

Direzione Progettazione

S.S.51"ALEMAGNA"

VARIANTE DI LONGARONE

PROGETTO FATTIBILITA' TECNICA ED ECONOMICA

COD. VE407

PROGETTAZIONE: ATI VIA - SERING - VDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE e PRGETTISTA:

Dott. Ing. Massim Capasso (Ord. Ing. Prov. Roma A26031)

PROGETTISTA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso (Ord. Ing. Prov. Roma 26031) Responsabile Strutture: Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma 27296) Responsabile Idraulica, Geotecnica e Impianti: Dott. Ing.

(Ord. Ing. Prov. Palermo 2872)
Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:
Dott. Geol. Enrico Carcurulo (Ord. Geo. Regione Sicilia 966)
COORDINATORE SICUREZZA IN FASE DI PROGETIAZIONE:
Dott. Ing. Matter Di Fricagne (Ord. Ing. Prov. Roma A15138)
COORDINATORE ATTIVITA' DI PROGETTAZIONE:

Dott. Ing. MariaAntonietta Merendino (Ord. Ing. Prov. Roma A28481)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Ettore De Cesbron De La Grennelais

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

GEOLOGIA, GEOTECNICA E SISMICA

RELAZIONE GEOLOGICA

CODICE PROGETTO PROGETTO LIV. PROG. ANNO DPVE0407 D 21		nome file VE407_T00GE00GE0R{	REVISIONE	SCALA:		
		CODICE TOOGEOOGE	A	-		
D						
С						
В						
Α	EMISSIONE		MAGGIO 2022	G. FALASCHI	M. CUCCARO	M.CAPASSO
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

Relazione geologica

INDICE

1	PREMESSA	3
2	RIFERIMENTI NORMATIVI	4
3	INQUADRAMENTO GEOGRAFICO	6
4	INDAGINI GEOGNOSTICHE	8
4.1	Indagini pregresse	8
4.2	Indagini di progetto	8
5	INQUADRAMENTO GEOLOGICO	11
5.1	Quadro strutturale e tettonica	11
5.1	Stratigrafia	13
6	INQUADRAMENTO GEOMORFOLOGICO	21
6.1	Pericolosità geologica e confronto con quadri di pericolosità (PAT, PAI e PTCP)	27
6.2	Analisi territoriale tramite Monitoraggio radar satellitare Programma Sentinel 1	74
7	QUADRO IDROGEOLOGICO	85
8	INDAGINI GEOTECNICHE	98
9	SISMICITÀ DELL'AREA	112
9.1	Macrosismicità dell'area	112
9.2	Sismicità storica	113
9.1	Caratterizzazione sismogenetica e pericolosità sismica	117
9.2	Elementi di amplificazione sismica	130
10	ANALISI DEL TRACCIATO	139
10.1	1 Tratto compreso tra la progressiva 0+000 e la 2+500	140
10.2	2 Tratto compreso tra la progressiva 2+500 e la 3+070	143
10.3	3 Tratto compreso tra la progressiva 3+070 e la 4+170	145

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

e la 6+465148	Tratto compreso tra la progressiva 4+170 e la	10.4
e la 9+315151	Tratto compreso tra la progressiva 6+465 e la	10.5
e la 11+241156	Tratto compreso tra la progressiva 9+315 e la	10.6
160	BIBLIOGRAFIA	11 B

VE407

Relazione geologica

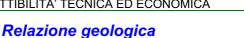
1 PREMESSA

L'intervento VE407 S.S. 51 "Alemagna" – Variante di Longarone prevede l'adeguamento della S.S.51 a Tipo C1. La presente relazione descrive gli studi geologici eseguiti a supporto della redazione del progetto di fattibilità tecnica ed economica (PFTE) della suddetta variante nel tratto compreso tra Pian di Vedoia e lagalleria Termine a monte di Castellavazzo.

L'intervento inserito con codice VE407 nel Contratto di Programma 2016 - 2020 sottoscritto tra Ministero delle Infrastrutture ed Anas, approvato con Delibera C E n. 5 del 7 agosto 017 pubblicata sulla gazzetta Ufficiale n.292 del 15 dicembre 2017. La S.S. 51 è la principale arteria stradale Veneto Settentrionale; collega San Vendemiano, in provincia di Treviso, con Dobbiaco in Provincia di Bolzano.

Il tracciato attuale della S.S. 51 attraversa il paese di Longarone. Ciò provoca una forte discontinuità funzionale, derivante dalla connotazione urbana che la strada forzatamente assume costituendo un "collo di bottiglia" per l'intera rete viaria della zona. La situazione odierna del traffico lungo la S.S.51 ha ricadute negative anche sulla sicurezza della circolazione. Infatti il numero annuo d'incidenti benché non elevato in valore assoluto è significativamente maggiore della media sull'intero percorso.

Il tracciato della variante ha una lunghezza di circa 11 km. L'intervento inizia in corrispondenza dello svincolo di Soverzene dove l'autostrada A 7 confluisce nella SS51, si sviluppa totalmente in destra idraulica del fiume Piave e si riconnette alla S.S.51 attuale poco a nord dell'abitato di Castellavazzo in corrispondenza della galleria stradale esistente.


La piattaforma stradale è di tipo C1 (strade extraurbane secondarie), ai sensi del D.M. 5/11/2001. Lungo il tracciato è prevista la realizzazione di 7 viadotti, per una lunghezza complessiva di circa 3100 metri, oltre ad una galleria naturale (GN Castellavazzo) di circa 1540 m.

È prevista la realizzazione di tre nuove intersezioni a livelli sfalsati per la riconnessione della variante alla rete stradale esistente:

- Svincolo A 7;
- Svincolo Zona industriale;
- Svincolo Longarone Centro.

Lo studio è stato condotto seguendo lo schema adottato per le progettazioni geologiche di infrastrutture a sviluppo lineare, analizzando le possibili interazioni dell'opera con il contesto geologico geomorfologico ed idrogeologico.

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

2 RIFERIMENTI NORMATIVI

VE407

Gli studi geologici e la redazione della presente relazione sono stati eseguiti seguendo le prescrizioni delle norme, i cui riferimenti sono di seguito riportati:

- D.G.R. n. 244 del 09 marzo 2021 Aggiornamento dell'elenco delle zone sismiche del Veneto.
 D.P.R. 6 giugno 2001, n. 380, articolo 83, comma 3; D. Lgs 31 marzo 1998, n. 112, articoli 93 e 94. D.G.R./CR n. 1 del 19/01/2021.
- Circolare esplicativa del 21 gennaio 2019 del Consiglio Superiore dei Lavori Pubblici -Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018;
- D.M. 17 Gennaio 2018 Nuove Norme tecniche per le costruzioni;
- L.R. del Veneto n. 14 del 06 giugno 2017; "Disposizioni per il contenimento del consumo di suolo e modifiche della legge regionale 23 aprile 2004, n. 11 Norme per il governo del territorio e in materia di paesaggio".
- D.P.C.M. del 21/11/2013, "Definizione di una metodologia teorica e sperimentale per l'analisi sismica locale a supporto della pianificazione". Allegato A) "Linee Guida Regionali per la Microzonazione sismica". Allegato B): "Elenco dei Comuni del Veneto a cui applicare le linee guida per gli studi di Microzonazione Sismica".
- D.G.R. 1572 del 03/09/2013, Approvazione del "Piano stralcio per l'assetto idrogeologico dei bacini idrografici dei fiumi Isonzo, Tagliamento, Piave, Brenta-Bacchiglione"
- L.R. del Veneto n. 17 del 27 aprile 2012: "Disposizioni in materia di risorse idriche".
- D.G.R. del Veneto n. 1136 del 23 marzo 2010; "Piano Territoriale di Coordinamento Provinciale (PTCP) della provincia di Belluno", secondo quanto previsto dall'articolo 23 della Legge urbanistica regionale n. 11 del 23 aprile 2004 Norme per il governo del territorio
- D.G.R. 71 del 22/01/2008, "Direttive per l'applicazione dell'Ordinanza del Presidente del Consiglio dei Ministri 28 aprile 2006, n. 3519 Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone" e s. m. e i.;
- D.C.I. del Veneto del 19 giugno 2007 e s.m. e i., "Progetto di Piano stralcio per l'assetto idrogeologico dei bacini dei fiumi Isonzo, Tagliamento, Piave, Brenta-Bacchiglione. Adozione della 1° variante e delle corrispondenti misure di salvaguardia."
- Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20.03.2003, "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per la costruzione in zona sismica";

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

- Norme Tecniche di cui al D.M. 11.03.88. Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione;
- Piani territoriali e Regolamenti Urbanistici:
 - 2020 Variante n. 2 al Piano degli Interventi (PI) Z.I. Villanova. Adozione, ai sensi dell'art.
 18 della Legge regionale del Veneto n. 11/2004
 - > 2020 P.P- Sinteco
 - ➤ 2019 P.A.T. Longarone Variante N. 2 (Territorio di Castellavazzo)
 - 2018 Prima Variante al Piano degli Interventi (PI). Adozione, ai sensi dell'art. 18 della Legge regionale del Veneto n. 11/2004
 - ➤ 2018 P.A.T. Longarone Variante N. 1 (Territorio di Castellavazzo)
 - ≥ 2015 Variante parziale n. 1/2015 al P.R.G. dell'ex Comune di Castellavazzo
 - 2015 Variante parziale al Regolamento Edilizio n.1/2015, ai sensi dell'art.50, comma 4 lett. I), della L.R. 27/06/1985, n.61. Adozione.
 - 2013 P.A.T.I. "Longaronese" di cui all'art. 13 della Legge Regionale 11/2004, approvato in Conferenza di Servizi in data 15 luglio 2013, a seguito di tale approvazione il Piano Regolatore Generale vigente, per le parti compatibili con il PAT, è diventato il Piano degli Interventi (P.I.), in base alle disposizioni della Legge regionale Urbanistica n.11/2004, in particolare dell'art. 48, comma 5 bis

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

3 INQUADRAMENTO GEOGRAFICO

Il tracciato di progetto, che ha una lunghezza di circa 10,2 km, ricade interamente nella provincia di Belluno, interessando i territori comunali di Longarone (con l'ex territorio comunale di Castellavazzo) e di Ponte nelle Alpi. Esso si inserisce nell'unità fisiogeografica delle montagne dolomitiche denominata "Montagne tra il torrente Maè e il torrente Cordevole" a nord delle colline di Belluno. Questa unità comprende i rilievi montuosi presenti in destra idrografica del fiume Piave, tra il corso del torrente Maè a nord e a N-E e quello del torrente Cordevole a ovest, posti a nord delle colline di Belluno. Le quote variano tra 400 m circa e 2.565 m del monte Santa Chiara. L'idrografia dell'area in studio è dominata dal fiume Piave, che scorre da nord a sud nella sua parte orientale, formando la valle omonima, nella quale confluiscono numerose valli laterali: fra le più importanti ricordiamo, da nord a sud quella del torrente Vajont, che si immette nel Piave con una direttrice quasi perpendicolare proveniente da est; in destra idrografica, poco più a sud rispetto all'immissionedel Vajont, quella del torrente Maè, e ancora più a sud quella del torrente Desedan, del torrente della Val Gallina, in sinistra idraulica, e del torrente Rio Val dei Frari in destra idraulica. Il tracciato si sviluppa in destra del fiume Piave, a partire da Pian di Vedoia superando Longarone e Castellavazzoe si raccorda all'esistente tracciato in località Fason, poco prima dell'imbocco della Galleria Termine, vedi Fig. 1.

VE407

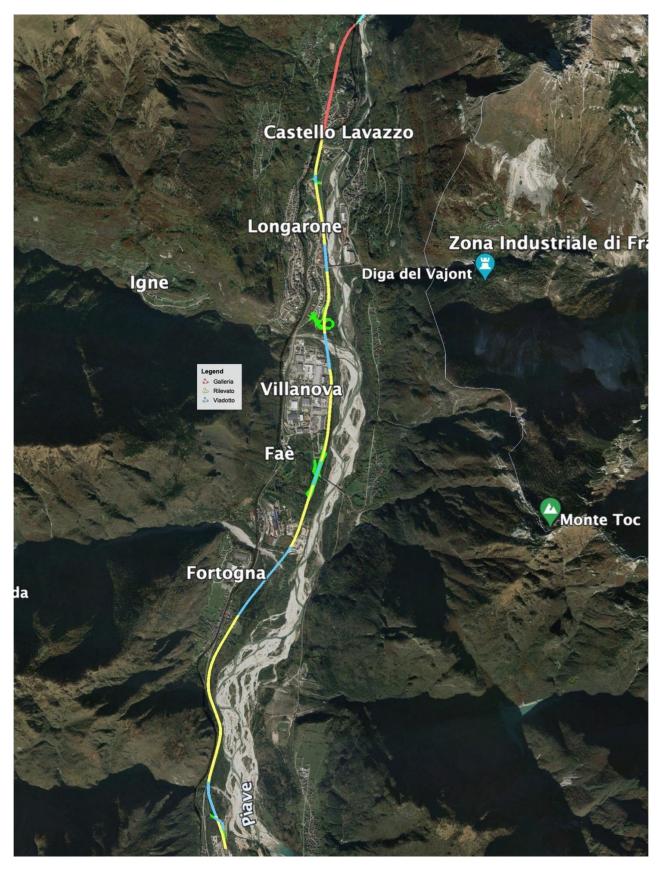


Fig. 1 - Inquadramento tracciato (Foto da Google Earth)

Relazione geologica

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

INDAGINI GEOGNOSTICHE

Al fine di dettagliare le osservazioni eseguite nei rilievi di superficie è stata effettuata una campagna di indagini geognostiche. La campagna è stata definita sia sulla scorta dei rilievi geologici preliminari, che dello studio delle indagini e degli studi precedenti effettuati. In particolare sono state analizzate le seguenti informazioni geognostiche presenti nell'area.

41 1 Indagini pregresse

Pozzo AGIP "belluno_001" 1960

n° 1 sondaggi a rotazione e carotaggio continuo profondo

Stratigrafie ISPRA

- n° 9 sondaggi
- n° 1 pozzo

È stata quindi programmata la campagna di indagine geognostica dell'anno 2021 ed è stata cos articolata:

Campagna ANAS 2017 - Soc. son.geo. s.r.l.

n° 12 sondaggi

Campagna ANAS 2019 - Soc. SOCOTEC. s.r.l.

- n° 2 penetrometrie DPSH
- n° 14 tomografie elettriche ERT
- n° 13 indagini H/V HVSR
- n° 11 sismiche a rifrazione SRT
- n° 1 sismica MASW

Campagna ANAS 2020 - Soc. son.geo. s.r.l.

n° 5 sondaggi

Campagna ANAS 2021 - Soc. son.geo. s.r.l.

n° 4 sondaggi

42 2 Indagini di progetto

Campagna ANAS 2021-22 - Soc. Vicenzetto s.r.l.

VE407

Relazione geologica

La ditta Vicenzetto s.r.l. ha fin'ora rispettato la normativa vigente in ambito geognostico di cui si riporta, di seguito, l'elenco della normativa di riferimento osservata:

- Norme Tecniche per le Costruzioni "Approvate con Decreto Ministeriale 17 gennaio 2018
- Allegati alle Norme Tecniche per le Costruzioni "Approvate con Decreto Ministeriale 14.01.2008"
- Raccomandazioni AGI (1977)
- Modalità Tecniche ANISG (1977)
- Capitolato speciale d'appalto ANAS

La campagna per l'attuale fase di progettazione consiste nelle seguenti indagini:

- n. 29 sondaggi geognostici verticali a carotaggio continuo finalizzati alla definizione della sequenza stratigrafica, dei quali n. 14 condizionati con tubo in PVC per esecuzione di prove Down-Hole e n. 14 condizionati con piezometro a tubo aperto da 2" e 3".;
- prove di laboratorio geotecnico sui campioni prelevati;
- n. 10 prove di permeabilità Lefranc
- n. 10 prove di permeabilità Lugeon
- n. 20 prove pressiometriche
- n. 2 campioni indisturbati prelevati dai sondaggi, da sottoporre a prove di laboratorio geotecnico;
- n. 136 campioni rimaneggiati prelevati dai sondaggi, da sottoporre a prove di laboratorio geotecnico e/o ambientale:
- n. 27 campioni di terreno prelevati dai sondaggi, da sottoporre a prove di laboratorio ambientale;
- n. 7 campioni di acqua prelevati dai sondaggi, da sottoporre a prove di laboratorio ambientale:
- n. 14 pozzetti esplorativi geognostici/ambientali spinti alla profondità max di 2.0 m dal p.c.
 di cui n. 9 eseguiti mediante escavatore e n. 5 mediante mototrivella;
- n. 9 prove di carico su piastra eseguite a 0.5 m dal piano campagna all'interno dei pozzetti;
- n. 20 campioni rimaneggiati prelevati dai pozzetti esplorativi di cui sopra, da sottoporre a
 prove di laboratorio geotecnico;
- n. 23 campioni di terreno prelevati dai pozzetti esplorativi di cui sopra, da sottoporre a
 prove di laboratorio ambientale;
- n. 20 pozzetti esplorativi /ambientali spinti alla profondità max di 2.0 m dal p.c. di cui n. 9
 eseguiti mediante mototrivella;

Direzione Progettazione

S.S.51"ALEMAGNA"

VARIANTE DI LONGARONE

PROGETTO FATTIBILITA' TECNICA ED ECONOMICA

COD. VE407

PROGETTAZIONE: ATTI VIA - SERING - VIDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE e PRGETTISTA:

Dott. Ing. Massim Capasso (Ord. Ing. Prov. Roma A26031)

PROGETTISTA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso (Ord. Ing. Prov. Roma 26031) Responsabile Strutture: Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma 27296)

Responsabile Idraulica, Geotecnica e Impianti: *Dott. Ing.* (Ord. Ing. Prov. Palermo 2872)
Responsabile Ambiente: *Dott. Ing. Francesco Ventura* (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enriço Carcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGEITAZIONE:

Dott. Ing. Mattes Di Giroloma (Ord. Ing. Prov. Roma A15138)

COORDINATORE ATTIVITA DI PROGEITAZIONE:

Dott. Ing. MarioAntonietta Merendino (Ord. Ing. Prov. Roma A28481)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Ettore De Cesbron De La Grennelais

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

GEOLOGIA, GEOTECNICA E SISMICA

RELAZIONE GEOLOGICA

CODICE PROGETTO PROGETTO LIV. PROG. ANNO DPVE0407 D 21		NOME FILE VE407_T00GE00GEORE	REVISIONE	SCALA:		
		CODICE TOOGEOOGE	A	_		
D						
С						
В						
Α	EMISSIONE		MAGGIO 2022	G. FALASCHI	M. CUCCARO	M.CAPASSO
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

- n. 20 campioni di terreno prelevati dai pozzetti esplorativi di cui sopra, da sottoporre a
 prove di laboratorio ambientale;
- n. 24 prospezioni sismiche a rifrazione e TDEM e n. 17 prove down-hole;
- n° 2 sismiche MASW;
- n° 19 sismiche a rifrazione;
- n° 4 geoelettriche;

Di seguito la tabella riepilogativa dei sondaggi eseguiti con indicazione, della profondità raggiunta, della tipologia di installazione in foro, delle prove in sito e del prelievo di campioni.

N.	Sigla ID	Prof. da p.c. (m)	Distruzione	Carotaggio continuo	SPT	CI	CR	Camb	CH20	Dilatom.	Lefranc	Lugeon	DH	Piez.
1	SD00A_DH	35	-	x	11	-	6	-	-	-	2	-	х	-
2	SD00B_DH	35	-	x	11	-	6	3	-	-	2	-	×	-
3	SD01_DH	35	-	x	11	-	6	-	-	-	2	-	×	-
4	SD02_DH	35	-	x	11	1	4	-	-	-	2	-	×	-
5	SD03_PZ	40	-	x	13	-	4	1	1	-	1	-	-	x
6	SD05_PZ	35	-	x	11	-	4	-	-	-	2	-	-	x
7	SD06_PZ	30	-	x	10	1	4	1	1	-	2	-	-	x
8	SD07_DH	30	-	x	10	-	4	1	-	-	2	-	×	-
9	SD08_DH	35	-	x	11	-	4	-	-	-	2	-	×	-
10	SD09_PZ	35	-	x	11	-	5	-	-	-	2	-	-	x
11	SD09bis_PZ	35	-	x	11	-	4	2	-	-	1	-	-	x
12	SD09ter_DH	30	-	x	10	-	4	-	-	-	2	-	x	-
13	SD10_DH	35	-	x	11	-	5	-	-	-	2	-	×	-
14	SD11_PZ	25	-	x	8	-	5	-	-	-	2	-	-	x
15	SD12_PZ	35	-	x	11	-	6	-	-	-	2	-	-	x
16	SD12bis_PZ	35	-	x	11	-	6	-	-	-	2	-	-	×
17	SD13_DH	40	-	x	12	-	8	-	-	-	2	-	×	-
18	SD14_DH	35	-	x	11	-	6	3	-	-	2	-	×	-
19	SD16_DH	35	-	x	11	-	4	3	-	-	1	-	×	-
20	SD17_DH	35	-	x	11	-	4	-	-	-	1	-	×	-
21	SD18_PZ	30	-	x	10	-	4	1	1	-	1	-		x
22	SD19_DH	35	-	x	11	-	4	3	-	-	1	-	x	-
23	SD20_DH	30	-	x	10	-	4	-	-	-	1	-	х	-
24	SD21_PZ	30	-	x	5	-	4	2	-	-	1	-	-	x
25	SD22_PZ	47	-	x	14	-	6	2	2	1	-	-	-	x
26	SD23_PZ	65	-	x	5	-	6	-	-	8	-	3	-	х
27	SD24_PZ	90	0-50	50-90	-	-	6	2	2	4	-	3	-	x
28	SD25_PZ	135	0-90	90-135	-	-	-	-	-	7	-	4	-	x
29	SD26	5		×	-	-	2	3	-	-	-	-	-	-

Fig. 2 -Scheda sintetica dei sondaggi tutti eseguiti a carotaggio continuo (CI=campione indisturbato; CT=c. rimaneggiato; Camb=c. ambientale; CH20=c. acqua)

L'ubicazione delle indagini è riportata dell'elaborato "Planimetria con ubicazione delle indagini".

Per quanto riguarda i dettagli delle indagini e prove di laboratorio si rimanda agli elaborati specifici della campagna d'indagine 2021-2022.

Relazione geologica

5 INQUADRAMENTO GEOLOGICO

51 1 Quadro strutturale e tettonica

L'area in cui si sviluppa il tracciato della variante di Longarone, ricade nel settore delle Alpi Meridionali, più precisamente in una zona di transizione tra la fascia prealpina a sud e quella dolomitica a nord. Questa è un'area singolare sia dal punto di vista geostrutturale che stratigrafico, in quanto mostra testimonianze dell'evoluzione tettonica delle Dolomiti, nel settore nord, e a sud, dell'evoluzione del Bacino di Belluno, compreso tra le Piattaforme Trentina e Friulana. Sotto il profilo geologico strutturale, questa parte di territorio, è caratterizzato da deformazioni dovute alle spinte verso nord, esercitate della Placca Adria sulla piattaforma Europea, testimoniate regionalmente, dai fenomeni di accavallamento dei thrust della Valsugana e di Belluno, Fig. 3, con piani di faglia immergenti verso nord e sudvergenti, e più a nord dalla linea della Pusteria/Periadriatica.

Fig. 3 - Lineamenti strutturali Alpi meridionali

VE407

Relazione geologica

Secondo Channell (1996), la placca Adria rappresenta un promontorio della placca Africana che, a seguito della collisione continentale a Nord con la placca Europea, ha determinato la formazione della catena Alpina, con subduzione a Sud della placca Europea ed il sovrascorrimento della placca Adria verso nord (Bally et al., 1985).

La linea Periadriatica a ovest e la linea della Val Pusteria a nord, limite transpressivo, separano la catena principale delle Alpi Centrali dal dominio delle Alpi meridionali, che comprendono i massicci dolomitici (Sudalpino). La porzione centro-orientale sudalpina è il risultato di tre sistemi tettonici principali che hanno agito, a partire dal tardo Permiano, in fasi differenti. Secondo quanto riportato da Castellarin et al. (2006) si individuano i sistemi tettonici della Valsugana, con orientazione ENE-OSO, delle Giudicarie con orientazione NNE-SSO ed il sistema Schio-Vicenza orientato in direzione NO-SE. Quest'ultima, una trascorrente sinistra Mio-Pliocenica, svolge un ruolo di svincolo cinematico della placca Adria settentrionale, mettendo a contatto le Alpi meridionali orientali a quelle centrali occidentali, Fig. 2. La faglia della Valsugana rappresenta di fatto il limite meridionale delle Dolomiti.

Alcuni autori (Galadini et al. 2001) evidenziano la presenza di strutture morfologiche e tettoniche che testimonierebbero una riattivazione recente (Quaternario) di strutture tettoniche appartenenti sia ai sistemi di Valsugana, Giudicarie che Schio-Vicenza.

Un secondo sistema di faglie, subverticali ad andamento N-S (meridiano), legato probabilmente alla fase iniziale di rifting che ha smembrato la piattaforma peritidale e iniziato la formazione del bacino di Belluno, costituisce nell'area, la "fossa tettonica di Longarone" (Castellarin 1981) che ha dato luogo ad un ribassamento generale della porzione centrale della valle del Piave, all'incirca nel tratto compreso tra Castellavazzo e Longarone, fino quasi a Ponte nelle Alpi.

Il bacino di Belluno, si è sviluppato tra i Thrust della Valsugana e di Belluno, in un tratto di mare profondo che nel Mesozoico separava le due Piattaforme carbonatiche di Trento ad Ovest e Friulana ad Est, Fig. 4. Nel Lias, infatti, inizia lo sprofondamento di vaste porzioni della piattaforma peritidale. Quello di Belluno è un bacino stretto ed allungato con trend NE-SW, dove si accumulano micriti selcifere intercalate in varia misura a calcareniti e calciruditi oolitiche o bioclastiche che, prodotte nelle vicine piattaforme (Piattaforma di Trento a occidente e Piattaforma Friulana a oriente), vengono periodicamente scaricate nei bacini da correnti di torbida ed altri flussi gravitativi. Le principali differenze nella composizione delle formazioni dipendono dalle variazioni negli apporti delle due piattaforme. La struttura geologica dell'area in esame è quindi caratterizzata dalla presenza di un substrato formato da rocce ascrivibili ad un intervallo compreso tra il Carnico (Triassico medio superiore) ed il Lias (Giurassico inferiore). Queste formazioni saranno infatti dislocate dalle fasi deformative Alpine di età terziaria, con i sovrascorrimenti descritti.

Relazione geologica

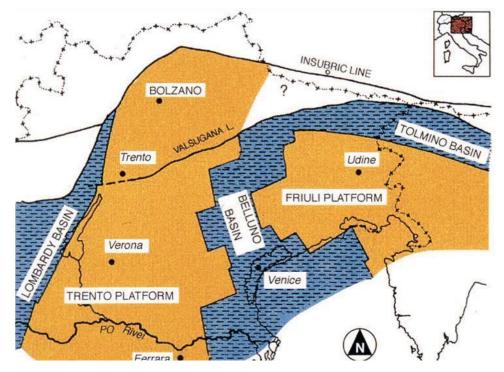


Fig. 4 - Bacini e piattaforme nel Giurassico inferiore nelle Alpi Venete (da Masetti, 1996)

5.1 Stratigrafia

Come in precedenza descritto, il tracciato della variante alla S.S. 51 di Longarone si sviluppa lungo la valle del Piave, in un settore geologicamente caratterizzato da formazioni di ambiente di bacino. I due versanti che delimitano la valle, orientale e occidentale, sono infatti caratterizzati dalla presenza di un substrato roccioso prevalentemente affiorante o sub affiorante sotto depositi alluvionali e/o detritici/morenici, costituito da alternanze di calcari, calcari marnosi e marne, fino ad arrivare a sequenze stratigrafiche di tipo flyschoide. Tale sequenza stratigrafica è formata, partendo dai termini più antichi, dalla formazione carbonatica di età triassica rappresentata dalla Dolomia Principale a cui seguono le formazioni giurassiche di Soverzene, di Igne, il Calcare del Vajont, la Formazione di Fonzaso e il Rosso Ammonitico; si passa quindi alle formazione del Calcare di Soccher e della Scaglia Rossa, entrambe cretaciche, che chiudono la successione stratigrafica e costituiscono in genere gli affioramenti più alti in quota sui versanti. Per quanto riguarda l'aspetto giaciturale la struttura, almeno localmente, si configura come una monoclinale, con giaciture degli strati generalmente disposte verso est e nord-est, da cui deriva peraltro il profilo trasversale asimmetrico della valle, relativamente più dolce sul versante a franapoggio (ovest) e decisamente più aspro sul versante a reggipoggio (est).

VE407

Relazione geologica

I depositi di copertura come detto, hanno natura essenzialmente alluvionale, lungo il fondovalle, e costituiscono l'alveo recente ed attuale di divagazione del fiume Piave. Sul versante occidentale della valle, ove sorgono gli agglomerati urbani di Castellavazzo, Podenzoi e Olantreghe, sono presenti ampie coperture detritiche e lembi di depositi morenici, riconducibili alle fasi della glaciazione würmiana, che ha interessato la valle del Piave e le varie valli tributarie.

Con riferimento quindi al quadro geostratigrafico sopra sintetizzato, di seguito si descrivono le formazioni affioranti, a partire dalla più antica.

Dolomia principale

La Dolomia Principale (Trias: Retico-Norico), è costituita da una potente sequenza dolomitica organizzata nelle classiche sequenze cicliche peritidali caratterizzata da alternanze cicliche di dolareniti bioclastiche in strati decimetrici, dolomie massicce subtidali bianche in bancate metriche, cui seguono dolomie stromatolitiche sopratidali e sottili livelli marnosi argillitici verdi e/o brecce pisolitiche coinvolte in strutture a tepee, che rappresentano depositi di rielaborazione subaerea delle sottostanti unità, corrispondenti all'estrema fase regressiva del ciclo. La porzione superiore presenta un colore grigio scuro. Queste sono caratteristiche peculiari della dolomia principale affiorante nell'area in cui si imposterà, all'inizio del Giurassico, il Bacino Bellunese. L'ambiente deposizionale è riferibile a vaste piane tidali che si estendevano su quasi tutta l'Italia Settentrionale. Lo spessore può raggiungere anche i 1.000 metri circa.

Formazione di Soverzene

La Formazione di Soverzene (Giurese: Lias inferiore e medio) consiste di una successione di dolomie da grigie e a brune in strati di 20-40 cm di spessore associati a letti e noduli di selce nera o gialla. Dove è conservata l'originaria composizione calcarea, la formazione è caratterizzata da calcari micritici a spicole di colore grigio brunastro, frequentemente dolomitizzati, con noduli e letti di selce nera ed interstrati marnosi. Frequenti slumps e brecce in corpi discordanti. L'ambiente deposizionale di questa unità è riconducibile all'accumulo di fanghi di peripiattaforma sui fianchi e sul fondo del Bacino Bellunese.

