

PROGETTO DEFINITIVO

Impianto di produzione di energia elettrica da fonte eolica "Monteruga" di potenza nominale pari a 33 MW e relative opere connesse

Titolo elaborato

Analisi preliminare su avifauna e chirotteri

Codice elaborato

F0478BR09A

Scala

_

Riproduzione o consegna a terzi solo dietro specifica autorizzazione.

Progettazione

F4 ingegneria srl

Via Di Giura - Centro direzionale, 85100 Potenza Tel: +39 0971 1944797 - Fax: +39 0971 55452 www.f4ingegneria.it - f4ingegneria@pec.it

Il Direttore Technico (ing. Giovanni Di Santo)

Gruppo di lavoro

Dott. For. Luigi ZUCCARO

Ing. Giorgio ZUCCARO

Ing. Giuseppe MANZI Ing. Mariagrazia PIETRAFESA

Ing. Gerardo SCAVONE

Ing. Flavio Gerardo TRIANI

Arch. Gaia TELESCA Dott.ssa Floriana GRUOSSO

Dott. Francesco NIGRO

Vito PIERRI

Società certificata secondo le norme UNI-EMSO 9001:2015 e UNI-EN ISO 14001:2015 per l'erogazione di servizi di ingegneria nei settori: civile, idraulica, acustica, energia, ambiente (settore IAF: 34).

Consulenze specialistiche

AVIFAUNA E CHIROTTERI

Dott. Domenico Bevacqua

Vico 1 Garibaldi, 5 88056 Tiriolo (CZ)

Committente

wpd Salentina S.r.l. Corso d'Italia 83, 00198 Roma Tel.: +39 06 960 353 01 https://www.wpd-italia.it/

wpdsalentinasrl@legalmail.it

Data	Descrizione	Redatto	Verificato	Approvato
Marzo 2023	Prima emissione	BEVACQUA/GSC	LZU	GDS

File sorgente: 991VQL8_StudioFattibilitaAmbientale_09 - F0478BR09A - Analisi preliminare su avifauna e chirotteri.docx

Sommario

1	Pren	nessa	6
2	L'inc	cidenza degli impianti eolici sull'avifauna	7
	2.1	Sottrazione di habitat / incidenza diretta	7
	2.2	Disturbo / incidenza diretta	9
3	Aree	e a maggior valenza naturalistica nel raggio di 5 km dall'impianto	18
4	Fina	lità dello studio	19
5	Mat	eriali e metodi	20
	5.1	Fonti consultate	20
	5.2	Area di studio	20
	5.3	Frequenza e calendario dei rilievi	21
	5.4	Modalità di esecuzione dei rilievi	21
	5.4.1	Osservazioni da postazione fissa	21
	5.4.2	Rilevamenti mediante transetti lineari (mapping transect)	23
	5.4.3	Rilevamento mediante punti di ascolto	24
	5.4.4	Rilievi notturni	25
	5.4.5	Osservazioni vaganti	26
	5.4.6	Stima del rischio e del numero possibile di collisioni	26
6	Risu	ltati delle attività di monitoraggio	29
	6.1	Specie rilevate nel periodo aprile – settembre 2022	29
	6.1.1	Fenologia	29

	6.1.	2 Rapporto non Passeriformi / Passeriformi	34
(5.2	Esiti dei rilievi eseguiti mediante punti di ascolto primaverili	35
	6.2.	1 Indicatori quali-quantitativi	35
•	5.3	Rapaci diurni. Ricerca siti riproduttivi.	38
(5.4	Rapaci notturni	41
(5.5	Esiti delle osservazioni da postazione fissa	42
•	5.6	Altre osservazioni	44
•	5.7	Migrazione primaverile e post riproduttiva	48
	6.7.	1 Migrazione e voli di spostamento	48
	6.7.	2 Analisi dei fenomeni migratori osservati nell'area di studio	49
	6.7.	3 Effetto dei venti sulla migrazione	50
•	5.8	Stima del numero possibile di collisioni	51
7	Val	utazione di incidenza	58
8	Cor	iclusioni sui rilievi avifaunistici	59
9	Bib	liografia sull'avifauna	61
10	Che	ck-list degli uccelli della Puglia aggiornata al 2012	63
11	Pre	messa	75
12	Are	a di indagine	78
13	Ma	teriali e metodi	79
1	13.1	Tecniche di campionamento	80
1	13.2	Punti di campionamento	83
14	Val	utazione quantitativa delle specie e dell'attività	85
15	Ris	ultati	86

1.	5.1	Rilievi bioacustici	86
1	5.2	Ricerca siti rifugio	88
16	Risc	chio di collisione	91
17	Con	clusioni sui chirotteri	92
18	Bib	liografia sui chirotteri	93

Avifauna

1 Premessa

Su incarico di wpd Salentina S.r.l. nel mese di aprile 2022 è stata avviata una campagna di monitoraggio annuale ante operam dell'avifauna nell'area interessata da un progetto per la realizzazione di un impianto eolico in loc. Monteruga, tra i comuni di Salice Salentino, Nardò e Veglie. La campagna di monitoraggio costituisce un supporto per le valutazioni riportate nello studio di impatto ambientale oltre che per proporre eventualmente le opportune misure di mitigazione/compensazione.

Il piano integra lo studio di impatto ambientale ed è parte integrante del processo conoscitivo preordinato ad una valutazione quanto più possibile oggettiva e imparziale della compatibilità del progetto con le esigenze di tutela dell'avifauna presente nell'area.

Di seguito sono descritti i metodi, i tempi e i risultati del monitoraggio annuale ante operam, effettuato a partire da aprile 2022 e tuttora in corso. I dati sono stati utilizzati anche per valutare eventuali differenze rispetto al consistente numero di riferimenti bibliografici utilizzati per la definizione della baseline dello studio di impatto ambientale e le valutazioni di incidenza, anche sulla base dell'analisi della potenzialità dei diversi habitat riconoscibili nell'area. Le attività sono condotte coerentemente con il protocollo di monitoraggio redatto da ANEV, Osservatorio Nazionale Eolico e Fauna e Legambiente onlus (2012), per rendere gli stessi dati validi dal punto di vista scientifico e confrontabili con altri studi. Le attività, ove necessario, sono state integrate anche con le indicazioni fornite da altri protocolli, come quelli del WWF (Teofili C., Petrella S., Varriale M., 2009) e MITO (2000).

La metodologia adottata è coerente con l'approccio BACI (*Before After Control Impact*) che permette di misurare l'incidenza potenziale di un disturbo o di un evento. In breve, esso si basa sulla valutazione dello stato delle risorse prima (*Before*) e dopo (*After*) l'intervento, confrontando l'area soggetta alla pressione (*Impact*) con siti in cui l'opera non ha effetto (*Control*), in modo da distinguere le conseguenze dipendenti dalle modifiche apportate da quelle non dipendenti.

Un impianto eolico può avere un'incidenza sull'ambiente in cui è collocato, di entità variabile in ragione di fattori riconducibili sia alle caratteristiche dell'impianto (numero e posizione dei generatori, altezza delle torri e dimensioni del rotore), sia a quelle dell'ambiente stesso e la sua sensibilità alle perturbazioni antropiche.

In virtù di ciò, qualsiasi intervento che possa comportare modificazioni ambientali deve essere preceduto da adeguati studi sulle componenti biotiche che possono subire gli effetti di tali modificazioni. Questi studi devono essere condotti nel rispetto delle norme cogenti, secondo criteri scientifici, oltre che su un arco temporale utile a fornire risultati solidi; devono inoltre essere condotti da figure professionali competenti e di adeguata esperienza nei rilevamenti, nella stesura, nell'elaborazione e nell'interpretazione dei dati raccolti.

2 L'incidenza degli impianti eolici sull'avifauna

Numerosi sono gli studi sull'incidenza di impianti eolici, con risultati non sempre concordi e spesso difficilmente confrontabili tra loro a causa delle numerose variabili in gioco (specie prese in considerazione, territorio di riferimento, metodologia di monitoraggio adottata, tipologia e caratteristiche dell'impianto, scelte progettuali, ecc.).

Negli ultimi anni, inoltre, è stata data particolare attenzione alla valutazione cumulativa degli effetti determinati, in tempi lunghi e su aree vaste, dalla presenza di più impianti sulla persistenza di popolazioni di specie a rischio, evidenziando l'importanza di una programmazione oculata sulla distribuzione degli impianti sul territorio.

Dall'analisi dei vari studi emerge che il rischio di collisione tra avifauna e aerogeneratori è correlato con la densità degli uccelli, e in particolare con la presenza di flussi migratori rilevanti (hot spot della migrazione) (EEA, 2009), oltre che, come recentemente dimostrato da De Lucas et al. (2008), con le caratteristiche specie-specifiche degli uccelli che frequentano l'area, tra cui: tipo di volo, dimensioni, fenologia. Risulta altresì interessante notare come alcuni autori pongano particolare attenzione nel valutare l'incidenza derivante dalla perdita o dalla trasformazione dell'habitat, fenomeni che, al di là della specifica tematica dello sviluppo dell'energia eolica, sono universalmente riconosciuti come una delle principali cause della scomparsa e della rarefazione di molte specie.

La possibile incidenza del parco eolico sull'avifauna è di seguito esaminata in modo imparziale e il più possibile oggettivo, anche sulla base della bibliografia italiana ed estera esistente in materia e rapportati e valutata anche in funzione dei dati d'indagine di monitoraggi effettuati dall'autore su altri impianti eolici da circa 10 anni.

La potenziale incidenza degli impianti eolici sull'avifauna si possono riassumere principalmente in due categorie:

- 1. Sottrazione di habitat / incidenza indiretta;
- 2. Disturbo / incidenza diretta.

2.1 Sottrazione di habitat / incidenza diretta

Come possibile incidenza indiretta è da considerarsi, prima fra tutte, la perdita degli habitat. A livello globale, la frammentazione e la perdita di habitat idoneo per la nidificazione o il reperimento di cibo sono considerati, infatti, tra i principali motivi di perdita della biodiversità e causa di estinzione per molte specie. La perdita di habitat avviene sia in maniera diretta, a causa dell'occupazione di suolo di un'opera, sia in maniera indiretta a causa del cosiddetto disturbance displacement.

La necessità di preservare gli habitat viene evidenziata dalla Direttiva Habitat 92/43/CEE, il cui scopo è quello di salvaguardare la biodiversità, considerando anche le esigenze economiche, sociali e culturali locali, mediante la conservazione degli habitat naturali e seminaturali, nonché della flora e della fauna selvatiche nel territorio comunitario ed evitare una significativa alterazione dell'habitat con possibile frammentazione degli areali distributivi e ridotta capacità di connessione tra elementi del paesaggio.

