

Direzione Progettazione

S.S.51"ALEMAGNA"

VARIANTE DI LONGARONE

PROGETTO FATTIBILITA' TECNICA ED ECONOMICA

COD. VE407

PROGETTAZIONE: ATI VIA - SERING - VDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE e PRGETTISTA:

Dott. Ing. Massim Capasso (Ord. Ing. Prov. Roma A26031)

PROGETTISTA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso (Ord. Ing. Prov. Roma 26031) Responsabile Strutture: Dott. Ing. Giovanni Piazza

(Ord. Ing. Prov. Roma 27296)
Responsabile Idraulica, Geotecnica e Impianti: Dott. Ing. Sergio Di Meio

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura

(Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Matteo Di Girolamo (Ord. Ing. Prov. Roma A15138)

COORDINATORE ATTIVITA' DI PROGETTAZIONE:

Dott. Ing. MariaAntonietta Merendino (Ord. Ing. Prov. Roma A28481)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

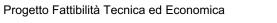
Dott. Ing. Ettore De Cesbron De La Grennelais

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

OPERE D'ARTE MAGGIORI GALLERIA CASTELLAVAZZO


CODICE PF	LIV. PROG. ANNO	NOME FILE VE407_P00GN01STRRI	VE407_P00GN01STRRE01_A		REVISIONE	SCALA:
DPVE0407 D 21		CODICE POOGNO1STRRE01		A	1	
D			_	_	-	-
С			_	_	-	-
В			_	_	_	_
Α	EMISSIONE		SETT. 2021	L.STARNA	G.PIAZZA	M.CAPASSO
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1	G	ENERA	ALITA'	4
	1.1	Ogo	GETTO	4
	1.2	DES	CRIZIONE DELLE OPERE	4
	1.3	VITA	A Nominale di progetto, Classe d'uso e Periodo di Riferimento dell'opera	7
	1.	3.1	Vita Nominale Vn	7
	1.	3.2	Classi d'Uso	7
	1.	3.3	Periodo di Riferimento per l'azione sismica	8
2	N	ORMA	TIVA E RIFERIMENTI	9
3	N	ORME	TECNICHE	9
4	C	ARAT1	TERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO	10
	4.1	CAL	CESTRUZZI	10
	4.	1.1	Caratteristiche ai fini della durabilità	10
	4.	1.2	Copriferri nominali	11
	4.	1.3	Resistenze di progetto	12
	4.	1.4	Verifiche a fessurazione	12
	4.2	Acc	CIAIO IN BARRE PER CEMENTO ARMATO	14
	4.	2.1	Qualità dell'acciaio	14
	4.	2.2	Resistenze di progetto	14
5	P	ARAMI	ETRI GEOTECNICI DI PROGETTO	15
6	M	ODELI	LO DI CALCOLO	16
	6.1	MET	TODOLOGIA DI CALCOLO E DESCRIZIONE DEL MODELLO	16
	6.2	Cor	DICI DI CALCOLO UTILIZZATI	20
7	A	ZIONI	E COMBINAZIONI DI PROGETTO	21
	7.1	Ana	LISI DEI CARICHI	21
	7.	1.1	Carichi permanenti	21
	7.	1.2	Sovraccarichi accidentali	21
	7.	1.3	Spinta del terreno	21
	7.	1.4	Azioni sismiche	21
	7.2	Con	MBINAZIONI DI CARICO	24

VE407

8	VEF	RIFICHE STRUTTURALI	26
1	8.1	GALLERIA ARTIFICIALE	26
	8.1.	1 Descrizione delle sezioni di calcolo	26
	8.1.	2 Riepilogo risultati delle analisi	26
	8.1.	3 Verifiche a presso-flessione	29
	8.1.	4 Verifiche a taglio	49
8	8.1	GALLERIA DI EMERGENZA	50
	8.1.	1 Descrizione delle sezioni di calcolo	50
	8.1.	2 Riepilogo risultati delle analisi	51
	8.1.	3 Verifiche a presso-flessione	54
	8.1.	4 Verifiche a taglio	74
9	DIC	HIARAZIONE ACCETTABILITÀ RISULTATI (PAR. 10.2 N.T.C. 2018)	76
9	9.1	TIPO DI ANALISI SVOLTE	76
,	9.2	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	76
,	9.3	AFFIDABILITÀ DEI CODICI DI CALCOLO	76
,	9.4	MODALITÀ DI PRESENTAZIONE DEI RISULTATI	76
,	9.5	INFORMAZIONI GENERALI SULL'ELABORAZIONE	77
,	9.6	GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	77

	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	S anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

1 GENERALITA'

1.1 Oggetto

La presente relazione illustra l'analisi e le verifiche relative ai tratti di galleria artificiale GN01 – Castellavazzo, poste agli imbocchi della galleria naturale prevista nell'ambito dei lavori di realizzazione della "VE407 - SS 51 "Alemagna"- Variante di Longarone".

Nella presente relazione si riporta il dimensionamento della struttura di rivestimento definitiva. Per il dimensionamento delle opere di sostegno degli scavi si rimanda alla relazione specifica.

Le analisi e le verifiche statiche mirano al dimensionamento degli elementi principali per consentirne una piena definizione dal punto di vista prestazionale ed economico.

Le analisi e le verifiche degli aspetti di dettaglio, saranno sviluppate nella successiva fase di Progettazione.

1.2 Descrizione delle opere

Sono state state analizzate sia la galleria artificiale sull'asse principale, che la galleria di emergenza adiacente ad essa.

GALLERIA ARTIFICIALE

L'opera di rivestimento di cui trattasi presenta una configurazione di galleria policentrica.

Lo spessore del rivestimento in calotta è pari ad 1.00 m in chiave, e 2.27 m in corrispondenza dei reni. I piedritti hanno spessore variabile da 1.20 m a 1.60 m allo spiccato degli stessi. Tra lo spiccato dei piedritti e l'arco rovescio sono presenti delle murette in c.a. L'arco rovescio presenta spessore pari a 1.00 m.

GALLERIA DI EMERGENZA

L'opera di rivestimento di cui trattasi presenta una configurazione di galleria policentrica.

Lo spessore del rivestimento in calotta è pari ad 0.70 m in chiave, e 0.70 m in corrispondenza dei reni. I piedritti hanno spessore variabile da 0.75 m a 0.85 m allo spiccato degli stessi. Tra lo spiccato dei piedritti e l'arco rovescio sono presenti delle murette in c.a. L'arco rovescio presenta spessore pari a 0.70 m.

VE407

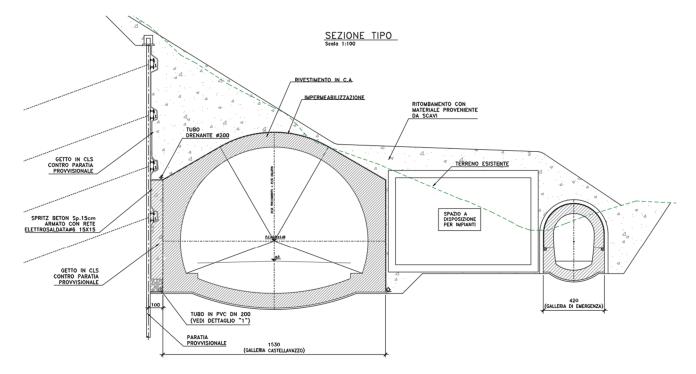


Figura 1.1 - Sezione trasversale galleria

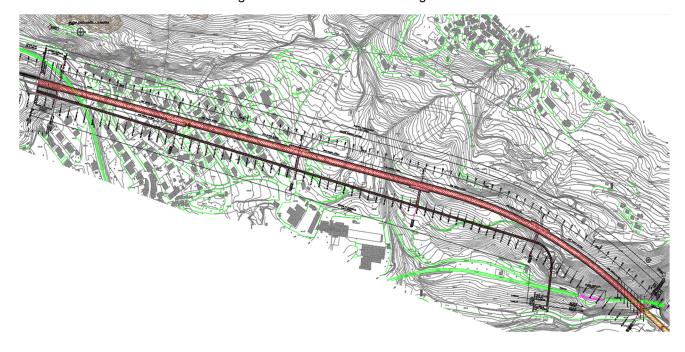
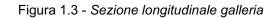



Figura 1.2 - Planimetria con ubicazione dell'opera

	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	S anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	S anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

1.3 Vita Nominale di progetto, Classe d'uso e Periodo di Riferimento dell'opera

1.3.1 Vita Nominale Vn

La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I. (§ 2.4.1 NTC2018). Tali valori possono essere anche impiegati per definire le azioni dipendenti dal tempo.

Tabella 2.4.I - Vita nominale V_N per diversi tipi di opere

	TIPI DI COSTRUZIONE	$\begin{array}{c} \textbf{Vita Nominale} \\ \textbf{V}_{\textbf{N}} (\text{in anni}) \end{array}$
1	Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva ¹	≤ 10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50
3	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100

Tabella 1.1 –Vita nominale Vn per diversi tipi di opere (NTC2018)

In accordo con la Committenza Anas è stato assunto:

Vita Nominale di progetto: V_N = 50 anni (costruzioni con livelli di prestazione ordinari).

1.3.2 Classi d'Uso

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite (§2.4.2 NTC2018):

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti

	S.S. 51 "Alemagna" – Variante di Longarone	<u>~</u>
	Progetto Fattibilità Tecnica ed Economica	o anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Relativamente alle conseguenze di una interruzione di operatività o di un eventuale collasso, delle opere di cui trattasi, vi si attribuisce:

- Classe d'Uso: IV;

- Coefficiente d'Uso: $C_U = 2.0$.

1.3.3 Periodo di Riferimento per l'azione sismica

Il periodo di riferimento, impiegato nella valutazione delle azioni sismiche risulta pari a:

- Periodo di Riferimento: $V_R = V_N \times C_U = 50 \times 2.0 = 100$ anni.

	S.S. 51 "Alemagna" – Variante di Longarone	9
	Progetto Fattibilità Tecnica ed Economica	anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

2 NORMATIVA E RIFERIMENTI

Le analisi e le verifiche delle strutture sono state effettuate nel rispetto della seguente normativa vigente:

- [D_1]. DM 17 gennaio 2018: Aggiornamento delle << Norme tecniche per le costruzioni>> (nel seguito indicate come NTC18).
- [D_2]. Circolare 21 gennaio 2019 n.7: Istruzioni per l'applicazione dell' "Aggiornamento delle Norme tecniche per le costruzioni" di cui al DM 17 gennaio 2018, supplemento ordinario n° 5 alla G. U. n° 35 del 11/02/2019 (nel seguito indicate come CNTC18).
- [D_3]. Norma Europea UNI EN 206: Calcestruzzo Specificazione, prestazione, produzione e conformità (Dicembre 2016).
- [D_4]. Norma Italiana UNI 11104: Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206 (luglio 2016).
- [D_5]. Normative AFTES Tunnels et ouvrages souterrains, 1993

3 NORME TECNICHE

Il metodo di calcolo adottato è quello semiprobabilistico agli stati limite, con applicazione di coefficienti parziali per le azioni o per l'effetto delle azioni, variabili in ragione dello stato limite indagato.

4 CARATTERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO

Tratti in artificiale - Relazione tecnica e di calcolo

4.1 Calcestruzzi

VE407

4.1.1 Caratteristiche ai fini della durabilità

Al fine di valutare le caratteristiche vincolanti delle miscele di calcestruzzo nei confronti della durabilità viene fatto riferimento alle norme [D_3] e [D_4] .

Relativamente alla scelta delle classi di esposizione tenuto conto che il tracciato si sviluppa entro i 2 km dalla linea di costa si è tenuto conto della classe XS (Corrosione indotta dai cloruri contenuti nell'acqua di mare).

In accordo alla "Classificazione del livello di rischio di attacco del gelo per aree climatiche del territorio italiano" contenuta nell'appendice A alla norma [D_4], che attribuisce alle Marche un livello di rischio Medio, è stata considerata l'applicazione della classe XF (Attacco dei cicli gelo/disgelo con o senza disgelanti), e conseguentemente della classe XD (corrosione indotta da cloruri esclusi quelli provenienti dall'acqua di mare).

Di seguito, per ciascun elemento viene riportata la classe di esposizione che risulta vincolante ai fini delle caratteristiche della miscela. Inoltre, sono riportati la classe di resistenza, i range previsti per le dimensioni massime degli aggregati, la classe di consistenza, il valore massimo del rapporto acqua/cemento, il contenuto massimo i cloruri e il contenuto minimo di cemento:

CARATTERISTICHE DEI CALCESTRUZZI (UNI EN 206-1 / UNI 11104)						
CALCESTRUZZ	ZO PER	Magrone di sottofondazione	Galleria - solette di copertura e di fondo e riversimenti gallerie artificiali	Galleria - elevazioni		
Classe di resistenza (Mpa)	Classe di resistenza (fck/Rck) (Mpa)		C32/40	C32/40		
Classe di esposizior ambientale	ie	-	XC2 - XA1	XC4		
	Dupper	-	32	25		
φ max inerti (mm)	Dlower		20	16		
Classe di consistenz	Classe di consistenza		S4	S4		
Rapporto max acqua/cemento		-	0.5	0.5		
Contenuto massimo	di cloruri	-	0.20%	0.20%		
Contenuto minimo d (kg/m³)	i cemento	150	340	340		

Tabella 4.1 – Caratteristiche dei Calcestruzzi

VE407

Tratti in artificiale - Relazione tecnica e di calcolo

4.1.2 Copriferri nominali

I valori minimi dello spessore dello strato di ricoprimento di calcestruzzo (copriferro), ai fini della protezione delle armature dalla corrosione, sono riportati nella Tab. C4.1.IV delle circolari applicative §[D_2], nella quale sono distinte le tre condizioni ambientali di Tab. 4.1.IV delle NTC2018:

Tabella C4.1.IV Copriferri minimi in mm

		barre da c.a.		barre da c.a.		cavi da c.a.p.		cavi da c.a.p.		
			elementi a piastra		altri	i elementi	eleme	nti a piastra	altri	i elementi
C _{min}	C _o	ambiente	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

I valori della tabella C4.1.IV si riferiscono a costruzioni con Vita Nominale di 50 anni (tipo 2 della Tab. 2.4.1 delle NTC).

