

Direzione Progettazione e Realizzazione Lavori

S.S.51"ALEMAGNA"

VARIANTE DI LONGARONE

PROGETTO FATTIBILITA' TECNICO ED ECONOMICO

COD. VE407

PROGETTAZIONE: ATI VIA - SERING - VDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE e PRGETTISTA: GRUPPO DI PROGETTAZIONE MANDATARIA: SIMC MANDANTI: Dott. Ing. Massim Capasso (Ord. Ing. Prov. Roma A26031) PROGETTISTA: Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso 🖉 SE (Ord. Ing. Prov. Roma 26031) Responsabile Strutture: Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma 27296) Responsabile Idraulica, Geotecnica e Impianti: *Dott. Ing. Sergio Di Maio* (*Ord. Ing. Prov. Palermo 2872*) Responsabile Ambiente: *Dott. Ing. Francesco Ventura* INGEGNEE (Ord. Ing. Prov. Roma 14660) GEOLOGO: Dott. Geol. Enrico Carcuruto (Ord. Geo. Regione Sicilia 966) COORDINATORE SICUREZZA IN FASE DI PROCETIAZIONE: Dott. Ing. Matteo Di Ginolomo (Ord. Ing. Prov. Romo A15138) COORDINATORE ATTIVITA' DI PROGETTAZIONE: Dott. Ing. MariaAntonietta Metendino (Ord. Ing. Prov. Roma A28481) VISTO: IL RESPONSABILE DEL PROCEDIMENTO: Dott. Ing. Ettore De La Grennelais De Cesbron

GEOLOGIA, GEOTECNICA E SISMICA

GALLERIA CASTELLAVAZZO

RELAZIONE GEOTECNICA

		nome file VE407_T00GN01GETRE	EO1A		REVISIONE	SCALA:
DPVE0407 D 21		CODICE TOO GNO 1 GE T REO 1		A	_	
D						
С						
В						
A	EMISSIONE		MAGGIO 2022	V. TURANO	M. CUCCARO	M.CAPASSO
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

	SS 51 "Alemagna"	6
	Variante di Longarone	anas
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

INDICE

1	PREMESSA	3
2	RIFERIMENTI NORMATIVI	5
3	CENNO GEOMORFOLOGICO E GEOLOGICO	6
4	INDAGINI GEOTECNICHE	7
4.1	Campagna d'indagini 2021:	8
5	CARATTERIZZAZIONE GEOTECNICA DEI TERRENI	16
5.1	Terreni sciolti	
	5.1.1 Materiale di riporto – TR	
	5.1.2 Alluvioni fluvio-glaciali a grana grossa – FLG	20
5.2	Rocce lapidee	
	5.2.1 Calcari e calcareniti - Ca	25
5.3	Falda	36
5.4	Caratterizzazione fisico – meccanica dei terreni	
5.5	Caratterizzazione sismica dei terreni	
6	RAPPORTI OPERE TERRENI	38

	SS 51 "Alemagna"	6
	Variante di Longarone	anas
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

ELENCO DELLE FIGURE

Figura 1.1: Inquadramento S.S. 51	
Figura 1.2: Variante di Longarone – asse di progetto e posizione galleria	3
Figura 5.1: Terreni FLG – Andamento del passante in peso con la profondità	
Figura 5.2: Terreni FLG – Valori di N30 da prove SPT	
Figura 5.3: Terreni FLG – Valori di angolo di resistenza al taglio da prove SPT	23
Figura 5.4: Terreni FLG – Valori del modulo elastico operativo da prove SPT	24
Figura 5.5: Ca – distribuzione σ_{ci} da prove di compressione monoassiale e point load	
Figura 5.6: Ubicazione Geostop	
Figura 5.7: Gruppo A	
Figura 5.8: Gruppo B	
Figura 5.9: Ca – valore medio di RQD nello strato	
Figura 5.10: Ca – RMR	
Figura 5.11: Ca – caratteristiche di resistenza per ammasso non disturbato in asse galleria	
Figura 5.12: Ca – caratteristiche di resistenza per ammasso disturbato in asse galleria	
Figura 5.13: Ca – caratteristiche di resistenza per ammasso non disturbato in fondazione viadotto	
Figura 5.14: Ca – modulo elastico secante E _{s50}	
Figura 5.15: Ca – coefficiente di Poisson v50	
Figura 6.1: GN01 – schema fisico di riferimento	

ELENCO DELLE TABELLE

Tabella 4.1: Sondaggi eseguiti nella campagna d'indagini 2021/2022	
Tabella 4.2: Operazioni in foro nella campagna d'indagini 2021/2022	9
Tabella 4.3: Risultati delle Prove Penetrometriche Dinamiche SPT	
Tabella 4.4: Campioni litoidi, indisturbati e rimaneggiati prelevati	
Tabella 4.5: Posizione delle prove Lèfranc, Lugeon e dilatometriche	
Tabella 5.1: Classificazione geotecnica dei terreni	
Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito	
Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito	
Tabella 5.4: Dip – Dip dir	
Tabella 5.5: Dip – Dip dir gruppo A	
Tabella 5.6: Dip – Dip dir gruppo B	
Tabella 5.7: Caratteristiche di progetto dei terreni sciolti	
Tabella 5.8: Caratteristiche di progetto delle rocce lapidee per la galleria	

VE407

Relazione Geotecnica

1 PREMESSA

Nella seguente relazione sono presentati i risultati degli studi svolti e delle verifiche eseguite nell'ambito della caratterizzazione geotecnica dei terreni costituenti la galleria Castellavazzo in ambito del progetto dell'intervento di ricollocamento e costruzione riguardante la variante di Longarone, S.S.51 "Alemagna".

Figura 1.1: Inquadramento S.S. 51

Figura 1.2: Variante di Longarone – asse di progetto e posizione galleria

	SS 51 "Alemagna" Variante di Longarone	Sanac
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

La galleria attraversa unità geotecniche mediamente omogenee, che sono state analizzate sulla base di ricostruzioni geologiche dei terreni e dell'analisi delle indagini eseguite nel corso delle campagne svolte. SS 51 "Alemagna"

Variante di Longarone

VE407

Relazione Geotecnica

2 **RIFERIMENTI NORMATIVI**

- Circolare Ministero dei LL.PP. 21/01/2109 n. 7 Istruzione per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"»
- Aggiornamento delle «Norme tecniche per le costruzioni» (G.U. Serie Generale n.42 del 20-02-2018 - Suppl. Ordinario n. 8).
- Circolare Ministero dei LL.PP. 02/02/09 n. 617 Istruzione per l'applicazione delle "Nuove Norme tecniche per le costruzioni".
- D.M. 14/01/2008 "Nuove Norme tecniche per le costruzioni".
- Ordinanza del Presidente del Consiglio dei Ministri n° 3274/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica."; modificata dall'O.P.C.M. 3431 del 03/05/2005.
- Eurocodice 7.2 (2002): Progettazione geotecnica Parte II: Progettazione assistita da prove di laboratorio (2002). UNI.
- Eurocodice 7.3 (2002): Progettazione geotecnica Parte II: Progettazione assistita con prove in sito (2002). UNI.
- Eurocodice 8 (1998). Progettazione delle strutture per la resistenza sismica.
- Eurocodice 7.1 (1997): Progettazione geotecnica Parte I: Regole Generali. UNI.
- Circolare ministeriale LL.PP. 24/09/88 n. 30483 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- D.M. 11/03/88 Istruzioni per l'applicazione delle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

Relazione Geotecnica

3 CENNO GEOMORFOLOGICO E GEOLOGICO

Dal punto di vista geologico, nella successione stratigrafica dell'area interessata dal tracciato si possono riconoscere le seguenti unità litologiche:

- Detrito di versante. Deposito caotico ad elementi eterometrici a spigoli vivi e arrotondati originato dai processi evoluitivi dei versanti rocciosi e dallo smantellamento dei terrazzi fluviali sovrastanti.
- **Depositi alluvionali di alveo attuale**. Ghiaie grossolane e ciottoli, con lenti limosabbiose e sabbio-limose.
- **Depositi alluvionali terrazzati**. Ghiaie in matrice scarsamente sabbiosa con lenti di limo sabbiosa e sabbio-limosa, variamente ghiaiose, scarsamente argillose.
- **Depositi fluvio-glaciali**. Ghiaie grossolane e ciottoli con lenti limo sabbiose e sabbiolimose, scarsamente argillose, localmente cementate.
- Calcare di Soccher. Calcari micritici verdi e rossastri in strati sottili tabulari, fortemente selciferi, intercalati a biocalcareniti gradate, sovente laminate e facies tipiche del Rosso Ammonitico.

