad essa (**Tabella 64**).

Figura 39 - Stazione E21 MG8. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

Il sedimento del sito E21 MG9 è costituito da sabbia fine mista a silt. La biocenosi meiobentonica rilevata in questa stazione è costituita da quattro gruppi tassonomici, con una densità media totale pari a $32,8 \pm 12,3$ ind./10 cm² (**Tabella 63, Tabella 64**). Dominano i Nematodi, che rappresentano l'89,7% della meiofauna totale (densità: $29,5 \pm 12,8$ ind./10 cm²). Seguono Copepodi ($1,7 \pm 2,4$ ind./10 cm²; 5,1%), Policheti ($1,3 \pm 1,6$ ind./10 cm²; 3,8%) e Nauplii ($0,4 \pm 0,8$ ind./10 cm²; 1,3%; **Tabella 63; Figura 40**). Il valore dell'indice di ricchezza di Margalef corrisponde alla media riscontrata per l'intera area, mentre la diversità di Shannon-Wiener e l'equitabilità di Pielou risultano inferiori ad essa (**Tabella 64**).

Figura 40 - Stazione E21 MG9. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

Tabella 63 - Si Densità media	truttura della (±DS) (ind./1	comunit 10 cm ²)	à meiobentor dei taxa princ	nica nell cipali e	e stazioni E2 del popolame	1 MG9, ento cor	E21 MG10, I nplessivo. L'a	E21 MG	611, E21 MG anza relativa	12, E21 (%) dei	MG13, E21 singoli taxa é	MG14. è stata
	E21 MG9		E21 MG10		E21 MG11		E21 MG12		E21 MG13		E21 MG14	
	Media±DS	%	Media±DS	%	Media±DS	%	Media±DS	%	Media±DS	%	Media±DS	%
Nematodi Copepodi Nauplii Policheti	29,5±12,8 1,7±2,4 0,4±0,8 1,3±1,6	89,7 5,1 1,3 3,8	59,4±22,7 0,4±0,8 0,4±0,8 3,8±3,2	90,4 0,6 0,6 5,8	16,8±16,7 - - 1,3±2,5	93,0 - - 7,0	48,9±86,7 4,2±6,4 0,4±0,8 5,9±8,0	81,7 7,0 0,7 9,9	31,2±21,0 - - 3,8±5,6	89,2 - 10,8	5,1±4,6 0,4±0,8 - 1,3±1,6	75,0 6,3 - 18,8
Chinorinchi	-	-	-	-	-	-	0,4±0,8	0,7	-	-	-	-
Isopodi	-	-	0,4±0,8	0,6	-	-	-	-	-	-	-	-
Bivalvi	-	-	-	-	-	-	-	-	-	-	-	-
Caudofoveati	-	-	-	-	-	-	-	-	-	-	-	-
Nemertini	-	-	-	-	-	-	-	-	-	-	-	-
Tanaidacei	-	-	-	-	-	-	-	-	-	-	-	-
Sipunculidi	-	-	-	-	-	-	-	-	-	-	-	-
Briozoi	-	-	-	-	-	-	-	-	-	-	-	-
Ciliati	-	-	1,3±2,5	1,9	-	-	-	-	-	-	-	-
Altri (ΣChino-Cili)	-	-	1,7±3,4	2,6	-	-	0,4±0,8	0,7	-	-	-	-
Meiofauna totale	32,8±12,3	-	65,7±22,7	-	18,1±19,1	-	59,8±101,9	-	35,0±25,7	-	6,7±6,0	-

La stazione E21 MG10 presenta un sedimento sabbioso fine misto a silt e detrito vegetale. La biocenosi meiobentonica è costituita da sei major taxa, con una densità media totale pari a 65.7 ± 22.7 ind./10 cm² (**Tabella 63, Tabella 64**). Dominano i Nematodi, con una densità di 59.4 ± 22.7 ind./10 cm², pari al 90,4% del popolamento. Seguono Policheti (3.8 ± 3.2 ind./10 cm²; 5.8%), Copepodi (0.4 ± 0.8 ind./10 cm²; 0.6%) e Nauplii (0.4 ± 0.8 ind./10 cm²; 0.6%) (**Tabella 63; Figura 41**). I restanti due taxa, Isopodi e Ciliati, raggruppati nella categoria "Altri", rappresentano il 2,6% della biocenosi (1.7 ± 3.4 ind./10 cm²); di questi solo i Ciliati superano l'1% del totale (**Tabella 63)**. In questa stazione il valore dell'indice di ricchezza di Margalef risulta superiore alla media calcolata per l'area, mentre la diversità di Shannon-Wiener e l'equitabilità di Pielou sono inferiori ad essa (**Tabella 64**).

Figura 41 - Stazione E21 MG10. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

Il sedimento della stazione E21 MG11 è caratterizzato da sabbia fine con silt, detrito grossolano e detrito vegetale. Le analisi faunistiche hanno portato al rinvenimento di una biocenosi meiobentonica costituita da solo due gruppi meiobentonici, per una densità media complessiva pari a 18,1 ± 19,1 ind./10 cm². I taxa rilevati sono i Nematodi, che rappresentano il 93,0% del popolamento, con una densità media di 16,8 ± 16,7 ind./10 cm² (**Tabella 63**), e i Policheti (1,3 ± 2,5 ind./10 cm²; 7,0%). Copepodi e Nauplii, in genere presenti nell'area indagata, sono risultati assenti in questo sito (**Tabella 63; Figura 42**). In questa stazione i valori degli indici di ricchezza di Margalef e di diversità di Shannon-Wiener risultano inferiori alla media calcolata per l'area, mentre l'equitabilità di Pielou corrisponde ad essa (**Tabella 64**).

Figura 42 - Stazione E21 MG11. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

La stazione E21 MG12 è caratterizzata da un sedimento sabbioso fine con silt, detrito grossolano e vegetale. La comunità meiobentonica presenta cinque taxa meiobentonici maggiori, per un'abbondanza media complessiva di 59,8 ± 101,9 ind./10 cm². I Nematodi costituiscono il taxon dominante, con una densità media di 48,9 ± 86,7 ind./10 cm², pari all'81,7% del popolamento complessivo. Seguono Policheti (5,9 ± 8,0 ind./10 cm²; 9,9%), Copepodi (4,2 ± 6,4 ind./10 cm²; 7,0%) e Nauplii (0,4 ± 0,8 ind./10 cm²; 0,7%). Il quinto taxon, costituito dai Chinorinchi, rappresenta lo 0,7% della biocenosi meiobentonica (densità: 0,4 ± 0,8 ind./10 cm²; **Tabella 63; Figura 43**). I valori degli indici di ricchezza di Margalef e di diversità di Shannon-Wiener risultano superiori alla media calcolata per l'area, mentre l'equitabilità di Pielou è pari ad essa (**Tabella 64**).

Figura 43 - Stazione E21 MG12. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

Il sedimento della stazione E21 MG13 è costituito da sabbia fine mista a silt, detrito grossolano e vegetale. Le analisi faunistiche hanno rilevato i rappresentanti di soli due taxa meiobentonici, per una densità complessiva pari a $35,0 \pm 25,7$ ind./10 cm² (**Tabella 63**). I gruppi tassonomici rilevati sono i Nematodi, con una densità pari a $31,2 \pm 21,0$ ind./10 cm², corrispondente all'89,2% del popolamento, e i Policheti ($3,8 \pm 5,6$ ind./10 cm²; 10,8%; **Tabella 63**; **Figura 44**). I valori degli indici di ricchezza di Margalef e di diversità di Shannon-Wiener risultano inferiori alla media calcolata per l'area, mentre l'equitabilità di Pielou è superiore ad essa (**Tabella 64**).

Figura 44 - Stazione E21 MG13. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

La stazione E21 MG14 presenta un sedimento sabbioso fine con silt e detrito vegetale. La comunità meiobentonica è costituita da soli tre taxa principali, per una densità pari a $6,7 \pm 6,0$ ind./10 cm², la più bassa registrata nell'area di studio (**Tabella 63**). I Nematodi sono il taxon dominante, raggiungendo il 75,0% del popolamento (densità: $5,1 \pm 4,6$ ind./10 cm²); essi sono seguiti, nell'ordine, dai Policheti ($1,3 \pm 1,6$ ind./10 cm²; 18,8%) e dai Copepodi ($0,4 \pm 0,8$ ind./10 cm²; 6,3%; **Tabella 63; Figura 45**). In questo sito i valori degli indici strutturali risultano superiori alla media calcolata per l'intera area di studio (**Tabella 64**).

Figura 45 - Stazione E21 MG14. Densità media ± deviazione standard (ind./10 cm²) dei taxa principali e del popolamento complessivo. Valori in scala logaritmica (sx). Apporto percentuale dei diversi taxa al popolamento meiobentonico complessivo (dx).

Dati complessivi

cib//

Nell'area indagata sono stati rinvenuti complessivamente organismi appartenenti a quattordici gruppi tassonomici. Solo i Nematodi sono risultati presenti in tutte e 12 le stazioni investigate. Copepodi, Nauplii e Policheti sono risultati assenti in uno o più siti. Nello specifico, i Copepodi non sono stati rilevati nelle stazioni E21 MG1, E21 MG11 e E21 MG13, i Nauplii in E21 MG2, E21 MG6, E21 MG11, E21 MG13, E21 MG14, e i Policheti in E21 MG4. Dei rimanenti taxa, Tanaidacei e Ciliati sono stati rinvenuti ciascuno in due siti, mentre Sipunculidi, Bivalvi, Caudofoveati, Nemertini, Chinorinchi, Isopodi, Acari e Briozoi risultano presenti ciascuno in un solo sito. I popolamenti di questi taxa sono generalmente costituiti da pochi individui. Due dei taxa minori giungono a rappresentare oltre l'1% dell'intera comunità in due stazioni distinte. Nello specifico: i Ciliati nel sito E21 MG10 (1,9%) e i Briozoi in E21 MG7 (2,0%).

La densità media totale della biocenosi meiobentonica nell'area investigata è pari a soli $45,4 \pm 74,8$ ind./10 cm². Dominano i Nematodi, con una densità media di $38,5 \pm 64,0$ ind./10 cm², pari all'84,8% del popolamento complessivo. Seguono i Policheti ($3,5 \pm 4,7$ ind./10 cm²; 7,7%), i Copepodi ($1,7 \pm 5,2$ ind./10 cm²; 3,7%) e, infine, i Nauplii ($0,9 \pm 3,6$ ind./10 cm²; 2,1%). I dieci taxa meno abbondanti ("Altri") costituiscono l'1,7% della comunità ($0,8 \pm 2,3$ ind./10 cm²; nessuno di essi supera l'1% dell'intera biocenosi (**Tabella 65**).

L'analisi della varianza (ANOVA) condotta per verificare la significatività delle eventuali differenze nei valori medi delle abbondanze riscontrate nelle 12 stazioni ha evidenziato una singola differenza statisticamente significativa imputabile all'assenza dei Policheti nella stazione E21 MG4.

Tabella 64 - I	ndici strut	turali relativi al p	popolamento n	neiobentonico	o calcolati sui
valori medi di	abbondar	nza. Numero di t	axa (S), Num	ero medio di	individui (N),
Ricchezza di M	/largalef (c	d), Diversità di Sh	nannon-Wiene	r (H'), Equitat	oilità di Pielou
(J').	U (,-			
	S	N	d	H'	J'
E21 MG1	3	10,1	0,9	0,5	0,5
E21 MG2	3	7,6	1,0	0,7	0,6
E21 MG4	3	10,1	0,9	0,3	0,3
E21 MG6	3	35,0	0,6	0,4	0,4
E21 MG7	9	123,4	1,7	0,6	0,3
E21 MG8	9	140,2	1,6	0,8	0,4
E21 MG9	4	32,8	0,9	0,4	0,3
E21 MG10	6	65,7	1,2	0,4	0,2
E21 MG11	2	18,1	0,3	0,3	0,4
E21 MG12	5	59,8	1,0	0,7	0,4
E21 MG13	2	35,0	0,3	0,3	0,5
E21 MG14	3	6,7	1,0	0,7	0,6
Media	4	45,4	0,9	0,5	0,4

I parametri strutturali calcolati per ciascuna stazione sono riportati in **Tabella 64**. Numero di gruppi tassonomici (S) e densità media (N) variano nelle stazioni investigate, da 2 a 9 gruppi il primo, e da 6,7 a 140,2 ind./10 cm² la seconda. I siti E21 MG11 e E21 MG13 presentano il numero più basso di taxa, mentre E21 MG7 e E21 MG8 esibiscono il valore più elevato. Questi ultimi due siti presentano anche le densità più elevate, mentre E21 MG14, seguita da E21 MG2, sono caratterizzati dai minimi valori di abbondanza. Anche gli indici di ricchezza di Margalef (d), diversità di Shannon-Wiener (H') ed equitabilità di Pielou (J') variano nei siti indagati. La ricchezza di Margalef (d) varia da un minimo di 0,3 nelle stazioni E21 MG11 e E21 MG13 a un massimo di 1,7 in E21 MG7 (**Tabella 64**). La diversità di Shannon-Wiener (H') presenta un valore minimo in E21 MG4, E21 MG11 e E21 MG13 (0,3) e massimo in E21 MG12 (1,2). Infine, l'indice di equitabilità di Pielou (J') varia da un minimo di 0,2 nel sito E21 MG10 a un massimo di 0,6 in E21 MG2 e E21 MG14 (**Tabella 64**). Considerando la distanza

reciproca tra queste stazioni e la loro distanza relativa rispetto al rigassificatore, non si rilevano relazioni evidenti tra le differenze registrate e la loro collocazione geografica, in particolare rispetto al terminale.

Le analisi multivariate hanno evidenziato una similarità faunistica intermedia tra le stazioni investigate. Il dendrogramma scaturito dalla Cluster Analysis, tecnica di classificazione che raggruppa i campioni in gruppi gerarchici sulla base della matrice di similarità, mostra una prima dicotomia a un valore di similarità faunistica tra i siti pari a quasi 52% (**Figura 46**). In corrispondenza di questo valore, due stazioni, E21 MG7 e E21 MG8, risultano separate dalle restanti dieci. La diversità tassonomica e le densità registrate in questi siti appaiono più elevate rispetto a quelle rilevate altrove. Le restanti dieci stazioni sono equamente suddivise in due cluster. I siti E21 MG1, E21 MG2, E21 MG4, E21 MG11 e E21 MG14 presentano densità faunistiche più basse rispetto a quelle rilevate nelle rimanenti cinque stazioni.

Quanto appena descritto è riflesso anche nel piano di ordinamento bidimensionale ottenuto mediante l'analisi nMDS, riportato in **Figura 46**. Similmente a quanto rilevato tramite la Cluster Analysis, l'ordinamento dei punti-stazione nel piano prescinde dalla loro collocazione geografica e dalla distanza relativa rispetto al rigassificatore. Nel piano di ordinamento del nMDS i siti E21 MG7 e E21 MG8 risultano separati dagli altri nella parte sinistra del grafico, mentre le stazioni E21 MG1, E21 MG2, E21 MG4, E21 MG11 e E21 MG14 sono posizionate alla destra del piano. Pertanto, le analisi multivariate non rilevano alcuna chiara relazione tra raggruppamento e posizione geografica delle stazioni rispetto al terminale rigassificatore. Complessivamente, dall'indagine faunistica dei campioni di questa campagna (E21) emerge una comunità meiobentonica piuttosto povera in termini numerici e di diversità; tuttavia, le analisi statistiche tendono ad escludere che i bassi valori riscontrati in termini quali-quantitativi siano da imputarsi ad effetti del rigassificatore.

Figura 46 - A sinistra: dendrogramma per il raggruppamento gerarchico delle stazioni basato sul valore delle abbondanze medie dei taxa principali e similarità di Bray-Curtis, previa trasformazione logaritmica dei dati. A destra: piano di ordinamento ottenuto dal non-metric Multi Dimensional Scaling (nMDS), basato sul valore delle abbondanze medie dei taxa principali e similarità di Bray-Curtis, previa trasformazione logaritmica dei dati.

Tabella 65 - Struttura de stazioni di controllo. Der L'abbondanza relativa (ella comunità meiober nsità media ± deviazio %) dei singoli taxa è s	ntonica dell'area int one standard (ind./ tata calcolata in rel	teressata dal posizionamento 10 cm²) dei taxa principali e o lazione alla densità totale.	o del terminale rigassific del popolamento comple	catore, incluse le essivo rinvenuto.
Taxon	Media±DS	%	Taxon	Media±DS	%
Nematodi	38,5±64,0	84,8	Nemertini	0,1±0,2	0,1
Copepodi	1,7±5,2	3,7	Acari	0,1±0,2	0,1
Nauplii	0,9 ± 3,6	2,1	Tanaidacei	0,1±0,5	0,2
Policheti	3,5±4,7	7,7	Sipunculidi	0,1±0,5	0,2
Chinorinchi	0,1±0,2	0,1	Briozoi	0,2±1,5	0,5
Isopodi	0,1±0,2	0,1	Ciliati	0,2±0,8	0,4
Bivalvi	0,1±0,2	0,1	Altri (ΣChino-Cili)	0,8±2,3	1,7
Caudofoveati	0,1±0,2	0,1	· · · · · ·		
Meiofauna totale	45,4±74,8		-		

2.3.3 Bioaccumulo

Metalli

I risultati ottenuti nell'estate 2021 dalla ricerca dei metalli in M. galloprovincialis sono riportati nella Tabella 66.

Le concentrazioni dei metalli ricercati sono generalmente paragonabili o inferiori a quelle dei mitili al tempo "0". L'unico modesto incremento è stato osservato per il vanadio.

Tabella 66 - Concentrazione dei metalli nei mitili. Dati relativi alla campagna E21 espressi in mg/kg. Sono riportati i dati riferiti sia alla sostanza secca (s.s.) sia al peso fresco (p.f.) in accordo alla prescrizione 13 delle Determine 2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-09-2017.												
	Tempo	70r0	Stazio	one A	Stazio	ne B	Stazio	one C	Stazio	ne D	Stazio	one E
	Tempo	2610	Pos	s. 1	Pos	. 2	Pos	5. 3	Pos	. 4	(Bianco C	Gorgona)
	S.S.	p.f.	S.S.	p.f.								
Arsenico	9,24	1,85	8,58	1,72	9,49	1,90	9,14	1,83	10,71	2,14	9,87	1,97
Bario	1,44	0,29	< 1,0	-	< 1,0	-	< 1,0	-	< 1,0	-	< 1,0	-
Cadmio	0,21	0,043	0,23	0,046	0,38	0,076	0,31	0,062	0,29	0,058	0,24	0,047
Cromo totale	1,23	0,25	< 1,0	-	< 1,0	-	< 1,0	-	< 1,0	-	1,70	0,34
Ferro	5,57	1,11	3,92	0,78	4,50	0,90	4,23	0,85	5,36	1,07	4,32	0,86
Manganese	216,78	43,36	81,80	16,36	109,29	21,86	146,31	29,26	136,80	27,36	109,17	21,83
Mercurio	9,68	1,94	< 5,0	-	< 5,0	-	< 5,0	-	< 5,0	-	< 5,0	-
Nichel	0,10	0,020	0,070	0,014	0,065	0,013	0,067	0,013	0,091	0,018	0,064	0,013
Piombo	1,24	0,25	< 1,0	-	1,06	0,21	1,11	0,22	< 1,0	-	1,23	0,25
Rame	3,37	0,67	2,24	0,45	1,64	0,33	1,91	0,38	2,55	0,51	3,19	0,64
Vanadio	< 1,0	-	< 1,0	-	1,48	0,30	1,47	0,29	1,36	0,27	< 1,0	-
Zinco	171,24	34,25	165,68	33,14	172,35	34,47	172,34	34,47	200,76	40,15	179,47	35,89

Idrocarburi totali

Nella Tabella 67 sono riportati i risultati ottenuti dalla ricerca degli idrocarburi (C<10 e C10-C40).

Gli idrocarburi leggeri (C<10) sono risultati generalmente bassi o inferiori al limite di rilevabilità del metodo. Gli idrocarburi C10-C40 rilevati nelle stazioni posizionate lungo il terminale sono confrontabili sia col tempo zero. Questi composti non sono stati rilevati nel sito di controllo in Gorgona.

Tabella 67 - Concentrazione degli idrocarburi totali presenti nei campioni di mitili. I dati, relativi alla campagna E21, sono espressi in mg/kg.						
	Tempo zero	Stazione A	Stazione B	Stazione C	Stazione D	Stazione E
ldrocarburi C<10 (µg/kg)	< 500	< 500	< 500	< 500	< 500	< 500
ldrocarburi C10-C40 (mg/kg)	7,20	7,74	8,19	6,17	5,85	< 5,0

IPA e composti organo stannici

I risultati della ricerca di IPA ed organo stannici sono riportati nella **Tabella 68.** I dati suggeriscono una sostanziale assenza di fenomeni di bioaccumulo.

Tabella 68 - Concentrazione degli IPA e dei composti organostannici presenti nei campioni di mitili. I dati, relativi alla campagna E21, sono espressi in mg/kg. Stazione D Stazione E Stazione A Stazione B Stazione C Tempo zero Pos. 1 Pos. 2 Pos. 3 Pos. 4 (Bianco Gorgona) < 0,001 < 0.001 < 0.001 < 0,001 < 0,001 < 0,001 Acenaftene 0,001 < 0,001 0,001 0,001 0,001 0,001 Acenaftilene < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 Antracene 0,001 0,001 0,001 < 0,001 < 0,001 0,001 Benzo (a) antracene < 0,001 < 0.001 < 0.001 < 0.001 < 0.001 < 0,001 Benzo (a) pirene < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0.001 Benzo (b) fluorantene < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 Benzo (g,h,i) perilene 0,001 0,001 0,001 < 0,001 < 0,001 0,001 Benzo (k) fluorantene 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 Crisene < 0,001 < 0.001 < 0.001 < 0,001 < 0,001 < 0.001 Dibenzo (a,h) antracene 0,003 0,001 0,001 0,001 0,001 0,001 Fenantrene Fluorantene 0,001 0,001 0,001 < 0,001 < 0,001 < 0,001 0,001 < 0,001 < 0,001 < 0,001 < 0,001 0,001 Fluorene < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 Indeno (1,2,3 - c,d) pirene

Tabella 68 - Concentrazione de	egli IPA e dei composti (organostannici pre	senti nei campioni	di mitili. I dati, rela	tivi alla campagna I	E21, sono espressi in
mg/kg.						
Naftalene	0,002	0,003	0,003	0,002	0,002	0,003
Pirene	0,001	0,002	0,001	< 0,001	< 0,001	< 0,001
Dibutilstagno	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Monobutilstagno	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Tributilstagno	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001

Cloroderivati

I risultati della ricerca dei cloroderivati sono riportati nella **Tabella 69.** I dati suggeriscono una sostanziale assenza di fenomeni di bioaccumulo nei mitili trapiantati sull'FSRU.

Tabella 69 - Concentrazion	e degli cloroderivati pr	esenti nei campior	ni di mitili. I dati, rel	lativi alla campagn	a E21, sono espre	essi in µg/kg.
	Tempo zero	Stazione A Pos. 1	Stazione B Pos. 2	Stazione C Pos. 3	Stazione D Pos. 4	Stazione E (Bianco Gorgona)
Acidi Aloacetici						· · · · ·
Dalapon	< 2	< 2	< 2	< 2	< 2	< 2
Acido Dibromoacetico	< 1	< 1	< 1	< 1	< 1	< 1
Acido Tribromoacetico	< 10	< 10	< 10	< 10	< 10	< 10
Acido Monobromoacetico	< 2	< 2	< 2	< 2	< 2	< 2
Acido Bromodicloroacetico	< 5	< 5	< 5	< 5	< 5	< 5
Acido Bromocloroacetico	< 2	< 2	< 2	< 2	< 2	< 2
Acido Dicloroacetico	< 3	< 3	< 3	< 3	< 3	< 3
Acido Tricloroacetico	< 2	< 2	< 2	< 2	< 2	< 2
Acido Monocloroacetico	< 3	< 3	< 3	< 3	< 3	< 3
Acido Clorodibromoacetico	< 5	< 5	< 5	< 5	< 5	< 5
Fenoli						
2,4,6-tricloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
2,4-dicloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
4-cloro-3-metl fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Pentacloro fenolo	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
V.O.C.						
1,1,1-Tricloro Etano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
1,1,2-Tricloro Etano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Bromo Dicloro Metano	< 0,6	< 0,6	< 0,6	< 0,6	< 0,6	< 0,6
Bromoformio	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25
Carbonio Tetracloruro	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Cloroformio	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Dibromo Cloro Metano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Tetracloro Etilene	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Tricloro Etilene	< 0,8	< 0,8	< 0,8	< 0,8	< 0,8	< 0,8
1,2-Dibromo Etano	< 0,15	< 0,15	< 0,15	< 0,15	< 0,15	< 0,15
1,2,3-Tricloro propano	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
Dibromoacetonitrile	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Tricloroacetonitrile	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25

Analisi microbiologiche

Dall'analisi microbiologica non emerge alcuna contaminazione fecale (**Tabella 70**).

Tabella 70 - Risultati delle analisi microbiologiche effettuate sui campioni di mitili. I dati, relativi alla campagna E21, sono espressi in ufc/g.						
	Tempo	Stazione A	Stazione B	Stazione C	Stazione D	Stazione E
	zero	Pos. 1	Pos. 2	Pos. 3	Pos. 4	(Bianco Gorgona)
Coliformi fecali o termotolleranti	<10	< 10	< 10	< 10	< 10	< 10
Streptococchi fecali (enterococchi)	<10	< 10	< 10	< 10	< 10	< 10
Coliformi totali a 30°	<10	< 10	< 10	< 10	< 10	< 10

2.3.4 Biomarkers

Neutral Red Retention Time (NRRT)

L'analisi del Neutral Red Retention Time, comparabilmente a quanto osservato negli emociti dei mitili provenienti dalla stazione di controllo (Stazione E – Gorgona), non ha evidenziato alcuna differenza significativa tra i mitili di controllo e quelli posizionati lungo le 4 stazioni di monitoraggio del Terminale FSRU. Infatti, il tempo di ritenzione del colorante, indicatore del livello di stabilità lisosomiale, è superiore ai 100 minuti in ogni sito di indagine, tranne negli emociti dei mitili provenienti dall'acquacoltura (Tempo zero), che probabilmente hanno recuperato durante il trapianto all'Isola di Gorgona (Figura 47).

Figura 47 - Valutazione del danno cellulare mediante la misura del tempo di ritenzione del colorante vitale Rosso Neutro (NRRT) nei lisosomi degli emociti di mitilo. Valori alti del tempo di ritenzione corrispondono ad una maggiore integrità.

