

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

1 di/of 75

TITLE:

AVAILABLE LANGUAGE: IT

INTEGRALE RICOSTRUZIONE DELL' IMPIANTO EOLICO "GANGI", UBICATO NEL COMUNE DI GANGI (PA)

PROGETTO DEFINITIVO

Relazione di calcolo preliminare Fondazioni Aerogeneratori

File: GRE.EEC.C.25.IT.W.09317.40.001.00 - Relazione di calcolo preliminare Fondazioni Aerogeneratori.docx

O																						
REV. DATE DESCRIPTION PREPARED VERIFIED APPROVED	00	25/03/2022	Prima emissione									Α.	Filibert	i		G.A	Alfano			P.Po	inelli	
COLLABORATORS VERIFIED BY VALIDATED BY	00	23/03/2022	Fillia ell	riina ennssione																		
COLLABORATORS VERIFIED BY VALIDATED BY	REV.	DATE		DESCRIPTIO								PREPARED				VE	RIFIE	D		APP	ROV	ĒD
COLLABORATORS VERIFIED BY VALIDATED BY PROJECT/PLANT GRE CODE						G	RE V	'AL	IDATI	ON												
FUNCION TYPE ISSUER COUNTRY TEC PLANT SYSTEM PROGRESSIVE REVISION TYPE TEC TOWN TYPE TEC TOWN TYPE TEC TOWN TYPE TEC TOWN TYPE TEC T							G	.Pa	ра							L.	lacio	ofan	0			
GRE CODE GROUP FUNCION TYPE ISSUER COUNTRY TEC PLANT SYSTEM PROGRESSIVE REVISION GRE EEC C 2 5 I T W 0 9 3 1 7 4 0 0 0 1 0 0		COLLABO	RATORS				VE	RIFIE	ED BY							V	ALIDA	ATED	BY			
Gangi GROUP FUNCION TYPE ISSUER COUNTRY TEC PLANT SYSTEM PROGRESSIVE REVISION	PROJECT	/PLANT							G	RE C	ODI	E										
	G	angi	GROUP	FUNCION	TYPE	ISS	UER	C	DUNTRY	TEC			PLAN	Т		SY	STEM	PR	OGRES	SIVE	RE	/ISION
CLASSIFICATION PUBLIC UTILIZATION SCOPE BASIC DESIGN			GRE	EEC	С	2	5	I	Т	W	0	9	3	1	7	4	0	0	0	1	0	0
	CLASSIF	CLASSIFICATION PUBLIC					UTIL	.IZA1	ION SC	OPE	B	45	IC	DE	SI	GN	ı					

This document is property of Enel Green Power Solar Energy S.r.l. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green Power Solar Energy S.r.l.

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

2 di/of 75

INDEX

1.	INTRODUZI	ONE	4
	1.1. DES	SCRIZIONE DEL PROPONENTE	4
	1.2. CON	NTENUTI DELLA RELAZIONE	4
2.	NORMATIVA	A DI RIFERIMENTO E FONTI CONSULTATE	7
3.	DESCRIZIO	NE DELLE OPERE	8
4.	CARICHI DI	PROGETTO	9
	4.1. Cari	ichi permanenti	9
	4.1.1.	Pesi permanenti strutturali (G1)	9
	4.1.2.	Pesi permanenti non strutturali (G2)	9
	4.2. Sov	raccarichi (Q)	9
	4.2.1.	Carichi indotti dal vento (W)	9
	4.3. Azio	one sismica (E)	10
	4.3.1.	Spettri di progetto	10
	4.3.2.	Determinazione della forzante sismica	14
5.	MATERIALI		15
	5.1. Cald	cestruzzo armato	15
	5.1.1.	Magrone	15
	5.1.2.	Pali	15
	5.1.3.	Basamento	15
	5.1.4.	Colletto di innesto	16
	5.1.5.	Acciaio di armatura	16
6.	SOFTWARE	IMPIEGATO PER LE ANALISI FEM	17
	6.1. Sist	emi di riferimento	17
	6.2. Eler	nenti beam	17
	6.2.1.	Output delle azioni interne	17
	6.3. Eler	nenti plate	18
	6.3.1.	Gradi di libertà degli elementi e ecs	19
	6.3.2.	Output delle azioni interne	20
7.	ANALISI ST	RUTTURALE E VERIFICHE	23
	7.1. Ana	lisi strutturale tramite modello FEM	23
	7.1.1.	Geometria del modello	23
	7.1.2.	Vincoli	25
	7.1.3.	Casi di di carico	25
	7.1.4.	Combinazioni di carico	27
	7.1.5.	Giudizio motivato accettabilità dei risultati	30
	7.2. Risu	ıltati del modello FEM	33
	7.2.1.	Direzioni fissate per gli assi locali degli elementi	33

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

3 di/of 75

	7.2.2.	Azioni assiali sui pali	.35
	7.2.3.	Azioni sul basamento	.37
	7.2.4.	Verifica degli elementi strutturali	.57
	7.2.5.	Verifica strutturale del palo	.57
	7.2.6.	Verifica a flessione platea	.61
	7.2.7.	Verifica a taglio platea	.70
	7.2.8.	Verifica a punzonamento platea	.73
	7.2.9.	Verifiche tensionali in esercizio	.74
7.3.	CAL	COLO RIGIDEZZA ALLA ROTAZIONE	.74

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

4 di/of 75

1. INTRODUZIONE

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Enel Green Power Italia Srl ("EGP Italia") di redigere il progetto definitivo per il potenziamento dell'esistente impianto eolico ubicato nel Comune di Gangi (PA), costituito da 32 turbine eoliche (WTG), di potenza 0,85 MW ciascuna, per un totale di 27,2 MW installati.

L'energia prodotta dagli aerogeneratori dell'impianto viene convogliata tramite cavidotto interrato MT, alla Sottostazione di trasformazione MT/AT ubicata in adiacenza della Stazione Edistribuzione "Monte Zimmara", collegata alla linea 150 kV "Petralia – Nicosia".

La soluzione di connessione che verrà adottata per il nuovo impianto in progetto ricalcherà l'esistente, prevedendo dunque una connessione in AT alla Stazione elettrica di AT Monte Zimmara, riadeguando l'infrastruttura esistente alla nuova taglia dell'impianto.

L'intervento in progetto prevede l'integrale ricostruzione dell'impianto, tramite l'installazione di nuove turbine eoliche, in linea con gli standard più alti presenti sul mercato, che consente di ridurre il numero di macchine da 32 a 7, diminuendo in questo modo l'impatto visivo, in particolare il cosiddetto "effetto selva". Inoltre, la maggior efficienza dei nuovi aerogeneratori comporta un aumento considerevole dell'energia specifica prodotta, riducendo in maniera proporzionale la quantità di CO2 equivalente.

1.1. DESCRIZIONE DEL PROPONENTE

Enel Green Power Italia Srl., in qualità di soggetto proponente del progetto, è una società del Gruppo Enel che si occupa dello sviluppo e della gestione delle attività di generazione di energia da fonti rinnovabili facente capo a Enel Green Power Spa.

Il Gruppo Enel, tramite la controllata Enel Green Power Spa, è presente in 28 Paesi nei 5 continenti con una capacità gestita di oltre 46 GW e più di 1200 impianti.

In Italia, il parco di generazione di Enel Green Power è rappresentato dalle seguenti tecnologie rinnovabili: idroelettrico, eolico, fotovoltaico, geotermia. Attualmente nel Paese conta una capacità gestita complessiva di oltre 14 GW.

1.2. CONTENUTI DELLA RELAZIONE

La presente relazione ha l'obiettivo di illustrare lo studio delle strutture necessarie a garantire i requisiti di sicurezza e di funzionalità dell'opera. In particolare, il presente elaborato contiene i calcoli di stabilità e resistenza del basamento di innesto della struttura metallica.

Nella valutazione dell'apparato fondale si è fatto riferimento allo studio preliminare geologico e geotecnico.

Per i particolare costruttivi e maggiori dettagli dimensionali sulle strutture progettate si faccia riferimento agli elaborati grafici oggetto del presente progetto.

La relazione è stata redatta sulla base dei dati geologici e geotecnici desunti dalle relazioni specialistiche apposite. Eventuali e maggiori approfondimenti dal punto di vista geognostico possono portare a variazioni dei risultati di seguito presentati.

Il sito si trova nella provincia di Palermo ed interessa il territorio del comune di Gangi.

L'area è identificata dalle seguenti coordinate geografiche:

Latitudine: 37°45'45.92"N

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

5 di/of 75

Longitudine: 14°14'22.77"E

L'impianto in progetto ricade all'interno dei seguenti fogli catastali:

Comune di Gangi: n° 51, n° 55, n° 63, n° 64

L'area di progetto ricade all'interno del foglio I.G.M. in scala 1:25.000 codificato 260-II-NO, denominato "Gangi".

Di seguito è riportato l'inquadramento territoriale dell'area di progetto e la posizione degli aerogeneratori su ortofoto.

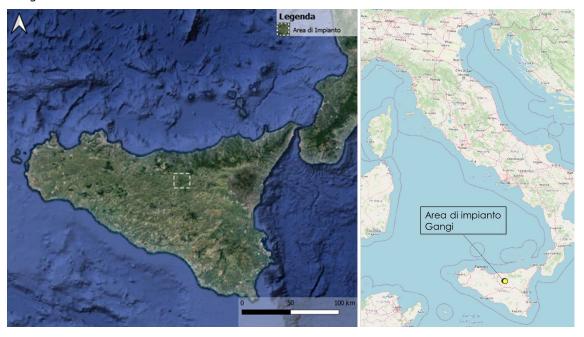


Figura 2-1: Inquadramento generale dell'area di progetto

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

6 di/of 75

Figura 2-2: Configurazione proposta su ortofoto

Si riporta invece in formato tabellare un dettaglio sulla localizzazione delle WTG di nuova costruzione, in coordinate WGS84 UTM fuso 33 N:

Tabella 1: Coordinate aerogeneratori

ID	Comune	Est [m]	Nord [m]	Altitudine [m s.l.m.]
G01	Gangi	433594,19	4179907,20	1199
G02	Gangi	434083,00	4179721,00	1234
G03	Gangi	434593,00	4179671,00	1279
G04	Gangi	435122,00	4179478,00	1302
G05	Gangi	435621,29	4179298,27	1300
G06	Gangi	436466,97	4179171,98	1248
G07	Gangi	436058,00	4178560,00	1301

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

7 di/of 75

2. NORMATIVA DI RIFERIMENTO E FONTI CONSULTATE

Di seguito sono elencati i principali riferimenti Normativi a cui si farà riferimento nella presente relazione.

- [1] D.M. 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»".
- [2] Circolare n.7 Reg. Atti Int. CONSUP del 21.01.2019 "Istruzioni per l'applicazione dello "Aggiornamento delle «Norme tecniche per le costruzioni»" di cui al decreto ministeriale 17 gennaio 2018
- [3] UNI EN 1990. Criteri generali di progettazione strutturale.
- [4] UNI EN 1991-1-1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- [5] UNI EN 1992-1-1 Parte 1-1: Progettazione delle strutture di calcestruzzo. Regole generali e regole per gli edifici
- [6] UNI EN 1993-1-1 Parte 1-1: Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici
- [7] UNI EN 1993-1-8 Parte 1-8: Progettazione delle strutture in acciaio. Progettazione dei collega-menti
- [8] UNI EN 1997-1 Parte 1: Progettazione geotecnica. Regole generali
- [9] Scheda tecnica del produttore delle turbina "Preliminary Generic Site Roads and Hardstands requirements SG 6.0-170"
- [10] Scheda tecnica del produttore della turbina "Foundation loads T115-50A SG 6.0-170"
- [11] Scheda tecnica del produttore della turbina "Developer Package SG 6.0-170"
- [12] Linee guida fornite dal Proponente, Enel Green Power Italia S.r.L "Design and construction guidelines for the foundations of wind turbine generators"

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

8 di/of 75

3. DESCRIZIONE DELLE OPERE

Le opere in progetto sono costituite da un basamento di fondazione per una turbina eolica. La turbina ha un'altezza di 115 metri al mozzo ed è sostenuta da una torre costituita da un tubolare in acciaio a sezione variabile innestato alla struttura di base in calcestruzzo armato.

Per i dettagli relativi alla torre di sostegno si faccia riferimento alle specifiche del produttore.

Il basamento è costituito da un plinto, a base circolare su pali, di diametro 25 m. L'altezza dell'elemento è variabile, da un minimo 1.5 m sul perimetro esterno del plinto a un massimo di 3.75 metri nella porzione centrale. In corrispondenza della sezione di innesto della torre di sostegno è realizzato un colletto aggiuntivo di altezza 0.5 m.

Il calcestruzzo selezionato per le strutture è di classe di resistenza C25/30 per i pali e C32/40 per il basamento, il colletto dovrà invece essere realizzato un successivo getto con classe di resistenza C45/55. In ogni caso, all'interfaccia tra il calcestruzzo del colletto e le strutture metalliche, dovrà essere interposta un'idonea malta ad alta resistenza per permettere un livellamento ottimale e garantire la perfetta verticalità delle strutture e permettere un'idonea distribuzione degli sforzi di contatto.

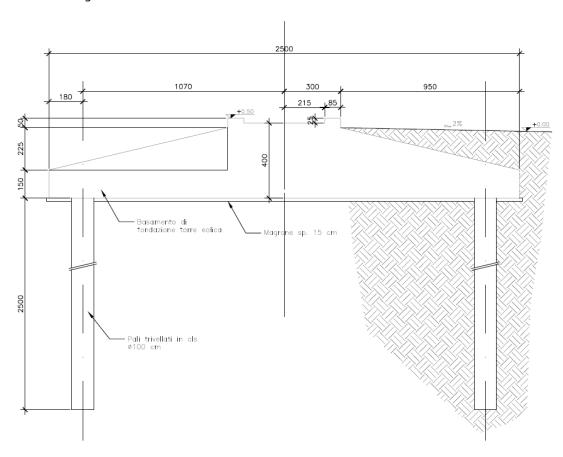


Figure 3-1 - Sezione plinto di fondazione

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

9 di/of 75

4. CARICHI DI PROGETTO

4.1. Carichi permanenti

4.1.1. Pesi permanenti strutturali (G1)

Il peso proprio delle strutture costituenti il fabbricato sono calcolate in automatico dal software a elementi finiti, tenuto conto dei volumi degli elementi strutturali e del peso specifico dei materiali assegnati agli elementi. Per gli elementi in calcestruzzo armato si è considerato un peso specifico pari a 25 kN/m³, per le strutture in acciaio è stato assunto un peso specifico pari a 78.50 kN/m³.

4.1.2. Pesi permanenti non strutturali (G2)

I carichi permanenti non strutturali sono rappresentati dal peso del terreno sovrastante il basamento e quello imputabile al peso della torre e delle macchine installate sul basamento. Quest'ultimo viene considerato nelle combinazioni di carico diverse da quelle che utilizzano il carichi da vento (W) forniti dal produttore, in cui il peso è già stato considerato.

4.2. Sovraccarichi (Q)

4.2.1. Carichi indotti dal vento (W)

Il carichi da vento, relativi alle diverse situazioni previste sono riportati nelle seguenti tabelle estratte dal documento [10] Scheda tecnica del produttore della turbina "Foundation loads T115-50A SG 6.0-170"

Carichi da vento caratteristici (W_Characteristic):

Load case	F _x (kN)	F _y (kN)	F _z (kN)	M _x (kNm)	M _y (kNm)	M _z (kNm)
Dlc62 V42.5 060 s9	1535,05	50,5	-6826,1	4163,87	178349,5	374,9

Table 4 SG 6.0-170 HH115m Characteristics Loads at the base of the tower

Carichi da vento in condizione extreme (W Extreme), relativi a situazioni eccezionali:

Load case	Load factor	F _x (kN)	F _y (kN)	Fz (kN)	F _{xy} (kN)	Mx (kNm)	My (kNm)	M _z (kNm)	M _{xy} (kNm)
Dlc22 3bn V11.0_n_s7	1,1	1688,55	55,55	-7508,71	1689,47	4580,25	196184,46	412,39	196237,91
Dlc22 3bn V11.0 n s7	1.0	1535,05	50,5	-6826,1	1535,88	4163,87	178349,5	374,9	178398,1

Table 3 SG 6.0-170 HH115m Factored/Unfactored Extreme loads at tower bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

10 di/of 75

Engineering & Construction

Carichi da vento in condizione quasi permanente (W_QP) e relativi alle normali condizioni di esercizio della turbina:

Quasi-permanent load

Loads according to GL2010, considering DLC 1.1 and 6.4 with a probability of exceedance of pf = 10^{-2} (equivalent to 1750 h in 20 years) with γ F = 1.0 have been estimated as shown in Table 5:

pf=0.01000		Tower loads at section											
Section Height from bottom (m)	Fx (KN)	Fy (KN)	Fxy (KN)	Fz (KN)	Mx (KNm)	My (KNm)	Mxy (KNm)	Mz (KNm)					
0	1002.0 7	123,15	1002,4 8	-6629,52	18223,36	119459,4 9	119805,99	4928,71					

Table 5 SG 6.0-170 HH115m Quasi Permanent Loads at tower bottom

4.3. Azione sismica (E)

L'azione sismica agente sull'elemento viene determinata in maniera semplificata rilevando l'accelerazione sismica ottenuta in corrispondenza del periodo proprio proprio della struttura, quest'ultimo ottenuto ricorrendo al metodo di Rayleigh, nel quale si applica una distribuzione di forze pari alla forza peso pensata come distribuita in maniera discreta su un'asta di rigidezza pari alla rigidezza traslazionale del sistema in esame.

$$T = 2 \pi \sqrt{\frac{\sum W_i \, \delta_i^2}{g \, \sum W_i \, \delta_i}}$$

In cui:

- Wi è il peso delle masse strutturali, pensate come distribuite in punti discreti
- δ_i è lo spostamento misurato in corrispondenza del punto di applicazione della forza
- g è l'accelerazione di gravità

I pesi dei vari tronchi della torre e degli altri componenti sono stati desunti da [9] Scheda tecnica del produttore delle turbina "Preliminary Generic - Site Roads and Hardstands requirements SG 6.0-170".