Relazione geologica

Fig. 5 - Affioramento di Formazione di Soverzene

Formazione di Igne

La Formazione di Igne (Giurese: Dogger inf. – Lias sup.), è caratterizzata da una relativa eterogeneità litologica con una prevalenza di marne. Si tratta infatti di un'unità composta da marne e calcari marnosi grigio-giallastri, argilliti nere laminate a livelli nodulari rossi, giallastri, verdastri. La variabilità laterale è la stretta conseguenza soprattutto da troncature erosive a vari livelli nella parte superiore, in concomitanza con l'arrivo delle torbiditi oolitiche del Calcare del Vajont. L'ambiente deposizionale rappresenta la prosecuzione verso l'alto della sedimentazione bacinale instauratasi in tutta l'area bellunese.

Calcare del Vajont

La formazione del Calcare del Vajont (Giurassico: Dogger), è caratterizzata da calcarenitioolitiche massicce o stratificate in grossi banchi, con intercalazioni di straterelli decimetrici di micritibrune. Possono essere presenti noduli e letti di selce scura. Sono frequenti livelli di brecce intraformazionali derivanti dalla rielaborazione delle micriti L'ambiente deposizionale è all'interno del bacino Bellunese compreso tra la Piattaforma Trentina a ovest e la Piattaforma Friulana a est. In questo contesto siamo di fronte a due tipologie sedimentarie, quella neritica e quella pelagico- batiale, caratterizzate da condizioni idrodinamiche molto differenti. Questo Calcare è il prodotto di una risedimentazione gravitativa lungo il fianco occidentale della Piattaforma Friulana (Bosellini e Masetti, 1972). La formazione raggiunge uno spessore di circa 450 m.

Relazione geologica

Fig. 6 - Affioramento di Calcare del Vajont

Rosso Ammonitico

Il rosso ammonitico (Cretacico Inferiore), mostra uno spessore di 5-15 m ed è caratterizzato da micriti nodulari grigie e rossastre, massicce o in strati di spessore superiore a 1 metro. La struttura nodulare è considerata come acquisita durante la diagenesi ad opera degli effetti combinati di bioturbazione, cementazione e dissoluzione. Tutti questi fattori hanno agito sul sedimento non omogeneo e costituito da proporzioni variabili di argilla detritica, nannofossili calcitici e gusci aragonitici di ammoniti. In affioramento appare fittamente stratificato e spesso variamente fratturato. Questa formazione è completamente priva di risedimentazione, quindi la microfacies è costituita esclusivamente da micriti pelagiche a peloidi.

Relazione geologica

Fig. 7 - Affioramento di Rosso Ammonitico

Calcare di Socchèr-Biancone

È caratterizzato da uno spessore di circa 150 m depositatosi durante il Cretacico inferiore-Cretacico superiore. Il Calcare di Socchèr è costituito da una complessa alternanza di calcari microcristallini e di calcareniti provenienti dalla piattaforma Friulana. La componente fine è rappresentata da strati decimetrici di micriti, micriti marnose e marne grigie, rosse o verdastre contenenti selce dello stesso colore in noduli e letti. Si notano numerose discordanze e scivolamenti intraformazionali indicanti come la deposizione di questa formazione sia avvenuta lungo la scarpata che raccordava la Piattaforma Friulana, ubicata a SE, all'antistante bacino.

Relazione geologica

Fig. 8 - Affioramento di Calcare di Soccher

Scaglia Rossa

Cretaceo Superiore – Paleocene Inferiore, spessore 300 m circa. Monotona successione di marne e di calcari marnosi rossi, completamente privi di risedimenti gravitativi, nella più tipica facies di Scaglia. Questa Formazione livella la preesistente ed articolata topografia depositandosi uniformemente su tutta l'area esaminata.

Alluvioni antiche terrazzate/depositi di facies glaciale

Si tratta in genere di depositi costituiti da ghiaia e sabbia, talora cementati, con livelli ciottolosi, talora grossolani, cementati o molto addensati.

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Fig. 9 - Depositi alluvionali antichi terrazzati

Depositi alluvionali attuali

Si tratta di depositi costituiti da ghiaie e sabbie poligeniche prevalenti, con ciottoli anche di notevoli dimensioni (30-40 cm). La componente a grossi ciottoli può talora prevalere in corrispondenza della confluenza degli affluenti laterali nel Piave.

Verso Longarone e verso Ponte nelle Alpi, esternamente ai depositi attuali, i depositi sono meno recenti e appaiono terrazzati e parzialmente colonizzati dalla vegetazione. Litologicamente sono simili ai precedenti, ma appaiono più cementati, talvolta con presenza di travertino in corrispondenza della scarpata, dovuto alla deposizione, da parte dell'acqua percolante, della CaCO₃ trasportata in soluzione.

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Fig. 10 - Depositi alluvionali attuali d'alveo. Lateralmente gli stessi depositi appaiono vegetati (zona Fortogna)

Coltri colluviali-eluviali e detritiche

Litologicamente sono costituite da ghiaie e blocchi in matrice sabbioso-limosa variamente addensate. Sono presenti sui versanti in destra fluviale del Piave, con granulometria ghiaioso – sabbiosa ed in sinistra fluviale con granulometria più grossolana. Lo spessore varia mediamente da pochi metri a talora oltre 20 m.

Coltri moreniche o fluvioglaciale

Si rilevano in destra fluviale del fiume Piave a monte di Podenzoi e Olantreghe. Litologicamente sono costituite da ghiaie e blocchi in matrice sabbioso-limosa variamente addensate. Lo spessore varia mediamente da pochi metri a oltre 20 m.

VE407

Relazione geologica

6 INQUADRAMENTO GEOMORFOLOGICO

La ricostruzione del quadro geomorfologico lungo il tracciato è stata ottenuta sia facendo riferimento ai quadri geomorfologici conoscitivi a disposizione, sia attraverso l'analisi di foto aeree, di immagini satellitari e di sopralluoghi sul terreno, lungo la fascia di territorio ritenuta significativa ai fini dello studio. Nella Carta Geomorfologica oltre ai vari elementi descrittivi del quadro geomorfologico, derivanti dall'azione modellante dei fattori endogeni ed esogeni, è riportata la distribuzione delle formazioni di substrato e di quelle di copertura, queste ultime distinte in base alla facies. In questa regione l'azione dell'erosione glaciale ha sicuramente giocato un ruolo fondamentale, tant'è che sono presenti sia forme che depositi superficiali a testimoniare tale azione. La successiva azione tardoglaciale wurmiana, ha dato luogo a intensi fenomeni di rimaneggiamento di tali depositi attraverso l'azione delle acque dilavanti e a processi gravitativi, con notevoli quantità di detriti variamente ripresi e trasportati verso la pianura dai corsi d'acqua. Alcuni dei depositi sono quindi la risultanza di accumuli misti sia legati all'apporto fluviale che fluvio glaciale, così come altri sono l'effetto di degradazione con o senza successivo trasporto e/o risultato di accumuli più o meno favoriti da processi gravitativi. In Fig. 11 si riportano gli elementi cartografati come substrato e come coltri di copertura.

Fig. 11 - Legenda formazioni di substrato e depositi di copertura/alluvionali

L'elemento che più caratterizza l'area di studio è il fiume Piave che, nel tratto in esame, corre indicativamente in direzione nord–sud. In sinistra idrografica, è presente il torrente Vajont, che si immette nel Piave con una direttrice quasi perpendicolare proveniente da est; in destra idrografica, poco più a sud rispetto all'immissione del Vajont, c'è il torrente Maè, il secondo corso d'acqua per importanza nell'area, e ancora più a sud il torrente Desedan, anch'essi tributari del Piave.

VE407

Relazione geologica

L'idrografia minore è caratterizzata da impluvi e corsi d'acqua con direttrice circa perpendicolare all'asse del Piave, come tipicamente accade alle valli monoclinali, per lo più si tratta di corsi d'acqua effimeri. Il fiume Piave costituisce il livello di base di tutti i corsi d'acqua dell'area. La morfologia del fondovalle è quindi direttamente correlata ai processi di erosione e trasporto del fiume Piave che nel tratto interessato dal progetto, presenta una morfologia a canali intrecciati o braided, *Fig. 13*, tipica di fiumi che possiedono una elevata energia. Nell'alveo si riconoscono aree attive e mobili e inattive; queste ultime, isole e/o piane terrazzate, caratterizzate dall'assenza di processi fluviali in atto ma che, a causa della loro posizione e quota altimetrica, possono essere riattivate a seguito di piene o modificazioni del tracciato fluviale. Questo tipo di morfologia è caratterizzata infatti da forte instabilità dei canali e delle barre che costituiscono l'alveo attivo il quale viene continuamente rielaborato e modificato grazie alla capacità di erosione e trasporto del fiume stesso. L'area di alveo attivo è evidenziata in carta.

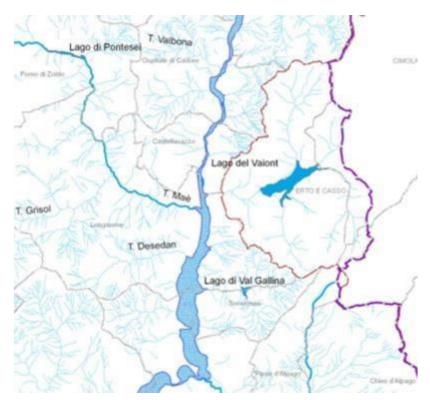


Fig. 12 - Reticolo idrografico dall'Autorità di Bacino

Relazione geologica

Fig. 13 - Alveo del fiume Piave con morfologia a canali intrecciati (zona Villanova). Da Google Earth.

Nell'ambito delle forme fluviali e/o legate al deflusso, le principali evidenziate in carta geomorfologica sono le seguenti (vedi *Fig. 14*):

- Conoidi alluvionali sia attuali che antichi: il principale cono alluvionale dell'area è quello dove sorge l'abitato di Castellavazzo, legato evidentemente ad una dinamica fluviale ormai estinta; sono presenti inoltre due coni minori, entrambi attivi, in sinistra idrografica del Piave, a ovest del Pian de Malatia.
- Orli di scarpata di erosione fluviale o di terrazzo fluviale: con questa simbologia si sono cartografati gran parte degli orli di scarpata situati in prossimità del fondovalle; va detto che in questo tratto vi è una convergenza morfologica di differenti agenti morfogenetici (fluviale, glaciale e strutturale) e l'attribuzione alla dinamica fluviale è stata fatta, in alcuni casi, con un criterio essenzialmente altimetrico, che attribuisce all'azione fluviale le forme più recenti e quindi più incassate ed erose, e all'azione glaciale quelle più antiche, relegando le condizioni strutturali a "condizioni guida" dei fenomeni erosivi successivi;
- Solchi da ruscellamento concentrato: si tratta delle direttrici principali delle acque meteoriche, il reticolo di tali solchi è evidentemente più sviluppato sul versante destro della valle del Piave, dove le pendenze sono relativamente minori; lungo il versante sinistro invece, caratterizzato da pendenza maggiori, i solchi sono meno articolati e legati, probabilmente, anche a debolezze strutturali;

VE407

Relazione geologica

<u>Valli a fondo piatto e vali a "V"</u>: con questo simbolo si sono individuate le piccole incisioni vallive alimentate da veri e propri corsi d'acqua, anche intermittenti, ma con possibile alimentazione anche da circuiti sotterranei.

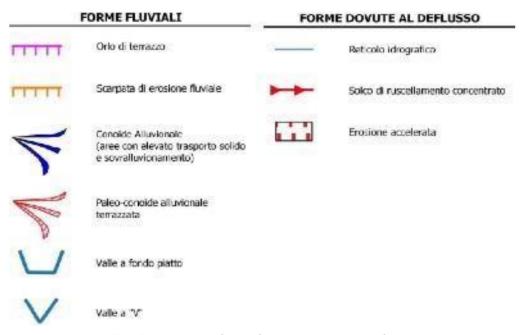


Fig. 14 - Legenda forme fluviali e dovute al deflusso

I versanti che delimitano la vallata presentano invece un assetto geomorfologico che è il risultato dell'azione combinata, di processi sia endogeni (morfostrutture) che esogeni (morfosculture).

Particolare ruolo l'ha avuto l'assetto geologico-strutturale in precedenza descritto, combinato alla diversa natura delle rocce affioranti. Come già descritto, strutturalmente l'area in studio è compresa tra due importanti lineamenti tettonici dell'orogenesi alpina, la linea della Valsugana a nord e l'anticlinale dei monti Coppolo e Pelf a sud, entrambi legati ad una dinamica compressiva sud vergente, con direzione da SE–NO a E-O. Un secondo sistema di faglie, subverticali ad andamento meridiano, costituisce invece la "fossa tettonica di Longarone", depressione tettonica che oggi ospita il letto del Piave nella sua porzione centrale della nel tratto compreso circa tra Castellavazzo e Longarone, fino quasi a Ponte nelle Alpi. L'assetto è altresì complicato da sovrascorrimenti.

Altro elemento strutturale che influenza le forme dell'area è costituito dalla giacitura degli strati caratterizzati da immersione mediamente diretta verso est e nord-est. L'incisione valliva del Piave assume quindi le caratteristiche di una valle monoclinale, con profilo trasversale asimmetrico, meno acclive sul versante a franapoggio (ovest) e più acclive e scoscesa sul versante a reggipoggio (est).

La diversa natura delle rocce affioranti, con diverso comportamento e diversa resistenza verso gli agenti esogeni, creano condizioni locali con morfologie caratterizzate da ripide scarpate delimitate talora da cenge ristrette, su più ordini, Fig. 15.

Relazione geologica


Fig. 15 - Vista versante Est valle del Piave vista da Olantreghe.

Sulla Carta Geomorfologica in particolare sono rappresentati gli elementi caratterizzanti, in particolare le faglie certe e quelle presunte, nonché le linee di frattura rilevate da foto aeree, le linee di sovrascorrimento, e le morfostrutture derivanti quali le scarpate associate a linee di faglia e le aree dove la combinazione con l'azione esogena ha prodotto forme che possono essere assimilabili a "Flat Iron".

L'azione esogena ha agito in maniera anche incisiva sulle forme sopra descritte, mascherandole, talora dando luogo a scarpate di degradazione specie in corrispondenza delle fasce di passaggio tra diverse litologie.

In carta sono altresì evidenziate le aree caratterizzate dalla presenza di movimenti gravitativi di massa, distinti tra frane complesse, in cui si riconosce l'azione di diverse dinamiche di movimento, e frane di scorrimento. La *Fig.* 16, riporta la legenda degli elementi tettonico strutturali e delle forme dovute alla gravità riportati nella Carta Geomorfologica.

Relazione geologica

VE407

Fig. 16 - Legenda forme tettonico strutturali e dovute alla gravità

Oltre alle morfostrutture e alle morfosculture naturali, in carta sono stati altresì riportante le aree che hanno subito rimodellamenti a seguito di interventi/attività antropiche. Tra le forme antropiche sono state evidenziate:

- Cave attive e dismesse (in prevalenza). Si rileva una cava in attività a valle di Olantreghe, ad est dell'abitato.
- Impianti di trattamento e riciclaggio inerti, per lo più localizzati sul fondovalle del Piave.

Argini, opere di difesa spondale e briglie: si tratta di opere di difesa fluviale e/o di controllo del trasporto solido, presenti lungo l'alveo del Piave e/o dei tributari minori

Fig. 17 - Legenda forme di modellamento antropico e/o opere antropiche

Relazione geologica

1 Pericolosità geologica e confronto con quadri di pericolosità (PAT, PAIe PTCP).

Nel settore nord dell'area di studio, monte dell'imbocco nord della galleria prevista dal tracciato, nella carta geomorfologica si riporta un movimento gravitativo di massa di discrete dimensioni, *Fig.* 18 e *Fig.* 19 che si sviluppa nel settore a monte dell'imbocco della galleria il cui detrito confluisce poi, in prossimità dello stesso imbocco, nella vallecola che sottopassa la S.S.51 "Alemagna" terminando il percorso nel Piave .

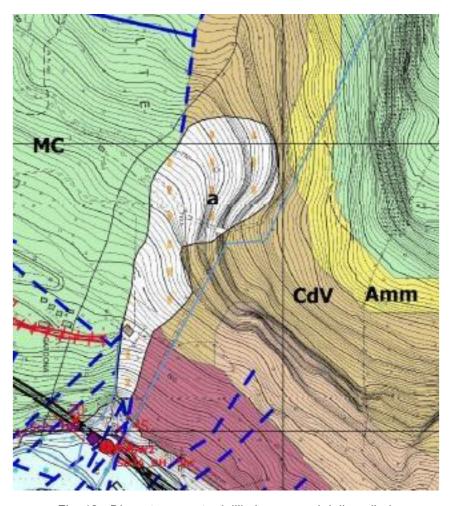


Fig. 18 - Dissesto a monte dell'imbocco nord della galleria

Relazione geologica



Fig. 19 - Dissesto a monte dello sbocco nord della galleria

Lo stesso fenomeno è segnalato nella Carta di Fragilità del PAT di Longarone *Fig. 24.* Si tratta di tratta di un fenomeno complesso, caratterizzato nella parte alta, a monte della centrale ENEL, da fenomeni di crollo e rotolamento e nel settore di valle da fenomeni di scivolamento detritico (tipo "debris flow") a spese dell'ampio deposito detritico che si sviluppa ai piedi delle falesie rocciose, *Fig. 20* e *Fig. 21.* Le passate attività ENEL nell'area, con lo scavo della/e galleria/e sia di ispezione che di adduzione, potrebbero aver contribuito all'alimentazione e formazione del deposito detritico.

Fig. 20 - Corpo detritico interessato dai fenomeni di debris flow

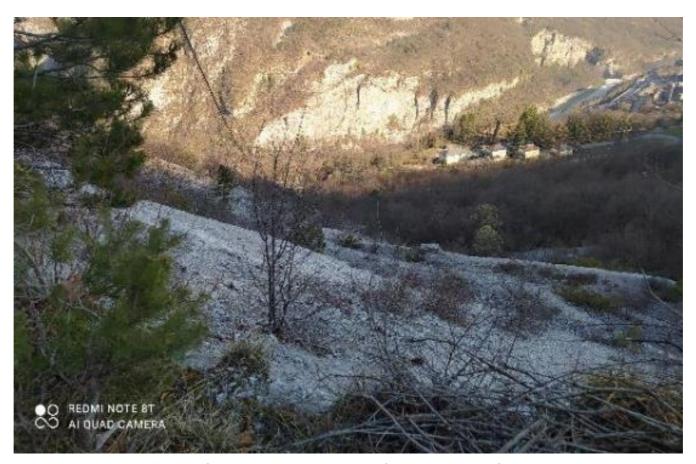


Fig. 21 - Corpo detritico interessato dai fenomeni di debris flow. Foto da piazzale antistante la galleria di ispezione ENEL

VE407

Relazione geologica

La movimentazione del detrito è sicuramente favorita da ruscellamento superficiale, tanto che sono stati realizzati sistemi di rallentamento e controllo dello scorrimento superficiale, *Fig.* 22 e *Fig.* 23.

Fig. 22 - Sistemi di ritenuta e controllo del ruscellamento e del trasporto solido nel settore di monte del corpo detritica interessato dai fenomeni di debris flow (foto da Google Earth)

Relazione geologica

Fig. 23 - Sistemi di ritenuta e controllo del ruscellamento e del trasporto solido nel settore di monte del corpo detritica interessato dai fenomeni di debris flow

Il dissesto, la cui ultima attivazione è precedente al 2004, è presente anche nel Catalogo IFFI, *Fig.* 25 e successiva appendice descrittiva, che lo classifica come frana con dinamica di crollo associata a rotolamento e colata detritica. Viene altresì segnalata la potenziale elevata velocità del movimento in caso di riattivazione legata alla presenza di acqua e la discreta pendenza del pendio/forra.

La dinamica del dissesto per lo più favorita da infiltrazioni a seguito di piogge intense, non è tale tuttavia da poter interferire con l'opera in progetto. Lo sbocco nord della galleria è in corrispondenza del canalone, ma con piano viario a quote più elevate rispetto a quelle d'alveo e prosegue su viadotto ancora a quote superiori a quelle di scorrimento della possibile colata detritica.

VE407

Fig. 24 - Stralcio Carta della Fragilità PAT di Longarone

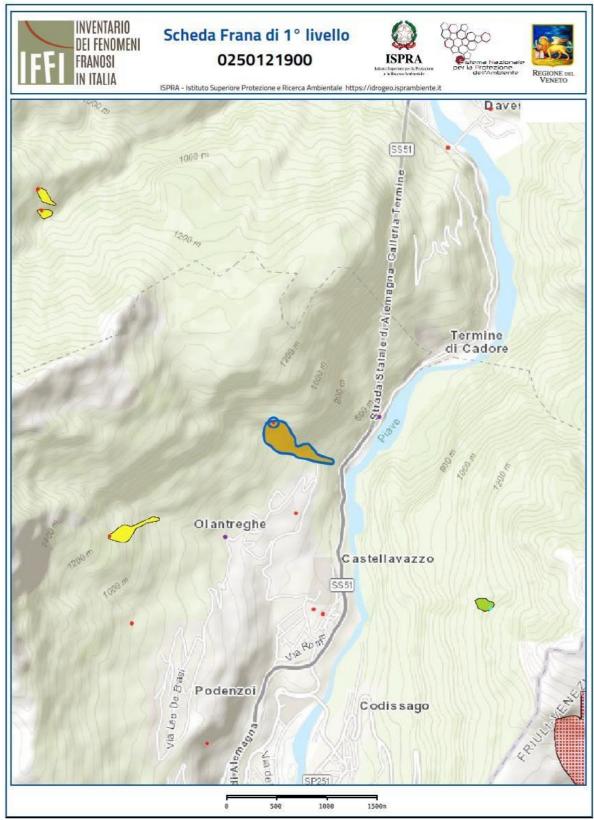


Fig. 25 - Scheda Catalogo IFF Frana Gardona

		G	enerale						
ID Frana:	a: 0250121900 Sigla: 0250121900				Sopralluogo:	Compilazione: 12/01/2004 01:00			
Ente / Is	tituzione: Regione d	lel Veneto			CF. Ente:				
Regione: Veneto Province			Provincia: F	Provincia (CF. Ente: cia di Belluno Scala CTR: 10000 Nr. CTR: 046120				
Comune:	Longarone								
Toponimo:	GARDONA								
Autorità di I	Distretto: Alpi Orien	tali							
Rif. CTR: Toponimo CTR: GARDONA				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Posizione	PIFF: Corona		Accuratez	za: Esatt	a				
Descrizione	CNR dissesto nr. 114: DannoGrado:medio. D TipoMovim.:compless Velocità:Rapida AttendibilitàVelocità:s DissestoDescriz.:Croll Attività:attiva	annoStrutture:Acque o tima	dotto . DannoGra						

Classificazione						
PRIMO LIVELLO Tipo Movimento:	Complesso					
Tipo Movimento:	1° ordine: Crollo	2° ordine: scivolamento rotazionale				
Velocità	1° ordine: rapido (< 3 m/min)	2° ordine: n.d.				
Materiale:	1° ordine: n.d.	2° ordine: n.d.				
Acqua:	1° ordine: n.d.	2° ordine: n.d.				
Altri fenomeni ass	ociati:					

Attività						
Stato Attività: PR n.	IMO LIVELLO d.	SECONDO LIVELLO				
Data osservazione:	Certa: n.d.	Incerta:				
Distribuzione: n.d.		Stile: complesso				

VE407

	Me	todo		
Metodo: Dato	storico/archivio			
	Data	zione		
Data attivazione:	Certa:	Incerta:		
Fonte			Anni: Età	Precisione:
datazione:				
	Attivazio	oni/Eventi		
Attivazioni:				
Eventi:				

			Danni		
Tipo Danno:	Danno diretto				
Persone: Nr. MORTI:	Nr. FERITI:	difici: PRIVATI:	0	Costo Danni (€): BENI:	ATTIVITA':
Nr. DISPERSI:	Nr. EVACUATI:0	PUBBLICI:	0	TOTALE:	
Danni a cors	TIPO DI DANNO:	CORSO	D'ACQUA:		
Note Danni:					
Elementi Danni:	Gruppi elementi danno		Elementi dan	ino	Grado
	Opere e infrastrutture di servi	zio	acquedotti		medio
	Strade		altre strade		medio
	Strutture servizio pubblico		centrale elettr	rica	medio
		R	ischio		
Persone a rischio:	Edifici a rischio: Nr. EDIFICI			Nr. EDIFICI PUBBLICI:0	
Note rischio:					

Relazione geologica

		Morfe	ometria		
Quota corona:	m Slm	Larghezza:	m	Pendenza:	0
Quota unghia:	m Slm	Lunghezza:	m	Azimut Movimento:	0
Volume:	m³	Dislivello:	m	Profondità Superfice	
Area stimata:	m²	Area Calcolata:	56972 m²	di Scivolamento Dr.	m
	Posizion	ne Frana, Esposiz	zione Versante e	Uso Suolo	
Posizione test	ata:				
Posizione ung	hia:				
Esposizione vei	rsante: S	Uso suolo: incolto	o prato pascolo		
		Geo	ologia		
Descrizione:	Calcari generalr	mente oolitici. Dogg	er (Giurassico med	.)	
Formazione:		FORMAZIONE CALCARI OOLITICI DI SA	N VIRGILIO		
Immersione:	0	Inclinazione	0		
Struttura:	n.d.				
Spaziatura:	n.d.				
Litotecnica:	n.d.				
Assetto:	n.d.				
Degradazione:	n.d.				
Litologia:	rocce carbonati	che			
Descrizione:	Detrito di falda.	Quaternario			
Formazione:		FORMAZIONE Depositi di versante			
Immersione:	0	Inclinazione	0		
Struttura:	n.d.				
Spaziatura:	n.d.				
Litotecnica:	n.d.				

ISPRA - Istituto Superiore Protezione e Ricerca Ambientale

VE407

Relazione geologica

Come messo in evidenza dalla scheda IFFI il movimento in passato ha creato relativi danni all'acquedotto (nella parte alta si trova una sorgente utilizzata dalla rete locale acquedottistica), alla centrale elettrica posta a mezza costa in fregio al canalone e all'attuale strada statale, che intercetta il canalone al suo sbocco sul fondovalle del Piave. Non ha causato danni né problemi alla locale linea ferroviaria, che attraversa il rio poco a monte del previsto sbocco della galleria stradale, Fig. 26, a dimostrazione del fatto che lo scorrimento della colata detritica rimane confinato nello stretto canalone.

Fig. 26 - Sbocco del canalone in corrispondenza del Ponte Canale ENEL. Vista dalla SS51 del ponte ferroviario; sullo sfondo la centrale ENEL. In primo piano la rete paramassi a protezione della strada.

La Carta di Fragilità del PAT di Longarone segnala la presenza di zone caratterizzate da possibilità di distacco e crollo di materiale roccioso, per lo più localizzate lungo le falesie più ripide. Alcune sono proprio segnalate poco dopo lo sbocco Nord della galleria, lungo la Falesia rocciosa che sovrasta anche il ponte canale ENEL. Tali aree sono già state oggetto di studio nell'ambito del Progetto di miglioramento prestazionale e funzionale della S.S.51 nel tratto compreso tra il km 49+600 e 53+570, da svincolo di Castellavazzo a imbocco Galleria-Termine di ANAS, che ha previsto interventi di protezione e rinforzo sulle falesie prospicenti la viabilità con Soil nailing, reti paramassi a monte delle stesse e chiodature sui blocchi che apparivano disgiunti, *Fig. 27*.

Relazione geologica

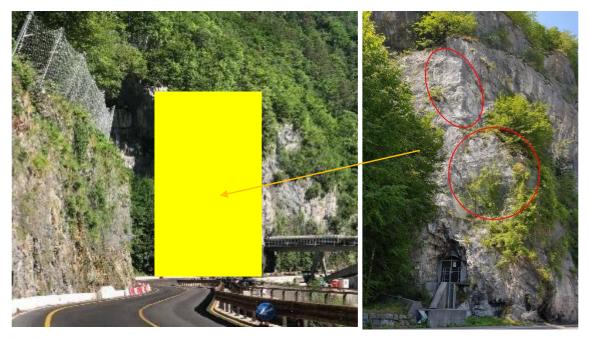


Fig. 27 - Falesie rocciose e zone con blocchi, su cui sono stati eseguiti interventi di chiodatura e protezione con tecnica "soil nailing" nell'ambito degli interventi di miglioramento prestazionale e funzionale della S.S.51 nel tratto compreso tra i km 49+600 e 53+570, dallo svincolo di Castellavazzo all'imbocco della Galleria-Termine, fatti eseguire da ANAS. Visibili anche le reti paramassi posizionate a protezione della sottostante SS 51.

Sia il dissesto a dinamica complessa che le fasce di falesia interessate dai crolli, sono segnalati dal P.A.I. (Piano di Assetto Idrogeologico) dell'Autorità di Bacino del fiume Piave, *Fig. 28*. Il dissesto è classificato a pericolosità P4 molto elevata La zona di Falesia potenzialmente soggetta a fenomeni di crollo, ricade in "zona di attenzione", con stessa perimetrazione del PTCP, *Fig. 29*.

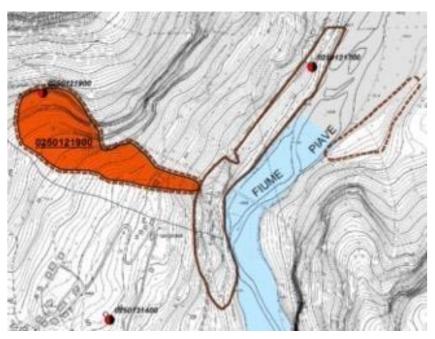


Fig. 28 - Stralcio Carta della Pericolosità Geologica PAI Autorità di Bacino fiume Piave

Relazione geologica

Nella zona di Castellavazzo - Olantreghe, sempre in corrispondenza delle falesie rocciose il PAT segnala aree localizzate con evidenze di possibili crolli, *Fig. 24*, che comunque non possono interferire con il tracciato, che in questo tratto corre in galleria. La dinamica di crollo è peraltro ben marcata dagli ampi e cospicui accumuli detritici che vanno a costituire veri e propri talus ai piedi delle stesse falesie, *Error! Reference source not found.*. A protezione di molti nuclei abitati, nei confronti del rotolamento verso valle dei blocchi che possono crollare dalle falesie, sono state poste in opera barriere paramassi, in genere posizionate al piede dei depositi detritici, *Fig. 31*.