Comet Assay

I risultati relativi alla valutazione del grado di integrità della molecola di DNA nelle cellule branchiali di mitilo non mostrano alcun decremento significativo rispetto ai valori del controllo (Stazione E-Gorgona), in termini di danno genetico, in nessuna delle quattro stazioni di monitoraggio, suggerendo, quindi, una assenza di impatto da parte delle attività del Terminale FSRU (**Figura 48**).

Figura 48 - Valutazione del grado di integrità del DNA mediante Comet assay. Valori elevati della percentuale di DNA migrato corrispondono ad una maggiore entità del danno.

Analisi istologia del tessuto branchiale.

L'analisi istologica dell'epitelio branchiale dei mitili traslocati lungo il Terminale FSRU non ha evidenziato alcuna alterazione significativa della morfologia tissutale nelle 4 stazioni indagate rispetto ai mitili trapiantati nella stazione di controllo (Stazione E-Gorgona), suggerendo, quindi, una assenza di impatto da parte delle attività del Terminale FSRU (**Tabella 71**, **Figura 49**).

Tabella 71 - Analisi istologica. Lo score indica lo stato dell'epitelio branchiale secondo la seguente scala 1, normale morfologia epitelio branchiale; 2, lieve riduzione dello spessore dell'epitelio branchiale e dello sviluppo delle ciglia; 3, marcata riduzione dello spessore dell'epitelio e delle ciglia; 4, erosione dell'epitelio branchiale e dello sviluppo ciliare; 5, destrutturazione dei filamenti con estesa erosione dell'epitelio branchiale ed assenza delle ciglia.						
Stazione	I	Ш	III	IV	V	
Mitili tempo zero	1	1	2	1	1	
Stazione A (Pos. 1)	1	2	1	1	1	
Stazione B (Pos. 2)	1	2	2	1	1	
Stazione C (Pos. 3	1	2	1	1	2	
Stazione D (Pos. 4)	1	1	1	1	1	
Stazione E (Bianco Gorgona)	1	1	1	1	1	

Figura 49- Analisi istologica delle branchie di mitilo. Il parametro rappresentato nel grafico è il punteggio medio (score) per ciascuna delle stazioni indagate. La scala va da 1 a 5; il punteggio 1 indica una condizione di integrità mentre il punteggio 5 indica una forte compromissione della struttura dei filamenti branchiali.

Dai risultati complessivi relativi ai biomarker selezionati, per la campagna estiva 2021 (E-21), non sono emerse sostanziali alterazioni a carico dei mitili trapiantati lungo il Terminale FSRU rispetto sia a quelli di controllo (Stazione E Gorgona) che del tempo zero, per tutti e tre i biomarker indagati (stabilità lisosomiale, integrità del DNA e valutazione istologica). E' quindi possibile dedurre una sostanziale assenza di impatto da parte del Terminale FSRU nel periodo di riferimento.

2.3.5 Fauna ittica bentonectonica

Nella **Tabella 72** sono indicate le specie catturate durante i campionamenti effettuati con la rete a strascico e con le reti da posta in prossimità del terminale (per lo strascico: stazioni S1, S2, S3, e S4; per le reti da posta: stazioni P1, P2, P3 e P4) e nelle due stazioni di controllo (SC per la rete a strascico; PC per le reti da posta) nel corso della campagna Estate 2021.

In totale sono state catturate 60 specie.

Durante il campionamento effettuato con la rete a strascico sono state catturate 31 specie di Osteitti, 2 di Condroitti, 2 di Crostacei Decapodi e 8 di Molluschi Cefalopodi.

Il campionamento condotto con le reti da posta ha permesso di raccogliere in totale di 10 specie di Osteitti, 3 di Condroitti e 2 di Crostacei Decapodi. Non sono stati campionati Molluschi Cefalopodi.

Tabella 72 – Lista delle specie catturate o	con la rete a	a strascio	co e le reti o	da posta.	Strascico: E21 S1-S4 = stazioni campionat	te in prossir	mità del t	terminale; E	E21 SC
= stazione di controllo. Reti da posta: E21	P1-P4 = st	tazioni ca	ampionate	in prossir	nità del terminale; E21 PC = stazione di cor	ntrollo.			
	Straso	cico	Reti da	posta		Straso	cico	Reti da	posta
Osteitti	E21 S1- S4	E21 SC	E21 P1- P4	E21 PC	Condroitti	E21 S1- S4	E21 SC	E21 P1-	E21 PC
Alosa fallax nilotica (Lacépède, 1803)	•••		*		Raia asterias Delaroche, 1809	•••		*	*
Argentina sphyraena Linnaeus, 1758	*				Raia clavata Linnaeus 1758			*	*
Blennius ocellaris Linnaeus 1758	*				Scyliorhinus canicula (Linnaeus, 1758)	*	*	*	*
Boons boons (Linnaeus, 1758)	*	*			Torpedo marmorata Risso 1810	*			
Callanthias ruber (Bafinesque, 1810)	*				Crostacei Decanodi				
Cenola rubescens Linnaeus 1758	*				Pagurus excavatus (Herbst 1791)				*
Chelidonichthys lucerna (Linnaeus									
1758)	*	*		*	Palinurus elephas (Fabricius, 1787)		*		
Citharus linguatula (Linnaeus, 1758)			*	*	Parapenaeus longirostris (H. Lucas,	*	*	*	*
					1846)				
Engraulis encrasicholus (Linnaeus, 1758)	*	*			Molluschi Cefalopodi				
Helicolenus dactylopterus (Delaroche, 1809)	*				Eledone cirrhosa (Lamarck, 1798)	*	*		
Lepidorhombus boscii (Risso.1810)	*	*	*	*	Illex coindetii (Vérany, 1839)	*	*		
Lepidotriala cavillone (Lacépéde, 1801)	*	*			Loligo (Alloteuthis) sp.	*	*		
Lepidotrigla dieuzeidei Blanc &Hureau,	*				Loligo vulgaris Lamarck 1798	*	*		
1973					Longo valgans Lamarck, 1750				
Lophius budegassa Spinola, 1807	*	*	*	*	Octopus vulgaris Cuvier, 1797	*			
Lophius piscatorius Linnaeus, 1758				*	Sepia obrignyana Férussac, 1826		*		
Macroramphosus scolopax (Linnaeus,	*				Scaeurgus unicirrhus (Delle Chiaje,	*			
1/58)		4							
Merluccius merluccius (Linnaeus, 1758)	• •	*	*		Todaropsis eblanae (Ball, 1841)	^			
Mullus barbatus Linnaeus, 1758	Ŷ	*	^		Altro				
Pagellus bogaraveo (Brunnich, 1768)		*			Alcyonium palmatum Pallas, 1766	*	*		
Pagellus erythrinus (Linnaeus, 1758)	*	*	*		Antedon mediterranea Lamarck, 1816	*	*		
Phycis blennoides (Brunnich, 1768)	*	4			Ascidia mentula O. F. Muller, 1776			*	
Sardina pilchardus (Walbaum, 1792)	Ŷ	Ŷ			Ascidiacea indet.	Ŷ			
Scorpaena elongata Cadenat, 1943	*				Astropecten i. pentacanthus (Delle Chiaie, 1825)	*			
Scorpaena scrofa Linnaeus, 1758	*		*		Cidars cidaris (Linnaeus, 1758)			*	
Serranus cabrilla (Linnaeus, 1758)	*				Funiculina quadrangularis (Pallas,	*		*	
					Lontomotra phalongium (1 Müller				
Serranus hepatus (Linnaeus, 1758)	*	*			1841)	*	*		
Spicara flexuosa Rafinesque, 1810	*	*		*	Pennatula rubra (Ellis, 1764)	*	*		
Trachinus draco Linnaeus, 1758		*			Polychaeta indet.		*		
Trachurus m. mediterraneus	*	*			Pontobdolla muricata Linnacua 1759				*
(Steindachner, 1868)					Fundouella municala Linnaeus, 1750				
Trachurus picturatus (Bowdick, 1825)	*	*			Porifera indet.	*			
Trachurus trachurus (Linnaeus, 1758)	*	*			Squilla mantis (Linnaeus, 1758)	*		*	*
Trisopterus capelanus (Linnaeus, 1758)	*	*			Stichopus regalis (Cuvier, 1817)	*	*	*	
Uranoscopus scaber Linnaeus, 1758	*		*		Tethyaster subinermis (Philippi, 1837)	*			
Zeus faber Linnaeus, 1758	*	*			· · · · · · · · · · · · · · · · · · ·				

Indici di densità e biomassa per gruppi tassonomici

Nella figura seguenteErrore. L'origine riferimento non è stata trovata. è riportata la composizione percentuale delle catture, espressa con ndici di densità e biomassa, dei principali gruppi tassonomici campionati con le reti da posta.

I Condroitti risultano il gruppo più rappresentativo, con indici molto alti sia nelle stazioni in prossimità del terminale (E21 P1-P4) che nella stazione di controllo (E21 PC). I Condroitti costituiscono il 74% della densità media delle stazioni E21 P1-P4 ed il 73% della stazione di controllo E21 PC. Analizzando la biomassa media, questo gruppo contribuisce con l'84% nelle stazioni E21 P1-P4 e con il 76% nella stazione E21 PC.

Gli Osteitti, per quanto riguarda l'indice di densità, contribuiscono per il 19% nelle stazioni E21 P1-P4 e per il 22% nella stazione di controllo E21 PC. In biomassa il gruppo degli Osteitti rappresenta il 15% per le stazioni in prossimità del terminale ed il 24% per la stazione di controllo. Il gruppo dei Crostacei Decapodi mostra indici di densità pari al 7% ed al 5% rispettivamente nel gruppo di stazioni in prossimità del terminale (E21 P1-P4) e nella stazione di controllo (E21 PC). Gli indici di biomassa per questo gruppo risultano molto bassi (0,23% nelle stazioni E21 P1-P4; 0,17 nella stazione E21 PC).

Figura 50 - Reti da posta: composizione percentuale delle catture, espressa come n° individui/1000m/24h e kg/1000m/24h, dei principali gruppi tassonomici campionati nelle stazioni E21 P1-P4 e E21 PC.

Nella figura di seguito è riportata la composizione in percentuale delle catture dei principali gruppi tassonomici campionati con la rete a strascico. Il gruppo degli Osteitti costituisce il 76% della densità registrata sia nelle stazioni in prossimità del terminale (E21 S1-S4) che nella stazione di controllo (E21 SC). L'indice di biomassa di questo gruppo è pari al 76% per le stazioni E21 S1-S4 e al 68% per la stazione E21 SC.

I Condroitti mostrano, in termini di densità, un contributo pari all'1% nel gruppo di stazioni E21 S1-S4 e al 2% nella stazione E21 SC. Dal punto di vista della biomassa questo gruppo rappresenta il 5% nelle stazioni in prossimità del terminale (E21 S1-S4) ed il 12% nella stazione di controllo (E21 SC).

Il gruppo dei Molluschi Cefalopodi rappresenta il 9% ed il 6% della densità nelle stazioni E21 S1-S4 e E21 SC, rispettivamente. Il contributo percentuale dell'indice di biomassa per questo gruppo è pari al 13% per le stazioni poste in prossimità del terminale (E21 S1-S4) ed all'8% per la stazione di controllo (E21 SC).

L'indice di densità dei Crostacei Decapodi è pari al 14% nel gruppo di stazioni E21 S1-S4 e al 15% nella stazione E21 SC. L'indice di biomassa si attesta invece sul 6% per le stazioni in prossimità del terminale e sul 13% per la stazione di controllo.

Reti da posta - Indici di densità e biomassa per specie

cib//

Nella **Tabella 73** sono riportati gli indici di densità in n° individui/1000m/24h (di seguito n° ind./1000m/24h) e di biomassa in kg/1000m/24h per le specie catturate con le reti da posta. La specie più abbondante in assoluto è il gattuccio, *Scyliorhinus canicula*, con valori in densità di 60 ind./1000m/24h nel gruppo di stazioni E21 P1-P4 e di 75 ind./1000m/24h nella stazione E21 PC. L'indice di biomassa per il gattuccio è pari a 11,8 kg/1000m/24h per le stazioni poste in prossimità del terminale (E21 P1-P4) e a 15,6 kg/1000m/24h per la stazione di controllo (E21 PC). Le specie appartenenti al gruppo degli Osteitti hanno mostrato indici di densità e biomassa molto bassi. Le specie con gli indici di densità e biomassa più elevati sono la linguattola, *Citharus linguatula*, con valori di 9 ind./1000m/24h e 0,4 kg/1000m/24h rispettivamente per il gruppo di stazioni E21 P1-P4 e di 14 ind./1000m/24h e 0,9 kg/1000m/24h per la stazione E21 PC, e la rana pescatrice, *Lophius budegassa*, con indici di densità e biomassa pari a 4 ind./1000m/24h e 3,18 kg/1000m/24h per le stazioni in prossimità del terminale e di 3 ind./1000m/24h e 2,3 kg/1000m/24h rispettivamente per la stazione di controllo. Tra i Crostacei Decapodi la specie più abbondante è il gambero bianco, *Parapenaues longirostris*, con un indice di densità pari a 7 ind./1000m/24h e a 5 ind./1000m/24h rispettivamente nel gruppo di stazioni E21 P1-P4 e nella stazione E21 PC e un indice di biomassa di 0,07 kg/1000m/24h (stazioni in prossimità del terminale) e 0,06 kg/1000m/24h (stazione di controllo).

Tabella 73 - Reti da posta: indici di den	sità e biomassa (± DS), espre	essi in n° individui/1000m	/24h e kg/1000m/24h, stimati	per le specie catturate
nelle stazioni E21 P1-P4 e nella stazion	e di controllo E21 PC. * = DS	<0,05. Le celle vuote indi	cano che la specie non è stat	a rinvenuta.
	E21 P1-	·P4	E21 P	C
	n° ind./1000m/24h	kg/1000m/24h	n° ind./1000m/24h	kg/1000m/24h
OSTEITTI				
Alosa fallax nilotica	0,4±1,3	0,26±0,9		
Chelydonicthys lucerna			1,6	6,58
Citharus linguatula	8,5±8,8	0,38±0,3	14,1	0,92
Lepidorhombus boscii	0,7±1,5	0,12±0,2	1,6	0,21
Lophius budegassa	4,2±3,4	3,18±4,3	3,1	2,33
Lophius piscatorius			3,1	1,28
Merluccius merluccius	1,2±2,7	0,16±0,4		
Mullus barbatus	0,4±1,3	0,03±0,1		
Pagellus erythrinus	0,4±1,3	0,04±0,1		
Scorpaen scrofa	0,4±1,3	0,21±0,7		
Spicara flexuosa			3,1	0,06
Uranoscopus scaber	1,2±2,7	0,23±0,5		
CONDROITTI				
Raja asterias	2,0±5,3	2,37±6,1	12,50	15,780
Raja clavata	6,0±4,5	11,34±7,6	1,6	4,20
Scyliorhinus canicula	59,4±33,4	11,80±7,5	75,2	15,64
CROSTACEI DECAPODI				
Pagurus excavatus			1,6	0,02
Parapenaeus longirostris	6,5±9,2	0,07±0,1	4,7	0,06
ALTRO				
Ascidia mentula	0,4±1,3	0,01*		
Cidaris cidaris	1,1±3,9	0,01±0,1		
Funiculina quadrangularis	0,4±1,3	0,01*		
Pontobdella muricata			1,6	0,01
Squilla mantis	0,7±1,5	0,02*	1,6	0,09
Stichopus regalis	0,4±1,3	0,10±0,3		

Reti a strascico - Indici di densità e biomassa per specie

Nella Tabella 74 sono riportati gli indici di densità in n° individui/km2 (di seguito n° ind./km2) e di biomassa in kg/km2 per le specie catturate con la rete a strascico. Per alcune specie come Leptometra phalangium il conteggio dei singoli individui non è possibile perche si presentano in grandi guantità e ammassati, pertanto vengono guantificati unicamente tramite le biomassa. Nelle stazioni in prossimità del terminale (E21 S1-S4) la specie più abbondante in assoluto è il sugarello, Trachurus trachurus, con un indice di densità di 9822 ind./km² e un indice di biomassa di 101,7 kg/km². Sempre tra gli Osteitti altre specie particolarmente abbondanti sono la triglia di fango, Mullus barbatus, con un indice di densità di 1470 ind./km² ed un indice di biomassa di 49 kg/km², il nasello, Merluccius merluccius, con indici di densità e di biomassa di 963 ind./km² e di 35,4 kg/km² rispettivamente, l'acciuga, Engraulis encrasicolus (568 ind./km² e 5,1 kg/km²), il merluzzetto, Trisopterus capelanus, (395 ind./km² e 4,1 kg/km²) e il pagello fragolino, Pagellus erythrinus, con un indice di densità di 368 ind./km² e un indice di biomassa di 21,7 kg/km². Nel gruppo dei Condroitti la specie più abbondante è il gattuccio S. canicula con indici di densità e biomassa di 200 ind./km² e 26,8 kg/km² rispettivamente. Il gambero bianco, P. longirostris, unica specie appartenente al gruppo dei Crostacei Decapodi catturata nelle stazioni in prossimità del terminale, presenta un indice di densità pari a 2801 ind./km² e un indice di biomassa pari a 32,4 kg/km². Fra i Molluschi Cefalopodi la specie più abbondante è il calamaro, Loligo vulgaris, con un indice di densità di 1013 ind./km² e un indice in biomassa di 38,1 kg/km², seguita dal totano, Illex coindetii, con indici di densità e biomassa di 557 ind./km² e 12,7 kg/km² rispettivamente. Nel gruppo indicato come "Altro" le specie più abbondanti sono i due echinodermi Astropecten irregularis pentacanthus, con un indice di densità di 95 ind./km² e un indice di biomassa di 0.1 kg/km² e Stichopus regalis, con indici di densità e biomassa pari a 78 ind./km² e 17.5 kg/km² rispettivamente.

Nella stazione di controllo E21 SC la specie più abbondante in assoluto è l'acciuga, E. encrasicolus, con un indice di densità di 4833 ind./km² e un indice di biomassa di 43,3 kg/km². Ancora tra gli Osteitti le specie più abbondanti sono il sugarello, T. trachurus, (4811 ind./km² e 31,3 kg/km²), il nasello M. merluccius, con indici di densità e biomassa di 891 ind./km² e 60,4 kg/km² rispettivamente, la triglia di fango, M. barbatus, (869 ind./km² e 33,1 kg/km²) ed il suro, Trachurus maditerraneus, con un indice di densità di 512 ind./km² ed un indice di biomassa

di 17,7 kg/km². I Condroitti sono rappresentati esclusivamente dal gattuccio *S. canicula*, che presenta un indice di densità di 445 ind./km² e un indice di biomassa di 47 kg/km². Tra i Molluschi Cefalopodi le specie più abbondanti, come osservato nelle stazioni in prossimità del terminale, sono il calamaro, *L. vulgaris*, con un indice di densità di 690 ind./km² e un indice di biomassa di 23 kg/km², ed il totano, *I. coindetii*, con indici di densità e biomassa di 245 ind./km² e 7,4 kg/km² rispettivamente. Nella stazione E21 SC le specie più abbondanti appartenenti al gruppo "Altro" sono l'echinoderma *Antedon mediterranea*, con un indice di densità di 1114 ind./km² e un indice di biomassa di 1,11 kg/km² e L'antozoo *Pennatula rubra* (111 ind./km² e 1,3 kg/km²).

Tabella 74 - Rete a strascico: indici di densità e biomassa (± E21 S1-S4 e nella stazione di controllo E21 SC. * = DS<0.0	: DS), espressi in n° indi 5. Le celle vuote indicar	vidui/km² e kg/km², stii no che la specie non è	mati per le specie catt stata rinvenuta.	urate nelle stazioni
	E21 S	1-S4	E21	SC
	n° ind./km ²	kg/km²	n° ind./km²	kg/km ²
OSTEITTI		11		
Argentina sphyraena	16,7±57,9	0,21±0,7		
Blennius ocellaris	5,6±19,3	0,23±0,8		
Boops boops	211,6±271,9	10,47±12,2	111,4	5,19
Callanthias ruber	5,6±19,3	0,12±0,4		
Cepola rubescens	5,6±19,3	0,02±0,1		
Chelydonicthys lucerna	16,7±36,9	0,13±0,3	22,3	1,34
Engraulis encrasicolus	567.9±1271.8	5.07±11.3	4833.0	43.34
Helicolenus dactvlopterus	33.4±115.7	3.12±10.8	,-	-,-
Lepidorhombus boscii	55.7±73.9	2.72 ± 2.9	44.5	1.34
Lepidotriala cavillone	55.7±73.9	0.66 ± 1.0	178.2	1.65
Lepidotriala dieuzeidei	11.1+38.6	0.06 ± 0.2	,_	.,
Lophius budegassa	78 0+102 1	76 63+133 6	66.8	42 63
Macroramphosus scolonax	150 3+520 8	0.71+2.4	00,0	12,00
Merluccius merluccius	963 3+970 0	35 37+5 8	890 9	60.38
Mullus barbatus	1469 9+1411 1	48 99+27 8	868.6	33 12
Pagellus hogaraveo	1400,0±1411,1	40,00127,0	44.5	1 89
Pagellus enthrinus	367 5+/190 5	21 65+27 3	400 Q	23.03
Phycis hlannoidas	5 6+10 3	0.88+3.0	400,0	20,00
Sardina pilohardus	80 1±175 /	1 66+3 3	22.3	0.38
Secretaria pichalaus	5 6±10 3	$1,00\pm 3,3$	22,5	0,50
Scorpagna sorofa	$5,0\pm 19,3$ 16 7±57 0	7.58+26.3		
Scripaena sciola	10,7±37,9	$7,50\pm 20,5$		
Serranus caprilla	39,0±135,0	$0,30\pm1,7$ 0.42,10	111 /	1 24
Selicaro florucco	44,0±94,0	$0,43\pm1,0$	111,4	1,34
Spicara nexuosa	220,3±333,9	5,03±12,3	200,4	0,00
Trachurus mediterreneus	220 6 , 206 4	12 56 . 10 4	22,3 510.2	Z, IZ
	339,0±320,4	$13,30 \pm 10,4$	012,0	17,73
Trachurus picturatus	0,0±19,0	$0,10\pm0,3$	22,3 1910 7	0,10
	9021,9±14190,0	$101,70\pm100,2$	4010,7	31,27
	$395,3\pm417,1$	4,09±2,5	378,0	3,03
Uranoscopus scaper	5,6±19,3	$0,83\pm2,9$	00.0	0.07
	94,7±149,0	43,39±145,2	22,3	0,27
	000 4 444 0	00.77.00.5	A A E A	40.05
Scyllorninus canicula	200,4±144,3	20,77±22,5	445,4	46,95
Torpedo marmorata	5,6±19,3	0,71±2,4		
			44.50	07 200
Palinurus elepnas	0000 7.050 4	20 42 45 2	44,50	27,390
Parapenaeus longirostris	2800,7±952,4	32,43±15,3	2072,0	25,50
	50.400		00.0	0.50
Eleaone cirrnosa	5,6±19,3	0,15±0,5	22,3	0,56
liex coindetii	556,8±337,8	12,69±11,7	245,0	7,39
Loiigo (Alioteutnis) sp.	94,7±110,8	0,28±0,3	155,9	0,58
Loligo vulgaris	1013,4±1551,2	38,09±51,1	690,4	22,98
Octopus vulgaris	16,7±36,9	12,08±33,7		
Scaeurgus unicirrhus	11,1±22,3	0,62±1,2	00.0	0.00
Sepia orbignyana			22,3	0,29
I odaropsis eblanae			22,3	0,38
ALTRO				

Tabella 74 - Rete a strascico: indici di densità e biomassa (± DS), espressi in n° individui/km ² e kg/km ² , stimati per le specie catturate nelle stazioni							
E21 S1-S4 e nella stazione di controllo E21 SC. * = DS<0,0	E21 S1-S4 e nella stazione di controllo E21 SC. * = DS<0,05. Le celle vuote indicano che la specie non è stata rinvenuta.						
Alcyonium palmatum	72,4±138,6	0,84±1,7	22,3	0,45			
Antedon mediterranea	72,4±176,4	0,36±0,9	1113,6	1,11			
Ascidiacea indet.	5,6±19,3	0,06±0,2					
Astropecten irregularis pentacanthus	94,7±167,8	0,12±0,2					
Funiculina quadrangularis	22,3±77,2	0,22±0,8					
Leptometra phalangium		12,25±37,5		11,14			
Pennatula rubra	27,8±57,9	0,33±0,7	111,4	1,34			
Pontobdella muricata				0,45			
Poriphera indet.	5,6±19,3	0,06±0,2					
Squilla mantis	5,6±19,3	0,07±0,2					
Stichopus regalis	78,0±49,8	17,54±8,8	22,3	4,50			
Tethyaster subinermis	5,6±19,3	0,56±1,9					

Indici di densità e biomassa delle specie più rappresentative

Nella fase di bianco, sia per le reti da posta che per la rete a strascico, sono state scelte alcune specie più rappresentative delle catture totali, da analizzare dal punto di vista degli indici di densità e biomassa e delle distribuzioni di taglia frequenza durante tutti i campionamenti successivi. Alle specie indagate già a partire dalla fase di bianco sono state aggiunte, per le reti da posta, la razza chiodata, *Raja clavata*, e per la rete a strascico il sugarello, *T. trachurus*, ed il rombo quattrocchi, *Lepidorhombus boscii*, vista la loro particolare abbondanza nelle catture.

Reti da posta

Nella figura sottostante sono riportati gli indici di densità e biomassa per alcune specie catturate con le reti da posta. I grafici mostrano i valori medi e la deviazione standard degli indici, sia per specie, sia per sito (E21 P1-P4: stazioni in prossimità del terminale; E21 PC: stazione di controllo).

Il gattuccio, S. canicula, e la rana pescatrice, L. budegassa, mostrano indici di densità e biomassa abbastanza simili sia per le stazioni in prossimità del terminale (E21 P1-P4) che per la stazione di controllo (E21 PC).

La razza chiodata *R. clavata* mostra indici più elevati per le stazioni poste in prossimità del terminale (E21 P1-P4). Nel caso della razza stellata, *Raja asterias* e della linguattola *C. linguatula* gli indici di densità e biomassa sono più elevati nella stazione E21 PC rispetto al gruppo di stazioni E21 P1-P4. La gallinella *Chelydonicthys lucerna*, è stata catturata esclusivamente nella stazione E21 PC.

Figura 52 - Reti da posta: indici di densità e biomassa, stimati per le stazioni E21 P1-P4 e per la stazione E21 PC, per specie. Sono riportati i valori medi + la deviazione standard. In blu n° individui/1000m/24h, in azzurro kg/1000m/24h.

Rete a strascico

Nella figura sottostante sono riportati gli indici di densità e biomassa per alcune specie catturate con la rete a strascico. I grafici mostrano i valori medi e la deviazione standard degli indici, sia per specie, sia per sito (I21 S1-S4: stazioni in prossimità del terminale; I21 SC: stazione di controllo).