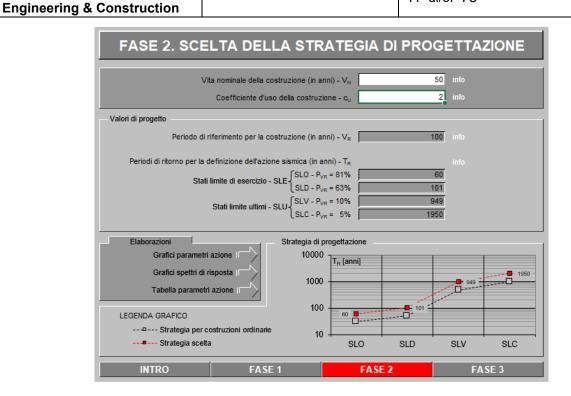
4.3.1. Spettri di progetto

L'azione sismica è tradotta da spettri in accelerazione. Vista la complessità della struttura si persegue l'obiettivo di una progettazione non dissipativa, le valutazioni sismiche verranno quindi eseguite su spettri di progetto elastici, adottando un fattore di comportamento q=1.

Gli spettri vengono calcolati rispetto alle coordinate di progetto definite nella parte introduttiva e si definisce una vita nominale per la struttura $V_N = 50$ anni e una classe d'uso IV. In queste condizioni si ottiene un periodo di riferimento per la costruzione pari a :

$$V_R = V_R \cdot C_U = 50 \cdot 2 = 100$$
 anni

Da cui ne deriveranno i periodi di ritorno determinati nella seguente figura.



GRE.EEC.C.25.IT.W.09317.40.001.00

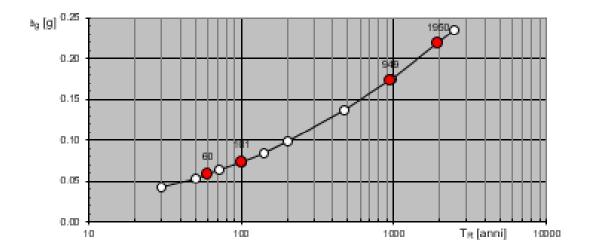
PAGE

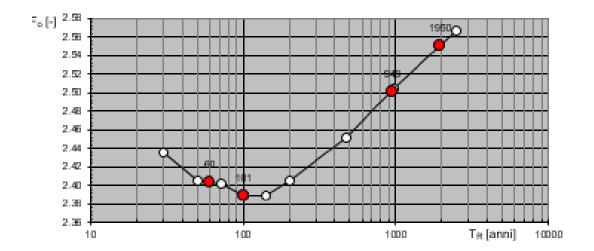
11 di/of 75

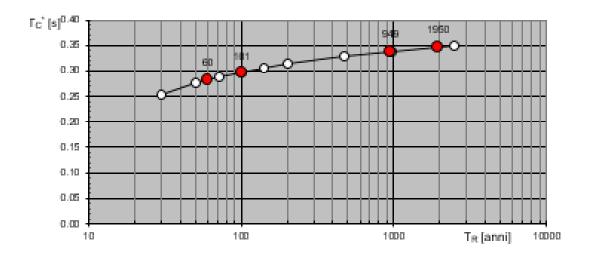
Per la determinazione dell'azione sismica di progetto sono stati considerati i parametri di azione sismica relativi alle coordinate di tutti gli aerogeneratori al fine di utilizzare, a favore di sicurezza, i valori più elevati, che risultano essere quelli in corrispondenza dell'aerogeneratore G01.

Si ottengono i seguenti parametri sismici di progetto:

	T _R	ag	F ₀	T* _C
SLO	60	0.058	2.403	0.282
SLD	101	0.073	2.389	0.296
SLV	949	0.172	2.501	0.338
SLC	1950	0.217	2.550	0.346




GRE.EEC.C.25.IT.W.09317.40.001.00


PAGE

12 di/of 75

Valori di progetto dei parametri a , , F , , T c in funzione del periodo d

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

13 di/of 75

Engineering & Construction

Dalla relazioni geologica e geotecnica è stato rilevato che la Categoria di Sottosuolo che interessa il sito di progetto è la B mentre la Categoria Topografica è T2.

Secondo quanto indicato al paragrafo 7.2 del [12] Linee guida fornite dal Proponente, Enel Green Power Italia S.r.L "Design and construction guidelines for the foundations of wind turbine generators" si assume un valore del coefficiente di smorzamento pari all'1%.

Si riportano di seguito le espressioni ed i parametri caratterizzanti lo spettro di risposta orizzontale allo SLV:

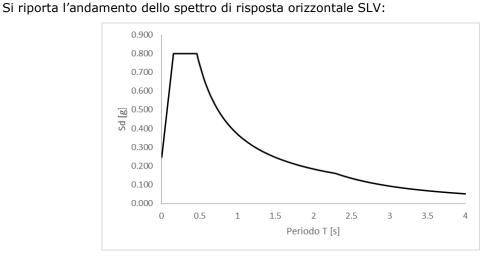
Espressioni dei parametri dipendenti

$$\begin{split} S = & S_s \cdot S_T & \text{(NTC-08 Eq. 3.2.5)} \\ \eta = & \sqrt{10/(5+\xi)} \ge 0,55; \; \eta = 1/q & \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)} \\ T_B = & T_C \cdot /3 & \text{(NTC-07 Eq. 3.2.8)} \\ T_C = & C_C \cdot T_C' & \text{(NTC-07 Eq. 3.2.7)} \\ T_D = & 4,0 \cdot a_x \cdot /g + 1,6 & \text{(NTC-07 Eq. 3.2.9)} \end{split}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_{B} & \qquad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \left(1 - \frac{T}{T_{B}} \right) \right] \\ T_{B} \leq T < T_{C} & \qquad S_{c}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \\ T_{C} \leq T < T_{D} & \qquad S_{c}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T} \right) \\ T_{D} \leq T & \qquad S_{c}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T} \right) \end{split}$$

Categoria di sottosuolo		В	
Coefficiente amplificazione stratigrafica	S _S =	1.2	
Coefficiente di amplificazione topografica	S _T =	1.2	
Coefficiente S	S	1.440	
Coefficiente C _C	C _C	1.366	
Coefficiente di smorzamento viscoso	ζ	1.000	
Fattore che altera lo spettro	η	1.3	
TC	T _C	0.462	[s]
ТВ	T _B	0.154	[s]
TD	T _D	2.288	[s]



GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

14 di/of 75

4.3.2. Determinazione della forzante sismica

Per quanto riguarda l'accelerazione sismica da adottare nei calcoli strutturali, si ipotizza che lo spettro di risposta oltre i 4s sia caratterizzato dal medesimo andamento avente per $T_D \le T \le 4s$. Come illustrato in tabella sottostante, il periodo proprio della struttura viene determinato pensando la torre incastrata alla base, e risulta pari a 5.30 s. Per questo valore si ottiene Sd=0.030g.

Node ID	d _i	Wi	d _i ²	$W_i d_i^2$	W _i d _i	Т
	m	kN	m ²	kN m²	kN m	s
7	7.903	3143.0	62.450	196279	24837	5.30
12	5.786	849.6	33.483	28447	4916	
11	2.885	843.3	8.325931	7021	2433	
10	1.135	845.5	1.287338	1088	959	
9	0.296	717.7	0.087536	63	212	
8	0.028	638.6	0.000768	0	18	
			Σ	232899	33376	

L'accelerazione assunta nei calcoli, come anticipato, sarà pari a 0.030g, da cui ne seguono le forze statiche equivalenti all'azione sismica riportate in seguito.

Se (T_1) 0.030 g

Elemento	Z _{min}	Z max	z	Δz	m	N	٧	М
	m	m	m	m	kg	kN	kN	kN m
Navicella+rotore	115.00	115.00	115.00		314298	3143.0	94.6	10879
Concio fusto 1/5	0.00	13.56	6.78	13.56	84960	849.6	25.6	173
Concio fusto 2/5	13.56	31.76	22.66	18.20	84330	843.3	25.4	575
Concio fusto 3/5	31.76	55.56	43.66	23.80	84550	845.5	25.4	1111
Concio fusto 4/5	55.56	82.44	69.00	26.88	71770	717.7	21.6	1491
Concio fusto 5/5	82.44	112.41	97.43	29.97	63860	638.6	19.2	1873
						7037.7	211.8	16102.8

Per tenere conto della variabilità spaziale del moto sismico e di incertezze nella localizzazione delle masse, come indicato al paragrafo 7.2.6 delle NTC2018 si attribuisce un'eccentricità

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

15 di/of 75

Engineering & Construction

accidentale pari al 5% del diametro del basamento. Inoltre, per tenere conto della contemporaneità dell'azione sismica nelle due direzioni ortogonali si considera applicato in direzione Y il 30% dell'azione sismica applicata lungo X. Nella tabella sottostante vengono riassunte le forze sismiche risultanti:

eccentricità 0.05*D 1.25 m

	N	Fx	Fy	Му	Mx	Mz
	kN	kN	kN	kN m	kN m	kN m
SISMA $X + 0.3 Y$	7037.68	211.83	63.55	16102.8	4830.8	264.8

5. MATERIALI

5.1. Calcestruzzo armato

5.1.1. Magrone

Per il getto di magrone posto al fine di realizzare il piano di fondazioni, plinti, e di tutte le opere che ne necessitano è reliazzato con calcestruzzo di classe di resistenza C12/15 e presenta le seguenti caratteristiche meccaniche:

 $E_{cm} = 27000 \text{ MPa};$

v = 0.20;

 $\gamma = 25 \text{ kN/m3};$

 $f_{ck} = 12 \text{ MPa};$

 $f_{cd} = 6.8 \text{ MPa} (0.85 \text{fck}/1.5)$

5.1.2. Pali

Il calcestruzzo previsto per la realizzazione degli elementi di fondazione è di classe di resistenza C25/30 e presenta le seguenti caratteristiche meccaniche:

 $E_{cm} = 31500 \text{ MPa};$

v = 0.20;

 $\gamma = 25 \text{ kN/m}^3$;

 $f_{ck} = 25 \text{ MPa};$

 $f_{cd} = 14.17 \text{ MPa } (=0.85f_{ck}/1.5)$

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC2 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

5.1.3. Basamento

Il calcestruzzo previsto per la realizzazione degli elementi di fondazione è di classe di resistenza C32/40 e presenta le seguenti caratteristiche meccaniche:

 $E_{cm} = 33300 \text{ MPa};$

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

16 di/of 75

Engineering & Construction

```
v = 0.20;
\gamma = 25 \text{ kN/m}^3;
f_{ck} = 32 \text{ MPa};
f_{cd} = 18.13 \text{ MPa} (=0.85 f_{ck}/1.5)
Classe di consistenza: S4 (slump tra 16 e 21 cm)
Classe di esposizione: XC4 (Bagnato, raramente asciutto)
```

Dimensione massima aggregato: 25 mm

5.1.4. Colletto di innesto

Il calcestruzzo previsto per la realizzazione degli elementi di fondazione è di classe di resistenza C45/55 e presenta le seguenti caratteristiche meccaniche:

```
E_{cm} = 36200 \text{ MPa};
v = 0.20;
\gamma = 25 \text{ kN/m}^3;
f_{ck} = 45 \text{ MPa};
f_{cd} = 25.5 \text{ MPa} (=0.85 f_{ck}/1.5)
Classe di consistenza: S4 (slump tra 16 e 21 cm)
Classe di esposizione: XC4 (Bagnato, raramente asciutto)
```

Dimensione massima aggregato: 25 mm

5.1.5. Acciaio di armatura

L'acciaio impiegato per le armature di strutture in CA deve essere di tipo B450C e presentare le seguenti caratteristiche:

```
E = 200000 \text{ MPa};
v = 0.30;
a = 12 \cdot 10^{-6};
\gamma = 78.50 \text{ kN/m}^3;
f_{vk} = 450 \text{ MPa};
f_{uk} = 540 \text{ Mpa}.
```


GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

17 di/of 75

6. SOFTWARE IMPIEGATO PER LE ANALISI FEM

Le sollecitazioni di progetto utili per la verifica delle strutture sono state desunte da un modello agli elementi finiti tridimensionale elaborato con il codice di calcolo Midas Gen di Midas Information Tecnology di estesa commercializzazione.

I modelli strutturali sono stati realizzati congruentemente alle geometrie strutturali e alle caratteristiche dei materiali rappresentate negli elaborati strutturali di progetto.

6.1. Sistemi di riferimento

In Midas Gen sono definiti i sequenti sistemi di coordinate

- Global Coordinate System (GCS)
- Element Coordinate System (ECS)
- Node local Coordinate System (NCS)

Il GCS usa le lettere maiuscole X, Y e Z per definire un sistema di coordinate cartesiale globale, che segue la regola della mano destra. È utilizzato per la maggior parte della definizione degli input, compreso ad esempio la definizione dei nodi e la restituzione di risultati globali ad essi associati, quali spostamenti e reazioni vincolari.

Il GCS definisce la posizione geometrica della struttura da analizzare e il suo punto di riferimento (l'origine) è automaticamente fissata al set di coordinate (0,0,0). Dal momento che la direzione verticale è rappresentata dall'asse Z è convenzionale modellare le strutture nel loro sviluppo verticale lungo questo asse.

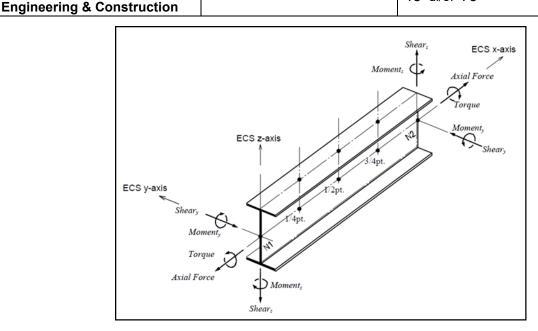
L'ECS usa le lettere minuscole x,y e z per definire un sistema di riferimento cartesiano, che segue la regola della mano destra, associati a un elemento. I risultati delle analisi in termini di forze interne e tensioni e la maggior parte degli input associati al singolo elemento sono espressi in questo sistema di coordinate locali.

6.2. Elementi beam

Gli elementi a due nodi assimilabili a elementi strutturali monodimensionali, quali travi e pilatri, sono stati modellati come elementi beam. La formulazione di tali elementi è basata sulla teoria della trave di Timoshenko, considerando le capacità di rigidezza in tensione e compressione, taglio e le capacità deformative in condizione di flessione e torsione. La definizione delle caratteristiche della sezione trasversale, caratterizzanti la meccanica dell'elemento, sono definite da apposite finestre di dialogo all'interno del software.

6.2.1. Output delle azioni interne

Per gli elementi beam la convenzione dei segni è quella riportata nella figura seguente, le frecce indicano i versi delle sollecitazioni considerate come positive.



GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

18 di/of 75

6.3. Elementi plate

Gli elementi planari a 3 o 4 nodi sono definiti come elementi plate (i nodi che definiscono l'elemento saranno chiamati N1. N2. N3 e, nel caso di elemento a 4 nodi, N4). Questa tipologia di elemento è capace di terer conto di tensioni e compressioni nel piano, sforzi di taglio dento e fuori dal piano e sollecitazioni di momento flettente nel piano.

Questo elemento può essere utilizzato per modellare strutture in cui sono permette sia flessioni nel piano sia fuori dal piano, ad esempio per definire serbatoi in pressioni, muri di contenimento, impalcati da ponte, impalcati di edifici, fondazioni continue.

I carichi di pressione possono essere applicati sulle superfici degli elementi secondo i sistemi di riferimento GCS o ECS.

Un elemento plate può avere forma quadrilatera o triangolare, con rigidezza assiale e a taglio nel piano e rigidezza flessionale e a taglio fuori dal piano di riferimento.

Il comportamento flessionale degli elementi plate è descritto secondo due approcci: DKT/DKQ (Discrete Kirchhoff elements) e DKMT/DKMQ (Discrete Kirchhoff-Mindlin elements). DKT/DKQ è sviluppato sula base della teoria della teoria di Kirchhoff per elementi bidimensionali sottili, DKMT/DKMQ è sviluppata sulla base della teoria Mindlin-Reissner per elementi bidimensionali moderatamente spessi.

Il comportamento nel piano è formulato in accordo alla teoria LST (Linear Strain Triangle) per gli elementi a 3 nodi e in accordo alla formulazione degli elementi isoparametrici a tensione piana con aggiunta di modi incompatibili per gli elementi a 4 nodi.

In generale, la rigidezza è valutata in maniera automatica dal software a partire dallo spessore e dai parametri meccanici definiti dall'utente per gil elementi; il peso proprio strutturale e la massa strutturale di un elemento plate sono valutati in maniera automatica dal software a partire dallo spessore assegnato all'elemento e da peso nell'unità di volume e densità di massa definita per il materiale assegnati all'elemento.

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

19 di/of 75

6.3.1. Gradi di libertà degli elementi e ecs

Il sistema di riferimento ECS di ogni elemento è utilizzato quando il programma calcola la matrice di rigidezza per l'elemento. Gli output grafici delle componenti di sollecitazione soono riportate anche nell'ECS nella fase di post-processing.

I gradi di liberà traslazionali esistono nell'ECS come direzioni XYZ e le rotazioni sono definite rispetto agli assi x e y dell'ECS. Le direzioni degli assi dell'ECS sono rappresentate nella Figura 6-1. In caso di elementi quadrilateri, la direzione del pollice rispetto alla regola della mano destra definisce l'asse Z dell'ECS. La direzione di rotazione (N1, N2, N3, N4) segue la regola della mano destra e definisce la direzione del verso positivo. L'asse Z dell'ECS ha origine dal centro della superficie dell'elemento e ha direzione perpendicolare a essa. La linea che connette il punto medio tra N1 e N4 e il punto medio tra N2 e N3 definisce la direzione dell'asse x. La direzione perpendicolare all'asse x diventa la direzione dell'asse y dell'ECS con verso stabilito dalla regola della mano destra.