Per maggiori dettagli si rimanda alla Relazione Geologica (vedi elaborato T00GE00GE0RE01A).

VE407

Relazione Geotecnica

4 INDAGINI GEOTECNICHE

Per lo sviluppo della progettazione delle opere sono state eseguite indagini di carattere geotecnico finalizzate:

- al riconoscimento ed alla caratterizzazione geotecnica dei terreni di fondazione, allo scopo di fornire i parametri fisico-meccanici per l'esecuzione dei calcoli strutturali e geotecnici delle opere d'arte;
- alla ricostruzione dei rapporti opere-terreni finalizzata alla progettazione delle fondazioni delle opere d'arte (viadotti, ponti, gallerie).

Le caratteristiche geotecniche dei terreni e delle rocce interessati dal tracciato sono state investigate con un'approfondita campagna di indagini geognostica, geofisica e geotecnica svolta nel corso del 2021 e 2022.

La campagna di indagini è stata condotta su incarico ANAS dalla ditta Vicenzetto S.R.L., nel rispetto delle disposizioni, delle specifiche tecniche e del capitolato d'appalto ANAS, nonché delle raccomandazioni AGI 1977/1994 e hanno previsto:

- n° 27 sondaggi a carotaggio continuo, di cui n° 14 condizionati con tubo per prove Down-Hole e n° 13 condizioni a piezometro a tubo aperto;
- n° 2 sondaggi a distruzione di nucleo e carotaggio continuo, condizionati con piezometro a tubo aperto;
- n° 271 prove penetrometriche dinamiche S.T.P.;
- n° 34 pozzetti, dei quali n° 14 geognostici e n° 20 ambientali;
- n° 14 prove pressiometriche;
- n° 40 prove di permeabilità di cui n° 30 Léfranc e n° 10 Lugeon;
- n° 20 prove dilatomeriche;
- n° 145 prelievo di campioni per la caratterizzazione geotecnica durante l'esecuzione dei sondaggi, di cui n° 2 indisturbati, n° 113 rimaneggiati e n° 30 litoidi;
- n° 27 prelievo di campioni a fini ambientali;
- n° 7 prelievo di campioni di acqua di falda;
- Analisi e prove geotecniche di laboratorio;

Per le prove di laboratorio si è fatto riferimento alla normativa ASTM ed alle norme UNI.

I risultati delle indagini in sito e delle prove di laboratorio sono illustrati negli elaborati redatti dalle società incaricate delle indagini, allegati al progetto. La posizione dei punti d'indagine è riportata nelle apposite Tavole di progetto.

Nel seguito si descrivono le principali attività svolte durante la campagna.

Relazione Geotecnica

4.1 Campagna d'indagini 2021:

La campagna di indagini geognostiche e geofisiche svolta nel corso della presente fase di progettazione ha compreso 29 sondaggi verticali, 2 dei quali svolti parzialmente a distruzione di nucleo, svolti tra Luglio 2021 e Febbraio 2022. Durante l'esecuzione dei carotaggi si è proceduto con il condizionamento dei fori per prove SPT, prove down-hole e installazione di piezometri. Sono stati prelevati 145 campioni tra rimaneggiati, indisturbati e litoidi.

Nelle tabelle che seguono si riportano l'elenco dei sondaggi e le strumentazioni installate.

٨٩٩٥	Sandaggia	Condizionamonto	Profondità	Co	oordinate
Anno	Sondaggio	Condizionamento	[m]	G.B. Est	G.B. Nord
2021	SD00A_DH	Down-Hole	35	753733,042	5122016,655
2021	SD00B_DH	Down-Hole	35	753699,525	5122120,349
2021	SD01_DH	Down-Hole	35	753673,017	5122175,990
2021	SD02_DH	Down-Hole	35	753520,378	5122421,378
2021	SD03_PZ	Piezometro	35	753502,058	5122513,939
2021	SD05_PZ	Piezometro	35	753651,524	5120933,221
2021	SD06_PZ	Piezometro	30	753476,132	5124029,931
2021	SD07_DH	Down-Hole	30	753725,301	5124566,615
2022	SD08_DH	Down-Hole	35	754102,547	5123541,154
2021	SD09_PZ	Piezometro	35	754312,053	5125448,758
2021	SD09_bis_PZ	Piezometro	35	754124,956	5125219,110
2021	SD09_ter_DH	Down-Hole	30	754135,852	5125097,368
2021	SD10_DH	Down-Hole	35	754390,275	5125578,633
2021	SD11_PZ	Piezometro	25	754551,082	5125886,993
2022	SD12_PZ	Piezometro	35	754715,706	5126527,859
2022	SD12_bis_PZ	Piezometro	35	754724,021	5126713,198
2021	SD13_DH	Down-Hole	40	754751,454	5126826,129
2022	SD14_DH	Down-Hole	35	754762,580	5127900,214
2021	SD16_DH	Down-Hole	35	754674,956	5128277,894
2021	SD17_DH	Down-Hole	35	754728,639	5129042,211
2021	SD18_PZ	Piezometro	30	754690,778	5129275,182
2021	SD19_DH	Down-Hole	35	754666,043	5129416,464
2021	SD20_DH	Down-Hole	30	754548,722	5130134,627
2021	SD21_PZ	Piezometro	30	754520,403	5130207,055
2021	SD22_PZ	Piezometro	47	754617,004	5130766,298
2021	SD23_PZ	Piezometro	65	754657,156	5130992,853
2021	SD24_PZ	Piezometro	90	754700,651	5131268,287
2022	SD25_PZ	Piezometro	135	754697,341	5131727,004
2022	SD26		5	754993,547	5132173,355

Tabella 4.1: Sondaggi eseguiti nella campagna d'indagini 2021/2022

	SS 51 "Alemagna"	6
	Variante di Longarone	anas
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

Durante l'esecuzione dei sondaggi sono state eseguite prove penetrometriche dinamiche SPT, prove dilatometriche, prove di permeabilità Lugeon e Léfranc e sono stati prelevati campioni tra indisturbati, rimaneggiati e rocciosi. Il numero di tali operazioni, per tipologia di prova e per sondaggio, è distinto nella seguente tabella:

Anno	Sondaggio		No. campioni		Perm.	Perm.	Dilatomotricho	
Anno	Jonuaggio	NO. 3F I	indisturbati	rimaneggiati	litoidi	Lefranc	Lugeon	Dilatometricite
2021	SD00A_DH	11	-	6	-	2	-	-
2021	SD00B_DH	11	-	6	-	2	-	-
2021	SD01_DH	11	-	6	-	2	-	-
2021	SD02_DH	11	1	4	-	2	-	-
2021	SD03_PZ	13	-	4	-	1	-	-
2021	SD05_PZ	11	-	4	-	2	-	-
2021	SD06_PZ	10	1	4	-	2	-	-
2021	SD07_DH	10	-	4	-	2	-	-
2022	SD08_DH	11	-	5	-	2	-	-
2021	SD09_PZ	11	-	5	-	2	-	-
2021	SD09_bis_PZ	11	-	4	-	1	-	-
2021	SD09_ter_DH	10	-	5	-	2	-	-
2021	SD10_DH	11	-	5	-	2	-	-
2021	SD11_PZ	8	-	5	-	2	-	-
2022	SD12_PZ	11	-	6	-	2	-	-
2022	SD12_bis_PZ	11	-	6	-	2	-	-
2021	SD13_DH	12	-	8	-	2	-	-
2022	SD14_DH	11	-	6	-	2	-	-
2021	SD16_DH	11	-	4	-	1	-	-
2021	SD17_DH	11	-	4	-	1	-	-
2021	SD18_PZ	10	-	4	-	1	-	-
2021	SD19_DH	11	-	4	-	1	-	-
2021	SD20_DH	10	-	4	-	1	-	-
2021	SD21_PZ	5	-	4	-	1	-	-
2021	SD22_PZ	13	-	6	-	-	-	1
2021	SD23_PZ	5	-	-	6	-	3	8
2021	SD24_PZ	0	-	-	6	-	3	4
2022	SD25_PZ	0	-	-	6	-	4	7
2022	SD26	0	-	2	-	-	-	-

Tabella 4.2: Operazioni in foro nella campagna d'indagini 2021/2022

Di seguito si riporta una tabella riepilogativa delle prove SPT eseguite.