Il rombo quattrocchi *L. boscii*, il pagello fragolino *P. erythrinus*, il merluzzetto *T. capelanus* e il moscardino *Eledone cirrhosa* non mostrano sostanziali differenze negli indici di densità e biomassa stimati per il gruppo di stazioni E21 S1-S4 e per la stazione E21 SC. nel caso della triglia di fango *M. barbatus* e del sugarello *T. trachurus* gli indici di densità e biomassa sono più elevati nelle stazioni poste in prossimità del terminale (E21 P1-P4). Per il sacchetto, *Serranus hepatus*, ed il pagello fragolino *P. erythrinus* questi stessi indici sono più elevati nella stazione di controllo (E21 SC). Nel caso del nasello *M. merluccius* mentre gli indici di densità sono sostanzialmente simili nel gruppo di stazioni E21 S1-S4 e nella stazione E21 SC, l'indice di biomassa risulta essere più alto nella stazione E21 SC. Anche per il gambero bianco *P. longirostris* gli indici di densità sono simili per le due aree di campionamento, ma in questo caso l'indice biomassa è più elevato nel gruppo di stazioni poste in prossimità del terminale.

Figura 53 – Rete a strascico: indici di densità e biomassa, stimati per le stazioni E21 S1-S4 e per la stazione E21 SC, per specie. Sono riportati i valori medi + la deviazione standard. In blu n° individui/km², in azzurro chiaro kg/km².

Distribuzioni taglia-frequenza per specie Reti da posta

Nella figura sottostante è illustrata la distribuzione di taglia-frequenza degli esemplari dI gattuccio *S. canicula* campionati, con le reti da posta Nel gruppo di stazioni E21 P1-P4. Sono stati campionati 156 individui con taglia compresa tra 25 e 49 cm LT; è possibile individuare una moda a 40 cm LT. Non viene riportata la distribuzione di taglia-frequenza degli animali catturati nella stazione E21 PC visto lo scarso numero di esemplari (48, con taglia compresa tra 31 e 52 cm LT).

Figura 54 - Rete da posta: distribuzione taglia-frequenza del gattuccio (Scyliorhinus canicula). Nº individui: 156 (E21 S1-S4).

Per le altre specie scelte per le reti da posta non sono state elaborate le distribuzioni di taglia-frequenza a causa dello scarso numero di individui campionati. Sono stati campionati 13 individui di rana pescatrice *L. budegassa*: 11 esemplari, con taglia compresa tra 15 e 56 cm LT, sono stati catturati nelle stazioni in prossimità del terminale (E21 P1-P4), mentre 2 animali (taglie 38 e 40 cm LT) sono stati campionati nella stazione di controllo (E21 PC). Nel caso della linguattola *C. linguatula* sono stati campionati 22 esemplari, con taglia compresa tra 13,5 e 22,5 cm LT, nelle stazioni E21 P1-P4, mentre nella stazione E21 PC sono stati catturati 9 animali con taglia compresa tra 15 e 23,5 cm LT. Passando alla razza stellata *R. asterias* in totale sono stati campionati 12 esemplari: 5 nelle stazioni in prossimità del terminale (taglia compresa tra 54 e 59 cm LT), 8 nella stazione di controllo (taglia compresa tra 55 e 62 cm LT). La cattura della razza chiodata *R. clavata* in totale è costituita da 17 esemplari. Nel gruppo di stazioni E21 P1-P4 sono stati campionati 16 animali con taglia compresa tra 62 e 78 cm LT; nella stazione E21 PC è stato campionato un solo animale con taglia di 74 cm LT. La gallinella *C. lucerna* è stata pescata solamente nella stazione E21 PC (1 individuo di 71,5 cm LT).

Rete a strascico

Nel gruppo degli Osteitti la specie maggiormente catturata è sugarello *T.trachurus*. Nel gruppo di stazioni E21 P1-P4 sono stati catturati 1760 esemplari con taglia compresa tra 7 e 19 cm LT. Nella stazione E21 SC sono stati campionati 216 animali aventi taglia compresa tra 7 e 11,5 cm LT. La distribuzione di taglia-frequenza degli animali catturati nel gruppo di stazioni in prossimità del terminale (E21 P1-P4) mostra una moda a 9 cm LT, mentre quella degli animali provenienti dalla stazione I21 SC mostra una moda a 9,5 cm LT (**Figura 55**).

Figura 55 - Rete a strascico: distribuzione taglia-frequenza del sugarello (Trachurus trachurus). Nº individui: 1760 (E21 S1-S4).

Nel caso della triglia di fango *M. barbatus* viene mostrata solo la distribuzione taglia-frequenza degli esemplari catturati nel gruppo di stazioni E21 S1-S4, in quanto il numero degli animali catturati nella stazione E21 SC è molto basso (39 esemplari con taglia compresa tra 11 e 22,5 cm LT). Nel gruppo di stazioni poste in prossimità del terminale sono stati campionati 264 esemplari, con taglia tra 10 e 24,5 cm LT (**Figura 56**). Nella distribuzione di taglia sono evidenti due mode, una a 11,5 cm LT, l'altra a 20 cm LT.

Figura 56 - Rete a strascico: distribuzione taglia-frequenza della triglia di fango (Mullus barbatus). Nº individui: 264 (E21 S1-S4).

Anche nel grafico sottostante relativo al nasello *M. merluccius* viene riportata solo la distribuzione di taglia-frequenza degli esemplari catturati nel gruppo di stazioni E21 P1-P4, in quanto gli animali catturati nella stazione di controllo E21 PC (40 esemplari con taglia compresa tra 9 e 34 cm LT) non mostrano una distribuzione di taglia ben definita. Nel gruppo di stazioni E21 S1-S4 sono stati campionati 173 esemplari con taglia compresa tra 6 e 38 cm LT. Nella distribuzione di taglia-frequenza è evidente una moda a 10 cm LT.

Figura 57- Reti a strascico: distribuzione taglia-frequenza del nasello (Merluccius merluccius). Nº individui: 173 (E21 S1-S4).

Nel caso del merluzzetto *T. capelanus* sono stati campionati in totale 88 esemplari, 71 nel gruppo di stazioni E21 S1-S4 e 17 nella stazione E21 SC. La taglia degli animali campionati nelle stazioni in prossimità del terminale è compresa tra 5,5 e 17 cm LT, mentre quella degli animali provenienti dalla stazione di controllo è compresa tra 7,5 e 13.5 cm LT. La distribuzione di taglia degli individui delle stazioni E21 S1-S4 mostra una moda a 7,5-8 cm LT (**Figura 58**). Dato lo scarso numero degli esemplari non viene fornita la distribuzione di taglia-frequenza per la stazione E21 SC.

Figura 58 - Rete a strascico: distribuzione taglia-frequenza del merluzzetto (Trisopterus capelanus). Nº individui: 71 (E21 S1-S4).

Passando al pagello fragolino *P. erythrinus*, anche in questo caso viene riportata solo la distribuzione taglia-frequenza degli esemplari campionati nel gruppo di stazioni E21 P1-P4: sono stati catturati 66 animali con taglia compresa tra 14 e 21 cm LT. Nella distribuzione di taglia-frequenza è presente una moda a 16 cm LT (**Figura 59**). Nella stazione E21 SC sono stati invece catturati 18 esemplari con taglia tra 15 e 19,5 cm LT.

Figura 59 - Rete a strascico: distribuzione taglia-frequenza del pagello fragolino (Pagellus erythrinus). N° individui: 66 (E21 S1-S4).

Per gli altri Osteitti scelti come specie di riferimento lo scarso numero di individui campionati non ha permesso di elaborare le distribuzioni di taglia-frequenza. Nel caso del rombo quattrocchi *L. boscii* sono stati catturati in totale 12 individui, 10 nelle stazioni E21 S1-S4 con taglia compresa tra 8 e 21,5 cm LT, e 2 nella stazione E21 SC, con taglie di 14 e 16,5 cm LT. Passando al sacchetto *S. hepatus*, nelle stazioni in prossimità del terminale (E21 S1-S4) sono stati campionati 2 animali aventi taglia di 8,5 e 9,5 cm LT, mentre nella stazione di controllo (E21 SC) sono stati catturati 8 animali con taglia compresa tra 7 e 8,5 cm LT.

Passando al gattuccio S. canicula, anche in questo caso, visto lo scarso numero di esemplari, non vengono fornite le distribuzioni di tagliafrequenza. Questa specie è presente nelle stazioni E21 S1-S4 con un totale di 37 individui, con taglia compresa tra 25 e 44 cm LT, mentre nella stazione E21 SC sono stati campionati 20 individui, con un intervallo di taglia tra 25 e 45 cm LT.

Passando al gambero bianco *P. longirostris*, nel gruppo di stazioni E21 S1-S4 sono stati catturati 503 individui con taglia compresa tra 14 e 36 mm LC, mentre nella stazione E21 SC sono stati campionati 120 esemplari con taglia compresa tra 15 e 34 mm LC. La distribuzione di taglia-frequenza degli animali catturati in prossimità del terminale (E21 S1-S4) mostra due mode, una a 22 mm LC e una a 27 mm LC, così come la distribuzione degli organismi provenienti dalla stazione E21 SC, con una moda a 20 mm LC ed una a 26 mm LC (**Figura 60**).

Figura 60 - Rete a strascico: distribuzione taglia-frequenza del gambero bianco (Parapenaeus longirostris). Nº individui: 503 (E21 S1-S4); 120 (E21 SC).

Nel caso del moscardino, *E. cirrhosa*, in totale sono stati campionati 2 esemplari, uno per ciascuna area di campionamento, entrambi con taglia 4,5 cm LM.

2.3.6 Fauna ittica pelagica

Nella campagna estiva E21, con le reti da posta pelagiche, è stato catturato un solo individuo di tombarello, *Auxis rochei rochei,* nella stazione E21 PD, con un indice di densità di 8 ind./1000m/24h ed un indice di biomassa di 13,6 kg/1000m/24h. La taglia del tombarello era di 51,5 cm LT.

Lo scarso numero di individui catturati è da mettere in relazione con le caratteristiche di questo tipo di pesca e delle specie che si vanno ad insidiare. La concentrazione degli esemplari in genere è molto bassa ed organizzata in branchi che non hanno una distribuzione continua.

2.3.7 Cetacei e tartarughe marine

Per questa indagine sono state percorse 276 nm per un totale di 67h di navigazione (Figura 61). Nessun avvistamento di cetacei o tartarughe è stato effettuato durante la campagna E21.

Figura 61 - Sono riportate le rotte percorse per il monitoraggio visivo e biocustico condotto a partire da settembre 2021 (E21)

2.4 INDAGINI GENERALI

2.4.1 Bioacustica

La campagna di E21 è stata condotta il 2 ottobre. Seguendo tali transetti, su rotte prefissate, è stato effettuato l'ascolto in continuum dell'ambiente marino attraverso specifico idrofono dedicato. Tale strumento è stato trainato ad una distanza di 30m secondo una delle due modalità da effettuare: a motore al minimo di velocità (2-3knt) in quanto in assenza di vento (la seconda modalità prevede la traina dell'idrofono ma a vela, sempre ad una velocità di 2-3knt ed in presenza di vento con direzione idonea ad effettuare i transetti). Questo al fine di rendere l'ascolto il più possibile non inquinato dai rumori dell'imbarcazione e ascoltare prevalentemente il rumore ambientale.

La fase di ascolto è stata effettuata da biologi marini esperti in bioacustica che si sono alternati alla postazione del computer e all'osservazione con binocolo. L'operatore al computer è rimasto in ascolto tramite cuffie per tutto il tempo delle misure ed ha osservato contemporaneamente il video dove, tramite un software dedicato, viene visualizzato il risultato dell'ascolto/registrazione dei suoni ambientali. L'ascolto è stato effettuato ad una sampling rate di 48.000 Hz e visualizzato e i 24.000 Hz che rappresenta l'intervallo ottimale di vocalizzazione e comunicazione dei tursiopi (i cetacei residenti in questa area Santuario Pelagos). Il protocollo di ascolto in presenza prevede che in caso di percezione diretta (il suono biologico, fischio o clik, viene distintamente udito) e/o contemporanea osservazione visiva sullo spettrogramma di "segni marcati" anche in assenza di suono udito, l'operatore deve far partire la registrazione per tutto il tempo della durata del suono biologico.

I transetti per la campagne del 2 ottobre, della lunghezza totale di circa 16 km, sono stati percorsi in circa 220 min che rappresentano il tempo totale di ascolto.

Durante questo intervallo di tempo nessun suono biologico è stato rilevato.

Di seguito riportiamo un frame di spettro che rappresenta quanto osservato/ascoltato durante i transetti dove si può osservare l'assenza di segni marcati (Figura 62).

Figura 62 - Frame di registrazione del 02.10.2021.

3 CONFRONTO INTERSTAGIONALE E CON LA CAMPAGNA DI BIANCO

Nel presente capitolo vengono riportati i confronti tra il Bianco e le successive campagne di esercizio con particolare riferimento alle campagne estive poiché il Bianco è stato condotto in questa stagione.

Inoltre, per faciliare la lettura, sono riportati i metodi di elaborazione dei dati concernenti i confronti, mentre per i metodi generali si rimanda al capitolo relativo a Materiali e Metodi contenuto nel Volume I del rapporto annuale.

3.1 COLONNA D'ACQUA

3.1.1 Profili idrologici

Metodi di elaborazione dati

Il seguente documento analizza i valori delle variabili oceanografiche (temperatura, salinità, pH, torbidità, ossigeno (saturazione %), clorofilla a, potenziale di ossido-riduzione) rilevate durante la fase di esercizio dall'autunno 2013 fino all'estate 2021 nelle 14 stazioni di monitoraggio (vedere mappa delle stazioni Volume 1). I dati sono stati confrontati anche con quelli rilevati durante la campagna di misure effettuata nell'agosto 2012, definita "Bianco", in quanto realizzata antecedentemente all'installazione del rigassificatore.

Al fine di valutare un eventuale impatto dovuto alla presenza del Terminale, lo scopo delle analisi è verificare se esiste un effetto del tempo (fattore Anno, v. sotto) e della distanza dal punto di scarico del rigassificatore (fattore Stazione, v. sotto) sui dati oceanografici misurati. Poiché si prevede l'impatto maggiore alla profondità dello scarico, i dati presi in considerazione sono quelli compresi tra 12 m e 13 m, ossia

nella stessa fascia batimetrica dono stati posizionati i mitili.

L'ANOVA è un'analisi statistica che permette di stabilire se più gruppi di dati, che si differenziano tra loro per i livelli di un fattore comune, provengono da una stessa popolazione (ipotesi zero), e quindi senza alcuna influenza da parte del fattore, oppure no (ipotesi alternativa), nel qual caso il fattore ha un'influenza. Il test statistico dell'ANOVA fornisce un "p value" che rappresenta la probabilità di ottenere i gruppi dei dati osservati sotto l'ipotesi zero, ossia che i gruppi di dati provengano tutti da una stessa popolazione. Se il p value è maggiore o uguale a 0,05 - la scelta di questo limite è generalmente un compromesso tra l'errore di tipo 1 (rifiuto l'ipotesi zero quando essa è vera) e l'errore di tipo 2 (non rifiuto l'ipotesi zero quando essa è falsa) ed è il valore più diffusamente usato in statistica - non si hanno evidenze per rifiutare l'ipotesi zero, ovvero che i gruppi dei dati provengano da una stessa popolazione senza alcuna influenza da parte del fattore. Viceversa, se il p value è inferiore a 0,05, l'ipotesi zero va rifiutata e si accetta l'ipotesi alternativa, ovvero che questi gruppi di dati non provengano da una stessa popolazione perché influenzati dal fattore.

In questa sezione, i dati vengono considerati singolarmente per ognuna delle quattro stagioni. Su questi dati si valutano contemporaneamente l'effetto del fattore Stazione (le varie stazioni sono poste a distanza diversa dal rigassificatore, fatto che consente di valutare se le variabili analizzate sono diversamente influenzate dal Terminale in ragione dalla distanza da esso), del fattore Anno avendo effettuato le misurazioni in anni successivi, valutando questo fattore si vede se ci sono variazioni nel tempo sui valori delle variabili aggregati su tutte le stazioni) e della loro interazione StazionexAnno (se esiste un effetto dovuto all'interazione tra i due fattori sui valori delle variabili che così cambierebbero secondo i livelli di un fattore in maniera modulata dai livelli dell'altro fattore) sulle variabili temperatura, salinità, pH, torbidità, ossigeno disciolto (saturazione %), clorofilla, potenziale di ossido-riduzione. Dato il disegno sperimentale, si è applicata pertanto un'ANOVA a due vie a fattori incrociati (tutti i livelli di un fattore si presentano in combinazione con tutti i livelli dell'altro fattore) e ortogonali (il fattore Stazione ed il fattore Anno sono non correlati). Il test ANOVA eseguito è il test nonparametrico Scheirer–Ray–Hare (le varianze dei gruppi di dati non sono omogenee ed è difficile stabilire la normalità dei dati) come descritto in https://rcompanion.org/handbook/F_14.html. Oltre agli effetti principali è stata testata l'interazione StazionexAnno.

Risultati

Osservando i risultati di p value riportati in **Tabella 75**, si evince che solo il fattore "Anno" risulta altamente significativo in quanto i valori di p value sono sempre < 0,05 mentre si notato solo alcuni effetti occasionali sul fattore Stazione e nell'interazione StazionexAnno.

- effetto Stazione nel potenziale di ossido riduzione di Autunno;
- effetto Stazione nella clorofilla a di Autunno;
- effetto dell'interazione AnnoxStazione nella torbidità di Primavera;
- effetto dell'interazione AnnoxStazione nella clorofilla di Primavera.

Tabella 75 - Valori di p valu	ue in funzione della variabile (icativi, Legenda: L= Inverno, I	1a colonna), della stagione (2° colo 2 = Primavera, E = Estate, A = Aut	onna) e del fattore (ultime	e tre colonne). In grassetto i
Variabile	Stagione		Fattore	
	etagione	Stazione	Anno	StazionexAnno
_		0.954	0.000	1.000
itura	Р	0.796	0.000	1.000
bera	E	0.313	0.000	1.000
emp		0.695	0.000	1.000
μ. μ.	A			
		0.414	0.000	0.982
	Р	0.305	0.000	1.000
Ha	F	0.443	0.000	1.000
	L			
	A	0.419	0.000	0.998
e o e	I	0.359	0.000	1.000
ssid	Р	0.313	0.000	1.000
di ote	E	0.441	0.000	1.000
Щ С С	А	0.004	0.000	0.756
_	I	0.923	0.000	1.000
inità	Р	0.662	0.000	1.000
Sal	E	0.975	0.000	1.000
	A	0.917	0.000	1.000
0 o 0	1	0.563	0.000	1.000
gen ioltc e)	Р	0.900	0.000	0.927
)ssij disc ne	E	0.517	0.000	0.999
	А	0.932	0.000	1.000
		0.886	0.000	1.000
idité	Р	0.615	0.000	0.006
orb	E	0.117	0.000	0.989
F	А	0.123	0.000	0.910
_		0.090	0.000	1.000
ofille	Р	0.132	0.000	0.014
Clore	E	0.575	0.000	1.000
0	A	0.000	0.000	0.606

I valori di p value di **Tabella 75** indicano che il fattore Anno, per cui tutti i p value sono inferiori a 0,05, ha un fortissimo effetto sui valori delle variabili aggregati su tutte le stazioni: da un anno all'altro essi cambiano in maniera altamente significativa. Come cambiano è illustrato nei grafici seguenti. Il fattore Stazione invece sembra non avere alcun effetto se non in due casi su 28: per i dati del potenziale di ossido-riduzione in autunno e per i dati della clorofilla in autunno. Questa bassa incidenza sembra pertanto indicare che il fattore Stazione, e quindi la distanza dal rigassificatore, non ha effetto sui dati di alcune variabili (temperatura, salinità, pH, torbidità e saturazione d'ossigeno) mentre sembra averne solo sui dati autunnali di due variabili (clorofilla e potenziale di ossido-riduzione). Complessivamente, si può affermare che l'effetto della Stazione, e quindi della distanza dal rigassificatore, sembra essere minimo sui valori delle variabili considerate.

Infine, ci sono due casi significativi di interazione StazionexAnno: per i dati primaverili della torbidità e della clorofilla. In questo specifica circostanza siamo quindi in presenza di dati che variano secondo il fattore Anno in una maniera che dipende anche dal fattore Stazione. Considerata la bassa incidenza di significatività (2 casi su 28), però, si può dire che anche in questo caso l'effetto dell'interazione tra Anno e Stazione, cioè fra tempo e distanza, sui dati raccolti è da ritenersi trascurabile.

Figura 63 – Andamento della temperatura media dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF15).

Figura 64 – Andamento della salinità media dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF15).

Figura 65 – Andamento del pH medio dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF15).

Figura 66 – Andamento della torbidità media dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF15).

Figura 67 – Andamento della percentuale di saturazione di ossigeno medio dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF2).

Figura 68 – Andamento della clorofilla a media dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF15).

Figura 69 – Andamento del potenziale di ossido-riduzione medio dal bianco (2012) all'estate 2021 nelle quattro stagioni (A=Autunno; I=Inverno, P=Primavera; E=Estate). Sono stati analizzati i dati relativi alla fascia di profondità compresa tra -13 e -12 metri ossia in quella relativa allo scarico maggiore (SF15).

Le curve solide riportate nei grafici sono un lisciamento con metodo "lowess" che rappresenta il trend delle medie. In generale non si evince alcun andamento temporale in funzione dell'Anno particolare se non un certo stabilizzarsi dei valori delle variabili negli ultimi anni nella maggior parte dei casi.

L'andamento temporale della temperatura rivela una forte stagionalità, con minimi invernali intorno a 14-15 °C e massimi estivi compresi fra 22,5 e 25,5 °C. La salinità presenta negli ultimi 4 anni e per tutte le stagioni, ad eccezione dell'inverno, valori omogenei intorno a 38,1. Valori leggermente più bassi intorno a 37,5 sono visibili negli anni 2014 e 2015. Il pH presenta una piccola variabilità (valori compresi fra 7.6-8.3) in tutte le stagioni fatta eccezione per l'estate in cui si osserva una netta stabilità negli ultimi cinque anni. L'andamento temporale della torbidità presenta bassi valori (< 1 NTU) e costanti nel tempo in primavera, estate ed autunno. L'inverno presenza una maggiore variazione (valori compresi fra 1 e 4 NTU) negli anni. La saturazione di ossigeno non presenta variazioni interannuali e stagionali di rilievo (100 ±10 %). Solo in autunno 2013 ed inverno 2014 i valori medi raggiungono l'80 % di saturazione. Anche l'andamento temporale della clorofilla non presenta variazioni interannuali e stagionali di rilievo. I valori di ORP, nelle varie stagioni, presentano una più marcata variabilità interranuale con valori compresi fra 100 e 240 mV.

In conclusione dalle analisi statistiche condotte tramite l'ANOVA emerge un forte effetto del tempo (fattore Anno) sulle variabili misurate ma senza un andamento specifico, come illustrato dai grafici. Sempre dall'ANOVA, sembra esserci un effetto minimo sia della distanza dal rigassificatore (i dati nella maggior parte dei casi non variano con il fattore Stazione) sia dell'interazione AnnoxStazione, cioè tempoxdistanza, ad indicare l'assenza di un impatto significativo della struttura sui valori fisici della colonna d'acqua alla profondità esaminata (-13 m < x < - 12m).

3.1.2 Caratteristiche fisiche, chimiche e microbiologiche

Metodi di elaborazione dati

Sono stati valutati gli andamenti dei parametri di seguito descritti (irradianza e irradianza spettrale, nutrienti (nitriti + nitrati, DIN; fosfati, PO4; silicati, SiO₂), solidi sospesi (TSM), sostanza organica particellata (POM) e sostanza organica disciolta cromoforica (CDOM), clorofilla *a* (chl*a*), diversità pigmentaria, dal Bianco a E21. Per gli stessi parametri sono stati eseguiti i confronti tra le campagne estive (E14, E15, E16, E17, E18, E19, E20, E21) e la campagna di Bianco (estate 2012).

Per una rappresentazione sintetica della caratterizzazione ottica delle acque indagate comprendente tutte le campagne effettuate, è stata utilizzata una regressione ortogonale (variabili x e y log-trasformate, considerate entrambe indipendenti) esaminando il rapporto tra la riflettanza (R=rapporto tra l'irradianza spettrale superficiale ascendente e discendente, misurate con spettroradiometro) nel blu (R(443)) e quella nel verde (R(555)) in funzione delle concentrazioni di chl-a. In condizioni naturali in acque aperte, il rapporto varia linearmente in maniera inversamente proporzionale alla concentrazione di biomassa fitoplanctonica (chl-a) e, eventuali variazioni o scostamenti da questa relazione, possono essere interpretati come indice di alterazione delle acque (Morel e Prieur, 1977; Gordon e Morel, 1983).

Per valutare gli eventuali effetti sui parametri analizzati dovuti all'attività del Terminale è stata eseguita una ANOVA ad un fattore (dati logtrasformati) per ognuno dei tre fattori (anno di campionamento, distanza dal Terminale e profondità di prelievo) sui dati delle campagne a parità di stagione, cioè la campagna di Bianco e le otto campagne estive in fase di esercizio (E14, E15, E16, E17, E18, E19, E20, E21). I dati delle quattro stazioni a 100 m dal Terminale sono stati mediati dopo aver verificato la non esistenza di differenze significative (ANOVA) tra le stazioni per tutti i parametri analizzati. L'analisi dei parametri precedentemente citati ha quindi incluso il valore medio delle quattro stazioni a 100 m (MG6, MG7, MG12, MG13), e i valori rispettivamente di MG5 (200 m), MG3 (500 m), MG9 (1000 m), MG10 (2000 m). Le elaborazioni sono state effettuate utilizzando il software OriginPro 2020.

Risultati

Misure di irradianza e irradianza spettrale

La profondità della zona eufotica (Z_{eu}), cioè la profondità alla quale arriva l'1% della radiazione PAR superficiale, è un indice sintetico della trasparenza delle acque. Z_{eu} è variabile in relazione alle concentrazioni delle sostanze otticamente attive: fitoplancton, particellato sospeso non fitoplanctonico, di cui il TSM rappresenta un proxi, sostanza organica disciolta cromoforica (CDOM) e, in particolare, le massime attenuazioni sono attese in relazione alle fioriture fitoploanctoniche che avvengono nelle acque superficiali.