Per la definizione del calcestruzzo nominale, ai valori minimi di copriferro vanno aggiunte le tolleranze di posa, pari a 10 mm o minore, secondo indicazioni di norme di comprovata validità.

La tabella seguente illustra, i valori del calcestruzzo nominale, richiesti in base all'applicazione dei criteri sopra esposti e specializzati al caso in esame:

Elemento		Galleria - solette di fondo e rivestimento gallerie artificiali	Galleria - elevazioni
Tipo di armatura (1=barre da c.a.; 2=cavi da c.a.p).)	1	1
Elemento a piastra		SI	SI
Classe di esposizione		XC2 - XA1	XC4
Ambiente		aggressivo	aggressivo
Rck	Мра	40	40
Check Rck min		OK	OK
copriferro minimo (Tab. C4.1.IV NTC)	mm	30	30
incremento Per Vn=100 (tipo di costruzione 3)	mm	0	0
elem. prefabbricato con ver. Copriferri*		NO	NO
riduzione per produzioni con ver. Copriferri		0	0
Tolleranza di posa		10	10
copriferro nominale	mm	40	40
* Elemento prefabbricato prodotto con sistema so	ottoposto a co	ontrollo di qualita	à che compre
copriferro nominale di progetto	mm	40	40

Tabella 4.2 – Valori dei copriferri nominali in base alle NTC2018

	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	S anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

I valori effettivamenti adottati per i copriferri nominali di progetto tengono conto anche di criteri di uniformità e della volontà di garantire valori maggiori dei minimi di norma per superfici contro-terra e particolarmente per le opere di sottofondazione. In questo caso, si è fatto riferimento alla indicazione dell'EC2 (EN 1992-1-1), che fissa a 75 mm il valore da garantire per il copriferro di opere gettate direttamente contro il terreno (diverso è il caso in cui il terreno a contatto con l'opera sia trattato).

4.1.3 Resistenze di progetto

Calcestruzzo C32/40 e C35/45

Caratteristiche Calcestruzzo	Var	unità	C32/40	C35/45
Resistenza a compressione caratteristica cubica	R_{ck}	Мра	40	45
Resistenza a compressione caratteristica cilindrica	f_{ck} = 0.83 R_{ck}	Мра	32	35
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	Мра	40.00	43.00
Resistenza media a trazione semplice	f_{ctm}	Мра	3.02	3.21
Resistenza caratteristica a trazione semplice	$f_{ctk5\%}$ =0.7 f_{ctm}	Мра	2.12	2.25
Resistenza caratteristica a trazione semplice	$f_{ctk95\%}$ =1.3 f_{ctm}	Мра	3.93	4.17
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	Мра	3.63	3.85
Modulo elastico	$E_{cm}=22000x(f_{cm}/10)^{0.3}$	Мра	33346	34077
STATI LIMITE ULTIMI	Var	unità		
coefficiente γ_c	γс		1.50	1.50
coefficiente α_{cc}	$lpha_{ t cc}$		0.85	0.85
Resistenza a compressione di calcolo	f_{cd} = $\alpha_{cc} f_{ck}/\gamma_c$	Мра	18.13	19.83
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk} / \gamma_c$	Мра	1.41	1.50
STATI LIMITE DI ESERCIZIO	Var	unità		
$\sigma_{\text{c, max}}$ - combinazione di carico caratteristica	$\sigma_{c,max}$ =0.60 f_{ck}	Мра	19.20	21.00
$\sigma_{\text{c, max}}$ - combinazione di carico quasi permanente	$\sigma_{c,max}$ =0.45 f_{ck}	Мра	14.40	15.75
$\sigma_{\!t}$ - stato limite di formazione delle fessure	$\sigma_t = f_{ctm}/1.2$	Мра	2.52	2.67
ANCORAGGIO DELLE BARRE	Var	unità		
Tensione tan. ultima di ad. ϕ <=32 mm - buona ad.	f_{bd} =2.25 x 1.0 x 1.0 x f_{ctk}/g_c	Мра	3.18	3.37
Tensione tan. ultima di ad. ϕ <=32 mm - non buona ad.	f_{bd} =2.25 x 0.7 x 1.0 x f_{ctk}/g_c	MPa	2.22	2.36

4.1.4 Verifiche a fessurazione

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nel caso in esame si considerano:

Condizioni Aggressive: per le verifiche a fessurazione di tutte le opere.

La Tab. 4.1.IV stabilisce i criteri per la scelta degli stati limite di fessurazione in funzione delle condizioni ambientali e del tipo di armatura:

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di	Armatura			
Gruppi di Esigenze	ambientali	azioni	Sensibile	Sensibile		
Gr Esi			Stato limite	$\mathbf{w_k}$	Stato limite	$\mathbf{w}_{\mathbf{k}}$
	0-1:	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃
A	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
	Ai	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁
0	Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁
С	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

Pertanto, nel caso in esame si ha:

- Verifiche a fessurazione condizioni ambientali Aggressive- Armatura poco sensibile:
 - o Combinazione di azioni frequente:

 $wk \le w2 = 0.3 \text{ mm}$

o Combinazione di azioni quasi permanente:

 $wk \le w1 = 0.2 \text{ mm}$

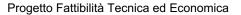

In alcuni casi, in accordo al par. §4.1.2.2.4.5, le verifiche allo stato limite di apertura delle fessure sono state condotte senza calcolo diretto, verificando che la tensione di trazione dell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, sia contenuta entro i valori limite specificati nelle seguenti tabelle:

Tabella C4.1.II Diametri massimi delle barre per il controllo di fessurazione

Tensione nell'acciaio	Diametro massimo					
σ _S [MPa]	$w_3 = 0.4 \text{ mm}$ $w_2 = 0.3 \text{ mm}$ $w_1 = 0.2 \text{ m}$					
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	-			

Tabella C4.1.III -Spaziatura massima delle barre per il controllo di fessurazione

Tensione nell'acciaio	Spaziatura massima s delle barre (mm)						
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$						
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	-				
360	100	50	-				

Tratti in artificiale - Relazione tecnica e di calcolo

In rapporto a quanto specificato nelle precedenti tabelle è possibile individuare le tensioni limite dell'acciaio per ciascun diametro delle barre:

Tensioni limite in funzione diametro barre				
	Tensione max acciaio			
Diametro barre		σ _s [Mpa]		
φ [mm]	w ₃ =0.4mm	w ₂ =0.3mm	w ₁ =0.2mm	
40	160	114	93	
36	180	137	111	
32	200	160	129	
30	207	171	138	
28	213	183	147	
26	220	194	156	
24	227	204	164	
22	233	213	173	
20	240	222	182	
18	260	231	191	
16	280	240	200	
14	300	260	220	
12	320	280	240	
10	360	320	260	
8	360	360	280	
6	360	360	320	

4.2 Acciaio in barre per cemento armato

4.2.1 Qualità dell'acciaio

Acciaio in barre B450C in accordo a DM 17/01/2018 (Capitolo 11).

Le Reti Elettrosaldate (RES), potranno essere realizzate impiegando acciaio B450A con le limitazioni all'impiego previste nel capitolo 11 delle NTC2018.

4.2.2 Resistenze di progetto

Caratteristiche Acciaio per Calcestruzzo armato	Var	unità		
Qualità dell'acciaio			B450C	B450A
Tensione caratteristica di snervamento nominale	f_{yk}	Мра	450	450
Tensione caratteristica a carico ultimo nominale	f_tk	Мра	540	450
Modulo elastico	Es	Мра	210000	210000
diametro minimo della barra impiegabile	фтin	mm	6	5
diametro massimo della barra impiegabile	фтах	mm	40	10
STATI LIMITE ULTIMI	Var	unità		
coefficiente γ_s	γs		1.15	1.15
Resistenza di calcolo	$f_{yd} = f_{yk}/\gamma_s$	Мра	391.3	391.3
STATI LIMITE DI ESERCIZIO	Var	unità		
σ _{s,max} - combinazione di carico caratteristica	$\sigma_{s,max}$ =0.8 f_{yk}	Мра	360.0	360.0

	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	S anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

5 PARAMETRI GEOTECNICI DI PROGETTO

Di seguito si riporta uno stralcio del profilo geotecnico di progetto, relativo al tratto di tracciato in esame, dove è indicata la sezione di calcolo considerata:

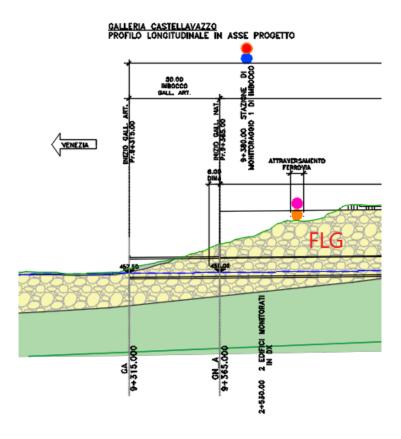


Figura 5.1: Profilo geotecnico di progetto dell'opera

L'assetto litologico che interessa la galleria artficiale in oggetto, è rappresentato dai depositi fluvio-glaciali "FLG" superficiali, seguito da uno strato di calcare "CdS" a profondità che risultano essere non rilevanti ai fini dei calcoli.

Per lo strato "FLG", sono stati adottati i seguenti parametri geotecnici medi:

Peso di volume – γ (kN/mc)	20
Angolo di attrito – φ'(°)	40
Coesione drenata – c' (kPa)	10
Modulo elastico – E _{op} (Mpa)	55

La falda risulta essere assente.

	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	S anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

6 MODELLO DI CALCOLO

6.1 Metodologia di calcolo e descrizione del modello

Si adotta il modello "delle reazioni iperstatiche". Alla struttura viene applicato un sistema di carichi esterni assegnati (attivi) e di carichi di reazione del terreno indotti dalla deformazione del rivestimento stesso (passivi).

Il carico attivo (di entità prefissata) deriva dal peso proprio della struttura, dal carico verticale esercitato dal terreno gravante in calotta, dai sovraccarichi accidentali, dalle spinte ai lati della galleria esercitate dal terreno stesso e da eventuali sovraccarichi e carichi sismici.

L'azione di contenimento del terreno alla deformazione della struttura viene schematicamente considerata nel modello mediante una serie di molle orizzontali applicate ai piedritti della galleria di costante Kh e di molle verticali applicate in corrispondenza dell'arco rovescio, con coefficiente di reazione Kv.

Le analisi sono svolte per sezioni di profondità unitaria in direzione longitudinale.

La sezione della galleria policentrica è stata modellata attraverso elementi "shell" nel codice di calcolo agli elementi finiti SAP2000 e caricata nel suo piano.

Di seguito è riportato lo schema di calcolo con la numerazione degli elementi shell e dei nodi:

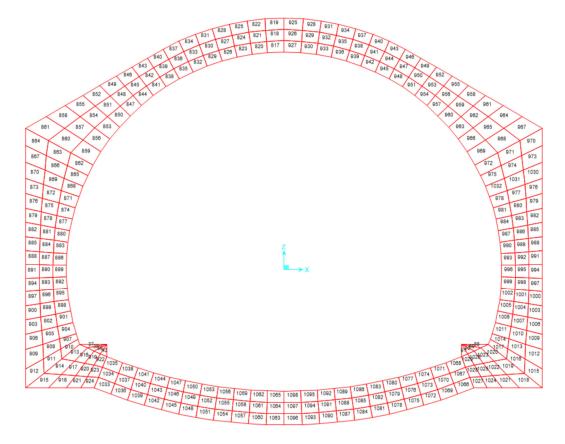


Figura 6.1 - Sezione di calcolo galleria artificiale - numerazione elementi "shell"

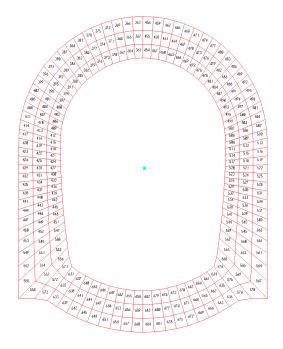


Figura 6.2 - Sezione di calcolo galleria d'emergenza - numerazione elementi "shell"

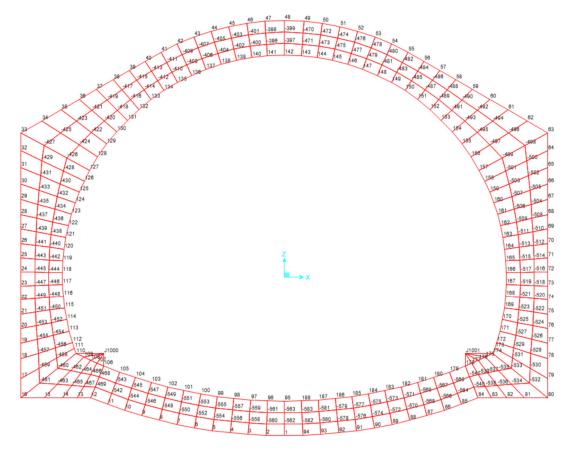


Figura 6.3 - Sezione di calcolo galleria artificiale - numerazione dei nodi

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

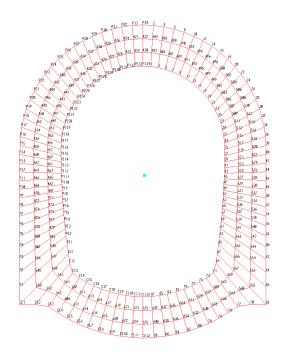


Figura 6.4 - Sezione di calcolo galleria d'emergenza - numerazione dei nodi

L'interazione terreno-struttura è stata schematizzata attraverso l'imposizione di vincoli elastici, soggetti a sola compressione, posti in corrispondenza dei nodi della struttura.