Le stesse aree sono comunque segnalate anche dalla Carta di Pericolosità del Piano Territoriale di Coordinamento Provinciale PTCP, *Fig. 28*.

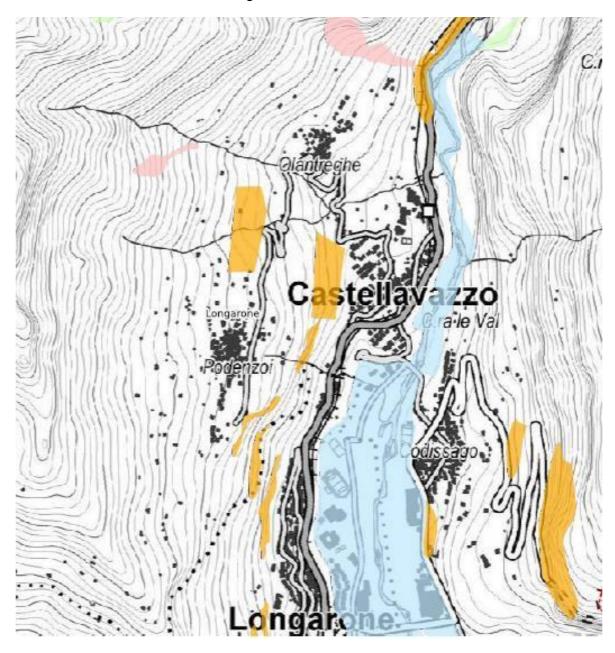


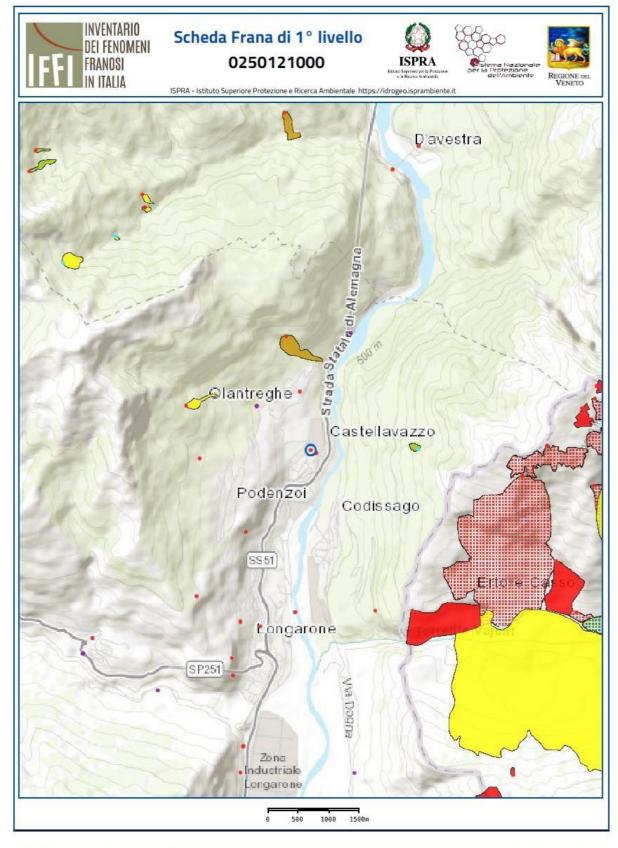
Fig. 29 - Stralcio Carta della Pericolosità Geologica PTCP



Fig. 30 - Talus detritici ai piedi delle falesie rocciose, poco a nord dell'abitato di Castellavazzo

Fig. 31 - Reti paramassi a protezione dai crolli e rotolamento massi dalle falesie rocciose

VE407


Relazione geologica

Il Catalogo IFFI sempre nella zona di Castellavazzo, in particolare a ridosso dell'abitato, segnala due dissesti avvenuti, il primo in tempi storici (anno 1794), oggi quiescente, *Fig. 31*, che avrebbe causato danni e provocato vittime, il secondo decisamente più recente, avvenuto nel 1962, *Fig. 33*, classificato come crollo, avrebbe solo causato danni localmente alla stazione ferroviaria e alla strada comunale.

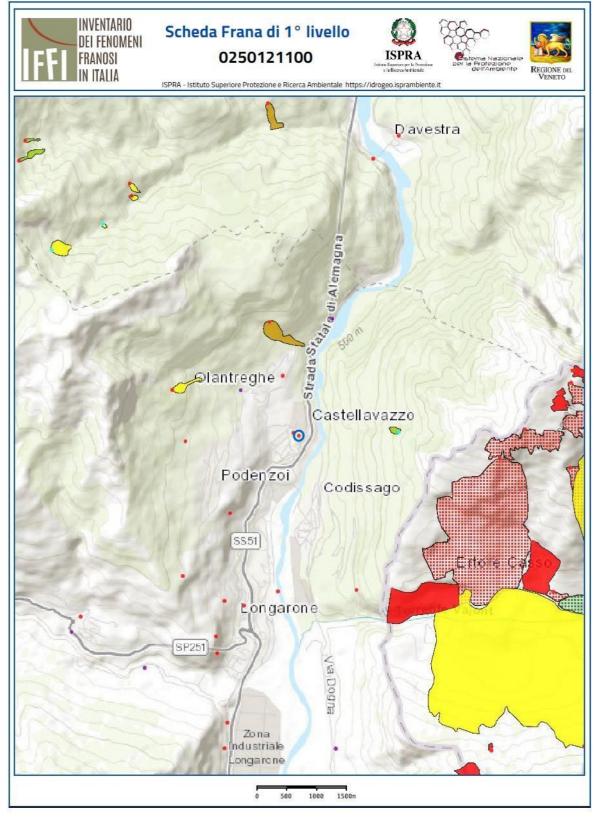
Relazione geologica

ISPRA - Istituto Superiore Protezione e Ricerca Ambientale

-1-

https://idrogeo.isprambiente.it

		Ge	enerale			
ID Frana: 0250	121000	Sigla: 0250	121000	Data:	Sopralluogo:	Compilazione: 18/02/2003 01:00
Ente / Istituzion	ne: Regione del	Veneto			CF. Ente:	
Regione: Venet	0		Provincia:	Provincia (di Belluno	
Comune: Longa	ırone					
Toponimo: LAVAZ	ZZO					
Autorità di Distret	to: Alpi Orienta	li				
Rif. CTR: Toponim	o CTR:				Scala CTR: 10000	Nr. CTR: 046120
Posizione PIFF:	Corona		Accurate	ezza: Esatt	a	
abitat	The state of the s	ipoMovim.:scivolar ttività:NoteAl	mento rotazior	naleVelo	A CONTRACTOR OF THE PARTY OF TH	DannoStrutture:Centro ndibilitàVelocità:
		Class	illicazione			
Tipo Movimento:	Scivolamento r	otazionale/tras	lativo			
SECONDO LIVELLO	1° ordine:			2° ordine:		
Tipo Movimento:	scivolamento rota	zionale				
Velocità	1° ordine: n.d.			2° ordine:		
Materiale:	1° ordine: n.d.			2° ordine:		
Acqua:	1° ordine: n.d.			2° ordine:		
Altri fenomeni ass	ociati:					
		Δ	ttività			
	PDIMO LIVELLO		cervica	SECONDO LI	WELL O	
Stato Attività:	n.d.			SECONDO LI	VELLO	
Data osservazion	ne: Certa:		Incerta:			
Distribuzione:			Stil	e:		
		N	letodo			
Metodo: D	ato storico/arch	nivio				



		Data	zione			
Data attivaz	Certa:		Incerta: 01/01/1794		01/01/1794	
Fonte			0.1011.175			cisione:
datazione:				Età		
		Attivazio	oni/Eventi			
Attivazioni:						
Eventi:						
		_				
		Da	anni			
Tipo Danno:	Danno diretto					
Persone: Nr. MORTI: 30	Nr. FERITI:	Edifici:	Costo Da			
Nr. DISPERSI:	Nr. EVACUATI:0	PUBBLICI: (DE	TOTALE:	TTIVITA':	
Danni a cors	TIPO DI DANNO:	CORSO D	'ACQUA:			
Note Danni:						
Elementi Danni:	Nuclei/centri abitati		Elementi danno entro abitato maggior	2	Grado	
	Nuclei/centri abitati		entro abitato maggior	е	grave	
		Die	schio			
Persone a rischio:	E-alies.	ci a rischio:	cnio			
Nr. 0		Nr. EDIFICI PRIVATI:0	Nr. EDI	FICI PUBBLICI:0		
Note rischio:						
		Morfo	ometria			
Quota corona:	m Slm	Larghezza:	m	Pend	enza: °	
Quota unghia:	m Slm	Lunghezza:	m	Azimut Movim	ento: °	
Volume:		Dislivello:		Profondità Supe	m	
Area stimata:	m²	Area Calcolata:	m²	di Scivolament	to Dr.	

Relazione geologica

ISPRA - Istituto Superiore Protezione e Ricerca Ambientale

Fig. 33 - Scheda Catalogo IFF Frana Castellavazzo

https://idrogeo.isprambiente.it

		Generale			
ID Frana: 0250	121100 Sigla: 0	250121100	Data:	Sopralluogo:	Compilazione: 18/02/2003 01:00
Ente / Istituzio	ne: Regione del Veneto			CF. Ente:	
Regione: Venet	0	Provincia: P	Provincia (di Belluno	
Comune: Longa	arone				
Toponimo: CASTI	ELLO LAVAZZO				
Autorità di Distret	to: Alpi Orientali				
Rif. CTR: Toponim	no CTR:			Scala CTR: 10000	Nr. CTR: 046120
Posizione PIFF:	Corona	Accuratez	za: Esatt	:a	
Descrizione: ferrov	dissesto nr. 1150 - id_evento: 24 viaria NoteD.: Descr.(DannoGrado:medioDannoS ità:Estremamente rapidaA NoteAttività:	Danno:DannoGra Strutture:Strada comu	ado:medio - nale	DannoStru TipoMovim.:crol	tture:Stazione ferroviaria lo
	C	lassificazione			
Tipo Movimento:	Crollo/Ribaltamento 1° ordine: crollo 1° ordine: estremamente rapido (> 5 m/s)		2° ordine:		
Materiale:	1° ordine: n.d.		2° ordine:		
Acqua:	1° ordine: n.d.		2° ordine:		
Altri fenomeni ass	sociati:				
		Attività			
Stato Attività:	PRIMO LIVELLO n.d.		SECONDO LI	VELLO	
Data osservazio	ne: Certa: n.d.	Incerta:			
Distribuzione:		Stile:			
		Metodo			
Metodo: D	ato storico/archivio				

	Datazione		
Data attivazione: Certa: 27/03/1962 1	2:00		
Fonte datazione:		Età ^{Ar}	nni: Precisione:
	Attivazioni/Eve	nti	
Attivazioni:			
Eventi:			
	Danni		
Tipo Danno: Danno diretto			
Tipo Danno: Danno diretto			
Persone: Nr. MORTI: Nr. FERITI:	Edifici: PRIVATI: 0	Costo Danni (€): BENI: ATTI	VITA':
Nr. DISPERSI: Nr. EVACUATI:	PUBBLICI: 0	TOTALE:	
Danni a corso TIPO DI DANNO:	CORSO D'ACQUA:		
Note Danni:			
Elementi Danni: Gruppi elementi dan	nno Elementi da	anno G	rado
Strutture servizio pul	oblico stazione fer	roviaria m	edio
Strade	comunale	m	edio
	Rischio		
Persone a rischio: Edific	ci a rischio:		
Nr. O	Nr. EDIFICI PRIVATI:0	Nr. EDIFICI PUBBLICI:0	
Note rischio:			
	Morfometria		
Quota corona: m Slm	Larghezza: m	Penden	za: °
Quota unghia: m Slm		Azimut Movimen	to: °
	Lunghezza: m	AZITTUL MOVITTIET	ico.
Volume: 4000 m³	Dislivello: m	Profondità Superf	

Relazione geologica

Sulla foto aerea di *Fig. 34*, sono riportati i due dissesti segnalati in IFFI, così come si possono ricostruire e da cui emerge come in effetti l'area evidentemente interessata dal dissesto più antico (025012100) sia in effetti ben vegetata e non mostri segni di movimento. Peraltro la forma lascia intendere come l'area possa essere stata altresi interessata in passato da attività di cava. La *Fig.* 34 inoltre mostra l'area interessata dal dissesto fortemente vegetata così come appare evidente nella foto aerea.

Dall'osservazione visuale dei blocchi visibili nell'area e dalle differenze nelle misurazioni delle giaciture nell'immediato intorno che talvolta cambiano vergenza nel giro di pochi metri, si deduce che l'area è attraversata da numerose fratture lungo le quali gli ammassi rocciosi appaiono "mossi" e sconnessi rispetto alla formazione originale rivelando una possibile deformazione gravitativa di versante a scala mediostrutturale, oggi allo stato di quiescenza,

Fig. 34 - Localizzazione e delimitazione dei dissesti segnalati in IFF su foto aerea

Relazione geologica

Fig. 35 - Vista dell'area interessata dal dissesto antico (dissesto IFFI 025012100).

Il dissesto più recente (025012110), classificato come crollo, ha interessato la falesia calcarea (Calcare di Soccher), *Fig. 35*, che limita verso monte la stretta strada comunale che conduce ad un ex impianto industriale (cementificio). La stazione ferroviaria locale risulta ormai dismessa. Lungo il breve tratto sono ben evidenti tagli sul versante roccioso probabilmente riconducibili a saggi di cava. Il versante pressoché subverticale a tratti con contropendenze, presenta affioramenti rocciosi che mostrano evidenti allentamenti lungo le fratture, su cui su cui sono stati eseguiti intervenuti con chiodature e consolidamenti con soil nailing, *Fig. 37*.

Fig. 36 - Vista della falesia da cui si è sviluppato il dissesto IFFI 025012110. Sulla sinistra la stazione FFSS

Relazione geologica

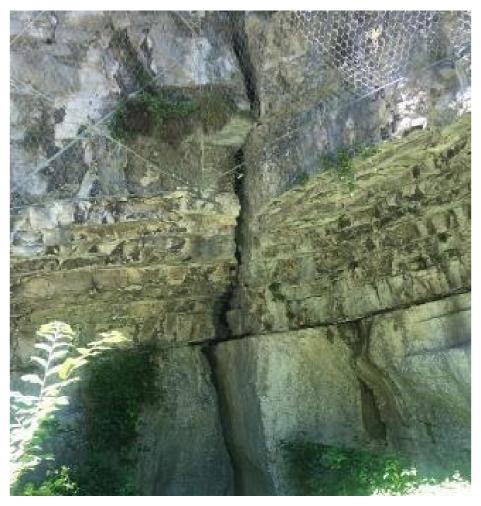


Fig. 37 - Interventi di soil nailing sulla falesia (dissesto IFFI 025012110)

I due dissesti e l'area che presenta segni di passati movimenti, non interferiscono con il tracciato che peraltro in tale area corre in galleria.

Sempre in questa zona, poco a nord di Castellavazzo e dell'ex impianto industriale, è presente un'accentuata e stretta forra/canalone, poco visibile a causa di un'intensa vegetazione, fortemente incisa nel substrato calcareo, orientata E-O e che raccoglie le acque provenienti da monte, convogliandole in Piave, *Fig.* 38. Tale elemento idro-morfologico è segnalato anche nella Carta di Fragilità del PAT.

Relazione geologica

Fig. 38 - Forra/canalone presente poco a Nord di Castellavazzo

Sempre la Carta di Fragilità del PAT, *Fig. 26* e *Fig. 39*, ed il PAI nella Carta della Pericolosità da valanga, *Fig. 40*, individuano nel settore a nord di Castellavazzo due canaloni che possono essere oggetto di fenomeni di valanga, e che vengono quindi classificati a Pericolosità moderata/elevata, P2/P3, che verso valle, confluiscono proprio nella citata forra. Come già precisato in precedenza, in tale tratto il tracciato stradale in progetto, si sviluppa in galleria e quindi non sussistono problematiche di interferenza con i fenomeni citati.

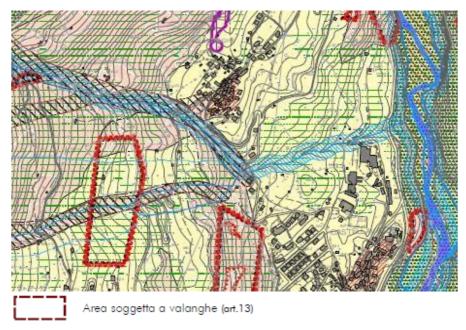


Fig. 39 - Stralcio Carta della Fragilità del PAT Longarone. Canaloni soggetti a valanghe

Relazione geologica

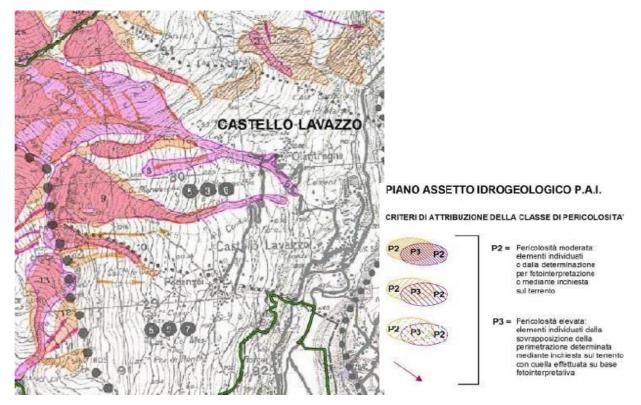


Fig. 40 - Estratto della Carta delle Pericolosità da valanga dal PAI di Longarone

Spostandosi verso Longarone ed oltre fino al torrente Maé, la Carta della Fragilità del PAT *Fig.* 29, evidenzia ancora la presenza di aree per lo più localizzate lungo falesie rocciose e/o comunque di zone con pendii rocciosi molto acclivi caratterizzati da pericolosità di frana per condizioni favorevoli a frane di crolli. Queste sono per lo più localizzate sulle falesie rocciose del Calcare di Soccher, presenti a monte dell'abitato di Longarone, *Error! Reference source not found.*.

Fig. 41 - Abitato di Longarone con visibili i tratti di falesia presenti a monte dell'abitato

VE407

Relazione geologica

Il tracciato previsto in progetto si sviluppa ben a valle dell'abitato di Longarone e delle falesie rocciose, in zona di fondovalle, pressoché in fregio all'alveo del fiume Piave, ben distante quindi dai versanti; pertanto non sussistono possibilità di interferenze con i fenomeni di dissesto segnalati.

In questo tratto di fondovalle, il Catalogo IFFI segnala un dissesto (0250191800), tipo scivolamento rotazionale che avrebbe interessato un limitato tratto di argine fluviale del Piave e la cui causa è probabilmente legata alla dinamica fluviale. La scheda segnala danni ad una condotta forzata ENEL, *Fig.* 42.

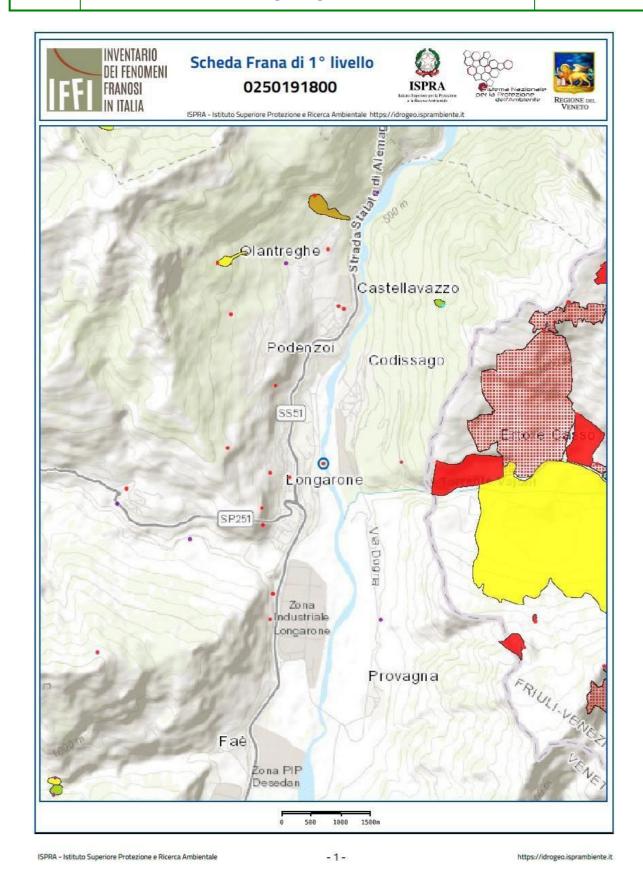


Fig. 42 - Scheda Catalogo IFFI Frana argine

		G	enerale			
ID Frana: 0250	191800	Sigla: 0250	191800	Data: Soj	oralluogo:	Compilazione: 18/02/2003 01:00
Ente / Istituzio	ne: Regione del	Veneto			CF. Ente:	
Regione: Venet	:0		Provincia:	Provincia di I	Belluno	
Comune: Longa	irone					
Toponimo: VAJOI	NT					
Autorità di Distret	to: Alpi Orienta	li .				
Rif. CTR: Toponim	no CTR:				a CTR: 000	Nr. CTR: 046120
Posizione PIFF:	Corona		Accurate	zza: Esatta		
Attivi	tà:NoteAttivit		sificazione			
PRIMO LIVELLO Tipo Movimento:	Scivolamento r	rotazionale/tras	lativo			
SECONDO LIVELLO	1° ordine:			2° ordine:		
Tipo Movimento:	scivolamento rota	azionale				
Velocità	1° ordine: n.d.			2° ordine:		
Materiale:	1° ordine: n.d.			2° ordine:		
Acqua:	1° ordine: n.d.			2° ordine:		
Altri fenomeni ass	sociati:					
		A	ttività			
Stato Attività:	PRIMO LIVELLO n.d.			SECONDO LIVEL	го	
Data osservazio	ne: Certa:		Incerta:			
Distribuzione:			Stile	2:		
		N	letodo			
Metodo: D	ato storico/arch	nivio				

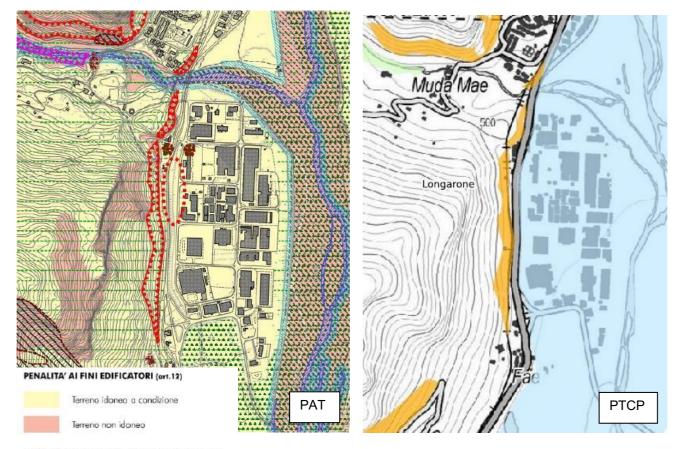
		Data	zione			
Data attivaz	Certa:		Incerta:			
Fonte datazione:				Età	Anni:	Precisione:
		Attivazio	oni/Eventi			
Attivazioni:						
Eventi:						
		Da	anni			
Tipo Danno:	Danno diretto					
Persone: Nr. MORTI:	Nr. FERITI:	Edifici: PRIVATI: (1	anni (€): :NI: A	ATTIVITA':	
Nr. DISPERSI:	Nr. EVACUATI:O	PUBBLICI: ()	TOTALE:		
Danni a cors	SO TIPO DI DANNO:	CORSO D	'ACQUA:			
Note Danni:						
Elementi Danni:	Gruppi elementi dar	nno E	Elementi danno		Grado	
	Strutture servizio pul	bblico c	ondotta forzata		medio	_
		Ris	schio			
Persone a rischio: Nr. 0		ci a rischio: Nr. EDIFICI PRIVATI:0	Nr. EDI	FICI PUBBLICI:0		
Note rischio:						
		Morfo	ometria			
Quota corona:	m Slm	Larghezza:	m	Pend	enza: °	
Quota unghia:	m Slm	Lunghezza:	m	Azimut Movim	ento: °	
Volume:	m³	Dislivello:	m	Profondità Supe	erfice	
Area stimata:	m²	Area Calcolata:	m²	di Scivolamen	m	

Relazione geologica

Come evidenziato in fase di sopralluogo il tratto d'argine interessato in passato dal dissesto oggi non presenta problematiche evidenti e appare recuperato e vegetato. Come mostra la foto di *Fig. 43* in questo tratto, il fiume svolge un'azione erosiva, che potrebbe essere stata, in un momento di piena, alla base dell'innesco del dissesto.

Fig. 43 - Zona dissesto argine (IFFI 0250191800)

Superato il torrente Maé, la Carta di Fragilità del PAT, evidenzia sostanzialmente dinamiche di dissesto non dissimili rispetto al precedente tratto. Perlopiù i movimenti gravitativi di massa, caratterizzati da dinamica di crollo, sono localizzati lungo le falesie rocciose presenti a monte dell'attuale tracciato della S.S. 51; stesso quadro è rappresentato anche dalla Carta della Pericolosità del PTCP, *Fig. 44*.


Le stesse carte mettono in evidenza come il tratto d'alveo a monte di Muda Maé sia segnalato come potenzialmente soggetto a fenomeni di debris flow.

Anche in questo tratto il tracciato stradale di progetto è comunque ben lontano dalle aree potenzialmente in dissesto e a pericolosità geologica, correndo ad est dell'area industriale di Villanova, pressoché in fregio all'alveo del fiume Piave.

Relazione geologica

AREE SOGGETTE A DISSESTO IDROGEOLOGICO

Fig. 44 - Stralcio Carta della Fragilità del PAT Longarone e della Carta di pericolosità del PTCP. Zona a sud del Torrente Maé

Nel tratto successivo da Villanova fino a Pian di Vedoia, sia il PAT di Longarone sia quello di Ponte nelle Alpi, nonché il PTCP, *Fig. 45*, evidenziano sostanzialmente dinamiche di dissesto non dissimili rispetto al precedente tratto.

Per lo più l'evenienza di movimenti gravitativi di massa, caratterizzati da dinamica di crollo, sono segnalati lungo le falesie rocciose presenti a monte dell'attuale tracciato della S.S. 51. Il catalogo IFFI nello stesso tratto segnala la presenza di 3 dissesti, di cui uno con dinamica ancora di crollo, *Fig. 46*, mentre gli altri due di tipo scivolamento rotazionale.

Il primo (02501091500), *Fig. 46*, quello più a nord verso Fortogna, avvenuto nel 1912, mostra una dinamica di tipo scivolamento rotazionale. Si è sviluppato dal fianco di una vallecola secondaria

Relazione geologica

molto incisa in dolomia e/o calcari dolomitici, causando danni alla linea ferroviaria. L'area, dalle foto aeree, non sembra mostrare segni di attività, ed è comunque molto distante dal tracciato previsto.

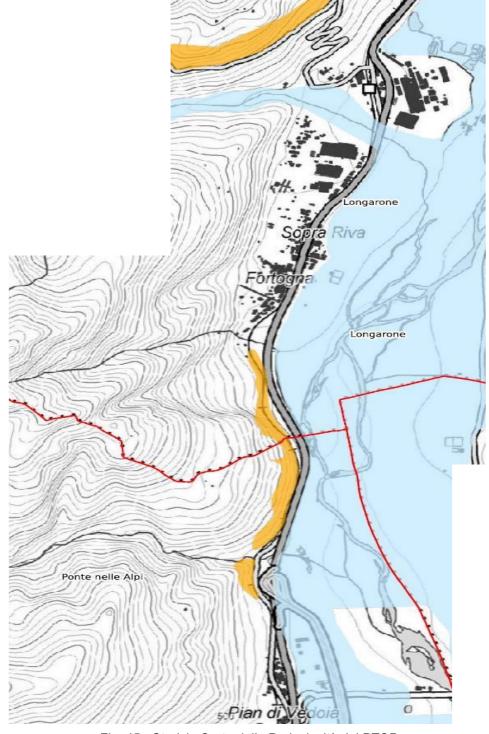


Fig. 45 - Stralcio Carta della Pericolosità del PTCP

Fig. 46 - Dissesti da catalogo IFFI nel tratto tra Villanova e Pian di Vedoia

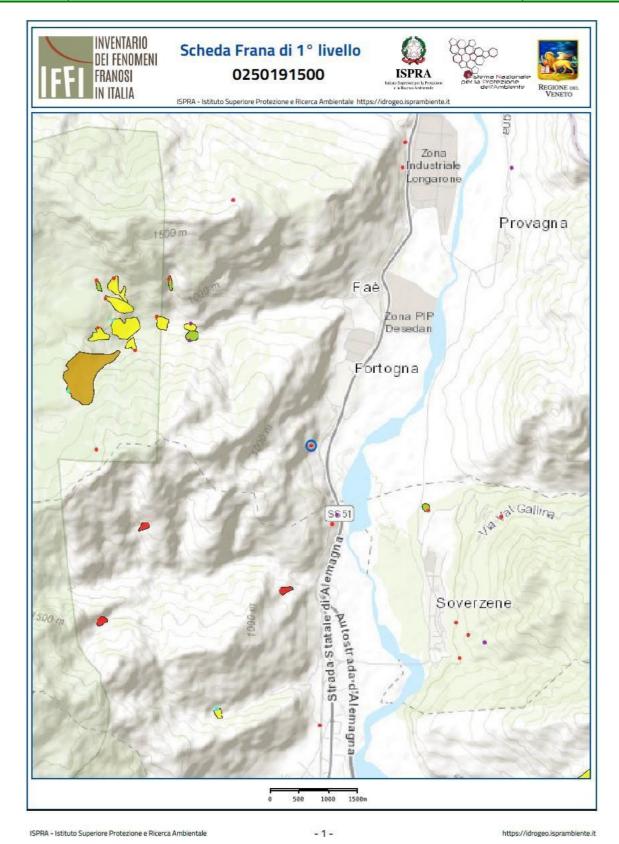


Fig. 47 - Scheda Catalogo IFFI Frana prossima a Fortogna

		Ge	enerale			
ID Frana: 02501	191500	Sigla: 02501	191500	Data:	Sopralluogo:	Compilazione: 18/02/2003 01:00
Ente / Istituzior	ne: Regione del V	/eneto			CF. Ente:	
Regione: Venet			Provincia: F	Provincia (di Belluno	
Comune: Longa						
Toponimo: FORTO	OGNA					
Autorità di Distret	to: Alpi Orientali					
Rif. CTR: Toponim	o CTR:				Scala CTR: 10000	Nr. CTR: 046160
Posizione PIFF: (Corona		Accuratez	za: Esatt	a	
		rotazionale\ :	Velocità:A			ssestoDescriz.:
		Class	ificazione			
Tipo Movimento:	Scivolamento ro	tazionale/trasl	ativo			
SECONDO LIVELLO						
Tipo Movimento:	Servoiamento rotazi	ionale		2° ordine:		
Velocità	1° ordine: n.d.			2° ordine:		
Materiale:	1° ordine: n.d.			2° ordine:		
Acqua:	1° ordine: n.d.			2° ordine:		
Altri fenomeni ass	ociati:					
		Δ	ttività			
	POWER LINE LA	^	ccivica	SESONDO II	WELL 0	
Stato Attività:	n.d.			SECONDO LI	VELLO	
Data osservazion	ne: Certa: n.d.		Incerta:			
Distribuzione:			Stile			
		M	letodo			
Metodo: D	ato storico/archi	vio				

		Datazione			
Data attivazione:	Certa: 22/10/1912 12:00	Incerta:			
Fonte datazione:			Età	Anni:	Precisione:
		Attivazioni/Eventi			
Attivazioni:					
Eventi:					

		D	anni		
Tipo Danno:	Danno diretto				
Persone: Nr. MORTI:	Nr. FERITI:	Edifici: PRIVATI:	0	Costo Danni (€): BENI:	ATTIVITA':
Nr. DISPERSI:	Nr. EVACUATI: ^O	PUBBLICI:	0	TOTALE:	
Danni a cor	SO TIPO DI DANNO:	CORSO	D'ACQUA:		
Note Danni:					
Elementi Danni:	Gruppi elementi danno		Elementi d	anno	Grado
	Ferrovie		ferrovia n.d		medio

Rischio					
Persone a rischio: Nr. 0	Edifici a rischio: Nr. EDIFICI PRIVATI:0	Nr. EDIFICI PUBBLICI:O			
Note rischio:					
	Morfomet	ria			

Morfometria Morfometria					
Quota corona:	m Slm	Larghezza:	m	Pendenza:	0
Quota unghia:	m Slm	Lunghezza:	m	Azimut Movimento:	0
Volume:	m³	Dislivello:	m	Profondità Superfice	
Area stimata:	m²	Area Calcolata:	m²	di Scivolamento Dr.	m

ISPRA - Istituto Superiore Protezione e Ricerca Ambientale

-3-

https://idrogeo.isprambiente.it

VE407

Relazione geologica

Più prossimi al fondovalle sono gli altri due dissesti segnalati in catalogo. Il primo (0250206200), è segnalato come frana di crollo, avvenuta nel 1970. Il materiale è franato dalle falesie che sovrastano il tracciato ferroviario immediatamente sottostante apparentemente non causando danni allo stesso bensì alla viabilità (attuale S.S. 51) posta più a valle. Oggi immediatamente a monte della linea ferroviaria è presente un muro di contenimento con una barriera paramassi posizionata in testa. Poco più a monte sono state altresì posizionate reti paramassi che oltre a dare protezione della linea ferroviaria, *Fig. 48* e *Fig. 49*, assieme alla barriera, dovrebbero costituire un presidio di sicurezza per le due infrastrutture, considerando anche che il nuovo tracciato in progetto è più esterno a quello esistente.