L'andamento delle profondità della Z_{eu} durante gli otto anni di campionamento in MG7, esemplificativa delle stazioni a 100 m dal Terminale, e in MG10, posizionata a 2000 m, mostra la generale regolarità delle variazioni stagionali evidenziata anche negli anni precedenti: le profondità massime si collocano nello strato compreso tra i 70 e gli 80 m nelle campagne primaverili-estive, le minime appaiono maggiormente variabili in autunno-inverno tra circa 20 e 50 m. Nell'ultimo anno di monitoraggio si conferma l'andamento previsto, con le minori profondità in A20 e l21, dove si sono registrate le maggiori concentrazioni superficiali di chl-*a* (**Figura 72**). L'analisi ANOVA sui fattori distanza e anno conferma la non significatività delle differenze per il primo fattore e la significatività delle differenze (** p<0,01) per il secondo, evidenziando quindi la variabilità interannuale del ciclo stagionale.

Figura 70 – Variazione della profondità (m) della zona eufotica (Z_{eu}) nelle due stazioni rappresentative, per tutte le campagne effettuate; sono riportati inoltre i risultati dell'analisi ANOVA per i fattori anno e distanza.

In **Figura 71** è riportata la regressione fra il logaritmo del rapporto di riflettanze blu (R443) verde (R555) ed il logaritmo della concentrazione media di chl-*a* dello strato superficiale (0,5-12,5 m). La correlazione altamente significativa tra le due variabili (**p<0,01) evidenzia la linearità del rapporto inversamente proporzionale tra riflettanza e concentrazione di chl-*a*, dimostrando come la biomassa fitoplanctonica sia la principale componente otticamente attiva in queste acque, e la principale fonte di origine del particellato sospeso (TSM) e della sostanza organica cromoforica (CDOM). Tutti i punti dell'VIII anno si collocano all'interno dell'ambito occupato dalla maggior parte dei campioni precedenti, la cui distribuzione lungo la retta conferma che la stagionalità è il principale fattore di variabilità per tutte le stazioni, indipendentemente dalla distanza dal Terminale (**Figura 71**).

L'analisi delle proprietà bio-ottiche (profondità della zona eufotica e rapporti tra riflettanza e chl-a) esaminate per l'VIII anno di monitoraggio, conferma che la variabilità di queste grandezze è tipicamente stagionale, indicando che ad oggi non agiscono altri elementi di alterazione dovuti alla presenza del Terminale.

Figura 71 - Relazione fra il log del rapporto fra le riflettanze a 443 nm e quelle a 555 nm (R(443)/R(555)) ed il log della concentrazione della chl-a. Sono riportati l'equazione della retta di regressione ed il coefficiente di determinazione R². I simboli pieni rappresentano le stazioni più vicine al Terminale e quelli vuoti le stazioni lontane.

Nutrienti inorganici, TSM (solidi sospesi), POM (particellato organico) e CDOM (sostanza organica disciolta cromoforica)

Gli andamenti di azoto e fosforo inorganici disciolti (nitriti, nitrati, fosfati) nell'VIII anno di campionamento seguono in parte l'andamento atteso con i massimi in I21, come in prevalenza negli anni precedenti (massimi in autunno- inverno), una successiva diminuzione in P21 e nuovo aumento in E21. I silicati non presentano ciclicità evidente, associati prevalentemente al consumo delle diatomee soprattutto in P18. Le concentrazioni si mantengono comunque su quelle tipiche di acque oligo-mesotrofiche, collocandosi nell'ambito dei valori attesi.

Si conferma l'alta variabilità di TSM e POM, per la natura stessa del dato che può variare anche a piccola scala spazio-temporale, e non si evidenzia uno specifico trend stagionale. La CDOM presenta massimi generalmente superficiali invernali con quelli assoluti che però sono in profondità in estate, associati ai massimi di chl-a, contemporaneamente ai minimi superficiali.

Dai risultati dell'analisi ANOVA per DIN, PO₄, SiO₂, TSM, POM e CDOM per il confronto tra il Bianco e le successive campagne estive **Tabella 76** il fattore distanza dal Terminale non determina variazioni significative per i parametri considerati ad eccezione di SiO₂, per i quali possono aver pesato le concentrazioni particolarmente elevate rilevate in E21 MG9 (1000 m dal Terminale). Anche per queste variabili si conferma l'importanza della variabilità interannuale come fattore altamente significativo per tutti i parametri. La profondità risulta un fattore altamente significativo per DIN e CDOM (**p<0,01), variabili in un range di concentrazioni atteso, e con massimi estivi alle maggiori profondità (70 m).

Tabella 76 - ANOVA ad un fattore per i fattori anno di campionamento, distanza dal Terminale, profondità di prelievo, sullecampagne estive (Bianco, E14, E15, E16, E17, E18, E19, E20, E21). * 0,01p<0,05; ** p<0,01										
Fattori	DIN (µM)	PO4 (µM)	SiO ₂ (µM)	TSM (mg/l)	POM (mg/l)	СDOM а _{сром} (325) m ⁻¹				
anno	**	**	**	**	**	*				
distanza	n.s.	n.s.	*	n.s.	n.s.	n.s.				
prof	**	n.s.	n.s.	n.s.	n.s.	**				

Clorofilla e diversità pigmentaria

Le concentrazioni della chl-a, proxi della biomassa fitoplanctonica, hanno presentato negli anni precedenti variazioni stagionali attese con massimi invernali (massimo assoluto in 117) e minimi primaverili ed estivi che si mantengono anche nelle acque più profonde (**Figura 72**). A 50 e 70 m gli aumenti autunno-invernali sono di minore entità, mentre in estate e tarda estate si rilevano i tipici massimi profondi. Anche nell' VIII anno di campionamento si osserva lo stesso andamento delle concentrazioni, con aumento in A20, massimo in 121 e diminuzione in P21 ed E21 tranne in profondità alla stazione a 2000 m (E21 MG10) in cui a 70 m si registrano concentrazioni paragonabili a quelle invernali (**Figura 72**) in relazione alla notevole abbondanza di diatomee, coccolitofori e Prymnesiophyceae non coccolitofori. Si conferma quindi che

la stagionalità è il principale fattore di variabilità della chl-a collegata alla variabilità interannuale. Anche gli andamenti della diversità pigmentaria variano stagionalmente, come negli anni precedenti e con contributi relativi variabili lungo le profondità riconducibili proprio alle caratteristiche della successione stagionale delle comunità fitoplanctoniche.

Figura 72 - Andamenti temporali delle concentrazioni della chl-a, medie per campagna delle 4 stazioni (MG6, MG7, MG12, MG13) più vicine al Terminale (100m) e della stazione a 2000 m (MG10); a) media 0-12,5 m; b) media 50-70 m.

Dai risultati dell'analisi ANOVA per il confronto tra il Bianco e le successive campagne estive (**Tabella 77**) per chl-*a* e pigmenti accessori (pigmenti diagnostici delle classi fitoplanctoniche), il fattore distanza dal Terminale non determina variazioni significative mentre i fattori anno e profondità risultano altamente significativi. In estate, infatti, in seguito all' instaurarsi della condizione di stratificazione sono presenti popolamenti a diversa composizione tassonomica e quindi pigmentaria differenziati tra lo strato superficiale e quello profondo. Il grado di separazione tra i due strati dipende fortemente dall'andamento delle fasi stagionali.

Tabella 77 - ANOVA ad un fattore per i fattori anno di campionamento, distanza dal Terminale, profondità di prelievo, sulle campagne estive(Bianco, E14, E15, E16, E17, E18, E19, E20). * 0,01 <p<0,05; **="" p<0,01<="" td=""></p<0,05;>										
Fattori	Chl-a tot	Chl-b	DVA	Perid	But-Fuco	Fuco	Hex-Fuco	Prasino	Allo	Zea
Anno	*	n.s.	n.s.	**	*	**	**	**	n.s.	**
Distanza	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
Prof	**	**	**	n.s.	**	**	**	**	**	**

Tensioattivi, cloroderivati, Idrocarburi totali e analisi microbiologiche

Per i tensioattivi non ionici e i cloroderivati non sono state osservate anomalie degne di nota.

Per quanto riguarda i tensioattivi anionici, come descritto nei rapporti annuali precedenti, i dati suggeriscono che questi contaminanti esibiscono, talvolta, concentrazioni più elevate durante le stagioni invernali, indipendentemente dalla stazione e dalla profondità considerata. I valori assoluti sono diffusamente bassi, tanto che dall'inverno 2016 non sono più stati rilevati.

Un cenno meritano gli Idrocarburi C>12 che hanno mostrato un incremento nella campagna primaverile del 2018. Tuttavia, i valori risultano paragonabili tra stazioni, indipendentemente dalla loro distanza dall'FSRU. Va comunque sottolineato che i livelli raggiunti sono comunque bassi se confrontati con quelli riportati nel D.lgs 152 parte III relativi alle acque dolci superficiali destinate al consumo umano. Inoltre, già dall'estate 2018 questi composti avevano esibito un deciso calo protrattosi nell'autunno del medesimo anno. Nell'inverno 2019, invece, essi hanno esibito una recrudescenza senza, tuttavia, raggiungere le concentrazioni osservate in P18. In soli due casi (I19 MG5 70m e I19 MG10 50m) i tenori risultano paragonabili a quelli della primavera precedente. Si tratta in entrambi i casi di stazioni lontane dell'FSRU. Nel VII anno

di monitoraggio (A19-E20) si confermano le concentrazioni degli anni precedenti con tenori sempre inferiori a quelli registrati nella primavera 2018. Valori paragonabili a P18, ma mai superiori, sono stati rilevati in P20 MG7 alle quote 0,5 m e 50 m e in P20 MG12 alla quota 50 m. Nel VIII anno di monitoraggio (A20-E21) questi composti risultano diffusamente in calo rispetto al VII anno (A19-E20). Fa eccezione la stagione invernale (I21) durante la quale si registrano alcuni aumenti rispetto a I20, ma quelli maggiori riguardano le stazioni lontane dal Terminale. Inoltre, le concentrazioni medie rilevate presso l'FSRU (MG6, MG7, MG12, MG13) sono in linea con quelle dei controlli (MG9, MG10) e delle stazioni poste a distanza intermedia (MG3, MG5).

3.1.3 Saggi ecotossicologici su campioni di acqua

Materiali e metodi

I risultati dei singoli test (Assente, Bassa, Media) sono stati trattati come dati di Presenza-Assenza (0-1). Di conseguenza, i dati indicati come "Assente" sono stati convertiti in 0, mentre sia risposta "Bassa" che "Media" sono stati considerati come Presenza (e convertiti in 1). Per ciascun punto di campionamento (nello spazio e nel tempo), sono state prese in considerazione le risposte dei tre test e combinate nel

seguente modo: nel caso queste fossero state tutte "Assente", è stato assegnato il valore di 0 (risposta assente); nel caso anche solo uno dei tre test avesse avuto una risposta (anche "Bassa"), è stato assegnato 1 (risposta presente). Si tratta, quindi, di un approccio molto conservativo: la risposta combinata dei tre test viene considerata positiva (presente) anche nel caso solo uno dei tre test mostri una risposta (anche se "Bassa").

Un modello GLM (Generalized Linear Model) con distribuzione binomiale è stato applicato sul dataset, con variabile dipendente la risposta del test (in forma di Presenza-Assenza, o 0-1), e variabili indipendenti tempo (anno, come fattore a 8 livelli: 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021), distanza da FSRU e stagione (fattore a 2 livelli: E = estate, I = inverno). Il modello iniziale, contenente anche l'interazione tra tempo e distanza, è espresso dalla seguente formula:

Risposta Test = α + fAnno + fStagione + fProfondità + fDistanza + fAnno:fDistanza + εi,

dove Risposta Test è la variabile dipendente (risposta combinata dei tre test, nella forma 0 - 1), α è l'intercetta, Anno, Stagione e Distanza sono le variabili indipendenti (Stagione ed Anno espresse come fattore f). Nella formula è anche indicata l'interazione tra Anno e Distanza. A partire dal modello iniziale, è stata effettuata una backward selection analysis basata sull'analisi della varianza e l'Akaike Information Criterion (AIC), al fine di individuare il modello migliore nel descrivere i dati, associato al valore di AIC più basso. Una volta individuato il modello migliore, una validazione del modello stesso è stata effettuata attraverso l'analisi grafica dei residui.

Le analisi sopra descritte sono state effettuate in ambiente R (versione 4.1.1), utilizzando i pacchetti associati mgcv e nlme (R Core Team, 2021).

Risultati

La backward selection analysis ha evidenziato che il fattore Profondità, il fattore Distanza e l'interazione tra il fattore Distanza ed il fattore Anno non hanno effetto significativo sulla variabile dipendente. Pertanto, il modello contenente solo i fattori Anno e Stagione è risultato il modello più adatto a descrivere i dati ottenuti con i tre saggi ecotossicologici.

La tabella seguente mostra gli output del modello. Dalla stima dei coefficienti si evince come il fattore Stagione abbia relazioni significative con la variabile dipendente (Risposta combinata dei tre saggi). In particolare, visto il valore negativo del coefficiente associato, si evince che in inverno la risposta dei test sia significativamente inferiore rispetto al periodo estivo. Anche il fattore Anno mostra effetti significativi. Sembra che ci sia un trend all'aumento della risposta dei saggi ecotossicologici (il livello di riferimento è considerato il 2013, che infatti non è incluso nella tabella seguente). Ma questo aumento non è legato alla presenza del terminale, bensì determinato da variazioni oceanografiche nell'intera area.

Dalle analisi, quindi, non emerge alcun effetto sulle risposte dei saggi ecotossicologici che possa essere imputabile al terminale FSRU.

Tabella 78 – Output del modello GLM (Generalized Linear Model) applicato ai risultati delle analisi ecotossicologiche trattati come dati di Presenza-Assenza (0-1).									
Coefficienti	Stima	Errore standard	Z	Livello di significatività					
Intercetta	-1.95	0.62	-3.15	<0.05					
fAnno(2014)	2.39	0.70	3.45	<0.05					
fAnno(2015)	0.51	0.74	0.70	NS					
fAnno(2016)	2.74	0.70	3.93	<0.05					
fAnno(2017)	3.91	0.76	5.21	<0.05					
fAnno(2018)	2.93	0.70	4.17	<0.05					
fAnno(2019)	1.71	0.69	2.46	<0.05					
fAnno(2020)	1.62	0.69	2.33	<0.05					
fAnno(2021)	1.96	0.69	2.84	<0.05					
fStagione(Inverno)	-0.37	0.22	-1.67	NS					

La diagnostica del modello indica che i risultati non sono caratterizzati da overdispersion. Il valore di dispersione associato al modello, infatti, è 1.01, quindi molto vicino a 1, che indica l'assenza di overdispersion.

Anche l'analisi dei residui non riscontra la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate.

3.1.4 Plancton

3.1.4.1 Fitoplancton

Metodi di elaborazione dati

Sono stati valutati gli andamenti stagionali del fitoplancton dal Bianco a E21 sui dati delle abbondanze fitoplanctoniche totali e dei quattro gruppi considerati (diatomee, dinoflagellati, coccolitofori, "Altro plancton"). Per evidenziare gli eventuali effetti dovuti all'attività del Terminale è stata eseguita una ANOVA per ognuno dei tre fattori (anno di campionamento, distanza dal Terminale e profondità di prelievo) sui dati delle campagne a parità di stagione, cioè la campagna di Bianco confrontata con le otto campagne estive effettuate (E14, E15, E16, E17, E18, E19, E20, E21). Per il fitoplancton, il piano include le stazioni a 100 m dal Terminale (MG6, MG7, MG12, MG13) e una a 2000 m (MG10). I dati delle quattro stazioni a 100 m dal Terminale sono stati mediati dopo aver verificato la non esistenza di differenze significative (ANOVA) tra le stazioni per nessuno dei parametri analizzati. Le analisi ANOVA sono state effettuate utilizzando il software OriginPro 2020. Come analisi multivariata delle comunità fitoplanctoniche è stato usato il test non parametrico ANOSIM (software PAST) in base alla similarità secondo l'indice di Bray-Curtis utilizzando la tabella base taxa/campioni con dati di abbondanza cellulare (log-trasformati), ridotta ai taxa rappresentanti circa il 96% dell'abbondanza totale delle comunità estive.

Sulla stessa tabella è stata effettuata la routine SIMPER (software PAST) per valutare il grado di similarità della composizione tassonomica tra le campagne estive (Bianco, E14, E15, E16, E17, E18, E19, E20, E21). Sempre tramite routine SIMPER, è stato fatto un confronto dei popolamenti estivi delle stazioni vicine al Terminale (MG6, MG7, MG12 e MG13, considerati repliche e quindi mediate) con quelli dell'unico punto a distanza 2000 m (MG10) per ciascun anno di campionamento a partire da una matrice taxa/campioni con dati di abbondanza cellulare (log-trasformati) ridotta ai taxa rappresentanti circa il 93% dell'abbondanza totale.

Risultati

L'osservazione del ciclo stagionale delle densità fitoplanctoniche totali e dei quattro raggruppamenti tassonomici principali durante gli otto anni indagati mostra un andamento stagionale sostanzialmente coerente con quanto atteso dalle variazioni temporali del fitoplancton nelle acque liguri-tirreniche con massimi di abbondanza prevalentemente invernali e minimi estivi. Nell'VIII anno di campionamento si evidenzia un aumento delle densità fitoplanctoniche a partire da A20 fino ad arrivare al massimo in I21. "Altro plancton", comprendente diverse classi di flagellati nanoplanctonici, è sempre il gruppo prevalente con un contributo massimo in inverno del 63% e minimo intorno al 39% nel popolamento estivo. In "Altro plancton" domina prevalentemente *Phaeocystis* sp. (Prymnsiophyceae non coccolitofori), insieme alle Cryptophyceae in autunno ed inverno.

Le diatomee contribuiscono all'aumento in A20 per la copresenza di molte specie (*Chaetoceros* spp, *Asterionellopsis glacialis, Pseudonitzschia* spp.) mentre i coccolitofori sono presenti sia in autunno che in inverno particolarmente con *Emiliania huxleyi*. In primavera (P21) le densità totali si abbassano rimanendo comunque prevalente il gruppo "Altro plancton" e in E21 si raggiungono le densità minime dell'anno 2020/2021 con un aumento del contributo dei dinoflagellati. La ciclicità stagionale quindi rientra nello schema già riscontrato negli anni precedenti e da attendersi per le nostre latitudini.

Figura 73 - Variazione stagionale delle densità cellulari medie totali per campagna e dei diversi gruppi fitoplanctonici.

Dall'analisi ANOVA condotta sulle campagne estive (**Tabella 79**), la variabilità interannuale determina differenze significative per le abbondanze totali e per tutti i raggruppamenti fitoplanctonici che, infatti, presentano evidenti oscillazioni quantitative tra un anno e l'altro. Il fattore distanza non determina variazioni significative per nessuno dei parametri considerati mentre il fattore profondità risulta significativo per tutti i raggruppamenti tassonomici tranne il gruppo "Altro plancton". Le differenze relative agli altri gruppi riguardano i diversi contributi

quantitativi alle diverse profondità, come a titolo esemplificativo il caso delle diatomee, più abbondanti negli strati profondi in estate, come già rilevato in E19.

Tabella 79 - ANOVA ad un fattore per i fattori anno di campionamento, distanza dal Terminale, profondità di prelievo, sulle campagne estive (Bianco, E14, E15, E16, E17, E18, E19, E20). * 0,01 <p<0,05; **="" p<0,01<="" td=""></p<0,05;>											
Fattori	Fito totale	Diat	Dino (coll/ml)		Altro	N. Taxa	H'				
	(ceii/mi)	(ceii/mi)	(cell/mi)	(ceii/mi)	(ceii/mi)						
anno	**	**	**	**	**	**	**				
distanza	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.				
prof	n.s.	**	**	**	n.s.	n.s.	*				

Tramite ANOSIM, a partire dalla matrice taxa/campioni, è stata valutata la variabilità della composizione tassonomica delle comunità fitoplanctoniche tra la campagna di Bianco e le otto campagne estive e dal PAIRWISE test (**Tabella 80**) effettuato tra tutte le coppie, si evidenziano differenze significative. Le differenze sono altamente significative (**p<0,015) sia tra il Bianco e le campagne estive degli anni successivi sia tra le coppie delle campagne da E14 a E21. Il maggiore grado di differenza si ha tra il Bianco e le ultime campagne estive (E20 ed E21), come evidente dai valori di R (circa 0,95). La stessa analisi effettuata confrontando la composizione di ogni stazione in tutte le campagne estive (es. la composizione di MG6 dal B a E21 in confronto alla composizione tassonomica di MG10 da B a E21), non dà differenze significative tra nessuna coppia di stazioni (*R* =-0,005604, p = 0,725).

Tabella 8	Tabella 80 – PAIRWISE test tra Bianco (B) e le campagne estive. R (globale) = 0,546, p = 0,0001. Sono indicati gli R (**p<0,0001).										
	E12	E14	E15	E16	E17	E18	E19	E20	E21		
E12		0,8554	0,8882	0,8731	0,7241	0,8278	0,8934	0,9516	0,9463		
E14	0,8554		0,335	0,4252	0,5342	0,4465	0,6336	0,7316	0,6107		
E15	0,8882	0,335		0,493	0,505	0,3364	0,6274	0,7404	0,5649		
E16	0,8731	0,4252	0,493		0,3647	0,2572	0,6032	0,7457	0,3935		
E17	0,7241	0,5342	0,505	0,3647		0,3751	0,4441	0,5943	0,4685		
E18	0,8278	0,4465	0,3364	0,2572	0,3751		0,4543	0,6057	0,2866		
E19	0,8934	0,6336	0,6274	0,6032	0,4441	0,4543		0,2862	0,3168		
E20	0,9516	0,7316	0,7404	0,7457	0,5943	0,6057	0,2862		0,3868		
E21	0,9463	0,6107	0,5649	0,3935	0,4685	0,2866	0,3168	0,3868			

La dissimilarità tassonomica delle comunità estive nei diversi anni (routine SIMPER) si mantiene sempre superiore al 44% (E16-E17) arrivando fino a circa il 60% nel confronto con gli ultimi anni ed è sempre imputabile ad un diverso contributo quantitativo dei taxa presenti piuttosto che ad una sostituzione.

Sempre tramite routine SIMPER, è stato fatto un confronto tra i popolamenti estivi delle stazioni vicine al Terminale (MG6, MG7, MG12 e MG13, considerati repliche) e quelli dell'unico punto a distanza di 2000 m (MG10) per ciascun anno di campionamento. La dissimilarità tra i popolamenti è generalmente bassa (solo in E18 si arriva al 38%) ed è dovuta in primo luogo alle variazioni quantitative dei taxa più abbondanti e sempre presenti negli anni e, in secondo luogo, alla presenza di molte specie con densità scarse che però contribuiscono all'alta diversità fitoplanctonica.

Concludendo, dalle analisi effettuate durante l'VIII anno di monitoraggio del Terminale in fase di esercizio, si confermano le considerazioni effettuate nell'anno precedente: la distanza dal Terminale FSRU non produce variazioni significative per nessuno dei parametri ambientali e biologici analizzati, al contrario del fattore temporale che determina le variazioni dei parametri ambientali (idrodinamismo, profondità della zona eufotica, concentrazioni nutritizie), della biomassa fitoplanctonica (concentrazioni di chl-a, densità cellulari), della composizione delle comunità. L'analisi delle proprietà bio-ottiche conferma questa valutazione in quanto sulla loro variabilità non agiscono elementi di alterazione dovuti alla presenza del Terminale.

Si conferma una significativa variabilità interannuale con ciclicità diversificate tra gli otto anni indagati, che influenza l'andamento delle fasi stagionali, le condizioni precedenti e contemporanee al periodo di campionamento, e quindi l'entità e la composizione del fitoplancton che varia a breve scala spazio-temporale. Le comunità fitoplanctoniche effettuano oscillazioni quali-quantitative altamente differenziate stagionalmente e spazialmente lungo la colonna d'acqua come atteso secondo le caratteristiche dell'ambiente marino indagato, senza evidenziare anomalie imputabili all'attività del Terminale. Durante gli otto anni di osservazioni, oltre alle differenze di composizione tassonomica al variare della stagione, si sono evidenziate significative differenze nel confronto tra le campagne estive negli anni, che sono generalmente a carico di oscillazioni quantitative dei gruppi tassonomici presenti e comuni a tutte le stazioni campionate.

3.1.4.2 Zooplancton

Metodi di elaborazione dati

L'elaborazione statistica delle matrici quali-quantitative relative al mesozooplancton è stata eseguita utilizzando il pacchetto statistico PRIMER (v7). Le analisi, condotte su tre differenti set di dati corrispondenti alle tre frazioni del mesozooplancton investigate nell'area

(oloplancton a copepodi, meroplancton e ittioplancton), hanno permesso di definire, da un punto di vista statistico, i potenziali effetti dell'impianto di rigassificazione off-shore FSRU Toscana sulla composizione e la struttura del popolamento zooplanctonico. I risultati dei test si basano sul concetto di similarità/dissimilarità tra campioni espresso secondo il *Bray-Curtis coefficient* (R). Il coefficiente R esprime il rapporto di somiglianza o dissomiglianza nella relazione tra due oggetti o gruppi di oggetti: maggiore il grado di somiglianza, più basso sarà il coefficiente di similarità. Allo stesso modo, ma in senso contrario, la dissimilarità ne valuta la distanza e quindi enfatizza le differenze tra campioni. Lo strumento esprime quindi misure di prossimità che si adattano a serie di dati che analizzano, come nel caso specifico, popolazioni zooplanctoniche in varie fasi dell'anno (fattore temporale) e in diverse fasce di profondità (fattore spaziale).

Nel caso specifico abbiamo 4 fattori temporali, corrispondenti alle campagne trimestrali, ovvero il fattore stagionale, e 3 fattori spaziali, contraddistinti dai differenti settori della colonna d'acqua investigati: superficiale, mediante i retinaggi orizzontali, da -50 m al livello del mare e da -100 m a -50 m. Per esprimere il concetto appena descritto è stato utilizzato il test non parametrico ANOSIM (*software* PRIMER v7), in grado di confrontare e pesare la media delle dissimilarità tra i gruppi con la media delle dissimilarità all'interno di ciascun gruppo di dati. Il *pairwise test* finale ha permesso di verificare la significatività di tali differenze, confrontando i gruppi di valori a coppie. Nella presente trattazione viene presentato il risultato della fase di Bianco confrontato con tutte le campagne estive successive (B *vs* E) e il confronto fra le stagioni estive (Es.: Ex vs Ey). Dal punto di vista metodologico e in considerazione dell'elevata variabilità interstagionale dello zooplancton, è presentato il confronto esclusivo tra la fase di Bianco (B) dell'agosto 2012 e le campagne estive successive, quelle che, da un punto di vista ecologico e ambientale possono essere considerate omogenee tra loro. Nel *Pairwise test* sono quindi considerati i *survey* E14, E15, E16, E17, E18, E19, E20, E21.