Si è considerata l'interazione in direzione orizzontale per l'arco di volta e per i piedritti, e in direzione verticale sotto l'arco rovescio.

I calcoli sono svolti iterativamente, al fine di disattivare le molle che risultano tese, in modo tale da poter effettuare un'analisi lineare sul software SAP2000.

Le costanti di reazione delle molle sono state determinate secondo le formule proposte nelle norme *AFTES* (*Tunnels et ouvrages souterrains, 1993*):

Rigidezza molle per elementi curvi (Formula di Galërkin)

$$k = \frac{E}{(1+\nu)R}$$

Rigidezza molle per elementi lineari (Formula di Boussinesq)

$$k = \frac{1}{f} \frac{E}{(1+\nu^2) a}$$

Rigidezza molle per elementi con grande raggio di curvatura

$$k = \frac{1}{f} \frac{E}{(1+\nu^2)B}$$

R: raggio calotta/arco rovescio;

a: semialtezza del piedritto;

B: semilarghezza dell'arco rovescio;

f=2.25 per elemento infinitivamente lungo;

f=1 per un piedritto lungo circa 2a;

Sono stati implementati 3 modelli distinti:

- 1) Condizioni statiche (massimizzando la spinta del terreno)
- 2) Condizioni statiche (minimizzando la spinta del terreno)
- 3) Condizioni sismiche (con sovraspinta sismica di Wood solamente da un lato)

Le configurazioni proposte servono a massimizzare una volta gli effetti dei carichi verticali e l'altra gli effetti dei carichi orizzontali.

Di seguito sono riepilogate le rigidezze delle molle disposte lungo il perimetro della sezione di calcolo rispettivamente della galleria e della galleria d'emergenza:

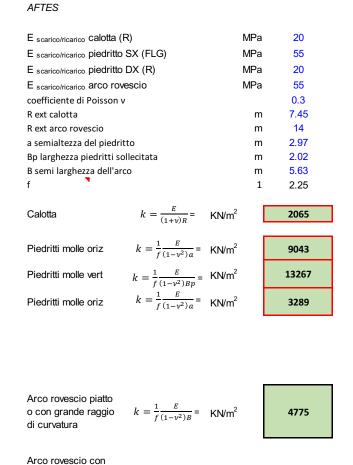


Figura 6.5 – Galleria artificiale - rigidezze delle molle

3022

piccolo raggio

di curvatura

VE407

Tratti in artificiale - Relazione tecnica e di calcolo

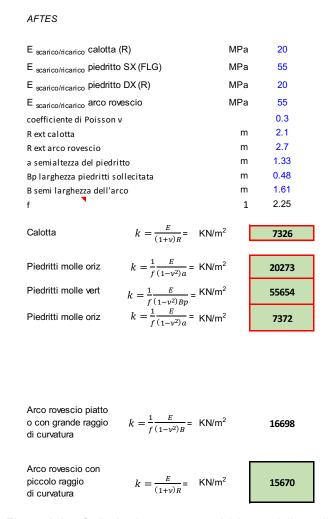


Figura 6.6 – Galleria d'emergenza- rigidezze delle molle

6.2 Codici di calcolo utilizzati

I software utilizzati per i calcoli delle opere in esame sono di seguito elencati:

- SAP2000 per la modellazione della galleria artificiale
- RC SEC distribuito dalla GeoStru per la verifica delle sezioni in calcestruzzo armato.

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

7 AZIONI E COMBINAZIONI DI PROGETTO

7.1 Analisi dei carichi

7.1.1 Carichi permanenti

Il peso proprio dell'arco rovescio, dei piedritti e della calotta è computato in automatico dal codice di calcolo utilizzato con riferimento ad un peso specifico del calcestruzzo pari a 25.0 kN/m³.

Al terreno di ritombamento è stato assegnato un peso specifico pari a 19.0 kN/m³.

7.1.2 Sovraccarichi accidentali

L'elevata copertura di terreno che caratterizza la galleria artificiale in esame, rende trascurabili gli effetti di eventuali sovraccarichi accidentali a piano di campagna che pertanto non sono stati presi in considerazione nelle analisi.

7.1.3 Spinta del terreno

Le spinte del terreno sono state valutate con riferimento al coefficiente di spinta a riposo K_0 e al coefficiente di spinta attiva K_A .

7.1.4 Azioni sismiche

I parametri caratteristici del sito in esame sono riferiti alle seguenti coordinate geografiche:

Regione: Veneto
Provincia: Belluno
Latitudine: 46.28245

Longitudine: 12.30513

VE407

Tratti in artificiale - Relazione tecnica e di calcolo

Figura 7.1 - Coordinate di riferimento per la determinazione dei parametri sismici di base (WGS84)

I parametri sismici fondamentali sono stati determinati con l'ausilio del software-free SPETTRI-NTC ver. 1.0.3 (prodotto dal Consiglio Superiore dei Lavori Pubblici <u>www.cslp.it</u>), con riferimento al sistema di coordinate ED50.

Gli effetti delle azioni sismiche sulle paratie sono stati determinati con metodo pseudostatico.

L'azione sismica è definita mediante un'accelerazione equivalente costante nello spazio e nel tempo.

In accordo al §7.11.6.3.1 è stato trascurato l'effetto dell'azione sismica verticale.

L'accelerazione di picco è fornita da:

$$amax = S x a_g = S_s x S_T x a_g$$

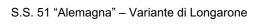
dove:

- a_g è l'accelerazione orizzontale massima al sito su suolo rigido, determinata in funzione della probabilità di superamento nel periodo di riferimento P_{VR};
- S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente $S = S_S \times S_T$, essendo S_S il coefficiente di amplificazione stratigrafica

Tabella 3.2.V – Espressioni di $S_S\ e\ di\ C_C$

Categoria sottosuolo	S _S	$C_{\mathbf{c}}$
Α	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot (T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25\cdot(T_{C}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1.15 \cdot (T_C^*)^{-0.40}$

Tabella 7.1), e S_T il coefficiente di amplificazione topografica (Tabella 7.2), di cui al $\S 3.2.3.2$ delle NTC2018;


Tabella 3.2.V – Espressioni di $S_{\rm S}$ e di $C_{\rm C}$

Categoria sottosuolo	S_{S}	$C_{\mathbf{c}}$
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1{,}10\cdot{(T_{\mathrm{C}}^{*})}^{-0{,}20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0.33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25\cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1.15 \cdot (T_C^*)^{-0.40}$

Tabella 7.1 – Espressioni per Ss e Cc

 ${\bf Tabella~3.2.IV}-{\it Categorie~topografiche}$

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^\circ$
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

 $\textbf{Tabella 3.2.VI} - \textit{Valori massimi del coefficiente di amplificazione topografica} \ S_T$

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_{T}
T1	·	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Tabella 7.2 – Valori massimi del coefficiente di amplificazione topografica S⊺

Pertanto, nel caso in esame si ha:

Categoria di sottosuolo:Categoria stratigrafica:T1

Relativamente allo stato limite di Salvaguardia della Vita (SLV):

L'incremento di spinta delle terre agente in fase sismica è stato valutato in accordo alla teoria di *Wood*. Secondo tale teoria l'incremento della spinta orizzontale dovuta al sisma è calcolato secondo la formula:

ΔS=kh y H

Dove H è l'altezza complessiva della galleria più l'altezza del ricoprimento.

Si considera, inoltre, l'inerzia orizzontale e verticale dell'opera, applicata agli elementi strutturali rispettivamente con i fattori Kh e kv.

7.2 Combinazioni di carico

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al Cap. 2 delle NTC.

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

I carichi sono denominati:

> Gk valore caratteristico del carico permanente, costituito dai pesi propri e dalla pressione del terreno;

SS	51	"Alemagna" -	Variante	di l	ongarone
O.O.	JΙ	Alemauna –	variante	ui i	LUHUATUHE

VE407

Tratti in artificiale - Relazione tecnica e di calcolo

- Qk valore caratteristico di carichi accidentali di tipo stradale.
- > E azione sismica

Le verifiche sono tutte effettuate nei riguardi degli stati limite ultimi SLU, sismici SLV e di esercizio SLE.

Gli stati limite introducono dei coefficienti moltiplicativi y sulle azioni di calcolo, generalmente maggiori dell'unità.

Parimenti per le resistenze dei materiali si introducono dei coefficienti riduttivi applicati alle resistenze dei materiali

- Combinazione fondamentale agli SLU:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$$

- Combinazioni agli SLE:

Ai fini delle verifiche degli stati limite di esercizio (fessurazione/stato tensionale) si definiscono le seguenti combinazioni:

Frequente \Rightarrow $G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Quasi permanente \Rightarrow $G_1+G_2+\psi_{21}\cdot Q_{k1}+\sum_i\psi_{2i}\cdot Q_{ki}$

Rara \Rightarrow $G_1+G_2+Q_{k1}+\sum_i\psi_{0i}\cdot Q_{ki}$

- Combinazione agli SLV:

$$E + G_1 + G_2 + \sum_i \psi_{2i} \cdot Q_{ki}$$

SS	51	"Alemagna" -	Variante d	li Longarone
O.O.		Alemauna –	variante c	II LUNUAIUNE

VE407

Tratti in artificiale - Relazione tecnica e di calcolo

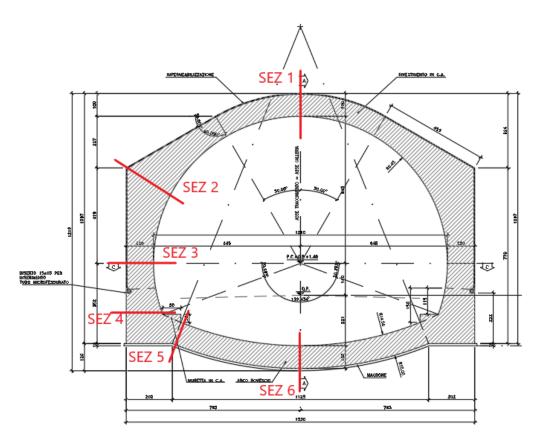
8 VERIFICHE STRUTTURALI

8.1 Galleria artificiale

8.1.1 Descrizione delle sezioni di calcolo

Le verifiche SLU ed SLE sono state effettuate in corrispondenza delle sezioni maggiormente sollecitate, di seguito riepilogate:

Sez 1 - sezione in chiave di calotta: s= 1.00 m


Sez 2 - sezione alle reni della calotta: s= 2.27 m

Sez 3 - Sezione all'altezza del piano dei centri: s= 1.20 m

Sez 4 - Sezione di spiccato dei piedritti: s= 1.60 m

Sez 5 - Sezione di incastro arco rovescio: s= 1.00 m

Sez 6 - Sezione in chiave arco rovescio : s= 1.00 m

8.1.2 Riepilogo risultati delle analisi

Di seguito si riportano le principali sollecitazioni agli SLE, SLU ed SLV ricavate dai modelli di caclolo:

			SEZ 1 - 0	CHIAVE CALOTTA	
		SLUmax	<u>SLUmin</u>	SLV (sx)	<u>SLE</u>
h	cm	100	100	100	100
В	cm	100	100	100	100
σ ₁	kN/mq	-1858	-4898	6582	-1429.2
σ_2	kN/mq	-1402	3378	-13758	-1078.5
Fyy = V	kN/m	20	29	220.5	-
Α	mq	1	1	1	1
W	mc	0.166667	0.166667	0.166666667	0.166667
Ν	kN	-1630	-760	-3588	-1254
М	kNm	-38	-690	1695	-29
a.n.	cm	-307.5	40.8	67.6	-307.5

		SEZ 2 - RENI CALOTTA			
		<u>SLUmax</u>	<u>SLUmin</u>	SLV (sx)	<u>SLE</u>
h	cm	227	227	227	227
В	cm	100	100	100	100
σ ₁	kN/mq	734	1077	-2922	564.6
σ2	kN/mq	-3457	-4734	3207	-2659.2
Fyy = V	kN/m	480.1	682.1	2141.7	-
Α	mq	2.27	2.27	2.27	2.27
W	mc	0.858817	0.858817	0.858816667	0.858817
Ν	kN	-3091	-4151	323	-2377
М	kNm	1800	2495	-2632	1384
a.n.	cm	187.2	184.9	118.8	187.2

		SEZ 3 - MEZZERIA PIEDRITTI				
		SLUmax	SLUmin	SLV (sx)	<u>SLE</u>	
h	cm	120	120	120	120	
В	cm	100	100	100	100	
σ1	kN/mq	3357	7498	-17359	2582.3	
σ_2	kN/mq	-7685	-11605	16510	-5911.5	
Fyy = V	kN/m	396	133.2	687.6	-	
Α	mq	1.2	1.2	1.2	1.2	
W	mc	0.24	0.24	0.24	0.24	
Ν	kN	-2597	-2464	-509	-1998	
М	kNm	1325	2292	-4064	1019	
a.n.	cm	83.5	72.9	58.5	83.5	

			SEZ 4 - SF	PICCATO PIEDRITT	1
		SLUmax	<u>SLUmin</u>	SLV (sx)	<u>SLE</u>
h	cm	160	160	160	160
В	cm	100	100	100	100
σ ₁	kN/mq	2047	2981	-3750	1574.6
σ_2	kN/mq	-7129	-6698	-1768	-5483.8
Fyy = V	kN/m	1128	862.4	1746.4	-
Α	mq	1.6	1.6	1.6	1.6
W	mc	0.426667	0.426667	0.4267	0.426667
N	kN	-4066	-2974	-4414	-3127
М	kNm	1958	2065	-423	1506
a.n.	cm	124.3	110.7	-142.7	124.3