Per un elemento triangolare, la linea parallela alla direzione che va da N1 a N2, passante per il centro dell'elemento diventa l'asse X dell'ECS. Le direzioni y e z sono definite come per gli elementi a 4 lati prima descritti.

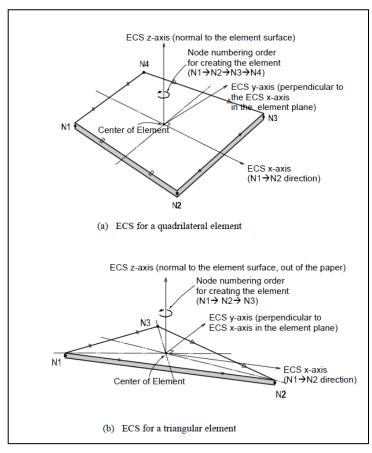


Figura 6-1 - Definizione degli elementi plate e rispettivi ECS

GRE CODE

GRE.EEC.<u>C.25.IT.W.09317.40.001.00</u>

PAGE

20 di/of 75

6.3.2. Output delle azioni interne

La convenzione dei segni per le azioni interne di un elemento plate e per le sollecitazioni è definita sia dall'ECS che dal GCS.

I seguenti risultati di output sono definite con riferimento all'ECS:

Azioni sui nodi di connessione

Azioni per unità di lunghezza sui nodi di connessione e sul baricentro dell'elemento

Tensioni sulla superficie superiore e inferiore in corrispondenza dei nodi di connessione

In ogni nodo, moltiplicando ogni componente di spostamento nodale per la corrispondente componenti di rigidezza viene determinata l'azione dell'elemento sul nodo.

Per calcolare le forze per unità di lunghezza in un nodo di connessione o nel baricentro di un elemento, le tensioni sono calcolate separatamente per il comportamento nel piano e quello fuori dal piano e integrate nella direzione dello spessore.

Nelle figure successive sono mostrate le convenzioni secondo le quali sono esplicitate le sollecitazioni sugli elementi plate. Le frecce indicano il verso positivo delle forze.

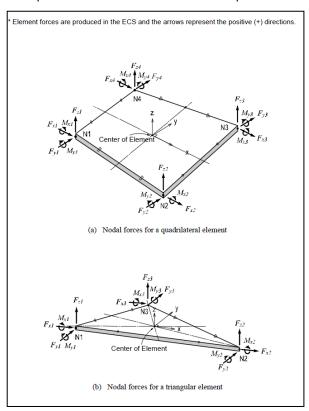


Figura 6-2 - Convenzione dei segni per le forze nodali degli elementi plate

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

21 di/of 75

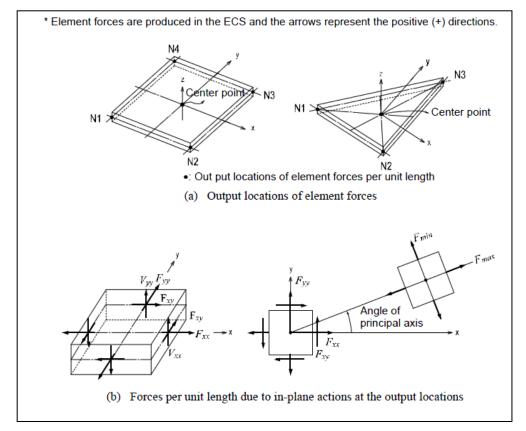


Figura 6-3 – Convenzione dei segni per l'output delle forze per unità di lunghezza

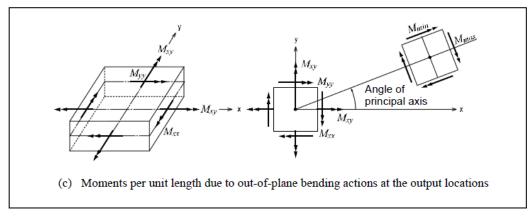
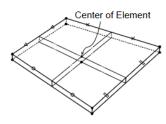
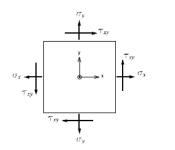


Figura 6-4 - Convenzione dei segni per le azioni flessionali fuori dal piano


GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00


PAGE

22 di/of 75

* Element forces are produced in the ECS and the arrows represent the positive (+) directions.

- Output locations of the element stresses (at each connecting node and the center at top/bottom surfaces)
- (a) Output locations of element stresses

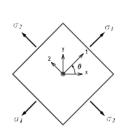


Figura 6-5 - Convenzione dei segni per le tensioni agenti

 $\sigma_{_{_{\mathbf{X}}}}$: Axial stress in the ECS x - direction

 $\sigma_x^{}$: Axial stress in the ECS y - direction

 τ_{xy} : Shear stress in the ECS x - y plane

$$\sigma_1$$
: Maximum principal stress = $\frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

$$\sigma_2$$
: Minimum principal stress = $\frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

$$\tau_{xy}$$
: Maximum shear stress = $\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

heta : Angle between the x - axis and the principal axis, 1

$$\sigma_{\it eff}$$
: von - Mises Stress = $\sqrt{({\sigma_1}^2 - {\sigma_1}{\sigma_2} + {\sigma_2}^2)}$

(b) Sign convention for plate element stresses

Figura 6-6 - Determinazione delle principali componenti di tensione

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

23 di/of 75

7. ANALISI STRUTTURALE E VERIFICHE

7.1. Analisi strutturale tramite modello FEM

L'analisi strutturale è stata utilizzata utilizzando il softwarare MidasGen 2021, realizzando un modello ad elementi finiti tridimensionale. Gli elementi strutturali sono stati schematizzate mediante elementi finiti di tipo beam e plate, introducendo le condizioni di vincolo esterno e gli opportuni svincoli nei punti in cui in vincolo di collegamento è a cerniera.

Vista la condizione di simmetria dei carichi indotti e delle strutture, i carichi orizzontali verranno applicati in direzione radiale lungo un'unica direzione.

Le azioni di vento e sisma verranno applicate con approccio statico equivalente, secondo le determinazione dei loro effetti determinati nei capitoli precedenti.

I quantitativi di armatura ottenuti nelle seguenti elaborazioni dovranno essere disposti nella piastra in maniera simmetrica rispetto all'asse verticale baricentrico della platea.

Nei successivi paragrafi vengono riportati con maggiore dettaglio le ipotesi poste alla base delle analisi.

7.1.1. Geometria del modello

Il basamento è stato discretizzato attraverso una mesh di elementi plate che simulano anche l'effetto della variazione della sezione in altezza. Il modello segue quindi con buona approssimazione la variazione di peso e rigidezza della sezione resistente e la forma circolare del basamento.

Sul perimetro di innesto della struttura metallica sono stati disposti una serie di nodi collegati mediante un link rigido a un nodo master, nel quali sono state applicate le componenti delle forze che derivano dalla turbina. Nel nodo vengono quindi applicate le seguenti forze:

- carichi gravitazionali delle strutture innestate
- azioni del vento sulla turbina, come definite in 4.2.1
- azioni sismiche, come definite in 4.3

Il nodo è stato posizionato a una quota di 4.25 m superiore rispetto alla quota di testa dei pali, per poter tener conto degli effetti di eccentricità dei carichi verticali rispetto alla platea.

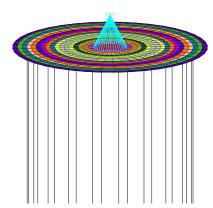


Figure 7-1 - Nodo master per lapplicazione dei carichi provenienti dalla torre

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

24 di/of 75

I pali sono stati modellati alla distanza esatta a cui verranno posti rispetto alla platea mediante elementi beam incastrati nei nodi.

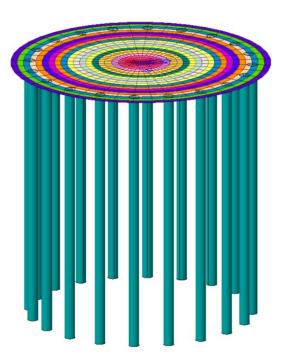


Figure 7-2 - Modello FEM, vista prospettica

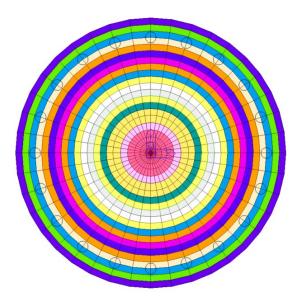


Figure 7-3 - Modello FEM, vista dal basso

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

25 di/of 75

7.1.2. Vincoli

Essendo la struttura su pali, si immagina che l'intero carico venga ripartito su tali elementi. Lo spostamento orizzontale viene bloccato sulla testa del palo, mentre in direzione verticale è vincolato con un vincolo a molla che simula il cedimento dovuto al carico subito. La rigidezza della molla si calcola a partire da una stima della portata del singolo palo e del relativo cedimento, si rimanda al paragrafo 7.2.2 per la trattazione.

7.1.3. Casi di di carico

Si riportano le condizioni di carico applicate al modello di calcolo

Carico G2 rappresentante i pesi permanenti non strutturali viene diviso tra peso del terreno sovrastante il basamento (G2_terreno) e peso proprio della turbina e relative componenti (G2_WGT). Quest'ultimo viene applicato per tenere in considerazione l'effetto del peso sul basamento solamente nelle combinazioni dove non è presente l'azione del vento nella quale invece è già compreso nei carichi forniti dalle specifiche del produttore.

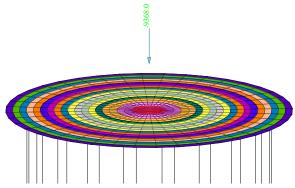


Figure 7-4 Load condition G2_terreno

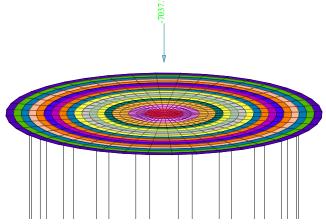


Figure 7-5 Load condition G2_WGT

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

26 di/of 75

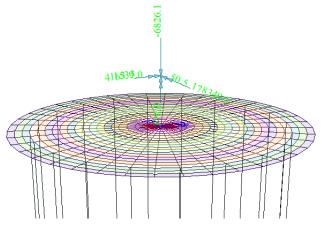


Figure 7-6 - Load condition W_Characteristic

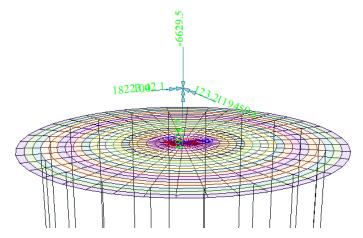


Figure 7-7 - Load condition W_Quasi-Permanent

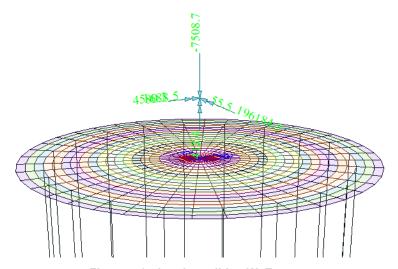


Figure 7-8 - Load condition W_Extreme

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

27 di/of 75



Figure 7-9 - Load condition W_Frequent

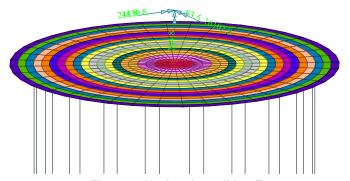


Figure 7-10 - Load condition E

7.1.4. Combinazioni di carico

Le combinazioni di calcolo selezionate per le verifiche di tipo STR per le quali dovranno essere impiegati i coefficienti definiti nella colonna A1 della tabella Tab. 2.6.I delle NTC2018.

 ${\bf Tab.~2.6.I-Coefficienti~parziali~per~le~azioni~o~per~l'effetto~delle~azioni~nelle~verifiche~SLU~leading~l$

		Coefficiente	EQU	A1	A2
		$\gamma_{\rm F}$			
Conidhi accessorati Co	Favorevoli	2/	0,9	1,0	1,0
Carichi permanenti Gı	Sfavorevoli	Ϋ́GI	1,1	1,3	1,0
Conidian and the state of the s	Favorevoli	2/	0,8	0,8	0,8
Carichi permanenti non strutturali G2 ⁽¹⁾	Sfavorevoli	γ _{G2}	1,5	1,5	1,3
Azioni variabili Q	Favorevoli	2/	0,0	0,0	0,0
Azioiu variabili Q	Sfavorevoli	Υ _{Qi}	1,5	1,5	1,3

⁽ii) Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

28 di/of 75

Engineering & Construction

Di seguito vengono elencati i carichi oggetto delle successive combinazioni, i valori sono indicati nelle rispettive tabelle estratte da "Foundation loads T115-50A SG 6.0-170" al precedente paragrafo 5.3.

Casi di carico Cat. G1 pesi permanenti strutturali G2 terreno pesi permanenti non strutturali pesi permanenti non strutturali G2 wtg W Characteristic carichi da vento caratteristici W QP carichi da vento in condizione quasi permanente W Extreme carichi da vento in condizione extreme (load factor 1.1) carichi 0.9*W Characteristic eccetto Fz = Fz di W Characteristic W Frequent

La seguente tabella contiene le combinazioni di carico utilizzate nei calcoli.

СОМВО	ТҮРЕ		GZ terreno	W Chi	Oroclerism.	n o	W Exhem	W Frequen	» \.	r
SLU1	Strength/Stress	Add	1.30	1.50	1.50					
SLU2	Strength/Stress	Add	1.30	1.50			1.35			
SLU3	Strength/Stress	Add	1.00	0.80			1.35			
SLUext	Strength/Stress	Add	1.00	1.00				1.00		
SLV1	Strength/Stress(Elastic	Add	1.00	1.00	1.00					1.00
SLV2	Strenght/Stress(Elastic	Add	1.00	1.00			1.00			1.00
SLEr	Serviceability	Add	1.00	1.00		1.00				
SLEf	Serviceability	Add	1.00	1.00					1.00	
SLEqp	Serviceability	Add	1.00	1.00			1.00			

Le combinazioni "SLU2" e "SLU3" si riferiscono alla combinazione fondamentale allo Stato Limite Ultimo. Viene attribuito il coefficiente amplificativo 1.35 in quanto si fa riferimento alla condizione "Normal", ovvero le normali condizioni di esercizio della turbina, come riportato nella sottostante tabella estratta documento "Design and construction guidelines for the foundations of wind turbine generators". Tale documento viene considerato come "di comprovata validità" rispetto alle NTC2018. I carichi da utilizzare nella condizione "Normal", sono quelli riportati nella tabella dei carichi quasi-permanenti (W_QP), come precisato dal produttore.

La combinazione "SLUext" si riferisce alla combinazione allo Stato Limite Ultimo per azioni di tipo eccezionale. In questa combinazione i carichi da vento utilizzati sono gli "Extreme loads" (W_Extreme) in condizione "Abnormal", quindi quelli riportati nella relativa tabella in corrispondenza del load factor 1.1, proprio della condizione "Abnormal".

La combinazione "SLV1" rappresenta la combinazione allo Stato Limite Ultimo per sisma.

La combinazione "SLV2" rappresenta la combinazione allo Stato Limite Ultimo per sisma combinata con l'azione del vento nelle normali condizioni di esercizio della turbina (W_QP), come indicato al paragrafo 7.3 del documento "Design and construction guidelines for the foundations of wind turbine generators".

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

29 di/of 75

Engineering & Construction

La combinazione "SLEr" contiene i carichi da vento caratteristici (W_Characteristic).

La combinazione "SLEf" contiene i carichi da vento caratteristici (W_Characteristic) moltiplicati per il fattore riduttivo 0.9, ad eccezione del carico Fz, che rimane pari a quello caratteristico.

La combinazione "SLEqp" contiene i carichi da vento in condizione quasi-permanente (W_QP).

	Unfavourable loads					
	Type of design situation	r (see Table 2)	All design situations			
Normal (N)	Abnormal (A)	Transport and erection (T)	All design situations			
1,35*	1,1	1,5	0,9			

* For design load case DLC 1.1, given that loads are determined using statistical load extrapolation at prescribed wind speeds between $V_{\rm th}$ and $V_{\rm out}$, the partial load factor for normal design situations shall be $\gamma_{\rm f}$ =1,25.

If for normal design situations the characteristic value of the load response $F_{\rm gravity}$ due to gravity can be calculated for the design situation in question, and gravity is an unfavourable load, the partial load factor for combined loading from gravity and other sources may have the value

$$\begin{aligned} y_t &= 1.1 + q \varsigma^2 \\ \varphi &= \begin{cases} 0.15 & \text{for DLC1.1} \\ 0.25 & \text{otherwise} \end{cases} \\ \zeta &= \begin{cases} 1 - \left| \frac{F_{\text{contr}}}{F_k} \right|; & \left| F_{\text{gentr}} \right| \leq \left| F_k \right| \\ 1; & \left| F_{\text{gentr}} \right| > \left| F_k \right| \end{cases} \end{aligned}$$

Oltre ai casi di carico sopra elencati sono state introdotte anche delle combinazioni di inviluppo delle combinazioni di stato limite ultimo ("SLUenv").

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

30 di/of 75

7.1.5. Giudizio motivato accettabilità dei risultati

Al fine di validare il modello di calcolo vengono confrontati i risultati ottenuti da:

- Modello di calcolo FEM;
- Calcolo manuale su piastra rigida delle reazioni alla testa dei pali con foglio excel

Visti gli spessori degli elementi assunti i due risultati portano a valori di reazione verticale simile. Le valutazioni vengono eseguite sulla combinazione di carico "SLEr".