La significatività dell'incidenza è funzione della superficie occupata dalle diverse tipologie di habitat e del loro interesse naturalistico e conservazionistico, anche in rapporto con la superficie complessiva degli stessi nell'area di studio. In virtù di ciò, l'incidenza è maggiormente significativa nel caso in cui l'habitat sottratto è di pregio (ad es. habitat di riferimento per particolari comunità di specie di animali rare o minacciate) e quanto maggiore risulta la percentuale sottratta rispetto a quella disponibile nell'area di studio.

La sottrazione di habitat può anche produrre una frammentazione degli habitat naturali riducendo la *fitness* adattativa delle diverse specie di fauna e può anche aumentare l'incidenza della predazione, dei parassiti e di malattie.

In alcuni impianti eolici già sottoposti a monitoraggio, in fase di cantiere si è osservato che durante le fasi di preparazione delle piazzole, degli scavi di fondazione dei plinti, di adeguamento delle infrastrutture di accesso e di servizio, dello scavo del cavidotto, (che avviene su strade esistenti, di rango per lo più comunale e provinciale), le specie di Passeriformi più comuni e generaliste (Cornacchia grigia, Gazza, Taccola, Storno, Cappellaccia e la Passera d'Italia), non abbandonano l'area. Alla luce di queste considerazioni, a carattere generale, si può affermare che l'allontanamento riguarda soprattutto specie di scarso valore conservazionistico, peraltro diffuse in maniera omogenea ed abbondante nella zona. Questi uccelli, dotati di buona capacità di adattarsi alla presenza umana, se non addirittura opportuniste, (Cornacchia grigia e Gazza) si avvicinano spesso alla ricerca di cibo (vermi ed altri invertebrati) nel terreno rimosso dai mezzi meccanici. D'altro canto, appare ormai universalmente accertato che l'elemento che influisce in più negativamente sulla fauna è l'agricoltura intensiva, in quanto causa di semplificazione dell'ambiente dovuta all'adozione di pratiche agricole meccanizzate ed alla distruzione di insetti attraverso l'impiego di prodotti chimici.

Poiché l'impianto eolico in progetto, si inserisce in un contesto caratterizzato da attività agricole, può escludersi che esso possa interagire con le riserve trofiche utilizzate dalla comunità di Passeriformi presente nell'area (si tratta dell'ordine di specie più frequente nei pascoli e nelle aree agricole).

I trascurabili effetti degli impianti eolici sulla composizione e la struttura delle comunità di Passeriformi nidificanti e svernanti è confermata dagli esiti dalle osservazioni effettuate in altre aree simili, già interessate dalla presenza di aerogeneratori in esercizio, in cui le specie sono risultate ampiamente presenti e diffuse, senza riduzione del livello di frequentazione.

Secondo gli indici calcolati (Shannon, Abbondanza e Ricchezza), le comunità dei Passeriformi sono risultate abbastanza ricche, sia in termine di numero di specie che di dominanza e abbondanza.

Come precisato dalla prestigiosa National Audubon Society, organizzazione statunitense per la conservazione della natura che conta oltre un milione di soci e l'apporto di numerosi ricercatori, l'incidenza degli impianti eolici sulla sottrazione di habitat e in particolare sulla frammentazione dell'ambiente, è maggiormente significativa quando essi vengono ubicati all'interno di estese superfici di habitat poco alterati, mentre è pressoché insignificante in habitat agricoli e antropizzati e/o già alterati e che già presentano un determinato grado di frammentazione del paesaggio. Tale evento è frequente negli eco-mosaici agricolo-seminaturali presenti nell'area di progetto del parco eolico in questione.

Nello specifico, le aree di sedime degli aerogeneratori, delle piazzole di servizio e delle infrastrutture (strade e braccetti di collegamento), per la costruzione del parco, ricadono interamente in aree agricole.

L'incrocio dell'area vasta di analisi e la classificazione d'uso realizzata nell'ambito del progetto Corine Land Cover dall'European Environment Agency (EEA, 2018) conferma quanto già rilevato sulla base della Carta della Natura a proposito della prevalenza, nel territorio di studio, delle aree agricole (80.5%), e in particolare delle colture permanenti (45.2%) in cui prevalgono gli oliveti (24.8%), rispetto alle superfici naturali e seminaturali (1.7%). Tra queste ultime prevalgono le aree a vegetazione sclerofilla (0.8%), rispetto ai boschi (0.7%).

Nell'area di impianto, la Corine Land Cover (EEA, 2018) conferma la prevalenza delle superfici agricole utilizzate (97.45%), tra le quali si riduce l'incidenza dei vigneti (10.58%) e aumenta quella dei seminativi non irrigui (23.35%), delle foraggere (10.15%) e dei sistemi colturali e particella complessi (29.12%). Sono stabili le superfici investite ad oliveto (24.25%). Non è stata rilevata la presenza di boschi o altre superfici naturali.

Analisi preliminare su avifauna e chirotteri

Pertanto, può affermarsi che la realizzazione dell'impianto eolico in progetto, non costituirà un detrattore di habitat di pregio né tantomeno per il territorio interferito, con riferimento alla componente avifaunistica caratterizzante l'area. Ad ogni modo, solamente a conclusione del monitoraggio ante operam e nel corso di quello post operam sul sito, si potranno trarre delle considerazioni più solide e scientificamente valide su questo tipo di incidenza. L'incidenza da analizzare riguarderà anche l'avifauna che può collidere occasionalmente con le pale durante le frequentazioni del sito a scopo alimentare.

2.2 Disturbo / incidenza diretta

Una delle conseguenze dirette della presenza di un parco eolico è dato dal rischio di collisione dell'avifauna contro le pale degli aerogeneratori. I dati riportati dalla bibliografia disponibile sono tuttavia contraddittori in termini di numero di collisioni. I risultati ottenuti sono spesso specifici per ogni area di studio, riconducibili quindi a situazioni ambientali e popolamenti faunistici spesso differenti tra loro.

Alcuni esperimenti condotti sulla vista degli uccelli, e dei rapaci in particolare, hanno evidenziato una difficoltà nel percepire strutture aliene in un normale contesto ambientale. I rapaci sono in grado di percepire il movimento delle pale e sono dotati di una buona profondità di campo, ma questa sembra limitata a elementi tipici del paesaggio e a loro precedentemente noti.

Sempre per quanto riguarda i rapaci diurni più comuni (Poiana e Gheppio) e notturni (Barbagianni, Civetta), uno dei motivi che porterebbe questi uccelli a urtare contro gli aerogeneratori, è riconducibile alla tecnica di caccia, trattandosi di specie che più di altre concentrano lo sguardo sul terreno in cerca di prede. I rapaci, infatti, una volta focalizzata una preda, si concentrano esclusivamente su quella riducendo enormemente il campo visivo e quindi la possibilità di evitare le pale in rotazione. A tal proposito, molti studi hanno evidenziato l'esistenza di una relazione fra la presenza di molte prede nell'area di un impianto eolico e l'alto numero di decessi registrati; questo in particolare per l'Aquila reale e la Poiana.

Tuttavia, anche condizioni atmosferiche sfavorevoli, come pioggia e vento forte, sarebbero la causa di un alto numero di collisioni, specialmente se associati a condizioni di scarsa visibilità; questo spiega l'alto rischio a cui sono sottoposti i migratori notturni.

In realtà, dai dati rilevati direttamente in campo attraverso attività di monitoraggio condotte da circa 10 anni su impianti eolici in esercizio in Calabria e Sicilia, si è osservato un progressivo adattamento dell'avifauna, lasciando intendere che i rapaci e le altre specie di uccelli si siano abituati alla presenza degli aerogeneratori (ad esempio, sono stati osservati esemplari di Gheppio e Poiana rimanere in posizione di surplace distanti dalle pale in rotazione), fino a considerarli elementi integrati nell'ambiente.

In termini numerici, il numero di carcasse rinvenute nei pressi degli aerogeneratori è finora molto basso (n.8 complessivamente in 10 anni) e, benché le attività siano tuttora in corso, finora tale da ritenersi fisiologicamente confinato entro ordini di grandezza assolutamente accettabili e tali da non costituire una fonte significativa di rischio per la conservazione delle specie protette.

In bibliografia, la mortalità dovuta alla collisione con gli aerogeneratori (espressa in termini di uccelli morti ogni anno per aerogeneratore, "birds/turbine/yaer=BTY" o "collisioni/torre/anno"), è estrapolata in proporzione rispetto al numero di carcasse di uccelli rinvenute ai piedi degli stessi, per le varie aree di studio ed è variabile tra 0,19 e 4,45 uccelli/aerogeneratore/anno (Erickson et al., 2000; Erikson, 2001; Johnson et al., 2000a; Johnson et al., 2001; Thelander e Rugge, 2001), 0.6-2 uccelli/turbina/anno (Strickland et al., 2000), 0.19-0.15 uccelli/turbina/anno (Thelander et al., 2000).

Le linee guida per le valutazioni di impatto ambientale degli impianti eolici prodotte a vario titolo da diversi Enti o Organizzazioni (es. EC Environment DG 2002, Council of Europe 2004, WWF Italia 2007), in aree dove non ci sono dati pregressi disponibili e in aree importanti per gli uccelli (IBA, ZPS, SIC e ZSC), in genere raccomandano di effettuare studi in campo di minimo un anno per stimare i pattern di uso degli

habitat da parte delle specie nelle aree oggetto di studio. Queste linee guida, inoltre, sottolineano la necessità di pianificare anche un monitoraggio post-operam per valutare gli effetti a breve e lungo termine.

Per quanto riguarda gli Uccelli, *BirdLife International* ha compilato per conto del Consiglio d'Europa, una tabella (Council of Europe, 2004) in cui sono elencate le specie maggiormente suscettibili alla presenza di aerogeneratori. Di seguito i taxa di uccelli a maggior rischio di incidenza e la tipologia di incidenza.