Risultati

Così come già evidenziato nei survey precedenti, due sono le variabili che influenzano la composizione e le dinamiche della comunità mesozooplanctonica dell'area oggetto di studio. La prima, come detto, è la variabile temporale intesa come stagionalità che è determinante dal punto di vista ecologico nello studio della comunità planctonica. La stagionalità, come sottolineato dalla bibliografia, è il fattore che più di ogni altro è in grado di influenzare la distribuzione di organismi che trascorrono tutto il ciclo di vita o parte di esso, in fase larvale, nella colonna d'acqua. A condizionare l'effetto della stagionalità sul popolamento contribuiscono molti fattori, tra i quali quelli fisici sono predominanti. Regime idrologico, temperatura superficiale dell'interfaccia aria-acqua e dei primi metri di profondità, fotoperiodo, omotermia e eterotermia di tutta la colonna d'acqua, presenza di termoclini, operano selettivamente sul comparto zooplanctonico, definendo popolamenti qualitativamente o quantitativamente differenti in funzione della stagione di raccolta. La cadenza trimestrale dei survey, possibilmente effettuata ogni anno nello stesso periodo, consente, di conseguenza, di apprezzare i cicli riproduttivi di alcuni taxa oloplanctonici a copepodi, di specie meroplanctoniche e itioplanctoniche e i picchi riproduttivi che si alternano nel corso dell'anno solare. Questo efficace metodo, se costante nel tempo, permette la costruzione di una serie temporale (time series) robusta e consolidata che è strumento indispensabile per la valutazione di potenziali impatti antropogenici. Il popolamento mesozooplanctonico dell'area interessata dal terminale di rigassificazione, dopo nove anni di monitoraggi con cadenza trimestrale, è stato studiato a fondo, chiarendo molti aspetti legati all'alternanza di popolazioni differenti, consistenza a livello di biomassa, presenza/assenza di specie rare, rendendo più accessibile la possibilità di intercettare eventuali scostamenti attribuibili a disturbi esterni. La conoscenza approfondita di un ambiente naturale rimane il pilastro sul quale si fonda il concetto stesso di conservazione. Allo stesso tempo la comprensione dei cicli biologici presenti nella comunità mesozooplanctonica, unitamente ai fattori fisici rilevati nell'area di studio, consente ai ricercatori di discriminare le possibili alterazioni determinate da fonti esterne rispetto alle fisiologiche oscillazioni naturali o ai cambiamenti ambientali in atto. Per questi motivi è possibile ribadire che, allo stato attuale, il presente piano di monitoraggio è lo strumento migliore per continuare a investigare gli scenari futuri.

L'altro fattore che esercita una selezione sul campione è la variabile spaziale, nel caso specifico la profondità. È ormai noto, anche in merito a questo parametro, che alcune specie prediligano settori della colonna d'acqua più profondi, così come altre specie stabiliscano il loro ambiente di vita larvale o oloplanctonica nell'interfaccia acqua-aria, nei primi centimetri della colonna d'acqua. Sono dunque variabile temporale e spaziale, unitamente alle caratteristiche ecologiche dello zooplancton stesso, a suggerire la ciclicità di associazioni zooplanctoniche che nel tempo sono rimaste inalterate e dalle quali dunque è possibile dedurre l'assenza di impatto determinato dall'esercizio del rigassificatore OLT LNG Toscana nelle acque toscane. Per fare un esempio potremo confermare alcuni casi studio riguardanti la copepodofauna, peraltro già citati in passato, ma confermati anche nel 2021: il copepode calanoide *Nannocalanus minor* e il cyclopoide *Farranula rostrata* (entrambi con picco di abbondanza estivo), il cyclopoide *Oithona plumifera* (picco di abbondanza invernale), i calanoidi *Centropages typicus* (picco di abbondanza primaverile) e *Temora stylifera* (dominante nella tarda estate-autunno), così come l'alternanza dei congenerici *Clausocalanus paululus* (inverno) e *C. pergens* (estate).

Per l'ittioplancton possiamo confermare l'asincrona alternanza estiva - invernale tra *Engraulis encrasicolus* (acciuga) e *Sardina pilchardus* (sardina), la prima con picco di abbondanza larvale e la massiccia presenza di uova in estate, la seconda dominante in inverno.

Più difficile l'interpretazione degli effetti delle variabili temporali e spaziali sulla frazione meroplanctonica dello zooplancton. Questa categoria ecologica è rappresentata da gruppi di animali invertebrati estremamente eterogenei, ciascuno dei quali spesso caratterizzato da numerose fasi larvali, differente trofismo, e diversa durata della fase planctonica. Quello che si evince sono alcune caratteristiche ricorrenti, come la costante presenza di larve di crostacei decapodi brachiuri nelle fasce superficiali della colonna d'acqua o la preferenziale distribuzione intermedio-profonda della componente a crostacei decapodi caridei. Gli stessi echinodermi, in particolare le larve di echinoidi regolari e irregolari, sono presenti in estate sulle fasce più superficiali della colonna d'acqua, mentre diminuiscono nel periodo invernale concentrandosi a profondità maggiori condizionate probabilmente dal termoclino che può rappresentare per questi organismi una barriera fisica insuperabile. Così come per la stagionalità quindi, anche le differenti fasce di profondità investigate mostrano differenti composizioni del popolamento. Sebbene il rigassificatore sia ancorato a 12 miglia nautiche dalla costa italiana, in prossimità del gradino della piattaforma continentale, la profondità non supera 120 m, interamente contraddistinta dal punto di vista ecologico dalla zona eufotica o fotica, ma sufficiente a influenzare

la distribuzione non uniforme dello zooplancton. I risultati suggeriscono che, in relazione alla distribuzione spaziale dei popolamenti, la presenza di termoclini stagionali, associati al sistema locale di correnti persistenti in questo settore del Mar Mediterraneo (ECC: Eastern Corsica Current e WCC: Western Corsica Current di direzione sud-nord), sia determinante nell'influenzare la distribuzione degli organismi nella colonna d'acqua.

Il dato nello specifico è amplificato anche dal campionamento trimestrale che viene svolto durante le ore notturne e che quindi è selettivamente in grado di prelevare la componente zooplanctonica che compie le migrazioni nictemerali rispetto a guella che predilige trascorrere l'intero arco della giornata in settori più profondi dell'ambiente pelagico.

Confronto tra fase di Bianco (B) e campione estivo

Nella Tabella 81 sono riportati i risultati per ciascuna stagione estiva (E), del test di confronto (pairwise test) tra la fase di Bianco (B) e quella di esercizio, a partire dall'estate 2014, anno di avvio delle attività del Terminale. I valori R (compresi tra 0 e 1, con R = 0 a rappresentare la massima similarità tra campioni o gruppi di campioni e R = 1 la massima dissimilarità), sono accompagnati dalla significatività (** altamente significativo, * significativo, n.s. non significativo) di ciascuno dei tre comparti ecologici dello zooplancton (oloplancton, meroplancton, ittiplancton).

Pairwise Tests	Oloplancton a copepodi	Meroplancton	Ittioplancton
B vs E14	R = 0,757**	R = 0,955**	R = 0,201**
B vs E15	R = 0,850**	R = 0,959**	R = 0,141*
B vs E16	R = 0,881**	R = 0,900**	R = 0,270**
B vs E17	R = 0,865**	R = 0,901**	R = 0,320 **
B vs E18	R = 0,821**	R = 0,936**	R = 0,371 **
B vs E19	R = 0,825**	R = 0,992**	R = 0,391 **
B vs E20	R = 0,851**	R = 0,934**	R = 0,306 **
B vs E 21	R = 0,856**	R = 0,954**	R = 0,301
E14 vs E15	R = 0,470**	R = 0,356**	R = 0,076 n.s.
E14 vs E16	R = 0,552**	R = 0,337**	R = 0,082 n.s.
E14 vs E17	R = 0,621**	R = 0,256*	R = 0,288**
E14 vs E18	R = 0,607**	R = 0,610**	R = 0,380**
E14 vs E19	R = 0,728**	R = 0,872**	R = 0,457**
E14 vs E20	R = 0,688**	R = 0,771**	R = 0,280**
E14 vs E21	R = 0,831**	R = 0,455**	R = 0,445**
E15 vs E16	R = 0,306**	R = 0,354**	R = 0,102 n.s.
E15 vs E17	R = 0,376**	R = 0,167*	R = 0,186**
E15 vs E18	R = 0,451**	R = 0,376**	R = 0,192*
E15 vs E19	R = 0,590**	R = 0,742**	R = 0,358**
E15 vs E20	R = 0,548**	R = 0,432**	R = 0,298**
E15 vs E 21	R = 0,773**	R = 0,486**	R = 0,365**
E16 vs E17	R = 0,273**	R = 0,201*	R = 0,116 n.s.
E16 vs E18	R = 0,328**	R = 0,488**	R = 0,226**
E16 vs E19	R = 0,460**	R = 0,780**	R = 0,457**
E16 vs E20	R = 0,455**	R = 0,500**	R = 0,420**
E 16 vs E 21	R = 0,599**	R = 0,528**	R = 0,373**
E17 vs E18	R = 0,408**	R = 0,299**	R = 0,061 n.s.
E17 vs E19	R = 0,519**	R = 0,367**	R = 0,470**
E17 vs E20	R = 0,524**	R = 0,459**	R = 0,495**
E 17 vs E21	R = 0,697**	R = 0,541**	R = 0,295
E18 vs E19	R = 0,429**	R = 0,466**	R = 0,418**
E18 vs E20	R = 0,489**	R = 0,191 n.s.	R = 0,632**
E 18 vs E 21	R = 0,602**	R = 0,588**	R =0,392**
E19 vs E20	R = 0,474**	R = 0,457**	R = 0,485**
E 19 vs E 21	R = 0,555**	R = 0,786**	R = 0,389**
E 20 vs E 21	R = 0.510**	R = 0.526**	R = 0.388**

Dai risultati del *pairwise test* si evince che la comunità zooplanctonica raccolta durante la fase di Bianco (B) rispetto alla stagione estiva 2021 (E21), è significativamente differente, dato è coerente con i risultati delle precedenti campagne estive. Il risultato è evidente sia per l'oloplancton a copepodi, sia per il meroplancton (che esprimono valori di R molto elevati, rispettivamente 0,856 e 0,954), mentre per l'ittioplancton, la dissimilarità è minore (valori di R = 0,301), confermandosi però altamente significativa. Confrontando l'andamento di R, ottenuto dal confronto di B vs E_x (**Figura 74**) si osserva che i valori subiscono solo modeste variazioni indicare che la differenza osservata tra Bianco e E14 si è mantenuta pressoché costante fino al 2021. Questo suggerisce che tale differenza non può essere imputabile all'esercizio del rigassificatore.

I risultati testimoniano quindi una comunità differente rispetto al *Bianco*, ma le differenze tra un'estate e la successiva (**Tabella 81** vedi righe evidenziate in grigio) tendono a ridursi nel tempo come testimonia il calo di R.

La spiegazione può essere letta attraverso due osservazioni: la prima ecologica, la seconda legata all'area di monitoraggio.

La comunità zooplanctonica, trattandosi di organismi presenti nella colonna d'acqua e diffusi nell'ambiente marino secondo una distribuzione cosiddetta a mosaico (o *patches*), è maggiormente soggetta a oscillazioni quali-quantitative rispetto al benthos.

Questo significa che, nella stessa stagione, anche poche settimane di distanza tra un campione e l'altro e talvolta anche condizioni meteoclimatiche differenti che intervengono nella stessa campagna (es. moto ondoso) possono produrre risultati diversi. In particolare queste differenze sono amplificate nel mero e nell'ittioplancton che trascorrono solo un periodo variabile nella colonna d'acqua rispetto ai copepodi oloplanctonici. Da qui nasce la necessità di ripetere i *survey* nello stesso periodo e con medesime condizioni meteomarine.

Questo spiega ragionevolmente il motivo per il quale la fase di Bianco condotta nel mese di agosto 2012 sia significativamente diversa rispetto ai monitoraggi estivi realizzati successivamente sempre nel mese di settembre.

La significativa dissimilarità tra Bianco (B) e *survey* estivi può anche essere legata, in parte, alla conoscenza dell'area di studio che, col susseguirsi dei campionamenti, ha permesso agli operatori coinvolti di approfondire l'identificazione e aumentare il livello di dettaglio nella restituzione specifica dei risultati.

Complessivamente sono 506 (+12 rispetto al 2020) i *taxa* identificati tra oloplancton a copepodi, meroplancton e ittioplancton; si tratta di un contingente che progressivamente si avvicina al potenziale esprimibile per l'area oggetto del monitoraggio.

Dopo l'incremento di soli 4 *taxa* tra l'anno 2018 e il 2019, maggiore impulso alla crescita della *checklist* in termini di *taxa* è dovuto all'indagine genetica e all'adozione della tecnica del barcoding, in quanto la procedura di analisi, con amplificazione e confronto di una sequenza del DNA mitocondriale con una banca dati di riferimento mondiale, consente di discriminare a livello specifico organismi che morfologicamente presentano caratteristiche pressoché sovrapponibili e sulle quali non è possibile esprimere con certezza il livello tassonomico più basso.

Nel confronto tra Bianco e stagioni estive di esercizio i risultati confermano l'assenza d'impatto. Il confronto tra le estati, dal 2014 al 2021, seguendo la progressiva riduzione dei valori di R e quindi amplificando la similarità tra popolamenti, esclude l'impatto del Terminale

3.2 SEDIMENTI

Per una corretta interpretazione dei dati, occorre premettere che l'area in cui è collocato il Terminale è stata, in passato, sede di sversamenti dei fanghi di dragaggio portuale. Pertanto, come già stato osservato nella fase di Bianco, la tessitura dei sedimenti e le concentrazioni dei contaminanti possono mostrare un'elevata variabilità spaziale ed esibire tenori talvolta maggiori del livello chimico di riferimento nazionale (L1 o L2 DM 173/16) o degli Standard di Qualità ambientale del DM 56/2009.

3.2.1 Caratteristiche fisiche, chimiche e microbiologiche

Metodi di elaborazione dati

I risultati relativi ai dati acquisiti dal Bianco (B) all'Estate 2021 (E21) sono stati raccolti in una matrice e sottoposti ad analisi multivariata per identificare eventuali pattern riconducibili alla presenza del Terminale.

In particolare, i dati sono stati sottoposti all'Analisi delle Componenti Principali (PCA), ottenute come combinazioni lineari delle variabili scelte ordinate in base ad un criterio di rilevanza informativa, ossia sulla base della varianza spiegata. Nel caso in esame sono state selezionate le seguenti variabili descrittive: ghiaia, sabbia, silt, argilla, elementi in tracce, IPA Totali, TOC, idrocarburi C>12. Prima dell'analisi i dati sono stati normalizzati.

Risultati

Le variazioni granulometriche avvenute nell'estate 2021 rispetto al 2020 riguardano sostanzialmente le stazioni prossime al Terminale. La variazione maggiore riguarda la componente sabbiosa in MG12 che esibisce un deciso incremento a scapito sia del silt sia dell'argilla, ripristinando le condizioni osservate durante il Bianco.

La sabbia ha esibito un incremento, seppur di minore entità, anche in MG7, incrementando, in questo caso, la differenza rispetto al Bianco quando il sedimento era quasi completamente pelitico e la sabbia non arrivava al 10%.

Nel caso di MG6, invece, il cambiamento riguarda la ghiaia che esibisce un incremento di quasi il 20% (associato ad un simile calo di silt) che tuttavia non è sufficiente a ripristinare le condizioni del Bianco.

Nell'insieme i dati confermano che i sedimenti indagati mostrano elevata variabilità spaziale (Figura 93) senza seguire un andamento temporale ben definito o riconducibile alla presenza del rigassificatore. Una probabile spiegazione è legata al fatto che l'area è stata sede di sversamenti di fanghi portuali con conseguente deposito di strati di sedimento alloctono molto eterogeneo che ha incrementato la variabilità tessiturale dell'area. Questo si riflette anche sulle differenze che si osservano da un anno all'altro.

Per confrontare le singole stazioni con il Bianco i dati acquisiti sono stati mediati stazione per stazione e riportati nella **Tabella 88** dalla quale si evince che mediamente i sedimenti non sono molto variati rispetto al Bianco. I cambiamenti maggiori sono avvenuti in MG6 e MG7. Nel primo caso si è verificato un aumento delle frazioni fini, mentre nel secondo un aumento della frazione sabbiosa ed in minor misura di quella ghiaiosa. Non evidenziandosi un unico trend non è possibile identificare un pattern univoco riconducibile alla presenza dell'FSRU.

Inoltre, confrontando le deviazioni standard delle stazioni prossime al Terminale con quelle distanti si osserva che sono confrontabili, con una modesta eccezione per MG12. Questo dato indica che nel periodo monitorato le oscillazioni delle principali frazioni granulomentriche sono confrontabili in tutta l'area di studio indipendentemente dalla distanza dal Terminale.

Figura 75 – Principali classi granulometriche nei sedimenti campionati durante la campagna di Bianco (E12) e nelle successive campagne estive (da E14, a E21).

Tabella 82 – di studio per s stazioni più vi	Tabella 82 – Valori medi delle frazioni principali calcolate sull'intero periodo di studio per singola stazione e confronto col Bianco. B = Bianco. In grigio le stazioni più vicine al Terminale.										
	Ghiaia	Sabbia	Silt	Argilla							
B MG12	12,19±0	43,93±0	23,06±0	20,83±0							
MG12	11,19±10,2	37,69±11,35	26,08±10,62	25,02±7,29							
B MG13	4,8±0	25,53±0	35,71±0	33,97±0							
MG13	3,27±5,02	24,18±7,24	37,96±5,7	34,57±7,88							
B MG6	28,99±0	28,88±0	21,37±0	20,75±0							
MG6	5,7±6,81	27,13±6,32	37,08±8,03	30,15±7,02							
B MG7	0,1±0	7,18±0	38,4±0	54,42±0							
MG7	9,1±10,79	34,86±7,81	27,93±7,58	28,1±7,04							
B MG9	0,86±0	21,88±0	38,39±0	38,87±0							
MG9	0,01±0,04	10,32±3,59	47,02±7,92	42,65±9,62							
B MG10	8,22±0	27,22±0	34,01±0	30,56±0							
MG10	1,87±2,95	25,39±7,84	39,38±5,49	33,34±7,99							

I risultati delle analisi granulometriche e della ricerca di contaminanti sono stati condensati in una matrice stazioni x variabili e sottoposti ad Analisi delle Componenti principali (PCA). Da questa analisi si conferma quanto descritto negli anni precedenti.

Il primo asse spiega il 36.2% della varianza totale (Tabella 83), dovuta principalmente al contributo di molti metalli, che hanno esibito in MG9 e in particolare nella campagna di Bianco i valori più elevati (Figura 76). All'estremo opposto si colloca la stazione E17 MG12 per la bassa concentrazione di questi contaminanti, da relazionarsi alla maggiore percentuale di sabbia.

Lungo il secondo asse, che spiega il 17,1% della varianza, il contributo più importante è dato dagli IPA Totali, idrocarburi totali, ma anche cadmio e zinco che mostrano picchi presso del Terminale (in particolare nelle stazioni MG6 e MG13) come era già emerso nella campagna di Bianco.

Va comunque sottolineato che in termini assoluti i valori dei contaminanti sono prevalentemente modesti e non si rileva, nel tempo, alcun gradiente di incremento di contaminazione nell'area del Terminale relazionabile alla presenza di quest'ultimo.

Tabella 83 - Coefficienti delle combinazioni lineari degli assi. Matrice											
sedimenti con dati abiotici (normalizzati). Dati dal Bianco all'E21.											
% di varianza											
spiegata	36,2	17,1	11,4	7,2	5,8						
	PC1	PC2	PC3	PC4	PC5						
Ghiaia	-0,147	-0,115	0,456	-0,134	0,197						
Sabbia	-0,268	-0,173	0,233	-0,186	0,102						
Silt	0,204	0,078	-0,452	0,022	-0,211						
Argilla	0,230	0,221	-0,192	0,310	-0,070						
Al	0,330	-0,033	0,130	-0,272	0,003						
Fe	0,353	0,042	0,087	-0,008	0,101						
As	0,165	0,138	0,448	0,293	-0,212						
Ва	0,217	-0,272	0,102	-0,338	0,039						
Cr	0,350	-0,058	0,087	-0,189	0,079						
Cu	0,175	-0,291	0,023	0,005	0,093						
Cd	-0,004	-0,383	-0,297	0,195	0,319						
Mn	0,188	0,229	0,351	0,301	-0,027						
Hg	0,286	-0,118	-0,029	0,091	0,227						
Ni	0,337	0,040	-0,061	-0,069	0,169						
Pb	0,199	-0,201	0,133	0,021	-0,569						
Zn	0,266	-0,239	-0,028	-0,073	0,028						
IPA Tot	-0,048	-0,428	0,043	0,279	-0,236						
Idroc C>12	-0,086	-0,432	-0,034	0,089	-0,350						
TOC	0,028	-0,189	0,120	0,555	0,381						

Figura 76 – Risultati dell'Analsi delle Componenti Principali (PCA) relativa ai dati acquisti durante i periodi estivi (dal Bianco all'estate 2021). Prima dell'analisi i dati sono stati normalizzati.

3.2.2 Saggi ecotossicologici su campioni di sedimento

I risultati dei saggi biologici applicati ai sedimenti testati dal Bianco fino nell'estate 2017 avevano evidenziato complessivamente un miglioramento del grado di tossicità dei sedimenti analizzati (Tabella 84).

Nella fase di Bianco, infatti, i sedimenti erano risultati tutti a tossicità bassa sulla base del test con *P. lividus*, mentre nell'E17 la metà delle stazioni risultava priva di tossicità.

Riguardo al *C. orientale* durante la fase di Bianco, la tossicità era in parte media (MG6, MG7, MG10, MG12) in parte bassa (MG13, MG9), mentre nell'estate 2017 tutti i sedimenti erano privi di tossicità tranne MG6.

Nell'estate 2018 era stato registrato un peggiormento della qualità dei sedimenti rispetto all'estate precedente. Rispetto al Bianco, però, Il test con *C. orientale* forniva un livello di qualità comunque migliore. Solo II test con il riccio testimoniava un peggioramento delle condizioni unicamente nelle stazioni MG10 e MG12.

Nell'estate 2019 solo il *C. orientale* testimonia un peggiormento rispetto a E18 in quanto, (tranne E20 MG7) il livello di tossicità passa da Bassa a Media (MG6, MG9) o da Bassa a Alta (MG10, MG12, MG13). Anche rispetto al Bianco si registra un peggioramento, tranne MG7 che esibisce un miglioramento.

Nell'estate 2020 il test con il riccio di mare identifica un leggero peggioramento unicamente in MG10, ossia lontano dal Terminale, mentre nell'estate 2021 il peggioramento riguarda unicamente le stazioni prossime al Terminale (MG12 e MG13).

Il test con il *C. orientale*, invece, mostra tossità alta ovunque, ossia indipendentemente dalla distanza dall' FSRU, come già rilevato nell'estate precedente (E20). Rispetto al Bianco questo test suggerisce un peggioramento in tutta l'area visto che si osserva in tutte le stazioni di indagine e non solo in quelle più prossime al Terminale.

Tale peggioramento potrebbe essere connesso ad una maggiore biodisponibilità (dovuta a variazioni ambientali indipendenti dall'FSRU) dei contaminanti presenti nell'area, già sede di sversamenti di fanghi portuali.

Occorre, inoltre, sottolineare, come riportato da van den Heuvel-Greve et al. 2007 per il *C. volutator*, che il test cronico (a 28 giorni) è da 7 a 18 volte volte più sensibile all'ammonio ed ai nitriti rispetto al test acuto (a 10 giorni), fatto che potrebbe influenzare il risultato del test. Inoltre anche il decreto del MATTM 173/16 ha incluso unicamente il test acuto, da affiancare ad altri test per costruire una appropriata batteria di saggi. Pertanto, nell'estate 2022 il test cronico sarà affiancato da quello acuto al fine di garantire una migliore interpretazione della batteria dei test nel suo complesso.

In nessun caso, per tutta la durata del mnonitoraggio, è stata rilevata tossicità con il test con V. fischeri.

Tabella 84 - Risultati complessivi dei test ecotossicologici condotti dal Bianco all'Estate 2021. A = tossicità Assente; B = tossicità Bassa; M = tossicità Media. Le stazioni MG6, MG7, MG12, MG13 sono quelle in prossimità del Terminale.

Wiodia																											
					P. livic	lus							C	c. orien	tale				V. fischeri								
	В	E14	E15	E16	E17	E18	E19	E20	E21	В	E14	E15	E16	E17	E18	E19	E20	E21	В	E14	E15	E16	E17	E18	E19	E20	E21
MG6	В	А	А	В	А	А	В	В	В	М	М	А	М	В	В	М	Alta	Alta	А	А	А	А	А	А	А	А	А
MG7	В	В	В	В	В	В	В	В	В	М	М	В	М	А	А	А	Alta	Alta	А	А	А	А	А	А	А	А	А
MG9	В	А	В	М	А	В	В	В	В	В	В	В	М	А	В	М	Alta	Alta	А	А	А	А	А	А	А	А	А
MG10	В	В	В	М	В	М	В	М	В	М	В	В	М	А	В	Alta	Alta	Alta	А	А	А	А	А	А	А	А	А
MG12	В	М	В	В	В	Alta	В	В	М	М	В	Alta	М	А	В	Alta	Alta	Alta	А	А	А	А	А	А	А	А	А
MG13	В	А	В	В	А	В	В	В	М	В	В	М	М	А	В	Alta	Alta	Alta	А	А	А	А	А	А	А	А	А

3.3 Вюта

3.3.1 Macrozoobenthos

Metodi di elaborazione dati

I dati di abbondanza sono stati raccolti in un'unica matrice specie x stazioni.

Prima di procedere all'analisi i dati sono stati raggruppati a livello di genere. Tale accorpamento è stato fatto per diverse ragioni.

In primo luogo nell'arco del monitoraggio i tassonomi hanno affinato la conoscenza del panorama faunistico. Questo aspetto si traduce nell'abilità di determinare nuove specie o di determinare a livello specifico individui che nel passato erano stati ascritti ad livelli tassonomici superiori. Nel tempo, inoltre, molte specie hanno cambiato nome, fatto che comporta l'introduzione di una variabilità fittizia.

Per rendere ancora più robusta l'analisi sono stati poi selezionati i generi con un contributo percentuale maggiore del 5%.

Per valutare la perdita di informazione dovuta alla riduzione delle variabili è stata usata la routine 2nd stage (pacchetto Primer) che consente di confrontare le matrici triangolari ottenute tramite l'indice di Bray-curtis applicato dalle diverse matrici da confrontare (speciexstazioni, generixstazioni, generi contributo >5%xstazioni).