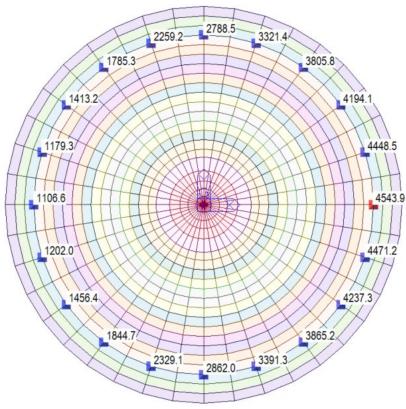


Figure 7-11 - Reazioni verticali su modello FEM

GRE CODE

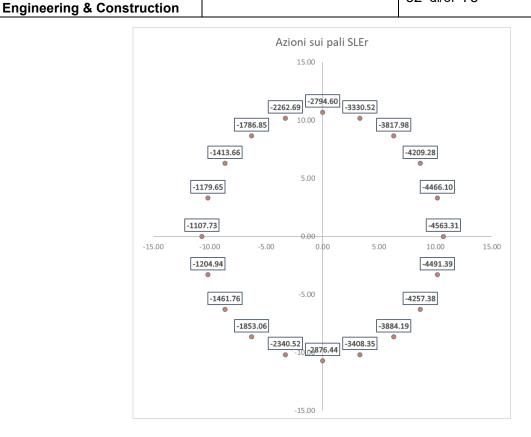
GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

31 di/of 75

Di seguito, elaborazione con foglio di calcolo Excel e relativa rappresentazione grafica delle reazioni sui pali ottenute:

	PUT								
Raggio del bas	samento				Rb	12.5	m		
Raggio dei bas Raggio colletto					Ro		m		
Diametro del b					Rb	25			
Diametro colle					Dc		m		
	na basamento				hmin	1.5			
Altezza massi	ima basamento				hmax	3.75			
Altezza collett	to				hc	0.5	m		
Diametro del p	oalo				Øp	1	m		
Raggio d'asse					Rp	10.7	m		
unghezza pal					Lp	25			
Peso specifico							kN/mc		
					γ				
Altezza massi					ht	2.25			
_arghezza por.	zione terreno				Lt	9.5	m		
PESO DEI	BASAMENTO								
/olume cilindre					Vinf	736.3	m3		
/olume tronco					Vsup	477.7			
olume collett					Vcol	14.1			
/olume basam					VCOI	1228.2			
/olume terrend					Vt	520.4			
Peso basamer	nto					-30704.15945			
Peso palo					G1,p	-490.625	kN		
Peso terreno						-9367.640244			
	L'INNESTO DE								
Coefficiente di	combinazione	pesi permanenti			γG1	1			
	combinazione				γQ	1			
orza verticale					Fz	-6826.1	kN		
	tale direzione X				Fx	1535.05			
	tale direzione X					50.5			
					Fy				
	cazione delle fo	rze			zF	4.25			
Momento attor					My	178349.5			
Momento attor	rno a X				Mx	4163.87	kN m		
Torsione alla b	oase				Mz	374.9	kN m		
CARICHI SI									
Forza verticale					Fz	-56710.40		Contributo taglio	su palo
	tale direzione X				Fx	1535.05		76.7525	
orza orizzont	tale direzione Y				Fy	50.50	kN	2.525	
Momento attor	rno a Y				My	184873.46	kN m		
Momento attor	rno a X				Mx	4378.50	kN m		
Torsione alla b					Mz	374.90		1.752	
Numore sali					p-	20			
Numero pali	lara nali				np	20			
Distanza ango	piare pail				α	18			
_		v		V 2	V 2	F-'	M. +V /	NA+VG (1	
n _{Pi}	αί	Xi	Yi	X _i ²	Yi ²	Fz/n _P	My*Xy/Jy	Mx*Yi/Jx	N _P
1	0	10.70	0.00	114.49	0.00	-2835.52	-1727.79	0.00	-4563.
2	18	10.18	3.31	103.56	10.93	-2835.52	-1643.23	12.65	-4466.
3	36	8.66	6.29	74.93	39.56	-2835.52	-1397.81	24.05	-4209.
4	54	6.29	8.66	39.56	74.93	-2835.52	-1015.57	33.11	-3817.
5	72	3.31	10.18	10.93	103.56	-2835.52	-533.92	38.92	-3330.
									-2794.
6	90	0.00	10.70	0.00	114.49	-2835.52		40.92	
7	108	-3.31	10.18	10.93	103.56	-2835.52	533.92	38.92	-2262.
8	126	-6.29	8.66	39.56	74.93	-2835.52		33.11	-1786.
9	144	-8.66	6.29	74.93	39.56	-2835.52	1397.81	24.05	-1413.
10	162	-10.18	3.31	103.56	10.93	-2835.52	1643.23	12.65	-1179.
	180	-10.70	0.00	114.49	0.00	-2835.52	1727.79	0.00	-1107.
11	198	-10.18	-3.31	103.56	10.93	-2835.52	1643.23	-12.65	-1204.
		-8.66	-6.29	74.93	39.56	-2835.52	1397.81	-24.05	-1461.
12		-0.00							
12 13	216	6 20	-8.66	39.56	74.93	-2835.52	1015.57	-33.11	-1853.
12 13 14	234	-6.29			103.56	-2835.52		-38.92	-2340.
12 13 14 15	234 252	-3.31	-10.18	10.93					-2876.
12 13 14 15	234 252 270	-3.31 0.00	-10.18 -10.70	0.00	114.49	-2835.52	0.00	-40.92	
12 13 14 15	234 252	-3.31	-10.18		114.49 103.56	-2835.52 -2835.52	-533.92	-40.92 -38.92	
12 13 14 15	234 252 270	-3.31 0.00	-10.18 -10.70	0.00					-3408.
12 13 14 15 16 17 18	234 252 270 288 306	-3.31 0.00 3.31 6.29	-10.18 -10.70 -10.18 -8.66	0.00 10.93 39.56	103.56 74.93	-2835.52 -2835.52	-533.92 -1015.57	-38.92 -33.11	-3408. -3884.
12 13 14 15 16 17 18	234 252 270 288 306 324	-3.31 0.00 3.31 6.29 8.66	-10.18 -10.70 -10.18 -8.66 -6.29	0.00 10.93 39.56 74.93	103.56 74.93 39.56	-2835.52 -2835.52 -2835.52	-533.92 -1015.57 -1397.81	-38.92 -33.11 -24.05	-3408. -3884. -4257.
12 13 14 15 16 17	234 252 270 288 306	-3.31 0.00 3.31 6.29	-10.18 -10.70 -10.18 -8.66	0.00 10.93 39.56	103.56 74.93	-2835.52 -2835.52	-533.92 -1015.57	-38.92 -33.11	-3408. -3884. -4257. -4491.
12 13 14 15 16 17 18 19 20	234 252 270 288 306 324	-3.31 0.00 3.31 6.29 8.66 10.18	-10.18 -10.70 -10.18 -8.66 -6.29 -3.31	0.00 10.93 39.56 74.93	103.56 74.93 39.56	-2835.52 -2835.52 -2835.52	-533.92 -1015.57 -1397.81	-38.92 -33.11 -24.05	-3408. -3884. -4257.
12 13 14 15 16 17 18 19 20 G	234 252 270 288 306 324 342	-3.31 0.00 3.31 6.29 8.66 10.18	-10.18 -10.70 -10.18 -8.66 -6.29 -3.31	0.00 10.93 39.56 74.93 103.56	103.56 74.93 39.56 10.93	-2835.52 -2835.52 -2835.52 -2835.52	-533.92 -1015.57 -1397.81 -1643.23	-38.92 -33.11 -24.05	-3408. -3884. -4257.
12 13 14 15 16 17 18 19 20 G J _i	234 252 270 288 306 324 342	-3.31 0.00 3.31 6.29 8.66 10.18	-10.18 -10.70 -10.18 -8.66 -6.29 -3.31	0.00 10.93 39.56 74.93 103.56	103.56 74.93 39.56 10.93 1144.90	-2835.52 -2835.52 -2835.52 -2835.52 -1107.73	-533.92 -1015.57 -1397.81 -1643.23	-38.92 -33.11 -24.05	-3408. -3884. -4257.
12 13 14 15 16 17 18 19 20 G	234 252 270 288 306 324 342	-3.31 0.00 3.31 6.29 8.66 10.18	-10.18 -10.70 -10.18 -8.66 -6.29 -3.31	0.00 10.93 39.56 74.93 103.56	103.56 74.93 39.56 10.93	-2835.52 -2835.52 -2835.52 -2835.52	-533.92 -1015.57 -1397.81 -1643.23 kN	-38.92 -33.11 -24.05	-3408. -3884. -4257.



GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

32 di/of 75

Lo scarto tra i risultati forniti dai due modelli è trascurabile; il modello FEM risponde in maniera efficace agli input dati.

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

33 di/of 75

7.2. Risultati del modello FEM

7.2.1. Direzioni fissate per gli assi locali degli elementi

L'analisi strutturale è stata eseguita facendo riferimento al sistema di riferimento globale per la definizione delle azioni agenti.

Per migliorare la lettura delle sollecitazioni sono stati orientati gli assi di riferimento locale degli elementi in direzione radiale (assi x) e circonferenziale (assi y).

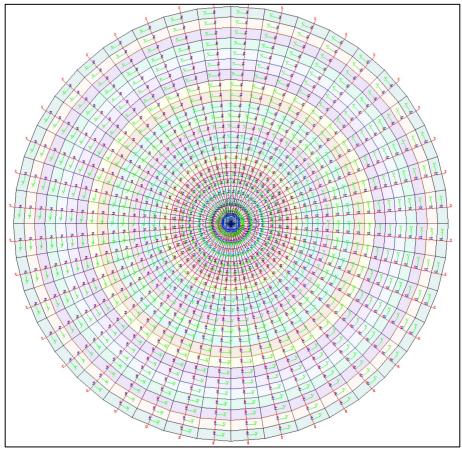


Figure 7-12 Assi di riferimento locali su elementi plate

Le armature che verranno assegnate agli elementi plate vengono definite in direzione circonferenziale e radiale per gli elementi posti esternamente al nucleo di innesto della torre della turbina eolica, la porzione centrale ha armature definite in direzione X e Y

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

34 di/of 75

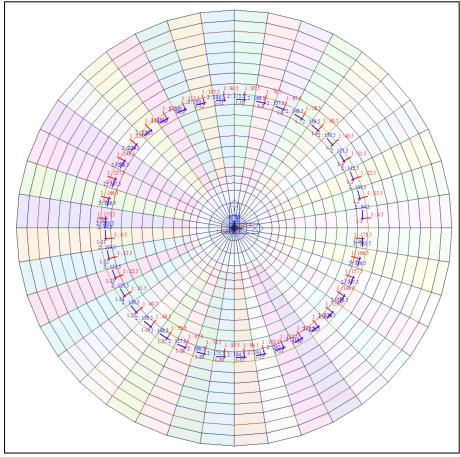


Figure 7-13 - Assi di riferimento delle armature

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

35 di/of 75

7.2.2. Azioni assiali sui pali

Si riportano le reazioni massime misurate alla base dei pali. Le forze sono indicate in kN.

I valori mostrati nell'immagine seguente si riferiscono all'inviluppo delle combinazioni SLU e SLV. Il software indica con il segno (+) azioni assiali di compressione.

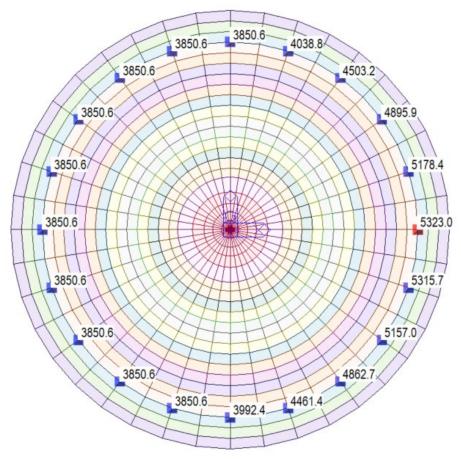


Figure 7-14 - Reazioni verticali massime riportate alla punta del palo

Sulla base delle proprietà dei terreni forniti dalla relazione preliminare geologica e geotecnica è possibile stimare il valore di portata verticale limite mediante metodi statici. La verifica di capacità portante è stata condotta secondo l'Approccio 2 e la combinazione A1+M1+R3 come riportato al paragrafo 6.4.3.1. della Normativa. Per un palo di lunghezza 25 m si ottiene una portata di 25889 kN , valore compatibile con la reazione massima ottenuta.