Barriere ai Perdita di Disturbo Collisioni Famiglia o Ordine Specie o gruppo di specie movimenti habitat Gavidae Strolaga minore Χ Χ Podiceopidae Χ Svasso maggiore e minore Χ Phalacroricidae Marangone dal ciuffo Χ Ardeidae Airone cenerino, Airone bianco maggiore Χ Χ Ciconidae Cicogne Oca lombardella Anatidae Χ Accipitridae Nibbio reale Χ Χ Χ Accipitridae Nibbio bruno Χ Χ Accipitridae Gipeto Χ Accipitridae Grifone Х Accipitridae Aquila reale Χ Χ Sternidae Sterna maggiore Χ Χ Strigidae Gufo reale Χ Х Strigidae Allocco Χ Strigidae Gufo comune Χ Χ Tytonidae Barbagianni Χ Gruidae Χ Gru Х

Tabella 1. Principali effetti della presenza di impianti eolici sulle diverse famiglie e specie

Per quanto riguarda l'impianto eolico in esame, può escludersi con ragionevole probabilità un disturbo degli aerogeneratori sulle popolazioni dell'avifauna presenti nell'area, anche in virtù della distanza dagli ambienti di grande interesse naturalistico, tra cui la ZSC Palude del Conte, Dune di Punta Prosciutto (distanza circa 4 km), la ZSC Torre Colimena (distanza circa 6 km), la ZSC Porto Cesareo (distanza circa 8 km), la ZSC Masseria Zanzara (distanza circa 7,7 km).

In particolare Passeriformi in migrazione notturna

Con riferimento al rischio di collisioni dirette contro le pale degli aerogeneratori, tra le specie con vasto raggio di movimento a cui prestare attenzione, anche perché indicate come "minacciate" dalla lista rossa, ci son oil nibbio Bruno e il falco di palude.

Sempre sulla base delle pregresse attività di monitoraggio in Calabria e Sicilia, si è rilevato che i rapaci migratori (albanelle, falchi di palude, altri falconidi) e quelli più diffusi, come la Poiana, il Gheppio, lo Sparviere, il Nibbio reale e Nibbio bruno, pur presenti in numero variabile da un rilievo all'altro, fruiscono delle aree occupate dagli aerogeneratori sia per la caccia che per voli di spostamento, sfruttando tre possibili fasce aeree, di seguito indicate:

- Fascia A, corrispondente alla porzione inferiore della torre al di sotto della minima altezza occupata dale pale nella loro rotazione;
- Fascia B, compresa tra la minima e la massima altezza occupata dalle pale nella loro rotazione;
- Fascia C, la porzione di spazio aereo al di sopra dell'altezza massima della pala.

Passeriformes

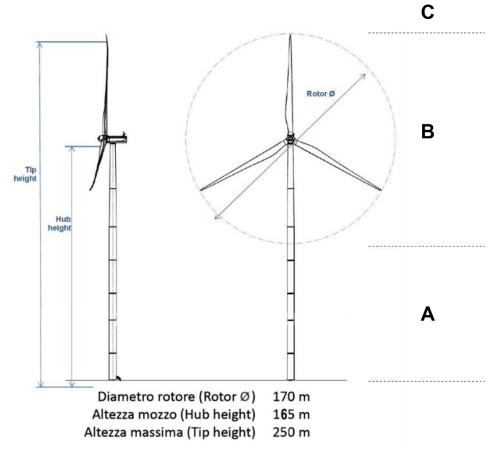


Figura 1 – Standardizzazione delle altezze di volo sulla base di un aerogeneratore tipo

Figura 2 – Esemplare di Poiana in volo nella fascia B, ma distante dall'aerogeneratore e, pertanto, senza rischi di collisione

Figura 3 - Esemplare di Gheppio in volo nella fascia A

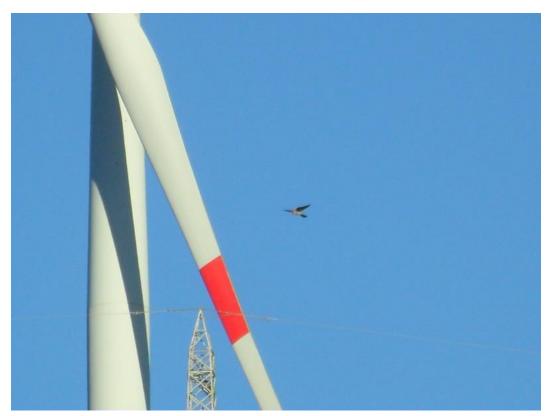


Figura 4 – Esemplare di Gheppio in volo di caccia nella fascia B, ma distante dall'aerogeneratore e, pertanto, senza rischi di collisione

Figura 5 – Esempio di Corvo imperiale in volo nella fascia B, ma distante dall'aerogeneratore e, pertanto, senza rischi di collisione

In particolare, anche in presenza di diversi impianti eolici di grande generazione in un'unica area, si è osservato che nessuna di queste specie ha abbandonato in maniera definitiva l'area; piuttosto ha sviluppato una sorta di adattamento alle turbine presenti.

Con riferimento ai cambiamenti registrati durante le osservazioni, a livello di uso dello spazio (allontanamento) e di comportamento di volo (innalzamento delle altezze) si è osservato che le specie siano in grado di avvertire la presenza degli aerogeneratori sviluppando strategie finalizzate ad evitare le collisioni, modificando la direzione e l'altezza di volo soprattutto in condizioni meteorologiche e di visibilità buone.

Utilizzando come base di analisi i dati desunti da attività di monitoraggio pregresse effettuate su impianto eolico costituito da 25 aerogeneratori ed ubicato in contesto paragonabile a quello di realizzazione del progetto in esame, è stato possibile cogliere la seguente generale tendenza comportamentale con riferimento alle principali specie ornitiche (non necessariamente rilevate nel corso delle attività di cui al presente documento):

- Il falco pecchiaiolo, il nibbio bruno, il biancone, lo sparviere, la poiana, l'aquila minore e
 il falco pescatore sembra prediligano quote di volo maggiori rispetto al livello delle pale;
- Le specie appartenenti al genere Circus, es. falco di palude e albanella minore, volano a quote inferiori alle pale, mentre per l'albanella reale e per la pallida non sono state registrate differenze;
- Il falco cuculo sembra volare prevalentemente sotto le pale, il gheppio al di sopra, mentre per il grillaio non sono state registrate differenze;
- Per il lodolaio ed il falco pellegrino non sembrano esserci differenze;
- Le pavoncelle volano prevalentemente al di sopra delle pale eoliche;
- I colombacci volano sia alla quota delle pale sia al di sopra;
- Il gruccione vola prevalentemente al di sopra mentre per la ghiandaia marina non ci sono differenze;
- Rondini, rondoni, balestrucci sembrano volare prevalentemente a quote superiori alle pale eoliche;
- Tra i corvidi, la taccola sembra volare soprattutto a quote inferiori, la cornacchia a quote superiori, la gazza vola o a quote superiori o a livello delle pale, mentre per il corvo imperiale non ci sono differenze significative;
- Gli storni sembra volino prevalentemente a quote superiori;
- Cicogne (bianche e nere) e gru (entrambe al momento non osservate in area di progetto),
 volano esclusivamente al di sopra della quota delle pale;
- Tra gli altri rapaci, nibbio reale, capovaccaio, falco della regina e lanario sono stati osservati quasi tutti volare al di sopra delle pale eoliche;
- Gabbiani reali sono stati osservati tutti sopra le pale eoliche;
- Rondoni maggiori sono stati visti volare tutti sopra le pale eoliche.

In termini, invece, di rischio d'incidenza riferito alle specie migratrici, i dati sin qui raccolti in ambiti progettuali paragonabili a quello in esame, suggeriscono che le specie maggiormente esposte a rischio di mortalità per collisione sono le seguenti:

- Tra i rapaci, l'albanella reale, il falco di palude, l'aquila minore (al momento non osservata in area di progetto), la poiana e il gheppio.
- Tra i rapaci notturni, l'allocco e il barbagianni;
- Tra gli uccelli di dimensioni medio piccole, il rondone comune, il rondone maggiore, il gruccione, il balestruccio e la rondine.

Nel grafico a seguire, un esempio di comparazione della frequenza di utilizzo delle tre altezze di volo (A, B e C) condotta usando un'analisi di regressione lineare durante cinque anni di monitoraggio presso un impianto eolico in Calabria. L'associazione lineare è stata stimata tramite coefficiente di correlazione prodotto-momento di Pearson (Li and Brown, 1999, Skinner et al., 1998, Sokal and Rohlf, 1994).

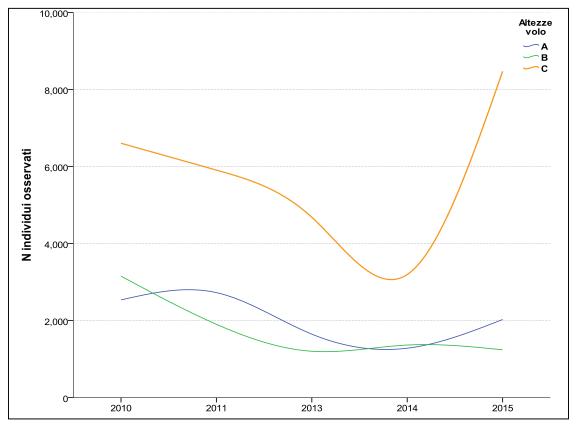


Grafico 1 - Totale di individui osservati alle 3 altezze di volo (A, B, C) durante 5 stagioni di osservazione

L'analisi riguardante le differenze di utilizzo delle tre altezze di volo (A, B e C), inoltre, ha dimostrato una preferenza significativa verso la quota C. Questa tendenza si è mantenuta anno dopo anno, sia considerando il numero totale di individui in transito sia i flussi medi.

Nel grafico successivo, si nota come, ad eccezione di Falconidi e Columbidi, la stessa quota appare quella preferenzialmente utilizzata dal maggior numero di individui per famiglia.

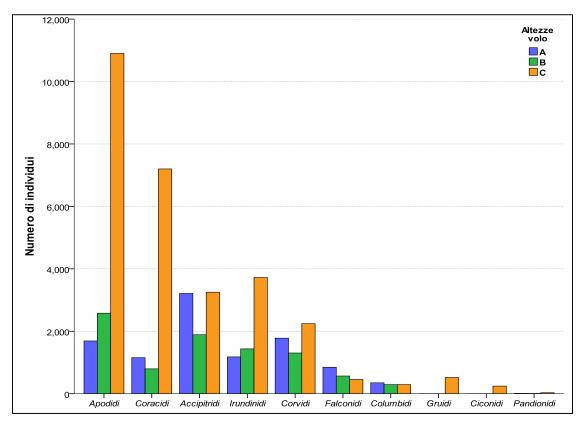


Grafico 2 - Totale individui per famiglia osservati alle tre quote di volo (A, B, C) durante le 5 stagioni di osservazione

Se da un lato molti autori concordano nell'indicare il maggiore rischio di mortalità per gli uccelli di grandi dimensioni (Rapaci e Ardeidi), va però sottolineato che per gli uccelli di piccole dimensioni i dati relativi ai rischi di collisione non sono univoci; infatti alcuni autori registrano elevati casi di mortalità (Erickson et al., 2001) mentre altri l'assenza del fenomeno.