Fig. 48 - Barriera e reti paramassi a protezione del tracciato ferroviario (vista dalla SS 51)

Fig. 49 - Barriera paramassi a protezione del tracciato ferroviario (vista da pista sotto linea FFSS)

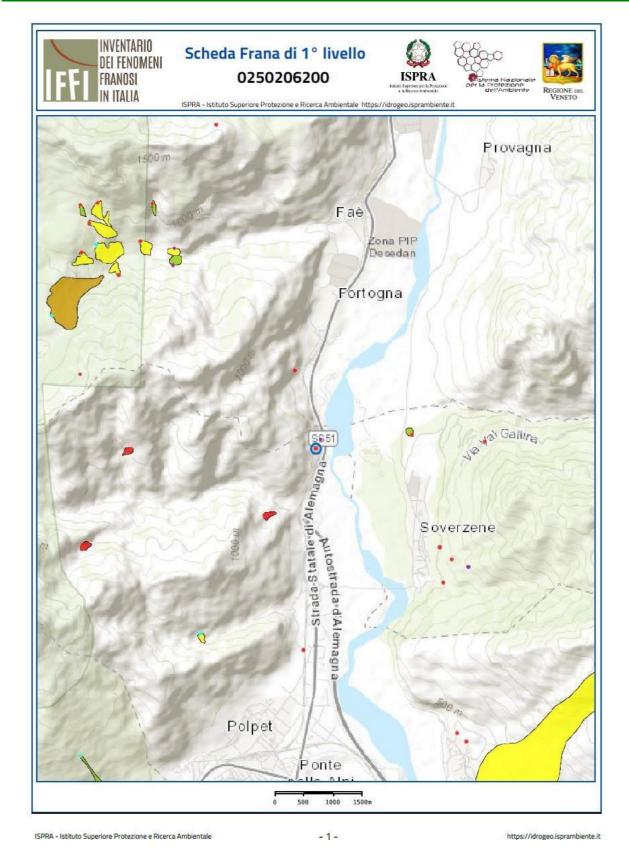


Fig. 50 - Scheda Catalogo IFFI

Generale						
ID Frana: 02502	206200 Sigla: 0250206200		Data: Sopralluogo:	Compilazione: 18/02/2003 01:00		
Ente / Istituzion	ne: Regione del Vene	to	CF. Ente:			
Regione: Veneto	0	Provincia: F	Provincia di Belluno			
Comune: Ponte	nelle Alpi					
Toponimo: SS 51						
Autorità di Distrett	to: Alpi Orientali					
Rif. CTR: Toponim	o CTR:		Scala CTR: 10000	Nr. CTR: 046160		
Posizione PIFF: 0	Corona	Accuratez	za: Esatta			
Velocit		srado:graveDannoStru AttendibilitàVelocità:st				
		Classificazione				
PRIMO LIVELLO Tipo Movimento:	Crollo/Ribaltamento					
SECONDO LIVELLO						
Tipo Movimento:	1° ordine: crollo		2° ordine:			
Velocità	1° ordine: estremamente rapido (>	5 m/s)	2° ordine:			
	1° ordine: n.d.		2° ordine:			
Acqua:	1° ordine: n.d.		2° ordine:			
Altri fenomeni ass	ociati:					
Attività						
Stato Attività:	PRIMO LIVELLO n.d.		SECONDO LIVELLO			
Data osservazion	ne: n.d.	Incerta:				
Distribuzione:		Stile				
Metodo						
Metodo: Da	ato storico/archivio					

Datazione Datazione								
Data attivaz	cione:		Incerta: 01/01/1970		01/01/1970			
Fonte				T12	Anni:	Precisione:		
datazione:				Età				
Attivazioni/Eventi								
Attivazioni:								
Eventi:								
		Da	ınni					
The Description	Danno diretto							
Tipo Danno:	Daimo directo							
Persone: Nr. MORTI:	Nr. FERITI:	Edifici: PRIVATI:	Costo Da BEI		TTIVITA':			
Nr. DISPERSI:	Nr. EVACUATI:0	PUBBLICI: C)	TOTALE:				
Danni a cors	TIPO DI DANNO:	CORSO D	ACQUA:					
Note Danni:								
Floresti Donni	Cruppi olomopti dan	nno [Elementi danno		Grado			
Elementi Danni:	Strade				grave			
Rischio								
Persone a rischio:	Edific	ci a rischio:						
Nr. O	Nr. EDIFICI PRIVATI:O Nr. EDIFICI PUBBLICI:O							
Note rischio:								
Morfomotria								
Quota corona: m Slm								
Quota corona:		Larghezza:		Azimut Movim				
Quota unghia: Volume:		Lunghezza: Dislivello:						
Area stimata:		Area Calcolata:		Profondità Supe di Scivolament				
Alea Stillata:	111	Area Calcolata:	III	ui scivolamem	U DI.			

Relazione geologica

L'altro dissesto (025026400), Fig. 50, la cui attivazione risale al 1966, è classificato come smottamento dovuto a scalzamento al piede del pendio da parte del Fiume Piave.

Nella scheda del catalogo IFFI vengono segnalati danni alla linea ferroviaria, che scorre leggermente a monte rispetto all'esistente SS 51; per quest'ultima non risulterebbero danni.

Come visibile dalla foto di Fig. 51 il tratto probabilmente interessato dallo smottamento e che oggi non sembra presentare problematiche significative, corre direttamente in fregio all'alveo del fiume Piave, con un dislivello fra piano viario e alveo superiore ai 5-6 metri. Immediatamente al piede scorre un canale secondario del fiume, che in piena probabilmente esercita una significativa azione erosiva al piede del versante. Il nuovo tracciato in progetto corre esternamente all'esistente e pertanto dovrà necessariamente essere prevista una protezione esterna e/o accorgimenti progettuali che tengano conto dell'azione scalzante che il fiume può esercitare, specie in fase di piena.

Fig. 51 - Tratto interessato nel 1966 dallo smottamento

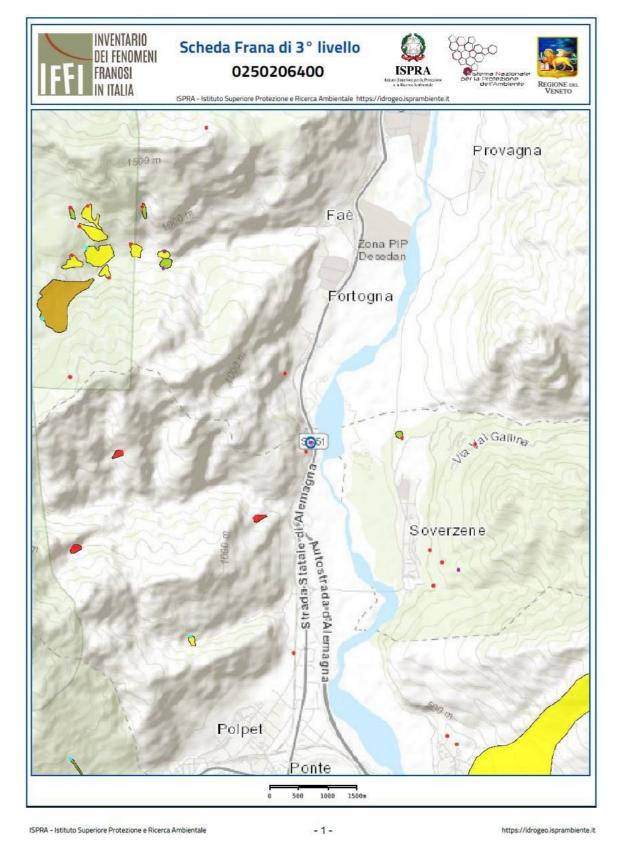


Fig. 52 - Scheda Catalogo IFFI

		Generale		
ID Frana: 0250	206400 Sigl	a: 0250206400	Data: Sopralluogo:	Compilazione: 18/02/2003 01:00
Ente / Istituzio	ne: Regione del Veneto		CF. Ente:	
Regione: Venet	to	Provincia: P	rovincia di Belluno	
Comune: Ponte	e nelle Alpi			
Toponimo: PRA'	DANTA			
Autorità di Distret	tto: Alpi Orientali			
Rif. CTR: Toponin	no CTR:		Scala CTR: 10000	Nr. CTR: 046160
Posizione PIFF:	Corona	Accuratez	za: Esatta	
Descrizione: TipoN	NoteD.: Descr.Danno: Movim.:scivolamento rotazio	DannoGrado:potenzi naleVelocità:At	aleDannoStrutture:F	errovia
		Classificazione		
PRIMO LIVELLO Tipo Movimento:	Scivolamento rotazion	ale/traslativo		
SECONDO LIVELLO	Deliveral mente recazion	are, crasianto		
Tipo Movimento:	1° ordine: scivolamento rotazionale		2° ordine:	
Velocità	1° ordine: n.d.		2° ordine:	
Materiale:	1° ordine: n.d.		2° ordine:	
Acqua:	1° ordine: n.d.		2° ordine:	
Altri fenomeni ass	sociati:			
		Attività		
Stato Attività:	PRIMO LIVELLO	No. and Company	SECONDO LIVELLO	
		Incertar		
Data osservazio	ne: n.d.	meru.		
Distribuzione:		Stile:		
	ID Frana: 0250206400 Sigla: 0250206400 Data: Sopralluoge: Compiliazione: 18/02/2003 01:00 Ente / Istituzione: Regione del Veneto Provincia: Provincia di Belluno Comune: Ponte nelle Alpi Toponimo: PRA' DANTA Autorità di Distretto: Alpi Orientali Rif. CTR: Scala CTR: 10000 046160 Posizione PIFF: Corona Accuratezza: Esatta CIN dissesto nr. 973 - Id_evento: 2271			
Metodo: ^D	Oato storico/archivio			

		Datazione			
Data attivazi	One:	Incerta:	: 01/01/1966	01/0	1/1966
Fonte				Anni: Età	Precisione:
datazione:				Eld	
		Attivazioni/Eve	enti		
Attivazioni:					
Eventi:					
		Danni			
	Daniel d'autho				
Tipo Danno:	Danno diretto				
Persone: Nr. MORTI:	Nr. FERITI:	Edifici: PRIVATI: 0	Costo Danni (€): BENI:	ATTIVIT	A':
Nr. DISPERSI:	Nr. EVACUATI:O	PUBBLICI: 0	TOTAL		
Danni a cors	O TIPO DI DANNO:	CORSO D'ACQUA:			
Note Danni:					
Elementi Danni:	Gruppi elementi dan	ino Elementi d	lanno	Grad	lo
	Ferrovie	ferrovia n.d	l.	non	/alutabile
		Rischio			
Persone a rischio: Nr. 0		:i a rischio: Nr. EDIFICI PRIVATI:O	Nr. EDIFICI PUBB	u cı: 0	
Note rischio:					
		Morfometria			
Quota corona:	m Slm	Larghezza: m		Pendenza	. •
Quota unghia: ı	m Slm	Lunghezza: m	Azimo	ut Movimento	۰
Volume:		Dislivello: m		ndità Superfice	
Area stimata:	m²	Area Calcolata: m²	di Sci	volamento Dr	

	Posizio	ne Frana, Esposizione Vers	sante e Uso Suolo	
Posizione test	ata:			
Posizione ung	ghia:			
Esposizione ve	rsante: E	Uso suolo: incolto prato pas	colo	
		Geologia		
Descrizione:	Alluvioni antich	ne sabbiose limose.		
Formazione:		FORMAZIONE Depositi alluvionali		
Immersione:	0	Inclinazione		
Struttura:	n.d.			
Spaziatura:	n.d.			
Litotecnica:	n.d.			
Assetto:	n.d.			
Degradazione:	n.d.			
Litologia:	terreni prevale	ntemente sabbiosi		
		Idrogeologia		
Acque superficia				
Sorgente:			Nr. Sorgente:	
Falda:			Profondità Falda:	
		Cause		
Cause	scarico glaciopres	Cause		Innescante
	scarico giaciopres	5510111		
		Segni precursori		
Segni	i			
precursori				

	Sanas GRUPPO ES ITALIANE			
VE4	107	GROPPO ES HALIANE		
62	2	Analisi radar	territorialetramite satellitare Programma	Monitoraggio Sentinel 1

È stata approfondita l'analisi della pericolosità geomorfologica dell'area interessata dal nuovo tracciato stradale consultando i dati in rete del programma SENTINEL 1 - PS "Monitoraggio radar satellitare continuo delle deformazioni del terreno della Regione Veneto".

Questa tecnologia rappresenta una modalità di indagine sulla deformazione dei terreni che si basa

sull'utilizzo di immagini satellitari di tipo radar. I sensori radar sono montati su satelliti che rivisitano lo stesso luogo con periodicità costante riuscendo a collimare elementi PS (Permanent Scatterers) che permettono la riflessione delle onde radar. L'elaborazione successiva dei punti collimati utilizza la tecnica della interferometria di fase che permette di misurare spostamenti relativi dell'ordine del millimetro (l'analisi non fornisce misure assolute, ma spostamenti dei punti collimati rispetto ai passaggi satellitari successivi).

Il sistema ha dei limiti propri di interpretazione dei dati interferometrici SARS satellitari, che derivano dalla geometria di acquisizione (orbita, LOS, etc.), dalla esposizione dei versanti, dalla omogenea copertura di Permanent Scatterers, nonché nel caso dei dissesti gravitativi dalla stessa direzione di movimento (è possibile apprezzare le deformazioni solo nella direzione di LOS (linea di vista del satellite) ovvero componenti Est – Ovest e verticale ma non in direzione Nord-Sud), così come riportato nelle linee guida per l'utilizzo dei dati interferometrici della Regione Veneto messe a disposizione dalla Regione Veneto sul portale webgis dedicato

https://idt2.regione.veneto.it/idt/webgis/viewer?webgisId=185

Attraverso il Geoportale è possibile visualizzare e interrogare le mappe di velocità di deformazione del suolo generate dall'elaborazione delle immagini Sentinel-1 in geometria ascendente e discendente. I dati disponibili sul portale sono relativi ai Permanent Scatterers visibili e acquisti all'aprile 2021 intendendo con questo che trattasi, molto probabilmente, della storia temporale fino a tale data.

Sul portale sono presenti anche 2 mappe di percentuale di sensibilità: una per l'orbita ascendente e una per l'orbita discendente che permettono di capire in quale misura le velocità di movimento registrate lungo la direzione LOS corrispondano alla velocità di movimento reale. In particolare tali mappe riportano:

• in rosso la classe con una percentuale del movimento misurabile al di sotto del 25%. A causa della forte inclinazione del pendio o dell'esposizione verso Nord o Sud, la componente reale del movimento è fortemente sottostimata;

VE407

Relazione geologica

- in giallo la classe con percentuale del movimento misurabile tra 25 e 50%. La componente del movimento misurabile aumenta ma l'utente deve tenere conto di sottostime non trascurabili;
- in verde chiaro la classe con una percentuale del movimento misurabile tra 50 e 75%.
- in verde scuro la classe con una percentuale del movimento misurabile maggiore del 75%. Le misure satellitari permettono di vedere l'interezza o gran parte della componente reale.

Le carte di Fig. Fig. 53 riportano le mappe di sensibilità di velocità per l'area interessata dal tracciato. I versanti che ricadono all'interno di aree a bassa percentuale misurabile (in rosso) in geometria ascendente, risultano invece in aree ad alta percentuale misurabile (in verde chiaro e in verde scuro) in fase discendente. La ragione di ciò è da attribuire all'orientazione favorevole o sfavorevole del versante rispetto alla direzione della LOS nelle due geometrie di acquisizione e alla forte pendenza topografica.

L'analisi è stata estesa a tutta la fascia di territorio interessato dal tracciato con particolare riguardo alle aree di imbocco della galleria e alle zone di corridoio in affiancamento all'attuale S.S. 51 come tra i Viadotti Rio de Frari e Desedan, dove il tracciato di progetto verrà realizzato in affiancamento all'attuale corridoio della S.S. 51 posta al piede di un versante segnalato come interessato da deformazione profonda (DGPV).

Le immagini riportate nelle da *Fig. 54* a *Fig. 60*, mostrano per il trecciato di progetto e le aree contermini, Permanent Scatterers con valori di velocità in generale compresi tra $-1,99 \div 2,0$ mm/anno in entrambe le orbite; localmente si rilevano Permanent Scatterers aventi velocità $-4,99 \div -2,00$ mm/anno, $-9,99 \div -5,00$ mm/anno e $2,01 \div 5,00$ mm/anno riguardanti sovente zone di alveo fluviale e fondovalle e non in entrambe le orbite e attribuibili probabilmente a outlayer.

Come indicato nelle linee guida del sistema Sentinel, in zone pianeggianti, velocità aventi lo stesso segno in entrambe le orbite sono riferibili a movimenti di abbassamento o innalzamento del terreno; velocità di segno opposto nelle due orbite, soprattutto se riferite a punti isolati non sono da considerare come effettivamente legate ad un movimento del terreno ma a problemi in fase di elaborazione del dato.

Nelle zone montane o collinari, velocità aventi segno opposto nelle due orbite è probabilmente legata a movimenti di versante; velocità dello stesso segno in entrambe le orbite sono invece legate a frane solamente nel caso in cui la componente principale sia sub-verticale, riscontrabile solitamente nelle porzioni di corona di scivolamenti rotazionali o di frane complesse.

Come evidenziano le mappe in figura seguenti, lungo il tracciato di progetto e dall'analisi delle sole informazioni disponibili dai dati satellitari in esame e nei limiti stessi della loro attendibilità, non si ravvedono zone soggette a particolari fenomeni di subsidenza evidenziata da zone caratterizzate

VE407

Relazione geologica

dalla stessa entità e segno (negativo in quanto in allontanamento rispetto al sensore) in entrambe le orbite, né tanto di frana (velocità di segno opposto nelle due orbite). Chiaramente i movimenti gravitativi rilevabili, sono solo quelli con dinamica lenta, crolli e debris flow non possono essere monitorati.

L'esame dei dati non ha quindi evidenziato particolari aree all'interno del territorio esaminato, dove si possano osservare fenomeni significativi di cedimenti e/o legati a movimenti gravitativi di massa.

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

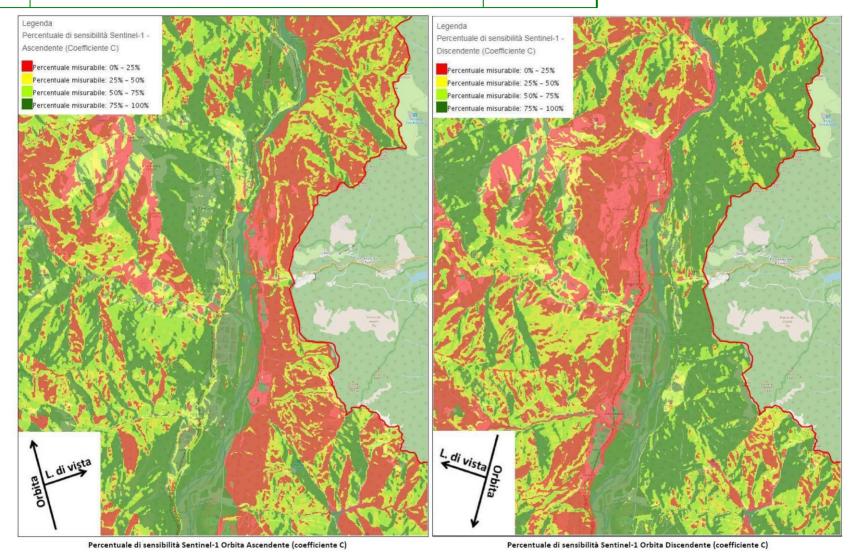


Fig. 53

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

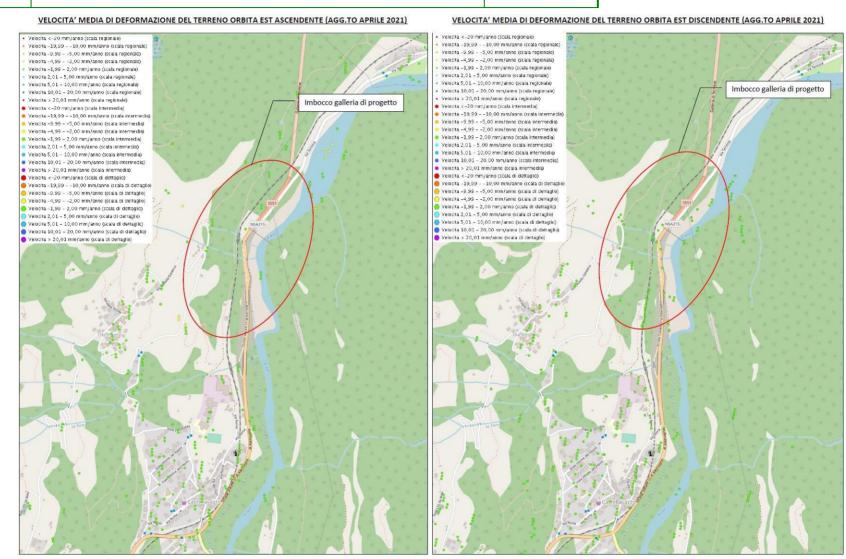


Fig. 54

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

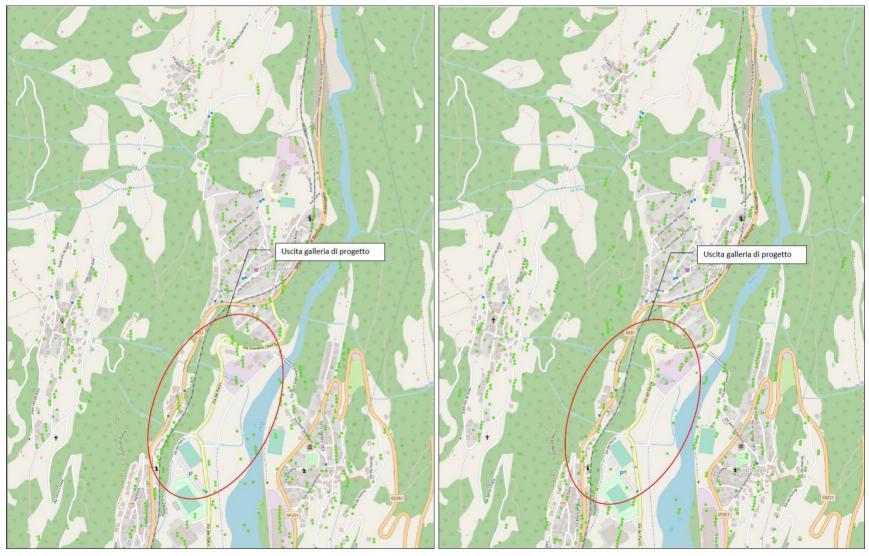


Fig. 55

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

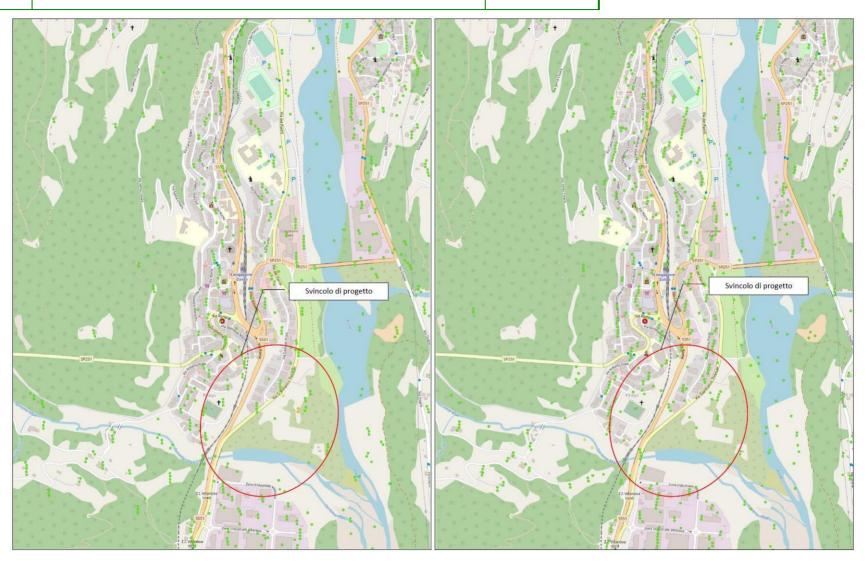


Fig. 56

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Fig. 57

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Fig. 58

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

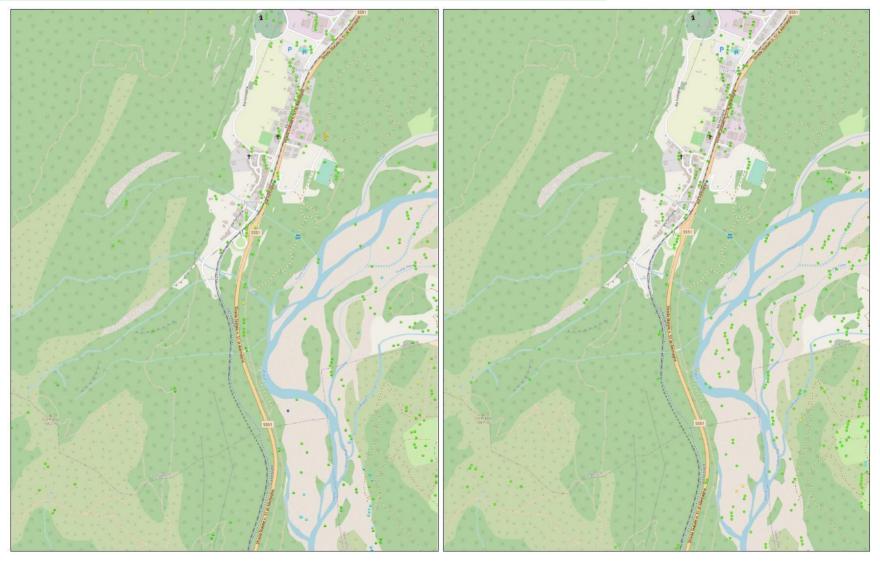


Fig. 59

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Fig. 60

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

7 QUADRO IDROGEOLOGICO

L'assetto tettonico e la variabilità litologica delle varie unità litostratigrafiche presenti nell'area di studio, condizionano le strutture idrogeologiche che caratterizzano il quadro locale. Le varie formazioni affioranti, mostrano caratteristiche di permeabilità diversificate, legate oltre che alle caratteristiche litologiche, al grado di coesione, alla porosità, alla fratturazione degli ammassi rocciosi e all'assetto tessiturale dei depositi.

Il substrato roccioso ha nel complesso permeabilità condizionate dalla presenza, in molti termini formazionali, di strati marnosi che possono interrompere o rallentare la circolazione idrica sotterranea nei diversi sistemi di fratturazione, legati all'assetto tettonico locale. La struttura monoclinale della valle favorisce una direttrice di circolazione prevalente, da ovest verso est; le principali sorgenti ed emergenze idriche segnalate si individuano in genere sul versante occidentale della valle del Piave, mentre nel ripido versante opposto, con giacitura a reggipoggio, sono di minore importanza.

I depositi di copertura e alluvionali, sono dotati di discreta permeabilità. Quelli presenti sui versanti, generalmente più cementati e fini, possono rappresentare acquiferi di più modesta importanza locale; ad ogni buon conto permettono l'immagazzinamento delle acque di pioggia e svolgono anche una funzione regolatrice della ricarica dei sottostanti acquiferi presenti nel substrato roccioso,

Acquifero di maggiore importanza è sicuramente quello presente nel materasso alluvionale del Piave, caratterizzato da falda freatica, il cui equilibrio idrodinamico è strettamente correlato all'andamento idrologico del fiume stesso.