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

36 di/of 75

neeri															
CALCOL	O PORTA	TA PALI TI	RIVELLATI												
DATI DI IN	NPUT														
D	diametro d	lel palo				1.00	[m]		FS	Coefficient	o parzialo re	esistenza alla base	• Y b	1.35	5 [-]
L		massima di	calcolo			25.00	[m]		13			esistenza laterale	7 D	1.15	
z _w		della falda d				50.00	[m]				orrelazione 8		ξ	1.70	
f _{cd}	resistenza	di calcolo d	el c.l.s.			14.17	[Mpa]								
n° strato		DH;	Hr	γ _n	γ'	N _{SPT}	f	Κ	C _u	α	C _a				
-1	AR	[m] 6.00	[m] 6.00	[kN/m ³] 20.00	[kN/m³] 20.00	[-]	[°]	[-]	[kPa] 100.00	[-] 0.35	[kPa] 35.00	DH;		EGENDA ore dello strato	
2	SA	19.00	25.00	19.00	19.00		40.00	0.40	100.00	0.00	0.00	Dn; H,		ore dello strato dità dello strato	dalaa
	SA	19.00	23.00	19.00	0.00		40.00	0.40		0.00	0.00	Π ₁		pecifico del ter	
					0.00					0.00	0.00	/ n		pecifico effica	
					0.00					0.00	0.00	N _{SPT}		o colpi al piede	
					0.00					0.00	0.00	<i>ø</i>		di attrito (solo	
					0.00					0.00	0.00	ĸ		to tra σ _h /σ _v	- ′
					0.00					0.00	0.00	C _u	coesio	ne non drenata	a (solo coe
					0.00					0.00	0.00	c , =	α C adesio	ne (solo coesiv	/i)
PORTATA	ALLA BASE		llo di Boron	zantzev											
				Zamzev											
n° strato	tipo	DH;	H,	7 n _	y' [[ch]/m ³]	N _{SPT}	f	K	C _u	α	C _a				
n° strato		DH ; [m]	Н, [m]	y _n [kN/m³]	[kN/m ³]	[-]	[°]	[-]	[kPa]	[-]	[kPa]				
	tipo	DH;	H,	7 n _											
n° strato	tipo terreno	DH ; [m]	H _f [m] 25.00	y _n [kN/m³]	[kN/m ³]	0.00	[°]	[-]	[kPa]	[-]	[kPa]				
n° strato 2 A _b	tipo terreno	DH ; [m]	H, [m] 25.00	7 _n [kN/m³] 19.00	[kN/m³] 19.00	[-]	[°] 40.00	[-] 0.40	[kPa] 0.00	0.00	[kPa] 0.00	Tabell	a per il calco	olo di B₄	
n° strato 2 A _b s _{vL}	tipo terreno Area della Pressione	DH; [m] 19.00 base del pa	#, [m] 25.00 lo di base	Y _n [kN/m³] 19.00	[kN/m³] 19.00 [m²] [kPa]	[-] 0.00	[°] 40.00 26°	[-] 0.40 30°	[kPa] 0.00	[-] 0.00	[kPa] 0.00 40°	Tabell	a per il calco	olo di B _k	
n° strato 2 A _b s _{vL} N _q =υB _k	tipo terreno Area della Pressione	DH _i [m] 19.00 base del pa geostatica de pressione ge	#, [m] 25.00 lo di base	7n [kN/m³] 19.00 0.79 481 139.50 0.00	[kN/m³] 19.00 [m²] [kPa]	[-] 0.00	[°] 40.00 26° 20.00	[-] 0.40 30° 33.00	[kPa] 0.00 34° 63.00	[-] 0.00 37° 104.00	[kPa] 0.00 40° 186.00		a per il calco a per il calco	-	
n° strato 2 A _b s _{vL} N _q =υB _k c	tipo terreno Area della Pressione Coeff. di p	DH; [m] 19.00 base del pa geostatica di ressione ge alla base	#, [m] 25.00 lo di base	7n [kN/m³] 19.00 0.79 481 139.50	[kN/m³] 19.00 [m²] [kPa]	[-] 0.00 \$\blue{\psi}\$ B _k	[°] 40.00 26° 20.00	[-] 0.40 30° 33.00	[kPa] 0.00 34° 63.00	[-] 0.00 37° 104.00	[kPa] 0.00 40° 186.00			-	
n° strato 2 A _b s _{vL} N _q =vB _k c N _c	Area della Pressione Coeff. di p Coesione a Coeff. di c	DH _i [m] 19.00 base del pa geostatica de ressione ge alla base descesione	#, [m] 25.00 lo di base	7n [kN/m³] 19.00 0.79 481 139.50 0.00 9.00	[kN/m³] 19.00 [m²] [kPa]	[-] 0.00 • B _k H/D 5 10	[°] 40.00 26° 20.00 26° 0.75 0.62	[-] 0.40 30° 33.00 30° 0.77 0.67	[kPa] 0.00 34° 63.00 34° 0.81 0.73	[-] 0.00 37° 104.00 37° 0.83 0.76	[kPa] 0.00 40° 186.00 40° 0.85 0.79		a per il calco	-	
n° strato 2 A _b S _{VL} N _q =UB _k C N _c Q _{b,lim}	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di p	DH; [m] 19.00 base del pa geostatica o rressione ge alla base coesione	#, [m] 25.00 lo di base	7n [kN/m³] 19.00 0.79 481 139.50 0.00 9.00	[kN/m³] 19.00 [m²] [kPa] [kPa]	[-] 0.00	[°] 40.00 26° 20.00 26° 0.75 0.62 0.55	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73	[kPa] 0.00 40° 186.00 40° 0.85 0.79 0.77	Tabell	a per il calco	olo di υ	
n° strato 2 A _b s _{vL} N _q =υB _k c	Area della Pressione Coeff. di p Coesione a Coeff. di c	DH; [m] 19.00 base del pa geostatica o rressione ge alla base coesione	#, [m] 25.00 lo di base	7n [kN/m³] 19.00 0.79 481 139.50 0.00 9.00	[kN/m³] 19.00 [m²] [kPa] [kPa]	[-] 0.00 • B _k H/D 5 10	[°] 40.00 26° 20.00 26° 0.75 0.62	[-] 0.40 30° 33.00 30° 0.77 0.67	[kPa] 0.00 34° 63.00 34° 0.81 0.73	[-] 0.00 37° 104.00 37° 0.83 0.76	[kPa] 0.00 40° 186.00 40° 0.85 0.79	Tabell	a per il calco	olo di υ	
n° strato 2 Ab SVL Republic Control of the cont	Area della Pressione Coeff. di p Coesione a Coeff. di c	DH; [m] 19.00 base del pa geostatica de ressione ge alla base coesione dite di base m. di base	#, [m] 25.00 lo di base	7n [kN/m³] 19.00 0.79 481 139.50 0.00 9.00 30999.90 22962.89	[kN/m³] 19.00 [m²] [kPa] [kPa]	[-] 0.00	[°] 40.00 26° 20.00 26° 0.75 0.62 0.55	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73	[kPa] 0.00 40° 186.00 40° 0.85 0.79 0.77	Tabell	a per il calco	olo di υ	
n° strato 2 A _b S _{VL} N _q =∪B _K C N _c Q _{b,lim} Q _{b,amm}	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di c Portata lim Portata am LATERALE	DH, [m] 19.00 19.00 base del pa geostatica o ressione ge alla base ocesione ite di base	H _f [m] 25.00 lo di base ostatica	7/n [kN/m³] 19.00 0.79 481 139.00 0.00 9.00 30999.90 22962.89	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN]	[-] 0.00	[°] 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49	[-] 0.40 30° 33.00 0.77 0.67 0.61 0.57	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73	[kPa] 0.00 40° 186.00 40° 0.85 0.79 0.77 0.75	Tabell	a per il calco	olo di υ	•
n° strato 2 A _b s _{vL} N _q =vB _k c N _c Q _{b,lim} Q _{b,amm}	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di c Portata lim Portata am LATERALE - tensione la	DH, [m] 19.00 base del pa geostatica o ressione gealla base oesione itte di base - protocolla terale strato	H, [m] 25.00 lo di base ostatica	7n [kN/m³] 19.00 0.79 481 139.50 0.00 9.00 30999.90 22962.89	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] [kN]	[-] 0.00	[°] 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61 0.57	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	[kPa] 0.00 40° 186.00 40° 0.85 0.77 0.75	Tabell	a per il calco	οlo di υ 25.0	+
n° strato 2 A_{b} S_{kL} $N_{q}^{=}\cup B_{k}$ C N_{c} $Q_{b,lim}$ $Q_{b,amm}$ PORTATA	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di c Portata im Portata am LATERALE tensione la tensione la tensione la	DH _i [m] 19.00 base del pa geostatica o ressione ge alla base oesione ite di base m. di base - protocolle terale strato terale strato terale strato	H _f [m] 25.00 lo di base ostatica	Yn [kN/m³] 19.00 0.79 481 139.50 0.00 9.00 30999.90 22962.89 ni	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] [kN] [kN]	[-] 0.00	[*] 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61 0.57	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65 ca 35.00 0.00	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	[kPa] 0.00 40° 186.00 186.00 0.85 0.79 0.77 0.75 0.75 0.086 0.086 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0	Tabell	a per il calco	οlo di υ 25.0	•
n° strato 2 A _b S _{VL} CN _c CO _{b,lim} QO _{b,amm} PORTATA	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di p Portata ilm Portata am LATERALE tensione la	DH, [m] 19.00 base del pa geostatica o ressione ge alla base coesione de la pase coesi	H, [m] 25.00 lo di Viggiar o di Viggiar 1° 2° 3°	Y _n [kN/m³] 19.00 19.00 0.79 481 139.50 0.00 9.00 0.00 22962.89 10 0.00 120.00 120.00 0.00 120.00 0.00	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] [kN] [kN] 000000000000000000000000000000000000	[-] 0.00	(*) 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49 G h.med 0.00 120.20 0.00	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61 0.57	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	[kPa] 0.00 40° 186.00 40° 0.85 0.79 0.77 0.75	Tabell	a per il calco	οlo di υ 25.0	•
n° strato 2 A _b S _{VL} N ₀ =\(\mathbb{O}\mathbb{B}_{\times}\) C N _c Q _{b,lim} Q _{b,amm} PORTATA \(\sigma_{n.2}\) \(\sigma_{n.3}\) \(\sigma_{n.4}\)	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di coeff. d	DH, [m] 19.00 base del pa geostatica de ressione ge alla base coesione de la pase de la	H, [m] 25.00 lo di base ostatica o di Viggiar 1° 2° 3° 4°	Y _n [kN/m³] 19.00 0.79 481 139.50 0.00 0.00 0.00 0.00 0.00 120.00 120.00 0.00 0.00 0.00 0.00	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] [kN] 00 00 000 0.00	[-] 0.00 • B _X H/D 5 10 15 20 •	(°) 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49 0.00 120.20 0.00 0.00 0.00	[-] 0.40 30° 33.00 30° 0.77 0.61 0.57	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	[kPa] 0.00 40° 186.00 40° 0.85 0.79 0.77 0.75 5	Tabell	a per il calco	οlo di υ 25.0	•
n° strato 2 A₀ S₀ S₀ L Nq=∪B₀ C C N₀ Q₀ S₀ M₀ PORTATA σ₀ N₀ σ₀ σ₀ σ₀ σ₀ σ₀ σ₀ σ₀	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di p Portata im Portata am LATERALE - tensione la	DH, [m] 19.00 base del pa geostatica o ressione ge alla base oesione itte di base m. di base m. di base trale strato terale strato	H _f [m] 25.00 lo fi base ostatica	Y _n [KN/m ³] 19.00 1	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] 120.00 481.00 0.00 0.00	[-] 0.00	(*) 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49 ••• 0.00 120.20 0.00 0.00 0.00	[-] 0.40 30° 33.00 0.77 0.67 0.61 0.57 [kPa] [kPa] [kPa] [kPa] [kPa]	[kPa] 0.00 34° 63.00 34° 63.00 34° 0.68 0.65 Ca 35.00 0.00 0.00 0.00	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	(kPa) 0.00 40° 186.00 40° 0.85 0.77 0.75 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Tabell	a per il calco	οlo di υ 25.0	+
2 A _b S _{VL} N _q =∪B _k C N _c Q _{b,lim} Q _{b,amm} PORTATA σ _{n.1} σ _{n.5} σ _{n.6} σ _{n.6}	tipo terreno Area della Pressione Coeff. di c Coeff. di c Portata im Portata am LATERALE tensione la	DH, [m] 19.00 base del pa geostatica o reressione ge alla base ocesione ite di base um. di base - protocollo terale strato terale strato.	H _r [m] 25.00 lo fi base ostatica	Y _n [kN/m ³] 19.00 0.79 481 139.50 0.00	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] [kN] 0.00 0.00 0.00 0.00 0.00	F- 0.00	(*) 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49 ••• 0.00 120.20 0.00 0.00 0.00 0.00	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61 0.57	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65 Ca 35.00 0.00 0.00 0.00	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	(kPa) 0.00 40° 186.00 40° 0.85 0.79 0.77 0.75 5.00 100.86 0.00 0.00 0.00 0.00	Tabell	a per il calco	οlo di υ 25.0	•
n° strato 2 A₀ S₀L Nq=∪B₀ C C O₀,sim O₀,amm PORTATA σ₀1.2 σ₀3.3 σ₀1.4 σ₀5.5 σ₀1.5 σ₀1.7	tipo terreno Area della Pressione Coeff. di p Coesione a Coeff. di p Portata lim Portata am LATERALE LATERALE	DH, [m] 19.00 base del pa geostatica o ressione ge alla base ocesione itte di base mm. di base - protocolle strato terale strato	H, [m] 25.00 lo di base ostatica o di Viggiar 1° 2° 3° 4° 5° 6° 7°	Y _n [kN/m²] 19.00 19.00 19.50 0.00 0	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] 0.00 0.00 0.00 0.00 0.00 0.00	[-] 0.00	(*) 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49 0.00 120.20 0.00 0.00 0.00 0.00 0.00	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61 0.57 [kPa] [kPa] [kPa] [kPa] [kPa] [kPa]	[kPa] 0.00 34° 63.00 34° 1.00 34° 1.00 34° 1.00 350 1.00 0.00 0.00 0.00 0.00 0.00 0.00	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	[kPa] 0.00 40° 186.00 100 100 100 100 100 100 100 100 100	Tabell	a per il calco	οlo di υ 25.0	•
n° strato 2 A _b S _{vL} N _q =∪B _k C C N _c Q _{b,lim} Q _{b,amm} PORTATA σ _{n.1} σ _{n.5} σ _{n.6} σ _{n.7} σ _{n.8} σ _{n.7}	tipo terreno Area della Pressione Coeff. di c Coeff. di c Portata im Portata am LATERALE tensione la	DH, [m] 19.00 base del pa geostatica o reressione ge alla base ocesione ite di base um. di base - protocollo terale strato terale strato.	H, [m] 25.00 lo ii base ostatica statica stati	Y _n [kN/m ³] 19.00 0.79 481 139.50 0.00	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] [kN] 0.00 0.00 0.00 0.00 0.00	F- 0.00	(*) 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49 ••• 0.00 120.20 0.00 0.00 0.00 0.00	[-] 0.40 30° 33.00 30° 0.77 0.67 0.61 0.57	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65 Ca 35.00 0.00 0.00 0.00	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	(kPa) 0.00 40° 186.00 40° 0.85 0.79 0.77 0.75 5.00 100.86 0.00 0.00 0.00 0.00	Tabell	a per il calco	οlo di υ 25.0	+
$\begin{array}{c} \textbf{n}^{\circ} \textbf{strato} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	tipo terreno Area della Pressione Coeff. di c Coeff. di c Portata im Portata am LATERALE tensione la	DH, [m] 19.00 base del pa geostatica o ressione ge alla base occione di del pase occio	H, [m] 25.00 lo ii base ostatica statica stati	Y _n [kN/m³] 19.00 0.79 481 139.50 0.00 9.00 0.	[kN/m³] 19.00 [m²] [kPa] [kPa] [kN] [kN] [kN] 0.00 481.00 0.00 0.00 0.00 0.00	F- 0.00	(*) 40.00 26° 20.00 26° 0.75 0.62 0.55 0.49 Thined 0.00 0.00 0.00 0.00 0.00 0.00 0.00	[kPa] [kPa] [kPa] [kPa] [kPa]	[kPa] 0.00 34° 63.00 34° 0.81 0.73 0.68 0.65 Ca 35.00 0.00 0.00 0.00 0.00 0.00 0.00	[-] 0.00 37° 104.00 37° 0.83 0.76 0.73 0.71	[kPa] 0.00 40° 186.00 40° 0.85 0.79 0.77 0.75 σ 35.00 100.86 0.00 0.00 0.00 0.00	Tabell	$\sigma = c_{a,i}$	οlo di υ 25.0	*

Tramite formula approssimata per ricavare il cedimento è possibile ricavare la rigidezza da applicare alle molle che simulano il vincolo posto alla base dei pali.

$$w_{\text{singolo}} = \frac{Q \cdot d}{\lambda \cdot Q_{\text{lim}}}$$

STIMA APPROSSIMATA DEL CEDIMENTO - Secondo Viggiani

 Q
 carico in esercizio sul palo

 Qlim
 portata limite di calcolo

 λ
 coefficiente relativo al tipo di palo

 w
 cedimento stimato

 k
 rigidezza verticale

PORTATA TOTALE LIMITE 25888.94 [kN]

3953 kN 68327 kN 40 0.0014 m 2733095 kN/m

Tipo di palo	Terreno	λ
Battuto	Incoerente	60
	Coesivo	120
Trivellato	Incoerente	40
	Coesivo	100
Trivellato	Incoerente	50
pressato	Coesivo	100

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

37 di/of 75

7.2.3. Azioni sul basamento

Si riportano di seguito le sollecitazioni flettenti e taglianti sul basamento, calcolate secondo la teoria Wood Armer, in direzione radiale e circonferenziale.

Inviluppo delle combinazioni SLU: "SLUenv"

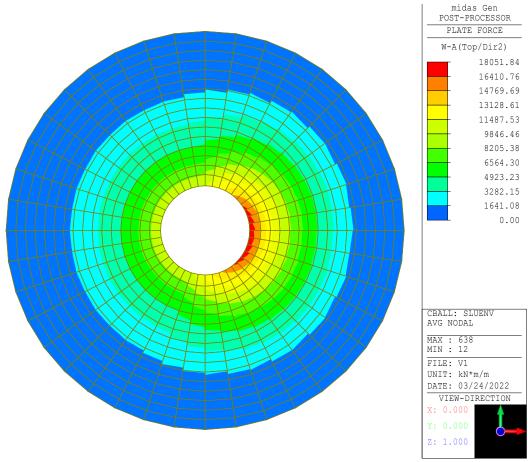


Figure 7-15 – SLUenv: Momento direzione radiale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

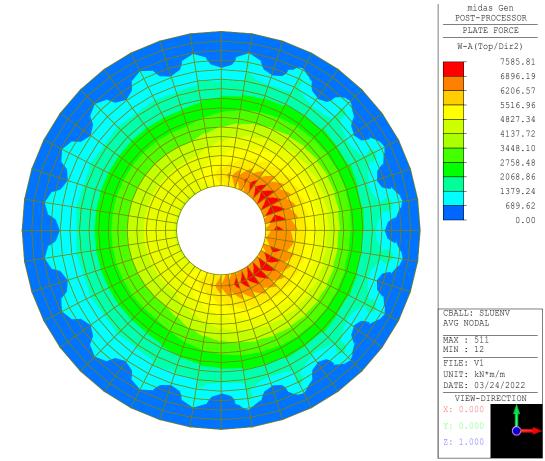


Figure 7-16 – SLUenv: Momento direzione circonferenziale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

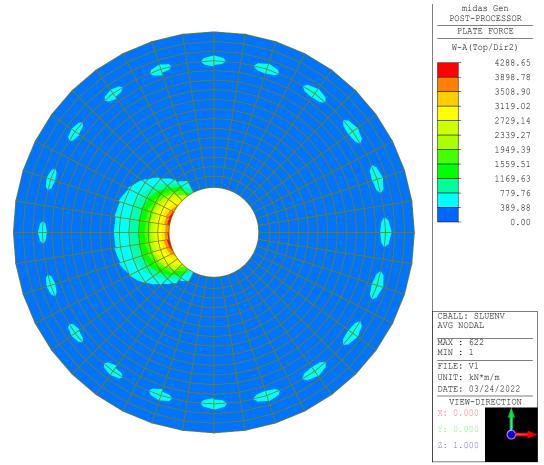


Figure 7-17 - SLUenv: Momento direzione radiale, Top

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

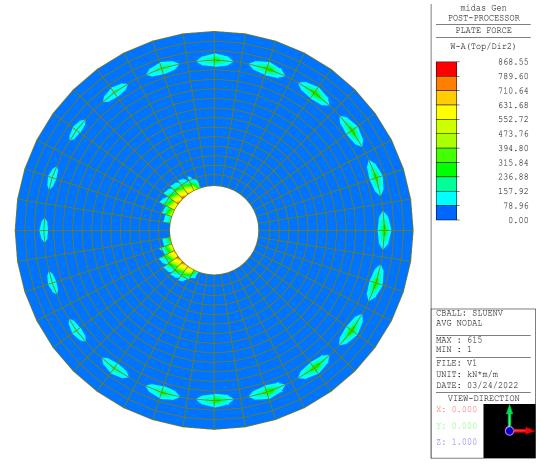


Figure 7-18 - SLUenv: Momento direzione Circonferenziale, Top

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

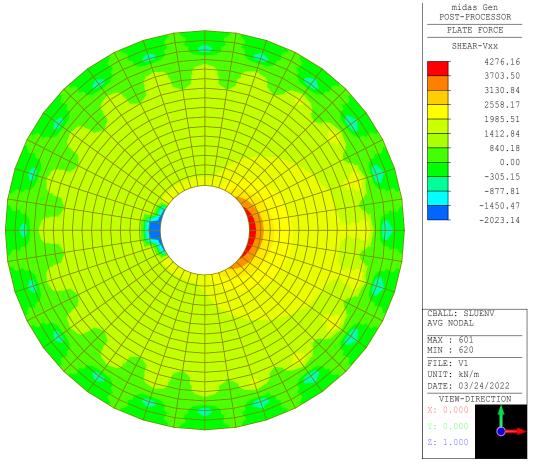
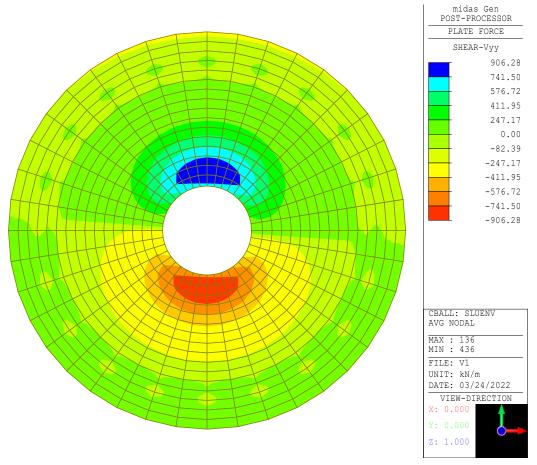
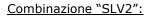