		SEZ 5 - INCASTRO ARCO ROVESCIO				
		<u>SLUmax</u>	<u>SLUmin</u>	SLV (sx)	<u>SLE</u>	
h	cm	100	100	100	100	
В	cm	100	100	100	100	
σ ₁	kN/mq	4941	3826	-777	3800.8	
σ_2	kN/mq	-10000	-6031	-7321	-7692.3	
Fyy = V	kN/m	354	594.5	213	-	
Α	mq	1	1	1	1	
W	mc	0.166667	0.166667	0.166666667	0.166667	
Ν	kN	-2530	-1103	-4049	-1946	
М	kNm	1245	821	545	958	
a.n.	cm	66.9	61.2	111.9	66.9	

		SEZ	SEZ 6 - MEZZERIA ARCO ROVESCIO					
		SLUmax	<u>SLUmin</u>	SLV (sx)	<u>SLE</u>			
h	cm	100	100	100	100			
В	cm	100	100	100	100			
σ1	kN/mq	-4544	-7871	1472	-3495.4			
σ_2	kN/mq	1447	7096	-8564	1113.1			
Fyy = V	kN/m	321	195	251.0	-			
Α	mq	1	1	1	1			
W	mc	0.166667	0.166667	0.166666667	0.166667			
Ν	kN	-1549	-388	-3546	-1191			
М	kNm	-499	-1247	836	-384			
a.n.	cm	24.2	47.4	85.3	24.2			

S S 5	1 "Alemagna"	Varia	nte di Lo	ngarone
O.O. 0	, Melliaulia	- vanc	iiile ui Lu	niuai one

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

8.1.3 Verifiche a presso-flessione

L'armatura del rivestimento è costituita da:

- \$\phi^{24/20}\$ disposti sul lato interno ed esterno della calotta;
- φ26/10 sul lato esterno, φ24/10 sul lato interno alle reni della calotta;
- 2 file di φ26/10 nella zona esterna (lato terreno) e φ24/10 sul lato interno dei piedritti in mezzeria;

24

- \$\phi^{24}/10\$ allo spiccato dei piedritti sia lato terreno che interno;
- \$\psi_24/10\$ lato interno ed esterno dell'arco rovescio, sia nelle sezioni di mezzeria che di incastro.

Di seguito si riportano le verifiche a presso flessione degli elementi strutturali.

Sez 1. Chiave di calotta

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del D Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	100.0
3	50.0	100.0
4	50.0	0.0

DATI BARRE ISOLATE

2

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.2	7.8	24
2	-42.2	92.2	24
3	42.2	92.2	24
4	42.2	7.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato a Numero della barra i Numero della barra f Numero di barre gen Diametro in mm della	ce la generazione e la generazione cui si riferisce la generazione	9	
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø	
1	1	4	3	24	

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

2

Progetto Fattibilità Tecnica ed Economica

Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	erzia x
N°Comb.	N	Mx	Му	Vy	Vx
1	1630.00	-38.00	0.00	0.00	0.00
2	760.00	-690.00	0.00	0.00	0.00
3	3588.00	1695.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale	[kN] applicato nel Baricentro (+ se di compressione)		
Mx		te [kNm] intorno all'asse x prii	` '	om.Fessurazione)	
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessul con verso positivo se tale da comprimere il lembo destro della sezione				
N°Comb.	N	Mx	Му		
1	1254.00	-29.00	0.00		

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo norm	ale [kN] applicato nel Baricent	ro (+ se di compressione)	
Mx			princ. d'inerzia (tra parentesi M	,
			l lembo superiore della sezione	
Му		ettente [kNm] intorno all'asse y ositivo se tale da comprimere i	princ. d'inerzia (tra parentesi M I lembo destro della sezione	lom.Fessurazione)
N°Comb.	N	Mx	Му	
1	1254.00	-29.00 (0.00)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

· · · · · · · · · · · · · · · · · · ·	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione con verso positivo se tale da comprimere il lembo superiore della sezione					
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parente con verso positivo se tale da comprimere il lembo destro della sezion	,					
N°Comb. N Mx My 1 1254.00 -29.00 (0.00) 0.00 (0.00)						

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 18.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Tesa	Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	1630.00	-38.00	0.00	1630.17	-1484.64	0.00	39.07	22.6(17.9)
2	S	760.00	-690.00	0.00	760.00	-1123.38	0.00	1.63	22.6(17.9)
3	S	3588.00	1695.00	0.00	3587.85	2189.27	0.00	1.29	22.6(17.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.135	-50.0	0.0	0.00131	-42.2	7.8	-0.02244	-42.2	92.2
2	0.00350	0.099	-50.0	0.0	0.00052	-42.2	7.8	-0.03168	-42.2	92.2
3	0.00350	0.256	-50.0	100.0	0.00234	-42.2	92.2	-0.01020	-42.2	7.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di	b, c nell'eq. dell'asse ne duttilità (travi e solette)[§ riduz. momenti per sola f	4.1.2.1.2.1 NTC]: deve	essere < 0.45	
N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000281308	0.003500000	0.135	0.700
2	0.000000000	-0.000381581	0.003500000	0.099	0.700
3	0.000000000	0.000148553	-0.011355284	0.256	0.759

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Xs min, Ys min Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff. N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min As eff. Ac eff.

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

0.0

-50.0

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq. (7.11)EC2]

15.7 21.1 92.2

1.33

S

Progetto Fattibilità Tecnica ed Economica

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ø Cf Comb. Ver e2 k2 e sm - e cm sr max wk Mx fess My fess 1 S 0.00000 0.00000 --- 0.000 (990.00) 0.00 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Ss min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 1.33
 -50.0
 0.0
 15.7
 21.1
 92.2
 --- ---

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Cf Comb. Ver k2 Ø e1 e2 Mx fess My fess e sm - e cm sr max 1 S 0.00000 0.00000 0.000 (0.30) 0.00 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Ss min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 1.33
 -50.0
 0.0
 15.7
 21.1
 92.2
 --- ---

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ø Comb. k2 Cf Ver e1 e2 e sm - e cm sr max Mx fess My fess 1 S 0.00000 0.00000 0.000 (0.20) 0.00 0.00

Sez 2. Reni della calotta

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3	-50.0 -50.0 50.0	0.0 202.0 202.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.1	7.9	24
2	-42.1	194.1	26
3	42.1	194.1	26
4	42.1	7.9	24

DATI GENERAZIONI LINEARI DI BARRE

 $\begin{array}{ll} N^{\circ} \text{Gen.} & \text{Numero assegnato alla singola generazione lineare di barre} \\ N^{\circ} \text{Barra Ini.} & \text{Numero della barra iniziale cui si riferisce la generazione} \\ N^{\circ} \text{Barra Fin.} & \text{Numero della barra finale cui si riferisce la generazione} \end{array}$

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	2	3	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	3091.00	1800.00	0.00	0.00	0.00
2	4151.00	2495.00	0.00	0.00	0.00
3	-323.00	-2632.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 2377.00 1384.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 2377.00 1384.00 (7001.12) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

Му

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

N°Comb.	N	Mx	Му
1	2377.00	1384.00 (7001.12)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 6.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000
Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	3091.00	1800.00	0.00	3090.88	6181.96	0.00	3.46	45.2(36.2)
2	S	4151.00	2495.00	0.00	4150.87	7060.66	0.00	2.85	45.2(36.2)
3	S	-323.00	-2632.00	0.00	-322.80	-3624.49	0.00	1.38	53.1(36.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.094	-50.0	202.0	0.00199	-42.1	194.1	-0.03366	-42.1	7.9
2	0.00350	0.130	-50.0	202.0	0.00240	-42.1	194.1	-0.02341	-42.1	7.9
3	0.00330	0.047	-50.0	0.0	0.00042	-42.1	7.9	-0.06750	-42.1	194.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue									
N°Comb	а	b	С	x/d	C.Rid.					
1 2	0.00000000 0.00000000	0.000191431 0.000138643	-0.035169096 -0.024505806	0.094 0.130	0.700 0.700					
3	0.00000000	-0.0001364755	0.003299034	0.130	0.700					

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo **VE407**

Ver			S = comb. verificata/ N = comb. non verificata								
Sc ma	IX		Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]								
Xc ma	x, Yc m	ıax	Ascissa,	Ordinata [ci	m] del punto	corrisp. a	Sc max (s	stema rif. X,	Y,O)		
Ss mir	า		Minima te	ensione (ne	gativa se di	trazione)	nell'acciaio	[MPa]			
Xs mir	n, Ys mi	in	Ascissa,	Ordinata [ci	m] della barı	a corrisp.	a Ss min (s	sistema rif. X,	Y,O)		
Ac eff.			Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre								
As eff.			Area barr	e [cm²] in z	ona tesa co	nsiderate	efficaci per	l'apertura de	lle fessure		
N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.		
1	S	2.94	-50.0	202.0	-12.7	-23.4	7.9	1700	45.2		

COMBIN	COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]													
		La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm												
Ver.			Esito della verifica											
e1			Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata											
e2			Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata											
k1			= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]											
kt		= 0.4 p	er comb. quasi p	ermanenti	/ = 0.6	per comb	.frequenti	[cfr. eq.(7.9)]	EC2]					
k2			r flessione; =(e1											
k3		= 3.400	Coeff. in eq.(7.1	1) come da	annes	si naziona	ali	,	-					
k4		= 0.425	Coeff. in eq.(7.1	1) come da	annes	si naziona	ali							
Ø		Diametr	o [mm] equivaler	ite delle ba	arre tese	e compre	se nell'are	a efficace Ac	eff [eq.(7.11)	EC2]				
Cf		Coprifer	ro [mm] netto ca	colato con	riferime	ento alla l	oarra più t	esa						
e sm	- e cm		za tra le deforma						C4.1.7)NTC]					
		Tra pare	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]											
sr ma	ЭX		a distanza tra le											
wk			a fessure in mm						1.7)NTC]. Val	lore limite	e tra parentesi			
Mx fe			ente momento d											
My fe	ess.	Compor	ente momento d	i prima fes	surazio	ne intorn	o all'asse `	Y [kNm]						
			_											
Comb.	Ver	e1	e2	k2	Ø	Cf		6	e sm - e cm	sr max	wk	Mx fess	My fess	
1	S	-0.00007	0.00000	0.500	24.0	67		0.00004	4 (0.00004)	381	0.014 (990.00)	7001.12	0.00	
COMBIN	NAZION	I FREQUEN	TI IN ESERCI	ZIO - M <i>A</i>	ASSIMI	E TENS	IONI NOI	RMALI ED A	PERTURA	FESSU	RE (NTC/EC2)			
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.					
1	S	2.94	-50.0 202	2.0	-12.7	-23.4	7.9	1700	45.2					
COMBIN	NAZION	I FREQUEN	TI IN ESERCI	ZIO - AP	ERTU	RA FESS	SURE [§	7.3.4 EC21						
								-						
Comb.	Ver	e1	e2	k2	Ø	Cf	:	e	e sm - e cm	sr max	wk	Mx fess	My fess	
		•				٠.		•					,	
1	S	-0.00007	0.00000	0.500	24.0	67		0.0000	4 (0.00004)	381	0.014 (0.30)	7001.12	0.00	
I	3	-0.00007	0.00000	0.500	∠ 4 .0	01		0.00002	+ (0.00004)	301	0.014 (0.30)	1001.12	0.00	

Comb.	ver	eī	e2	K2	Ø	Cī	e sm - e cm s	sr max	WK	IVIX TESS	iviy tess
1	S	-0.00007	0.00000	0.500	24.0	67	0.00004 (0.00004)	381	0.014 (0.30)	7001.12	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Ss min Xs n	nin Ys min	Ac eff.	As eff.
1	S	2.94	-50.0 202.0	-12.7 -23	3.4 7.9	1700	45.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	Mx fess	My fess
1	S	-0.00007	0.00000	0.500	24.0	67	0.00004 (0.00004)	381	0.014 (0.20)	7001.12	0.00

Sez 3. Piedritti (piano dei centri)

Progetto Fattibilità Tecnica ed Economica

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 120.0
3	50.0	120.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.2	7.8	24
2	-42.2	112.2	26
3	42.2	112.2	26
4	42.2	7.8	24
5	-42.2	100.6	26
6	42.2	100.6	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato a Numero della barra i Numero della barra i Numero di barre ger Diametro in mm della	niziale cui si riferisc finale cui si riferisce perate equidistanti c	e la generazione la generazione ui si riferisce la ge	
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø	
1	1	4	8	24	
2	2	3	8	26	
3	5	6	8	26	

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My		Momento flettent con verso positiv	Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia						
,				mere il lembo destro					
Vy			Componente del Taglio [kN] parallela all'asse princ.d'inerzia y						
Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	erzia x				
N°Comb.	N	Mx	My	Vy	Vx				
1	2597.00	1325.00	0.00	0.00	0.00				
2	2464.00	2292.00	0.00	0.00	0.00				
3	509.00	-4064.00	0.00	0.00	0.00				

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo destro della sezione

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

N°Comb. Ν Mx Му 1 1998.00 1019.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν My Mx 1019.00 (1877.15) 1 1998.00 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. My 1019.00 (1877.15) 1 1998.00 0.00(0.00)

RISULTATI DEL CALCOLO

VE407

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.5 cm Interferro netto minimo barre longitudinali: 6.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia My

Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	2597.00	1325.00	0.00	2597.02	3261.98	0.00	2.57	45.2(21.5)
2	S	2464.00	2292.00	0.00	2463.76	3205.41	0.00	1.41	45.2(21.5)
3	S	509.00	-4064.00	0.00	508.82	-4359.42	0.00	1.07	106.2(21.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