SS 51 "Alemagna"

Variante di Longarone

VE407

Relazione Geotecnica

Sondaggio	Da [m]	SPT	Sondaggio	Da [m]	SPT	Sondaggio	Da [m]	SPT
SD00A_DH	3,0	10-12-17	SD02_DH	27,0	20-23-36	SD07_DH	15,0	R
SD00A_DH	6,0	9-25-42	SD02_DH	30,0	11-12-15	SD07_DH	18,0	29-38-R
SD00A_DH	9,0	11-17-19	SD02_DH	33,0	14-13-17	SD07_DH	21,0	28-41-R
SD00A_DH	12,0	9-14-21	SD03_PZ	3,0	27-R	SD07_DH	24,0	36-R
SD00A_DH	15,0	12-19-21	SD03_PZ	6,0	31-R	SD07_DH	27,0	26-41-45
SD00A_DH	18,0	7-15-21	SD03_PZ	9,0	25-37-R	SD07_DH	30,0	31-39-42
SD00A_DH	21,0	3-11-20	SD03_PZ	12,0	16-R	SD08_DH	3,0	12-17-21
SD00A_DH	24,0	10-16-23	SD03_PZ	15,0	R	SD08_DH	6,0	14-15-19
SD00A_DH	27,0	13-19-27	SD03_PZ	18,0	21-33-R	SD08_DH	9,0	17-19-23
SD00A_DH	30,0	12-21-29	SD03_PZ	21,0	R	SD08_DH	12,0	14-18-21
SD00A_DH	33,0	17-21-31	SD03_PZ	24,0	18-21-30	SD08_DH	15,0	17-19-24
SD00B_DH	3,0	21-27-32	SD03_PZ	27,0	19-35-25	SD08_DH	18,0	15-21-28
SD00B_DH	6,0	18-24-25	SD03_PZ	30,0	21-39-24	SD08_DH	21,0	23-24-33
SD00B_DH	9,0	15-25-31	SD03_PZ	33,0	39-47-R	SD08_DH	24,0	20-22-31
SD00B_DH	12,0	12-20-21	SD03_PZ	36,0	41-R	SD08_DH	27,0	21-24-37
SD00B_DH	15,0	15-22-27	SD03_PZ	39,0	36-41-45	SD08_DH	30,0	24-20-35
SD00B_DH	18,0	13-21-23	SD05_PZ	3,0	10-19-26	SD08_DH	33,0	21-26-31
SD00B_DH	21,0	19-26-30	SD05_PZ	6,0	11-15-20	SD09_PZ	3,0	15-18-19
SD00B_DH	24,0	9-14-15	SD05_PZ	9,0	11-20-34	SD09_PZ	6,0	13-15-17
SD00B_DH	27,0	12-16-16	SD05_PZ	12,0	12-24-34	SD09_PZ	9,0	15-18-23
SD00B_DH	30,0	15-18-16	SD05_PZ	15,0	13-23-40	SD09_PZ	12,0	19-21-38
SD00B_DH	33,0	10-17-19	SD05_PZ	18,0	23-33-41	SD09_PZ	15,0	11-17-34
SD01_DH	3,0	10-27-38	SD05_PZ	21,0	21-18-33	SD09_PZ	18,0	7-15-21
SD01_DH	6,0	19-23-32	SD05_PZ	24,0	10-25-30	SD09_PZ	21,0	19-23-30
SD01_DH	9,0	21-19-38	SD05_PZ	27,0	23-29-31	SD09_PZ	24,0	9-14-23
SD01_DH	12,0	12-24-41	SD05_PZ	30,0	20-25-31	SD09_PZ	27,0	11-13-25
SD01_DH	15,0	19-23-43	SD05_PZ	33,0	19-20-27	SD09_PZ	30,0	12-24-41
SD01_DH	18,0	23-33-45	SD06_PZ	3,0	19-21-31	SD09_PZ	33,0	11-23-34
SD01_DH	21,0	23-23-16	SD06_PZ	6,0	21-26-29	SD09_bis_PZ	3,0	15-21-24
SD01_DH	24,0	5-8-15	SD06_PZ	9,0	36-R	SD09_bis_PZ	6,0	30-33-34
SD01_DH	27,0	9-11-17	SD06_PZ	12,0	R	SD09_bis_PZ	9,0	34-29-32
SD01_DH	30,0	6-7-8	SD06_PZ	15,0	32-44-R	SD09_bis_PZ	12,0	R
SD01_DH	33,0	3-4-4	SD06_PZ	18,0	37-36-44	SD09_bis_PZ	15,0	23-21-34
SD02_DH	3,0	9-20-34	SD06_PZ	21,0	3-3-4	SD09_bis_PZ	18,0	17-24-29
SD02_DH	6,0	12-18-20	SD06_PZ	24,0	2-3-4	SD09_bis_PZ	21,0	20-31-37
SD02_DH	9,0	10-15-21	SD06_PZ	27,0	4-6-7	SD09_bis_PZ	24,0	31-35-36
SD02_DH	12,0	12-19-32	SD06_PZ	30,0	5-7-7	SD09_bis_PZ	27,0	30-R
SD02_DH	15,0	21-19-38	SD07_DH	3,0	R	SD09_bis_PZ	30,0	22-21-31
SD02_DH	18,0	19-23-35	SD07_DH	6,0	R	SD09_bis_PZ	33,0	27-33-33
SD02_DH	21,0	22-20-39	SD07_DH	9,0	31-R	SD09_ter_DH	3,0	11-14-19
SD02_DH	24,0	8-13-16	SD07_DH	12,0	R	SD09_ter_DH	6,0	12-19-21

SS 51 "Alemagna"

Variante di Longarone

VE407

Relazione Geotecnica

Sondaggio	Da [m]	SPT	Sondaggio	Da [m]	SPT	Sondaggio	Da [m]	SPT
SD09_ter_DH	9,0	11-14-22	SD12_bis_PZ	6,0	5-7-10	SD16_DH	21,0	41-47-R
SD09_ter_DH	12,0	20-18-32	SD12_bis_PZ	9,0	7-9-10	SD16_DH	24,0	44-45-R
SD09_ter_DH	15,0	17-19-29	SD12_bis_PZ	12,0	10-3-14	SD16_DH	27,0	36-37-R
SD09_ter_DH	18,0	11-17-28	SD12_bis_PZ	15,0	11-10-15	SD16_DH	30,0	31-39-45
SD09_ter_DH	21,0	20-18-32	SD12_bis_PZ	18,0	12-13-16	SD16_DH	33,0	36-R
SD09_ter_DH	24,0	18-21-30	SD12_bis_PZ	21,0	14-17-20	SD17_DH	3,0	17-21-27
SD09_ter_DH	27,0	19-23-34	SD12_bis_PZ	24,0	13-15-19	SD17_DH	6,0	R
SD09_ter_DH	30,0	20-24-31	SD12_bis_PZ	27,0	12-17-23	SD17_DH	9,0	R
SD10_DH	3,0	17-15-24	SD12_bis_PZ	30,0	20-23-25	SD17_DH	12,0	21-26-34
SD10_DH	6,0	10-21-34	SD12_bis_PZ	33,0	18-23-24	SD17_DH	15,0	20-31-R
SD10_DH	9,0	11-18-20	SD13_DH	3,0	7-5-4	SD17_DH	18,0	37-R
SD10_DH	12,0	19-4-40	SD13_DH	6,0	23-20-21	SD17_DH	21,0	30-45-47
SD10_DH	15,0	12-19-30	SD13_DH	9,0	27-31-35	SD17_DH	24,0	R
SD10_DH	18,0	12-15-17	SD13_DH	12,0	R	SD17_DH	27,0	17-23-31
SD10_DH	21,0	13-17-19	SD13_DH	15,0	37-39-45	SD17_DH	30,0	39-R
SD10_DH	24,0	17-19-34	SD13_DH	18,0	R	SD17_DH	33,0	15-25-R
SD10_DH	27,0	23-30-39	SD13_DH	21,0	11-10-10	SD18_PZ	3,0	15-19-25
SD10_DH	30,0	21-27-36	SD13_DH	24,0	31-R	SD18_PZ	6,0	20-24-27
SD10_DH	33,0	19-25-33	SD13_DH	27,0	21-30-31	SD18_PZ	9,0	R
SD11_PZ	3,0	16-20-23	SD13_DH	30,0	19-37-41	SD18_PZ	12,0	21-R
SD11_PZ	6,0	15-19-42	SD13_DH	33,0	30-36-39	SD18_PZ	15,0	39-44-R
SD11_PZ	9,0	17-22-29	SD13_DH	36,0	41-R	SD18_PZ	18,0	21-25-29
SD11_PZ	12,0	19-18-22	SD14_DH	3,0	17-21-33	SD18_PZ	21,0	19-27-31
SD11_PZ	15,0	17-21-32	SD14_DH	6,0	50-R	SD18_PZ	24,0	29-27-32
SD11_PZ	18,0	18-19-27	SD14_DH	9,0	26-R	SD18_PZ	27,0	30-33-37
SD11_PZ	21,0	21-24-33	SD14_DH	12,0	19-23-31	SD18_PZ	30,0	27-31-35
SD11_PZ	24,0	11-14-27	SD14_DH	15,0	17-25-30	SD19_DH	3,0	25-35-R
SD12_PZ	3,0	6-9-14	SD14_DH	18,0	16-20-26	SD19_DH	6,0	39-39-R
SD12_PZ	6,0	5-7-8	SD14_DH	21,0	R	SD19_DH	9,0	47R
SD12_PZ	9,0	8-12-14	SD14_DH	24,0	28-33-41	SD19_DH	12,0	31-45-R
SD12_PZ	12,0	11-9-13	SD14_DH	27,0	21-27-36	SD19_DH	15,0	37-36-44
SD12_PZ	15,0	13-18-22	SD14_DH	30,0	29-32-38	SD19_DH	18,0	27-35-47
SD12_PZ	18,0	15-19-17	SD14_DH	33,0	28-33-36	SD19_DH	21,0	29-31-39
SD12_PZ	21,0	10-16-15	SD16_DH	3,0	R	SD19_DH	24,0	37-39-R
SD12_PZ	24,0	7-9-15	SD16_DH	6,0	R	SD19_DH	27,0	31-35-41
SD12_PZ	27,0	12-18-21	SD16_DH	9,0	38-R	SD19_DH	30,0	41-40-39
SD12_PZ	30,0	13-14-17	SD16_DH	12,0	43-R	SD19_DH	33,0	37-45-49
SD12_PZ	33,0	18-13-23	SD16_DH	15,0	45-41-39	SD20_DH	3,0	9-10-13
SD12_bis_PZ	3,0	6-9-12	SD16_DH	18,0	31-37-R	SD20_DH	6,0	29-R