Per definire la permeabilità delle formazioni litologiche, normalmente si fa riferimento alla permeabilità relativa espressa in modo qualitativo (permeabilità alta, media, bassa, impermeabile) confrontando il comportamento di un litotipo rispetto ad altri inseriti nello stesso contesto e non alla permeabilità assoluta che è una proprietà quantizzabile con prove di laboratorio e/o in situ, ed è espressa da un coefficiente di permeabilità, che appunto è funzione di tutte le caratteristiche sopra riportate. La permeabilità può essere "primaria" quando è legata alla storia della formazione diagenetica della roccia (presenza di vuoti tra granulo e granulo); "secondaria" quando è legata alla fatturazione della roccia per cause successive alla sua formazione (cause prevalentemente tettoniche).

Una classificazione delle varie formazioni affioranti nell'area, raggruppando i vari litotipi secondo il loro grado di permeabilità relativa, primaria (per caratteristiche granulometriche, porosità etc.) e

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

secondaria (per fatturazione e/o carsismo, presenza di interstrati marnosi etc.), è di seguito illustrata, *Fig.* 61.

Formazioni Geologiche	Permeabilità relativa
Depositi alluvionali attuali Coltri colluviali-eluviali e detritiche. Dolomia Principale.	MOLTO ELEVATA - ELEVATA
Coltri moreniche o fluvioglaciale Alluvioni antiche terrazzate/depositi di facies glaciale. Calcare di Soccher - Biancone Formazione del Soverzene	ELEVATA - MEDIA
Calcare del Vajont Rosso Ammonitico	MEDIA
Formazione di Igne Scaglia rossa	BASSA

Fig. 61 - Classi di permeabilità delle formazioni affioranti nella fascia di studio

La protezione delle acque sotterranee al fine di prevenire il loro degrado quantitativo e qualitativo è una delle principali problematiche di carattere idrogeologico e quindi uno degli obiettivi prioritari di qualsiasi politica di programmazione urbanistica e infrastrutturale. La vulnerabilità intrinseca o naturale degli acquiferi si definisce come la suscettibilità specifica dei sistemi acquiferi, nelle loro diverse parti componenti e nelle diverse situazioni geometriche ed idrodinamiche, ad ingerire e diffondere, anche mitigandone gli effetti, un inquinante fluido o idroveicolato tale da produrre impatto sulla qualità dell'acqua sotterranea, nello spazio e nel tempo (Civita, 1987). Il grado di vulnerabilità di un complesso/formazione acquifera, ci dice se e quanto la falda sotterranea è protetta rispetto a eventi di contaminazione, e quanto il contaminante ha possibilità di diffondersi nella falda. Si parla di vulnerabilità intrinseca, funzione solo delle caratteristiche naturali del sistema idrogeologico. La vulnerabilità così definita potrà essere completata e dettagliata per aree e/o situazioni particolari associando alla zonazione di vulnerabilità intrinseca l'ubicazione e la tipologia dei centri di pericolo e la mappatura della qualità dell'acqua di falda (con la definizione di aree dove la concentrazione di specie inquinanti supera quella massima ammissibile), in questo caso verrà elaborata la carta della vulnerabilità integrata. Per arrivare ad una definizione e classificazione su base qualitativa del grado di vulnerabilità si sono individuati quei complessi idrogeologici caratterizzati da condizioni più o meno uniformi in relazione al possibile movimento degli inquinanti nel sottosuolo. I dati di partenza sono stati: le caratteristiche litostratigrafiche delle formazioni e la classe di permeabilità. In particolare, si è tenuto conto del fatto che, oltre alle rocce litoidi, sono presenti anche dei terreni sciolti, derivati da fenomeni gravitativi (coperture detritiche, depositi fluvioglaciali, corpi di frana) e alluvionali (depositi di fondovalle), che sono sede di falde acquifere talora, come precedentemente detto, non

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

trascurabili. Trattandosi quindi, principalmente di depositi per lo più granulometricamente grossolani, e/o di rocce litoidi, la vulnerabilità risulta fondamentalmente condizionata dal grado di permeabilità della formazione.

Tenuto quindi del quadro litologico e delle caratteristiche delle varie formazioni affioranti nell'area di studio, dei possibili contesti litostratigrafici e del loro grado di permeabilità relativa, sono state definite tre classi di vulnerabilità. Di seguito si illustrano i criteri discriminanti per ognuna delle classi considerata:

Da MOLTO ELEVATA a ELEVATA

Falda acquifera libera in materiali alluvionali, da grossolani a medi, con scarsa o nulla protezione geologica. Sistema acquifero in complessi carbonatici fratturati con carsismo molto sviluppato e scarsa protezione geologica. Falda acquifera libera in materiali alluvionali e/o detritici, a granulometria variabile, con scarsa o nulla protezione geologica. Sistemi acquiferi in complessi carbonatici stratificati e no, con carsismo mediamente sviluppato e scarsa protezione geologica.

Le falde contenute nei depositi alluvionali di fondovalle e negli acquiferi carbonatici sono estremamente vulnerabili all'inquinamento da parte di eventuali sversamenti in superficie.

Da ELEVATA a MEDIA

Falda acquifera libera in depositi continentali a granulometria mista, sciolti o parzialmente cementati. Sistemi acquiferi in complessi carbonatici stratificati, caratterizzati da carsismo poco sviluppato e/o da presenza di interstrati marnosi e/o argillitici.

BASSA

Complessi prevalentemente marnosi con circolazione idrica sotterranea modesta e compartimentata.

Tenendo conto quindi della scala di permeabilità imputata alle formazioni strettamente affioranti nell'area studiata, *Fig.* 61. si è stabilita la correlazione Permeabilità/Vulnerabilità per ognuna delle formazioni affiorante nell'area di studio, riassunta in *Fig.* 62. La suddetta tabella permette di avere immediatamente, se rapportata alla distribuzione delle varie formazioni distinte per permeabilità, il quadro di vulnerabilità dei diversi complessi acquiferi e delle aree effettivamente più vulnerabili sotto il profilo idrogeologico, nella zona studiata e interessata, dal tracciato.

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Formazioni Geologiche	Permeabilità relativa	Vulnerabilità
Depositi alluvionali attuali Coltri colluviali-eluviali e detritiche. Dolomia Principale.	MOLTO ELEVATA - ELEVATA	MOLTO ELEVATA
Coltri moreniche o fluvioglaciale Alluvioni antiche terrazzate/depositi di facies glaciale. Calcare di Soccher - Biancone Formazione del Soverzene	ELEVATA - MEDIA	- ELEVATA
Calcare del Vajont Rosso Ammonitico	MEDIA	ELEVATA MEDIA
Formazione di Igne Scaglia rossa	BASSA	BASSA

Fig. 62 - Classi di vulnerabilità dei potenziali complessi acquiferi nella fascia di studio

Con la campagna di indagini geognostiche a supporto del progetto sono stati eseguiti 29 sondaggi a carotaggio continuo e/o a distruzione di nucleo, di cui 13 attrezzati con piezometro atubo aperto. Durante la perforazione sono state altresì eseguite prove di permeabilità in situ, in totale40 prove Lefranc a carico variabile e 10 prove Lugeon. Le prime sono state effettuate per lo più entroi sondaggi eseguiti nei depositi sciolti alluvionali di fondovalle, mentre le prove Lugeon hanno chiaramente riguardato gli intervalli litoidi calcarei attraversati in fase di perforazione dei sondaggi eseguiti nel tratto che sarà interessato dalla galleria. La *Fig.* 63 elenca i sondaggi eseguiti, evidenziando quelli condizionati a piezometro (PZ) e riporta numero e tipologia di prove di permeabilità in situ eseguite.

VE407

Sondaggio	Tipologia di perforazione	Profondità (m)	Strumentazione	SPT	Le Franc	Lugeon
SD00A_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	2	-
SD00B_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	2	-
SD01_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	2	-
SD02_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	2	
SD03_PZ	Carotaggio continuo	40	Piezometro T.A. 3"	13	1	-
SD05_PZ	Carotaggio Continuo	35	Piezometro T.A. 3"	11	2	
SD06_PZ	Carotaggio continuo	30	Piezometro T.A. 3"	10	2	-
SD07_DH	Carotaggio continuo	30	Tubo Down hole 3"	10	2	-
SD08_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	2	
SD09_PZ	Carotaggio continuo	35	Piezometro T.A. 3"	11	2	-
SD09bis_PZ	Carotaggio continuo	35	Piezometro T.A. 3"	11	1	
SD09ter_DH	Carotaggio continuo	30	Tubo Down hole 3"	10	2	-
SD10_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	2	-
SD11_PZ	Carotaggio continuo	25	Piezometro T.A. 3"	8	2	-
SD12_PZ	Carotaggio continuo	35	Piezometro T.A. 3"	11	2	-
SD12BIS_PZ	Carotaggio continuo	35	Piezometro T.A. 3"	11	2	-
SD13_DH	Carotaggio continuo	40	Tubo Down hole 3"	12	2	-
SD14_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	2	-
SD16_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	1	-
SD17_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	1	-
SD18_PZ	Carotaggio continuo	30	Piezometro T.A. 3"	10	1	-
SD19_DH	Carotaggio continuo	35	Tubo Down hole 3"	11	1	-
SD20_DH	Carotaggio continuo	30	Tubo Down hole 3"	10	1	-
SD21_PZ	Carotaggio continuo	30	Piezometro T.A. 3"	5	1	-
SD22_PZ	Carotaggio continuo	47	Piezometro T.A. 3"	14	-	-
SD23_PZ	Carotaggio continuo	65	Piezometro T.A. 3"	5	-	3
SD24_PZ	0.00 - 50.00 distruzione di nucleo / 50.00 - 90.00 carotaggio continuo	90	Piezometro T.A. 3"	•	-	3
SD25_PZ	0.00 - 90.00 distruzione di nucleo / 90.00 - 135.00 carotaggio continuo	135	Piezometro T.A. 3"	-	-	4
SD26	Carotaggio continuo	5	-	-	-	-

Fig. 63 - Quadro Sondaggi attrezzati a piezometro e prove di permeabilità eseguite

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Le prove Lefranc eseguite indicano range di valori di permeabilità assoluta variabili da 10⁻⁴ a 10⁻⁵ m/s a seconda della maggiore o minore componente sabbiosa e/o sabbiosa limosa. Più in particolare negli intervalli più francamente ghiaiosi la permeabilità assoluta è risultata compresa tra 1.5x10⁻⁴ e 2.0x10⁻⁵ m/s, con l'aumento e la prevalenza della componente sabbiosa la permeabilità diminuisce relativamente e negli intervalli sabbiosi ghiaiosi risulta compresa tra 1.5x10⁻⁴ e 7.0x10⁻⁵ m/s mentre in quelli in cui la componente sabbiosa limosa diventa prevalente si ha ulteriore diminuzione del grado di permeabilità che risulta mediamente compresa tra 5.5x10⁻⁵ e 8.7x10⁻⁵ m/s. I risultati delle prove evidenziano come la tipologia di deposito non sembri influire in maniera significativa sul grado di permeabilità; i range mediamente più alti di permeabilità caratterizzano sia i depositi alluvionali recenti che quelli antichi terrazzati e/o i depositi misti alluvionali/fluvioglaciali.

Le prove Lugeon eseguite nei sondaggi SD23_PZ, SD24_PZ e SD25_PZ, realizzati nel tratto interessato progettualmente dalla galleria, hanno testato di fatto la formazione del Calcare di Soccher. La permeabilità assoluta è risultata variabile in un range di 10-7 ÷ 10-8 m/s, con in generei valori più elevati rilevati nelle fasce fratturate più superficiali. Il numero di prove eseguite è tuttavia sostanzialmente limitato e pertanto devono essere considerate rappresentative più delle condizioni locali che non delle caratteristiche intrinseche della formazione.

I sondaggi attrezzati a piezometri lungo il tracciato, come in precedenza detto sono 14, di cui 3 realizzati nel tratto interessato dal progetto della galleria. Questi ultimi in particolare sono SD23_Pz, SD24 PZ e SD25 PZ. La soggiacenza del livello statico rilevata è la seguente:

Piezometro	Profondità (m)	Quota (m sul l.m.)	Soggiacenza livello (m)	Livello (m sul l.m.)		
SD23_PZ	65	520.17	-10.80	509.37		
SD24_PZ	90	547.30	-10.80	536.5		
SD25_PZ	135	642.72	-79.00	563.72		

Fig. 64 - Piezometri eseguiti nel tratto della galleria

Considerando che le quote di progetto della galleria variano dai 457 m sul l.m dell'imbocco Sud ai 470.5 m sul l.m dell'imbocco Nord. Alla luce dei livelli rilevati nei tre piezometri appare evidente come l'andamento della piezometria, con gradiente verso SE, risulta superiore alle quote della galleria e quindi come durante lo scavo ci si dovranno attendere venute d'acqua da cui la necessità di prevedere adeguate impermeabilizzazioni.

I piezometri nei depositi sciolti sono 10, quasi tutti pressoché distribuiti lungo il fondovalle del fiume Piave. L'andamento dei livelli mostra un gradiente medio della falda diretto da nord verso sud e pressoché radialmente al fiume Piave che svolge a sua volta azione drenante nei confronti

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

dell'acquifero freatico contenuto nel materasso alluvionale. La soggiacenza tende ad aumentare allontanandosi dal corso d'acqua principale. La *Fig.* 65 riassume per ciascun piezometro soggiacenza e livello riferito al livello medio mare.

Piezometro	Profondità	Quota	Soggiacenza livello	Livello
Flezometro	(m)	(m sul l.m.)	(m)	(m sul l.m.)
SD03_PZ	40	402.95	-12.00	390.95
SD05_PZ	35	413.82	-1.60	412.22
SD06_PZ	30	410.97	-1.10	409.87
SD09_PZ	35	420.84	-1.20	419.64
SD09_PZ bis	30	417.50	-3.30	414.20
SD11_PZ	25	419.47	-4.00	415.47
SD12_PZ	35	473.11	-3.20	469.91
SD12_PZ bis	35	472.23	-1.80	470.43
SD18_PZ	30	442.88	-9.10	433.78
SD21_PZ	30	446.70	-9.60	437.1

Fig. 65 - Piezometri eseguiti nei terreni sciolti

Nell'area di studio le sorgenti di interesse idropotabile sono sostanzialmente poche e tutte ubicate a monte del previsto tracciato, *Fig.* 66.

Fig. 66 – Sorgenti principali presenti nell'area interessata dal tracciato

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Le sorgenti S1 e S2 sono ubicate sul versante a monte del tratto di tracciato che precede la galleria, in uscita dall'abitato di Longarone. Le due sorgenti non ispezionabili sembrano legate ad un circuito alimentante che si sviluppa nel Calcare di Soccher, *Fig.* 67.

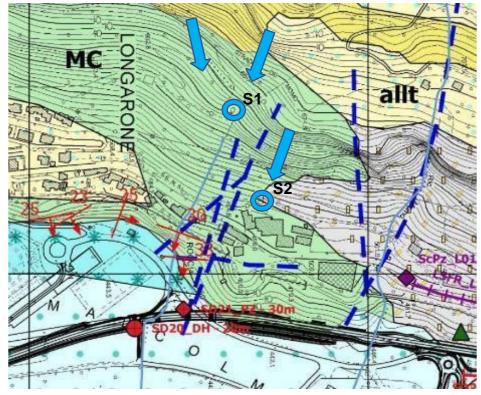


Fig. 67 - Sorgenti S1 e S2

La giacitura media degli strati favorisce una circolazione idrica sotterranea, comunque condizionata e favorita anche dal campo di fratture, diretta da est verso ovest (valle). Stante le quote di scaturigine, probabilmente l'emergenza è favorita dalla presenza di limiti di permeabilità, quali potrebbero essere rappresentati da interstrati marnosi. La sorgente S2, poco a valle ha un serbatoio di accumulo cui è collegata una piccola fontana posta al margine del parcheggio che costeggia la strada comunale, *Fig. 68*; al momento del sopralluogo (marzo 2022) la portata risultava inferiore a 1 l/min.

VE407

Relazione geologica

Fig. 68 – Fontana alimentata dalla sorgente S2

Considerate le quote delle emergenze idriche, il probabile bacino idrogeologico di alimentazione e la posizione del tracciato, non si ravvede alcuna possibilità di interferenze di quest'ultimo sui circuiti alimentanti delle due sorgenti.

Altre due sorgenti S3 e S4 sono ubicate a nord di Olantreghe, nel tratto in cui il tracciato stradale corre in galleria, *Fig.* 69.

VE407

Relazione geologica

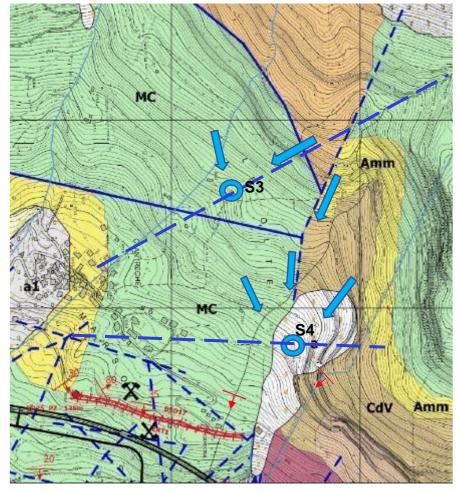


Fig. 69 – Sorgenti S3 e S4 a nord di Olantreghe

La sorgente S3, non ispezionabile, affiora a quota 844 m sul l.m m., quota ben al disopra di quella della galleria posta a circa 470 metri sul l.m.m. Sia le giaciture stratigrafiche che il campo di fratture mostrano come il bacino di alimentazione della sorgente si sviluppi fondamentalmente nella formazione del Calcare di Soccher e la scaturigine è probabilmente favorita dalla presenza di un limite di permeabilità. Il circuito alimentante si sviluppa a quote superiori a quelle della galleria che quindi non dovrebbe creare interferenze sulla stessa.

La sorgente S4, è invece segnalata a monte dell'imbocco nord della prevista galleria, in prossimità del canale Gardone, *Fig.* 69, ad una quota di circa 725 m sul l.m.m.. In passato è stata danneggiata dall'attivazione dell'ampio dissesto presente localmente. Anche oggi l'opera di presa appare parzialmente ricoperta da detrito, *Fig.* 70.

VE407

Relazione geologica

Fig. 70 - Casotto di protezione opera di presa sorgente S4

Come mostra la carta di *Fig.* 69, la sorgente appare ubicata pressoché all'incrocio di due linee di frattura, di cui una determina il contatto, seppur mascherato dal detrito e corpo di frana, tra il Calcare di Soccher e il Calcare del Vajont. Anche in questo caso la giacitura media della stratificazione, salvo qualche inversione locale, è diretta da Nord est verso Sud ovest. Pertanto, considerando anche il campo di fratture, il flusso sotterraneo avviene, prevalentemente favorito dal campo di fratture, secondo direzioni per lo più con lo stesso orientamento medio. La scaturigine è l'esutore di un bacino di alimentazione che si sviluppa ampiamente a monte. La realizzazione della galleria stradale, che in tale settore corre più a valle e ad una quota pari a circa 470 m sul l.m.m., non dovrebbe creare alcuna interferenza sul regime idrogeologico della sorgente.

Un'altra sorgente, captata a fini idropotabili, è segnalata dal PAT di Longarone, a monte dell'abitato di Olantreghe, *Fig.* 71. L'opera di presa, non ispezionabile, è ad una quota sul livello mare pari a circa 875 metri.

VE407

Relazione geologica

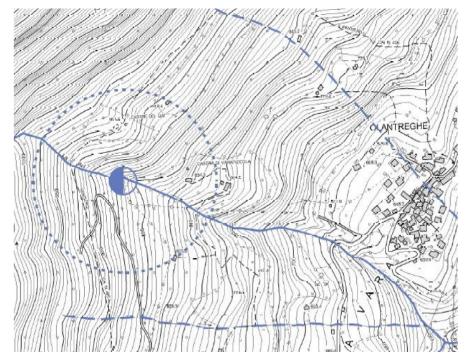


Fig. 71 – Sorgente, con rispettiva area di protezione a monte di Olantreghe (estratto da P.A.T. Longarone. Elaborato 14.8.C - Carta Idrogeologica)

La sorgente, non ispezionabile, come mostra la carta geologica di *Fig.* 72, affiora dal Calcare di Soccher e si trova su un allineamento di frattura. Il bacino di alimentazione considerata la direzione media della giacitura stratigrafica nell'area si sviluppa a monte della scaturigine; la circolazione avviene prevalentemente attraverso il campo di fratture. L'emergenza è probabilmente favorita dalla presenza di un limite di permeabilità, quale interstrati più marnosi, meno permeabili del calcare.

VE407

Relazione geologica

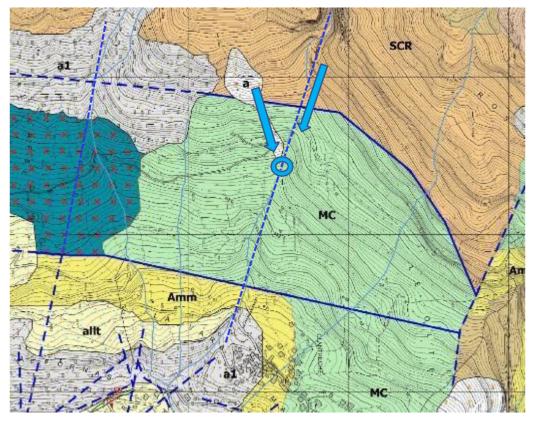


Fig. 72 – Sorgente a monte di Olantreghe

La realizzazione della galleria, che in tale settore corre molto più a valle e ad una quota pari a circa 470 m sul l.m.m., non dovrebbe creare alcuna interferenza sul regime idrogeologico della sorgente.

Più a sud sui versanti che limitano la valle del Maé, un po' prima della sua confluenza nel Piave, sono segnalate altre sorgenti ad uso idropotabile (S5) e/o irriguo (El Foss, Bus del Val), *Fig.* 66. Queste scaturigini sono tuttavia molto a monte rispetto alla valle del Piave e conseguentemente del tracciato stradale in progetto.

VE407

Relazione geologica

8 INDAGINI GEOTECNICHE

Al fine di fornire ai progettisti geotecnici gli elementi necessari per una caratterizzazione geomeccanica dei litotipi rocciosi affioranti e/o caratterizzanti il sottosuolo della fascia di territorio interessato dal tracciato stradale è stato eseguito uno studio geomeccanico dell'ammasso roccioso. Nell'area sono presenti vari affioramenti, talora relativamente continui su discreti tratti, che si prestano ad essere utilizzati come Stop geomeccanici, in particolare sono stati individuati 9 stop, *Fig.* 73.

Fig. 73 – Ubicazione stop geomeccanici (immagine da Google Earth)

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Il rilievo geomeccanico di campagna, è stato svolto secondo le norme I.S.R.M. (International Society for Rock Mechanics). I parametri rilevati per la caratterizzazione dell'ammasso roccioso sono stati i seguenti:

- Giacitura: l'orientazione delle discontinuità nello spazio è stata definita da due numeri che
 corrispondono alla direzione di immersione (dip direction) ed inclinazione (dip), espressi
 in gradi sessagesimali, rispettivamente come angolo azimutale ed angolo zenitale. Le
 misure sono state raccolte tramite bussola geologica.
- Spaziatura (distanza tra due giunti di una stessa famiglia): È la distanza media tra due
 giunti adiacenti appartenenti alla stessa famiglia, misurata perpendicolarmente ai piani di
 discontinuità. Un parametro che esprime sinteticamente la spaziatura delle discontinuita
 e l'Indice della spaziatura delle fratture If, ottenuto dividendo la lunghezza totale
 dell'allineamento per il numero di fratture incontrate:

$$If = \frac{Lunghezza\ unitaria\ (1\ m)}{n^{\circ}\ di\ discontinuità}$$

- Persistenza (o continuità lunghezza della traccia della discontinuità osservata in affioramento): rappresenta l'estensione areale della discontinuità nel piano ed è però espressa normalmente quale lunghezza della traccia del piano in affioramento. Il rilievo ha rilevato persistenze mediamente intorno ai 2 e talora oltre i 5 metri negli affioramenti più continui.
- JRC: (Joint Roughness Coefficient) è una stima della rugosità della superficie della discontinuità. Questo parametro viene misurato con il pettine di Barton confrontando il profilo di rugosità con alcuni profili standard proposti da Barton & Choubey. Questo parametro dà una misura delle asperità a scala millimetrica del giunto che condizionano notevolmente la stabilità allo scivolamento su superfici che non hanno subito movimenti precedenti apprezzabili e sulle quali viene mobilitata la resistenza di picco.

VE407

Fig. 74 – Rilievo con Profilometro

- Apertura: è la distanza, in millimetri, ortogonale tra le due pareti di un giunto. In genere si sono osservati giunti abbastanza serrati. Tuttavia quando presente, l'apertura tra le fratture supera abbondantemente anche i 5 mm.
- Riempimento (materiale che riempie il giunto): Si intende il tipo di materiale contenuto tra le pareti di un giunto. È molto importante, sia perché influenza la resistenza al taglio delle superfici di discontinuità, sia per il controllo che svolge sulla permeabilità e la possibilità di filtrazione dell'acqua all'interno dell'ammasso roccioso. Le indagini eseguite non hanno rilevato presenza di riempimenti significativi.
- Presenza d'acqua: si valutano le condizioni idrauliche delle varie discontinuità presenti (assenza, umidità, stillicidio). Il rilievo non ha evidenziato presenza significativa ne di circolazione idrica né di umidità lungo i piani di frattura.
- JCS (Joint Compressive Strength): rappresenta la resistenza a compressione uniassiale delle pareti del giunto. Nella fase d'indagine, la resistenza delle pareti dei giunti è stata stimata attraverso prove speditive in campagna, osservando la risposta della roccia alla sua percussione con lo sclerometro di Schmidt.

VE407

Relazione geologica

Fig. 75 – Misura di resistenza della roccia con martello di Schmidt.

Di seguito si riportano le schede con i dati raccolti per singolo Stop geomeccanico.

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

RILIEVO GEOSTRUTTURALE - Geostop 1 Ponte tubo 1 - Calcari oolitici massicci

				Persistenza (m)				Anertu	ra (mm)						
GIAC./DISC.	DIR	DIP	Spaziatura	A	M	В		Apertu	Ta (111111)		Riempimento assente-duro-molle	Acqua assente-umido	Scabrezza gradini-ondulata-piana	JRC	Res. Giunto
diac., bisc.	0	٥	(cm)	20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	>5mm / <5mm	stillicidio	scabro-liscio-striato	0110	Мра
Giacitura K0	240	45 S	10-40	х						х	No	Α	ondulato	8	50
Giacitura K0	235	50 S	10-40	х						х	No	Α	ondulato	10	50
Giacitura K0	242	45 S	10-40	х						х	No	Α	ondulato	10	58
Giacitura K0	232	43 S	10-40	х						х	No	Α	ondulato	12	58
Giacitura K0	235	45 S	10-40	х						х	No	Α	ondulato	10	60
Giacitura K0	245	42 S	10-40	Х						х	No	Α	ondulato	10	50
D1	140	45 NO	20-60	х					х		No	Α	Scabro	12	52
D1	140	43 NO 42 NO	20-60	X					X		No	A	Scabro	12	50
D1	140	42 NO 40 NO	20-60	X					^	Х	No	A	Scabro	14	48
D1	143	39 NO	20-60	X					х	^	No	A	Scabro	14	50
D1	138	41 NO	20-60	X					X		No	A	Scabro	14	53
D1	143	42 NO	20-60	X					X		No	A	Scabro	12	50
D2	260	60 N	20-60			х	1			х	No	Α	Scabro	12	58
D2	265	66 N	20-60			х				х	No	Α	Scabro	12	40
D2	262	65 N	20-60			х				х	No	А	Scabro	14	64
D2	270	55 N	20-60			х				х	No	Α	Scabro	13	55
D2	270	60 N	20-60			х				х	No	Α	Scabro	14	60
D2	265	60 N	20-60			х				х	No	Α	Scabro	12	58
D3	360	SV	50-100		.,				.,		No	Δ.	Scabro	12	60
D3	355	SV			X				X		No No	A		12	
	355	SV	50-100 50-100		X				X			A	Scabro		50 52
D3 D3		85 O	}		X				X		No	Α	Scabro	14 12	55
D3	355 360	SV	50-100		X				X		No No	A	Scabro	14	60
D3	355	SV	50-100 50-100		X				X		No	A A	Scabro Scabro	12	55
D3	355	SV	50-100		X		 		X		No	A	Scabro	14	55
כט	330	30	20-100		Х		1		Х		INU	A	Scanio	14	32
Faglia	330	80 E					 								

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

RILIEVO GEOSTRUTTURALE - Geostop 2 Ponte tubo 2 Biancone con selci rosate rossastre (zona fortemente brecciata) Apertura (mm) Persistenza (m) DIR DIP Riempimento Acqua Scabrezza Spaziatura Res. Giunto GIAC./DISC. JRC R assente-umido gradini-ondulata-piana assente-duro-molle Мра (cm) >5mm / <5mm scabro-liscio-striato stillicidio 20-10 10-3 3-1 >5 1-5 0.1-1 < 0.1 Giacitura KO 20 F 10-40 ondulato 10 40 Х Х No Α 38 Giacitura K0 45 25 E 10-40 No Α 10 38 ondulato Х Х 38 18 E 10 Giacitura KO 10-40 х No Α ondulato 35 х 45 20 E 10-40 38 Giacitura K0 No Α ondulato 10 Х Х D1 340 SV 10-20 Nο Α Scabro/gradini 10 42 Х Х D1 345 SV 10-20 No Α Scabro 10 42 Х Х 10-20 D1 340 SV No Α Scabro/gradini 10 45 Х х D1 345 SV 10-20 No Α Scabro/gradini 10 40 Х Х D1 SV 10 350 10-20 No Α Scabro 45 Х Х D1 342 SV 10-20 10 45 Х Х No Α Scabro/gradini D1 343 SV 10-20 No Α Scabro 10 40 Х Х D2 250 80 S 40-80 Si <5mm Α Scabro 12 45 х х 12 D2 260 75 S 40-80 No Α Scabro 40 х Х 45 D2 255 82 S 40-80 No 12 Α Scabro Х Х D2 265 84 S 40-80 Si <5mm Α Scabro 12 45 х 30 75 S 20 D3 20-40 Х No Α Scabro Х D3 35 70 S 20-40 No Α Scabro 18 Х х 67 S D3 40 20-40 20 Х Х No Α Scabro 35 D3 70 S 20-40 Х Х No Α Scabro 25 30 70 S D3 20-40 No Α Scabro 20 Х Х D3 40 67 S 20-40 No 20 Α Scabro