Va sottolineato che i dati relativi al numero di collisioni sono sensibilmente diversi a seconda della localizzazione degli impianti, del numero degli aerogeneratori e delle specie considerate. Per impianti eolici fino a 30 aerogeneratori, quindi molto più numerosi rispetto quello in esame ove se ne hanno 5 in totale, e generalmente, realizzati con una vecchia concezione costruttiva sia tecnologica che di progetto poiché posizionati ad una distanza molto più ravvicinata l'uno dall'altro rispetto quello in esame, è stata registrata un'incidenza di 0,03 - 0,09 uccelli/generatore/anno; in riferimento agli uccelli rapaci si registrano valori compresi tra 0,06 – 0,18 uccelli morti/ generatore/anno (Janss, 2000; Winkelman, 1992). A questi possono aggiungersi quello riportato da Rydell J. et al. (2012) di 2.3 uccelli/generatore/anno, ma anche il range di 0.63-7.7 uccelli/turbina/anno, di cui 0-0.1 rapaci/generatore/anno rilevati da Erickson W.P. et al. (2005).

Relativamente allo studio dell'area interessata dal progetto, il futuro monitoraggio in fase di costruzione ed esercizio consentirà di ottenere ulteriori informazioni sulle altezze di volo al fine di individuare, in maniera dettagliata, l'eventuale interferenza delle singole specie con le pale dell'aerogeneratori, quindi il rischio di collisione. Nel corso della realizzazione dell'impianto o nei periodi successivi, infatti, la base dei dati acquisita potrà rappresentare un termine di raffronto rispetto alla baseline definita con il monitoraggio ante operam, sia per una verifica delle previsioni di incidenza sia per una sua reale quantificazione in termini di perdita di habitat e specie.

Ad oggi non è possibile produrre precise e puntuali stime previsionali di incidenza specifiche per il parco eolico, proprio perché, come già accennato in precedenza, la probabilità di collisione fra un uccello

ed una torre eolica dipende dalla combinazione di più fattori, in parte già citati, che per completezza vengono di seguito elencati:

- Condizioni meteorologiche. Sono pericolose le condizioni meteo avverse, in quanto comportano una riduzione delle altezze di volo e una diminuzione della visibilità;
- Altitudine di volo, per ovvie ragioni legate al rischio connesso con il volo nella fascia occupata dalle pale;
- Numero ed altezza degli aerogeneratori;
- Distanza media tra gli aerogeneratori. Si tratta del c.d. effetto "barriera meccanica" per gli uccelli, che aumenta con la diminuzione di tale distanza;
- Eco-etologia delle specie. Le zone a ridosso delle alture sono le più frequentate dai rapaci per via della formazione di correnti ascensionali favorevoli. Alcune specie, proprio sui crinali, effettuano soste di riposo ed alimentazione. Certe specie migrano di notte e sono quindi più esposte alla collisione con gli aerogeneratori.

Una possibile mortalità da collisione con le pale degli aerogeneratori è stata riscontrata pure per i piccoli Passeriformi della famiglia "Alaudidi", presenti nell'area di studio con, ad esempio, la Cappellaccia (Stazionaria) e l'Allodola (svernante), durante il caratteristico volo territoriale, che spesso viene effettuato ad altezze di 50-100 m dal suolo.

3 Aree a maggior valenza naturalistica nel raggio di 5 km dall'impianto

Sulla base della distribuzione preferenziale delle diverse specie nell'area di studio, si possono individuare zone più ricettive per l'avifauna e pertanto a maggiore valenza naturalistica dal punto di vista ornitologico; in particolare, si tratta del SIC IT9150027 "Palude del Conte, Dune di Punta Prosciutto", la Riserva Naturale Regionale Orientata "Palude del conte e duna costiera – Porto Cesareo".

Per maggiori dettagli riguardo i siti menzionati, si rimanda alla Relazione Paesaggistica.

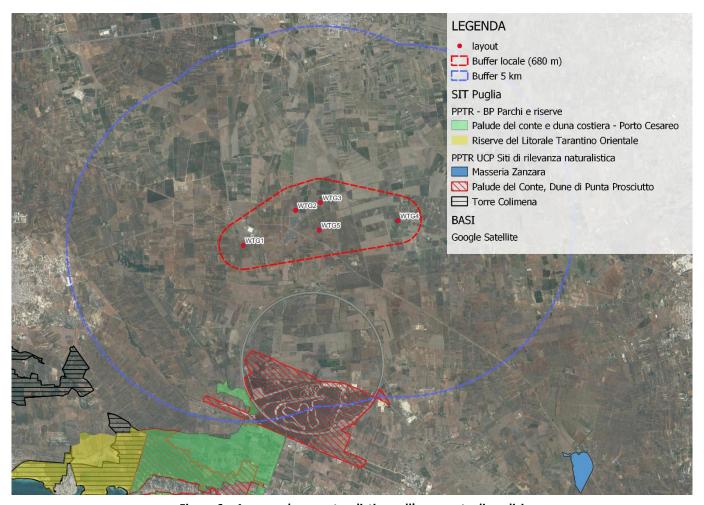


Figura 6 – Aree a valenza naturalistica nell'area vasta di analisi

Analisi preliminare su avifauna e chirotteri

4 Finalità dello studio

Considerata l'ubicazione e le principali caratteristiche tecniche del futuro parco eolico, l'obiettivo dell'indagine è quello di fornire un set di informazioni riguardante in particolare l'utilizzo - da parte dell'avifauna - degli habitat dell'area selezionata per il progetto del parco eolico, nonché degli spazi aerei soprastanti.

5 Materiali e metodi

5.1 Fonti consultate

Per l'inquadramento faunistico dell'area e l'analisi territoriale, nonché per valutare lo stato di conservazione delle specie contattate sono state consultate le seguenti fonti:

- Formulario standard delle aree SIC/ZSC e ZPS limitrofe;
- Check list degli uccelli della Puglia, aggiornata al 2012;
- Libro Rosso della Fauna d'Italia (Bulgarini et al 1998);
- Raccolta delle norme nazionali ed internazionali per la conservazione della fauna selvatica e degli habitat (Spagnesi & Zambotti, 2001).

5.2 Area di studio

L'area di studio è quella racchiusa entro il raggio di 5 km dagli aerogeneratori di progetto.

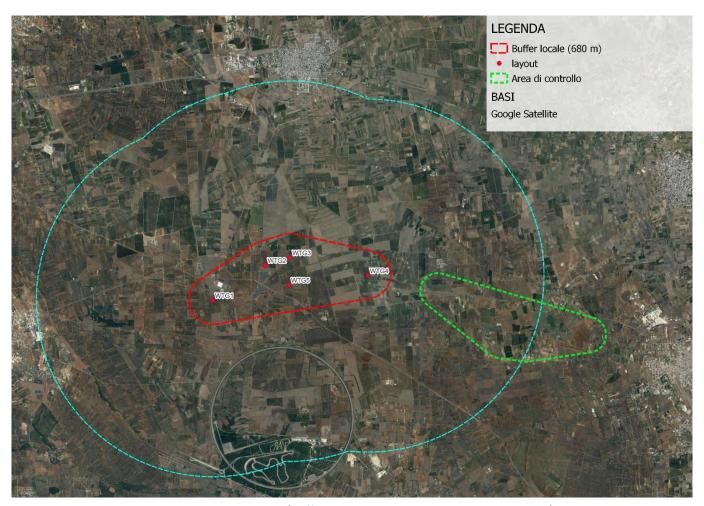


Figura 7 – Area di studio (buffer di 5 km dagli aerogeneratori di progetto)

5.3 Frequenza e calendario dei rilievi

Tabella 2. Calendario e tipologia di rilievi

MESE	SITI RIPROD. RAPACI	TRANSETTI	P.TI ASCOLTO NOTT.	P.TI ASCOLTO PASS.	OSS. POST. FISSA	тот.
APRILE 2022	1			2	3	6
MAGGIO 2022	1	3		2	3	9
GIUGNO 2022	1	2	1	2	2	8
LUGLIO 2022					1	1
AGOSTO 2022					1	1
SETTEMBRE 2022					2	2
OTTOBRE 2022*					3	3
NOVEMBRE 2022*					3	3
DICEMBRE 2022*					1	1
GENNAIO 2023*					1	1
FEBBRAIO 2023*					2	2
MARZO 2023*	1	_	1	2	2	6
TOTALE	4	5	2	8	24	43

^{*} Ipotesi previsionale

Sono stati anche raccolti dati bibliografici sull'avifauna svernante e stazionaria.

I risultati medi dei rilievi sono stati utilizzati per definire i gradienti di abbondanza delle specie sul territorio, nonché l'indice di diversità di Shannon - Wiener (H') stagionale.

5.4 Modalità di esecuzione dei rilievi

Il monitoraggio dell'avifauna presso l'Impianto "Monteruga", sito nei territori comunali di Salice Salentino, Nardò e Veglie, in provincia di Lecce, è stato condotto coerentemente con la metodologia proposta da ANEV, Osservatorio nazionale eolico e fauna e Legambiente (2012), eventualmente integrata con le linee guida WWF Italia (Teofili C., Petrella S., Varriale M., 2009) e MITO (2000).

5.4.1 Osservazioni da postazione fissa

Le osservazioni da postazione fissa (Bibby et al. 2000) consistono nella perlustrazione, da punti panoramici, dello spazio aereo entro 15° sopra e sotto la linea dell'orizzonte, alternando l'uso del binocolo (10x42 mm) a quello del telescopio (82 mm, ad oculare 25-50x) montato su treppiede, con l'obiettivo di coprire l'intero tratto coinvolto dal progetto di parco eolico, registrando la specie, il numero di individui, l'orario di inizio dell'osservazione, l'altezza approssimativa di volo (sopra i 100 m e sotto i 100 m) e alcune note comportamentali (volteggio, picchiate ecc.). Per il monitoraggio da postazione fissa sono stati scelti 2 punti di osservazione nell'area di impianto, da cui è possibile ottenere una vista a 360° ed osservare l'intero territorio in esame.