Tabella 4.3: Risultati delle Prove Penetrometriche Dinamiche SPT

VE407

Relazione Geotecnica

Di seguito si riporta l'elenco dei campioni prelevati, distinguendoli in:

- CR: campioni rimaneggiati;
- CI: campioni indisturbati;
- CL: campioni di roccia lapidea.

Sondaggio	Profon	dità [m]	Campiono	
Solidaggio	da	а	campione	
SD00A_DH	3,0	3,5	CR1	
SD00A_DH	7,0	7,5	CR2	
SD00A_DH	12,5	13,0	CR3	
SD00A_DH	13,5	14,5	CR4	
SD00A_DH	19,0	19,5	CR5	
SD00A_DH	27,5	28,0	CR6	
SD00B_DH	2,0	3,0	CR1	
SD00B_DH	7,0	7,5	CR2	
SD00B_DH	12,5	13,0	CR3	
SD00B_DH	19,0	19,5	CR4	
SD00B_DH	25,0	25,5	CR5	
SD00B_DH	30,0	30,5	CR6	
SD01_DH	2,0	2,5	CR1	
SD01_DH	5 <i>,</i> 0	5,5	CR2	
SD01_DH	12,0	12,5	CR3	
SD01_DH	17,5	18,0	CR4	
SD01_DH	23,0	23,5	CR5	
SD01_DH	30,0	30,5	CR6	
SD02_DH	2,0	3,0	CR1	
SD02_DH	5,0	5,5	CR2	
SD02_DH	11,0	12,0	CR3	
SD02_DH	17,5	18,0	CR4	
SD02_DH	24,5	25,0	CI1	
SD03_PZ	2,5	3,0	CR1	
SD03_PZ	6,5	7,0	CR2	
SD03_PZ	15,5	16,0	CR3	
SD03_PZ	25,5	26,0	CR4	
SD05_PZ	2,0	3,0	CR1	
SD05_PZ	10,0	10,5	CR2	
SD05_PZ	21,0	22,0	CR3	
SD05_PZ	28,0	28,5	CR4	
SD06_PZ	2,0	2,5	CR1	
SD06_PZ	5,0	5,5	CR2	
SD06_PZ	9,0	9,5	CR3	
SD06_PZ	15,5	16,0	CR4	

Candagaia	Profon	dità [m]	Campiona	
Sondaggio	da	а	Campione	
SD06_PZ	22,5	23,0	CI1	
SD07_DH	2,0	2,5	CR1	
SD07_DH	5 <i>,</i> 0	5,5	CR2	
SD07_DH	7,0	7,5	CR3	
SD07_DH	12,5	13,0	CR4	
SD08_DH	2,0	2,5	CR1	
SD08_DH	7,0	8,0	CR2	
SD08_DH	13,5	14,0	CR3	
SD08_DH	21,0	21,5	CR4	
SD08_DH	29,0	29,5	CR5	
SD09_PZ	2,5	3,0	CR1	
SD09_PZ	7,0	8,0	CR2	
SD09_PZ	13,5	14,0	CR3	
SD09_PZ	21,0	21,5	CR4	
SD09_PZ	29,5	30,0	CR5	
SD09_bis_PZ	2,0	2,5	CR1	
SD09_bis_PZ	7,5	8,0	CR2	
SD09_bis_PZ	15,5	16,0	CR3	
SD09_bis_PZ	25 <i>,</i> 5	26,0	CR4	
SD09_ter_DH	2,0	3,0	CR1	
SD09_ter_DH	7,0	8,0	CR2	
SD09_ter_DH	13,5	14,0	CR3	
SD09_ter_DH	21,0	21,5	CR4	
SD09_ter_DH	29,5	30,0	CR5	
SD10_DH	2,5	3,0	CR1	
SD10_DH	7,0	7,5	CR2	
SD10_DH	10,0	11,0	CR3	
SD10_DH	16,5	17,0	CR4	
SD10_DH	26,5	27,0	CR5	
SD11_PZ	2,5	3,0	CR1	
SD11_PZ	8,5	9,0	CR2	
SD11_PZ	13 <i>,</i> 5	14,0	CR3	
SD11_PZ	17,0	18,0	CR4	
SD11_PZ	21,5	22,0	CR5	
SD12_PZ	2,5	3,0	CR1	

	SS 51 "Alemagna"	6
	Variante di Longarone	anac
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

Sondaggio	Proton	dita [m]	Campiono	
Sondaggio	da	а	Campione	
SD12_PZ	7,0	8,0	CR2	
SD12_PZ	13,0	14,0	CR3	
SD12_PZ	19,0	20,0	CR4	
SD12_PZ	24,0	25,0	CR5	
SD12_PZ	31,0	32,0	CR6	
SD12_bis_PZ	2,0	3,0	CR1	
SD12_bis_PZ	7,0	8,0	CR2	
SD12_bis_PZ	13,0	14,0	CR3	
SD12_bis_PZ	19,0	20,0	CR4	
SD12_bis_PZ	23,0	24,0	CR5	
SD12_bis_PZ	29,0	30,0	CR6	
SD13_DH	2,5	3,0	CR1	
SD13_DH	5,5	6,0	CR2	
SD13_DH	10,5	11,0	CR3	
SD13_DH	15,5	16,0	CR4	
SD13_DH	19,5	20,0	CR5	
SD13_DH	21,5	22,0	CR6	
SD13_DH	26,5	27,0	CR7	
SD13_DH	32,5	33,0	CR8	
SD14_DH	3,0	4,0	CR1	
SD14_DH	7,0	10,0	CR2	
SD14_DH	11,5	12,5	CR3	
SD14_DH	17,0	17,5	CR4	
SD14_DH	22,0	22,5	CR5	
SD14_DH	29 <i>,</i> 5	30,0	CR6	
SD16_DH	3,0	4,0	CR1	
SD16_DH	5,0	5,5	CR2	
SD16_DH	12,5	13,0	CR3	
SD16_DH	19,5	20,0	CR4	
SD17_DH	2,0	2,5	CR1	
SD17_DH	7,5	8,0	CR2	
SD17_DH	15,5	16,0	CR3	
SD17_DH	25,5	26,0	CR4	
SD18_PZ	2,5	3,0	CR1	
SD18_PZ	6,5	7,0	CR2	
SD18_PZ	14,0	14,5	CR3	
SD18_PZ	20,0	20,5	CR4	
SD19 DH	1,5	2,0	CR1	