Xs ma Ys ma					ax (sistema rif.) ax (sistema rif.)	,				
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.157	50.0	120.0	0.00195	42.2	112.2	-0.01878	-42.2	7.8
2	0.00350	0.154	50.0	120.0	0.00192	42.2	112.2	-0.01921	-42.2	7.8
3	0.00350	0.169	-50.0	0.0	0.00206	-42.2	7.8	-0.01717	-42.2	112.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue							
N°Comb	а	b	С	x/d	C.Rid.			
1	0.000000000	0.000198616	-0.020333892	0.157	0.700			
2 3	0.000000000 0.000000000	0.000202420 -0.000184201	-0.020790374 0.003500000	0.154 0.169	0.700 0.700			

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver Sc ma	v		S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]						
Xc ma	x, Yc m	ax	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)						
Ac eff.	n, Ys mi	n	Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure						
As eff.	Ver	Sc max	Xc max	. ,		Xs min	·	Ac eff.	As eff.
, COIIID	V CI								7.10 0
1	ς.	1 86	-50.0	120 0	-50 /	-328	7 8	1200	15.2

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr max wk Mx fes My fes	(68.	Esito de Massim Minima = 0.8 pc = 0.4 p = 0.5 pe = 3.400 = 0.425 Diametr Coprifer Differen Tra pare Massim Apertura Compor	lla verifica a deformazion deformazion deformazion er barre ad a er comb. qua r flessione; = Coeff. in eq. Coeff. in eq. io [mm] equiv za tra le defo entesi: valore a distanza tra a fessure in n ente momer	ne unitaria di e unitaria di tra derenza miglia si permanent (e1 + e2)/(2*e(7.11) come di (7.11) come di alente delle bio calcolato coi rmazioni medi minimo = 0.6 a le fessure [m	trazione razione razio	e nel calces nel calcesi q.(7.11)EG per comb trazione e essi naziona se compre- e compre- ento alla l ciaio e cal Es [(7.9)	estruzzo (trazo (trazo (trazo (trazo (trazo (trazo 2)frequenti coentrica ali se nell'are coertruzzo e) EC2 e (C) e_cm) [(7. o all'asse 2)	razione -) valuzione -) valutazione -) valuta [cfr. eq.(7.9)E [eq.(7.13)EC2 a efficace Ac e esa [(7.8)EC2 e (C4.1.8)NTC] 8)EC2 e (C4.1.4	tata in sezione ta in sezione fectore fector	e fessurata fessurata C2]		ctm	
Comb.	Ver	e1	e2	2 k2	Ø	Cf	:	e	sm - e cm :	sr max	wk	Mx fess	My fess
1	S	-0.00028	0.00000	0.500	24.0	66		0.00014	4 (0.00014)	387	0.056 (990.00)	1877.15	0.00
COMBIN	AZION	I FREQUEN	TI IN ESER	RCIZIO - MA	ASSIM	E TENS	IONI NOF	RMALI ED A	PERTURA I	FESSU	RE (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Y	c max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	4.86	-50.0	120.0	-50.4	-32.8	7.8	1800	45.2				

Progetto Fattibilità Tecnica ed Economica

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf Mx fess My fess e1 e sm - e cm sr max wk 1 S 0.00000 -0.00028 0.500 24.0 66 0.00014 (0.00014) 387 0.056 (0.30) 1877.15 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. Sc max S 4.86 -50.0 120.0 -50.4 -32.8 7.8 1800 45.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf e1 e sm - e cm sr max Mx fess My fess 1 S -0.00028 0.00000 0.500 24.0 66 0.00014 (0.00014) 387 0.056 (0.20) 1877.15 0.00

Sez 4. Spiccato dei piedritti

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	0.0 135.0 135.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.1	7.9	24
2	-42.1	127.1	24
3	42.1	127.1	24
4	42.1	7.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione N°Barre

Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	2	3	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

Progetto Fattibilità Tecnica ed Economica

Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	4066.00	1958.00	0.00	0.00	0.00
2	2974.00	2065.00	0.00	0.00	0.00
3	4414.00	-423.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx 1 3127.00 1506.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 1 3127.00 1506.00 (2444.97) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 1 3127.00 1506.00 (2444.97) 0.00(0.00)

RISULTATI DEL CALCOLO

My

Му

VE407

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.7 cm Interferro netto minimo barre longitudinali: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia My Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	4066.00	1958.00	0.00	4065.83	4402.92	0.00	2.25	45.2(24.2)
2	S	2974.00	2065.00	0.00	2973.99	3875.88	0.00	1.88	45.2(24.2)
3	S	4414.00	-423.00	0.00	4413.92	-4557.22	0.00	10.77	45.2(24.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.210	-50.0	135.0	0.00246	-42.1	127.1	-0.01316	-42.1	7.9
2	0.00350	0.154	-50.0	135.0	0.00208	-42.1	127.1	-0.01928	-42.1	7.9
3	0.00350	0.228	-50.0	0.0	0.00255	-42.1	7.9	-0.01185	-42.1	127.1

CDIA

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di duttilità	ell'eq. dell'asse neutro aX+ (travi e solette)[§ 4.1.2.1. nomenti per sola flessione	2.1 NTC]: deve es		
N°Comb	а	b	С	x/d	

N COIIID	а	U	C	λ/u	C.Nu.
1	0.000000000	0.000131072	-0.014194753	0.210	0.703
2	0.000000000	0.000179224	-0.020695195	0.154	0.700
3	0.000000000	-0.000120749	0.003500000	0.228	0.725

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.

1 S 6.75 -50.0 135.0 -47.4 -32.7 7.9 1600 45.2

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

Progetto Fattibilità Tecnica ed Economica

kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione: =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. k2 Ø Cf Ver e2 e sm - e cm sr max Mx fess My fess S -0.00027 0.00000 0.500 24.0 67 0.00014 (0.00014) 372 0.050 (990.00) 2444.97 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Ss min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 6.75
 -50.0
 135.0
 -47.4
 -32.7
 7.9
 1600
 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess 0.00000 0.00014 (0.00014) 1 S -0.00027 0.500 24.0 67 372 0.050 (0.30) 2444.97 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.

1 S 6.75 -50.0 135.0 -47.4 -32.7 7.9 1600 45.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess 1 S -0.00027 0.00000 0.500 24.0 0.00014 (0.00014) 372 0.00 67 0.050 (0.20) 2444.97

Sez 5. Incastro arco rovescio

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	0.0 135.0 135.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.1	7.9	24

Progetto Fattibilità Tecnica ed Economica

VE407

Tratti in artificiale - Relazione tecnica e di calcolo

2	-42.1	127.1	24
3	42.1	127.1	24
4	42.1	7.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	2	3	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x
	• • • • • • • • • • • • • • • • • • • •

N°Comb.	N	Mx	Му	Vy	Vx
1	4066.00	1958.00	0.00	0.00	0.00
2	2974.00	2065.00	0.00	0.00	0.00
3	4414.00	-423.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 3127.00 1506.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 3127.00 1506.00 (2444.97) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Progetto Fattibilità Tecnica ed Economica

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 3127.00 1506.00 (2444.97) 0.00 (0.00)

RISULTATI DEL CALCOLO

VE407

Mx

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.7 cm Interferro netto minimo barre longitudinali: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	4066.00	1958.00	0.00	4065.83	4402.92	0.00	2.25	45.2(24.2)
2	S	2974.00	2065.00	0.00	2973.99	3875.88	0.00	1.88	45.2(24.2)
3	S	4414.00	-423.00	0.00	4413.92	-4557.22	0.00	10.77	45.2(24.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.210	-50.0	135.0	0.00246	-42.1	127.1	-0.01316	-42.1	7.9
2	0.00350	0.154	-50.0	135.0	0.00208	-42.1	127.1	-0.01928	-42.1	7.9
3	0.00350	0.228	-50.0	0.0	0.00255	-42 1	7.9	-0.01185	-42 1	127 1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000131072	-0.014194753	0.210	0.703
2	0.000000000	0.000179224	-0.020695195	0.154	0.700

Progetto Fattibilità Tecnica ed Economica

-0.000120749 3 0.00000000 0.003500000 0.228 0.725

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min. Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. -32.7 45.2 1 S 6.75 -50.0 135.0 -47.4 7.9 1600

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre ressurata anche nei caso in cui la trazione minima dei calcestruzzo sia inferiore a icun
Ver.	Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Cf

Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fess My fess S -0.00027 0.00000 0.500 24.0 0.00014 (0.00014) 372 0.050 (990.00) 0.00 67 2444.97

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 1 S 6.75 -50.0 135.0 -47.4 -32.7 7.9 1600 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf My fess e sm - e cm sr max Mx fess -0.00027 0.00000 S 0.500 24.0 67 0.00014 (0.00014) 372 0.050 (0.30) 2444.97 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 1 S 6.75 -50.0 135.0 -47.4 -32.7 7.9 1600 45.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess 1 S -0.00027 0.00000 0.500 24.0 0.00014 (0.00014) 372 0.050 (0.20) 2444.97 0.00 67

Progetto Fattibilità Tecnica ed Economica

Sez 6. Mezzeria arco rovescio CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	100.0
3	50.0	100.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.2	7.8	24
2	-42.2	92.2	24
3	42.2	92.2	24
4	42.2	7.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione				
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø		
1	1	4	8	24		
2	2	3	8	24		

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		e [kNm] intorno all'a	o nel Baric. (+ se di compressione) rno all'asse x princ. d'inerzia comprimere il lembo sup. della sez.						
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.							
Vy			•	a all'asse princ.d'ine					
Vx		Componente del	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx				
1	1549.00	-499.00	0.00	0.00	0.00				
2	388.00	-1247.00	0.00	0.00	0.00				
3	3546.00	836.00	0.00	0.00	0.00				

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo destro della sezione

Progetto Fattibilità Tecnica ed Economica

N°Comb.	N	Mx	Му
1	1191.00	-384.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 1191.00 -384.00 (-1614.47) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 1191.00 -384.00 (-1614.47) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	1549.00	-499.00	0.00	1549.02	-2194.91	0.00	4.40	45.2(17.9)
2	S	388.00	-1247.00	0.00	387.82	-1713.29	0.00	1.37	45.2(17.9)
3	S	3546.00	836.00	0.00	3546.05	2923.56	0.00	3.50	45.2(17.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.141	-50.0	0.0	0.00140	-42.2	7.8	-0.02127	-42.2	92.2
2	0.00350	0.106	-50.0	0.0	0.00071	-42.2	7.8	-0.02952	-42.2	92.2
3	0.00350	0.253	50.0	100.0	0.00233	42.2	92.2	-0.01036	-42.2	7.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
0.511	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	-0.000268611	0.003500000	0.141	0.700
2	0.000000000	-0.000358161	0.003500000	0.106	0.700
3	0.000000000	0.000150280	-0.011528013	0.253	0.756

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb As eff. Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. 1 S 3.01 -50.0 0.0 -13.4 32.8 92.2 950 45.2

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Cf Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb. Ver e2 k2 Ø Cf Mx fess e1 e sm - e cm sr max My fess 1 S -0.00009 0.00000 0.500 24.0 0.00004 (0.00004) 310 0.012 (990.00) -1614.47 0.00 66

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Ss min Xs min Ys min Sc max Xc max Yc max Ac eff. As eff.

Progetto Fattibilità Tecnica ed Economica

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

1 S 3.01 -50.0 0.0 -13.4 32.8 92.2 950 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess 1 S -0.00009 0.00000 0.500 24.0 66 0.00004 (0.00004) 0.00 310 0.012 (0.30) -1614.47

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 1 S 3.01 -50.0 0.0 -13.4 32.8 92.2 950 45.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mx fess	My fess
1	S	-0.00009	0.00000	0.500	24.0	66	0.00004 (0.00004)	310	0.012 (0.20)	-1614.47	0.00

8.1.4 Verifiche a taglio

Le verifiche a taglio sono state effettuate sulle sezioni significative per quanto riguarda le sollecitazioni talgianti. Gli elementi strutturali costituenti la galleria policentrica presentano la seguente armatura specifica a taglio:

Spille \$\phi12/40x40\$ lungo la calotta, in mezzeria dei piedritti e dell'arco rovescio

Spille \$\phi16/40x40\$ alle reni, sullo spiccato dei piedritti e sull'incastro dell'arco rovescio

Di seguito si riportano le verifiche a taglio degli elementi strutturali:

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

Dati	Var	unità	SEZ 1	SEZ 2	SEZ 3	SEZ 4	SEZ 5	SEZ 6
Resistenza a compressione cubica caratteristica	Rck	Мра	40	40	40	40	40	40
Resistenza a compressione cilindrica caratteristica	fck	Mpa	32	32	32	32	32	32
Coefficiente parziale γc	γC		1.50	1.50	1.50	1.50	1.50	1.50
Coefficiente parziale αcc	αcc		0.85	0.85	0.85	0.85	0.85	0.85
Resistenza a compressione di calcolo	fcd	Mpa	18.1	18.1	18.1	18.1	18.1	18.1
Tensione caratteristica di snervamento acciaio di armatura	fyk	Мра	450	450	450	450	450	451
tensione di calcolo acciaio	fywd	Mpa	391.3	391.3	391.3	391.3	391.3	392.2
Caratteristiche geometriche sezione								
Altezza	Н	m	1.00	2.27	1.40	1.89	1.00	1.00
Larghezza	В	m	1.00	1.00	1.00	1.00	1.00	1.00
Area calcestruzzo	Ac	m^2	1.00	2.27	1.40	1.89	1.00	1.00
Larghezza anima	bw	m	1.00	1.00	1.00	1.00	1.00	1.00
altezza utile della sezione	d	m	0.92	2.19	1.32	1.81	0.92	0.92
Compressione agente nella sezione								
Sforzo normale di calcolo	N_{Ed}	kN	3818.3	323.0	-509.0	-4414.0	-1103.0	-1549.0
Elementi senza armature trasversali resistenti al taglio								
Area dell'armatura longitudinale di trazione ancorata al di là								
dell'intersezione dell'asse dell'armatura con una eventuale fessura								
a 45° che si inneschi nella sezione considerata	Asl	mmq	4522	9828	15135	9043	9043	9043
Coefficiente k	k	m	1.47	1.30	1.39	1.33	1.47	1.47
vmin	vmin		0.4	0.3	0.3	0.3	0.4	0.4
rapporto geometrico di armatura longitudinale	ρ1		0.00490	0.00448	0.01145	0.00499	0.00981	0.00981
tensione media di compressione nella sezione	оср	Мра	3.63	0.14	-0.36	-2.34	-1.10	-1.55
Resistenza a taglio	V_{Rd}	kN	907.6	879.0	659.7	94.7	359.0	297.3
Elementi con armature trasversali resistenti al taglio								
Verifica del conglomerato								
Resistenza a taglio del conglomerato	V_{Rcd}	kN	5015.7	11924.5	7191.7	9857.3	5015.7	5015.7
Verifica dell'armatura trasversale								
diametro staffe	fsw	mm	12	16	12	16	16	12
passo staffe	scp	m	0.40	0.40	0.40	0.40	0.40	0.50
numero di bracci	nb		2.5	2.5	2.5	2.5	2.5	2
Armatura a taglio (staffe)	Asw	mmq	283	503	283	503	503	226
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	deg	90	90	90	90	90	90
Inclinazione dei puntoni in cls rispetto all'asse della trave	θ	deg	21.8	21.8	21.8	21.8	21.8	21.8
tensione media di compressione nella sezione	σср	kPa	3818	142	-364	-2335	-1103	-1549
coefficiente alpha	α_{c}		1.21	1.01	0.98	0.87	0.94	0.91
Resistenza a "taglio trazione"	V_{Rsd}	kN	573.8	2425.4	822.8	2004.9	1020.2	368.1
Resistenza a "taglio compressione"	V _{Rcd}	kN	3140.4	6215.9	3645.1	4441.7	2436.4	2372.6
Resistenza a taglio	V_{Rd}	kN	573.8	2425.4	822.8	2004.9	1020.2	368.1
				-				
Azione di calcolo	V	kN	220.5	2141.7	687.6	1746.4	594.5	321.0
Fattore di sicurezza	FS	-	2.6	1.1	1.2	1.15	1.72	1.1

8.1 Galleria di emergenza

8.1.1 Descrizione delle sezioni di calcolo

Le verifiche SLU ed SLE sono state effettuate in corrispondenza delle sezioni maggiormente sollecitate, di seguito riepilogate.

Sez 1 - sezione in chiave di calotta:	s= 0.70 m
	0.70

Sez 2 - sezione alle reni della calotta: s= 0.70 m

Sez 3 - Sezione di mezzeria dei piedritti: s= 0.75 m

Sez 4 - Sezione di spiccato dei piedritti: s= 0.85 m

Sez 5 - Sezione di incastro arco rovescio: s= 0.70 m

Sez 6 - Sezione in chiave arco rovescio : s= 0.70 m

Tratti in artificiale - Relazione tecnica e di calcolo

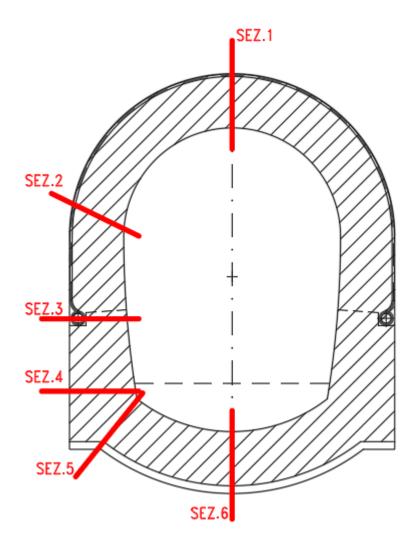


Figura 8.1 – Sezioni di verifica – galleria d'emergenza

8.1.2 Riepilogo risultati delle analisi

Di seguito si riportano le principali sollecitazioni agli SLE, SLU ed SLV ricavate dai modelli di caclolo relative alla galleria d'emergenza:

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

		SEZ 1 - CHIAVE CALOTTA					
		SLUmax	SLUmin	<u>SLV</u>	SLE		
h	cm	70	70	70	70		
В	cm	100	100	100	100		
σ_1	kN/mq	-600	-629	300	-461.5		
σ_2	kN/mq	311	648	-1575	239.2		
Fyy = V	kN/m	3.15	3.5	29.75	-		
Α	mq	0.7	0.7	0.7	0.7		
W	mc	0.081667	0.081667	0.081666667	0.081667		
N	kN	-101	7	-446	-78		
М	kNm	-37	-52	77	-29		
a.n.	cm	23.9	35.5	58.8	23.9		

			SEZ 2 - RENI CALOTTA						
		SLUmax	<u>SLUmin</u>	<u>SLV</u>	SLE				
h	cm	70	70	70	70				
В	cm	100	100	100	100				
σ_1	kN/mq	70	160	290	53.8				
σ_2	kN/mq	-843	-807	-1352	-648.5				
Fyy = V	kN/m	94.9	91.0	-6.0	-				
Α	mq	0.7	0.7	0.7	0.7				
W	mc	0.081667	0.081667	0.081666667	0.081667				
N	kN	-271	-226	-372	-208				
М	kNm	37	39	67	29				
a.n.	cm	64.6	58.4	57.6	64.6				

		SEZ 3 - MEZZERIA PIEDRITTI					
		SLUmax	<u>SLUmin</u>	<u>SLV</u>	SLE		
h	cm	75	75	75	75		
В	cm	100	100	100	100		
σ ₁	kN/mq	260	47	20	200.0		
σ_2	kN/mq	-880	-886	-487	-676.9		
Fyy = V	kN/m	82.5	73.1	112.5	-		
Α	mq	0.75	0.75	0.75	0.75		
W	mc	0.09375	0.09375	0.09375	0.09375		
Ν	kΝ	-233	-315	-175	-179		
М	kNm	53	44	24	41		
a.n.	cm	57.9	71.2	72.0	57.9		

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

		SEZ 4 - SPICCATO PIEDRITTI					
		SLUmax	SLUmin	SLV	SLE		
h	cm	85	85	85	85		
В	cm	100	100	100	100		
σ_1	kN/mq	-30	65	660	-23.1		
σ_2	kN/mq	-1290	-860	-2300	-992.3		
Fyy = V	kN/m	221.9	176.4	97.8	-		
Α	mq	0.85	0.85	0.85	0.85		
W	mc	0.120417	0.120417	0.1204	0.120417		
Ν	kN	-561	-338	-697	-432		
М	kNm	76	56	178	58		
a.n.	cm	87.0	79.0	66.0	87.0		

		SEZ 5 -	INCASTR	O ARCO RO	VESCIO
		SLUmax	<u>SLUmin</u>	<u>SLV</u>	<u>SLE</u>
h	cm	70	70	70	70
В	cm	100	100	100	100
σ_1	kN/mq	150	65	1500	115.4
σ_2	kN/mq	-1140	-770	2200	-876.9
Fyy = V	kN/m	210	182	203.35	-
Α	mq	0.7	0.7	0.7	0.7
W	mc	0.081667	0.081667	0.081666667	0.081667
Ν	kN	-347	-247	1295	-267
М	kNm	53	34	-29	41
a.n.	cm	61.9	64.6	220.0	61.9

		SEZ 6 -	SEZ 6 - MEZZERIA ARCO ROVESCIO				
		SLUmax	SLUmin	<u>SLV</u>	SLE		
h	cm	70	70	70	70		
В	cm	100	100	100	100		
σ ₁	kN/mq	-1200	-1040	-420	-923.1		
σ_2	kN/mq	560	650	-428	430.8		
Fyy = V	kN/m	7.35	12.6	32.2	-		
Α	mq	0.7	0.7	0.7	0.7		
W	mc	0.081667	0.081667	0.081666667	0.081667		
Ν	kN	-224	-137	-297	-172		
М	kNm	-72	-69	0	-55		
a.n.	cm	22.3	26.9	3745.0	22.3		

1	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	Sar
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GROPPO F3 I

8.1.3 Verifiche a presso-flessione

L'armatura del rivestimento è costituita da $\phi 24/20$ disposti sul lato interno ed esterno della calotta e dell'arco rovescio. Lateralmente i piedritti, sono armati con $\phi 24/20$ nella zona esterna ed interna.

Di seguito si riportano le verifiche a presso flessione degli elementi strutturali.

Sez 1. Chiave di calotta

CARATTERISTICHE DOMINIO CALCESTRUZZO

Classe Calces		a del Dominio: C32/40	Poligonale
N°vertice:	X [cm]	Y [cm]	
1 2 3 4	-50.0 -50.0 50.0 50.0	0.0 70.0 70.0 0.0	

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.2	7.8	24
2	-42.2	62.2	24
3	42.2	62.2	24
4	42.2	7.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione				
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø		
1 2	1 2	4 3	3 3	24 24		

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
Му		con verso positivo se tale da comprimere il lembo sup. della se Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della					
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	erzia x		
N°Comb.	N	Mx	My	Vy	Vx		
1	101.00	-37.00	0.00	0.00	0.00		
2	-7.00	-52.00	0.00	0.00	0.00		
3	446.00	77.00	0.00	0.00	0.00		

าลร

Progetto Fattibilità Tecnica ed Economica

VE407

Tratti in artificiale - Relazione tecnica e di calcolo

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 78.00 -29.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 78.00 -29.00 (-448.45) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 78.00 -29.00 (-448.45) 0.00 (0.00)

RISULTATI DEL CALCOLO

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 18.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r.Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	101.00	-37.00	0.00	101.03	-561.83	0.00	15.18	22.6(12.5)
2	S	-7.00	-52.00	0.00	-7.11	-531.66	0.00	10.22	22.6(12.5)
3	S	446.00	77.00	0.00	445.75	657.53	0.00	8.54	22.6(12.5)

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d	Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.117	-50.0	0.0	-0.00025	-42.2	7.8	-0.02643	42.2	62.2
2	0.00350	0.113	-50.0	0.0	-0.00040	-42.2	7.8	-0.02759	42.2	62.2
3	0.00350	0.132	50.0	70.0	0.00017	42.2	62.2	-0.02303	-42.2	7.8

C.Rid.

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45					
C.Rid.		nomenti per sola flessione				
N°Comb	а	D	С	x/d		

1	0.000000000	-0.000481156	0.003500000	0.117	0.700
2	0.000000000	-0.000499809	0.003500000	0.113	0.700
3	0.000000000	0.000426528	-0.026356982	0.132	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Ss min

Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Ye min Ye min

Ascissa Ordinata [cm] della barra corrisp. a Sc min (sistema rif. X,Y,O)

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
D barre
D barre
D barre
D barre
D barre
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata efficaci per l'apertura delle fessure
D barre
D barre barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. D barre Beta12 22.6 S 0.53 1950 1 -50.0 0.0 -8.0 21.1 62.2 21.1 1.00

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
S1	Massima tensione [MPa] di trazione nel calcestruzzo valutata in sezione non fessurata
CO	Minima tanciana (MDa) di traziona nal calcactruzza valutata in caziona faccurata

S2 Minima tensione [MPa] di trazione nel calcestruzzo valutata in sezione fessurata k2 = 0.4 per barre ad aderenza migliorata = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96] e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver S1 S2 k3 Ø Cf Psi e sm srm wk Mx fess My fess

Progetto Fattibilità Tecnica ed Economica

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

1	S	-0.2	0.0	0.1	25 24	66	0.400	0.00002	2 (0.00002)	278	0.007 (990.00)	-448.45	0.00
COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)													
N°Comb	Ver	Sc max	Xc max Yc	max	Ss min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	0.53	-50.0	0.0	-8.0	21.1	62.2	1950	22.6	21.1	0.50		
COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]													
Comb.	Ver	S1	S2		k3 Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
1	S	-0.2	0.0	0.1	25 24	66	0.400	0.00002	2 (0.00002)	278	0.007 (0.30)	-448.45	0.00
COMBIN	AZION	I QUASI PE	RMANENTI	IN ESE	RCIZIO -	MASSIN	ME TENS	IONI NORM	ALI ED AP	ERTURA	A FESSURE (DM	196)	
N°Comb	Ver	Sc max	Xc max Yc	max	Ss min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	0.53	-50.0	0.0	-8.0	21.1	62.2	1950	22.6	21.1	0.50		
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]													
Comb.	Ver	S1	S2		k3 Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
1	S	-0.2	0.0	0.1	25 24	66	0.400	0.00002	2 (0.00002)	278	0.007 (0.20)	-448.45	0.00

Sez 2. Reni della calotta

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Domin	Poligonale				
Classe Calces	C32/40				
N°vertice:	X [cm]	Y [cm]			
1	-50.0	0.0			
2	-50.0	45.0			
3	50.0	45.0			
4	50.0	0.0			
DATI BARRE ISOLATE					

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.1	7.9	24
2	-42.1	37.1	24
3	42.1	37.1	24
4	42.1	7.9	24

Progetto Fattibilità Tecnica ed Economica

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barra Fin.