Di seguito l'attrezzatura utilizzata per il monitoraggio dell'avifauna:

- Binocolo Swarovski CL 10X25
- Cannocchiale Leica APO Televid 82
- Anemometro Kestrel 1000
- GPS Garmin E TREX 10
- Binocolo Swarovski EL PURE 10X42
- Fotocamera Nikon Coolpix P100
- Fotocamera Canon EOS 6d Mark II + 24-105 mm

Figura 8 – Parte dell'attrezzatura utilizzata per lo studio dell'avifauna

Tabella 3. Scheda osservazioni da postazione fissa

Ora		DATA						
inizio - fine	Punto Osservazione	Int. Vento	Direzione	Specie	n.	Direzione	sotto 100 m	sopra 100 m

Di seguito la localizzazione dei punti utilizzati per le osservazioni da postazione fissa.

Figura 9 – Area di studio. Punti di osservazione da postazione fissa

5.4.2 Rilevamenti mediante transetti lineari (mapping transect)

I rilievi quantitativi sono effettuati lungo percorsi (Line Transect Method) di circa 2 km posizionati secondo un piano di campionamento prestabilito; ciascun transetto deve essere percorso a velocità costante di 1 chilometro ogni mezz'ora, contando ed annotando i "contatti" visivi e canori dei Passeriformi registrati entro una fascia di 150 m su ambedue i lati dell'itinerario e degli altri ordini di uccelli entro una fascia di 1.000 m su ambedue i lati dell'itinerario. I rilievi quantitativi hanno lo scopo di definire i gradienti di abbondanza delle specie su un territorio.

Di seguito la localizzazione dei transetti individuati nell'area di studio.

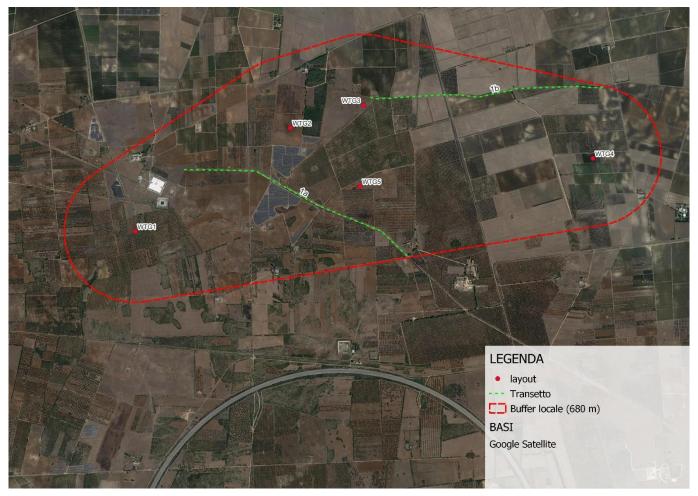


Figura 10 – Area di studio. Transetti 1a e 1b area di impianto

5.4.3 Rilevamento mediante punti di ascolto

Il monitoraggio nei mesi di maggio – giugno è integrato da un congruo numero di punti d'ascolto, in corrispondenza dei quali i rilievi sono condotti secondo il metodo di Blondel et al. (1988), che rappresenta lo standard per l'ascolto delle vocalizzazioni spontanee degli uccelli con sosta, nel solo periodo riproduttivo.

Il rilevamento si ispira alle metodologie classiche (Bibby et al., 1992) e consiste nel sostare in punti prestabiliti per 8 o 10 minuti, annotando tutti gli uccelli visti e uditi entro un raggio di 100 m ed entro un buffer compreso tra i 100 e i 200 m intorno al punto.

I campionamenti sono stati effettuati per lo più nella prima parte della mattinata (da mezz'ora prima dell'alba sino alle 10) e in misura minore nel tardo pomeriggio (dalle 17-18) sino al tramonto. Questa tecnica risulta la più idonea per campionare ampie superfici in cui i Passeriformi, facilmente contattabili per le loro vocalizzazioni e solo in parte rilevabili a vista, rappresentano la componente dominante del popolamento ornitico. Oltre ai Passeriformi, il metodo permette di rilevare diverse altre specie canore appartenenti ad altri ordini, tra cui i Galliformi, i Piciformi, Columbiformi, i Cuculiformi e alcuni Coraciformi.

Nello specifico, sono stati selezionati 7 punti di ascolto in maniera tale da rilevare tutti gli ambienti presenti nell'area vasta dell'impianto e altri 7 in una area di riferimento avente caratteristiche ambientali simili.

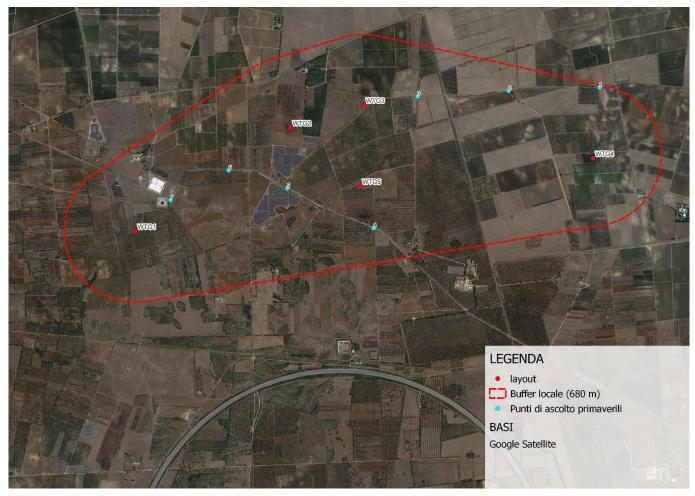


Figura 11 – Area di studio. Localizzazione dei punti di ascolto (area di impianto)

5.4.4 Rilievi notturni

Il rilevamento notturno è una tipologia di campionamento necessaria per ottenere un quadro quanto più completo dell'avifauna, in quanto permette di rilevare la presenza degli uccelli stanziali non attivi durante il giorno (Strigiformi e Caprimulgiformi).

Si tratta di un rilevamento condotto da punti fissi, a sera inoltrata, delle specie riconosciute tramite ascolto delle vocalizzazioni. I rilievi sono stati effettuati utilizzando la tecnica del Playback, consistente nello stimolare la risposta delle diverse specie grazie all'emissione del loro canto tramite amplificatori collegati a lettori audio MP3. Le emissioni sono state effettuate da una serie di punti distribuiti in modo da coprire le diverse tipologie di territorio.

Figura 12 – Attrezzatura utilizzata per i rilievi dei rapaci notturni

Da ogni punto di richiamo, ciascuna specie è stata stimolata secondo il seguente schema:

- 1' di ascolto (per evidenziare eventuali attività canore spontanee)
- 1' di stimolazione
- 1' di ascolto

5.4.5 Osservazioni vaganti

Negli spostamenti finalizzati al raggiungimento dei punti di osservazione/ascolto, ovvero negli spostamenti tra un punto di osservazione e l'altro, sono state effettuate osservazioni vaganti sul territorio con lo scopo di integrare, almeno dal punto di vista qualitativo, la check-list delle specie ornitiche osservabili nel periodo di riferimento.

5.4.6 Stima del rischio e del numero possibile di collisioni

La stima del numero di collisioni per anno è stata eseguita con riferimento alle Linee Guida pubblicate da *Scottish Natural Heritage (SNH), Windfarms and birds: calculating a theoretical collision risk assuming no avoiding action* ed il relativo foglio di calcolo in formato Excel che racchiude il modello predittivo proposto da Band *et al*, 2007, che rappresenta l'unico strumento esistente di matrice scientifica per cercare di attribuire un valore numerico al potenziale rischio di impatto degli impianti eolici sull'avifauna. Il metodo consente di rendere più oggettiva la stima dell'influenza sia dei parametri tecnici degli impianti che dei parametri biologici delle specie; in riferimento a questi ultimi, sono stati utilizzati dati di bibliografia, in particolare la pubblicazione di Thomas Alerstam et alii "Flight Speeds among Bird Species: Allometric and Phylogenetic Effects" (2007).

Il rischio di collisione con i rotori (C) si ottiene moltiplicando il numero di individui che potrebbero attraversare l'area spazzata dai rotori (U) per la probabilità di venire colpiti o di scontrarsi con le pale (P).

In breve, si può scrivere:

Si elencano di seguito gli altri parametri che sono stati utilizzati nel foglio di calcolo.

SUPERFICIE DI RISCHIO COMPLESSIVA (S).

Tale parametro viene approssimato alla superficie perpendicolare al suolo costituita dalla massima lunghezza dell'impianto e dalla turbina più alta:

$$S = L * H$$

STIMA DEL NUMERO DI UCCELLI CHE POSSONO ATTRAVERSARE LA SUPERFICIE DI RISCHIO IN UN ANNO (u)

Questo valore risulta da una stima degli individui potenzialmente presenti nel corso di un anno, basata sui dati di monitoraggio. A scopo cautelativo si è tenuto conto del numero di contatti e non del numero di individui che frequentano la zona poiché il rischio di collisione con gli aerogeneratori aumenta in funzione della frequentazione dell'area da parte delle diverse specie; in tal senso il numero di contatti consente di meglio valutare l'importanza che una determinata zona riveste per le specie rilevate durante le attività di monitoraggio.

Inoltre, si è considerato che la probabilità di presenza degli individui sia ugualmente distribuita nell'arco di 12 mesi, senza tenere conto che per alcune specie la maggiore probabilità di passaggio sia solo in alcuni periodi dell'anno. Pertanto, il numero di individui che potenzialmente possono attraversare la superficie di rischio corrisponde al numero medio di contatti per 365 giorni.

AREA SPAZZATA DAI ROTORI (A)

Il valore si ottiene moltiplicando il numero di aerogeneratori per l'area spazzata da ciascun rotore:

$$A = N * \pi * R^2$$

SUPERFICIE NETTA DI RISCHIO (A/S)

Il rapporto A/S rappresenta un coefficiente netto di rischio di attraversamento delle aree effettivamente spazzate dai rotori.