Constantia	Profon	dità [m]	Complement
Sondaggio	da	а	Campione
SD19_DH	5,0	5,5	CR2
SD19_DH	12,5	13,0	CR3
SD19_DH	19,5	20,0	CR4
SD20_DH	2,0	2,5	CR1
SD20_DH	5,0	5,5	CR2
SD20_DH	12,5	13,0	CR3
SD20_DH	19,5	20,0	CR4
SD21_PZ	3,0	3,5	CR1
SD21_PZ	6,0	6,5	CR2
SD21_PZ	11,5	12,0	CR3
SD21_PZ	15,5	16,0	CR4
SD22_PZ	26,0	26,5	CR1
SD22_PZ	27,0	27,5	CR2
SD22_PZ	30,0	30,5	CR3
SD22_PZ	32,5	33,0	CR4
SD22_PZ	35 <i>,</i> 0	35 <i>,</i> 5	CR5
SD22_PZ	38,0	39,0	CR6
SD23_PZ	45 <i>,</i> 5	46,5	CL1
SD23_PZ	47,0	48,0	CL2
SD23_PZ	49,0	50,0	CL3
SD23_PZ	52,0	53 <i>,</i> 0	CL4
SD23_PZ	55,0	56 <i>,</i> 0	CL5
SD23_PZ	57,5	58,0	CL6
SD24_PZ	70,0	71,0	CL1
SD24_PZ	72,0	73,0	CL2
SD24_PZ	75,0	76,0	CL3
SD24_PZ	80,0	81,0	CL4
SD24_PZ	80,0	81,0	CL5
SD24_PZ	83 <i>,</i> 0	84,0	CL6
SD25_PZ	115,0	116,0	CL1
SD25_PZ	117,5	118,5	CL2
SD25_PZ	120,0	121,0	CL3
SD25_PZ	123,0	124,0	CL4
SD25_PZ	126,5	127,5	CL5
SD25_PZ	128,0	129,0	CL6
SD26	1,0	2,0	CR1
SD26	3,0	4,0	CR2

Tabella 4.4: Campioni litoidi, indisturbati e rimaneggiati prelevati

	SS 51 "Alemagna"	6
	Variante di Longarone	Sanac
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

Sono state eseguite, durante la campagna, 30 prove di permeabilità Léfranc, 10 prove Lugeon e 20 prove dilatometriche:

Anna Candaraia		Profondità		Perm.	Perm.	Dilat	A 19 19 5	Candanaia	Profo	ndità	Perm.	Perm.	Dilat
Anno	Sondaggio	da[m]	a[m]	Lefranc	Lugeon	Dilat.	Anno	Sondaggio	da[m]	a[m]	Lefranc	Lugeon	Dilat.
2021	SD00A_DH	9,7	9,2	LEF1	-	-	2021	SD17_DH	8,5	9,0	LEF1	-	-
2021	SD00A_DH	20,5	21,0	LEF2			2021	SD18_PZ	11,5	12,0	LEF1	-	-
2021	SD00B_DH	10,0	10,5	LEF1	-	-	2021	SD19_DH	13,0	13,5	LEF1	-	-
2021	SD00B_DH	14,5	15,0	LEF2			2021	SD20_DH	11,5	12,0	LEF1	-	-
2021	SD01_DH	14,5	15,0	LEF1	-	-	2021	SD21_PZ	14,5	15,0	LEF1	-	-
2021	SD01_DH	29,5	30,0	LEF2			2021	SD22_PZ	46,0	47,0	-	-	DIL1
2021	SD02_DH	8,5	9,0	LEF1	-	-	2021	SD23_PZ	39 <i>,</i> 5	44,5	-	LUG1	-
2021	SD02_DH	26,5	27,0	LEF2			2021	SD23_PZ	44,0	45 <i>,</i> 0	-	-	DIL1
2021	SD03_PZ	20,5	21,0	LEF1	-	-	2021	SD23_PZ	46,0	47,0	-	-	DIL2
2021	SD05_PZ	11,5	12,0	LEF1	-	-	2021	SD23_PZ	47,0	48,0	-	-	DIL3
2021	SD05_PZ	19,3	19,8	LEF2			2021	SD23_PZ	46,0	51,0	-	LUG2	-
2021	SD06_PZ	5 <i>,</i> 5	6,0	LEF1	-	-	2021	SD23_PZ	49,0	50 <i>,</i> 0	-	-	DIL4
2021	SD06_PZ	17,5	18,0	LEF2			2021	SD23_PZ	51,0	52 <i>,</i> 0	-	-	DIL5
2021	SD07_DH	5 <i>,</i> 5	6,0	LEF1	-	-	2021	SD23_PZ	53 <i>,</i> 0	54 <i>,</i> 0	-	-	DIL6
2021	SD07_DH	14,5	15,0	LEF2			2021	SD23_PZ	54 <i>,</i> 0	55 <i>,</i> 0	-	-	DIL7
2022	SD08_DH	14,5	15,0	LEF1	-	-	2021	SD23_PZ	57,0	58,0	-	-	DIL8
2022	SD08_DH	20,5	21,0	LEF2			2021	SD23_PZ	57 <i>,</i> 0	62,0	-	LUG3	-
2021	SD09_PZ	11,5	12,0	LEF1	-	-	2021	SD24_PZ	55 <i>,</i> 0	60,0	-	LUG1	
2021	SD09_PZ	17,5	18,0	LEF2			2021	SD24_PZ	69 <i>,</i> 0	70,0	-	-	DIL1
2021	SD09_bis_PZ	10,0	10,5	LEF1	-	-	2021	SD24_PZ	72,0	77,0	-	LUG2	-
2021	SD09_ter_DH	11,5	12,0	LEF1	-	-	2021	SD24_PZ	74,0	75 <i>,</i> 0	-	-	DIL2
2021	SD09_ter_DH	17,5	18,0	LEF2			2021	SD24_PZ	79 <i>,</i> 0	80,0	-	-	DIL3
2021	SD10_DH	10,5	11,0	LEF1	-	-	2021	SD24_PZ	79 <i>,</i> 5	85 <i>,</i> 5	-	LUG3	-
2021	SD10_DH	23,5	24,0	LEF2			2021	SD24_PZ	84,0	85 <i>,</i> 0	-	-	DIL4
2021	SD11_PZ	9,9	10,4	LEF1	-	-	2022	SD25_PZ	111,8	116,8	-	LUG1	-
2021	SD11_PZ	15,5	16,0	LEF2			2022	SD25_PZ	115,0	116,0	-	-	DIL1
2022	SD12_PZ	12,0	12,5	LEF1	-	-	2022	SD25_PZ	116,0	117,0	-	-	DIL2
2022	SD12_PZ	20,0	20,5	LEF2			2022	SD25_PZ	117,0	118,0	-	-	DIL3
2022	SD12_bis_PZ	13,0	13,5	LEF1	-	-	2022	SD25_PZ	118,5	119,5	-	-	DIL4
2022	SD12_bis_PZ	19,0	19,5	LEF2			2022	SD25_PZ	117,0	122,0	-	LUG2	-
2021	SD13_DH	10,0	10,5	LEF1	-	-	2022	SD25_PZ	122,0	123,0	-	-	DIL5
2021	SD13_DH	16,0	16,5	LEF2			2022	SD25_PZ	125,0	126,0	-	-	DIL6
2022	SD14_DH	13,1	13,5	LEF1	-	-	2022	SD25_PZ	122,8	127,8	-	LUG3	-
2022	SD14_DH	21,0	21,5	LEF2			2022	SD25_PZ	128,0	129,0	-	-	DIL7
2021	SD16_DH	17,5	18,0	LEF1	-	-	2022	SD25_PZ	128,0	133,0	-	LUG4	-

Tabella 4.5: Posizione delle prove Lèfranc, Lugeon e dilatometriche

	SS 51 "Alemagna" Variante di Longarone	Sanac
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

In laboratorio si è proceduto all'esecuzione di cicli completi di prove d'identificazione consistenti in determinazioni del contenuto d'acqua naturale, del peso di volume naturale, secco e dei granuli, della massa volumica reale, della porosità, dell'indice dei vuoti, del grado di saturazione, dei limiti di Atterberg, del limite di ritiro, della composizione granulometrica per stacciatura e sedimentazione.

Sono state anche eseguite prove meccaniche (prove di compressione edometrica, prove di taglio diretto consolidate drenate CD).

Su campioni di roccia lapidea sono state eseguite prove di compressione monoassiale con misura delle deformazioni assiali, prove point load e prove di compressione triassiale.

SS 51 "Alemagna"

Variante di Longarone

VE407

Relazione Geotecnica

5 CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Ai fini della caratterizzazione geotecnica dei terreni e delle rocce interessati dalla galleria si è fatto riferimento ai risultati della campagna di indagini, richiamate nel paragrafo precedente, a conoscenze acquisite dallo studio delle carte geologiche e a dati di letteratura.

I terreni e le rocce che ricadono nel volume di terreno significativo ai fini geotecnici sono stati raggruppati in 2 classi, per ciascuna delle quali possono distinguersi i termini principali indicati nella tabella che segue.