Х

Х

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

			RIL	IEVO GEO	OSTRUTT	URALE -	Geosto	3 Caste	llavazzo	1 (Zona	Passaggio a live	ello)			
	DID	DID		Per	sistenza	(m)		Apertu	ra (mm)		Riempimento	Acqua	Scabrezza		
GIAC./DISC.	DIR	DIP 。	Spaziatura	Α	М	В					assente-duro-molle	assente-umido	gradini-ondulata-piana	JRC	Res. Giunto Mpa
	_		(cm)	20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	>5mm / <5mm	stillicidio	scabro-liscio-striato		Mpa
Giacitura K0	240	20 O	10-50	х						х	No	Α	liscio	2	55
Giacitura K0	245	25 O	10-50	Х						х	No	Α	liscio	2	52
Giacitura K0	235	20 O	10-50	Х						х	No	Α	liscio	2	50
Giacitura K0	230	20 O	10-50	х						х	No	Α	liscio	2	55
Giacitura K0	243	22 O	10-50	х						х	No	Α	liscio	2	58
Giacitura K0	238	18 O	10-50	х						х	No	Α	liscio	2	50
D1	80	45 N	10-20		х					х	No	Α	Scabro	12	30
D1	85	42 N	10-20		х					х	No	Α	Scabro	12	48
D1	75	40 N	10-20		х					х	No	Α	Scabro	12	45
D1	78	45 N	10-20		х					х	No	Α	Scabro	12	35
D1	80	38 N	10-20		х					х	No	Α	Scabro	12	45
D1	85	45 N	10-20		х					х	No	Α	Scabro	12	48
D2	225	80 E	10-20		х					х	Si/duro	Α	Scabro/gradini	10	35
D2	220	85 E	10-20		х					х	Si/duro	Α	Scabro/gradini	12	50
D2	230	80 E	10-20		х					х	Si/duro	Α	Scabro/gradini	12	45
D2	220	82 E	10-20		Х					х	Si/duro	Α	Scabro/gradini	12	40
D2	225	79 E	10-20		Х					х	Si/duro	Α	Scabro/gradini	10	47
D2	223	80 E	10-20		Х					Х	Si/duro	Α	Scabro/gradini	12	40
D3	330	SV	30-50	х						х	No	Α	Scabro	12	30
D3	325	SV	30-50	х						х	No	Α	Scabro	12	50
D3	333	SV	30-50	х						х	No	Α	Scabro/Gradini	10	60
D3	335	SV	30-50	Х						х	No	Α	Scabro/Gradini	10	50
D3	320	SV	30-50	х						х	No	Α	Scabro/Gradini	12	50

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

			R	ILIEVO GE	OSTRUTTU	RALE - Geo	ostop 4 Cas	stellavazzo	2 (Zona ve	cchio sagg	io di cava)				
	DIR	DIP	Cnaziatura	Pe	rsistenza (ı	m)		Apertu	ra (mm)		Riempimento	Acqua	Scabrezza		
GIAC./DISC.	o o	o DIF	Spaziatura (cm)	Α	М	В					assente-duro- molle >5mm /	assente-umido	gradini-ondulata- piana scabro-	JRC	Res. Giunto Mpa
			(CIII)	20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	<5mm	stillicidio	liscio-striato		· ·
6: :: 10	250	20.5	10.00										1		
Giacitura K0	360	20 E	10-20	Х						Х	No	Α	liscio	2	60
Giacitura K0	355	25 E	10-20	Х						Х	No	Α	liscio	2	40
Giacitura K0	5	20 E	10-20	Х						Х	No	Α	liscio	2	50
Giacitura K0	360	22 E	10-20	Х						Х	No	Α	liscio	2	55
Giacitura K0	360	25 E	10-20	Х						Х	No	Α	liscio	2	50
D1	310	SV	20-40	Х				Х			No	Umido	Scabro	12	50
D1	305	SV	20-40	Х				Х			No	Α	Scabro	12	45
D1	310	SV	20-40	Х				Х			No	Umido	Scabro	12	45
D1	315	SV	20-40	Х				Х			No	Umido	Scabro	12	50
D1	310	SV	20-40	Х				Х			No	Α	Scabro	12	50
D2	30	SV	50-100	х						Х	No	Umido	Scabro	12	40
D2	35	SV	50-100	Х						Х	No	Umido	Scabro	12	50
D2	33	SV	50-100	Х						Х	No	Umido	Scabro	10	60
D2	35	SV	50-100	х						х	No	Umido	Scabro	10	50
D2	32	SV	50-100	х						х	No	Α	Scabro	12	55
D2	35	SV	50-100	х						х	No	Umido	Scabro	10	60
															1

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

RILIEVO GEOSTRUTTURALE - Geostop 5 Cava 1 - Calcari micritici (Biancone)

RILIEVO GEOSTRUTTURALE - Geostop 5 Cava 1 - Calcari micritici (Biancone)															
GIAC./DISC.	DIR °	DIP °	Spaziatura (cm)	Persistenza (m) A M B			Apertura (mm)				Riempimento assente-duro-	Acqua	Scabrezza gradini-ondulata-	JRC	Res. Giunto
				A 20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	molle >5mm / <5mm	assente-umido stillicidio	piana scabro- liscio-striato	JRC	Мра
Giacitura K0	70	80 N	20-40	Х						х	No	Α	ondulato	8	35
Giacitura K0	80	85 N	20-40	Х						х	No	Α	ondulato	10	50
Giacitura K0	75	80 N	20-40	Х						Х	No	Α	ondulato	10	40
Giacitura K0	80	78 N	20-40	Х						Х	No	Α	ondulato	10	45
Giacitura K0	70	75 N	20-40	х						Х	No	Α	ondulato	10	50
D1	340	80 E	20-40	x						Х	No	А	Scabro	12	52
D1	342	75 E	20-40	Х						Х	No	Α	Scabro	12	50
D1	340	80 E	20-40	Х						Х	No	Α	Scabro	12	48
D1	345	85 E	20-40	х						Х	No	Α	Scabro	12	50
D2	100	45 E	20-60	х						х	No	A	Scabro	12	40
D2	115	45 E	20-60	Х						х	No	Α	Scabro	12	40
D2	105	45 E	20-60	Х						х	No	А	Scabro	12	45
D2	110	45 E	20-60	Х						х	No	Α	Scabro	13	50
D2	100	45 E	20-60	х						х	No	Α	Scabro	12	50
D3	120	30 S	0-10		Х					х	No	Α	Scabro	12	50
D3	125	35 S	0-10		X					X	No	A	Scabro	12	45
D3	120	28 S	0-10		Х					х	No	Α	Scabro	12	50
D3	122	32 S	0-10		Х					х	No	Α	Scabro	12	40
D3	115	30 S	0-10		х					Х	No	Α	Scabro	12	45
Faglia	140	SV													<u> </u>

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

RILIEVO GEOSTRUTTURALE - Geostop 6 Cava 2 - Calcari micritici (Biancone) presso saggio di cava

GIAC./DISC.		DIP	Spaziatura	ге	rsistenza (ı	n)		Apertu	ra (mm)		Riempimento	Acqua	Scabrezza		
J , D	DIR 。	o •	l '	Α	М	В					assente-duro- molle >5mm /	assente-umido	gradini-ondulata- piana scabro-	JRC	Res. Giunto Mpa
			(cm)	20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	<5mm	stillicidio	liscio-striato		
Giacitura K0	360	35 E	5-50	Х				Х			No	Α	ondulato	10	35
Giacitura K0	350	40 E	5-50	Х				Х			No	Α	ondulato	10	20
Giacitura K0	355	37 E	5-50	Х				Х			No	Α	ondulato	10	50
Giacitura K0	345	35 E	5-50	Х				Х			No	Α	ondulato	10	40
Giacitura K0	360	38 E	5-50	Х				Х			No	Α	ondulato	10	35
D1	320	75 O	50-100	Х				Х			No	Α	Scabro	12	50
D1	325	80 O	50-100	Х				Х			No	Α	Scabro	12	50
D1	318	75 O	50-100	Х				х			No	Α	Scabro	12	35
D1	322	72 O	50-100	Х				Х			No	Α	Scabro	12	50
D2	45	70 N	50-100	Х						Х	No	Α	Scabro	12	45
D2	50	75 N	50-100	Х						х	No	Α	Scabro	12	45
D2	55	80 N	50-100	Х						Х	No	Α	Scabro	12	50
D2	45	70 N	50-100	Х						х	No	Α	Scabro	12	45
D2	50	68 N	50-100	Х						Х	No	Α	Scabro	12	45
D2	53	70 N	50-100	Х						х	No	Α	Scabro	12	50
D3	80	68 S	20-80			Х				х	No	Α	Scabro	12	50
D3	85	70 S	20-80			Х				х	No	Α	Scabro	12	45
D3	87	75 S	20-80			Х				Х	No	Α	Scabro	12	50
D3	80	72 S	20-80			Х				Х	No	Α	Scabro	12	50

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

RILIEVO GEOSTRUTTURALE - Geostop 7 Torre Gardona 1

	DID	DID		Pe	rsistenza (m)		Apertu	ıra (mm)		Riempimento	Acqua	Scabrezza		
GIAC./DISC.	DIR 。	DIP	Spaziatura	Α	М	В					assente-duro- molle >5mm /	assente-umido	gradini-ondulata- piana scabro-	JRC	Res. Giunto Mpa
			(cm)	20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	<5mm	stillicidio	liscio-striato		IVIPA
Giacitura K0	40	30 S	20-50	Х						Х	No	Α	scabra	12	48
Giacitura K0	38	32 S	20-50	Х						Х	No	Α	scabra	12	45
Giacitura K0	35	35 S	20-50	х						х	No	Α	scabra	12	50
Giacitura K0	45	28 S	20-50	Х						Х	No	Α	scabra	12	45
Giacitura K0	40	32 S	20-50	Х						Х	No	Α	scabra	12	50
D1	360	80 E	20-40		Х					х	No	Α	Scabro	12	42
D1	5	85 E	20-40		Х					х	No	Α	Scabro	12	50
D1	355	82 E	20-40		Х					Х	No	Α	Scabro	12	55
D1	350	80 E	20-40		Х					Х	No	Α	Scabro	12	45
D1	355	80 E	20-40		Х					х	No	Α	Scabro	12	50
D2	265	70 S	40-50			Х				х	No	Α	Scabro	10	60
D2	260	75 S	40-50			х				х	No	Α	Scabro	12	55
D2	268	68 S	40-50			Х				Х	No	Α	Scabro	12	60
D2	255	70 S	40-50			х				х	No	Α	Scabro	12	64
D2	260	72 S	40-50			х				х	No	Α	Scabro	10	60
D2	260	70 S	40-50			Х				х	No	Α	Scabro	12	55

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

RILIEVO GEOSTRUTTURALE - Geostop 8 Torre Gardona 2 Calcare micritico (Biancone)

	DIR	DIP	Spaziatura	Pe	rsistenza (m)		Apertu	ra (mm)		Riempimento	Acqua	Scabrezza		
GIAC./DISC.	o o	o o	(cm)	A 20-10	M 10-3	B 3-1	>5	1-5	0.1-1	<0.1	assente-duro- molle >5mm / <5mm	assente-umido stillicidio	gradini-ondulata- piana scabro- liscio-striato	JRC	Res. Giunto Mpa
Giacitura K0	180	35 E	10-20	Х						х	No	Α	Ondulato	12	60
Giacitura K0	170	30 E	10-20	Х						х	No	Α	Ondulato	12	60
Giacitura K0	168	35 E	10-20	Х						Х	No	Α	Ondulato	12	55
Giacitura K0	175	32 E	10-20	Х						Х	No	Α	Ondulato	12	60
Giacitura K0	185	30 E	10-20	Х						Х	No	Α	Ondulato	12	60
Giacitura K0	180	38 E	10-20	Х						х	No	Α	Ondulato	12	55
D1	140	SV	10-100		Х					Х	No	Α	Ondulato	10	20
D1	145	SV	10-100		Х					Х	No	Α	Ondulato	12	40
D1	138	SV	10-100		Х					Х	No	Α	Ondulato	12	30
D1	140	SV	10-100		Х					Х	No	Α	Ondulato	12	30
D1	138	SV	10-100		Х					Х	No	Α	Ondulato	12	30
D2	250	70 N	40-80		Х					Х	No	Α	Scabro	12	55
D2	260	75 N	40-80		Х					Х	No	Α	Scabro	12	60
D2	250	75 N	40-80		Х					х	No	Α	Scabro	12	60
D2	255	70 N	40-80		Х					Х	No	Α	Scabro	12	40
D2	265	72 N	40-80		Х					х	No	Α	Scabro	10	50
D2	260	68 N	40-80		Х					х	No	Α	Scabro	12	50
D2	255	70 N	40-80		Х					Х	No	Α	Scabro	12	50

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

				RILIE	/O GEOSTR	UTTURALI	E - Geostop	9 Centro A	lpini - Calc	ari oolitici	massicci				
	DIR	DIP	Spaziatura	Pe	ersistenza (m)		Apertu	ra (mm)		Riempimento	Acqua	Scabrezza		
GIAC./DISC.	o o	o DIF	(cm)	Α	М	В					assente-duro- molle >5mm /	assente-umido	gradini-ondulata-piana	JRC	Res. Giunto Mpa
			(CIII)	20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	<5mm	stillicidio	scabro-liscio-striato		·
Giacitura K0	43	30 E	10-20		х					Х	No	Α	Scabro	12	50
Giacitura K0	50	40 E	10-20		Х					Х	No	Α	Scabro	12	50
Giacitura K0	55	45 E	10-20		Х					х	No	Α	Scabro	12	40
Giacitura K0	45	40 E	10-20		Х					х	No	Α	Scabro	12	45
Giacitura K0	50	38 E	10-20		Х					Х	No	Α	Scabro	12	40
Giacitura K0	45	35 E	10-20		Х					Х	No	Α	Scabro	12	50
D1	270	60 S	30-100	Х			Х				SI >5 mm	Α	Scabro	12	45
D1	142	42 NO	20-60	Х			Х				SI >5 mm	Α	Scabro	12	30
D1	140	40 NO	20-60	Х					Х		No	Α	Scabro	12	45
D1	143	39 NO	20-60	Х			Х				SI >5 mm	Α	Scabro	12	50
D1	138	41 NO	20-60	Х			Х				SI >5 mm	Α	Scabro	12	40
D2	40	60 S	30-100		Х		Х				SI molle	Α	Scabro	12	30
D2	35	66 S	30-100		Х		Х				SI molle	Α	Scabro	12	25
D2	45	65 S	30-100		Х		Х				SI molle	Α	Scabro	13	25
D2	40	55S	30-100		Х		Х				SI molle	Α	Scabro	13	30
D2	38	60 S	30-100		Х		Х				SI molle	Α	Scabro	12	35

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

				RILIE	/O GEOSTR	UTTURALE	- Geostop	9 Centro A	Alpini - Calc	ari oolitici	massicci				
	DID	DID	c : .	Pe	rsistenza (m)		Apertu	ra (mm)		Riempimento	Acqua	Scabrezza		
GIAC./DISC.	DIR	DIP	Spaziatura	Α	М	В					assente-duro- molle >5mm /	assente-umido	gradini-ondulata-piana	JRC	Res. Giunto Mpa
			(cm)	20-10	10-3	3-1	>5	1-5	0.1-1	<0.1	<5mm	stillicidio	scabro-liscio-striato		Wipu
D3	220	50 NE	50-100		Х				Х		SI duro	Α	Scabro	12	30
D3	225	50 NE	50-100		Х				Х		SI duro	Α	Scabro	12	28
D3	210	50 NE	50-100		Х				Х		SI duro	Α	Scabro	12	30
D3	220	50 NE	50-100		Х				х		SI duro	Α	Scabro	12	30
D4	100	70 O	>100	Х						х	No	Α	Scabro	12	30
D4	110	66 O	>100	Х						х	No	Α	Scabro	12	35
D4	105	65 O	>100	Х						Х	No	Α	Scabro	12	40
D4	95	70 O	>100	Х						Х	No	Α	Scabro	13	30
D4	98	75 O	>100	Х						Х	No	Α	Scabro	12	30
D5	198	65 O	10-20		Х					Х	No	Α	Scabro	12	30
D5	205	70 O	10-20		Х					Х	No	Α	Scabro	12	20
D5	195	70 O	10-20		Х					х	No	Α	Scabro	12	38
D5	200	62 O	10-20		Х					Х	No	Α	Scabro	13	35
D5	210	65 O	10-20		Х					Х	No	Α	Scabro	13	30
D6	170	80 E	50-100	Х			Х				А	Α	Scabro	12	38
D6	180	85 E	50-100	Х			Х				Α	Α	Scabro	12	40
D6	165	78 E	50-100	Х			Х				SI	Α	Scabro	12	35
D6	175	75 E	50-100	Х			Х				Α	Α	Scabro	12	40

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

9 SISMICITÀ DELL'AREA

91 1 Macrosismicità dell'area

Il tracciato, si sviluppa in destra fiume Piave, a partire da Pian di Vedoia, superando Longarone e Castellavazzo, e si raccorda all'esistente tracciato in località Fason, pressoché poco prima dell'imbocco della Galleria Termine attraversando i territori comunali di Ponte nelle Alpi e Longarone-Castellavazzo, entrambi in provincia di Belluno.

Il territorio non è stato interessato da epicentri sismici ma risente della sismicità di zone non lontane, in particolare lungo il margine meridionale delle Prealpi venete, *Fig.* 76, Tra le sorgenti sismogenetiche più vicine, sia singole che composite, si segnalano:

- il Thrust di Bassano-Vittorio Veneto
- il Thrust di Andreis-Forgaria
- il Thrust del Cansiglio
- il Thrust di Montebelluna Reale

In maniera minore ha talora risentito anche di sismi avvenuti lungo l'arco appenninico zona parmense e reggiano e nella zona slovena occidentale

VE407

Relazione geologica

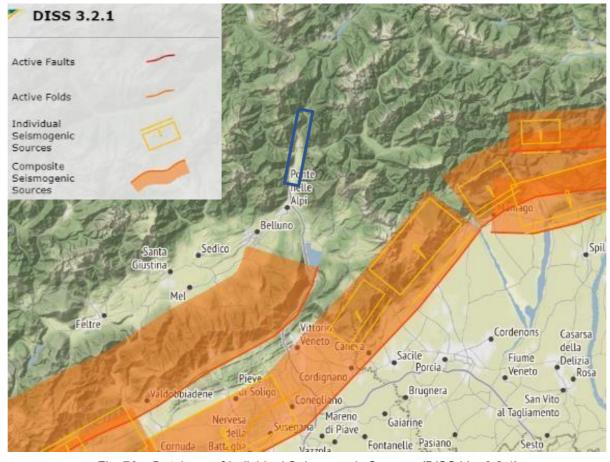


Fig. 76 – Database of Individual Seismogenic Sources (DISS Ver.3.2.1)

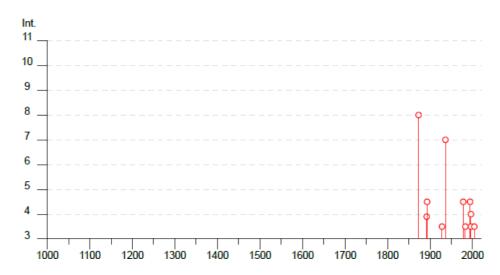
92 2 Sismicità storica

La sismicità storica dei due territori comunali è stata desunta dal database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI15. Il relativo database DBMI15 è stato realizzato nell'ambito delle attività del TTC (Tema Trasversale Coordinato) "Banche dati e metodi macrosismici" dell'INGV, con il contributo parziale del Dipartimento della Protezione Civile, *Fig.* 77 e *Fig.* 78 e tabelle allegate.

VE407

Relazione geologica

Ponte nelle Alpi


PlaceID IT_26379

Coordinate (lat, lon) 46.180, 12.280

Comune (ISTAT 2015) Ponte nelle Alpi

Provincia Belluno

Regione Veneto
Numero di eventi riportati 17

Effetti							In occasione del terremoto del			
Int.	Anno	Ме	Gi	Но	Mi	Se	Area epicentrale	NMDP	Io	Mw
8	1873	06	29	03	58		Alpago Cansiglio	197	9-10	6.29
F	1892	06	23	23	20		Dolomiti Friulane	71	5-6	4.58
4-5	1893	10	27	16	31		Bellunese	54	5	4.42
NF	1898	03	04	21	05		Parmense	313	7-8	5.37
NF	1904	10	09	06	41		Dolomiti Friulane	10	5	4.16
3-4	1928	03	27	08	32		Carnia	359	9	6.02
7	1936	10	18	03	10		Alpago Cansiglio	269	9	6.06
4-5	1978	12	12	15	14	4	Dolomiti Friulane	56	5-6	4.35
3-4	1983	11	09	16	29	52	Parmense	850	6-7	5.04
NF	1987	05	02	20	43	5	Reggiano	802	6	4.71
4-5	1994	04	20	21	25	0	Dolomiti Friulane	159	5-6	4.12
NF	1996	01	27	08	26	1	Dolomiti Friulane	91	4-5	3.90
4	1996	02	27	11	13	0	Dolomiti Friulane	150	5	4.27
3-4	1996	04	13	13	0.0	0	Dolomiti Friulane	164	5-6	4.43
2	2001	07	17	15	06	1	Val Venosta	657	5-6	4.78
NF	2004	07	12	13	04	06	Slovenia nord-occidentale	353		5.12
3-4	2004	12	04	22	20	0	Prealpi Trevigiane	108	4-5	3.86

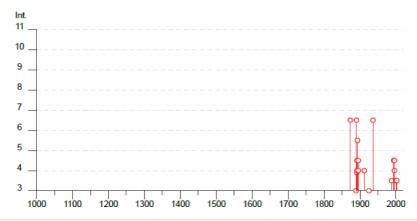
Fig. 77 – Sismicità storica territorio di Ponte nelle Alpi (dal 1000 al 2005)

VE407

Relazione geologica

Longarone

PlaceID IT_26283


Coordinate (lat, lon) 46.269, 12.301

Comune (ISTAT 2015) Longarone

Provincia Belluno

Regione Veneto

Numero di eventi riportati 27

Effetti							In occasione del terremoto del			
Int.	Anno	Ме	Gi	Но	Mi	Se	Area epicentrale	NMDP	Io	Mw
6-7	1873	06	29	03	58		Alpago Cansiglio	197	9-10	6.29
3	1889	12	08				Gargano	122	7	5.47
6-7	1890	03	26	20	10		Bellunese	48	6	4.82
F	1891	06	07	01	06	14	Valle d'Illasi	403	8-9	5.87
4	1892	01	11	01	56		Alpago Cansiglio	13	4-5	4.02
4-5	1892	06	23	23	20		Dolomiti Friulane	71	5-6	4.58
5-6	1893	10	27	16	31		Bellunese	54	5	4.42
NF	1894	11	28				Feltrino	11	5-6	4.49
4-5	1895	02	27	15	38		Dolomiti Friulane	31	5	4.31
4	1895	06	10	01	47		Prealpi Trevigiane	73	6	4.85
NF	1904	10	09	06	41		Dolomiti Friulane	10	5	4.16
NF	1911	02	08	02	54		Carnia	29	5	4.26
4	1912	08	05	10	33		Alpago Cansiglio	12	4-5	4.34
2	1924	12	12	03	29		Carnia	78	7	5.42
3	1925	07	04	17	48		Bellunese	12	4	3.87
NF	1934	05	04	13	56		Carnia	80	6	4.69
6-7	1936	10	18	03	10		Alpago Cansiglio	269	9	6.06
2	1959	04	26	14	45		Carnia	122	7-8	5.21
NF	1987	05	02	20	43	5	Reggiano	802	6	4.71
3-4	1988	06	12	20	09	0	Dolomiti Friulane	67	5	4.16
4-5	1994	04	20	21	25	0	Dolomiti Friulane	159	5-6	4.12
2-3	1996	01	27	08	26	1	Dolomiti Friulane	91	4-5	3.90
4	1996	02	27	11	13	0	Dolomiti Friulane	150	5	4.27
4-5	1996	04	13	13	00	0	Dolomiti Friulane	164	5-6	4.43
3-4	2001	07	17	15	06	1	Val Venosta	657	5-6	4.78
3-4	2002	02	14	03	18	0	Carnia	338	5-6	4.67
NF	2004	07	12	13	04	06	Slovenia nord-occidentale	353		5.12

Fig. 78 – Sismicità storica territorio di Longarone-Castellavazzo (dal 1000 al 2005)

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Nelle successive *Fig.* 79 e *Fig.* 80, sono riportati i sismi con MW>3.5 registrati nei territori di Longarone e Ponte nelle Alpi registrati dal 2005 ad oggi, con coordinate, distanza e profondità della zona ipocentrale.

Come mettono in luce tutti i dati storici a disposizione, i sismi storicamente più importanti sono sostanzialmente 3, due dei quali con epicentro in Alpago - Cansiglio, avvenuti nel 1873 e 1890 rispettivamente di intensità 8 e 7 e magnitudo 6.3 e 6.06. Altro sisma importante, che sembra aver avuto pero più importanza su Longarone, è segnalato nel 1890, con epicentro nel Bellunese e intensità e magnitudo rispettivamente 6-7 e 4.8. L'ultimo terremoto di dimensioni ed intensità considerevoli segnalato, è quello avvenuto il 18 ottobre del 1936. Il sisma manifestò un'intensità di grado XI MCS. Epicentro ancora in Alpago Cansiglio e ipocentro localizzato in località "Pian Osteria", ad una profondità di 14 km.

<u>Data e Ora (</u> Italia <u>)</u>	<u>Mag</u> nitudo <u></u>	Zona	<u>Profondità</u>	Latitudine	Longitudine
2020-07-13 14:06:53	Mw 3.5	7 km SW Forni di Sotto (UD)	9.6	46.334	<u>12.634</u>
2017-09-06 14:22:29	Mw 3.4	1 km W Voltago Agordino (BL)	9.1	46.270	<u>11.990</u>
2013-08-24 15:59:01	Mw 3.3	2 km NW Barcis (PN)	<u>9.1</u>	<u>46.202</u>	<u>12.548</u>
2013-02-12 19:12:43	Mw 3.4	7 km NE Claut (PN)	<u>10.5</u>	<u>46.306</u>	<u>12.586</u>
2012-06-09 04:04:56	Mw 4.0	6 km W Barcis (PN)	<u>6.9</u>	<u>46.180</u>	<u>12.488</u>

Fig. 79 – Sismi con MW>3.5 dal 2005 al 2022 che hanno interessato il territorio comunale di Longarone

<u>Data e Ora (</u> Italia <u>)</u>	<u>Mag</u> nitudo_	Zona	Profondità	Latitudine	Longitudine
2017-09-06 14:22:29	Mw 3.4	1 km W Voltago Agordino (BL)	<u>9.1</u>	46.270	<u>11.990</u>
2013-08-24 15:59:01	Mw 3.3	2 km NW Barcis (PN)	9.1	<u>46.202</u>	<u>12.548</u>
2013-02-12 19:12:43	Mw 3.4	7 km NE Claut (PN)	10.5	<u>46.306</u>	<u>12.586</u>
2012-06-09 04:04:56	Mw 4.0	6 km W Barcis (PN)	6.9	<u>46.180</u>	<u>12.488</u>

Fig. 80 – Sismi con MW>3.5 dal 2005 al 2022 che hanno interessato il territorio comunale di Ponte nelle Alpi

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

91 1 Caratterizzazione sismogenetica e pericolosità sismica

Sino al 2003 il territorio nazionale era classificato in tre categorie sismiche a diversa severità I Decreti Ministeriali emanati dal Ministero dei Lavori Pubblici tra il 1981 ed il 1984 avevano classificato complessivamente 2.965 comuni italiani su di un totale di 8.102, che corrispondono al 45% della superficie del territorio nazionale, nel quale risiede il 40% della popolazione.

Nel 2003 sono stati emanati i criteri di nuova classificazione sismica del territorio nazionale, basati sugli studi e le elaborazioni più recenti relative alla pericolositi sismica del territorio, ossia sull'analisi della probabiliti che il territorio venga interessato in un certo intervallo di tempo (generalmente 50 anni) da un evento che superi una determinata soglia di intensitio magnitudo. A tal fine fu pubblicata l'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003, sulla Gazzetta Ufficiale n. 105 dell'8 maggio 2003.

Il provvedimento detta i principi generali sulla base dei quali le Regioni, a cui lo Stato ha delegato l'adozione della classificazione sismica del territorio (Decreto Legislativo n. 112 del 1998 e Decreto del Presidente della Repubblica n. 380 del 2001 - "Testo Unico delle Norme per l'Edilizia"), hanno compilato l'elenco dei comuni con la relativa attribuzione ad una delle quattro zone, a pericolosità decrescente, nelle quali è stato riclassificato il territorio nazionale:

- Zona 1 È la zona più pericolosa. Possono verificarsi fortissimi terremoti;
- Zona 2 In questa zona possono verificarsi forti terremoti;
- Zona 3 In questa zona possono verificarsi forti terremoti ma rari;
- Zona 4 È la zona meno pericolosa. I terremoti sono rari.

Il comune di Longarone, che ricadeva in Zona 2, e stato riconfermato in tale zona dalla Deliberazione di G.R. del Veneto del 9 marzo 2021 n. 244 che ha approvato il nuovo elenco dei comuni sismici del Veneto, mentre il comune di Ponte nelle Alpi è passato da Zona 2 a Zona 1.

Di seguito si riporta l'ultima edizione della carta della zonazione sismica dei Comuni del Veneto.