In una prima fase i dati sono stati analizzati congiuntamente per vedere l'andamento complessivo nel periodo che va dal Bianco (Estate 2012) all'estate 2021.

La matrice così ottenuta è stata sottoposta al n-metric-MultiDimensionalScaling (n-MDS), dopo aver ottenuto la matrice triangolare di similarità tramite l'indice di Bray-Curtis.

Partendo dall'ipotesi che le stazioni più vicine all'FSRU siano quelle che maggiormente possano risentire della sua influenza, le stazioni sono state raggruppate in ragione della loro distanza da esso, ossia: FSRU (stazioni vicine), I (stazioni intermedie), C (controlli, stazioni più lontane). I label corrispondenti (FSRU, C, I) sono stati sovrapposti al piano di ordinamento per rilevare eventuali gradienti spaziali.

Avendo a disposizione un'unica fase di Bianco eseguita in estate i dati sono stati nuovamente elaborati utilizzando unicamente i survey estivi. L'ordinamento dei punti stazione è stato ottenuto, anche in questo caso, tramite il n-MDS. Sui medesimi dati relativi alle campagne estive, per verificare la significatività dei pattern osservati è stata usata la PERMANOVA, test multivariato non parametrico, dopo aver testato l'omogeneità delle varianze tramite PERMDISP.

Per completare l'analisi delle risposte della componente macrozoobentonica sono stati presi inconsiderazione alcuni dei classici indici ecologici che descrivono la struttura di comunità, quali l'indice di diversità di Shannon (H') e l'indice di ricchezza specifica (S).

Per lo studio dell'indice di diversità di Shannon è stata utilizzata l'analisi della regressione lineare multipla, considerando l'indice di diversità come variabile dipendente. Come covariate, o variabili esplicative (indipendenti), sono state utilizzate il tempo (anni), la stagione (come fattore a 4 livelli: A = autunno, E = estate, I = inverno, P = primavera), e la distanza dall'impianto di rigassificazione FSRU (fattore a 3 livelli: FSRU = terminale, I = area intermedia, C = area controllo). Nel modello iniziale è stata anche inserita l'interazione tra tempo e distanza. La formula del modello iniziale è la seguente:

 $H = \alpha + Anno + fStagione + fDistanza + Anno:fDistanza + \epsilon_i,$

dove H è la variabile dipendente (indice di diversità), α è l'intercetta, Anno, Stagione e Distanza sono le variabili indipendenti (Stagione e Distanza espresse come fattore f). Nella formula è anche indicata l'interazione tra Anno e Distanza.

A partire dal modello iniziale, è stata effettuata una *backward selection analysis* basata sull'analisi della varianza e l'Akaike Information Criterion (AIC), al fine di individuare il modello migliore nel descrivere i dati, associato al valore di AIC più basso. Una volta individuato il modello migliore, una validazione del modello stesso è stata effettuata attraverso l'analisi grafica dei residui.

La backward selection analysis ha mostrato che l'interazione tra il fattore distanza dal terminale FSRU e il tempo non ha effetto significativo sulla variabile dipendente H, pertanto è stata rimossa del modello. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

H = α + Anno + fStagione + fDistanza +
$$ε_i$$
.

Lo stesso approccio è stato utilizzato per l'analisi dell'indice di ricchezza specifica (S), partendo dal seguente modello iniziale:

S =
$$\alpha$$
 + Anno + fStagione + fDistanza + Anno:fDistanza + ε_i ,

dove S è la variabile dipendente (indice di ricchezza specifica), α è l'intercetta, Anno, Stagione e Distanza sono le variabili indipendenti (Stagione e Distanza espresse come fattore f). Nella formula è anche indicata l'interazione tra Anno e Distanza.

La backward selection analysis ha mostrato che l'interazione tra il fattore distanza dal terminale FSRU e il tempo non ha effetto significativo sulla variabile dipendente S, pertanto è stata rimossa del modello. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

$$S = \alpha + Anno + fStagione + fDistanza + \epsilon_i$$
.

Risultati

Nel piano di ordinamento ottenuto dal nMDS (Figura 77) elaborando la matrice "generi con contributo >5%xstazioni" si osserva che il fattore tempo è prevalente nello spiegare la disposizione dei punti stazione.

Figura 77 – Piano di ordinamento ottenuto dal n-MultiDimensional Scaling applicato alla matrice generi x stazioni dopo aver selezionato i generi con contributo >5% e mediato le repliche. La matrice triangolare è stata ottenuta tramite l'indice di Brey-Curtis. Dall'analisi sono stati rimossi i punti relativi all'A19, campionamento estremamente povero che comporta una elevata disperisione dei punti nel plot.

Tuttavia, a fronte della elevata mole di dati analizzata, il piano bidimensionale appare poco chiaro anche perché la dispersione dei punti relativi a ciascun anno è dovuta alla rappresentazione delle diverse stagioni. In particolare i punti riconducibili all'anno 2019, che come era stato segnalato nel precedente report, risultano particolarmente poveri sono stati rimossi dall'analisi complessiva. Dal piano si evince, in particolare, che i punti relativi al 2020 e 2021 tendono a segregare rispetto agli altri, deriva temporale già iniziata nel 2019. Al contrario i punti elativi e 2010 e dei segne e contrario i punti elativi e contrario i punti di particolare delle diverse stagione delle diverse stati rimossi dall'analisi complessiva. Dal piano si evince, in particolare, che i punti relativi al 2020 e 2021 tendono a segregare rispetto agli altri, deriva temporale già iniziata nel 2019. Al contrario i punti di particolare delle diverse stati di particolare delle diverse d

relativi al 2015, 2016, 2017, 2018 tendono a formare una unica nube. Per testare la bontà di questo risultato rispetto a quello che avrebbe originato l'analisi della matrice totale (ossia al massimo livello di dettaglio tassonomico, per lo più specie) è stata applicata la routine 2nd-stage i cui risultati sono riportati nella seguente tabella (**Tabella 85**). Questa analisi consente di affermare che eventuali cambi di nome o l'errata determinazione di una specie, hanno comportato trascurabili perdite di informazione. Nel caso peggiore ossia confrontando le specie con i generi aventi un contributo maggiore del 5%, si verifica una perdita di informazione di meno del 5%. Questo approccio consente di operare con una matrice priva di errori poiché i generi selezionati sono ben noti e non soggetti a errori di identificazione.

Tabella 85 – Risultati della routine 2 nd -stage e perdita di informazione dovuta ad una riduzione delle variabili analizzate. 5% indica che sono stati selezionati i generi con un contributo maggiore del 5%.										
2nd Stage Perdita di										
	routine	informazione (%)								
Specie vs Generi	0,9761	2,3923								
Generi vs Generi 5%	0,9822	1,7806								
Specie vs Generi 5%	0,9504	4,9633								

La posizione dei punti relativi al 2020 e al 2021 (triangoli vuoti, parte sinistra del piano) indica che il popolamento è andato modificandosi nel tempo, fatto che rientra nei processi naturali indipendenti dalla presenza del Terminale. A conferma di questo tale cambiamento è avvenuto in tutte le stazioni indipendentemente dalla loro distanza dell'FSRU.

Per esplorare eventuali cambiamenti rispetto alle condizioni di Bianco l'analisi è stata ripetuta utilizzando unicamente i dati delle campagne estive poichè il Bianco è stato condotto unicamente in questa stagione.

In particolare, i dati sono stati analizzati per vedere se dopo la fase di Bianco siano avvenute modifiche significative nei popolamenti e se tali modifiche possano essere riconducibili alla presenza dell'FSRU o se, al contrario, avvengano i maniera indipendente. L'analisi è stata basata sul presupposto che, se il Terminale ha un effetto, esso sarà rilevabile nelle stazioni più vicine al Terminale stesso rispetto a quelle lontane. Pertanto, è stata testata l'ipotesi zero, secondo la quale la differenza tra le stazioni FSRU, I (stazioni intermedie) e C (stazioni di controllo), se esiste, rimane costante nel tempo, ossia l'interazione tra i fattori Tempo (T) e Distanza (D) risulti non significativa.

Da questa analisi si conferma che il fattore tempo gioca un ruolo importante nel determinare la disposizione dei punti da destra verso sinistra del piano di ordinamento. Il fatto che il gradiente temporale sia parzialmente confuso nel plot, è dovuto al fatto che la deriva temporale non è lineare ed è condizionata da pochi generi abbondanti che identificano costantemente il popolamento.

Dalla medesima analisi si vede, inoltre, che i siti più lontani dal Terminale (C) tendono (seppur non sempre) ad opporsi a quelli vicini (FSRU) facendo presupporre un diverso comportamento dei popolamenti in relazione alla loro distanza dell'FSRU.

Per valutare statisticamente questi fattori (Sito, Tempo, Distanza) è stata effettuata un'analisi della varianza multivariata (PERMANOVA).

Essa ha consentito di confermare che i popolamenti cambiano significativamente nel tempo (fattore Tempo significativo) e presentano differenze significative sulla base della loro distanza dal Terminale (fattore Distanza significativo).

Tuttavia, l'interazione tra questi due fattori (Tempo x Distanza) risulta non significativa ad indicare che le differenze, osservate già nella fase di Bianco (che risultato statisticamente significative), rimangono costanti nel tempo. Pertanto, l'ipotesi secondo la quale i popolamenti più prossimi al Terminale non si modificano nel tempo diversamente dai controlli viene accettata. In altre parole i popolamenti prossimi al Terminale, ossia quelli direttamente soggetti alla sua influenza, evolvono nel tempo parallelamente a quelli di controllo, ossia a quelli non sottoposti all'influenza dell'FSRU.

Gli aspetti strutturali del popolamenti sono stati approfonditi utilizzando l'analisi della regressione lineare multipla considerando gli indici H' e S come variabili dipendenti e Tempo (anni), Stagione (4 livelli: A = autunno, E = estate, I = inverno, P = primavera), e Distanza dal Terminale (3 livelli: FSRU = terminale, I = area intermedia, C = area controllo) come covariate, Dal modello iniziale è stata rimossa tramite *backward selection analysis* l'interazione tra Tempo e Distanza, essendo risultata non significativa. Questo risultato dimostra che H' e S non variano in funzione della distanza dal Terminale e pertanto non sono influenzati da questo.

I risultati ottenuti applicando il modello di regressione lineare multipla dopo aver rimosso l'interazione TxD rileva che, dalla stima dei coefficienti, il fattore tempo ha un effetto significativo sull'indice di biodiversità di Shannon, il che sta ad indicare che la tendenza generale della biodiversità è in aumento. Analizzando il fattore distanza dal terminale, risulta che la biodiversità è significativamente maggiore al livello del terminale FSRU rispetto all'area controllo (C; non indicata nella tabella, in quanto preso come parametro di riferimento).

Al contrario, la biodiversità risulta significativamente inferiore nell'area intermedia, rispetto al controllo. Per quanto riguarda l'effetto stagionale, effetti significativi sulla biodiversità si osservano in inverno e primavera, rispetto all'autunno (usato come valore di riferimento, e non mostrato in tabella).

Figura 78 – Piano di ordinamento ottenuto dal n-MultiDimensional Scaling applicato alla matrice "generi con contributo >5% x stazioni" (limitatamente ai campionamenti estivi). La matrice triangolare è stata ottenuta tramite l'indice di Brey-Curtis. Nel plot sono stati superimposte le label (C, FSRU, I) che indicano la posizione delle stazioni rispetto al Terminale.

Tabella 86 – Risultati della PERMANOVA. S (Sito) random 4 livelli gerarchizzato in D, T (Tempo) random 8 livelli; D (Distanza) 3 livelli fisso. I dati significativi sono indicati in neretto.										
Sorgente di variabilità	Df	SS	MS	Pseudo-F	P (perm)					
Tempo (T)	8	1,56E+05	19494	13,288	0,001					
Distanza (D)	2	22633	11317	1,4101	0,049					
Sito (S)	9	66718	7413,1	5,0533	0,001					
TxD	16	26440	1652,5	1,1265	0,19					
TxS(D)	72	1,06E+05	1467	2,2712	0,001					
Residuo	324	2,09E+05	645,92							
Totale	431	5,87E+05								

L'analisi dei residui (Figura 79) non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza e normalità dei residui sono rispettate per il modello utilizzato.

La Tabella 88 mostra gli output del modello di regressione lineare multipla stimato per la ricchezza specifica S.

Dalla stima dei coefficienti si evince che il fattore tempo ha un effetto significativo sull'indice di ricchezza specifica, il che sta ad indicare che la tendenza generale della ricchezza specifica è all'aumento. Risulta anche che S è significativamente maggiore a livello del terminale FSRU rispetto all'area controllo (C; non indicata nella tabella, in quanto preso come parametro di riferimento), mentre non ci sono differenze significative tra area intermedia e controllo. Per quanto riguarda l'effetto stagionale, l'autunno (non indicato in tabella in quanto preso come valore di riferimento) è associato a valori di ricchezza specifica significativamente più bassi rispetto alle altre stagioni, ad eccezione dell'estate.

Tabella 87 – Risultati della analisi di regressione lineare multipla sull'indice di biodiversità di Shannon.										
Coefficienti:	Stima	Err.St.	valore test t	livello di significatività						
Intercetta	-41,87	10,67	-3,92	< 0.05						
Anno	0,02	0,01	4,27	< 0.05						
fDistanza - FSRU	0,20	0,03	6,26	< 0.05						
fDistanza - I	-0,21	0,03	-6,54	< 0.05						
fStagione - E	0,02	0,04	0,43	NS						
fStagione - I	0,13	0,04	3,35	< 0.05						
fStagione - P	0,11	0,04	2,86	< 0.05						

Anche in questo caso l'analisi dei residui (Figura 85) non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza e normalità dei residui sono rispettate per il modello utilizzato.

Per tutte le analisi sopra descritte è stato utilizzato R (versione 3.6.1), ed i pacchetti associati mgcv e nlme (R Core Team, 2019).

Tabella 88 – Risultati (S).	della analisi di	regressione	e lineare multipla	sulla ricchezza specifica
Coefficienti:	Stima	Err.St.	valore test t	livello di significatività
Intercetta	-2569,06	209,86	-12,24	< 0.05
Anno	1,29	0,10	12,37	< 0.05
fDistanza - FSRU	6,86	0,63	10,92	< 0.05
fDistanza - I	1,10	0,63	1,76	NS
fStagione - E	1,24	0,73	1,69	NS
fStagione - I	5,03	0,76	6,63	< 0.05
fStagione - P	3,67	0,76	4,84	< 0.05

Figura 79 - Analisi grafica dei residui per valutare le assunzioni di omogeneità e normalità dei residui nella analisi di regressione lineare multipla sull'indice di biodiversità di Shannon.

Figura 80 – Analisi grafica dei residui per valutare le assunzioni di omogeneità e normalità dei residui nella analisi di regressione lineare multipla sulla ricchezza specifica (S).

3.3.2 Meiobenthos

Metodi di elaborazione dati

I dati quantitativi derivanti dalle 15 campagne di studio (Bianco, I14, E14, I15, E15, I16, E16, I17, E17, I18, E18, I19, E19, I20, E20) sono stati raccolti in un'unica matrice *taxa x stazioni* e analizzati congiuntamente per valutarne l'andamento complessivo.

l dati di abbondanza sono stati trasformati secondo l'equazione $y = \log (x+1)$, per ridurre lo sbilanciamento in favore di alcuni taxa particolarmente abbondanti rispetto ad altri.

Il piano di ordinamento è stato ottenuto tramite il non-metric MultiDimensional Scaling (n-MDS) applicato alla matrice di similarità ottenuta tramite l'indice di Bray-Curtis.

Analogamente a quanto descritto per i popolamenti macrobentonici, anche in questo caso è stata formulata l'ipotesi secondo la quale le stazioni più vicine all'FSRU siano quelle che maggiormente possono risentire della sua influenza. Pertanto, le stazioni sono state raggruppate in ragione della loro distanza dal Terminale, ossia: FSRU (stazioni vicine), I (stazioni intermedie), C (controlli, stazioni più lontane). Avendo a disposizione un'unica fase di Bianco eseguita in estate, i dati sono stati nuovamente elaborati utilizzando unicamente i survey estivi (B, E14, E15, E16, E17, E18, E19, E20, E21). L'ordinamento dei punti stazione è stato ottenuto, anche in questo caso, tramite il n-MDS. Le etichette (label) corrispondenti (FSRU, C, I) sono state sovrapposte al piano di ordinamento per consentire di rilevare più facilmente eventuali gradienti spaziali.

Sui medesimi dati relativi alle campagne estive, per verificare la significatività dei pattern osservati, è stata usata la PERMANOVA, test multivariato non parametrico.

Sono stati testati il fattore Tempo (T), il fattore Distanza (D) e il fattore Sito (S), gerarchizzato in Distanza [S(D)], formulando l'ipotesi zero stante la quale la differenza tra FSRU, I (Intermedi) e C (Controlli), se esiste, rimane costante nel tempo, ossia l'interazione tra i fattori Tempo (T) e Distanza (D) risulti non significativa.

Per completare l'analisi delle risposte della componente meiobentonica è stata effettuata l'analisi SIMPER (Similarity Percentages), applicata alla matrice dei dati trasformati, volta a verificare quali taxa hanno contribuito maggiormente alla differenziazione tra campioni in base ai fattori considerati.

Le analisi sono state effettuate utilizzando il software PRIMER 6.0 (PRIMER-E Ltd, Plymouth, U.K.; Clarke & Warwick, 2001; Clarke & Gorley, 2006) con l'estensione PERMANOVA+ (Anderson et al., 2008).

Risultati

Dall'analisi congiunta della fauna rinvenuta nel corso delle 17 campagne di campionamento (Bianco, I14, E14, I15, E15, I16, E16, I17, E17, I18, E18, I19, E19, I20, E20, I21, E21) emerge una biocenosi meiobentonica costituita complessivamente da organismi appartenenti a 29 gruppi tassonomici, dei quali 7 presenti in tutte le campagne di monitoraggio. I Gastrotrichi risultano presenti unicamente nella campagna di Bianco, mentre Idrozoi, Rotiferi, Oligocheti, Sipunculidi, Briozoi, Solenogastri, Scafopodi, Acari, Ofiuroidi e Tunicati sono stati rinvenuti in una (Scafopodi e Tunicati) o più campagne delle fasi di esercizio. La presenza o meno di questi taxa nei campioni delle diverse fasi è verosimilmente legato più alla loro rarità, caratteristica che ne rende occasionale il campionamento, che ad altre cause.

La densità media totale della meiofauna dell'area investigata è risultata di $358,8 \pm 168,3$ ind./10 cm² nei campioni del Bianco, ed è variata nelle fasi di Esercizio da un minimo di $45,4 \pm 74,8$ ind./10 cm² in E21 ad un massimo di $360,7 \pm 271,4$ ind./10 cm² in E17. I Nematodi sono risultati sempre il taxon dominante (range: 38-290 ind./10 cm²), con percentuali variabili tra il 71,8% della fase l21 e l'85,8% di E19, seguiti nell'ordine da Copepodi (range: 2-34 ind./10 cm²; 3,7-10,1%), Policheti (range: 3-20 ind./10 cm²; 3,9-9,1%) e, infine, Nauplii (range: 1-18 ind./10 cm²; 1,8-5,3%). I primi quattro gruppi costituiscono complessivamente e, a seconda delle campagne, il 95-98% della biocenosi meiobentonica. Gli altri taxa sono presenti con densità e percentuali molto basse, fornendo un valore di abbondanza variabile tra l'1,5% (E19) e il 5,1% (Bianco e I18) dell'intero popolamento. Tra questi solo Ostracodi, Scafopodi, Turbellari, Oligocheti, Briozoi e Ciliati raggiungono in alcune occasioni l'1,0% del totale.

Il piano di ordinamento bidimensionale ottenuto mediante l'analisi n-MDS (Figura 81) non evidenzia chiari pattern né spaziali, né temporali, riconducibili alla stagionalità.

Figura 81 – Piano di ordinamento delle 12 stazioni investigate ottenuto dal non-metric MultiDimensional Scaling (n-MDS), basato sul valore delle abbondanze medie dei taxa principali e similarità di Bray-Curtis, previa trasformazione logaritmica dei dati. Sono stati analizzati i dati acquisti nel corso di 17 campagne di prelievo, dal Bianco (B) all'Estate 2021 (E21).

Per valutare eventuali cambiamenti avvenuti a seguito del posizionamento del Terminale, i dati sono stati nuovamente elaborati considerando esclusivamente le campagne estive, dal momento che, come ricordato sopra, quella di Bianco è stata condotta in questa stagione.

Nel piano di ordinamento bidimensionale ottenuto per mezzo del n-MDS si osserva una diversa distribuzione spaziale delle stazioni prossime al terminale rispetto a quelle poste a maggiore distanza da esso. Nello specifico, i punti stazioni prossimi al Terminale (FSRU) risultano in gran parte ravvicinati tra loro, nella parte sinistra del plot, verosimilmente in virtù di una maggiore similarità faunistica. Per contro, le stazioni poste a distanza maggiore dal terminale risultano avere invece una distribuione meno addensata e spostata verso la porzione centrale e destra del piano. Se il pattern osservato è indipendente dalla presenza del Terminale, e quindi dai suoi effetti sul biota, ne deriva che le differenze tra siti vicini e siti lontani non dovrebbero mutare nel tempo.

Per esplorare eventuali differenze tra i popolamenti posti a distanze diverse dal Terminale e per verificare come tali differenze evolvano nel tempo rispetto al Bianco, è stata utilizzata l'analisi PERMANOVA, applicata unicamente ai dati derivanti dalle campagne estive.

In particolare, i dati faunistici sono stati analizzati per valutare se dopo la fase di Bianco siano avvenute variazioni significative nei popolamenti e se tali modifiche possano essere riconducibili alla presenza del Terminale o se, al contrario, si verifichino in maniera del tutto indipendente da esso. L'analisi parte dal presupposto che, se il Terminale ha un effetto, esso sarà maggiormente rilevabile nelle stazioni più vicine a questa struttura rispetto a quelle lontane.

Pertanto, è stata testata l'ipotesi zero secondo la quale la differenza tra le stazioni FSRU (stazioni vicine), I (stazioni intermedie) e C (stazioni di controllo), se esiste, rimane costante nel tempo, ossia l'interazione tra i fattori Tempo (T) e Distanza (D) risulti non significativa.

Dall'analisi PERMANOVA si evince che il fattore Tempo è significativo, ad indicare che i popolamenti naturali, come atteso, evolvono nel tempo. Al contrario, il fattore Distanza risulta non significativo, indicando che i popolamenti posti a diverse distanze dal Terminale non differiscono tra loro. Tale condizione non cambia nel tempo, infatti l'interazione Tempo x Distanza non risulta significativa.

Figura 82 – Piano di ordinamento delle 12 stazioni investigate ottenuto dal non-metric MultiDimensional Scaling (n-MDS), basato sul valore delle abbondanze medie dei taxa principali e similarità di Bray-Curtis, previa trasformazione logaritmica dei dati. Sono stati analizzati i dati acquisti nel corso di nove campagne estive, dal Bianco (B) all'Estate 2021 (E21). Nel plot sono sovrapposti i label in base alle distanze delle stazioni dal Terminale (FSRU: vicine al Terminale, I: distanze intermedie, C: controlli).

Tabella 89 – Risultati d Variance). T: Tempo, D:	ella PE Distanz	RMANOVA(:a, S: Sito. I (Permutationa dati significati	al Multivariate vi sono indica	Analysis of ti in neretto.
Sorgente di variabilità	df	SS	MS	Pseudo-F	P (perm)
Tempo (T)	8	31669	3958,6	9,0519	0,001
Distanza (D)	2	5499,1	2749,6	2,683	0,095
Sito [S(D)]	9	9223,3	1024,8	2,3433	0,002
ТхD	16	5849,3	365,58	0,83594	0,79
Residuo	72	31488	437,33		
Totale	107	83728			

L'analisi SIMPER evidenzia che le differenze tra siti sono riconducibili principalmente alla riduzione delle densità di Copepodi, Nauplii e Policheti. Inoltre, riguardo al solo fattore "Tempo", dalla SIMPER analysis emerge anche una significativa riduzione di Ciliati. Limitatamente all'ultima campagna di raccolta, Simper ha evidenziato una dissimilarità media più alta rispetto a quella emersa nel confronto tra Bianco e tutte le altre fasi di campionamento (58% vs 26-47%), a rimarcare le ridotte abbondanze riscontrate nell'estate 2021.

Nel complesso le analisi condotte hanno evidenziato alcune significative variazioni a carico della comunità meiobentonica nell'area indagata. Tuttavia, le differenze osservate, riconducibili principalmente ad una generalizzata riduzione delle abbondanze avvenuta nel tempo, non risultano imputabili alla presenza e funzionamento del Terminale FSRU ma sono dovute ad altre cause, non obbligatoriamente di origine antropica.

3.3.3 Bioaccumulo

I dati ad oggi acquisiti non testimoniano la presenza di processi di bioaccumulo in atto. Un lieve incremento di concentrazione di idrocarburi pesanti è stato osservato nelle campagne estive del 2015 e del 2016 e nell'Autunno 2016 senza, tuttavia, esibire particolari trend spazio-temporali attribuibili alla presenza del Terminale. I livelli di concentrazione raggiunti sono bassi e le anomalie sporadiche.

Per quanto riguarda gli elementi in tracce sono state confrontate le variazioni osservate tra le concentrazioni dei mitili posti lungo i Terminale rispetto al T0 e quelle tra i mitili posti in Gorgona (Bianco) e T0. Nel complesso si osserva che le variazioni sono del tutto confrontabili, con poche eccezioni.

Un diffuso bioaccumulo di ferro all'interno dei mitili è stato osservato nell'Autunno 2016, ma si trattava di basse concentrazioni in valore assoluto. Un nuovo, maggiore incremento è stato osservato nell'inverno 2018.

In questo survey anche Vanadio e Bario sono stati bioaccumulati nei mitili posti lungo il Terminale.

Il primo (vanadio) ha raggiunto tenori tra 6 e 8 volte maggiori circa rispetto al Tempo 0, mentre il bario, risultato al di sotto del limite di quantificazione sia al Tempo 0, sia nel controllo Gorgona, è stato quantificato in tutte le stazioni lungo l'FSRU. Queste anomalie non sono state confermate dai dati acquisiti nel VII anno di monitoraggio.

Lo Zinco ha mostrato segnali di bioccumulo, ma che rimangono sporadici o limitati ad una singola stazione posta lungo il rigassificatore. Solo nell'estate 2016 risultava bioaccumulato in tutti i mitili analizzati. Durante il VII anno di monitoraggio (A19-E20), invece, il bioaccumulo di questo metallo risulta diffuso e riguarda tutte le stagioni tranne quella estiva in cui il fenomeno risulta limitato alla stazione Pos.4.