	Terreni sciolti					
FLG	Ghiaie e Sabbie , ghiaie con sabbia e sabbie con ghiaie, spesso da limose a debolmente limose, raramente con ciottoli, di origine fluvio-glaciale blandamente cementate. I grani presentano spesso spigoli arrotondati. Colore dall'avana al beige al biancastro, con rari segmenti giallastri. Rara presenza di sezioni più limose a profondità elevate.					
	Rocce lapidee					
Ca	Calcari e calcareniti , color grigio chiaro con patine e zone ossidate color avana, con discontinuità spesso ricementate. Presenta di fratture variamente orientate da sub-orizzontali a inclinate di circa 45°. Le discontinuità si presentano lisce e parzialmente ossidate. A zone l'ammasso risulta più fratturato.					

Tabella 5.1: Classificazione geotecnica dei terreni

Per ciascun sondaggio sono indicati i terreni riconosciuti dall'esame delle stratigrafie, la posizione dei campioni indisturbati e dei piezometri, i valori N₃₀ ricavati dalle prove SPT, la profondità della falda ove presente.

Si rimanda alla relazione geotecnica T00GE00GETRE01A per la caratterizzazione di tutte le unità interessate dal tracciato.

Dal punto di vista geotecnico è possibile osservare come la galleria attraversi stratigrafie omogenee costituite da terreni FLG a ricoprimento dell'ammasso Ca nei primi 200 m e nei calcari Ca successivamente.

Nelle pagine che seguono si illustrano, per ciascuno dei terreni indicati nella classificazione geotecnica, le principali caratteristiche fisiche e meccaniche determinate con le indagini in sito e di laboratorio. In particolare, si è fatto riferimento alle campagne di indagine recenti eseguite sui terreni di fondazione, i cui risultati sono riportati negli specifici elaborati allegati al progetto, corredati di tabelle di sintesi, ai quali si rimanda per i dettagli sui valori sperimentali analizzati nella presente relazione.

I terreni a granulometria prevalentemente sabbioso-ghiaiosa sono stati caratterizzati da parametri di resistenza in termini di sforzi effettivi, determinati sulla base di correlazioni con i risultati delle prove penetrometriche dinamiche SPT utilizzando le seguenti correlazioni:

- Shioi & Fukuni (1982): φ' = 0,3×N₆₀+27°;
- Peck, Hanson and Thornburn (1956): $\varphi' = 0.28 \times N_{SPT}+27.2^{\circ}$.

Per la determinazione della densità relativa Dr dei terreni sabbioso-ghiaiosi si è fatto riferimento alle correlazioni che legano il numero di colpi N_{SPT} a Dr:

• Gibbs & Holtz (1957):

$$N_{SPT} = \left(17 + 24 \cdot \frac{\sigma_{v0}}{p_a}\right) \cdot D_R^2$$

 Schultze & Mezembach (1961): In(Dr%) = 0,478×In(N_{SPT})-0,262×In(σ'_{ν0})+2,84.

l valori del modulo di taglio G_0 e del modulo di elasticità E_0 iniziali sono stati ricavati a partire dai valori della velocità delle onde di taglio Vs ottenuti indirettamente a partire dai valori di N_{SPT}. La velocità di propagazione delle onde di taglio Vs può essere ricavata direttamente dai risultati delle prove Down-Hole oppure valutata indirettamente, dai risultati delle prove SPT, per mezzo dell'equazione di Ohta & Goto (1978):

$$Vs = 67,3 \times N_{60}^{0.17} \times z^{0.199} \times A \times B$$

dove:

- ✓ z è la profondità di calcolo (m dal p.c.) della velocità di propagazione delle onde di taglio;
- ✓ A è il fattore che tiene conto dell'età geologica del deposito (v. tabella sotto);
- ✓ B è il fattore che tiene conto della granulometria del deposito (v. tabella sotto).

	Depositi recenti	Depositi antichi
А	1,0	1,3

Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito

	Ghiaia	Sabbia ghiaiosa	Sabbia grossa	Sabbia media	Sabbia fina
В	3500	3287	20336	329	62

Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito

Il modulo di taglio a piccolissime deformazioni G_0 si ricava dalla seguente espressione:

$$G_0 = Vs^2 \gamma/g$$

dove:

 \checkmark γ è il peso dell'unità di volume del terreno (kN/m³);

✓ g è l'accelerazione di gravità pari a 9.81 m/sec².

Pertanto, risulta:

$$E_0 = 2 G_0 (1+v)$$

con v modulo di Poisson.

	SS 51 "Alemagna"	6
	Variante di Longarone	anas
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

Per la stima del modulo elastico operativo E'op dei terreni a granulometria prevalentemente sciolta a partire dai risultati delle prove SPT, si è fatto ricorso a relazioni empiriche:

 \Box E'_{op} = 2,0×N₆₀ (Schmertmann - per sabbia a grana grossa)

 \Box E'_{op} = (191+7,71×N₆₀)/10 (D'Appolonia – per sabbia e ghiaia normalmente consolidata)

 \Box E'_{op} = 1,2×(6+N₆₀/60×55) (European Conference on SPT, 1974 – per sabbia ghiaiosa e ghiaia. Per caratterizzare l'ammasso roccioso si ricorre alla classificazione di Bieniawsky e ai criteri di rottura di Hoek-Brown e Mohr-Coulomb.

La classificazione di Bieniawsky prevede la determinazione dell'indice RMR (Rock Mass Rating) attraverso lo studio delle caratteristiche della roccia intatta e dei sistemi di discontinuità dell'ammasso, determinabili tramite prove in laboratorio e misure in sito.

$$RMR = A_1 + A_2 + A_3 + A_4 + A_5 + A_6$$

con:

- A₁ parametro dipendente dalla resistenza a compressione monoassiale della roccia intatta σci;
- A₂ parametro dipendente dall'indice RQD (Rock Quality Designation), determinabile dall'osservazione delle cassette dei carotaggi;
- A₃ parametro dipendente dalla spaziatura delle discontinuità;
- A₄ parametro dipendente dalle caratteristiche delle discontinuità (persistenza, apertura, rugosità, alterazione, riempimento);
- A₅ parametro dipendente dalle condizioni idrauliche riferite ad un fronte di 10 m;
- A₆ parametro di correzione per l'orientamento delle discontinuità rispetto al fronte di scavo, differenziato per gallerie e fondazioni.

Il criterio di Hoek-Brown permette di determinare le caratteristiche dell'ammasso roccioso sulla base dei seguenti parametri:

- σ_{ci};
- GSI, Geological Strength Index, calcolato dall'RMR nelle condizioni di assenza di venute d'acqua, orientazione molto favorevole delle discontinuità e riducendo tale valore di 5;
- m_i, parametro costante dipendente dal materiale dell'ammasso;
- D, grado di disturbo dell'ammasso causato dallo scavo;
- γ_{rm} , densità dell'ammasso roccioso;
- h, profondità rispetto al piano campagna della galleria.

Durante i successivi calcoli si utilizzeranno i parametri di resistenza alla Mohr-Coulomb, determinati in funzione dei parametri di Hoek-Brown attraverso le seguenti relazioni:

$$\varphi' = \sin^{-1} \left(\frac{6am_b(s+m_b\sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b(s+m_b\sigma'_{3n})^{a-1}} \right)$$

$$c' = \frac{\sigma_{ci} ((1+2a)s+(1-a)m_b\sigma'_{3n})(s+m_b\sigma'_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1 + \frac{(6am_b(s+m_b\sigma'_{3n})^{a-1})}{(1+a)(2+a)}}} / ((1+a)(2+a))$$

con:

	SS 51 "Alemagna" Variante di Longarone	Sanac
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

- a, s costanti per l'ammasso roccioso calcolati sulla base del GSI e del grado di disturbo D;
- m_b, valore ridotto dell'mi per l'ammasso;

-
$$\sigma'_{3n} = \frac{\sigma'_{3max}}{\sigma_{ci}}$$
.

VE407

Relazione Geotecnica

5.1 Terreni sciolti

5.1.1 Materiale di riporto – TR

Terreno vegetale, di spessore generalmente pari a 50-100 cm, di natura eterogenea, spesso rimaneggiato, con granulometria da sabbia e ghiaia a sabbia con limo con frequenti ciottoli arrotondati e colore da beige a marrone, spesso con componente vegetale. La natura del terreno è variabile, spesso materiale di riporto TR (rinterro, cemento, etc.) o detrito dtr.

5.1.2 Alluvioni fluvio-glaciali a grana grossa – FLG

Le alluvioni fluvio-glaciali a grana grossa FLG sono state rinvenute tra le progressive 0+840 e 3+100, 8+660 e 9+960 con spessori fino ad oltre 30 m e rare lenti a grana più fina.