NUMERO EFFETTIVO DI INDIVIDUI CHE POSSONO SCONTRARSI CON GLI AEROGENERATORI (U)

Il valore che si ottiene da questo calcolo è il risultato del numero di individui calcolato nel passaggio C moltiplicato per il coefficiente di rischio:

$$U = u * (A/S)$$

RISCHIO DI COLLISIONE

La probabilità che un individuo attraversando l'area in esame sia colpito o si scontri con le parti in movimento dell'aerogeneratore, dipende da:

- Dimensioni dell'uccello: uccelli più grandi con maggiore apertura alare hanno più probabilità di collisione;
- Velocità di volo: al diminuire della velocità di volo aumenta la probabilità di collisione;
- Tipo di volo: i veleggiatori (gliding) hanno una probabilità di collisione più bassa dei battitori (flapping);

- Velocità di rotazione delle turbine: maggiore è la velocità di rotazione, maggiore sarà la probabilità di collisione;
- Spessore, raggio e numero delle pale: al crescere dello spessore e del numero di pale aumenta il rischio di collisione; il raggio invece agisce in maniera inversamente proporzionale rispetto alla probabilità di collisione.

Il foglio di calcolo fornito dallo *Scottish Natural Heritage* calcola la probabilità di collisione in base alla distanza dal mozzo, e restituisce una media dei valori sotto vento (*Downwind*) e sopra vento (*Upwind*) arrivando alla media finale.

PARAMETRI TECNICI DEGLI IMPIANTI

- K rappresenta la forma della pala, assegnando il valore 0 per una pala assolutamente piatta, e 1 (come in questo caso) per una pala tridimensionale;
- Il numero di pale che ruotano (NoBlades);
- La massima corda della pala (MaxChord);
- L'angolo di inclinazione di ciascuna pala rispetto alla superficie perpendicolare all'asse del mozzo (Pitch angle);
- Il diametro del rotore (RotorDiam);
- La velocità di rotazione massima della turbina in progetto (espressa in durata in secondi).

PARAMETRI BIOLOGICI DELLE SPECIE

- Lunghezza dipendente dalla specie esaminata (BirdLenght);
- Apertura alare e velocità di volo (Wingspan e Bird speed) per cui sono stati utilizzati dati di bibliografia, in particolare la pubblicazione già citata di T. Alerstam et alii "Flight Speeds among Bird Species: Allometric and Phylogenetic Effects" (2007).

Una volta stimato il numero di individui a rischio ed il rischio di collisione per ciascuna specie, il metodo prevede che si tenga in considerazione anche la capacità di ogni specie di evitare le pale degli aerogeneratori. Lo Scottish Natural Heritage ("Avoidance Rates for the onshore SNH Wind Farm Collision Risk Model",2010) raccomanda di usare un valore pari al 98% per tutte le specie, ad eccezione del gheppio per il quale studi approfonditi hanno indicato una capacità di evitare le pale pari al 95%.

In conclusione, il numero di collisioni per anno è calcolato con la formula:

$$N_{coll/anno} = n * R * A$$

Dove:

- n rappresenta il numero di voli a rischio;
- R è il rischio medio di collisione;
- A rappresenta la capacità di schiavare le pale (Avoidance rate).

6 Risultati delle attività di monitoraggio

6.1 Specie rilevate nel periodo aprile – settembre 2022

6.1.1 Fenologia

A caratterizzare la comunità ornitica sono gli elementi delle aree prative ed agricole comuni e nidificanti nelle aree circostanti del futuro impianto come la gazza, la passera d'Italia e la passera mattugia. Per la fenologia si fa riferimento alla seguente nomenclatura:

- **B = Nidificante** (*breeding*): la specie nidificante sedentaria viene indicata con **SB**, quella migratrice (o "estiva") con M, B, **B?=**(NIDIFICAZIONE DA ACCERTARE);
- **S = Sedentaria o Stazionaria** (*sedentary, resident*): viene sempre abbinato a B. Specie presente per tutto o gran parte dell'anno in un determinato territorio, dove normalmente porta a termine il ciclo riproduttivo; la sedentarietà non esclude movimenti di una certa portata (per es. erratismi stagionali, verticali);
- M = Migratrice (migratory, migrant): specie che transita sul territorio in seguito agli spostamenti annuali dalle aree di nidificazione verso i quartieri di svernamento e/o viceversa; in questa categoria sono incluse anche specie invasive, dispersive o che compiono spostamenti a corto raggio. Non viene tenuto conto della regolarità o meno delle comparse;
- **W** = **Svernante** (*wintering*, *winter visitor*): specie presente in inverno per tutto o parte del periodo considerato (dicembre-gennaio o metà febbraio), senza escludere spostamenti locali o di rilevante portata in relazione a condizioni climatico-ambientali contingenti. Non viene tenuto conto della regolarità o meno delle presenze;
- W IRR Svernante irregolare;
- **E = Estivo o erratico:** specie che compare durante l'estate con individui erratici (sub adulti o giovani al secondo anno) che non si riproducono;
- A = Accidentale (vagrant, accidental): specie che capita in una determinata zona in modo del tutto casuale in genere con individui singoli o in numero molto limitato.

Tabella 4. Checklist delle specie rilevate nel semestre aprile – settembre 2022 (in azzurro le specie rilevate anche durante le osservazioni vaganti)

ID	DenScientifica	DenComune	Ordine	Famiglia	Fenologia
1	Coturnix coturnix	Quaglia	Galliformes	Phasianidae	Migratrice. Nidificante.
2	Tadorna tadorna	Volpoca	Anseriformes	Anatidae	Migratrice
3	Tachybaptus ruficollis	Tuffetto	Podicepediformes	Podicipedidae	Stazionario. Nidificante.
4	Phoenicopterus roseus	Fenicottero	Phoenicopteriformes	Phoenicopteridae	Migratore. Estivo.
5	Columba livia	Piccione torraiolo	Columbiformes	Columbidae	Stazionario. Nidificante.
6	Columba palumbus	Colombaccio	Columbiformes	Columbidae	Stazionario. Nidificante.
7	Streptopelia turtur	Tortora selvatica	Columbiformes	Columbidae	Migratrice. Nidificante.
8	Streptopelia decaocto	Tortora dal collare	Columbiformes	Columbidae	Stazionaria. Nidificante
9	Caprimulgus europaeus	Succiacapre	Caprimulgiformes	Caprimulgidae	Migratore. Nidificante.
10	Tachymarptis melba	Rondone maggiore	Apodiformes	Apodidae	Migratore. Estivo.
11	Apus apus	Rondone comune	Apodiformes	Apodidae	Migratore. Estivo.

Analisi preliminare su avifauna e chirotteri

ID	DenScientifica	DenComune	Ordine	Famiglia	Fenologia
12	Cuculus canorus	Cuculo	Cuculiformes	Cuculidae	Migratore.
13	Rallus aquaticus	Porciglione	Gruiformes	Rallidae	Stazionario. Nidificante.
14	Gallinula chloropus	Gallinella d'acqua	Gruiformes	Rallidae	Stazionaria. Nidificante.
15	Fulica atra	Folaga	Gruiformes	Rallidae	Stazionaria.Nidificante.Svernante
16	Nycticorax nycticorax	Nitticora	Gruiformes	Ardeidae	Migratrice. Estiva.
17	Ardeola ralloides	Sgarza ciuffetto	Gruiformes	Ardeidae	Migratrice. Estiva.
18	Bubulcus ibis	Airone guardabuoi	Gruiformes	Ardeidae	Svernante. Erratico.
19	Ardea cinerea	Airone cenerino	Gruiformes	Ardeidae	Svernante.Estivo
20	Ardea alba	Airone bianco maggiore	Gruiformes	Ardeidae	Svernante.Estivo
21	Phalacrocorax carbo	Cormorano	Gruiformes	Phalacrocoracidae	Migratore. Svernante
22	Burhinus oedicnemus	Occhione	Charadriiformes	Burhinidae	Migratore
23	Recurvirostra avosetta	Avocetta	Charadriiformes	Recurvirostridae	Migratrice regolare
24	Himantopus himantopus	Cavaliere d'Italia	Charadriiformes	Recurvirostridae	Migratore regolare.
25	Calidris minuta	Gambecchio comune	Charadriiformes	Charadriidae	Migratore regolare.
26	Actitis hypoleucos	Piro piro piccolo	Charadriiformes	Charadriidae	Stazionario
27	Tringa ochropus	Piro piro culbianco	Charadriiformes	Charadriidae	Migratore
28	Tringa glareola	Piro piro boschereccio	Charadriiformes	Charadriidae	Migratore
29	Larus ridibundus	Gabbiano comune	Charadriiformes	Laridae	Svernante
30	Larus audouinii	Gabbiano corso	Charadriiformes	Laridae	Migratore. Raro
31	Larus michahellis	Gabbiano reale	Charadriiformes	Laridae	Stazionario
32	Sternula albifrons	Fraticello	Charadriiformes	Laridae	Migratore.
33	Tyto alba	Barbagianni	Strigiformes	Tytonidae	Stazionario. Nidificante.
34	Athene noctua	Civetta	Strigiformes	Strigidae	Stazionaria. Nidificante.
35	Otus scops	Assiolo	Strigiformes	Strigidae	Migratore. Nidificante.
36	Pandion haliaetus	Falco pescatore	Accipitriformes	Pandionidae	Migratore regolare.
37	Pernis apivorus	Falco pecchiaiolo	Accipitriformes	Accipitridae	Migratore regolare.
38	Circaetus gallicus	Biancone	Accipitriformes	Accipitridae	Migratore regolare.
39	Circus aeruginosus	Falco di palude	Accipitriformes	Accipitridae	Migratore. Svernante
40	Circus macrourus	Albanella pallida	Accipitriformes	Accipitridae	Migratice regolare
41	Circus pygargus	Albanella minore	Accipitriformes	Accipitridae	Migratice regolare
42	Accipiter nisus	Sparviere	Accipitriformes	Accipitridae	Stazionario.
43	Milvus migrans	Nibbio bruno	Accipitriformes	Accipitridae	Migratore regolare.
44	Buteo buteo	Poiana	Accipitriformes	Accipitridae	Stazionaria. Nidificante.
45	Buteo rufinus	Poiana codabianca	Accipitriformes	Accipitridae	Migratrice. Rara.
46	<i>Uрира ерор</i> ѕ	Upupa	Bucerotiformes	Upupidae	Migratrice. Nidificante.
47	Merops apiaster	Gruccione	Coraciiformes	Meropidae	Migratore. Nidificante.
48	Falco naumanni	Grillaio	Falconiformes	Falconidae	Migratore. Nidificante.
49	Falco tinnunculus	Gheppio	Falconiformes	Falconidae	Stazionaroio. Nidificante.
50	Falco vespertinus	Falco cuculo	Falconiformes	Falconidae	Migratore
51	Falco subbuteo	Lodolaio	Falconiformes	Falconidae	Migratore
52	Falco peregrinus	Falco pellegrino	Falconiformes	Falconidae	Stazionario.Erratico.
53	Melopsittacus undulatus	Parrocchetto ondulato	Psittaciformes	Psittacidae	Oss. Aggregato Passere d'Italia
54	Oriolus oriolus	Rigogolo	Passeriformes	Oriolidae	Migratore
55	Lanius collurio	Averla piccola	Passeriformes	Laniidae	Migratrice. Nidificante.