Figure 7-19 - SLUenv: Taglio Vxx

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE




Figure 7-20 - SLUenv: Taglio Vyy

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

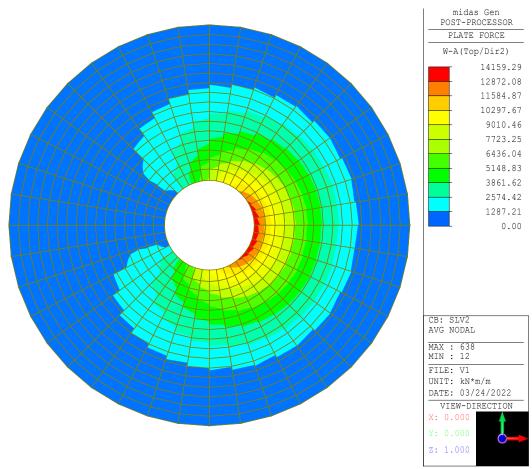


Figure 7-21 - SLV2: Momento direzione radiale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

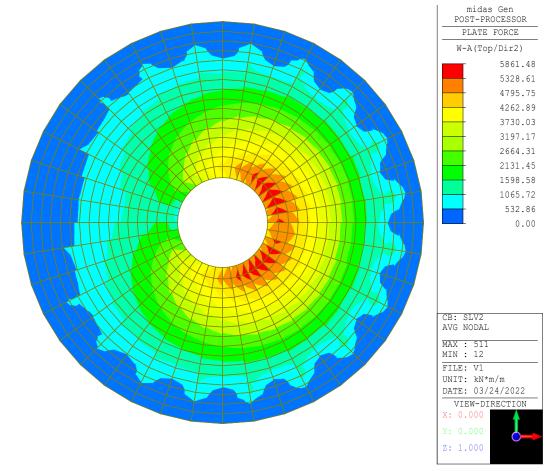


Figure 7-22 - SLV2: Momento direzione circonferenziale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

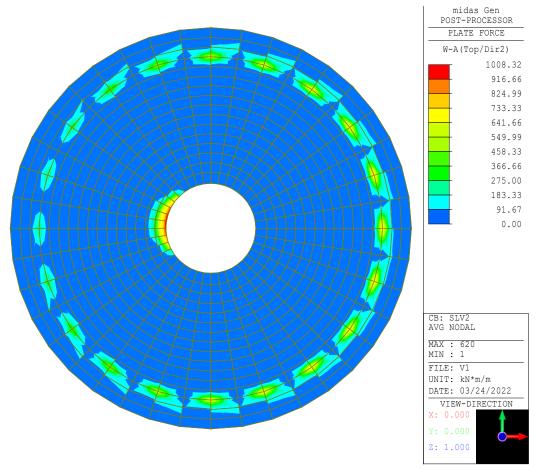


Figure 7-23 - SLV2: Momento direzione radiale, Top

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

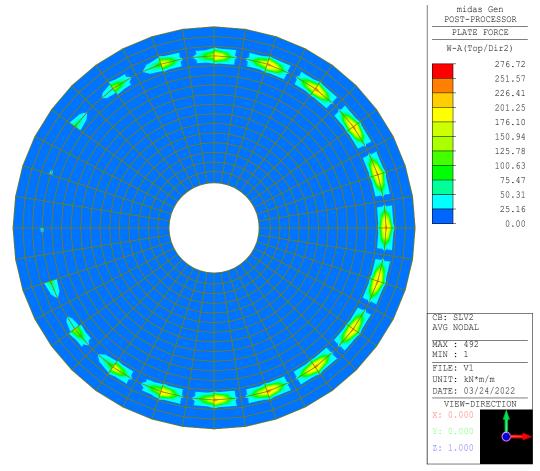


Figure 7-24 - SLV2: Momento direzione circonferenziale, Top

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

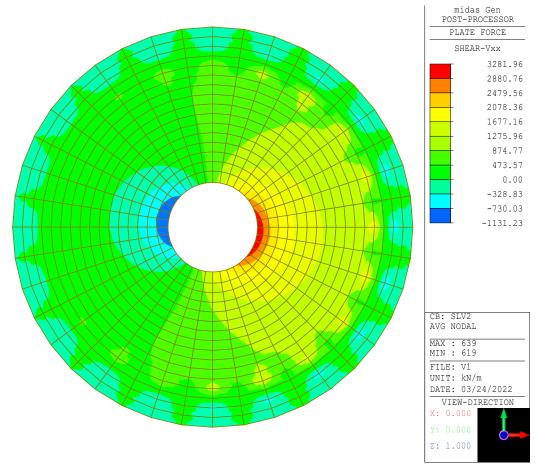


Figure 7-25 – SLV2: Taglio Vxx

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

Figure 7-26 - SLV2: Taglio Vyy

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

49 di/of 75

Combinazione "SLEr":

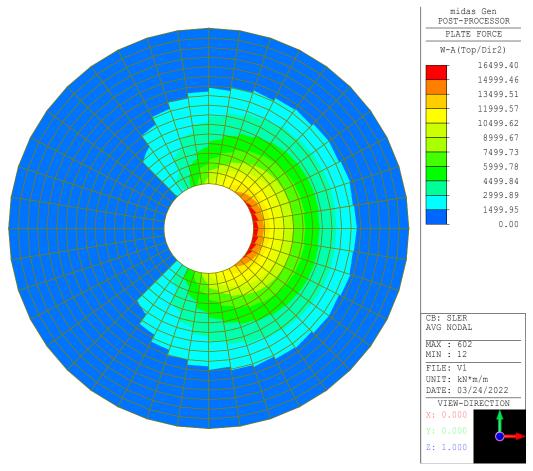


Figure 7-27 - SLEr: Momento direzione radiale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

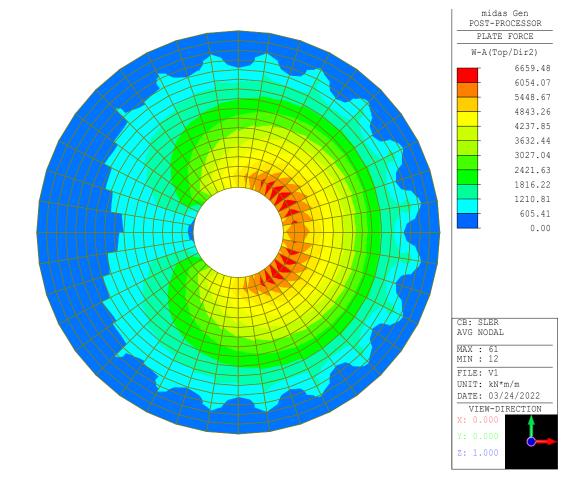


Figure 7-28 – SLEr: Momento direzione circonferenziale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

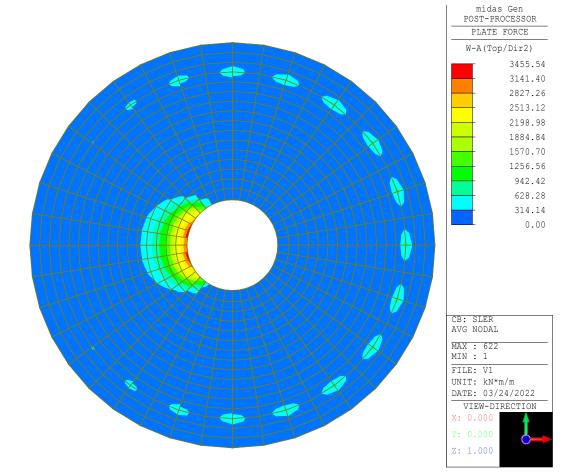


Figure 7-29 – SLEr: Momento direzione radiale, Top

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

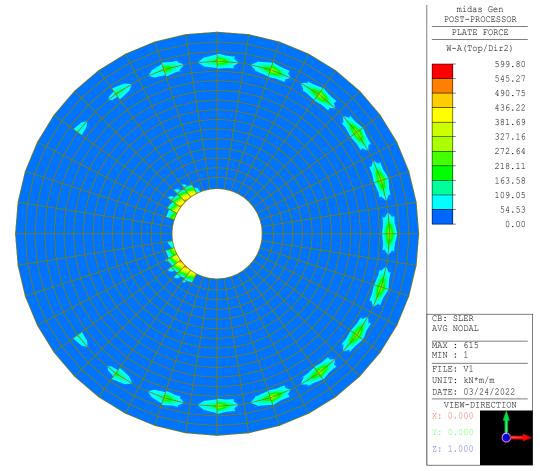


Figure 7-30 - SLEr: Momento direzione circonferenziale, Top

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

53 di/of 75

Combinazione "SLEqp":

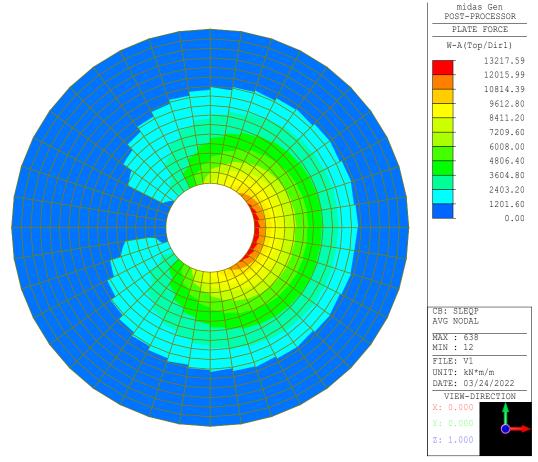


Figure 7-31 – SLEqp: Momento direzione radiale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

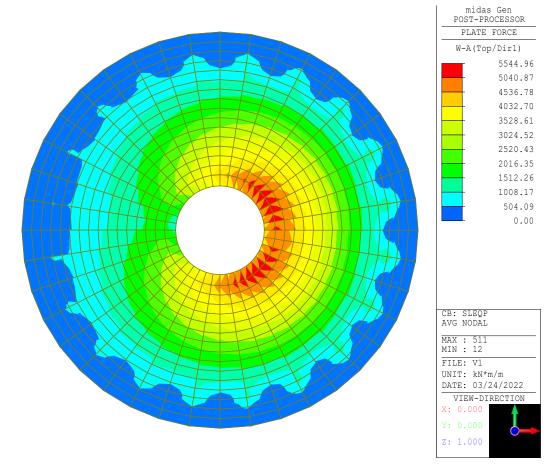


Figure 7-32 – SLEqp: Momento direzione circonferenziale, Bottom

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

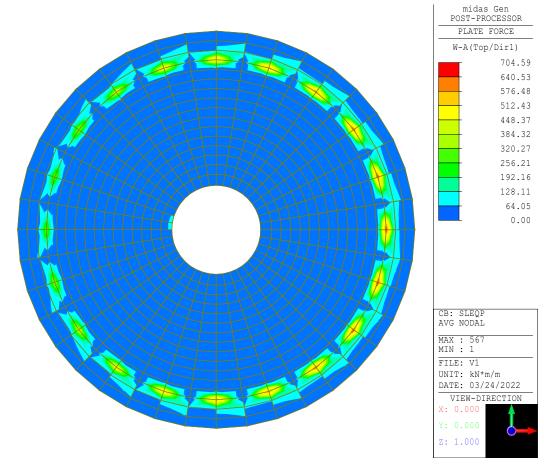


Figure 7-33 – SLEqp: Momento direzione radiale, Top

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

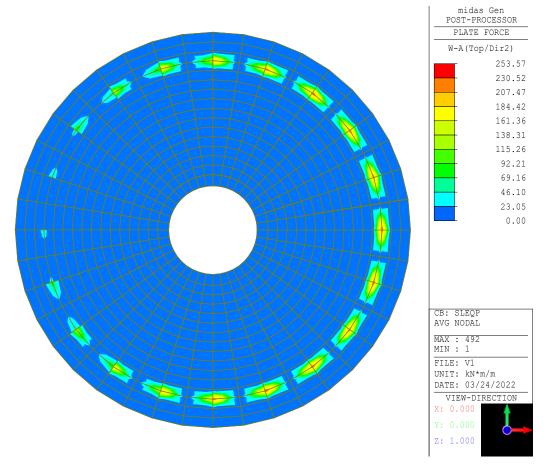


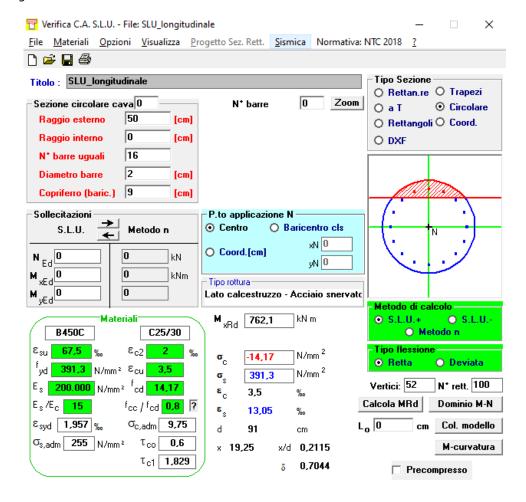
Figure 7-34 – SLEqp: Momento direzione circonferenziale, Top

GRE CODE

GRE.EEC.<u>C.25.IT.W.09317.40.001.00</u>

PAGE

57 di/of 75


7.2.4. Verifica degli elementi strutturali

Le verifiche sugli elementi strutturali vengono eseguite come segue:

- SLU: Verifica con acciaio snervato e calcestruzzo con deformazione allo 0.35%
- SLV: Verifica con acciaio in campo elastico e calcestruzzo in campo elastico
- SLE caratteristica (rara): verifica tensionale sulla massima tensione delle fibre d'acciaio $\sigma_s \leq 0.8 * f_{yk}$ e sulla massima tensione di compressione del calcestruzzo $\sigma_c \leq 0.6 * f_{ck}$
- SLE quasi permanente: verifica sulla massima tensione di compressione del calcestruzzo $\sigma_c \leq 0.45*f_{ck}$

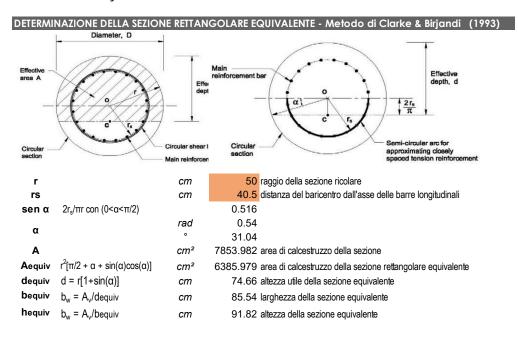
7.2.5. Verifica strutturale del palo

Sul palo sono state disposti 16Ø20 longitudinali e un'armatura a spirale Ø10/25 su tutta la sua lunghezza per garantire adeguato confinamento. Tale armatura è maggiore del minimo indicato al paragrafo 7.7.2.5 delle NTC2018.

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

58 di/of 75


Engineering & Construction

Le sollecitazioni di taglio vengono estratte dalle reazioni orizzontali globali e ripartite sui 20 pali presenti.

Load	F _x (kN)	F _Y (kN)	F _z (kN)	V _{TOT} (kN)	V _{PALO} (kN)
SLU1	0.00	0.00	71703.18	0.00	0.00
SLU2	-1352.79	-166.25	70096.52	1362.97	68.15
SLU3	-1352.79	-166.25	52670.92	1362.97	68.15
SLUext	-1688.55	-55.55	53103.37	1689.46	84.47
SLV1	-211.83	-63.55	52632.34	221.16	11.06
SLV2	-1213.90	-186.70	52224.18	1228.17	61.41

Si considera il valore di azione sollecitante tagliante derivante dalla combinazione "SLUext", più gravosa.

La resistenza a taglio viene calcolata su una sezione rettangolare equivalente attraverso il Metodo di Clarke & Birjandi.

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

59 di/of 75

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	C.A N	TC2018		
	che dei materiali				
f _{ck}		MPa	25		
α_{cc}			0.85		
γc			1.5		
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	14.17		$a_{cc} \cdot f_{cd} / g_c$
γs			1.15		
$\mathbf{f}_{y,wd}$		MPa	391.30		f_{yd} / g_s
	che della sezione resistente				
V _{Ed}	taglio sollecitante di progetto	kN	85		
b _w	larghezza della sezione	ст	85.54		
h	altezza totale della sezione	ст	91.8		
С	distanza asse barre dal lembo teso	ст	9.5		
d	altezza utile della sezione	cm	82.3		h - c
d*		cm	74.07		0.9 d
k		_	1.493		min[1.0+√(20/d) , 2.0]
A_{sl}	area di armatura longitudinale tesa	cm²	40.82		
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0052		
A_{sw}	area di armatura a taglio disposta	cm²	1.571		
s	spaziatura staffe	ст	25		
Controllo n	ecessità di armatura a taglio				
V _{Rdc1}		kΝ	296.53	[0.	$18 \cdot k \cdot (100 \cdot \rho l \cdot fck)^{\Lambda}(1/3)] / \gamma c \cdot bw \cdot d$
V _{Rdc2}		kN	224.74		$[\ 0.035 \cdot k^{\wedge}(3/2) \cdot \sqrt{(\text{fck})}\] \cdot \text{bw} \cdot \text{d}$
V _{Rdc}	resistenza della sezione non armata a taglio	kΝ	296.53		$max[V_{Rdc1}, V_{Rdc2}]$
V _{Ed} / V _{Rdc}	non è necessario prevedere l'armatura a taglio VRo	dc > VE	d		
Controllo c	apacità massima della sezione a taglio				
ν	coefficiente di riduzione della resistenza del cls fessurato per taglio)	0.5		
α_{c}	coefficiente per effetti dello sforzo assiale di compressione		1		
α	inclinazione armature a taglio	rad	1.571	gradi	90
$V_{Rd,max}$	massima resistenza a taglio-compressione della sezione	kΝ	2243.98	1.	$0 \cdot v \cdot f_{cd}/\{cot(45)+tan(45)\} \cdot bw \cdot 0.9 \cdot d^*$
V _{Ed} / V _{Rd,max}	sezione sufficiente per la resistenza taglio		0.038		
Calcolo de	ella resistenza della sezione con armatura a tagli	0			
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.02		$(A_{sw} \cdot f_{vd})/(b \cdot s \cdot f_{cd})$
9.calc	valore di teta calcolato	rad	0.203	= 11.62°	$\cot (9_{.calc}) = 4.86$
9 _{,min}	valore minimo di teta	rad	0.785	= 45°	$\cot (9_{,min}) = 1.00$
9 _{,max}	valore massimo di teta	rad	0.381	= 21.8°	$\cot (9_{max}) = 2.50$
9	valore di calcolo di teta	rad	0.381	= 21.8°	cot (9) = 2.50
V_{Rsd}	resistenza a taglio trazione	kN	455.34	A	$A_{sw} \cdot f_{yd} \cdot d^* / s \cdot (\cot(\alpha) + \cot(\beta)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kΝ	1547.57		$a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(\beta)) / (1 + \cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kΝ	455.34		
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.187		

Si ottiene che non è necessario prevedere armatura a taglio, la resistenza del calcestruzzo è sufficiente a garantire adeguata resistenza all'elemento.