La composizione granulometrica è variabile da ghiaia e sabbie a ghiaie con sabbie a sabbie con ghiaie, spesso da limose a debolmente limose, raramente con ciottoli, blandamente cementate. I grani presentano spesso spigoli arrotondati. Rara presenza di sezioni più limose a profondità elevate. Le percentuali di passante in peso di ghiaia e di sabbia mediamente risultano pari al 60% e al 20%, mentre la percentuale di fine si attesta mediamente al 17%.

Si osserva, di seguito, la distribuzione delle percentuali del passante in peso con la profondità per i campioni identificati come FLG. In particolare si indica:

- %G: percentuale di passante in peso di ghiaia;
- %S: percentuale di passante in peso di sabbia;
- %L: percentuale di passante in peso di limo;
- %A: percentuale di passante in peso di argilla.

Figura 5.1: Terreni FLG – Andamento del passante in peso con la profondità

In corrispondenza dei campioni con componente limosa più elevata sono stati valutati i limiti di Atterberg, ottenendo i seguenti valori di limite di liquidità W_L e di plasticità W_P :

Il peso dell'unità di volume naturale γ è compreso tra 20 e 21 kN/m³.

Le prove SPT hanno fornito valori principalmente a rifiuto, si procede a riportare di seguito i valori non a rifiuto:

Figura 5.2: Terreni FLG – Valori di N₃₀ da prove SPT

Si evidenzia in particolare un'area, in basso a sinistra nel diagramma sopra riportato, con risultati notevolmente minori degli altri. Tali dati sono relativi al medesimo sondaggio SD06_PZ e a profondità successive. La concomitanza di tali risultati e l'osservazione delle cassette catalogatrici ha permesso di evidenziare che in tale sondaggio, a profondità maggiori di 21 m, è presente una lente di terreni a grana prevalentemente fine con estensione non definibile. Questi quattro valori non verranno quindi considerati nella determinazione di seguito riportata in quanto non determinati nei terreni limitrofi alla galleria.

Dal'elaborazione delle prove SPT si ricavano i seguenti intervalli per i valori dell'angolo d'attrito ϕ ' e del modulo elastico operativo E'_{op SPT} in termini di pressioni effettive:

$$\varphi' = 35 \div 43$$
 °; E'_{op SPT} = 40 ÷ 70 MPa.

Di seguito si riportano i diagrammi con le elaborazioni delle prove:

Figura 5.3: Terreni FLG – Valori di angolo di resistenza al taglio da prove SPT

Figura 5.4: Terreni FLG – Valori del modulo elastico operativo da prove SPT

Sul campione SD06-PZ_Cl01 è inoltre stata effettuata una prova di taglio diretto CD, ottenendo un valore di angolo di resistenza al taglio di 24°.

I terreni FLG presentano inoltre una blanda cementazione non apprezzabile dalle cassette catalogatrici. Sulla base dell'esperienza del progettista e in base alle conoscenze acquisite dai sopralluoghi geologici svolti in sito si assegna una coesione efficace approssimativamente pari a 10 kPa per tenere in considerazione la cementazione dell'unità.

VE407

Relazione Geotecnica

5.2 Rocce lapidee

5.2.1 Calcari e calcareniti - Ca

I calcari e le calcareniti Ca sono stati rinvenuti dalle progressive 8+720 fino a fine tracciato come roccia del substrato e spessori non definibili. L'ammasso risulta, con la progressiva, a profondità sempre minori fino a risultare affiorante dopo la progressiva 9+960.

I termini Ca presentano una struttura a tratti massiva a tratti fratturata, con discontinuità variamente orientate da leggermente scabre a lisce e a tratti ricementate compatta lamellare, di colore grigio chiaro con patine e zone ossidate color avana.

La densità γ è generalmente compresa tra 24 e 26 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso si è basata su prove di compressione monoassiale non confinata, su prove point load, su prove triassiali e dell'osservazione delle cassette catalogatrici provenienti dai carotaggi. Per rapportare i valori ottenuti dalle prove point load ai risultati delle prove di compressione monoassiale si considera la seguente relazione:

Figura 5.5: Ca – distribuzione σ_{ci} da prove di compressione monoassiale e point load

VE407

Relazione Geotecnica

La resistenza a compressione monoassiale è sempre compresa tra 20 e 90 MPa, ad esclusione del sondaggio SD25-PZ_CL2 dove si ottiene un valore particolarmente elevato di resistenza a compressione monoassiale di 194 MPa. È possibile notare inoltre come risulti più dispersivo il valore ottenuto da prove point load. Tali prove infatti, da letteratura, forniscono risultati che possono discostarsi dalla vera resistenza a compressione monoassiale del 100% del valore.

Le discontinuità dell'ammasso roccioso sono state caratterizzate considerando dei rilievi effettuati in parete (Geostop) in differenti posizioni, qui di seguito evidenziate.

Figura 5.6: Ubicazione Geostop

Ogni discontinuità è stata misurata un numero di volte compreso tra 3 e 6 al fine di ottenere un valore medio affidabile per lo strato. Si riporta di seguito una tabella riassuntiva delle misure.

GEOSTOP	DIR	DIP
	238	45
	141	42
1	265	61
	355	88
	330	80
	42	21
2	344	89
	258	80

VE407

Relazione Geotecnica

GEOSTOP	DIR	DIP
	35	70
	239	21
2	81	43
3	224	81
	329	89
	288	22
4	310	89
	33	89
	75	80
	342	80
5	106	45
	120	31
	140	89
	354	37
6	321	76
0	50	72
	83	71
	40	31
7	285	81
	261	71
	176	33
8	140	89
	256	71
	48	38
	167	44
	40	61
9	219	50
	102	69
	202	66
- <i>- ,</i>	173	80

Di queste si distinguono:

- Geostop 1, Geostop 2: rilievi effettuati in corrispondenza dell'ammasso roccioso in corrispondenza del viadotto Fason;
- Geostop 3, Geostop 4, Geostop 7, Geostop 8: rilievo effettuato sulle rocce affioranti di interesse per la galleria;
- Geostop 5, Geostop 6: rilievo effettuato sulle rocce affioranti di interesse per la galleria;
- Geostop 9: rilievo effettuato lungo l'asse del tracciato.

Sono state inoltre misurate le caratteristiche dell'ammasso necessaria per la definizione dell'indice RMR, ottenendo:

- Spaziatura generalmente compresa tra 10 e 100 cm, dal quale si è determinato un valore di RMR₃ compreso, a vantaggio di sicurezza, tra 5 e 10;
- Persistenza compresa tra 3 e 20 m, dal quale generalmente è risultato RMR_{4.1} = 2;
- Separazione raramente superiore a 0,1 mm, dal quale generalmente è risultato RMR_{4.2} = 5;
- Scabrezza variabile, con valori di RMR4.3 compresi, a vantaggio di sicurezza, tra 1 e 3;
- Riempimento generalmente assente, dal quale RMR_{4.4} = 6.

La valutazione delle singole componenti dell'indice RMR è variata in funzione delle caratteristiche locali dell'ammasso e dall'osservazione delle cassette catalogatrici.

Per la valutazione delle famiglie di discontinuità lungo l'asse della galleria si considerano i Geostop 3, 4, 5, 6, 7, 8. In particolare si suddividono questi in due gruppi. Il primo (Gruppo A) comprende i Geostop 5 e 6, il secondo (Gruppo B), i Geostop 3, 4, 7, 8. Si riportano di seguito le famiglie di discontinuità individuate dall'elaborazione dei due gruppi:

Figura 5.7: Gruppo A

Famiglia	Dip	Dir
1	74	69
2	78	332
3	38	112
— · · · ·		•

Tabella 5.5: Dip – Dip dir gruppo A

Figura 5.8: Gruppo B

Famiglia	Dip	Dir				
1	71	259				
2	90	320				
3	18	226				
Taballa E C. Dia Dia dia amagana B						

Tabella 5.6: Dip – Dip dir gruppo B

Si considerano, nel dimensionamento della galleria, i singoli Geostop allo scopo di valutare tutte le possibili instabilità dell'ammasso.

Le caratteristiche di resistenza e deformabilità (coesione c, angolo di resistenza al taglio φ , modulo di Young dell'ammasso roccioso E_{rm}) sono state determinate sulla base della teoria di Hoek-Brown per ogni provino testato, interpretando le prove eseguite su roccia intatta sulla base del valore di RQD medio nello strato, del valore di RMR (e conseguentemente del valore di GSI), del grado di disturbo D e di un valore costante di m_i pari a 8, dipendente dalla natura geologica della formazione.