In questo monitoraggio (VII) modesti segnali di bioaccumulo sono stati registrati anche per l'arsenico nel periodo autunnale, con valori analoghi a quelli registrati in A18. Anche in questo caso, pertanto, le anomalie sono del tutto sporadiche.

Nell'ottavo anno di studio (A20-E21) il fenomeno del bioaccumulo è pressoche assente. Solo ferro e zinco risultano bioaccumulati nel periodo invernale, fatto osservato però anche nel campione di riferimento (Bianco Gorgona) e pertanto non direttamente imputabile al Terminale.

Nel complesso, gli eventi descritti, risultano occasionali e insufficienti per testimoniare l'esistenza di una relazione di causalità con le attività del Terminale. Inoltre, l'andamento temporale delle concentrazioni dello zinco trovato nei mitili non dimostra l'esistenza di effetti riconducibili alla presenza degli anodi sacrificali dislocati lungo lo scafo del Terminale.

Infine, non sono stati rilevati segnali di contaminazione fecale.

3.3.4 Biomarkers

Neutral Red Retention (Time NRRT), Comet assay e Analisi istologica del tessuto branchiale

Metodi di elaborazione dati

Per verificare se i risultati dei biomarker indagati mostrassero variazioni temporali abbiamo eseguito un'analisi della regressione lineare eseguita utilizzando il software SGWIN (Window 98) e utilizzando come variabile indipendente il tempo (la serie delle campagne di monitoraggio comprese tra P14 e E21) e come variabile dipendente la grandezza T-C (Terminale meno Controllo), dove T rappresenta il valore medio ottenuto analizzando tutti i mitili posizionati presso il terminale FSRU e C il valore medio dei mitili di controllo (mantenuti presso la stazione E – Isola di Gorgona). Inoltre, per rendere più semplice l'interpretazione dei risultati dell'indagine basata sui biomarker, i dati ottenuti sono stati elaborati utilizzando il programma Sedigualsoft, che permette di integrare dataset eterogenei e fornisce una misura del livello di rischio ambientale (Piva et al., 2011). Il modulo sulle analisi dei Biomarker può elaborare i risultati ottenuti a partire da un'ampia lista di biomarker tra quelli maggiormente utilizzati dalla comunità scientifica. A ciascun biomarker è associato un "peso", diverso a seconda della rilevanza biologica della risposta e del livello di conoscenze sui meccanismi coinvolti; per ciascun biomarker inoltre, è stabilita anche una "soglia" (Threshold) che corrisponde alla variazione minima considerata biologicamente significativa in funzione della specie e del tessuto analizzato. Per calcolare l'indice cumulativo di pericolo per i biomarker, la variazione misurata per ciascun parametro è confrontata con la "soglia" e corretta sia per la significatività statistica della differenza rispetto al controllo, che per l'importanza biologica della risposta ("peso"); ogni biomarker è quindi assegnato ad una classe di pericolo (da assente a molto grave) a seconda dell'entità della variazione rispetto alla soglia. I risultati di tutti i biomarker sono diversamente pesati nel calcolo del pericolo cumulativo e della sua attribuzione ad 1 di 5 classi di gravità. Il modello indica il numero di biomarker all'interno di ciascuna delle 5 classi, il valore di pericolo cumulativo e la classe di pericolo complessivo per i biomarker (Piva et al., 2011). Questo approccio è stato validato ed applicato in differenti contesti ambientali anche di grande complessità, come nel caso del monitoraggio associato al naufragio ed alla rimozione della Nave Concordia presso l'Isola del Giglio (Regoli et al., 2014).

Risultati

L'analisi della regressione lineare aggiornata alla campagna E-21 non ha evidenziato alcun trend significativo per nessuno dei tre biomarker analizzati. Anche il grado di danno del DNA, che negli anni 2016 e 2017 aveva mostrato un certo incremento rispetto agli anni precedenti, è risultato molto modesto nel corso delle ultime campagne di monitoraggio (**Figura 83**).

I risultati della elaborazione Sediqualsoft, che integra i dati relativi a tutti i biomarker indagati, sono illustrati graficamente nella Figura 84 quale è riportata la classe di rischio per ciascuna delle 29 campagne di monitoraggio effettuate dall'inizio dell'attività. Anche in questo caso, i risultati delle 4 stazioni presso il Terminale FSRU sono stati cumulati. Il modello ha messo in evidenza che solo in una campagna (inverno 15) è emerso un livello moderato di rischio ambientale, mentre in tutti gli altri casi il rischio è risultato lieve o assente. Non è stato possibile eseguire l'analisi relativa a I-21 per mancanza del sito di controllo, andato perso a causa di mareggiate impreviste. Dalla valutazione complessiva dei dati relativi ai tre biomarker emerge che il Terminale FSRU esercita un effetto trascurabile sullo stato di

Dalla valutazione complessiva dei dati relativi ai tre biomarker emerge che il Terminale FSRU esercita un effetto trascurabile sullo stato di salute dei mitili analizzati.

Figura 83 - Variazione temporale del grado di danno del DNA nelle cellule branchiali di mitilo (non significativa)

Sample	(Class	Sample	C	lacc	Sample		Clace
-	-	-	I 15	MODERATE		I 16	SLIGHT	
P 14	SLIGHT		P 15	ABSENT		P 16	SLIGHT	
E 14	SLIGHT		E 15	SLIGHT		E 16	SLIGHT	
A 14	ABSENT		A 15	ABSENT		A 16	ABSENT	
		1						
Sample		C 266	Sample	C	larr	Sample		
Sample	SLIGHT		Sample	C ABSENT		Sample I 19	SLIGHT	
Sample I 17 P 17	SLIGHT		Sample I 18 P 18	CI ABSENT SLIGHT		Sample I 19 P 19	SLIGHT	
Sample I 17 P 17 E 17	SLIGHT SLIGHT SLIGHT		Sample I 18 P 18 E 18	CI ABSENT SLIGHT SLIGHT		Sample I 19 P 19 E 19	SLIGHT SLIGHT ABSENT	
Sample I 17 P 17 E 17 A 17	SLIGHT SLIGHT SLIGHT ABSENT		Sample I 18 P 18 E 18 A 18	CI ABSENT SLIGHT SLIGHT		Sample I 19 P 19 E 19 A 19	SLIGHT SLIGHT ABSENT SLIGHT	

Sample	C	Class	Sample		Class
I 20	-	-	121	-	-
P 20	ABSENT		P 21	SLIGHT	
E 20	SLIGHT		E 21	ABSENT	
A 20	ABSENT				

Figura 84 - Integrazione ponderata dei risultati dei biomarker mediante il programma Sediqualsoft, da cui emerge un impatto assente o moderato del Terminale nella quasi totalità delle campagne di monitoraggio effettuate.

3.3.5 Fauna ittica bentonectonica

Metodi di elaborazione dati

Per lo studio delle risposte della componente demersale, monitorata attraverso le campagne sperimentali di pesca con rete a traino di fondo (o a strascico), sono stati presi in considerazione gli indici di biomassa, espressi come kg/km², delle principali specie demersali catturate nel corso dei campionamenti nell'area di indagine: triglia di fango, *Mullus barbatus*, nasello, *Merluccius merluccius*, gambero rosa, *Parapenaeus longirostris*, e gattuccio, *Scyliorhinus canicula*. Queste specie rappresentano anche i principali target della pesca professionale con rete a traino di fondo.

Gli indici di biomassa delle singole specie sono stati investigati attraverso l'analisi della regressione lineare multipla, considerando l'indice di biomassa come variabile dipendente. Come covariate, o variabili esplicative (indipendenti), sono state utilizzate il tempo (anni), la stagione (come fattore a 2 livelli: E = estate, I = inverno), e la distanza dall'impianto di rigassificazione FSRU (fattore a 2 livelli: I = area interna, C = area controllo). Nel modello iniziale è stata anche inserita l'interazione tra tempo e distanza. La formula del modello iniziale è la seguente:

 $log(BI) = \alpha + Anno + Profondità + fStagione + fDistanza + Anno:fDistanza + \epsilon_i$,

dove log(BI) è il logaritmo dell'indice di biomassa di una delle specie investigate (variabile dipendente), α è l'intercetta, Anno, Profondità, Stagione e Distanza sono le variabili indipendenti (Stagione e Distanza espresse come fattore *t*). Nella formula è anche indicata l'interazione tra Anno e Distanza.

A partire dal modello iniziale, è stata effettuata una *backward selection analysis* basata sull'analisi della varianza e l'Akaike Information Criterion (AIC), al fine di individuare il modello migliore nel descrivere i dati, associato al valore di AIC più basso. Una volta individuato il modello migliore, una validazione del modello stesso è stata effettuata attraverso l'analisi grafica dei residui.

Nel caso in cui l'analisi dei residui dei modelli investigati mettesse in evidenza la presenza di pattern non lineari, è stata usata l'analisi con Generalized Additive Model (GAM) (Hastie e Tibshirani, 1990), che sono una variante non lineare dell'analisi di regressione lineare.

Questo approccio è stato utilizzato per modellare i dati relativi alle categorie faunistiche principali (Pesci Ossei, Pesci Cartilaginei, Cefalopodi e Crostacei Decapodi), sempre espressi come indici di biomassa (kg/km²) calcolati in ciascuna stazione di campionamento. Inoltre, sono stati analizzati con lo stesso approccio anche alcuni indici ecologici di descrizione della struttura di comunità, quali l'indice di diversità di Shannon (H') e l'indice di ricchezza specifica (S).

Infine, questo stesso approccio è stato seguito per i dati provenienti dalle campagne sperimentali realizzate con reti a imbrocco. L'unica differenza ha riguardato la scelta della variabile dipendente, che nel caso delle reti a imbrocco, è stata la cattura in kg/h, in quanto la lunghezza delle reti è mantenuta costante. Per quanto riguarda la specie, sono state effettuate analisi solo sul gattuccio, *S. canicula*, e la razza chiodata, *Raja clavata*, le due specie che hanno mostrato i rendimenti più elevati nel corso di tutte le campagne di monitoraggio.

Le analisi sopra descritte sono state effettuate in ambiente R (versione 4.1.1), utilizzando i pacchetti associati mgcv e nlme (R Core Team, 2021).

Risultati

Reti a strascico

Mullus barbatus

Nel caso della triglia di fango, *M. barbatus*, la *backward selection analysis* ha mostrato che sia il fattore distanza, che l'interazione tra il fattore distanza dal terminale FSRU e il tempo non hanno effetto significativo sulla variabile dipendente BI, pertanto sono stati rimossi dal modello. A differenza degli anni precedenti, la variabile Anno è stata usata come variabile continua, e non più come fattore.

Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

 $log(BI) = \alpha + s(Profondità) + fStagione + fDistanza + s(Anno) + \epsilon_i.$

La **Tabella 90** mostra gli output del modello. Dalla stima dei coefficienti si evince che il fattore tempo ha un effetto positivo sull'indice di biomassa della triglia di fango *M. barbatus*, il che sta ad indicare che la tendenza generale della biomassa di questa specie è all'aumento, come confermato da altre evidenze scientifiche (STECF, 2020). Per quanto riguarda l'effetto stagionale, l'inverno sarebbe associato a valori di biomassa significativamente più alti rispetto alle campagne di monitoraggio effettuate in estate. Questo fenomeno è in linea con la dinamica di popolazione della specie. La biomassa di questa specie risulta significativamente superiore nella zona interna. Di conseguenza, è possibile individuare un effetto positivo sulla biomassa della popolazione di triglia di fango legato alla presenza del terminale FSRU.

Tabella 90 – <i>Mullus b</i> multipla. EDF = Grad riferimento; F = Test F	<i>arbatus</i> : coeffici li di libertà dell	enti stimati attr a funzione di s	averso analisi della smooting; Ref.DF =	regressione lineare gradi di libertà di
Coefficienti parametrici:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	4,05	0,17	24,29	<0,05
fDistanza - I	0,49	0,16	3,20	<0,05
fStagione - I	0,51	0,11	4,66	<0,05
Coefficienti:	EDF	Ref.DF	F	livello di significatività
Anno	2,59	2,88	6,44	<0,05
Profondità	1,91	2,37	7,21	<0,05

L'analisi dei residui del modello GAM non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Merluccius merluccius

Nel caso del nasello, *M. merluccius*, la *backward selection analysis* ha mostrato che il modello migliore nel fittare i dati relativi all'indice di biomassa (kg/km²) di questa specie è quello contenente come variabili esplicative la Profondità ed i fattori stagione e distanza dal terminale FSRU.

Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

 $log(BI) = \alpha + s(Profondità) + fDistanza + fStagione + \epsilon_i.$

La **Tabella 91** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, si evince che la variabile Profondità abbia un effetto significativo sulla biomassa del nasello *M. merluccius*. Per quanto riguarda il fattore stagionale, risulta che in inverno la biomassa di questa specie sia inferiore a quella osservata in estate. La biomassa del nasello risulta superiore nella zona interna. Di conseguenza, è possibile individuare un effetto positivo sulla biomassa della popolazione di nasello legato alla presenza del terminale FSRU.

Tabella 91 – <i>Merluccius merluccius</i> : coefficienti stimati attraverso analisi con modello GAM. EDF = Gradi di libertà della funzione di smoothing. Ref.DF = gradi di libertà di riferimento; F = Test F					
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività	
Intercetta	3,08	0,25	12,11	<0,05	
fDistanza - I	0,81	0,26	3,15	<0,05	
fStagione - I	-0,50	0,16	-3,10	<0,05	
Coefficienti:	EDF	Ref.DF	F	livello di significatività	
Profondità	1,00	1,01	5,53	<0,05	

L'analisi dei residui del modello GAM non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Parapenaeus longirostris

Per quanto riguarda il gambero rosa, *P. longirostris*, la *backward selection analysis* ha mostrato che il modello migliore nel fittare i dati relativi all'indice di biomassa (kg/km²) di questa specie è quello contenente come variabili esplicative solo le variabili continue tempo, profondità ed il fattore stagione. A differenza degli anni precedenti, la variabile Anno è stata usata come variabile continua, e non più come fattore. Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la *backward selection analysis* è pertanto risultato il seguente:

 $log(BI) = \alpha + s(Profondità) + fStagione + s(Anno) + \epsilon_i$.

La **Tabella 92** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, si osserva un aumento generale della biomassa del gambero rosa, *P. longirostris*, nel tempo. Questo è in linea con le conoscenze sulla dinamica della specie lungo le coste italiane nord-occidentali (STECF, 2020). Infine, in inverno la biomassa osservata risulta inferiore a quella presente in estate. In conclusione, non è possibile individuare alcun effetto sulla popolazione di gambero rosa legato alla presenza del terminale FSRU.

Tabella 92 – Parape EDF = Gradi di libert Test F	<i>naeus longirostris:</i> à della funzione d	: coefficienti stin i smoothing. Re	nati attraverso analis ef.DF = gradi di liber	si con modello GAM. tà di riferimento; F =
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	3,44	0,12	27,60	<0,05
fStagione - I	-1,35	0,29	-4,72	<0,05
Coefficienti:	EDF	Ref.DF	F	livello di significatività
Anno	2,26	2,62	6,89	<0,05
Profondità	2,89	3,43	8,33	<0,05

L'analisi dei residui del modello GAM non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Scyliorhinus canicula

Per quanto riguarda il gattuccio, S. canicula, la backward selection analysis ha mostrato che il modello migliore nel fittare i dati relativi all'indice di biomassa (kg/km²) di questa specie è quello contenente come variabili esplicative il tempo ed i fattori stagione e distanza. A differenza degli anni precedenti, la variabile Anno è stata usata come variabile continua, e non più come fattore.

Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

La **Tabella 93** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, il fattore distanza mostra un effetto positivo per quanto riguarda l'area interna (I), cioè quella più prossima al terminale FSRU. Infine, in inverno la biomassa osservata del gattuccio, *S. canicula*, risulta superiore a quella presente in estate. In conclusione, per quanto riguarda questa specie, è possibile individuare un effetto positivo sulla biomassa della popolazione legato alla presenza del terminale FSRU. In generale, nel tempo la biomassa del gattuccio ha mostrato un aumento, con una leggera riduzione negli ultimi due anni.

Tabella 93 – Scylion EDF = Gradi di liberta Test F	<i>hinus canicula</i> : c à della funzione d	oefficienti stima i smoothing. Re	ati attraverso analisi ef.DF = gradi di liber	con modello GAM. tà di riferimento; F =
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	3,91	0,25	15,77	<0,05
fDistanza - I	0,73	0,24	3,14	<0,05
fStagione - I	0,48	0,13	3,92	<0,05
Coefficienti:	EDF	Ref.DF	F	livello di significatività
Anno	2,74	2,95	9,42	<0,05

L'analisi dei residui del modello GAM non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Pesci ossei

Per quanto riguarda i Pesci Ossei, la *backward selection analysis* ha mostrato che il modello migliore nel fittare i dati relativi all'indice di biomassa (kg/km²) di questa categoria faunistica è quello contenente come variabili esplicative il tempo (Anno) ed il fattore stagione. A differenza degli anni precedenti, la variabile Anno è stata usata come variabile continua, e non più come fattore.

Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la *backward* selection analysis è pertanto risultato il seguente:

 $log(BI) = \alpha + s(Anno) + fStagione + \varepsilon_i$.

La **Tabella 94** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, si evince come la stagione abbia un effetto significativo sulla biomassa totale dei Pesci Ossei: in inverno la biomassa osservata risulta superiore a quella presente in estate. La biomassa dei Pesci Ossei non mostra trend temporali: la variabile Anno, infatti, non mostra una funzione di smoothing significativa. In conclusione, anche per quanto riguarda questa categoria faunistica, non è possibile individuare alcun effetto sulla popolazione legato alla presenza del terminale FSRU.

Tabella 94 – Pesci Ossei: coefficienti stimati attraverso analisi con modello GAM. EDF = Gradi di libertà della funzione di smoothing. Ref.DF = gradi di libertà di riferimento; F = Test F					
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività	
Intercetta	6,04	0,14	44,62	<0,05	
fStagione - I	0,68	0,12	5,66	<0,05	
Coefficienti:	EDF	Ref.DF	F	livello di significatività	
Anno	1,00	2,48	0,12	NS	

L'analisi dei residui non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Pesci cartilaginei

Per quanto riguarda i Pesci Cartilaginei, la *backward selection analysis* ha mostrato che il modello migliore nel fittare i dati relativi all'indice di biomassa (kg/km²) di questa categoria faunistica è quello contenente come variabili esplicative il tempo (Anno) ed il fattore stagione. Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la *backward selection analysis* è pertanto risultato il seguente:

$$log(BI) = \alpha + s(Anno) + fStagione + \epsilon_i.$$

La **Tabella 95** mostra gli output del modello. Oltre ad un generale pattern temporale, in inverno la biomassa osservata risulta superiore a quella presente in estate. In conclusione, per quanto riguarda questa categoria faunistica, non è possibile individuare un effetto sul popolamento legato alla presenza del terminale FSRU.

Tabella 95 – Pesci Cartilaginei: coefficienti stimati attraverso analisi con modello GAM. EDF = Gradi di libertà della funzione di smoothing. Ref.DF = gradi di libertà di riferimento; F = Test F					
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività	
Intercetta	4,90	0,15	31,78	<0,05	
fStagione - I	0,88	0,16	5,54	<0,05	
Coefficienti:	EDF	Ref.DF	F	livello di significatività	
Anno	1,96	2,00	10,36	<0,05	

L'analisi dei residui non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Molluschi Cefalopodi

Per quanto riguarda i Molluschi Cefalopodi, la *backward selection analysis* ha mostrato che il modello migliore nel fittare i dati relativi all'indice di biomassa (kg/km²) di questa categoria faunistica è quello contenente come unica variabile esplicativa il fattore stagione. Il modello migliore selezionato attraverso la *backward selection analysis* è pertanto risultato il seguente:

 $log(BI) = \alpha + fStagione + \epsilon_i.$

La **Tabella 96** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, si evince come solo il fattore stagione abbia un effetto significativo sulla biomassa totale dei Molluschi Cefalopodi. In particolare, in inverno la biomassa osservata risulta superiore a quella presente in estate. Di conseguenza, anche per quanto riguarda questa categoria faunistica, non è possibile individuare alcun effetto sulla popolazione legato alla presenza del terminale FSRU.

Tabella 96 – Molluso lineare multipla.	chi Cefalopodi:	coefficienti	stimati attraverso	analisi della regressione
Coefficienti:	Stima	Err.St.	valore test	t livello di significatività
Intercetta	3,76	0,09	40,95	<0,05
fStagione - I	0,44	0,14	3,10	<0,05

L'analisi dei residui non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Crostacei Decapodi

Per quanto riguarda i Crostacei Decapodi, la *backward selection analysis* ha mostrato che il modello migliore nel fittare i dati relativi all'indice di biomassa (kg/km²) di questa categoria faunistica è quello contenente come variabili esplicative la stagione (come fattore) ed il tempo (Anno). Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la *backward selection analysis* è pertanto risultato il seguente:

$$log(BI) = \alpha + s(Anno) + fStagione + \varepsilon_i$$
.

La **Tabella 97** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, si evince come la biomassa dei Crostacei Decapodi aumenti nel tempo. L'aumento della biomassa in base al tempo è probabilmente legato al fatto che la specie più abbondante è il gambero rosa, *P. longirostris*, che, come ricordato in precedenza, sta mostrando un generale trend all'aumento lungo tutte le coste nord-occidentali italiane (probabilmente legato all'aumento della temperatura media del Mediterraneo). La biomassa dei crostacei è superiore in estate, rispetto all'inverno. In conclusione, anche per quanto riguarda questa categoria faunistica, non è possibile individuare alcun effetto sulla popolazione legato alla presenza del terminale FSRU.

Tabella 97 – Crostace = Gradi di libertà della F	ei Decapodi: coef a funzione di smo	ficienti stimati a othing. Ref.DF	ttraverso analisi con = gradi di libertà di i	modello GAM. EDF iferimento; F = Test
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	3,83	0,09	39,18	<0,05
fStagione - I	-0,50	0,17	-2,86	<0,05
Coefficienti:	EDF	Ref.DF	F	livello di significatività
Anno	1,82	1,97	5,08	<0,05

L'analisi dei residui non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Indice di biodiversità di Shannon H'

Per la presenza di pattern non lineari nei residui, è stato utilizzato un modello GAM. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

H' =
$$\alpha$$
 + s(Profondità) + *f*Distanza + ϵ_{i} .

La Tabella 98 mostra gli output del modello. La biodiversità risulta positivamente correlata solo con la profondità.

Tabella 98 – Indice modello GAM. EDF riferimento; F = Test	di biodiversità di = Gradi di libertà d F.	Shannon H': c della funzione d	oefficienti stimati at i smoothing. Ref.DF	traverso analisi con ⁻ = gradi di libertà di
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	2,22	0,08	28,01	<0,05
fDistanza - I	-0,10	0,09	-1,15	NS
Coefficienti:	EDF	Ref.DF	F	livello di significatività
Profondità	1,11	9,00	1,30	<0,05

L'analisi dei residui del modello GAM non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Ricchezza specifica S

La backward selection analysis ha mostrato che l'interazione tra il fattore distanza dal terminale FSRU e il tempo non ha effetto significativo sulla variabile dipendente S, pertanto è stata rimossa del modello. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

$$S = \alpha + Profondità + \varepsilon_i$$
.

La **Tabella 99** mostra gli output del modello. Dalla stima dei coefficienti si evince che la ricchezza specifica risulta positivamente correlata solo con la profondità.

Tabella 99 - Ricchezza specifica S: coefficienti stimati attraverso analisi della regressione lineare multipla.				
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	-19,38	13,55	-1,43	NS
Profondità	9,82	2,88	3,41	<0,05

L'analisi dei residui non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Reti da posta

Scyliorhinus canicula

Per quanto riguarda i dati di cattura (espressi in kg/h per le reti a imbrocco) del gattuccio, *S. canicula*, con reti a imbrocco, le analisi hanno riscontrato la presenza di pattern non lineari. Di conseguenza, per questa specie sono stati utilizzati dei Generalized Additive Model (GAM) (Hastie e Tibshirani, 1990) in sostituzione dell'approccio lineare. La procedura di selezione del modello è comunque la stessa. L'unica differenza rispetto ai report precedenti è che la variabile temporale (Anno) nell'analisi con GAM viene trattata come una variabile continua, e viene applicata una funzione di smoothing.

La backward selection analysis ha mostrato che il modello migliore nel fittare i dati relativi alle catture in peso (kg/h) di questa specie è quello contenente come variabili esplicative l'Anno, ed i fattori stagione e distanza. Il modello migliore selezionato attraverso la backward selection analysis è pertanto risultato il seguente:

kg/h = α + s(Anno) + fStagione + fDistanza + ε_i .

La **Tabella 100** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, e dai livelli di significatività associati, si evince che un effetto significativo sulla biomassa del gattuccio sia dovuto al fattore temporale. In particolare, risulta che le catture di gattuccio siano state superiori negli ultimi anni (2015-2021) rispetto agli altri precedenti. I fattori stagione e distanza dal terminale non mostrano effetti significativi sulla biomassa. Anche in questo caso, non è possibile individuare alcun effetto sulla popolazione di gattuccio legato alla presenza del terminale FSRU.

L'analisi dei residui non ha riscontrato la presenza di trend nei residui, il che sta ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono rispettate per il modello utilizzato.

Tabella 100 – Scylic EDF = Gradi di libert Test F	o <i>rhinus canicula</i> : c à della funzione di	coefficienti stima i smoothing. Re	ati attraverso analis :f.DF = gradi di liber	i con modello GAM. tà di riferimento; F =
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	-0,79	0,18	-4,43	<0,05
fDistanza - I	0,18	0,18	0,98	NS
fStagione - I	-0,25	0,14	-1,79	NS
Coefficienti:	EDF	Ref.DF	F	livello di significatività
Anno	3,81	3,98	5,18	<0,05

Raja clavata

Anche per questa specie sono stati utilizzati dei Generalized Additive Model (GAM) (Hastie e Tibshirani, 1990). Per quanto riguarda i dati di cattura (espressi in kg/1000m/24h per le reti a imbrocco) della razza chiodata, *R. clavata*, con reti a imbrocco, la *backward selection analysis* ha mostrato che il modello migliore nel fittare i dati relativi alle catture in peso (kg/h) di questa specie è quello contenente come variabili esplicative la profondità ed il tempo (anni). Il modello migliore selezionato attraverso la *backward selection analysis* è pertanto risultato il seguente:

kg/h =
$$\alpha$$
 + s(Profondità) + s(Anno) + ϵ_i .

La **Tabella 101** mostra gli output del modello. Dalla stima dei coefficienti delle variabili incluse nel modello, si evince che la biomassa della razza chiodata aumenti con la profondità. Inoltre, si osserva un aumento della biomassa nel tempo. In ogni caso, anche per questa specie non è possibile individuare alcun effetto sulla popolazione legato alla presenza del terminale FSRU.