Utilizzando la teoria di Broms, si deduce che i valori di resistenza geotecnica e strutturale del palo sono sufficienti a garantirne la stabilità.

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

60 di/of 75

881.77 kN

Engineering & Construction

INPUTS				
Geometria				
Dimensione sezionale del palo	d =	1.00 m		
Lunghezza palo	L =	25.00 m		
Momento di plasticizzazione della sezione	M _y =	762.00 kN m		
Parametri geotecnici				
Peso specifico terreno	γ =	19.00 kN/m^2		
Angolo di resistenza al taglio terrreno	$\phi =$	40.00 °	=	0.70 rad
Coefficienti parziali				_
Coefficiente parziale SLU per pali soggetti a carichi trasversali	$\gamma_T =$	1.30		¹ Tab.6.4.VI
Fattore di correlazione	ζ=	1.70		¹ Tab.6.4.IV

CALCOLO PER PALI IN CD

Coefficiente di spinta passiva	$K_P = (1+sen\phi)/(1-sen\phi)$	K _P =	4.60
Pressione in testa	p=3*Kp*γ*D*z	p(z=0) =	0.00 kN/m^2
Pressione in punta	p=3*Kp*γ*D*z	p(z=L) =	6,553.45 kN/m ²
Meccanismo di palo corto			
Resistenza alla traslazione orizzontale	$H_C = f(KP_d,L)$	H _C =	81,918.08 kN
Momento massimo	M _{max} =2/3 H L	Mmax =	1,365,301.39 kN m
Meccanismo di palo intermedio			
Resistenza alla traslazione orizzontale	$H_M = f(C_{u,d},L,M_y)$	H _M =	27,336.51 kN

Meccanismo di rotturaMeccanismo di palo lungoResistenza di calcolo del palo a forze orizzontali H_D = 398.99 kN

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

61 di/of 75

7.2.6. Verifica a flessione platea

Preliminarmente è stato calcolato il quantitativo di armatura disposto in termini di sezione trasversale per metro. Se ne riportano i risultati nelle tabelle sottostanti.

ARMATUR	A RADIALE	BOTTOM				
r	S	layer	n	fi	As	Note
ст	mm			mm	cm²	
300	97	2	20.62	30	145.7	
350	122	2	16.39	30	115.8	
470	164	2	12.20	30	86.2	
890	310	2	6.45	30	45.6	
1070	373	2	5.36	30	37.9	
775	270	2	7.41	30	52.3	Mezzeria Basamento

	ARMATUR	_					
	r	s	layer	n	fi	As	Note
	ст	mm			mm	cm²	
	175	100	2	20.00	20	62.8	
	890	100	2	20.00	20	62.8	
	890	100	1	10.00	20	31.4	
	1200	100	1	10.00	20	31.4	
	1200	200	1	5.00	20	15.7	
_	1250	200	1	5.00	20	15.7	
	775	100	2	20.00	20	62.8	Mezzeria Basamento

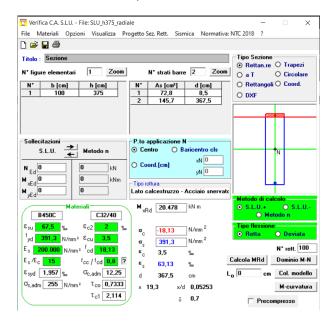
ARMATURA RADIALE TOP											
r	s	layer	n	fi	As	Note					
cm	mm			mm	cm ²						
300	97	1	10.31	30	72.8						
470	164	1	6.10	30	43.1						
775	270	1	3.70	30	26.2	Mezzeria Basamento					

ARMATUR	ARMATURA CIRCONFERENZIALE TOP										
r	s	layer	n	fi	As	Note					
cm	mm			mm	cm ²						
215	150	2	13.33	20	41.9						
470	150	2	13.33	20	41.9						
470	100	1	10.00	20	31.4						
1200	100	1	10.00	20	31.4						
1200	200	1	5.00	20	15.7						
1250	200	1	5.00	20	15.7						
775	100	1	10.00	20	31.4	Mezzeria Basamento					
1070	100	1	10.00	20	31.4	Centro palo					

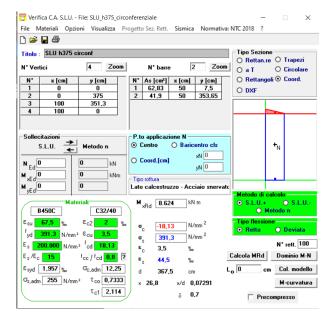
GRE.EEC.<u>C.25.IT.W.09317.40.001.00</u>

PAGE

62 di/of 75


Engineering & Construction

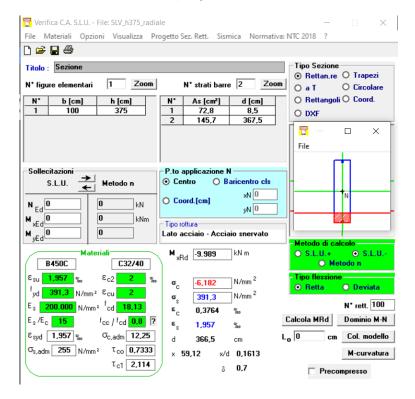
La verifica a flessione della platea è stata eseguita in tre sezioni significative, in entrambe le direzioni radiale e circonferenziale, confrontando il momento resistente con quello sollecitante Wood Armer riportato al paragrafo 8.2.3. Sono state svolte le verifiche considerando l'inviluppo delle combinazioni stato limite ultimo "SLUenv" e la combinazione "SLV2", con differenti parametri dei materiali per soddisfare le condizioni al paragrafo 8.2.4.


La verifica lato Top è stata eseguita solamente sulla sezione del colletto, più sollecitata.

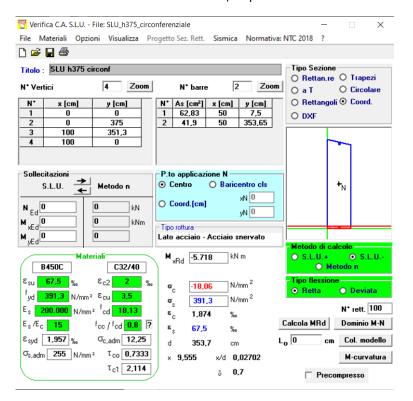
Verifiche allo Stato Limite Ultimo: inviluppo combinazioni SLU

Sezione Colletto: Verifica direzione radiale, Bottom

Sezione Colletto: Verifica direzione circonferenziale, Bottom


GRE CODE

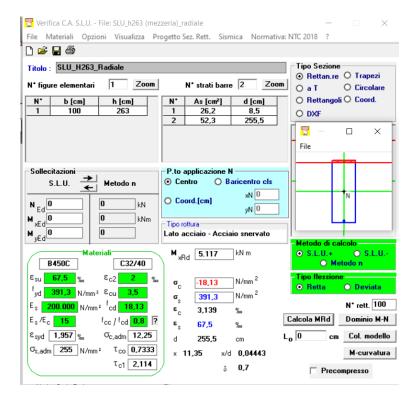
GRE.EEC.C.25.IT.W.09317.40.001.00


PAGE

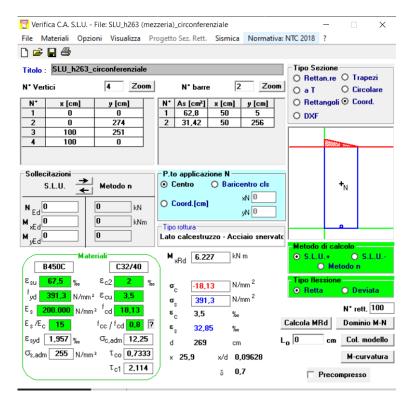
63 di/of 75

Sezione Colletto: Verifica direzione radiale, Top

Sezione Colletto: Verifica direzione circonferenziale, Top


GRE CODE

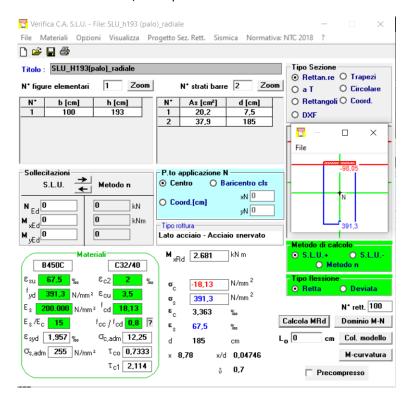
GRE.EEC.C.25.IT.W.09317.40.001.00


PAGE

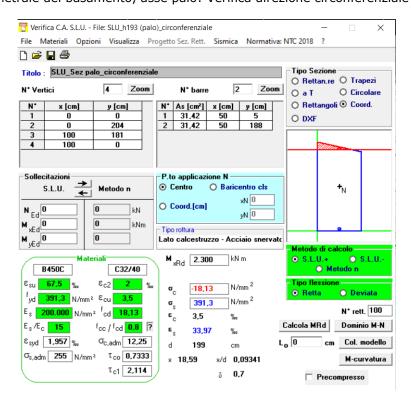
64 di/of 75

Sezione in mezzeria del basamento: Verifica direzione radiale

Sezione in mezzeria del basamento: Verifica direzione circonferenziale


GRE CODE

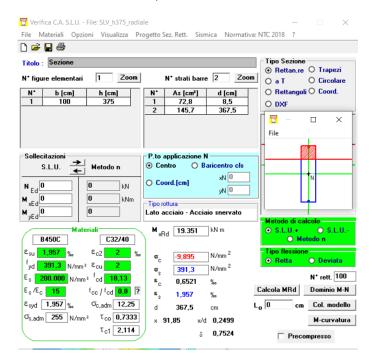
GRE.EEC.<u>C.25.IT.W.09317.40.001.00</u>


PAGE

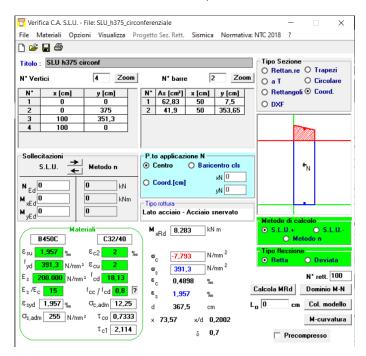
65 di/of 75

Sezione perimetrale del basamento, asse palo: Verifica direzione radiale

Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale


GRE.EEC.C.25.IT.W.09317.40.001.00

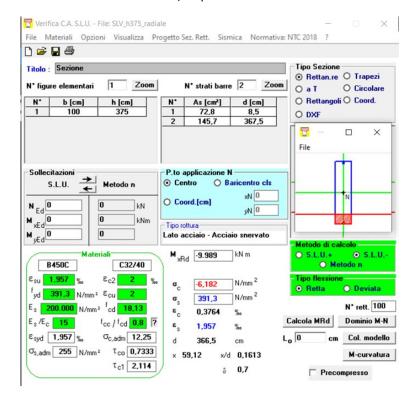
PAGE


66 di/of 75

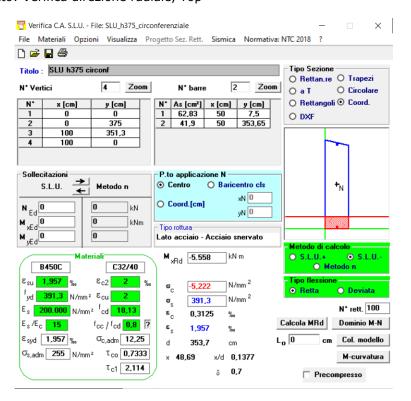
Verifica Stato Limite di Vita: combinazione SLV2

Sezione Colletto: Verifica direzione radiale, Bottom

Sezione Colletto: Verifica direzione circonferenziale, Bottom


GRE CODE

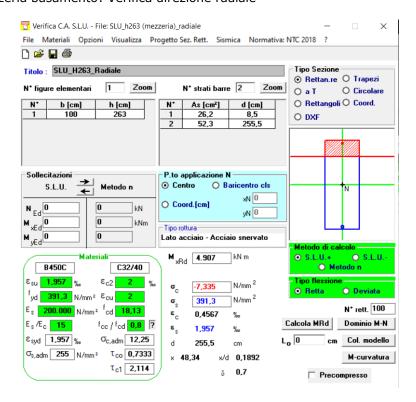
GRE.EEC.C.25.IT.W.09317.40.001.00


PAGE

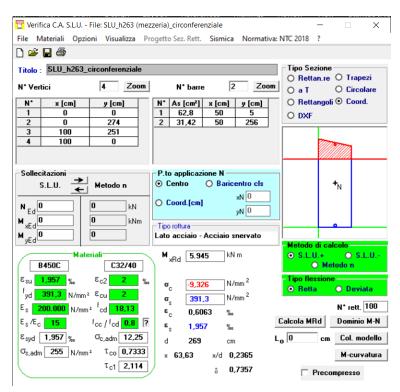
67 di/of 75

Sezione Colletto: Verifica direzione radiale, Top

Sezione Colletto: Verifica direzione radiale, Top


GRE CODE

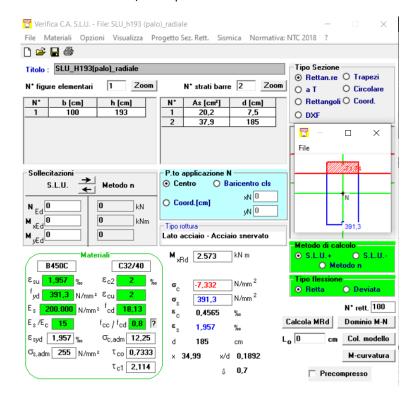
GRE.EEC.C.25.IT.W.09317.40.001.00


PAGE

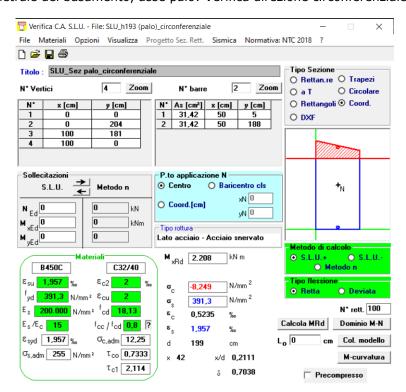
68 di/of 75

Sezione mezzeria basamento: Verifica direzione radiale

Sezione mezzeria basamento: Verifica direzione circonferenziale


GRE CODE

GRE.EEC.<u>C.25.IT.W.09317.40.001.00</u>


PAGE

69 di/of 75

Sezione perimetrale del basamento, asse palo: Verifica direzione radiale

Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

70 di/of 75

7.2.7. Verifica a taglio platea

Si considerano i valori di taglio massimo Vxx in combinazione "SLUenv", come riportati al paragrafo 8.2.3., essendo in questa direzione le azioni più gravose.

Sezione Colletto:

Nelle zone di maggior sollecitazione, riscontrabili nel perimetro prossimo al colletto di innesto della torre dovrà essere disposto un opportuno quantitativo di armatura trasversale in modo da incrementare la resistenza a taglio della piastra.

Dovranno essere disposti nella zona prossima al colletto a passo 25 cm almeno $6.28~\text{cm}^2$ di armatura (2 \emptyset 20) per metro, come mostrato nella verifica sottostante.

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	.A N	NTC2018	
Caratteristi	che dei materiali			
f _{ck}		MPa	32	
α_{cc}			0.85	
γ _c			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13	$a_{cc} \cdot f_{cd} / g_{c}$
γs			1.15	
$f_{y,wd}$		MPa	391.30	f_{yd} / g_s
Caratteristi	che della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kΝ	4280	
b_w	larghezza della sezione	cm	100	
h	altezza totale della sezione	cm	375	
С	distanza asse barre dal lembo teso	cm	8.5	
d	altezza utile della sezione	cm	366.5	h - c
d*		cm	329.85	0.9 d
k		_	1.234	min[1.0+√(20/d), 2.0]
A_{sl}	area di armatura longitudinale tesa	cm²		
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0039	
A_{sw}	area di armatura a taglio disposta	cm²	6.28	
S	spaziatura staffe	ст	25	
Controllo n	ecessità di armatura a taglio			
V _{Rdc1}		kΝ	1256.87	$[0.18 \cdot k \cdot (100 \cdot \rho l \cdot fck)^{(1/3)}]/\gamma c \cdot bw \cdot d$
V_{Rdc2}		kΝ	994.21	$[0.035 \cdot k^{\wedge}(3/2) \cdot \sqrt{(fck)}] \cdot bw \cdot d$
V_{Rdc}	resistenza della sezione non armata a taglio	kΝ	1256.87	max[V _{Rdc1} , V _{Rdc2}]
V_{Ed} / V_{Rdc}	è necessario prevedere l'armatura a taglio VRdc < \	/Ed		
Controllo c	apacità massima della sezione a taglio			
v	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5	
α_{c}	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
$V_{Rd,max}$	massima resistenza a taglio-compressione della sezione	kΝ	14953	$1.0 \cdot \nu \cdot f_{cd}/\{cot(45) + tan(45)\} \cdot bw \cdot 0.9 \cdot d^*$
V _{Ed} / V _{Rd,max}	sezione sufficiente per la resistenza taglio		0.286	
Calcolo de	ella resistenza della sezione con armatura a taglic)		
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.05	$(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$
9,calc	valore di teta calcolato	rad	0.336	= 19.22° cot $(9_{,calc})$ = 2.87
$\vartheta_{,min}$	valore minimo di teta	rad	0.785	= 45° cot $(9_{,min})$ = 1.00
9, _{max}	valore massimo di teta	rad	0.381	= 21.8° cot (9_{max}) = 2.50
9	valore di calcolo di teta	rad	0.381	= 21.8° $\cot(9) = 2.50$
V_{Rsd}	resistenza a taglio trazione	kN	8106	$A_{sw} \cdot f_{yd} \cdot d^{\star} / s \cdot (cot(\alpha) + cot(\vartheta)) \cdot sen(\alpha)$
V_{Rcd}	resistenza a taglio compressione	kΝ	10313	$b \cdot d^* \ a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(9)) / (1 + \cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	8106	() () () ()
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.528	
Lur - Nu	and the second s		0	

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

71 di/of 75

Engineering & Construction

Nelle altre zone si è verificato che è sufficiente una spaziatura inferiore.