N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	3	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x				
Vx		Componente dei	ragilo [kiv] paralleia	a all asse princ.d ine	rzia x	
N°Comb.	N	Mx	My	Vy	Vx	
1	271.00	37.00	0.00	0.00	0.00	
2	226.00	39.00	0.00	0.00	0.00	
3	372.00	67.00	0.00	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)					
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione					
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione					
N°Comb.	N	Mx	Му				
1	208.00	29.00	0.00				

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)						
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione					
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione					
N°Comb.	N	Mx	Му				
1	208.00	29.00 (280.83)	0.00 (0.00)				

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

Progetto Fattibilità Tecnica ed Economica

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 208.00 29.00 (280.83) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.7 cm Interferro netto minimo barre longitudinali: 18.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic. Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC] As Tesa

N°Comb Ver Mx My N Res Mx Res My Res Mis.Sic. As Tesa S 271.00 37.00 0.00 270.89 353.22 0.00 9.55 22.6(8.1) 1 2 S 226.00 39.00 0.00 225.85 0.00 8.88 22.6(8.1) 346.37 3 S 372.00 67.00 0.00 371.94 368.52 0.00 5.50 22.6(8.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) es max Deform. unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.210	-50.0	45.0	-0.00006	-42.1	37.1	-0.01320	-42.1	7.9
2	0.00350	0.206	-50.0	45.0	-0.00011	-42.1	37.1	-0.01347	-42.1	7.9
3	0.00350	0.217	-50.0	45.0	0.00006	-42.1	37.1	-0.01263	-42.1	7.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di	duttilità (travi e solette)[§	utro aX+bY+c=0 nel rif. : 4.1.2.1.2.1 NTC]: deve flessione in travi continue	essere < 0.45	
N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000450149	-0.016756690	0.210	0.702
2	0.000000000	0.000457432	-0.017084461	0.206	0.700
3	0.000000000	0.000434853	-0.016068369	0.217	0.711

Progetto Fattibilità Tecnica ed Economica

VE407

Ver.

Tratti in artificiale - Relazione tecnica e di calcolo

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff As eff. D barre Reta12 S 1.23 -50.0 -42.1 1 45.0 -4.1 7.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica S1 Massima tensione [MPa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [MPa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica k3 Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96]

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

srm Distanza media tra le fessure [mm]

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

S1 Comb. Ver S2 k3 Ø Cf Psi Mx fess My fess e sm srm wk S 1 -0.30.0 280.83 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. D barre Beta12 S 1.23 -50.0 45.0 -4.1 -42.1 7.9

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb. **S1** S2 Ø Cf Psi Ver k3 e sm srm wk Mx fess My fess S -0.3 0.0 280.83 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. D barre Beta12 S 1.23 -50.0 45.0 -42.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb. Ver S1 S2 k3 Ø Cf Psi Mx fess My fess e sm srm S -0.3 0.00 1 0.0 280.83

Tratti in artificiale - Relazione tecnica e di calcolo

Sez 3. Piedritti (piano dei centri)

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]	
1	-42.2	7.8	24	
2	-42.2	42.2	24	
3	42.2	42.2	24	
4	42.2	7.8	24	

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione
Ø	Diametro in mm delle harre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	3	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)						
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez					
Vv		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	Му	Vy	Vx		
1	233.00	53.00	0.00	0.00	0.00		
2	315.00	44.00	0.00	0.00	0.00		
3	175.00	24.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso nositivo se tale da comprimere il lembo destro della sezione

Progetto Fattibilità Tecnica ed Economica

N°Comb.	N	Mx	Му
1	179.00	41.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 179.00 41.00 (249.32) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 179.00 41.00 (249.32) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 18.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	233.00	53.00	0.00	233.09	398.25	0.00	7.51	22.6(9.0)
2	S	315.00	44.00	0.00	314.93	412.79	0.00	9.38	22.6(9.0)
3	S	175.00	24.00	0.00	175.27	387.95	0.00	16.16	22.6(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compress.)

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

Xs ma: Ys ma:				•	ax (sistema rif.) ax (sistema rif.)	,				
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.180	-50.0	50.0	-0.00009	-42.2	42.2	-0.01590	-42.2	7.8
2	0.00350	0.186	-50.0	50.0	0.00002	-42.2	42.2	-0.01535	-42.2	7.8
3	0.00350	0.177	-50.0	50.0	-0.00016	-42.2	42.2	-0.01630	-42.2	7.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue									
N°Comb	а	b	С	x/d	C.Rid.					
1 2 3	0.00000000 0.000000000 0.000000000	0.000459830 0.000446740 0.000469278	-0.019491491 -0.018837018 -0.019963892	0.180 0.186 0.177	0.700 0.700 0.700					

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xc max, Yc max Ss min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff. Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max Y	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	1.42	-50.0	50.0	-14.5	-42.2	7.8	1250	22.6	21.1	1.00

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Ver. S1 S2 k2 k3 Ø Cf Psi e sm srm wk Mx fe My fe		Esito de Massim Minima = 0.4 p = 0.125 Diametr Coprife = 1-Bet Deform Distanz Valore o Compo	ella verifica na tensione [N er barre ad per flession ro [mm] me rro [mm] ne a12*(Ssr/Ssazione unita a media tra caratteristic nente mom	[MPa] di tra APa] di tra aderenza ne e press dio delle b tto calcola s)² = 1-Bet aria media le fessure o [mm] de ento di pri	razione nel ca zione nel ca migliorata so-flessione; arre tese co ato con riferi ta12*(fctm/S a tra le fessu e [mm]	calcestruzz lcestruzzo =(e1 + e2) imprese ne mento alla l 2)² = 1-Bet re [4.3.1.7. essure = 1.7.	o valutata valutata ir l/(2*e1) pe ll'area effi barra più ta 12*(Mfes 1.3 DM96	in sezione non sezione deser trazione eccace Ac eff desa []. Il valore lim srm . Valore X [kNm]	on fessurata surata centrica	s è tra par	zo sia inferiore a fo	ctm	
Comb.	Ver	S1	;	S2	k3 9	Ø CI	f Ps	i	e sm	srm	wk	Mx fess	My fess
1	S	-0.5	5 (0.0).125 2	4 66	0.400	0.0000	03 (0.00003)	241	0.011 (990.00)	249.32	0.00
COMBIN	NAZION	I FREQUEN	NTI IN ESE	RCIZIO	- MASSII	ME TENS	IONI NO	RMALI ED	APERTURA	FESSUR	RE (DM96)		
N°Comb	Ver	Sc max	Xc max	Yc max	Ss mir	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	1.42	-50.0	50.0	-14.5	-42.2	7.8	1250	22.6	21.1	0.50		

Progetto Fattibilità Tecnica ed Economica

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-0.5	0.0	0.125	24	66	0.400	0.00003 (0.00003)	241	0.011 (0.30)	249.32	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

$N^{\circ}Comb$	Ver	Sc max	Xc max Y	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	1.42	-50.0	50.0	-14.5	-42.2	7.8	1250	22.6	21.1	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-0.5	0.0	0.125	24	66	0.400	0.00003 (0.00003)	241	0.011 (0.20)	249.32	0.00

Sez 4. Spiccato dei piedritti

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Domir Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	60.0
3	50.0	60.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.1	7.9	24
2	-42.1	52.1	24
3	42.1	52.1	24
4	42.1	7.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione
~	5

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	3	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

Progetto Fattibilità Tecnica ed Economica

VE407

2

3

My

Tratti in artificiale - Relazione tecnica e di calcolo

Mx My Vy Vx		con verso positiv Momento flettent con verso positiv Componente del	o se tale da compri e [kNm] intorno all'a o se tale da compri Taglio [kN] parallel	asse x princ. d'inerzia mere il lembo sup. d asse y princ. d'inerzia mere il lembo destro a all'asse princ.d'ine a all'asse princ.d'ine	ella sez. a della sez. rzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	561.00	76.00	0.00	0.00	0.00

178.00 COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

56.00

338.00

697.00

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

0.00

0.00

con verso positivo se tale da comprimere il lembo superiore della sezione

0.00

0.00

0.00

0.00

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx 1 432.00 58.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx 432.00 1 58.00 (1060.70) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione Му

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 1 432.00 58.00 (1060.70) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.7 cm Interferro netto minimo barre longitudinali: 18.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	561.00	76.00	0.00	560.74	571.73	0.00	7.52	22.6(10.7)
2	S	338.00	56.00	0.00	338.23	521.55	0.00	9.31	22.6(10.7)
3	S	697.00	178.00	0.00	696.73	602.14	0.00	3.38	22.6(10.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.165	-50.0	60.0	0.00029	-42.1	52.1	-0.01770	-42.1	7.9
2	0.00350	0.153	-50.0	60.0	0.00002	-42.1	52.1	-0.01942	-42.1	7.9
3	0.00350	0.173	-50.0	60.0	0.00044	-42.1	52.1	-0.01671	-42.1	7.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Rid	Coeff di riduz momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000406893	-0.020913564	0.165	0.700
2	0.000000000	0.000440013	-0.022900782	0.153	0.700
3	0.000000000	0.000387864	-0.019771868	0.173	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. D barre Beta12

1 S 1.48 -50.0 60.0 0.2 -42.1 7.9 ---- ---- ----

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [MPa] di trazione nel calcestruzzo valutata in sezione non fessurata

Progetto Fattibilità Tecnica ed Economica

S2 k2 k3 Ø Cf Psi e sm srm wk Mx fes My fes		= 0.4 p = 0.125 Diametr Coprifer = 1-Betr Deform Distanz Valore of Composi	a media tra le	derenza m e e presso- o delle bar o calcolato o calcolato ia media tr e fessure [[mm] dell'a	nigliorata flession fre tese con rife 12*(fctmara le fess fmm] apertura a fessura	e; =(e compr rimen /S2) ² : sure [⁴ fessu	e1 + e2)/(rese nell' to alla ba = 1-Beta 4.3.1.7.1. ure = 1.7 e intorno	(2*e1) per t area effica arra più tes 12*(Mfess/ .3 DM96]. l * e sm * sr all'asse X	rrazione ecce ce Ac eff sa M) ² [B.6.6 D Il valore limite m . Valore lir [kNm]	entrica	•	ntesi		
Comb.	Ver	S1	S	2	k3	Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
1	S	-0.2	0.0	0									1060.70	0.00
COMBIN	COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)													
N°Comb	Ver	Sc max	Xc max Y	c max	Ss m	in X	(s min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	1.48	-50.0	60.0	0	.2	-42.1	7.9						
COMBIN	AZION	I FREQUEN	ITI IN ESEF	RCIZIO -	APER	TUR/	A FESS	URE [§B.	6.6 DM96]					
Comb.	Ver	S1	S	2	k3	Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
1	S	-0.2	0.0	0									1060.70	0.00
COMBIN	AZION	I QUASI PE	RMANENT	I IN ESE	RCIZIO	- M	IASSIM	E TENSI	ONI NORM	ALI ED API	ERTURA F	FESSURE (DM	196)	
N°Comb	Ver	Sc max	Xc max Y	c max	Ss m	in X	(s min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	1.48	-50.0	60.0	0	.2	-42.1	7.9						
COMBIN	AZION	I QUASI PE	RMANENT	I IN ESE	RCIZIO	- AP	ERTUR	RA FESSI	URE [§B.6.	6 DM96]				
Comb.	Ver	S1	S	2	k3	Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
1	S	-0.2	0.0	0									1060.70	0.00

Sez 5. Incastro arco rovescio

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Domin Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	0.0 70.0 70.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.2	7.8	24
2	-42.2	62.2	24

Progetto Fattibilità Tecnica ed Economica

VE407

Ν

3

-1295.00

Tratti in artificiale - Relazione tecnica e di calcolo

3	42.2	62.2	24
4	42.2	7.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	3	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.					
Му							
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx				a all'asse princ.d'ine			
l°Comb.	N	Mx	Му	Vy	Vx		
1	347.00	53.00	0.00	0.00	0.00		
2	247.00	34.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

-29.00

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 267.00 41.00 0.00

0.00

0.00

0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 267.00 41.00 (1602.47) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Progetto Fattibilità Tecnica ed Economica

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx 267.00 41.00 (1602.47) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 18.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia N Res Mx Res

My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	347.00	53.00	0.00	347.13	630.23	0.00	11.89	22.6(12.5)
2	S	247.00	34.00	0.00	246.74	602.38	0.00	17.72	22.6(12.5)
3	S	-1295.00	-29.00	0.00	-1294.84	-160.18	0.00	5.52	45.2(12.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.127	-50.0	70.0	0.00005	-42.2	62.2	-0.02398	-42.2	7.8
2	0.00350	0.123	-50.0	70.0	-0.00007	-42.2	62.2	-0.02496	-42.2	7.8
3	0.00350	0.050	50.0	0.0	-0.00525	42.2	7.8	-0.06631	-42.2	62.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000441851	-0.027429541	0.127	0.700
2	0.00000000	0.000457573	-0.028530081	0.123	0.700
3	0.000000000	-0.001122293	0.003500000	0.050	0.700

Progetto Fattibilità Tecnica ed Economica

VE407 Tratti in artificiale - Relazione tecnica e di calcolo

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)

Ac eff.

As eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.