VE407

Relazione geologica

Classificazione sismica del Veneto

Mappa di pericolosità sismica

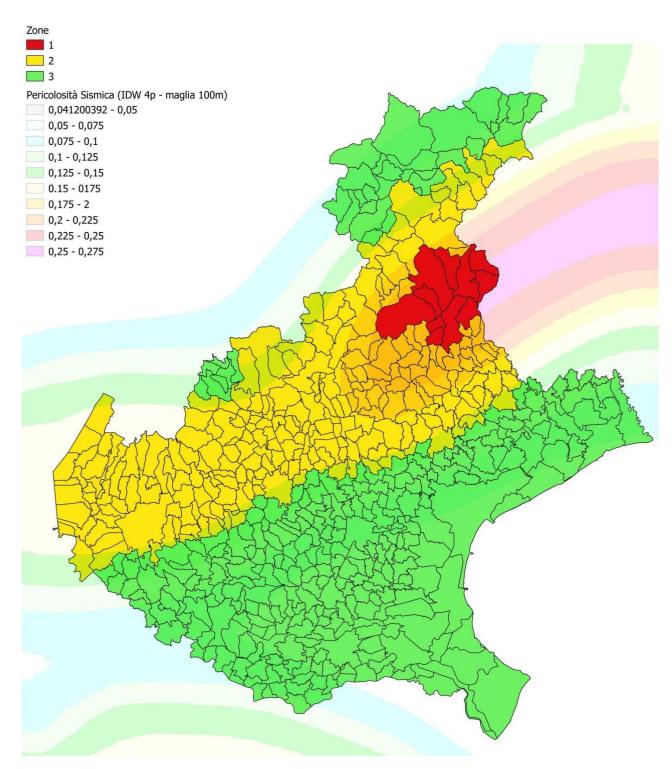


Fig. 81 – Carta della classificazione sismica dei comuni della Regione del Veneto attualmente in vigore

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Negli ultimi anni il punto di riferimento per le valutazioni di pericolosità sismica è rappresentato dalla zonazione sismogenetica ZS9 (Scandone et al. 1996 - 2000) che rappresenta la traduzione operativa del modello sismotettonico riassunto in Meletti et al. (2000). In seguito all'emanazione dell'O.P.C.M. 20.3.2003, n. 3274 è stato redatto a cura di un gruppo di lavoro dell'INGV un documento denominato "Redazione della mappa di pericolosità sismica prevista dall'O.P.C.M. 20-3-2003, n. 3274. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano -Roma, aprile 2004, 65 pp. + 5 appendici". Tale modello riprende sostanzialmente il retroterra informativo della precedente zonazione, recependo i più recenti avanzamenti delle conoscenze sulla tettonica attiva della penisola anche considerando le indicazioni derivanti da episodi sismici più recenti. La zonizzazione è stata condotta tramite l'analisi cinematica degli elementi geologici, cenozoici e quaternari coinvolti nella dinamica delle strutture litosferiche profonde e della crosta superficiale. Il confronto tra le informazioni che hanno condotto alla costruzione del modello geodinamico e la sismicità osservata ha permesso di costruire la carta nazionale delle zone sismogenetiche. Per il reperimento dei dati relativi alla sismicità osservata è stato considerato il catalogo storico contenente 2.488 eventi degli ultimi 1.000 anni con intensità epicentrali maggiore o uguale al V – VI grado MCS la cui magnitudo è maggiore o uguale a 4. L'area in esame (Fig. 83) ricade poco al di sopra delle zone sismogenetiche 905 e 906. Nelle due zone i dati pubblicati dall'INGV, Fig. 84, evidenziano che negli anni di monitoraggio strumentale la magnitudo massima registrata è stata di 4.7 – 4.8 Md, la profondità efficace è di circa 8 km e che la maggior parte dei terremoti che si verificano hanno mediamente basse magnitudo, indicando così un frequente movimento che ha funzione dissipativa delle energie tettoniche che possono accumularsi nell'area.

Sulla base di tali zone, per tutto il territorio italiano, sono state sviluppate le carte della pericolosità sismica vedi *Fig.* 82. In *Fig.* 85 è riportata la carta della pericolosità sismica relativamente all'area veneta. Nelle *Fig.* 86 e *Fig.* 87 e successive si riportano i dettagli della carta di pericolosità relativa ai due territori, con le accelerazioni massime orizzontali, caratterizzate da una probabilità di eccedenza del 10% in 50 anni, che per i due territori comunali, nell'ordine di 0.200-0.225g (Ponte nelle Alpi) e 0.175-0.200g (Longarone) e nelle successive figure i dati di disaggregazione.

VE407

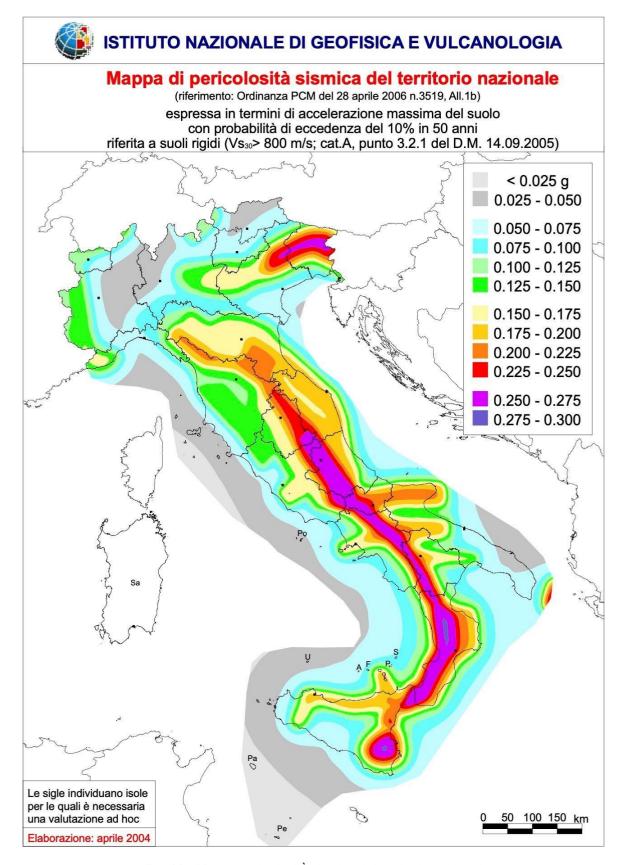


Fig. 82 - Mappa pericolosità sismica del territorio nazionale

VE407

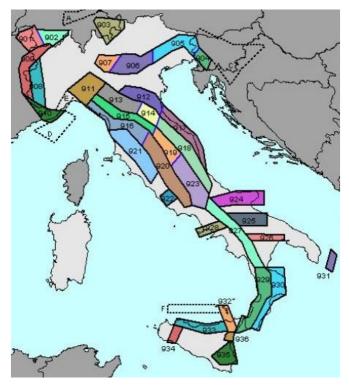


Fig. 83 - Zonazione sismogenetica ZS9

Zona	Numero di eventi Md>2.0	Numero di eventi Md>2.5	Numero di eventi Md>3.0	Magnitudo massima (Md)	Classe di profondità (km)	Profondità efficace (km)
901	18	15	2	4.0	8-12	8
902	34	25	2	3.8	8-12	10
903	23	19	2	4.5	8-12	9
904	13	9	1	3.4	5-8	7 *
905	181	110	32	4.8	5-8	8 *
906	41	34	13	4.7	5-8	8 *
907	33	19	7	4.2	5-8	8 *
908	495	128	25	3.7	8-12	10
909	263	94	9	4.1	8-12	10
910	80	24	2	3.4	8-12	10
911	126	91	18	4.1	8-12	8
912	180	141	54	4.6	5-8	7
913	767	362	100	4.8	12-20	13
914	878	542	131	4.5	12-20	13
915	614	346	65	4.2	8-12	8
916	140	83	16	4.6	5-8	6 *
917	103	71	22	4.9	5-8	7
918	455	179	26	4.2	12-20	13
919	3001	1545	421	5.0	8-12	8
920	296	201	39	4.6	5-8	6 *
921	97	63	9	4.0	1-5	4#
922	355	146	29	3.9	1-5	4#
923	1195	663	139	5.4	8-12	9
924	442	308	65	4.4	12-20	13
925	41	24	5	3.9	12-20	13
926	85	55	15	5.0	12-20	13
927	1507	654	139	5.0	8-12	10
928	15	9	1	3.9	1-5	3#
929	522	294	73	3.9	8-12	10
930	193	128	41	4.3	8-12	10
931	2	2	2	3.7	8-12	10 *
932	277	194	55	4.3	12-20	13
933	413	162	44	4.4	8-12	10
934	8	6	3	3.7	8-12	10
935	45	34	6	3.7	12-20	13
936	374	283	67	4.3	1-5	3#

Fig. 84 - Zone sismogenetiche e principali epicentri

VE407

Relazione geologica

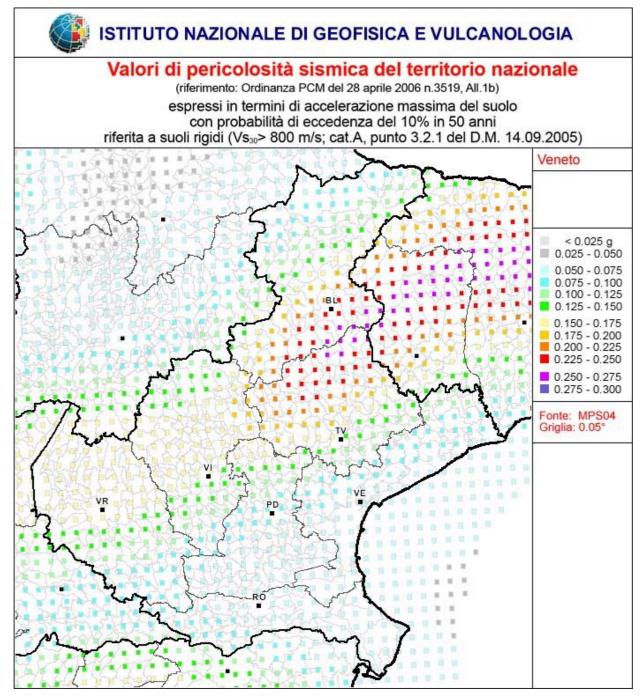


Fig. 85 - Carta delle Pericolosità sismica del Veneto (http://esse1-gis.mi.ingv.it/).

Le due carte rappresentano il modello di pericolosità sismica per i due territori e i diversi colori indicano il valore di scuotimento (PGA = Peak Ground Acceleration; accelerazione di picco del suolo, espressa in termini di g, l'accelerazione di gravità) atteso con una probabilità di eccedenza pari al 10% in 50 anni su suolo rigido (classe A, Vs30 > 800 m/s) e pianeggiante. Ogni quadrato della griglia corrisponde ad un nodo di calcolo.

VE407

Relazione geologica

Fig. 86 - Carta di pericolosità sismica Ponte nelle Alpi. I colori si riferiscono alle accelerazioni orizzontali (in frazioni dell'accelerazione di gravità) caratterizzate da una probabilità di eccedenza pari al 10% in 50 anni.

I quadrati indicano il nodo con espressi i valori di accelerazione

(Fonte - Mappe interattive dell'Istituto nazionale di Geofisica e Vulcanologia - http://esse1-gis.mi.ingv.it/).

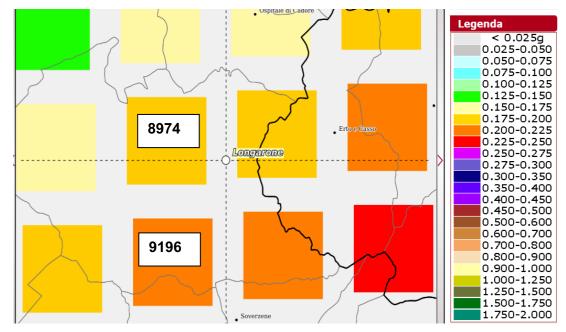
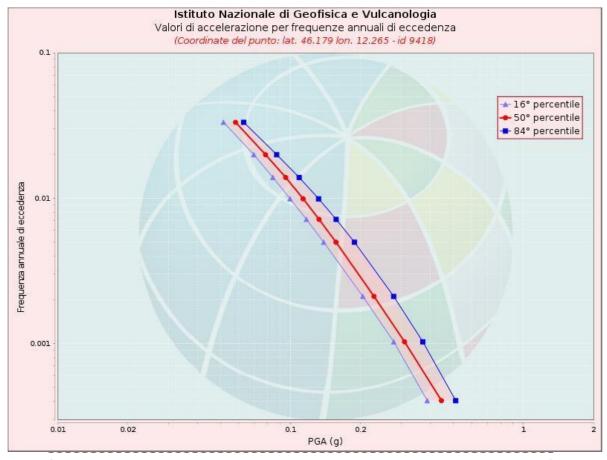


Fig. 87 - Carta di pericolosità sismica Longarone. I colori si riferiscono alle accelerazioni orizzontali (in frazioni dell'accelerazione di gravità) caratterizzate da una probabilità di eccedenza pari al 10% in 50 anni.
I quadrati indicano il nodo con espressi i valori di accelerazione

(Fonte - Mappe interattive dell'Istituto nazionale di Geofisica e Vulcanologia - http://esse1-gis.mi.ingv.it/).


Il tracciato in progetto si sviluppa tra i nodi 9418 (Ponte nelle Alpi), 9196 e 8974 (Longarone). Per ogni nodo della griglia sono disponibili numerosi parametri che descrivono la pericolosità sismica, riferita a diversi periodi di ritorno e diverse accelerazioni spettrali.

VE407

Relazione geologica

Nodo 9418 (territorio di Ponte nelle Alpi)

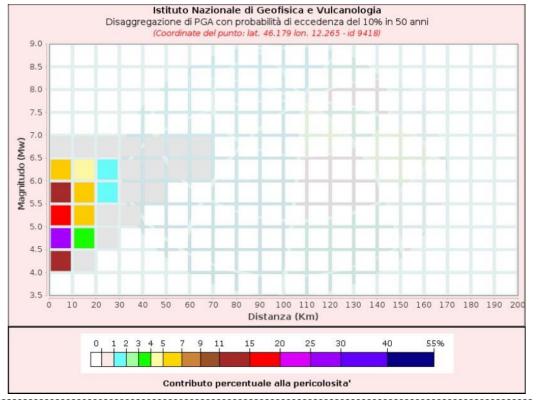

Valori di a	accelerazione pe	r frequenze annua	ali di eccedenza
Frequenza annuale		PGA (g)	
di ecc.	16° percentile	50° percentile	84° percentile
0.0004	0.387	0.445	0.513
0.0010	0.278	0.309	0.371
0.0021	0.205	0.229	0.278
0.0050	0.139	0.157	0.189
0.0071	0.117	0.133	0.157
0.0099	0.100	0.113	0.132
0.0139	0.084	0.095	0.109
0.0199	0.070	0.078	0.087
0.0332	0.052	0.058	0.063

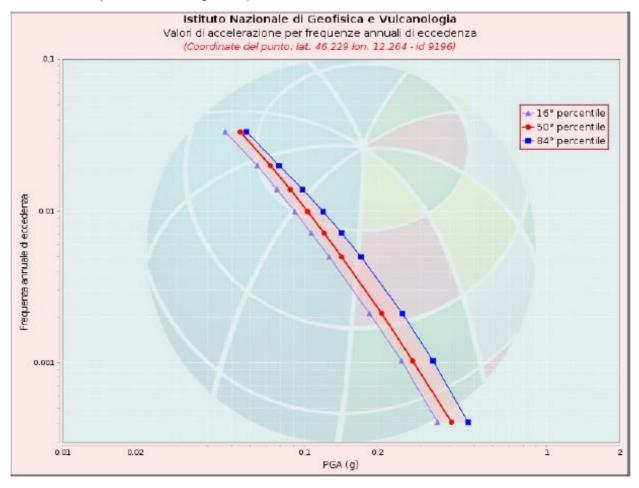
Fig. 88 – Curva di pericolosità e tabella PGA

VE407

Relazione geologica

	Disa	ggregazio	one di Po	GA con p	robabili	tà di eco	cedenza d	del 10% :	in 50 anı	ni	
Distanza					1	Magnitudo	0				
in Km	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0
0-10	0.0000	11.4000	25.4000	18.6000	11.6000	6.2300	0.7940	0.0000	0.0000	0.0000	0.0000
10-20	0.0000	0.7020	3.3300	5.0700	5.5600	4.8200	0.8030	0.0000	0.0000	0.0000	0.0000
20-30	0.0000	0.0000	0.0513	0.6400	1.4600	1.9400	0.4040	0.0000	0.0000	0.0000	0.0000
30-40	0.0000	0.0000	0.0000	0.0124	0.2720	0.6320	0.1580	0.0000	0.0000	0.0000	0.0000
40-50	0.0000	0.0000	0.0000	0.0000	0.0112	0.1250	0.0407	0.0000	0.0000	0.0000	0.0000
50-60	0.0000	0.0000	0.0000	0.0000	0.0000	0.0193	0.0115	0.0000	0.0000	0.0000	0.0000
60-70	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010	0.0023	0.0000	0.0000	0.0000	0.0000
70-80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
80-90	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
90-100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
100-110	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
110-120	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
120-130	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
130-140	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
140-150	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
150-160	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
160-170	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
170-180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
180-190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
190-200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Valori Medi: magnitudo = 5.26 ; distanza = 7.74 ; epsilon = 0.778


Fig. 89 – Grafico e tabella di disaggregazione PGA

VE407

Relazione geologica

Nodo 9196 (territorio di Longarone)

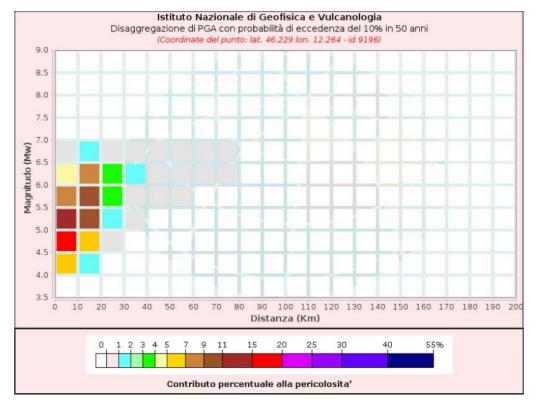

Frequenza annuale di ecc.	PGA (g)					
	16° percentile	50° percentile	84° percentile			
0.0004	0.354	0.405	0.474			
0.0010	0.252	0.280	0.340			
0.0021	0.186	0.208	0.254			
0.0050	0.127	0.143	0.171			
0.0071	0.107	0.121	0.143			
0.0099	0.091	0.103	0.120			
0.0139	0.077	0.087	0.098			
0.0199	0.064	0.072	0.079			
0.0332	0.047	0.054	0.058			

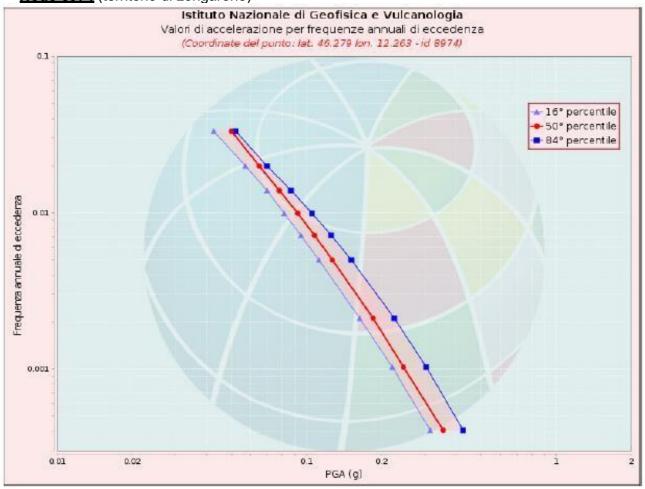
Fig. 90 – Curva di pericolosità e tabella PGA

VE407

Relazione geologica

Disaggregazione di PGA con probabilità di eccedenza del 10% in 50 anni											
Distanza	Magnitudo										
in Km	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0
0-10	0.0000	6.9800	16.8000	13.4000	8.8700	4.9400	0.6380	0.0000	0.0000	0.0000	0.0000
10-20	0.0000	1.6100	6.6300	9.0100	9.2100	7.5200	1.2100	0.0000	0.0000	0.0000	0.0000
20-30	0.0000	0.0000	0.2840	1.6900	3.1000	3.7500	0.7450	0.0000	0.0000	0.0000	0.0000
30-40	0.0000	0.0000	0.0000	0.1010	0.8360	1.5700	0.3700	0.0000	0.0000	0.0000	0.0000
40-50	0.0000	0.0000	0.0000	0.0000	0.0840	0.4080	0.1160	0.0000	0.0000	0.0000	0.0000
50-60	0.0000	0.0000	0.0000	0.0000	0.0010	0.0886	0.0363	0.0000	0.0000	0.0000	0.0000
60-70	0.0000	0.0000	0.0000	0.0000	0.0000	0.0117	0.0104	0.0000	0.0000	0.0000	0.0000
70-80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0016	0.0000	0.0000	0.0000	0.0000
80-90	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
90-100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
100-110	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
110-120	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
120-130	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
130-140	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
140-150	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
150-160	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
160-170	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
170-180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
180-190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
190-200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

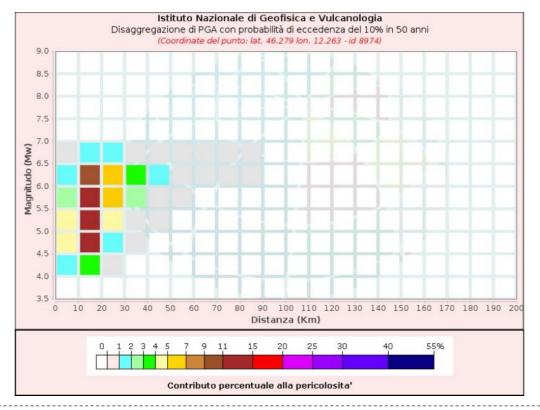
Valori Medi: magnitudo = 5.39 ; distanza = 11.9 ; epsilon = 1.08


Fig. 91 – Grafico e tabella di disaggregazione PGA

VE407

Relazione geologica

Nodo 8974 (territorio di Longarone)



Frequenza	PGA (g)					
annuale di ecc.	16° percentile	50° percentile	84° percentile			
0.0004	0.314	0.353	0.425			
0.0010	0.221	0.245	0.303			
0.0021	0.164	0.185	0.225			
0.0050	0.112	0.127	0.152			
0.0071	0.095	0.108	0.126			
0.0099	0.081	0.092	0.106			
0.0139	0.070	0.078	0.087			
0.0199	0.057	0.065	0.070			
0.0332	0.043	0.050	0.052			

Fig. 92 – Curva di pericolosità e tabella PGA

VE407

Disaggregazione di PGA con probabilità di eccedenza del 10% in 50 anni						
Distanza	Magnitudo					
in Km	3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0 6.0-6.5 6.5-7.0 7.0-7.5 7.5-8.0 8.0-8.5 8.5-9.0					
0-10	0.0000 1.7700 4.6300 4.0500 2.8400 1.6500 0.2160 0.0000 0.0000 0.0000					
10-20	0.0000 3.2400 11.7000 14.3000 13.6000 10.4000 1.6000 0.0000 0.0000 0.0000					
20-30	0.0000 0.0252 1.3000 4.2100 6.3400 6.9100 1.3000 0.0000 0.0000 0.0000					
30-40	0.0000 0.0000 0.0015 0.6160 2.2800 3.4800 0.7700 0.0000 0.0000 0.0000					
40-50	0.0000 0.0000 0.0000 0.0090 0.5230 1.3600 0.3460 0.0000 0.0000 0.0000					
50-60	0.0000 0.0000 0.0000 0.0000 0.0380 0.3600 0.1130 0.0000 0.0000 0.0000					
60-70	0.0000 0.0000 0.0000 0.0000 0.0000 0.0815 0.0384 0.0000 0.0000 0.0000					
70-80	0.0000 0.0000 0.0000 0.0000 0.0000 0.0119 0.0122 0.0000 0.0000 0.0000					
80-90	0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0028 0.0000 0.0000 0.0000 0.0000					
90-100	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
100-110	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
110-120	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
120-130	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
130-140	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
140-150	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
150-160	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
160-170	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
170-180	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
180-190	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
190-200	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000					
Valori Medi: magnitudo = 5.55 ; distanza = 17.8 ; epsilon = 1.37						

Fig. 93 – Grafico e tabella di disaggregazione PGA

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

La Curva di Pericolosità, *Fig. 88*, *Fig. 90* e *Fig. 92* graficizza i valori di scuotimento (PGA) per diverse frequenze annuali di eccedenza (valore inverso del periodo di ritorno), riportati nella tabella allegata. Il grafico di disaggregazione, rappresenta il contributo percentuale delle possibili coppie di valori magnitudo-distanza epicentrale alla pericolosità del nodo, rappresentata dal valore della PGA mediana, per una probabilità di eccedenza del 10% in 50 anni. La tabella allegata, riporta i valori mostrati nel grafico ed i valori medi di magnitudo, distanza ed epsilon.

I valori indicati devono essere utilizzati nelle progettazioni ai sensi della normativa vigente.

92 2 Elementi di amplificazione sismica

Nell'area interessata dal tracciato stradale in progetto possono essere presenti vari elementi di possibile amplificazione delle onde sismiche e quindi di pericolosità sismo indotta sia di natura geomorfologica che tettonica, sia litologica-idrogeologica. Di seguito si esaminano in dettaglio le possibili problematiche indotte.

Quadro tettonico: Faglie capaci

Per la verifica di presenza di faglie capaci interferenti con il tracciato si è fatto riferimento al catalogo del progetto ITACHA1, che per faglia capace, intende una faglia in grado di produrre, entro un intervallo di tempo di interesse per la società, una deformazione/dislocazione della superficie del terreno, e/o in prossimità di essa.

La deformazione attesa può essere sia una dislocazione ben definita lungo un piano di rottura (fault displacement/offset) che una deformazione distribuita (warping). La riattivazione attesa viene definita in funzione del regime tettonico in atto, rispetto al quale deve essere compatibile. Elementi secondari possono però mostrare rotture "anomale", ad esempio movimenti compressivi in un ambiente distensivo, a causa di geometrie locali delle strutture riattivate. Le faglie capaci, come definite sopra, possono determinare un significativo pericolo di danneggiamento di strutture antropiche.

Il catalogo delle faglie capaci, segnala l'esistenza di due sistemi di faglie in prossimità della fascia di territorio attraversata dal tracciato stradale, *Fig.* 94.

Una orientata N-S, pressoché con andamento parallelo al Piave, che attraversa i rilievi in sinistra idrografica, ma comunque posta ad una certa distanza e non interferente direttamente con il tracciato. L'altra, rappresentata dal prolungamento di una faglia orientata NO-SE, che taglia col suo prolungamento verso NO, il tracciato più o meno all'altezza dell'area industriale di Villanova, in

130

¹ (Progetto ITHACA - ITHACA Working Group (2019). ITHACA (ITaly HAzard from CApable faulting), A database of active capable faults of the Italian territory. Version December 2019. ISPRA Geological Survey of Italy. Web Portal http://sgi2.isprambiente.it/ithacaweb/Mappatura.aspx)

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

comune di Longarone. La faglia in questione denominata Faglia del Monte Toc (codice 79202), fa parte del Sistema Cadorino. L'ultima attivazione è data al Pleistocene medio.

Le osservazioni geologiche, geomorfologiche e morfotettoniche eseguite nel tempo sul territorio non sembrano evidenziare elementi utili all'individuazione di deformazioni superficiali associabili all'attività recente di questa faglia. I dati di sismicità storica rilevati nell'area inoltre non presentano epicentri registrati lungo l'andamento della presunta faglia capace. Peraltro, anche i dati profondi di sottosuolo conosciuti, non sembrano confortare l'ipotesi della presenza di una struttura sepolta sottoi depositi alluvionali di fondovalle del Piave, che presenti un rigetto del contatto tra il substrato e la copertura alluvionale. Di seguito si riportano gli elementi descrittivi della faglia così come desumibili dal catalogo ITACHA.

Dati Generali

Fault Code	79202
Fault Name	Monte Toc
Region Name	Trentino Alto Adige
Tectonic Environment	PLATE BOUNDARY
System Name	Cadorino System
Synopsis	
Rank	Secondary

Geometria/Cinematica

Segmentation	Single Segment
Average Strike (°)	145
Dip (°)	Undefined
Dip Direction	
Fault Length (km)	8.5
Mapping Scale	1:500000
Fault Depth (m)	
Kinematics	Strike Slip DX

VE407

Relazione geologica

Attività

Surface Evidence

Last Activity

Evidence for Capability

Lithology

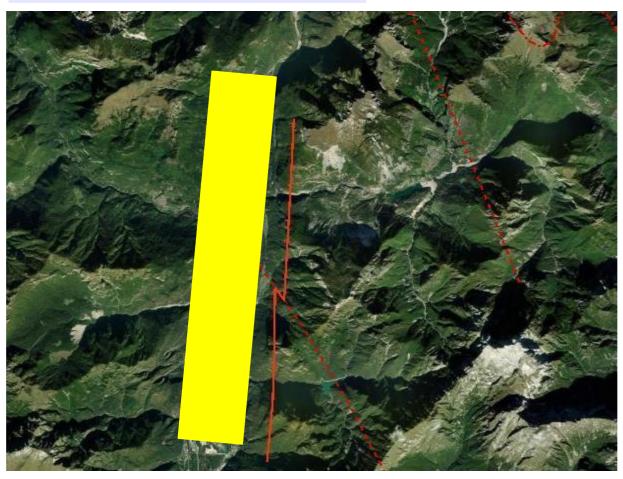


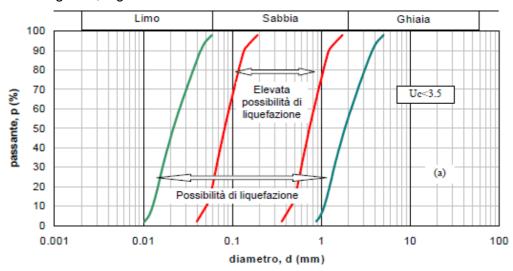
Fig. 94 – Ubicazione faglie capaci (estratto da ITACHA)

Litologia-idrogeologia: Liquefazione

Il fenomeno della liquefazione si può verificare nei terreni granulari sciolti in concomitanza con eventi sismici e condizioni litostratigrafiche specifiche ed è dovuto al quasi totale annullamento della resistenza a taglio del terreno che a quel punto tende ad un comportamento assimilabile a quello di un fluido. In caso di sisma vengono prodotti nel terreno una serie di cicli tali da far eguagliare la pressione interstiziale alla pressione di confinamento, annullando in pratica la resistenza al taglio. Poiché la pressione di confinamento si incrementa con la profondità l'effetto di liquefazione, per la

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407


Relazione geologica

tipologia di terremoti caratteristici dell'area in esame, normalmente la letteratura concorda nel ritenere che non possa manifestarsi ad una profondità superiore ai quindici metri dal piano campagna. A tali profondità peraltro le tensioni litostatiche sono tali da impedire i fenomeni di filtrazione indotti. In linea generale, per terremoti di elevata magnitudo la liquefazione del deposito può essere indotta da un numero, anche ridotto, di cicli di carico poiché a ogni ciclo è associata una sollecitazione dinamica di grande intensità; per contro, in terremoti di minore magnitudo lo stesso effetto si ottiene, chiaramente, solo con un numero superiore di cicli di carico. Come dimostrano i dati registrati durante terremoti documentati storicamente, la liquefazione è probabile con sismi di magnitudo superiore a 6 (7°-8° MCS), con durate di scossa superiori ai 15 s e accelerazioni amx>0,10g. Il fenomeno della liquefazione richiede, oltre a deposti incoerenti, anche la presenza della falda entro i primi metri dal piano campagna, condizione di fatto rispettata nell'area di fondovalle del fiume Piave. In pratica si definiscono terreni potenzialmente liquefacibili i sedimenti che presentano le seguenti caratteristiche.

- Sedimenti con granulometria sabbiosa fine e/o sabbioso/limosa con contenuto di fine non superiore al 25%. Granulometria grossolane, riducono la potenzialità verso tale fenomeno;
- Spessore dei sedimenti liquefacibili superiori a 1 metro;
- Grado di addensamento medio basso;
- Sedimenti in condizioni sature a profondità non superiore ai 15 metri;

Il fuso granulometrico dei sedimenti deve rispettare le condizioni riportate nello schema successivo dove si possono evidenziare anche le possibilità di liquefazione in base all'estensione del fuso stesso nelle condizioni di valori di coefficiente di uniformità maggiore o minore di 3,5. Come sopra detto, la granulometria grossolana etero granulare (well sorted) tende sensibilmente a ridurre la possibilità che eventi di liquefazione possano avvenire come è possibile notare anche dai diagrammi che seguono, *Fig.* 95.