Nel tratto centrale del basamento è possibile aumentare il passo a 50 cm, come mostrato nella verifica sottostante, nella sezione posta a 470 cm dal centro del basamento.

	AZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	C.A N	ITC2018	
	iche dei materiali			
f _{ck}		MPa	32	
α_{cc}			0.85	
γc			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13	$a_{cc} \cdot f_{cd} / g_{c}$
γs			1.15	
$f_{y,wd}$		MPa	391.30	f_{yd}/g_s
Caratterist	iche della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kN	2700	
b _w	larghezza della sezione	ст	100	
h	altezza totale della sezione	ст	335	
С	distanza asse barre dal lembo teso	ст	8.5	
d	altezza utile della sezione	cm	326.5	h - c
d*		cm	293.85	0.9 d
k			1.247	min[1.0+√(20/d) , 2.0]
A _{sl}	area di armatura longitudinale tesa	cm ²	86.2	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0026	
A _{sw}	area di armatura a taglio disposta	cm ²	6.28	
s	spaziatura staffe	cm	50	
Controllo	necessità di armatura a taglio			
V _{Rdc1}	•	kN	986.98	[0.18 · k · (100 · ρl · fck)^(1/3)] / γc · bw · d
V _{Rdc2}		kN	900.71	[0.035 · k^(3/2) · √(fck)] · bw · d
V _{Rdc}	resistenza della sezione non armata a taglio	kN	986.98	max[V _{Rdc1} , V _{Rdc2}]
V _{Ed} / V _{Rdc}	è necessario prevedere l'armatura a taglio VRdc <	VEd		[1007 1002]
	capacità massima della sezione a taglio			
v	coefficiente di riduzione della resistenza del cls fessurato per taglic)	0.5	
α _c	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
V _{Rd,max}	massima resistenza a taglio-compressione della sezione	kN	13321	$1.0 \cdot v \cdot f_{cd} / \{\cot(45) + \tan(45)\} \cdot bw \cdot 0.9 \cdot d^*$
	sezione sufficiente per la resistenza taglio		0.203	
	ella resistenza della sezione con armatura a tagli	_		
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)	U	0.03	$(A_{sw} \cdot f_{vd})/(b \cdot s \cdot f_{cd})$
	valore di teta calcolato	rad	0.235	= 13.46° $\cot (9_{\text{calc}}) = 4.18$
9 _{,calc}	valore minimo di teta	rad	0.235	= 45° $\cot(\theta_{\text{min}}) = 4.16$
Ֆ _{,min}				
9 _{,max} 9	valore massimo di teta	rad	0.381 0.381	= 21.8° $\cot (9_{,max}) = 2.50$ = 21.8° $\cot (9) = 2.50$
-	valore di calcolo di teta	rad LN	3611	. ,
V _{Rsd}	resistenza a taglio trazione	kN		$A_{sw} \cdot f_{yd} \cdot d^* / s \cdot (\cot(\alpha) + \cot(9)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	9187	$b \cdot d^* \ a_c \cdot n \cdot f_{cd} \cdot \ (\cot(\alpha) + \cot(\vartheta)) \ / \ (1 + \cot^2(\alpha))$
V_{Rd}	resistenza a taglio della sezione	kN	3611	
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.748	

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

72 di/of 75

Nella zona più periferica è possibile aumentare il passo fino a 1 m come evidenziato nella verifica sottostante, per una sezione a 1130 cm dal centro del basamento.

DETERMINA	AZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	.A N	ITC2018	
Caratterist	iche dei materiali			
f _{ck}		MPa	32	
α_{cc}			0.85	
γ _c			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13	$a_{cc} \cdot f_{cd} / g_{c}$
γs			1.15	
$f_{y,wd}$		MPa	391.30	f _{yd} / g _s
Caratterist	iche della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kΝ	800	
b _w	larghezza della sezione	ст	100	
h	altezza totale della sezione	ст	175	
С	distanza asse barre dal lembo teso	ст	8.5	
d	altezza utile della sezione	ст	166.5	h - c
d*		ст	149.85	0.9 d
k		•	1.347	min[1.0+√(20/d) , 2.0]
A _{sl}	area di armatura longitudinale tesa	cm ²	35.9	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0021	
A_{sw}	area di armatura a taglio disposta	cm²	6.28	
s	spaziatura staffe	ст	100	
Controllo	necessità di armatura a taglio			
V _{Rdc1}		kΝ	503.77	[$0.18 \cdot k \cdot (100 \cdot \rho l \cdot fck)^{(1/3)}$] / $\gamma c \cdot bw \cdot d$
V _{Rdc2}		kΝ	515.12	$[\ 0.035 \cdot k^{\wedge}(3/2) \cdot \sqrt{(\text{fck})}\] \cdot \text{bw} \cdot \text{d}$
V_{Rdc}	resistenza della sezione non armata a taglio	kΝ	515.12	max[V _{Rdc1} , V _{Rdc2}]
V _{Ed} / V _{Rdc}	è necessario prevedere l'armatura a taglio VRdc < \	/Ed		
Controllo	capacità massima della sezione a taglio			
ν	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5	
α_{c}	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
$V_{Rd,max}$	massima resistenza a taglio-compressione della sezione	kΝ	6793	$1.0 \cdot v \cdot f_{cd}/\{cot(45)+tan(45)\} \cdot bw \cdot 0.9 \cdot d^*$
V _{Ed} / V _{Rd,ma}	ax sezione sufficiente per la resistenza taglio		0.118	
Calcolo d	ella resistenza della sezione con armatura a taglio)		
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.01	$(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$
9,calc	valore di teta calcolato	rad	0.165	= 9.47° cot $(9_{,calc})$ = 5.99
9, _{min}	valore minimo di teta	rad	0.785	= 45° cot (9_{min}) = 1.00
9, _{max}	valore massimo di teta	rad	0.381	= 21.8° $\cot (9_{max}) = 2.50$
9	valore di calcolo di teta	rad	0.381	= 21.8° cot (9) = 2.50
V_{Rsd}	resistenza a taglio trazione	kΝ	921	$A_{sw} \cdot f_{yd} \cdot d^* / s \cdot (\cot(\alpha) + \cot(9)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	4685	$b \cdot d^* \ a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(\beta)) / (1 + \cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	921	
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.869	

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

73 di/of 75

7.2.8. Verifica a punzonamento platea

La verifica di punzonamento viene eseguita considerando la reazione massima (combinazione "SLUenv") misurata alla base del palo meno il peso proprio del palo, sulla base delle indicazioni dell'EC2. Cautelativamente il coefficiente β viene adottato pari a 1.5, come per il caso di elementi posti all'angolo di piastre.

 $V_{Ed} = 5323 - 490 = 4833 \text{ kN}$

Dati di input

	Elemento: Basamento pala eolica									
$V_{Ed,g}$		daN	483,353	Forza globale di taglio-punzonamento di progetto						
ΔV_{Ed}		daN	0	Forza contraria a V	_{Ed,g} (eventuale, ne	el caso di fondazion	ni)			
β		n.o puro	1.50	coefficiente amplificativo della forza, in caso di eccentricità di carico						
Н		cm	177.00	Altezze totale della	Altezze totale della piastra					
\mathbf{d}_{y}		cm	168.00	altezze utili relative	alle armature pos	ste nelle due dir. or	togonali			
\mathbf{d}_{z}		cm	165.00	altezze utili relative alle armature poste nelle due dir. ortogonali						
r _{ly}		%	0.21%	Rapporto % dell'armat. tesa in direz "y" rispetto area sezione						
\mathbf{r}_{Iz}		%	0.09%	Rapporto % dell'arı	mat. tesa in direz.	"z" rispetto area se	zione			
R ck		daN/cm ²	400.0	Resistenza caratter	ristica cubica del	calcestruzzo della	lastra			
	Pilastro	Sezione	b) Circolare		C	simbolo				
	Pilastro	Posizione	d) di Bordo co	on sporto	BS	simbolo				
	Fori	Vicinanza	a) No		N	simbolo				
Φ	cm 100.00			diametro pilastro c	ircolare					

Dati dedotti dai materiali e dai dati di input

f ck	daN/cm ²	332.0	Resistenza caratteristica cilindrica del calcestruzzo
f _{cd}	daN/cm ²	188.1	Resistenza di calcolo a compressione del calcestruzzo
$\mathbf{f} = \mathbf{f}_{ck}^{1/2} / \mathbf{f}_{yk}$	cm/daN ^{1/2}	0.004049	Parte dipendente dai materiali nella formula (9.11)
$d = d_{eff}$	cm	166.50	Altezza utile della sezione
$\mathbf{r}_{\text{lyz}} = \text{RADQ}(\boldsymbol{\rho} \mathbf{y} \times \boldsymbol{\rho} \mathbf{z})$	n.o puro	0.00140	Radice quadrata del prodotto delle percentuali di armatura
r ι = min (0.02 ; ρlyz)	n.o puro	0.00140	Coefficiente della formula (6.47): deve essere comunque <= 0.02
$\mathbf{d}_{u1} = 2 \times \mathbf{d}$	cm	333.00	Distanza di u ₁ dal filo pilastro
$\mathbf{d}_{\mathrm{est}} = \mathbf{k}_{\mathrm{out}} \times \mathbf{d}$	cm	249.75	Distanza da u out dell'armatura più lontana dal filo pilastro
$d_{min} = 0.3 \times d$	cm	49.95	Distanza dal filo pilastro dell'armatura più vicina (cuciture verticali)
$d_{rad,max} = 0.75 \times d$	cm	124.88	Distanza radiale massima fra cuciture
$\mathbf{d}_{cir,max,i} = 1.5 \times \mathbf{d}$	cm	249.75	Distanza circonferenziale massima per cuciture interne a \mathbf{u}_{out}
$d_{cir,max,e} = 2.0 \times d$	cm	333.00	Distanza circonferenziale massima per cuciture esterne a \mathbf{u}_{out}

Dati dedotti: forze, tensioni, perimetro di verifica

$V_{Ed} = \beta \times (V_{Ed,q} - \Delta V_{Ed})$	daN	725,030	Forza effettiva di taglio-punzonamento di progetto
$\tau_{Rd,max} = \mathbf{v}_{V} \times \mathbf{v} \times \mathbf{f}_{Cd}$	daN/cm ²	37.63	Tensione di taglio-punzonamento massima assoluta
$\mathbf{k} = \min (2 ; 1 + (20/\mathbf{d})^{1/2})$	n.o puro	1.347	Coefficiente della formula (6.47): deve essere comunque <= 2.00
$\tau_a = \mathbf{C}_{Rd,c} \times \mathbf{k} \times (100 \times \rho_l \times \mathbf{f}_{ck})^{1/3}$	daN/cm ²	2.698	Tensione massima ammessa senza armatura da confrontare con $ au_{\text{min}}$
$\tau_{\text{min}} = 0.1107 \text{ x } \mathbf{k}^{3/2} \text{ x } \text{fck}^{1/2}$	daN/cm ²	3.152	Tensione massima ammessa senza armatura: valore minimo comunque
$\tau_{Rd,c} = \max(\tau_a; \tau_{min})$	daN/cm ²	3.152	Tensione massima ammessa senza armatura (max fra $ au_{min}$ e $ au_{Rd,c}$)
$\mathbf{u}_{\text{out}} = \mathbf{V}_{\text{Ed}} / (\boldsymbol{\tau}_{\text{Rd,c}} \times \mathbf{d})$	cm	1,381.6	Perimetro di verifica oltre il quale non serve armatura

Perimetro di filo pilastro: u₀ cm 314.2 Perimetro di verifica di base: u₁ cm Perimetro di verifica di base: u₁ cm Perimetro di verifica di base

Verifica alla faccia del pilastro; controllo della correttezza di materiali e dimensioni

$\tau_{Ed} = \beta \times V_{Ed,g} / (u_0 \times d)$	daN/cm ²	13.86	Tensione di progetto in corrispondenza della faccia del pilastro
$\mathbf{r} = \mathbf{\tau}_{Rd,max} / \mathbf{\tau}_{Ed}$	n.o puro	2.715	materiali e geometria idonei
Verifica al perimetro di base; controllo della necessità di armatura			
$\boldsymbol{\tau}_{Ed,1} = \mathbf{V}_{Ed} / (\mathbf{u}_1 \mathbf{xd})$	daN/cm ²	2.897	Tensione di progetto in corrispondenza della sezione di base
$\mathbf{r} = \mathbf{\tau}_{Rd,c} / \mathbf{\tau}_{Ed,1}$	n.o puro	1.088	non è necessaria l'armatura

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

74 di/of 75

7.2.9. Verifiche tensionali in esercizio

Si esegue il controllo delle tensioni sulla sezione del colletto, più sollecitata, e si verifica che siano compatibili con i seguenti limiti imposti dalla Normativa.

Sono stati ottenuti i seguenti risultati, che verificano le sezioni analizzate.

Combinaziono	Normativa	Valore limite	Valore progetto	
Combinazione	Normativa	valore illilite	Direzione radiale	Direzione circonferenziale
SLEr	$\sigma_s \le 0.8 * f_{yk}$	$\sigma_s \leq 360 \text{ MPa}$	334.4 MPa	316.7 MPa
	$\sigma_c \le 0.6 * f_{ck}$	$\sigma_c \leq 19.2 \text{ MPa}$	8.2 MPa	5.0 MPa
SLEqp	$\sigma_c \le 0.45 * f_{ck}$	$\sigma_c \leq 14.4 \text{ MPa}$	6.6 MPa	4.2 MPa

7.3. CALCOLO RIGIDEZZA ALLA ROTAZIONE

Ai fini del calcolo della rigidezza alla rotazione si sono presi in considerazione i nodi agli estremi della fondazione (16 e 336) indicati nell'immagine seguente e distanti 2500 cm.

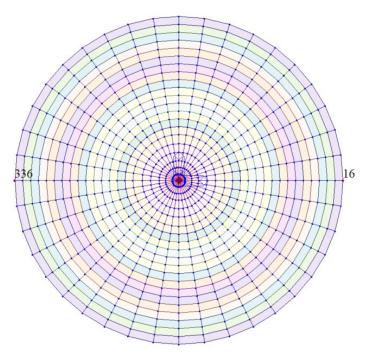


Figure 7-35 – Identificazione nodi

Il documento "Design and construction guidelines for the foundations of wind turbine generators", al paragrafo 9.1, specifica di verificare la rigidezza del basamento allo Stato Limite di Esercizio. Si considerano quindi gli spostamenti dei nodi precedentemente indicati, nelle combinazioni "SLEr" e "SLEqp".

GRE CODE

GRE.EEC.C.25.IT.W.09317.40.001.00

PAGE

75 di/of 75

La seguente tabella riassume i dati di input ed i risultati relativi al calcolo della rigidezza rotazionale del basamento:

RIGIDEZZA	ROTAZIONALE DEL BASAMENTO	
	Combinazione di calcolo	SLEr
S _{max}	spostamento massimo	0.49 cm
S _{min}	spostamento minimo	0.05 cm
S _{max} - S _{min}	differenza tra i due spostamenti	0.44 cm
d	distanza tra i nodi	2500 cm
r	angolo di rotazione	0.00018 rad
М	Momento flettente agente	178349500 Nm
)	rigidezza rotazionale	1.01E+12 Nm/rad
lim	rigidezza rotazionale minima	1.50E+11 Nm/rad
	Verifica soddisfatta	ок
	Combinazione di calcolo	SLEqp
max	spostamento massimo	0.42 cm
min	spostamento minimo	0.12 cm
S _{max} - S _{min}	differenza tra i due spostamenti	0.30 cm
	distanza tra i nodi	2500 cm
ľ	angolo di rotazione	0.00012 rad
Л	Momento flettente agente	119805990 Nm
+	rigidezza rotazionale	9.98E+11 Nm/rad
• lim	rigidezza rotazionale minima	1.50E+11 Nm/rad
	Verifica soddisfatta	ОК

La rigidezza alla rotazione, calcolata come (M/ σ) è superiore, per entrambe le combinazioni di calcolo, al valore minimo indicato nella specifica fornita dal produttore della turbina (1.5E+11 Nm/rad) e riportata nell'immagine sottostante.

The value for SG 6.0-170 T115-50A is shown in Table 2:

WTG	SG 6.0-170 T115-50A
Minimum rotational stiffness of the foundation	1.5E+11 Nm/rad

Table 2 SG 6.0-170 T115-50A Minimum rotational stiffness