1 S 0.78 -50.0 70.0 0.0 -42.2 7.8 0 0.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

k2 Ø Cf Comb. e2 e sm - e cm sr max Mx fess My fess S -0.00001 0.00000 0.000 .0 0.00000 (0.00000) 0 0.001 (990.00) 0.00 1 66 1602.47

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 1 S 0.78 -50.0 70.0 0.0 -42.2 7.8 0 0.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver k2 Ø Cf e1 e2 Mx fess My fess esm-ecm sr max S -0.00001 0.000 0.00000 (0.00000) 1 0.00000 .0 66 0.001 (0.30) 1602.47 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff As eff S -42.2 0.0 1 0.78 -50.0 70.0 0.0 7.8 0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ø Cf Ver e2 k2 e1 e sm - e cm sr max Mx fess My fess S -0.00001 0.00000 0.00000 (0.00000) 1 0.000 .0 66 0 0.001 (0.20) 1602.47 0.00

Tratti in artificiale - Relazione tecnica e di calcolo

Sez 6. Mezzeria arco rovescio

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Domin Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	70.0
3	50.0	70.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.2	7.8	24
2	-42.2	62.2	24
3	42.2	62.2	24
4	42.2	7.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione					
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø			
1	1	4	3	24			
2	2	3	3	24			

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [kN] applicato nel Baric. (+ se di compressione)						
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia							
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.						
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y							
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N°Comb.	N	Mx	Му	Vy	Vx			
1	224.00	-72.00	0.00	0.00	0.00			
2	137.00	-69.00	0.00	0.00	0.00			
3	297.00	0.00	0.00	0.00	0.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

Progetto Fattibilità Tecnica ed Economica

con verso positivo se tale da comprimere il lembo superiore della sezione Му

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My 172.00 0.00 1 -55.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx 172.00 -55.00 (-488.74) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 1

172.00 -55.00 (-488.74) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 18.7

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	224.00	-72.00	0.00	224.14	-596.10	0.00	8.28	22.6(12.5)
2	S	137.00	-69.00	0.00	137.06	-571.86	0.00	8.29	22.6(12.5)
3	S	297.00	0.00	0.00	296.96	616.33	0.00	999.00	22.6(12.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.122	-50.0	0.0	-0.00010	-42.2	7.8	-0.02519	42.2	62.2
2	0.00350	0.118	-50.0	0.0	-0.00021	-42.2	7.8	-0.02607	42.2	62.2
3	0.00350	0.125	50.0	70.0	-0.00001	42.2	62.2	-0.02446	-42.2	7.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	-0.000461303	0.003500000	0 122	0.700
2	0.000000000	-0.000475426	0.003500000	0.122	0.700
3	0.000000000	0.000449445	-0.027961158	0.125	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

 Ver
 S = comb. verificata/ N = comb. non verificata

 Sc max
 Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

 Xc max, Yc max
 Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

 Ss min
 Minima tensione (negativa se di trazione) nell'acciaio [MPa]

 Xs min, Ys min
 Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)

 Ac eff.
 Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

 As eff.
 Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ss min Xs min Ys min Ver Sc max Xc max Yc max Ac eff. As eff. D barre Beta12 S 1.00 -50.0 0.0 -11.9 21.1 62.2 1750 22.6 21.1 1.00

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica

S1 Massima tensione [MPa] di trazione nel calcestruzzo valutata in sezione non fessurata
S2 Minima tensione [MPa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa
Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96]

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver S1 S2 k3 Ø Cf Psi e sm srm Mx fess My fess 267 0.010 (990.00) 1 S -0.3 0.0 0.125 24 66 0.400 0.00002 (0.00002) -488.74 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

Progetto Fattibilità Tecnica ed Economica

VE407 Tratti in artificiale - Rel

Tratti in artificiale - Relazione tecnica e di calcolo

N°Comb	Ver	Sc max	Xc max	Yc max	Ss mi	n Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	1.00	-50.0	0.0	-11.	21.1	62.2	1750	22.6	21.1	0.50		
COMBIN	AZION	FREQUEN	ITI IN ES	ERCIZIO	- APERT	URA FES	SURE [§E	3.6.6 DM96]					
Comb.	Ver	S1		S2	k3	Ø C	f Psi		e sm	srm	wk	Mx fess	My fess
1	S	-0.3	. (0.0	0.125 2	4 66	0.400	0.00002	(0.00002)	267	0.010 (0.30)	-488.74	0.00
COMBIN	AZION	I QUASI PE	RMANE	NTI IN ES	SERCIZIO	- MASSII	ME TENS	IONI NORM	ALI ED AP	ERTURA	FESSURE (DM	96)	
N°Comb	Ver	Sc max	Xc max	Yc max	Ss mi	n Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	1.00	-50.0	0.0	-11.	9 21.1	62.2	1750	22.6	21.1	0.50		
COMBIN	AZION	I QUASI PE	RMANE	NTI IN ES	SERCIZIO	APERTU	IRA FESS	SURE [§B.6.	6 DM96]				
Comb.	Ver	S1		S2	k3	Ø C	f Psi		e sm	srm	wk	Mx fess	My fess
1	S	-0.3	. (0.0	0.125 2	4 66	0.400	0.00002	(0.00002)	267	0.010 (0.20)	-488.74	0.00

8.1.4 Verifiche a taglio

Le verifiche a taglio sono state effettuate sulle sezioni significative per quanto riguarda le sollecitazioni taglianti. Gli elementi strutturali costituenti la galleria d'emergenza presentano la seguente armatura specifica a taglio:

Spille \$\phi12/40x40\$ lungo la calotta, i piedritti e l'arco rovescio

Spille \(\psi \frac{16/40x40}{40x40} \) allo spiccato dei piedritti e sull'incastro dell'arco rovescio

Di seguito si riportano le verifiche a taglio degli elementi strutturali:

Progetto Fattibilità Tecnica ed Economica

Tratti in artificiale - Relazione tecnica e di calcolo

Dati	Var	unità	SEZ 2	SEZ 3	SEZ 4	SEZ 5
Resistenza a compressione cubica caratteristica	Rck	Мра	40	40	40	40
Resistenza a compressione cilindrica caratteristica	fck	Мра	32	32	32	32
Coefficiente parziale γc	γC		1.50	1.50	1.50	1.50
Coefficiente parziale α cc	α CC		0.85	0.85	0.85	0.85
Resistenza a compressione di calcolo	fcd	Мра	18.1	18.1	18.1	18.1
Tensione caratteristica di snervamento acciaio di armatura	fyk	Мра	450	450	450	450
tensione di calcolo acciaio	fywd	Мра	391.3	391.3	391.3	391.3
Caratteristiche geometriche sezione						
Altezza	Н	m	0.70	0.75	0.85	0.70
Larghezza	В	m	1.00	1.00	1.00	1.00
Area calcestruzzo	Ac	m^2	0.70	0.75	0.85	0.70
Larghezza anima	bw	m	1.00	1.00	1.00	1.00
copriferro	С	m	0.078	0.078	0.078	0.078
altezza utile della sezione	d	m	0.62	0.67	0.77	0.62
Compressione agente nella sezione						
Sforzo normale di calcolo	N_{Ed}	kN	226.0	175.0	338.0	247.0
Elementi senza armature trasversali resistenti al taglio						
Area dell'armatura longitudinale di trazione ancorata al di là			<u> </u>			
dell'intersezione dell'asse dell'armatura con una eventuale						
fessura a 45° che si inneschi nella sezione considerata	Asl	mmq	2261	2261	2261	2261
Coefficiente k	k	m	1.57	1.55	1.51	1.57
vmin	vmin		0.4	0.4	0.4	0.4
rapporto geometrico di armatura longitudinale	ρ1		0.00363	0.00336	0.00293	0.00363
tensione media di compressione nella sezione	оср	Мра	0.32	0.23	0.40	0.35
Resistenza a taglio	V_{Rd}	kN	295.1	298.7	340.8	297.9
Elementi con armature trasversali resistenti al taglio						
Verifica del conglomerato Resistenza a taglio del conglomerato	V _{Rcd}	kN	3383.7	3655.7	4199.7	3383.7
Verifica del conglomerato Resistenza a taglio del conglomerato	V_{Rcd}	kN	3383.7	3655.7	4199.7	3383.7
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale						
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe	fsw	mm	12	12	12	12
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe	fsw scp		12 0.40	12 0.40	12 0.40	12 0.40
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci	fsw scp nb	mm m	12 0.40 2.5	12 0.40 2.5	12 0.40 2.5	12 0.40 2.5
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe)	fsw scp nb Asw	mm m mmq	12 0.40 2.5 283	12 0.40 2.5 283	12 0.40 2.5 283	12 0.40 2.5 283
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave	fsw scp nb Asw α	mm m mmq deg	12 0.40 2.5 283 90	12 0.40 2.5 283 90	12 0.40 2.5 283 90	12 0.40 2.5 283 90
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \alpha \\ \theta \end{array}$	mm m mmq deg deg	12 0.40 2.5 283 90 21.8	12 0.40 2.5 283 90 21.8	12 0.40 2.5 283 90 21.8	12 0.40 2.5 283 90 21.8
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave tensione media di compressione nella sezione	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \alpha \\ \theta \\ \text{scp} \end{array}$	mm m mmq deg	12 0.40 2.5 283 90 21.8 323	12 0.40 2.5 283 90 21.8 233	12 0.40 2.5 283 90 21.8 398	12 0.40 2.5 283 90
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave tensione media di compressione nella sezione coefficiente alpha	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	mm m mmq deg deg kPa	12 0.40 2.5 283 90 21.8 323 1.02	12 0.40 2.5 283 90 21.8 233 1.01	12 0.40 2.5 283 90 21.8 398 1.02	12 0.40 2.5 283 90 21.8 353 1.02
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave tensione media di compressione nella sezione coefficiente alpha Resistenza a "taglio trazione"	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \alpha \\ \theta \\ \text{\sigmacp} \\ \alpha_c \\ V_{\text{Rsd}} \end{array}$	mm m mmq deg deg kPa	12 0.40 2.5 283 90 21.8 323 1.02 387.1	12 0.40 2.5 283 90 21.8 233 1.01 418.2	12 0.40 2.5 283 90 21.8 398 1.02 480.5	12 0.40 2.5 283 90 21.8 353 1.02 387.1
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave tensione media di compressione nella sezione coefficiente alpha	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	mm m mmq deg deg kPa	12 0.40 2.5 283 90 21.8 323 1.02	12 0.40 2.5 283 90 21.8 233 1.01	12 0.40 2.5 283 90 21.8 398 1.02	12 0.40 2.5 283 90 21.8 353 1.02
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave tensione media di compressione nella sezione coefficiente alpha Resistenza a "taglio trazione"	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \alpha \\ \theta \\ \text{\sigmacp} \\ \alpha_c \\ V_{\text{Rsd}} \end{array}$	mm m mmq deg deg kPa	12 0.40 2.5 283 90 21.8 323 1.02 387.1	12 0.40 2.5 283 90 21.8 233 1.01 418.2	12 0.40 2.5 283 90 21.8 398 1.02 480.5	12 0.40 2.5 283 90 21.8 353 1.02 387.1
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave tensione media di compressione nella sezione coefficiente alpha Resistenza a "taglio trazione" Resistenza a "taglio compressione"	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \alpha \\ \theta \\ \text{\sigmacp} \\ \alpha_c \\ V_{\text{Rsd}} \\ V_{\text{Rcd}} \end{array}$	mm m deg deg kPa kN kN	12 0.40 2.5 283 90 21.8 323 1.02 387.1 1781.2	12 0.40 2.5 283 90 21.8 233 1.01 418.2	12 0.40 2.5 283 90 21.8 398 1.02 480.5 2219.8	12 0.40 2.5 283 90 21.8 353 1.02 387.1 1784.1
Verifica del conglomerato Resistenza a taglio del conglomerato Verifica dell'armatura trasversale diametro staffe passo staffe numero di bracci Armatura a taglio (staffe) Inclinazione dell'armatura trasversale rispetto all'asse della trave Inclinazione dei puntoni in cls rispetto all'asse della trave tensione media di compressione nella sezione coefficiente alpha Resistenza a "taglio trazione" Resistenza a "taglio compressione"	$\begin{array}{c} \text{fsw} \\ \text{scp} \\ \text{nb} \\ \text{Asw} \\ \alpha \\ \theta \\ \text{\sigmacp} \\ \alpha_c \\ V_{\text{Rsd}} \\ V_{\text{Rcd}} \\ \end{array}$	mm m mmq deg deg kPa kN	12 0.40 2.5 283 90 21.8 323 1.02 387.1 1781.2	12 0.40 2.5 283 90 21.8 233 1.01 418.2 1915.1	12 0.40 2.5 283 90 21.8 398 1.02 480.5 2219.8	12 0.40 2.5 283 90 21.8 353 1.02 387.1 1784.1

	S.S. 51 "Alemagna" – Variante di Longarone	9
	Progetto Fattibilità Tecnica ed Economica	anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

9 DICHIARAZIONE ACCETTABILITÀ RISULTATI (PAR. 10.2 N.T.C. 2018)

9.1 Tipo di analisi svolte

Le analisi strutturali e le verifiche per il dimensionamento delle strutture sono state condotte con l'ausilio di codici di calcolo automatico.

Il calcolo delle sollecitazioni è stato effettuato ricorrendo a modelli tridimensionali in cui gli elementi strutturali sono stati schematizzati come elementi piani tipo "plate".

I vincoli esterni sono costituiti da cerniere o incastri.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del D.M. 17/01/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui le opere saranno soggette.

9.2 Origine e caratteristiche dei codici di calcolo

ANALISI STRUTTURALE

Nome del Software: SAP2000 14 Advanced

Produttore CSI Computer & Structures, Inc 1995 University Avenue Berkley, CA

Licenza concessa a VIA INGEGNERIA s.r.l. – Licenza N° S15307

Verifiche di elementi in c.a.

Software: RC-SEC

Produttore: GeoStru

Licenza: Via Ingegneria srl – numero 7OKKI-NF2UO-EOJXZ-3PW5K.

9.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori del software contiene esaurienti descrizioni delle basi teoriche e degli algoritmi impiegati con l'individuazione dei campi d'impiego.

9.4 Modalità di presentazione dei risultati

Le relazioni di calcolo strutturale presentano i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. Le relazioni di calcolo illustrano in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

	S.S. 51 "Alemagna" – Variante di Longarone Progetto Fattibilità Tecnica ed Economica	S anas
VE407	Tratti in artificiale - Relazione tecnica e di calcolo	GRUPPO FS ITALIANE

9.5 Informazioni generali sull'elaborazione

Il software consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

9.6 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, il Progettista delle Strutture asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.