VE407

Relazione geologica

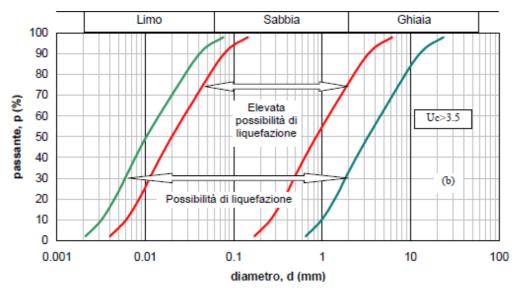


Fig. 95 – Fasce granulometriche per la valutazione preliminare della suscettibilità alla liquefazione di un terreno per i terreni a granulometria uniforme (a) ed estesa (b) (da AGI, 2005)

Le curve granulometriche a disposizione e relative a campioni raccolti tuttavia nei primissimi metri dal p.c. in fase di indagine, sostanzialmente mostrano fusi granulometrici che collocano i sedimenti entro il campo delle ghiaie sabbiose e quindi al di fuori del fuso granulometrico di "Possibilità di liquefazione" e/o altrimenti con contenuti di fini mediamente superiori al 30%, contenuto che riduce la possibilità dell'evenienza del fenomeno.

Considerazioni sul rischio liquefazione nell'area considerata, possono essere fatte sulla base dei valori di NSPT, desunti direttamente dalle prove penetrometriche a disposizione. Sherif-Ishibashi 1978 et Alii. fissano un numero di colpi pari a NSPT=2z (dove z è la profondità) come limite superiore oltre il quale non avviene liquefazione. Nel caso dei depositi granulari presenti nell'area di studio, peraltro prevalentemente ghiaiosi ed etero granulari, si rileva che tale valore, (corrispondente a depositi relativamente più sciolti) è mediamente quasi sempre superato fin dai primi metri dal p.c..

Per una corretta considerazione e valutazione della suscettibilità all fenomeno in fase progettuale si dovranno eseguire le dovute valutazioni sitospecifiche.

Confronto con le carte di Pericolosità sismica del PAT/PATI

Il PAT del comune di Ponte nelle Alpi, inserisce tutta l'area alluvionale di fondovalle in area soggetta ad amplificazione sismica, mentre le zone montane e/o caratterizzate da falesie e/o pareti con affioramenti rocciosi, in aree soggette a potenziale instabilità in caso di sisma. Più in particolare nella carta con l'interpretazione sismica dei lineamenti geologici, di cui la *Fig.* 96 riporta un estratto, il fondovalle, così come le falde detritiche sono considerate suscettibili di amplificazioni sismiche per fattori litologici e geometrici.

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

In questa zona di territorio, il tracciato corre lungo un corridoio parallelo all'attuale SS51 sui depositi alluvionali del fiume Piave. Le caratteristiche litologiche locali e il quadro idrogeologico sono potenzialmente favorevoli allo sviluppo di fenomeni di liquefazione (vedasi trattazione specifica precedente).

Procedendo verso Nord il tracciato stradale entra in territorio del comune di Longarone. La Carta degli elementi sismici (Tav n.09c) del PATI Longaronese, evidenzia la presenza di vari elementi potenzialmente motori di instabilità sismica. Più in particolare come mostra la *Fig.* 97, che riporta un estratto di tale carta, sono messi in evidenza sia gli elementi suscettibili di instabilità, quali le pareti rocciose (falesie), gli ammassi rocciosi fratturati, le zone con frane di crollo, i movimenti gravitativi attivi e/o suscettibili di riattivazione. Sono altresì evidenziati gli elementi stabili, ma suscettibili di amplificazione sismica, quali il fondovalle, le falde detritiche, i terreni di riporto, gli orli di scarpata e di terrazzo fluviale etc. Anche in questa parte di territorio, il tracciato si sviluppa sostanzialmente lungo il fondovalle pressoché in fregio alla zona d'alveo del Piave, lontano da zone suscettibili di instabilità per dissesti etc.

Nuovamente, le caratteristiche litologiche locali e il quadro idrogeologico della zona di fondovalle, sono potenzialmente favorevoli allo sviluppo di fenomeni di liquefazione (vedasi trattazione specifica precedente).

VE407

Relazione geologica

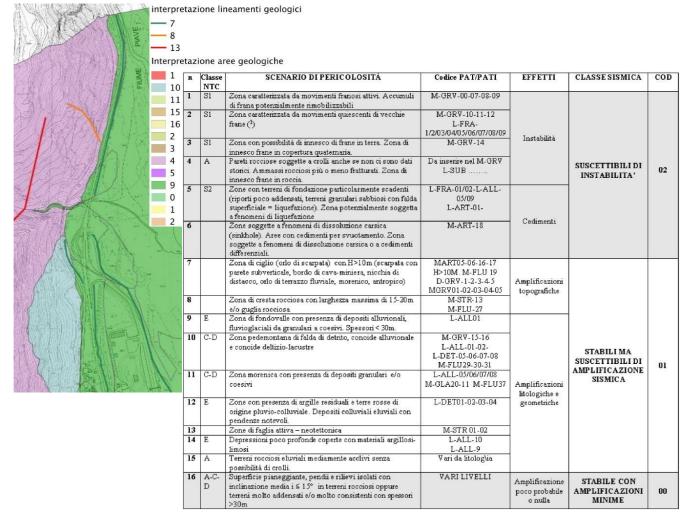


Fig. 96 – Estratto dalla carta di Interpretazione sismica dei lineamenti geologici Tav CS 1.1 del PAT del comune di Ponte nelle Alpi

Procedendo verso Castellavazzo il tracciato abbandona il fondovalle del Piave e entra nella fascia pedemontana e montana. In quest'area, la Carta della Fragilità (Tav. n. 3c del PAT Longarone - Variante n°1 al PATI Longaronese - Territorio di Castellavazzo), di cui la *Fig. 98* riporta un estratto, perimetra le zone omogenee in prospettiva sismica, in particolare quelle stabili ma suscettibili di amplificazione sismica e quelle suscettibili di instabilità, queste ultime per lo più coincidenti con le aree caratterizzate da pareti rocciose molto pendenti e/o da falesie rocciose, con le zone soggette a fenomeni di crollo e/o caratterizzate da movimenti gravitativi di massa attivi e/o suscettibili di riattivazione a seguito di sisma.

Il tracciato in questa parte del territorio corre in galleria e pertanto non interferisce con gli elementi citati, tranne nel tratto finale, dopo lo sbocco nord della galleria, dove sono segnalati un dissesto attivo, zone con pareti rocciose da cui si possono verificare crolli e che sono di fatto zone suscettibili di instabilità e di possibile riattivazione indotta da sisma.

VE407

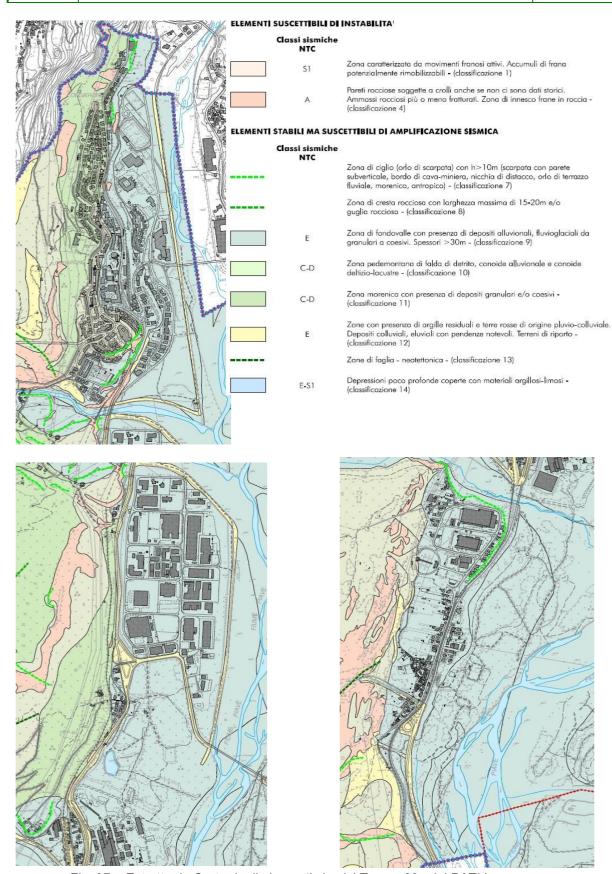


Fig. 97 – Estratto da Carta degli elementi sismici Tav. n. 09c del PATI Longaronese

VE407

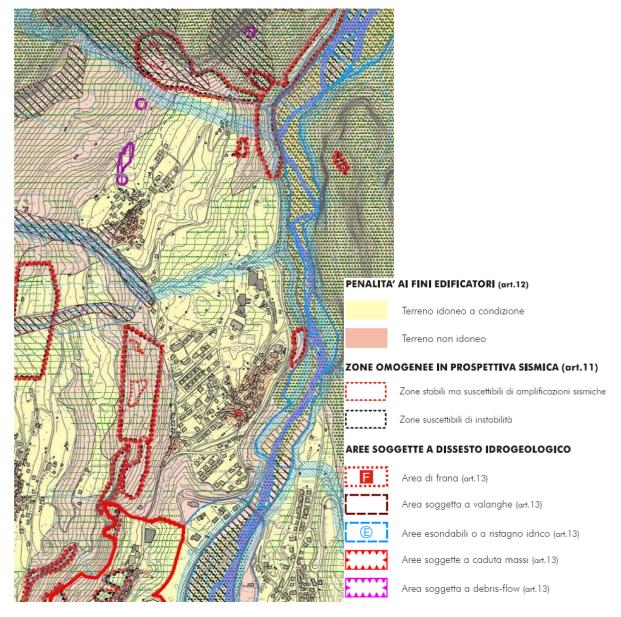


Fig. 98 – Estratto da Carta della Fragilità Tav n.3c del PAT Longarone - Variante n°1 al PATI Longaronese. Territorio di Castellavazzo

VE407

Relazione geologica

10 ANALISI DEL TRACCIATO

La S.S. 51 di Alemagna, nel tratto interessato dal progetto, collega la tratta dell'uscita autostradale di Pian di Vedoia, in comune di Ponte nelle Alpi e, dopo aver attraversato il territorio comunale di Longarone-Castellavazzo, si raccorda con la Galleria Termine in prossimità del "Ponte Tubo" sul fiume Piave.

DATI CARATTERISTICI

Lunghezza	totale itinerario:	11.241 m
-----------	--------------------	----------

Opere d'arte maggiori:

Opere u arte maggion.		
Cavalcavia Pian di Vedoia L=185m	Pr. di progetto	0+250-0+445
Viadotto Frari L=440m	Pr. di progetto	0+441-0+881
Viadotto Desedan L=1.220m	Pr. di progetto	3+071–4+291
Viadotto Villanova L=300m	Pr. di progetto	4+992–5+292
Viadotto Maè L=480m	Pr. di progetto	6+451–6+931
Viadotto Fiera L=500m	Pr. di progetto	7+532–8+032
Viadotto Malcolm L=115m	Pr. di progetto	8+797–8+912
Galleria principale Castellavazzo L=1.540m	Pr. di progetto	9+315–10+857
di cui:		
Galleria artificiale L=50 m	Pr. di progetto	9+315–9+365
Galleria naturale L=1.485 m	Pr. di progetto	9+365–10+857
Galleria artificiale L=5 m	Pr. di progetto	9+315–9+365
Galleria emergenza Castellavazzo L=1.442m	Pr. di progetto	0+000-1+442
di cui *:		
Galleria artificiale L=50 m	Pr. di progetto	0+000-0+050
Galleria naturale L=1.382 m	Pr. di progetto	0+050-1+382
Galleria artificiale L=10 m	Pr. di progetto	1+382-1+392
Viadotto Fason L=205m	Pr. di progetto	10+857-11+062

^{*} Progressive riferite alla galleria di emergenza che inizia alla Pr. 9+315

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

101 1 Tratto compreso tra la progressiva 0+000 e la 2+500

Questo tracciato si sviluppa nell'area golenale della destra idraulica del fiume Piave, raccordando l'uscita autostradale di Pian di Vedoia con il nuovo tracciato in direzione di Longarone e con il tracciato esistente in direzione di Belluno. Tale raccordo viene realizzato con uno svincolo a livelli sfalsati e la costruzione di due viadotti in area golenale e arginale fino alla Pr. 0+900. Il nuovo tracciato attraversa il corso del Rio dei Frari e si riallinea a quello esistente in rilevato.

Le opere interessano le coltri alluvionali del Piave e la conoide del Rio dei Frari presenti in golena ed in fregio all'area golenale caratterizzate da ghiaie poligeniche e sabbie prevalenti con ciottoli anche di notevoli dimensioni (30-40 cm). Esternamente ai depositi attuali, i depositi sono meno recenti e appaiono terrazzati e parzialmente colonizzati dalla vegetazione. Litologicamente sono simili ai precedenti, ma appaiono più cementati.

I sondaggi eseguiti hanno evidenziato una coltre alluvionale con spessori superiori alla massima profondità indagata di 40 m dal p.c. che hanno confermato la stratigrafia ghiaiosa prevalentemente grossolana intercettando, nella parte più profonda del volume indagato, alcune lenti (di spessore da decimetrico fino a qualche metro – SD01_DH, SD02_DH) costituite da materiale più fine limoso ad argilloso. Le prove geofisiche a rifrazione eseguite nella zona (BSD01, BSD01bis) confermano la stratigrafia ed identificano un bedrock roccioso ad oltre 45m di profondità.

A titolo d'esempio si riportano le foto di campioni di carotaggio.

VE407

Fig. 99 – Cassetta del carotaggio da 1 a 5 m da pc., sondaggio SD02_DH granulometria grossolana

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

Fig. 100 – Sondaggio SD02_DH, cassetta del carotaggio da 25 a 30 m da pc., con livello limo-sabbioso

Fig. 101 – Sondaggio SD02_DH, cassetta del carotaggio da 25 a 30 m da pc., con livello argilloso-limoso

Il sondaggio SD03-PZ eseguito nella conoide del Rio dei Frari ha evidenziato una granulometria grossolana costituita da Ghiaia sabbiosa e limosa, grigio - biancastra, molto addensata

VE407

Relazione geologica

Fig. 102 – Sondaggio SD03_PZ, cassetta del carotaggio da 5 a 10 m da pc. con ghiaie prevalenti

Il tracciato quindi prosegue in sovrapposizione all'esistente fino al km 2+000 da cui inizia a staccarsi deviando all'interno della golena del Piave. In prossimità del km 1+500 il pendio a monte è stato interessato da due frane precedentemente descritte (0250206200 e 0250206400) che hanno interessato in modo significativo la sede storica.

102 2 Tratto compreso tra la progressiva 2+500 e la 3+070

A partire dalla chilometrica 2+000 il nuovo tracciato si stacca da quello storico e taglia, in rilevato, l'area golenale del Piave fino all'altezza del campo sportivo di Fortogna dopo il quale inizia il lungo viadotto del torrente Desedan. In questa tratta è stata registrata la frana storica del 1912 0250206200 che ha interessato il tracciato ferroviario ma non il tracciato storico della S.S. 51 distante circa 150 m dalla ferrovia e che è a monte del tracciato in studio, la zona è attraversata da due corsi minori uno dei quali, all'altezza della chilometrica 2+500 alimenta un'area di pregio naturalistico costituita dalle cosiddette Fontane di Fortogna che vengono lambite a monte dal nuovotracciato.

Anche in quest'area i litotipi prevalenti sono simili a quelli del tratto precedente caratteristici delle alluvioni recenti e terrazzate del Fiume Piave a granulometria prevalentemente grossolana (sondaggio SD07 DH) con lenti argilloso-limose (sondaggio SD06_PZ)

VE407

Fig. 103 – Fontane di Fortogna

Fig. 104 – Sondaggio SD06_PZ, cassetta del carotaggio da 20 a 25 m da pc., lente di argilla limosa

VE407

Relazione geologica

Fig. 105 – Sondaggio SD07_DH, cassetta del carotaggio da 10 a 15 m da pc. con ghiaie prevalenti

103 3 Tratto compreso tra la progressiva 3+070 e la 4+170

Il tracciato in questa zona, dopo aver attraversato longitudinalmente la golena del Piave, incrocia il torrente Desedan fino al raggiungimento della sponda in sinistra idraulica dello stesso torrente.

Anche quest'area è caratterizzata dalla presenza delle alluvioni del Piave a granulometria grossolana con importanti orizzonti sabbiosi (sondaggio SD08_DH) fino alla profondità di 35 m, il tracciato in viadotto si sviluppa nelle alluvioni golenali coperte di vegetazione costituite da ancora da sequenze prevalentemente ghiaiose con alternanze sabbiose (SD05_PZ e SD09ter_DH) per poi passare alle alluvioni della conoide del torrente Desedan dove si rinvengono, fino a 35 m di profondità, orizzonti ghiaiosi con possibile presenza di ciottoli (sondaggi SD09_PZ e SD09bis_PZ).

Le prove geofisiche BSD02 e BSD02bis sono stratigraficamente concordi ed identificano un bedrock roccioso ad oltre 40-45m di profondità.

VE407

Fig. 106 – Sondaggio SD08_DH, cassetta del carotaggio da 30 a 35 m da pc. con sabbie prevalenti

Fig. 107 – Sondaggio SD09_PZ, cas5etta del carotaggio da 5 a 10 m da pc. con ghiaie

VE407

Fig. 108 – Sondaggio SD09ter_DH, cassetta del carotaggio da 10 a 15 m da pc. con ghiaie e sabbie

Fig. 109 – Sondaggio SD09_PZ, cassetta del carotaggio da 20 a 25 m da pc. con ghiaie prevalenti

VE407

Relazione geologica

Fig. 110 – Sondaggio SD09bis_PZ, cassetta del carotaggio da 20 a 25 m da pc. con ghiaie e ciottoli

104 4 Tratto compreso tra la progressiva 4+170 e la 6+465

Dopo aver attraversato il torrente Desedan tracciato prosegue nell'area golenale, parallelamente al Piave ad una distanza media di circa 120 m dal thalweg e attraversa un'area industriale con, da una parte, un ampio appezzamento bonificato e dall'altra, alcune vasche in parte attive ed in parte dismesse, destinate al lavaggio degli inerti di un'attività di produzione e selezione di materie prime secondarie. Il substrato anche in questa zona è costituito da alternanze di sabbie, ghiaie e limi come evidenziato dai sondaggi SD10_DH spinto sino alla profondità di 35 m dal p.c. e dal SD11_PZ fino a 25 m dal p.c..

Dalla chilometrica 4+490 alla 5+290 si eleva in viadotto per sovrappassare via Provagna e quindi passa in fregio alla zona industriale di Villanova fino ad arrivare al viadotto del torrente Maè.

Come in precedenza anche in quest'area i litotipi prevalenti sono quelli delle alluvioni del Piave a matrice sabbio-ghiaiosa come testimoniato dai sondaggi SD12_PZ, SD12bis_PZ e SD13_DH quest'ultimo spinto sino alla profondità di 40 m dal p.c..

VE407

Fig. 111 – Sondaggio SD10_DH, cassetta del carotaggio da 10 a 15 m da pc. con sabbie ghiaiose ghiaie e limose

Fig. 112 – Sondaggio SD11_PZ, cassetta del carotaggio da 5 a 10 m da pc. con sabbie, sabbie ghiaiose, ghiaie e sabbie limose

S.S. 51 "ALEMAGNA" - VARIANTE DI LONGARONE

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

In corrispondenza del viadotto di via Provagna è stato eseguito il sondaggio SD12_PZ che fino a 35 m dal p.c. ha evidenziato la presenza di ghiaie e ghiaie sabbiose.

Fig. 113 – Sondaggio SD12_PZ, cassetta del carotaggio da 30 a 35 m da pc. con ghiaie e ghiaie sabbiose

La stessa litologia viene confermata, al termine N del suddetto viadotto, dal sondaggio
SD12bis_PZ fino a 35 m dal p.c. mentre nel successivo sondaggio SD13_DH in corrispondenza del
rilevato tra la zona industriale ed il Piave si trovano ghiaie prevalenti con subordinati orizzonti limosi,
sabbiosi ed argillosi fino a 40 m dal p.c. La prova sismica a rifrazione BSD04 ha evidenziato un
bedrock roccioso a profondità superiori a 45-50 m dal p.c..

VE407

Relazione geologica

Fig. 114 – Sondaggio SD12bis_PZ, cassetta da 10 a 15 m da pc. con ghiaie e ghiaie sabbiose

Fig. 115 – Sondaggio SD13_DH, cassetta del carotaggio da 20 a 55 m da pc. con ghiaia, sabbia e limo

105 5 Tratto compreso tra la progressiva 6+465 e la 9+315

Il tracciato, al termine della zona industriale di Villanova, attraversa in viadotto il torrente Maè e prosegue nell'area golenale, parallelamente al Piave, ad una distanza media di circa 160 m dal

VE407

Relazione geologica

thalweg fino alla Strada Regionale 251 dove si avvicina all'argine del fiume alzandosi per sovrappassare in viadotto la suddetta strada. Il viadotto costeggia il parcheggio della zona Fiera di Longarone, da qui prosegue in rilevato fino all'area del nuovo laghetto Malcolm dove attraversa la viabilità locale sovrappassandola con un breve viadotto per poi andare a raccordarsi all'area d'imbocco della Galleria di Castellavazzo.

Come in precedenza anche in quest'area i litotipi, sono quelli delle alluvioni del Piave a granulometria prevalentemente grossolana ghiaioso-sabbiosi e subordinatamente limo-sabbiosi ed argillosi come testimoniato dai sondaggi SD14_DH; SD16_DH, SD17_DH, SD18_PZ, SD19_DH, SD 20_DH e spinti sino alla profondità massima di 35 m dal p.c. e dalle sismiche a riflessione BSD05, BSD06, BSD07 e BSD08. Il sondaggio SD21_DH che è stato eseguito a ridosso del rilievo di Malcolm ha invece evidenziato la presenza del substrato roccioso calcareo alla profondità di 16 m dal p.c. dopo aver attraversato una serie eterogenea di terreni granulari di varia granulometria di natura alluvionale e detritica.

Fig. 116 – Sondaggio SD14_DH, cassetta del carotaggio da 15 a 20 m da pc. con ghiaia, sabbia e limo

VE407

Fig. 117 – SD16_DH in corrispondenza della spalla sinistra del Viadotto Maè, cassetta del carotaggio da 30 a 35 m da pc.

Fig. 118 – SD17_DH in corrispondenza della spalla S del Viadotto Fiera, cassetta del carotaggio da 30 a 35 m da pc.

VE407

Fig. 119 – SD18_PZ in corrispondenza della Pila P6 del Viadotto Fiera Cassetta da 20 a 25 m da pc.

Fig. 120 – SD19_DH cassetta da 0 a 5 m da pc. in corrispondenza della Spalla N del Viadotto Fiera

VE407

Fig. 121 – SD20_DH cassetta da 15 a 20 m da pc. in corrispondenza della Spalla S del Viadotto Malcolm

Fig. 122 – SD21_DH cassetta da 15 a 20 m da pc in corrispondenza della Spalla N del Viadotto Malcolm

S.S. 51 "ALEMAGNA" - VARIANTE DI LONGARONE

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

106 6 Tratto compreso tra la progressiva 9+315 e la 11+241

Il tracciato a questo punto si "infila" al di sotto dell'area residenziale a S del centro di Castellavazzo in un'area detritica fino ad intercettare l'ammasso roccioso presumibilmente all'altezza della progressiva 9+470: gli esiti del sondaggio SD22 PZ eseguito alla Pr. 9+430 infatti non hanno confermato la presenza di roccia massiva alla quota prevista della galleria (da 27,5 a 39 m dal p.c.) ma il sondaggio ha evidenziato la presenza di materiale granulare di pezzatura eterogenea, prevalentemente ghiaiosa con trovanti (probabilmente fluvio-glaciale), fino alla profondità di 42 m dal p.c. dove ha intercettato la roccia calcarea microcristallina grigia (Calcare di Soccher), tale stratigrafia trova riscontro anche con l'esito della prova geofisica a riflessione BSD10 esequita tra le progressive 9+315 e 9+410. Il sondaggio SD23 PZ, eseguito all'altezza della progressiva 9+665, ha invece evidenziato la presenza di roccia calcarea (Calcare di Soccher) compatta a partire da 17m dal p.c.. Tra i due sondaggi sono state eseguite due prove geofisiche a rifrazione (BSD11 e BSD12) tra le progressive 9+500 e 9+590 le quali individuano un sismostrato sub-orizzontale con valori rappresentativi della roccia calcarea fratturata intorno ai 20 m dal p.c., quest'informazione associata agli esiti delle prove geofisiche e ad altre indagini pregresse eseguite nell'area circostante indica che il substrato roccioso dovrebbe essere incontrato dalla galleria intorno alla progressiva 9+470. Proseguendo verso nord sono state eseguite due prove geofisiche a rifrazione (BSD13 alla progressiva 9+720 e BSD14 alla progressiva 9+805) che confermano la presenza del substrato calcareo a profondità comprese tra i 20 ed i 15 m dal p.c. con un primo livello di roccia fratturata e alterata. Il sondaggio SD24 PZ, eseguito all'altezza della progressiva 9+955, ha evidenziato la presenza di roccia calcarea (Calcare di Soccher) compatta da 55 fino a 90.5 m dal p.c., in corrispondenza di questo sondaggio è stata eseguita la prova geofisica a riflessione BSD15 che ha evidenziato una copertura di circa una decina di metri seguita da un consistente spessore (fino a 25 m) di roccia fratturata e/o alterata per poi passare alla formazione massiva. A monte dell'asse della galleria tra le progressive 10+380 e 10+850 sono state eseguite una linea geofisica a riflessione e una tomografia elettrica che ha identificato un livello decrescente da NE verso SW di riflettori discontinui che possono essere associati a roccia fratturata mentre al di sotto si evidenzia in livello più continuo associabile alla roccia calcarea; la tomografia elettrica ha evidenziato alcune esigue coperture detritiche limoso-sabbiose e/o ghiaiose, il livello di roccia fratturata/alterata è evidente così come si conferma più in profondità uno strato fortemente resistivo riferibile a rocce calcaree compatte. Si evidenziano inoltre zone fratturate con numerose fagliazioni evidenziate anche dal confronto con la sismica. Il tracciato continua in galleria fino alla progressiva 10+857 dove sbocca sulla stretta vallecola e la passa con un viadotto (Viadotto Fason) la cui Spalla S si attesta sulle

VE407

Relazione geologica

rocce della galleria per poi proseguire su pile fondate su roccia fino alla Spalla N alla progressiva 11+062 dove si raccorda alla viabilità esistente.

Il cunicolo di emergenza procede, a valle, in parallelo alla galleria principale a partire dall'imbocco S fino alla chilometrica 10+600 dove curva, passa sotto la ferrovia, ed esce all'aperto pochi metri a monte dell'attuale tracciato stradale. In quest'area, come rilevato visualmente e con indagini dirette ed indirette nelle precedenti campagne d'indagine 2019 e 2021, il bedrock calcareo si trova a pochi metri dalla superficie.

In prossimità del viadotto Fason è stato eseguito un sondaggio prevalentemente a scopo ambientale, una prova geofisica a rifrazione BSD18 ed una prova MASV per delineare il quadro già esplorato con numerose indagini geognostiche dirette ed indirette negli anni scorsi.

Dall'esame di queste indagini si evince che il viadotto Fason passa sopra formazioni ghiaioso sabbiose con un bedrock roccioso intercettato dal sondaggio ScPz_L12 del 2017 alla profondità di circa 19 m dal p.c. e confermato dalle altre indagini che lo localizzano a profondità comprese tra 15 e 20 m dal p.c..

Fig. 123 – Cassetta del carotaggio da 40 a 45 m da pc. del sondaggio SD22_PZ in prossimità dell'imbocco S della Galleria Castellavazzo

VE407

Fig. 124 – Cassetta del carotaggio da 45 a 50 m da pc. del sondaggio SD23_PZ

Fig. 125 – Cassetta del carotaggio da 75 a 80 m da pc. del sondaggio SD24_PZ

VE407

Fig. 126 – Cassetta del carotaggio da 120 a 125 m da pc. del sondaggio SD25_PZ

Fig. 127 – Cassetta del carotaggio da 0 a 5 m da pc. del sondaggio SD26

S.S. 51 "ALEMAGNA" - VARIANTE DI LONGARONE

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

VE407

Relazione geologica

11 BIBLIOGRAFIA

- Bally A.W., Catalano R., Oldow J. (1985) Elementi di Tettonica Regionale. Editrice Pitagora, Bologna, 276 p.
- Bosellini A. e Masetti D. 1972: Ambiente e dinamica deposizionale del calcare del Vajont (Giurassico medio, Prealpi Bellunesi e Friulane). Ann. Univ. Ferrara, 5 (4), 87-100.
- Castellarin A., a cura di (1981) carta tettonica delle Alpi meridionali (alla scala 1:200.000).
 Pubblicazione n° 441, P.F. Geodinamica (S.P. 5), C.N.R.
- Castellarin A., Nicolich R., Fantoni R., Cantelli L., Sella M. & Selli L. (2006) Structure of the lithosphere beneath the Eastern Alps (southern sector of the TRANSALP transect). Tectonophysics, 414, 259-282.
- Channell, J.E.T. (1996), Palaeomagnetism and palaeogeography of Adria, in Palaeomagnetism and Tectonics of the Mediterranean Region, edited by A. Morris and D. H. Tarling, Geol. Soc. Spec. Publ., 105, 119–135.
- Galadini F., Meletti C., Vittori E. 2001: Major active faults in Italy: available surficial data. Netherlands Journal of Geosciences 80 (3-4), 273-296
- Masetti D. (1996): Stratigrafia. In: Costa V., Doglioni C., Grandesso P., Masetti D., Pellegrini
 G.B. & Tracanella E.: Note illustrative del F° 063 Belluno. Serv. Geol. d'Italia, Roma.
- Meletti C., Slejko D., Vaccari F. (2000): Confronti tra le stime di pericolosità sismica del territorio nazionale realizzate in ambito GNDT
- Meletti C., Patacca E., Scandone P. (2000): Construction of a seismotectonic model: the case of Italy. Pure and Applied Geophysics, 157, 11-35.
- Scandone P., Stucchi M. (2000): La zonazione sismogenetica ZS4 come strumento per la valutazione della pericolosità sismica.