Analisi preliminare su avifauna e chirotteri

ID	DenScientifica	DenComune	Ordine	Famiglia	Fenologia
56	Lanius minor	Averla cenerina	Passeriformes	Laniidae	Migratrice. Nidificante.
57	Lanius senator	Averla capirossa	Passeriformes	Laniidae	Migratrice. Nidificante.
58	Garrulus glandarius	Ghiandaia	Passeriformes	Corvidae	Stazionaria. Nidificante
59	Pica pica	Gazza	Passeriformes	Corvidae	Stazionaria. Nidificante
60	Corvus monedula	Taccola	Passeriformes	Corvidae	Stazionaria. Nidificante
61	Corvus corone	Cornacchia grigia	Passeriformes	Corvidae	Stazionaria. Nidificante
62	Cyanistes caeruleus	Cinciarella	Passeriformes	Paridae	Stazionaria. Nidificante
63	Parus major	Cinciallegra	Passeriformes	Paridae	Stazionaria. Nidificante
64	Calandrella brachydactyla	Calandrella	Passeriformes	Alaudidae	Migratrice.Nidificante
65	Alauda arvensis	Allodola	Passeriformes	Alaudidae	Stazionaria. Nidificante.Svernante
66	Galerida cristata	Cappellaccia	Passeriformes	Alaudidae	Stazionaria. Nidificante.
67	Cisticola juncidis	Beccamoschino	Passeriformes	Cisticolidae	Stazionario. Nidificante.
68	Acrocephalus schoenobaenus	Forapaglie comune	Passeriformes	Acrocephalidae	Stazionario.
69	Acrocephalus scirpaceus	Cannaiola comune	Passeriformes	Acrocephalidae	Stazionaria
70	Delichon urbicum	Balestruccio	Passeriformes	Hirundinidae	Migratore. Nidificante
71	Hirundo rustica	Rondine	Passeriformes	Hirundinidae	Migratrice. Nidificante.
72	Phylloscopus sibilatrix	Luì verde	Passeriformes	Phylloscopidae	Migratore.
73	Phylloscopus collybita	Luì piccolo	Passeriformes	Phylloscopidae	Migratore. Nidificante. Svernante.
74	Cettia cetti	Usignolo di fiume	Passeriformes	Scotocercidae	Stazionario. Nidificante.
75	Aegithalos caudatus	Codibugnolo	Passeriformes	Aegithalidae	Stazionario. Nidificante.
76	Sylvia atricapilla	Capinera	Passeriformes	Sylviidae	Stazionaria. Nidificante.
77	Sylvia melanocephala	Occhiocotto	Passeriformes	Sylviidae	Stazionario. Nidificante.
78	Sylvia communis	Sterpazzola	Passeriformes	Sylviidae	Migratrice. Nidificante.
79	Certhia brachydactyla	Rampichino comune	Passeriformes	Certhiidae	Stazionario. Nidificante.
80	Sturnus vulgaris	Storno	Passeriformes	Sturnidae	Stazionario. Nidificante.
81	Turdus merula	Merlo	Passeriformes	Turdidae	Stazionario. Nidificante.
82	Muscicapa striata	Pigliamosche	Passeriformes	Muscicapidae	Migratore
83	Luscinia megarhynchos	Usignolo	Passeriformes	Muscicapidae	Migratore. Nidificante.
84	Ficedula hypoleuca	Balia nera	Passeriformes	Muscicapidae	Migratrice.
85	Phoenicurus ochruros	Codirosso spazzacamino	Passeriformes	Muscicapidae	Stazionario. Nidificante.
86	Monticola solitarius	Passero solitario	Passeriformes	Muscicapidae	Stazionario. Nidificante.
87	Saxicola rubetra	Stiaccino	Passeriformes	Muscicapidae	
88	Saxicola torquatus	Saltimpalo	Passeriformes	Muscicapidae	Stazionario. Nidificante.
89	Passer italiae	Passera d'Italia	Passeriformes	Passeridae	Stazionaria. Nidificante
90	Passer montanus	Passera mattugia	Passeriformes	Passeridae	Stazionaria. Nidificante
91	Anthus trivialis	Prispolone	Passeriformes	Motacillidae	Migratore.
92	Motacilla cinerea	Ballerina gialla	Passeriformes	Motacillidae	Stazionaria. Nidificante
93	Motacilla alba	Ballerina bianca	Passeriformes	Motacillidae	Stazionaria. Nidificante
94	Fringilla coelebs	Fringuello	Passeriformes	Fringillidae	Stazionario. Nidificante.
95	Chloris chloris	Verdone	Passeriformes	Fringillidae	Stazionario. Nidificante.
96	Linaria cannabina	Fanello	Passeriformes	Fringillidae	Stazionario. Nidificante.
97	Carduelis carduelis	Cardellino	Passeriformes	Fringillidae	Stazionario. Nidificante.
98	Serinus serinus	Verzellino	Passeriformes	Fringillidae	Stazionario. Nidificante.
99	Emberiza calandra	Strillozzo	Passeriformes	Emberizidae	Stazionario. Nidificante.

ID	DenScientifica	DenComune	Ordine	Famiglia	Fenologia
100	Emberiza cirlus	Zigolo nero	Passeriformes	Emberizidae	Stazionario. Nidificante.

Sono state rilevate 100 specie, appartenenti a 17 Ordini e 43 Famiglie. L'Ordine più rappresentato è quello dei Passeriformi con 47 specie divise in 20 Famiglie. La presenza nell'area di edifici rurali è favorevole a specie come la Passera d'Italia, la Passera Mattugia e la Taccola.

Tabella 5. Non/ Passeriformi

ID	DenScientifica	DenComune
1	Coturnix coturnix	Quaglia
2	Tadorna tadorna	Volpoca
3	Tachybaptus ruficollis	Tuffetto
4	Phoenicopterus roseus	Fenicottero
5	Columba livia	Piccione torraiolo
6	Columba palumbus	Colombaccio
7	Streptopelia turtur	Tortora selvatica
8	Streptopelia decaocto	Tortora dal collare
9	Caprimulgus europaeus	Succiacapre
10	Tachymarptis melba	Rondone maggiore
11	Apus apus	Rondone comune
12	Cuculus canorus	Cuculo
13	Rallus aquaticus	Porciglione
14	Gallinula chloropus	Gallinella d'acqua
15	Fulica atra	Folaga
16	Nycticorax nycticorax	Nitticora
17	Ardeola ralloides	Sgarza ciuffetto
18	Bubulcus ibis	Airone guardabuoi
19	Ardea cinerea	Airone cenerino
20	Ardea alba	Airone bianco maggiore
21	Phalacrocorax carbo	Cormorano
22	Burhinus oedicnemus	Occhione
23	Recurvirostra avosetta	Avocetta
24	Himantopus himantopus	Cavaliere d'Italia
25	Calidris minuta	Gambecchio comune
26	Actitis hypoleucos	Piro piro piccolo
27	Tringa ochropus	Piro piro culbianco
28	Tringa glareola	Piro piro boschereccio
29	Larus ridibundus	Gabbiano comune
30	Larus audouinii	Gabbiano corso
31	Larus michahellis	Gabbiano reale
32	Sternula albifrons	Fraticello
33	Tyto alba	Barbagianni
34	Athene noctua	Civetta
35	Otus scops	Assiolo

ID	DenScientifica	DenComune
36	Pandion haliaetus	Falco pescatore
37	Pernis apivorus	Falco pecchiaiolo
38	Circaetus gallicus	Biancone
39	Circus aeruginosus	Falco di palude
40	Circus macrourus	Albanella pallida
41	Circus pygargus	Albanella minore
42	Accipiter nisus	Sparviere
43	Milvus migrans	Nibbio bruno
44	Buteo buteo	Poiana
45	Buteo rufinus	Poiana codabianca
46	Upupa epops	Upupa
47	Merops apiaster	Gruccione
48	Falco naumanni	Grillaio
49	Falco tinnunculus	Gheppio
50	Falco vespertinus	Falco cuculo
51	Falco subbuteo	Lodolaio
52	Falco peregrinus	Falco pellegrino
53	Melopsittacus undulatus	Parrocchetto ondulato

Tabella 6. Passeriformi

ID	DenScientifica	DenComune		
1	Oriolus oriolus	Rigogolo		
2	Lanius collurio	Averla piccola		
3	Lanius minor	Averla cenerina		
4	Lanius senator	Averla capirossa		
5	Garrulus glandarius	Ghiandaia		
6	Pica pica	Gazza		
7	Corvus monedula	Taccola		
8	Corvus corone	Cornacchia grigia		
9	Cyanistes caeruleus	Cinciarella		
10	Parus major	Cinciallegra		
11	Calandrella brachydactyla	Calandrella		
12	Alauda arvensis	Allodola		
13	Galerida cristata	Cappellaccia		
14	Cisticola juncidis	Beccamoschino		
15	Acrocephalus schoenobaenus	Forapaglie comune		
16	Acrocephalus scirpaceus	Cannaiola comune		
17	Delichon urbicum	Balestruccio		
18	Hirundo rustica	Rondine		
19	Phylloscopus sibilatrix	Luì verde		
20	Phylloscopus collybita	Luì piccolo		
21	Cettia cetti	Usignolo di fiume		
22	Aegithalos caudatus	Codibugnolo		

wpd Salentina S.r.l.