Tabella 101 – <i>Raja clavata</i> : coefficienti stimati attraverso analisi con modello GAM. EDF = Gradi di libertà della funzione di smoothing. Ref.DF = gradi di libertà di riferimento; F = Test F				
Coefficienti:	Stima	Dev.St.	valore test t	livello di significatività
Intercetta	-1,84	0,20	-9,17	<0,05
Coefficienti:	EDF	Ref.DF	F	livello di significatività
Profondità	6,69	7,76	5,74	<0,05
Anno	3,50	3,84	6,00	<0,05

L'analisi dei residui non ha riscontrato la presenza di trend negli stessi, ad indicare che le assunzioni di omogeneità della varianza, di indipendenza e normalità sono state rispettate. Per visualizzare i risultati statistici è stata utilizzata la rappresentazione *traffic light* (**Tabella 102**). Nel caso in cui l'analisi statistica mostri una differenza statisticamente significativa degli indici analizzati in relazione alla distanza con incremento dei valori a maggiori distanze dal terminale, l'effetto è rappresentato da un rettangolo colorato in rosso. La colorazione è verde se gli indici risultano significativamente più elevati in vicinanza del terminale rispetto alle stazioni più lontane, mentre in grigio è rappresentato il caso in cui non ci sia alcun tipo di effetto in relazione alla distanza.

Tabella 102 – Tabella riassuntiva degli effetti del Terminale su specie target (o taxa superiori) raccolte con rete a strascico o a imbrocco con approccio "Traffic light". Con lo stesso approccio sono valutate la Ricchezza specifica e la Diversità specifica.				
Attrezzo campionatore	Specie	Effetto del terminale		
Strascico	Mullus barbatus			
Strascico	Merluccius merluccius			
Strascico	Parapenaeus longirostris			
Strascico	Scyliorhinus canicula			
Rete ad imbrocco	Scyliorhinus canicula			
Rete ad imbrocco	Raja clavata			
Strascico	Pesci Ossei			
Strascico	Pesci Cartilaginei			
Strascico	Crostacei Decapodi			
Strascico	Molluschi Cefalopodi			
Strascico	Diversità specifica			
Strascico	Ricchezza di specie			

Legenda:

Effetto negativo

Nessun effetto

Effetto positivo

3.3.6 Fauna ittica pelagica

Gli scarsi risultati ottenuti nello studio della fauna ittica pelagica sono da mettere in relazione con le caratteristiche di questo tipo di pesca e delle specie che si vanno a studiare. La concentrazione degli esemplari, in genere, è molto bassa ed organizzata in branchi, che non hanno una distribuzione continua. Pertanto, questa indagine non fornisce informazioni utili per valutare eventuali effetti del Terminale.

3.3.7 Cetacei e tartarughe marine

L'area scelta per il posizionamento del Terminale FSRU Toscana ricade all'interno del Santuario Pelagos. Il primo monitoraggio della presenza di cetacei e tartarughe risale agli anni 2000. Nella **Figura 85** sono riportati gli avvistamenti nell'area di monitoraggio antecedenti alla campagna di Bianco B12.

Figura 85 - Dati storici sulla presenza di cetacei risalenti agli anni 2000

Al termine della campagna di Bianco (B12) (Figura 86) gli avvistamenti sono stati effettuati principalmente nelle zone Est e Sud, all'interno delle 6 miglia nautiche dal Terminale e Sud-Ovest all'esterno dell'area.

Nell'ottavo anno di monitoraggio (A20-I21-P21-E21) all'interno dell'area di monitoraggio sono stati effettuati in totale quattro avvistamenti di cetacei per un totale di 23 delfini di cui 1 giovane e 2 piccoli. Nessun avvistamento di tartarughe marine.

Riguardo i cetacei incontrati si è trattato sempre di delfini appartenenti alla specie tursiope (*Tursiops truncatus*). Il primo avvistamento effettuato a dicembre a 6,1nm a NE del Terminale in totale 5 individui; il secondo e terzo effettuati nel mese di marzo rispettivamente a 7nm con 8 individui di cui 1 giovane e 2 piccoli e a 5,4nm con 4 individui, entrambi gli avvistamenti a NE del Terminale ed in presenza di pescherecci a strascico; il quarto nel mese di giugno a 2,8nm a E del Terminale per un totale di 3 individui, in assenza di pescherecci.

Rispetto alle precedenti campagne di monitoraggio l'ottavo anno ha registrato il minor numero di individui avvistati, il terzo anno rimane ancora quello con gli avvistamenti più numerosi. Caratteristiche di questa campagna sono gli avvistamenti tutti tra i settori NE ed E. Di seguito le mappe con tutti gli avvistamenti per campagna annuale.

Avvistamenti nella campagna di Bianco B12.

Avvistamenti 1° anno (A13-I14-P14-E14).

Avvistamenti 8° anno (A20-I21-P21-E21)

Figura 86 - Avvistamenti a partire dalla campagna di Bianco (B12) fino al 8° anno (A20-I21-P21-E21).

Come già indicato relativamente agli anni precedenti, gli spostamenti del gruppo di delfini tursiopi appartenenti al Gruppo ALFA avvengono in funzione della ricerca del cibo e della normale vita sociale. La ricerca del cibo rappresenta sempre una delle attività principali. Caratteristica tipica dei tursiopi è l'apprendimento e la trasmissione di comportamenti specifici madre-figlio. Tra questi c'è la capacità di interagire con le attività antropiche, quali ad esempio la pesca a strascico, imparando a nutrirsi dei pesci che sfuggono dalle reti e l'identificazione delle reti da posta dove i pesci vengono catturati direttamente dalle reti (alimentazione opportunistica – facilitazione nella ricerca di cibo, etc).

Molti degli avvistamenti nella zona Nord-Est ed Est infatti sono avvenuti in presenza di pescherecci a strascico in attività nell'area. Il posizionamento del Terminale e la creazione della corrispondente area di interdizione ha modificato le rotte dei pescherecci a strascico che incidono nell'area e ha influenzato i conseguenti spostamenti dei tursiopi. Tuttavia le condizioni di necessità quali ad esempio la presenza di prede in aree anche molto antropizzate, spingono i delfini verso queste zone e quindi la presenza del Terminale può risultare ininfluente (come infatti si è verificato nel 1°, 2°, 5° e 7° anno).

Gli avvistamenti dell' 8° anno sono in generale in linea con le altre annualità. Essi sono concentrati prevalentemente nei settori Nord ed Est, dove infatti si effettuano le attività di strascico. Quindi le osservazioni effettuate negli anni si contrappongono in alcuni casi e si sovrappongono in altri ai rilevamenti antecedenti al posizionamento del Terminale. La maggiore corrispondenza con gli avvistamenti dei dati storici si osserva soprattutto negli avvistamenti nelle zone Nord ed Est, ma non verso NordOvest, presumibilmente per la minor presenza di pesca a strascico in tale area dopo il posizionamento del Terminale. Va in ogni caso tenuto conto che la mappa con i dati storici rappresenta graficamente i dati del 2008 e 2009 essendo questi rappresentativi anche di anni precedenti ed i dati nelle successive mappe rappresentano solo pochi giorni di attività in un anno.

Riguardo le tartarughe marine l'assenza di rilevamenti dalla terza campagna ad oggi (con l'eccezione di 3 avvistamenti rispettivamente nelle prime due campagne) non risulta allarmante. Questo dato dovuto presumibilmente al loro comportamento specifico: apnee di ore, stazionamento in superficie solo per brevissimi periodi, rapida immersione in caso di disturbi esterni e scelta neritica di stazionamento e ricerca del cibo, piuttosto che pelagica.

4 CONCLUSIONI

Il presente documento si riferisce allo studio dei potenziali impatti prodotti dal Terminale "FSRU Toscana" sull'ambiente marino circostante. Lo studio è stato condotto seguendo un approccio multidisciplinare, prendendo in considerazione sia il comparto biotico che quello abiotico relativi alla colonna d'acqua ed ai sedimenti, ed è stato redatto sulla base del Piano di Monitoraggio dell'Ambiente Marino predisposto da CIBM su incarico di OLT, in accordo con ISPRA, sulla base del quadro di riferimento progettuale e delle indicazioni contenute nelle prescrizioni n. 26 del Decreto VIA e n.7 del Provvedimento MATTM DVA-2010-0025280 del 20/10/10. In particolare, la Prescrizione n°7 del Provvedimento del MATTM integrava quanto previsto nel primo Decreto VIA, come di seguito riportato:

"In accordo con ISPRA e con costi a carico del proponente, dovranno essere definiti ed attuati, prima dell'arrivo della nave-terminale (per definire l'ante operam) e durante tutto il periodo di funzionamento del terminale, i seguenti monitoraggi in mare con cadenza almeno trimestrale:

a. misura delle componenti chimico-fisiche-biotiche su 4 punti a distanza di 100 m da terminale ad intervalli regolari su tutta la colonna d'acqua;

b. verifica delle biocenosi esistenti sul fondo del mare lungo due transetti ortogonali fino ad una distanza di almeno 200 m dal terminale e monitoraggio della loro evoluzione nel tempo;

c. misura del rumore in acqua su due profili perpendicolari dalla distanza di 100 m fino a una distanza di 5 km dal terminale sia durante il funzionamento normale che durante i periodi di massima rumorosità al fine di verificare quanto affermato nello studio ambientale preliminare;

d. verifica visiva della presenza/passaggio di cetacei fino ad una distanza di almeno un miglio dal terminale; verifica della presenza di cetacei tramite idrofoni posti su due transetti ortogonali a 5 e 10 km dal terminale;

e. verifica dell'eventuale risospensione dei sedimenti di fondo nei periodi considerati critici a causa del getto di acqua di riscaldamento emesso dalla nave."

(omissis)

Inoltre, questo documento è stato redatto tenendo conto delle ulteriori prescrizioni contenute nelle Determine di ottemperanza del primo e secondo anno di esercizio (2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-09-2017), nelle quali viene richiesto di:

1. mantenere un record accurato di tutte le attività del terminale durante i monitoraggi in modo da poter correlare eventuali anomalie nei monitoraggi con dette attività;

2. ripresentare i dati delle campagne di monitoraggio pregresse di "bianco" e del "primo anno" all'interno del piano di monitoraggio del secondo anno e successivi per ogni stazione di misura in modo da poter meglio valutare eventuali variazioni misurate con gli stessi criteri di ora adottati;

 rappresentare i dati in modo tale che siano chiaramente individuabili le stazioni di campionamento, e che i relativi dati graficati siano rappresentati in modo chiaro e leggibile, evitando aggregazioni che pongano problemi interpretativi;
relativamente alle misurazioni con CTD, fornire indicazioni riguardanti le attività di calibrazione dei sensori;

5. restituire i risultati relativi al macrozoobenthos secondo una matrice di abbondanza degli organismi ritrovati in una tabella stazione/specie, così come già fatto per il meiobenthos;

6. accompagnare i report del piano di campionamento da una scheda di bordo che riporti le condizioni meteo-marine e altre indicazioni correlabili con le caratteristiche chimico-fisiche delle acque (soleggiamento ecc.):

7. per quanto riguarda i dati correntometrici, auspicabilmente dotare il terminale, oltre che dei già installati correntometri orizzontali, anche di un correntometro doppler (ADCP) che rilevi le caratteristiche idrodinamiche verticali dell'intera colonna d'acqua;

8. fornire l'intera documentazione con i dati grezzi per tutti i parametri monitorati con il rispettivo tempo di misura, relativi alle singole stazioni di campionamento e ai singoli campionamenti, in modo da consentire eventuali elaborazioni e valutazioni generali;

9. argomentare le anomalie di dati o variazioni particolarmente significative, specialmente per quanto riguarda ad esempio pH e sua variabilità, torbidità, temperatura, clorofilla, ecc;

10. completare il modello di diffusione delle acque di scarico per tutta l'estensione della colonna d'acqua, analizzando diverse condizioni di densità dell'acqua e velocità della corrente (che includa anche la condizione zero-corrente);

fornire le caratteristiche del sistema di scarico delle acque di raffreddamento dei vaporizzatori anche con immagini;
argomentare la possibile relazione esistente tra risospensione dei sedimenti ed il sistema di ancoraggio e riser; in particolare si richiede di fornire uno schema del sistema di ancoraggio in cui risultino le dislocazioni delle catene delle ancore, la loro lunghezza ed eventualmente una stima dell'area di sedimento interessata dal loro movimento;

13. per le analisi del biota, esprimere le concentrazioni dei metalli e degli altri inquinanti su peso umido anziché su peso secco, come riportato nel D.M. 260/ 2010 e nel D.Lgs 172/2015;

14. valutare l'effetto degli anodi sacrificali in tutte le componenti del terminale al contenuto di metalli nell'acqua di mare (limitatamente alla Determina 3337 DVA R.D.R 0000277.28-09-2017).

Di seguito è riportata la sintesi dei risultati con riferimento a tutti i punti della Prescrizione n. 7 e delle Determine di cui sopra (2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-09-2017).

Risposte ai punti della Prescrizione 7

Lo studio condotto ha consentito di rispondere puntualmente a quanto richiesto dalla suddetta Prescrizione, come esposto di seguito:

a. Non sono state rilevate variazioni spaziali e/o temporali delle componenti chimico-fisiche-biotiche riconducibili alla presenza dell'FSRU.

b. Le biocenosi non mostrano nel tempo sostanziali cambiamenti ed i popolamenti che le costituiscono esibiscono cambiamenti relazionabili alla naturale dinamica temporale e non alla presenza del Terminale.

c. Per quanto riguarda i risultati del rumore prodotto dall'FSRU in fase di esercizio si rimanda al volume dedicato.

d. Gli avvistamenti dell' 8° anno sono in generale in linea con le altre annualità. Essi sono concentrati prevalentemente nei settori Nord ed Est, dove si effettuano le attività di strascico.

e. I dati di torbidità lungo il profilo di colonna d'acqua (0-120 metri) evidenziano l'assenza di cambiamenti relazionabili a fenomeni di risospensione dei sedimenti di fondo causati dal getto di acqua di rigassificazione dello scarico principale. In prossimità del fondo, infatti, non si verificano anomali incrementi di torbidità, come tipicamente accade, invece, nei casi in cui si verificano fenomeni di risospensione di sedimento.

Risposte alle Determine 2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-09-2017

Di seguito si riportano, relativamente all'anno di esercizio indagato le risposte alle prescrizioni delle Determine 2990 DVA R.D.R 0000100.04-04-2017 e 3337 DVA R.D.R 0000277.28-09-2017 già ampiamente argomentate all'interno del presente documento e integralmente riportate all'interno della tabella di sintesi posta in Allegato 2.

1. La risposta al primo punto relativamente all'ottavo anno di esercizio è stata presentata nell'Allegato 1, al quale si rimanda.

2. - 3. Come da minuta di meeting del 25/05/2017, riportata in Allegato 2, questi due punti sono stati tra loro accorpati. I dati ottenuti dai profili CTD sono stati presentati per ogni campagna (A19, I20, P20, E20) in grafici utilizzando colori differenti, così da rendere inequivocabilmente identificabili le diverse stazioni. L'elenco dei campioni con le date di campionamento relative all'ottavo anno di monitoraggio sono riportate in Allegato 3.

4. Le attività di calibrazione dei sensori sono state inserite nel capitolo Materiali e Metodi del Volume 1 del presente documento.

5. Le matrici specie x stazioni con i valori di abbondanza relative all'ottavo anno di monitoraggio sono state riportate in Allegato 4.

6. Le informazioni riguardanti le condizioni meteo-marine ed altre indicazioni correlabili con le caratteristiche chimico-fisiche delle acque sono riportate in Allegato 5.

7. La risposta a tale prescrizione, non pertinente per il settimo anno di esercizio in quanto superata, è comunque riportata nella tabella di sintesi presente nell'Allegato 2.

8. I dati grezzi per tutti i parametri monitorati dalla sonda CTD con il rispettivo tempo di misura sono riportati in Allegato 6.

9. Nell'ottavo anno di esercizio non sono state rilevate anomalie nei dati acquisiti tramite sonda multiparametrica, motivo per cui non sono state argomentate.

10. La risposta a tale prescrizione non è pertinente per il settimo anno di esercizio in quanto superata; nella tabella di sintesi dell'Allegato 2 sono comungue riportati i dettagli delle attività implementate.

11. La risposta a tale prescrizione non è pertinente per il sesto anno di esercizio in quanto superata; nella tabella di sintesi dell'Allegato 2 sono comunque riportati i dettagli delle attività implementate.

12. Nell'ottavo anno di esercizio non sono state rilevate anomalie sulla torbidità lungo la colonna d'acqua in nessuna delle campagne di monitoraggio.

13. Le concentrazioni dei metalli e degli altri inquinanti presenti in tracce nei *M. galloprovincialis* sono stati espressi sia come peso fresco sia come peso secco.

14. I risultati frutto della ricerca della presenza di tracce di elementi metallici nei *M. galloprovincialis* non danno evidenza di anomalie riconducibili alla presenza degli anodi sacrificali dislocati lungo lo scafo del Terminale.

CONCLUSIONE GENERALE

I risultati delle Campagne, ivi incluse quelle relative all'ottavo anno di esercizio oggetto della presente Relazione, permettono di asserire che non si sono verificate, durante i primi otto anni di esercizio del Terminale, situazioni di rischio per la fauna marina.

5 RIFERIMENTI BIBLIOGRAFICI

- Abella A., Mancusi C., Serena F. 2017. Scyliorhinus canicula. In: Sartor P., Mannini A., Carlucci R., Massaro E., Queirolo S., Sabatini A., Scarcella G., Simoni R. (eds), Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani / Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas. Biol. Mar. Mediterr., 24 (Suppl. 1): 157-164.
- Baldrighi E., Semprucci F., Franzo A., Cvitkovic I., Bogner D., Despalatovic M., Berto D., Formalewicz M. M., Scarpato A., Frapiccini E., Marini M., Grego M. 2019. Meiofaunal communities in four Adriatic ports: Baseline data for risk assessment in ballast water management. Mar. Pollut. Bull. 147: 171-184.
- Baraldi E., Virno-Lamberti C., Pellegrini D., Leasi F., Todaro M. A. 2003. Biomonitoring of a dumping area: the meiobenthic community. Biol. Mar. Medit. 10: 640-643.
- Belcari P., Cuccu D. 2017. Eledone cirrhosa. In: Sartor P., Mannini A., Carlucci R., Massaro E., Queirolo S., Sabatini A., Scarcella G., Simoni R. (eds), Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani / Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas. Biol. Mar. Mediterr., 24 (Suppl. 1): 72-80.
- Bonaglia S., Nascimento F. J. A., Bartoli M., Klawonn I., Brüchert V. 2014. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5: 5133. doi:10.1038/ncomms6133.
- Borsani J.F., Farchi C. 2011. "Linee guida per lo studio e la regolamentazione del rumore di origine antropica introdotto in mare e nelle acque interne", ISPRA. Parte seconda.
- Carlucci R., Gancitano V. 2017. Parapenaeus longirostris. In: Sartor P., Mannini A., Carlucci R., Massaro E., Queirolo S., Sabatini A., Scarcella G., Simoni R. (eds), Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani / Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas. Biol. Mar. Mediterr., 24 (Suppl. 1): 44-53
- Carman K. R., Fleeger J. W., Means J. C., Pomarico S., McMillin D. J. 2095. Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web. *Mar. Environ. Res.* 40: 289-318.
- Clarke K. R., Gorley R. N. 2006. PRIMER v.6: User Manual/Tutorial. Primer-E, Plymouth, UK.
- Clarke K. R., Warwick R. M. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition, Primer-E, Plymouth, UK.
- Colloca F., Mannini A., Fiorentino F. 2017. Merluccius merluccius. In: Sartor P., Mannini A., Carlucci R., Massaro E., Queirolo S., Sabatini A., Scarcella G., Simoni R. (eds), Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani / Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas. Biol. Mar. Mediterr., 24 (Suppl. 1): 292-303.
- Curini-Galletti M., Artois T., Delogu V., De Smet W. H., Fontaneto D., Jondelius U., Leasi F., Martinez A., Meyer-Wachsmuth I., Nilsson K. S., Tongiorgi. P., Worsaae. K., Todaro M. A. 2012. Patterns of Diversity in Soft-Bodied Meiofauna: Dispersal Ability and Body Size Matter. *PLoS ONE* 7, e33801. doi:10.1371/journal.pone.0033801.
- Dal Zotto M., Santulli A., Simonini R., Todaro M. A. 2016. Organic enrichment effects on a marine meiofauna community, with focus on Kinorhyncha. Zool. Anz. 265: 127-140.
- Danovaro R., Gambi C., Mirto S., Sandulli R., Ceccherelli V. U. 2003. Meiofauna. In: Gambi M. C., Dappiano M., (eds), Manuale di metodologie di campionamento e studio del benthos marino mediterraneo. *Biol. Mar. Medit.* 10 (suppl.): 61-108.
- Fiorentini L, Cosimi G, Sala A, Palumbo V, 1994. Characteristic and performance of the fishing gears used for demersal stock assessment in Italy. Biol. Mar. Medit., I(2): 115-134.
- Giere O. 2009. Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments, pp.1-328. Springer-Verlag, Berlin.
- Gordon H, Morel A. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. Lecture Notes on Coastal and Estuarine Studies, Vol. 4, Springer Verlag, New York, 114 pp.
- Hastie, T.J., Tibshirani, R.J. 2090. Generalized additive models. Monogr. Stat. Appl. Probability, 43, Chapman & Hall, Boca Raton, 335 pp.
- Massi L., Frittitta L., Melillo C., Polonelli F., Bianchi V., De Biasi A.M., Nuccio C., 2020. Seasonal Dynamic of CDOM in a Shelf Site of the South-Eastern Ligurian Sea (Western Mediterranean). J. Mar. Science and Engineering, 8, 703. doi:10.3390/jmse8090703
- Meadows A. S., Ingels J., Widdicombe S., Hale H., Rundle S. D. 2015. Effects of elevated CO² and temperature on an intertidal meiobenthic community. *J. Exp. Mar. Biol. Ecol.* 469: 44-56.
- Morel A, Prieur L. 1977. Analysis of variation in ocean color. Limnology and Oceanography, 22, 709-722.
- Piva F., Ciaprini F., Onorati F., Benedetti M., Fattorini D., Ausili A, Regoli F. 2011. Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: A practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. *Chemosphere*: 83(4):475-85.
- Pfannkuche O., Thiel H. 2088. Sampling processing. In: R. P. Higgins & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington D.C. pp. 134-145.
- Polese G., Semprucci F., Campoli L., Maselli V., Ribera D'Alcalà M., Balsamo M., Di Cosmo A. 2018. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar. Biodiv. 48: 127-137.
- R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Salvini-Plawen L. von. 2077. Caudofoveata (Mollusca), Priapulida und apode Holothurien (*Labidoplax, Myriotrochus*) bei Banyuls und im Mittelmeer allgemein. *Vie Milieu* 27: 55-81.
- Santos, M.N., Gaspar, M.B., Monteiro, C.C. and Vasconcelos, P. 2002. Gill net and long-line catch comparisons in a hake fishery: the case of southern Portugal. Scientia Marina. 66, 4 (Dec. 2002), 433–441. DOI:https://doi.org/10.3989/scimar.2002.66n4433.
- Sartor P., Mannini A., Carlucci R., Massaro E., Queirolo S., Sabatini A., Scarcella G., Simoni R. (eds) 2017. Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani / Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas. Biol. Mar. Mediterr., 24 (Suppl. 1): 607 pp.
- Semprucci F., Balsamo M., Sandulli R. 2016. Assessment of the ecological quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages. Ecol. Indic. 67: 451-457.
- Semprucci F., Balsamo M., Appolloni L., Sandulli R. 2018. Assessment of ecological quality status along the Apulian coasts (eastern Mediterranean Sea) based on meiobenthic and nematode assemblages. Mar. Biodiv. 48: 105-115.
- Semprucci F., Frontalini F., Sbrocca C., du Chatelet E. A., Bout-Roumazeilles V., Coccioni R., Balsamo M. 2015. Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environ. Monit. Assess. 187, doi: 10.1007/s10661-015-4493-7.
- Semprucci F., Sbrocca C., Baldelli G., Tramontana M., Balsamo M. 2017. Is meiofauna a good bioindicator of artificial reef impact?. Mar. Biodiv. 47: 511-520.
- Sparre, P, and Venema, S.C. 1998. Introduction to tropical fish assessment Part 1:Manual. FAO Fisheries Technical Paper, 306/1, 407 pp.
- Southall, B. L., Bowles, A. E., Ellison, W. T., Finneran, J. J., Gentry, R. L., Greene, C. R., Jr., Tyack, P. L. (2007). Marine mammal noise exposure criteria. Aquatic Mammals, 33(4). https://doi.org/10.1578/AM.33.4.2007.411
- Todaro M. A., Virno-Lamberti C., Pulcini M., Pellegrini D., De Ranieri S. 2001. Monitoring of a dredged material disposal site: evidence of rapid meiofaunal recolonization of the dumped sediments. *Biol. Mar. Medit.* 8: 1-10.
- Todaro M. A., Virno-Lamberti C., Pulcini M., Pellegrini D., De Ranieri S. 2002. Meiofauna of a dredging disposal site. *Biol. Mar. Medit.* 9: 647-650.
- Voliani A., Pesci P., Abella A. 2017. Mullus barbatus. In: Sartor P., Mannini A., Carlucci R., Massaro E., Queirolo S., Sabatini A., Scarcella G., Simoni R. (eds), Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani / Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas. Biol. Mar. Mediterr., 24 (Suppl. 1): 311-321.
- Warwick R. M., Platt H. M., Clarke K. R., Agard J., Gobin J. 2090. Analysis of macrobenthic and meiobenthic community structure in relation to pollution and disturbance in Hamilton Harbour, Bermuda. J. Exp. Mar. Biol. Ecol. 138: 120-142.
- Zeppilli D., Sarrazin J., Leduc D., Martinez-Arbizu P., Fontaneto D., Fontanier C., Gooday A.J., Kristensen R. M., Ivanenko V. N., Sørensen M. V., Vanreusel A., Thébault J., Mea M., Allio N., Andro T., Arvigo A., Castrec J., Danielo M., Foulon V., Fumeron R., Hermabessiere L., Hulot V., James T., Langonne-Augen R., Le Bot T., Long M., Mahabror D., Morel Q., Pantalos M., Pouplard E., Raimondeau L., Rio-Cabello A., Seite S., Traisnel G., Urvoy K., Van Der Stegen T., Weyand M., Fernandes D. 2015. Is the meiofauna a good indicator for climate change and anthropogenic impacts? *Mar. Biodiv.* doi10.1007/s12526-015-0359-z.
- Zuur, A. F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York, 574 pp.