Relazione Geotecnica

Figura 5.9: Ca – valore medio di RQD nello strato

Figura 5.10: Ca – RMR

Le caratteristiche geotecniche dell'ammasso roccioso sono funzione del grado di disturbo dell'ammasso roccioso D e dell'approfondimento rispetto al piano campagna h. In funzione di tali parametri si evidenziano i seguenti casi:

- 1. D = 0.0; $h \approx 100 m$; (asse galleria, fascia non disturbata dalla tecnica di scavo)
- 2. D = 0.5; $h \approx 100 m$; (asse galleria, fascia disturbata dallo scavo)
- 3. D = 0,0; $h \approx 0 m$. (fondazione viadotto)

Ottenendo, di conseguenza, i seguenti risultati, distinti per prove di compressione monoassiale (in blu) e per point load (in rosso):

1.

c = 0,33 \div 1,18 MPa; ϕ = 38 \div 48 °; E_{rm} = 2,4 \div 12,0 GPa.

Figura 5.12: Ca – caratteristiche di resistenza per ammasso disturbato in asse galleria

c = 0,25 \div 0,87 MPa; ϕ = 31 \div 48 °; E_{rm} = 1,8 \div 10,0 GPa.

3.

Figura 5.13: Ca – caratteristiche di resistenza per ammasso non disturbato in fondazione viadotto

c = 0,95 ÷ 3,10 MPa; ϕ = 24 ÷ 31 °; E_{rm} = 2,4 ÷ 10,0 GPa.

In particolare, considerando la presenza di rocce maggiormente fratturate approssimativamente nei primi 5 metri dell'ammasso, si considerino per questi le seguenti caratteristiche minime:

c = 0,73 MPa; ϕ = 21 °; E_m = 1,1 GPa

Durante le prove di compressione monoassiale sono stati calcolati i valori di modulo di Young secante E_{s50} e coefficiente di Poisson v_{50} , calcolati al 50% della tensione a rottura:

Figura 5.15: Ca – coefficiente di Poisson v50

VE407

Relazione Geotecnica

5.3 Falda

L'andamento del pelo libero della falda è stato ricavato dai risultati degli studi geognostici tramite l'installazione di più piezometri a tubo aperto (sondaggi SxxD-PZ), da cui si evince:

□ dal km 9+315 al km 9+500

livello di falda al di sotto dell'asse della galleria nella zona più fratturata dell'ammasso roccioso;

10001050,

 dal km 9+500 al km 9+760 livello di falda a profondità variabile ed influenzato dalle numerose faglie sub-verticali, approssimativamente 15 m al di sopra dell'asse della galleria;

- dal km 9+760 al km 10+280 livello di falda non definibile;
- □ dal km 10+280 al km 10+680

livello di falda a profondità variabile ed influenzato dalle numerose faglie sub-verticali,

approssimativamente 40 m al di sopra dell'asse della galleria;

□ dal km 10+680 al km 10+880 livello di falda non definibile;

Per una visione più completa del livello di falda in tutto il tracciato si rimanda alla relazione geotecnica generale.

La falda potrebbe subire variazioni stagionali.

5.4 Caratterizzazione fisico – meccanica dei terreni

Di seguito sono riportati in sintesi i parametri geotecnici che è possibile attribuire ai terreni che costituiscono il volume significativo ai fini della progettazione.

Tali valori sono stati ricavati sia sulla base delle specifiche prove di laboratorio condotte sui campioni prelevati nel corso dell'ultima campagna di indagini, sia sulla base dei risultati ottenuti dalle prove svolte in sito, sia dai dati acquisiti in occasione di altri lavori su terreni simili a quelli in esame. Si è inoltre fatto riferimento a dati reperibili nella letteratura geotecnica regionale.

I parametri geotecnici valgono per i terreni di tutto il tracciato e con particolare riferimento all'ammasso roccioso della galleria, in considerazione dell'omogeneità di comportamento dei vari termini desunta dai risultati delle indagini in sito e di laboratorio.

Nella tabella che segue si riportano i valori minimi e medi dei parametri fisico-meccanici dei terreni individuati, da utilizzare per il dimensionamento geotecnico e strutturale delle fondazioni delle opere d'arte.

In particolare, si riportano i valori delle seguenti grandezze:

> peso dell'unità di volume naturale γ_n ;

	SS 51 "Alemagna" Variante di Longarone	Sanac
VE407	Relazione Geotecnica	GRUPPO FS ITALIANE

- coesione effettiva c';
- > angolo d'attrito effettivo φ' ;
- > resistenza a rottura della roccia intatta σ_{ci} ;
- rock mass rating RMR;
- modulo di Young operativo E'op;
- modulo di Young dell'ammasso roccioso Erm;
- numero di colpi N_{SPT};

	Peso volume naturale γ _n [kN/m ³]		Ns	N _{SPT} [-]		Angolo di resistenza al taglio φ [°]		
	min	med	min	med	min	med		
FLG	20 20		23	60	35,0	40,0		

	Modulo el. operativo E' _{op} [MPa]		densità r	elativa Dr [%]	coesione eff. c [kPa]		
	min	med	min	med	min	med	
FLG	40	55	60	80	5,0°	10,0°	
	_						

Tabella 5.7: Caratteristiche di progetto dei terreni sciolti

^o Stima effettuata in base alle considerazioni geologiche.

	γ [kN,	/m³]	resist. roccia intatta σci [MPa]		mi [-]	RN	1R [-]
	min	med	min med			min	med
Ca (D=0)	24	25	40,0	55,0	8	40	54
Ca (D=0,5)	24	25	40,0* 55,0		8	40	54

	c' [MPa]		c' [MPa] φ' [°]		E _{rm} [GPa]		E _s [GPa]		ν[-]	
	min	med	min	med	min	med	min	med	min	med
Ca (D=0)	0,33	0,77	38	46	2,4	8,8	29	46	0,22	0,27
Ca (D=0,5)	0,25	0,55	31	42	1,8	6,0	29	46	0,22	0,27

Tabella 5.8: Caratteristiche di progetto delle rocce lapidee per la galleria

5.5 Caratterizzazione sismica dei terreni

La caratterizzazione sismica dei terreni è stata sviluppata nella Relazione Sismica T00GE00GE0RE03A, alla quale si rimanda per i dettagli.

Grazie alla notevole omogeneità dei terreni è possibile assegnare la categoria di sottosuolo C a tutti i terreni compresi tra le progressive 0+000 e 9+300. Oltre tale progressiva, nelle rocce Ca, la categoria passa a B.

VE407

Relazione Geotecnica

6 RAPPORTI OPERE TERRENI

Le conoscenze sui terreni di fondazione acquisite con i rilievi e le indagini hanno consentito di ricostruire con sufficiente dettaglio i rapporti tra le opere in progetto e i terreni di fondazione.

Con riferimento alla classificazione geotecnica riportata nel capitolo precedente, nella tavola P00GN01GETFG01A si illustrano i terreni di fondazione presenti lungo il profilo longitudinale in asse della galleria.

Nelle stesse tavole sono riportate la posizione e la colonnina schematica dei sondaggi e dei pozzetti. Nelle singole colonnine sono indicati il simbolo dell'unità geotecnica, la quota del boccaforo se nota, la profondità della falda se presente, il valore N30 ricavato dalle prove SPT, la posizione dei campioni.

Gli schemi riportati sono da ritenersi puramente indicativi in termini di dimensioni geometriche delle opere, posizione della falda in caso di falda a quota variabile. Per ulteriori dettagli si rimanda agli elaborati specifici (relazione di calcolo, profili longitudinali, sezioni trasversali) della galleria.

La galleria 01 si estende tra i viadotti 06 e 07 e procede:

- Con scavo a cielo aperto tra le progressive 9+315 e 9+365 (imbocco) fino al raggiungimento del ricoprimento minimo di 15 m;
- Con scavo in naturale fino alla progressiva 10+855 (sbocco).

Lo scavo procede con un'inclinazione variabile. I terreni sono stati caratterizzati tramite i sondaggi SD22_PZ, SD23_PZ, SD24_PZ ed SD25_PZ.

La stratigrafia individuata è omogenea. Si sono riconosciute alluvioni FLG approssimativamente nei primi 200 m di scavo in naturale e successivamente calcari Ca. i calcari risultano a zone più fratturate ed è stata considerata la presenza di numerose faglie sub-verticali che interessano l'ammasso.

La falda è stata individuata sopra l'asse della galleria su più livelli separati, la presenza di faglie ha probabilmente determinato una faglia a quota variabile non perfettamente individuabile lungo l'intero asse.

I rapporti che intercorrono tra la galleria e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Figura 6.1: GN01 – schema fisico di riferimento