ID	DenScientifica	DenComune		
23	Sylvia atricapilla	Capinera		
24	Sylvia melanocephala	Occhiocotto		
25	Sylvia communis	Sterpazzola		
26	Certhia brachydactyla	Rampichino comune		
27	Sturnus vulgaris	Storno		
28	Turdus merula	Merlo		
29	Muscicapa striata	Pigliamosche		
30	Luscinia megarhynchos	Usignolo		
31	Ficedula hypoleuca	Balia nera		
32	Phoenicurus ochruros	Codirosso spazzacamino		
33	Monticola solitarius	Passero solitario		
34	Saxicola rubetra	Stiaccino		
35	Saxicola torquatus	Saltimpalo		
36	Passer italiae	Passera d'Italia		
37	Passer montanus	Passera mattugia		
38	Anthus trivialis	Prispolone		
39	Motacilla cinerea	Ballerina gialla		
40	Motacilla alba	Ballerina bianca		
41	Fringilla coelebs	Fringuello		
42	Chloris chloris	Verdone		
43	Linaria cannabina	Fanello		
44	Carduelis carduelis	Cardellino		
45	Serinus serinus	Verzellino		
46	Emberiza calandra	Strillozzo		
47	Emberiza cirlus	Zigolo nero		

6.1.2 Rapporto non Passeriformi / Passeriformi

Il rapporto tra non Passeriformi e Passeriformi rappresenta un indice imprescindibile per la valutazione del grado di complessità delle comunità ornitiche e di conseguenza delle biocenosi e degli habitat nel loro insieme. Il rapporto **nP/P** risulta più elevato in ambienti ben strutturati, stabili e maggiormente diversificati.

Durante i rilievi quantitativi sono state contattate **100** specie, di cui **53** specie di non Passeriformi (N/P) e **47** specie di Passeriformi (P), con un rapporto nP/P = 1,13.

6.2 Esiti dei rilievi eseguiti mediante punti di ascolto primaverili

6.2.1 Indicatori quali-quantitativi

I rilievi quantitativi, effettuati secondo la metodologia descritta in precedenza, hanno permesso di effettuare l'analisi strutturale della comunità ornitica attraverso il calcolo e la valutazione dei seguenti parametri:

- Abbondanza: consistenza numerica delle diverse specie, riportata in valori assoluti;
- Dominanza: rapporto tra il numero di individui di ciascuna specie ed il numero totale di individui componenti la comunità;
- Ricchezza: numero di specie registrate. E' un parametro indicativo del grado di complessità e diversità di un ecosistema;
- Indice di Shannon Wiener H': l'indice della diversità della specie. La più semplice maniera per misurar la diversità della comunità.

Di seguito si riporta una tabella con le specie individuate, in cui n = numero individui e n/N = abbondanza relativa. In **arancione** sono evidenziate le specie dominanti, ovvero quelle con frequenza >5%, mentre in *giallo* le specie sub-dominanti, aventi frequenza compresa tra il 2 ed il 5%. Le specie influenti hanno una frequenza >1%.

AREA DI IMPIANTO

Tabella 7. Specie rilevate mediante punti di ascolto primaverili (area di impianto)

ID	DenComune	DenScientifica	Tot. Ind	n/N	H'
1	Acrocephalus scirpaceus	Cannaiola comune	2	0,0022	0,013678
2	Apus apus	Rondone comune	17	0,0191	0,075476
3	Buteo buteo	Poiana	15	0,0168	0,068701
4	Calandrella brachydactyla	Calandrella	4	0,0045	0,024247
5	Carduelis carduelis	Cardellino	22	0,0247	0,091315
6	Chloris Chloris	Verdone	4	0,0045	0,024247
7	Cisticola juncidis	Beccamoschino	14	0,0157	0,065204
8	Columba livia domesticus	Piccione torraiolo	86	0,0964	0,22552
9	Columba palumbus	Colombaccio	45	0,0504	0,15068
10	Corvus monedula	Taccola	101	0,1132	0,246651
11	Cyanistes caeruleus	Cinciarella	10	0,0112	0,050346
12	Emberiza calandra	Strillozzo	27	0,0303	0,10587
13	Falco tinnunculus	Gheppio	6	0,0067	0,033644
14	Ficedula hypoleuca	Balia nera	1	0,0011	0,007616
15	Galerida cristata	Cappellaccia	21	0,0235	0,08826
16	Hirundo rustica	Rondine	22	0,0247	0,091315
17	Lanius minor	Averla cenerina	6	0,0067	0,033644
18	Linaria cannabina	Fanello	7	0,0078	0,038041
19	Merops apiaster	Gruccione	29	0,0325	0,111389
20	Monticola solitarius	Passero solitario	2	0,0022	0,013678

ID	DenComune	DenScientifica	Tot. Ind	n/N	H'
21	Parus major	Cinciallegra	12	0,0135	0,057963
22	Passer italiae	Passera d'Italia	261	0,2926	0,359591
23	Passer montanus	Passera mattugia	49	0,0549	0,159395
24	Pica Pica	Gazza	97	0,1087	0,241277
25	Streptopelia decaocto	Tortora dal collare	14	0,0157	0,065204
26	Sylvia melanocephala	Occhiocotto	13	0,0146	0,061626
27	Acrocephalus schoenobaenus	Forapaglie	2	0,0022	0,013678
28	Muscicapa striata	Pigliamosche	2	0,0022	0,013678
29	Phylloscopus sibilatrix	Lui verde	1	0,0011	0,007616
	Abbondanza totale			1	2,54
	Ricchezza specie				

ABBONDANZA

Nel corso dei rilievi il valore dell'abbondanza totale delle 29 specie rilevate, cioè il numero totale degli individui, è risultato pari a 892.

DOMINANZA

Le specie dominanti sono: Piccione torraiolo, Colombaccio, Passera d'Italia, Passera Mattugia, Gazza. Si tratta delle specie che, in misura maggiore o minore, riescono meglio ad adattarsi alla trasformazione degli ambienti (agricoltura intensiva, ecc.).

INDICE DI SHANNON WIENER H'

Dall'analisi dei dati riportati in tabella, si evince che l'indice di diversità di Shannon è pari a H' = 2,54.

AREA DI CONTROLLO

Tabella 8. Specie rilevate mediante punti di ascolto primaverili (area di controllo)

ID	DenComune	DenScientifica	Tot. Ind	n/N	H'
1	Apus apus	Rondone comune	18	0,023	0,08553
2	Buteo buteo	Poiana	12	0,015	0,06312
3	Calandrella brachydactyla	Calandrella	2	0,003	0,01501
4	Carduelis carduelis	Cardellino	20	0,025	0,09239
5	Chloris Chloris	Verdone	6	0,008	0,03677
6	Cisticola juncidis	Beccamoschino	21	0,026	0,09573
7	Columba livia domesticus	Piccione torraiolo	71	0,089	0,21526
8	Columba palumbus	Colombaccio	45	0,056	0,16215
9	Corvus monedula	Taccola	104	0,130	0,26557
10	Cyanistes caeruleus	Cinciarella	10	0,013	0,05488
11	Emberiza calandra	Strillozzo	27	0,034	0,11457
12	Falco tinnunculus	Gheppio	6	0,008	0,03677
13	Galerida cristata	Cappellaccia	21	0,026	0,09573
14	Hirundo rustica	Rondine	22	0,028	0,09900
15	Lanius minor	Averla cenerina	2	0,003	0,01501
16	Linaria cannabina	Fanello	7	0,009	0,04155
17	Merops apiaster	Gruccione	29	0,036	0,12046

ID	DenComune	Tot. Ind	n/N	H'	
18	Parus major	Cinciallegra	12	0,015	0,06312
19	Passer italiae	Passera d'Italia	200	0,251	0,34681
20	Passer montanus	Passera mattugia	37	0,046	0,14240
21	Pica Pica	Gazza	97	0,122	0,25616
22	Streptopelia decaocto	Tortora dal collare	14	0,018	0,07093
23	Sylvia melanocephala	Occhiocotto	13	0,016	0,06707
24	Muscicapa striata	Pigliamosche	2	0,003	0,01501
	Abbondanza totale		798	1	2,57
	Ricchezza specie		24		

ABBONDANZA

Nel corso dei rilievi il valore dell'abbondanza totale delle 24 specie rilevate, cioè il numero totale degli individui, è risultato pari a **798**.

DOMINANZA

Le specie dominanti sono: Piccione torraiolo, Taccola, Colombaccio, Passera d'Italia, Gazza. Si tratta delle specie che, in misura maggiore o minore, riescono meglio ad adattarsi alla trasformazione degli ambienti (agricoltura intensiva, ecc.).

INDICE DI SHANNON WIENER H'

Dall'analisi dei dati riportati in tabella, si evince che l'indice di diversità di Shannon è pari a H' = 2,57.

ANALISI DEI RISULTATI COMPLESSIVI

Nell'area impianto e nell'area di controllo, il numero di specie contattate durante i rilievi primaverili è stato rispettivamente di 29 e 24. Il numero di individui nell'area di controllo è risultato di 798 individui, 94 in meno rispetto l'area di impianto (892 individui).

Figura 13 – Lui verde (Phylloscopus sibilatrix)

Figura 14 – Averla cenerina (Lanius minor)

6.3 Rapaci diurni. Ricerca siti riproduttivi.

Come tutte le aree caratterizzate da buona ventosità e presenza di zone aperte e pendii, anche quella in esame risulta ideale per alcune specie di rapaci, in particolare per quelle che sfruttano tecniche di volo in grado di far sospendere il corpo in aria (surplace, "spirito santo") e perlustrare dettagliatamente il terreno in cerca di prede (piccoli mammiferi, insetti, rettili).

I rapaci diurni osservati in prossimità dell'area di studio hanno per lo più effettuato voli di spostamento, volteggio ascensionale o soaring, voli di caccia e voli territoriali.

Sebbene i rapaci diurni mostrino i primi comportamenti territoriali nel periodo compreso tra febbraio - marzo, si è proceduto alla sistematica ricerca e ispezione nelle aree adiacenti l'impianto, per un raggio di almeno 5 km, al fine di rilevare la presenza di specie di uccelli, in particolar modo rapaci, presenti e nidificanti nell'area.

Tutte le specie di rapaci sono protette ai sensi delle leggi Comunitarie (Direttiva Uccelli 79/409), Nazionali (157/1992), Regionali (33/1993 s.m.i.), Convenzioni (Bonn 1979; Berna 1979; Washington 1973), IUCN (Red Data Book 1996), SPEC (Tucker e Heath 1994) e sono un gruppo zoologico importante su cui approfondire alcuni temi di ricerca e conoscenza.

Sono stati localizzati possibili siti riproduttivi delle seguenti specie:

- Poiana (Buteo buteo);
- Grillaio (Falco naumanni);
- Gheppio (*Falco tinnunculus*).

Si riporta di seguito un breve approfondimento di queste specie.

POIANA (*Buteo buteo*). Stazionaria e nidificante.

È il rapace più comune, facilmente avvistabile in tutta l'area di studio.

A partire dal mese di aprile, sono state ipotizzate le aree più idonee alla nidificazione della specie.

Figura 15 – Poiana (Buteo buteo). Stazionaria e nidificante, in volo.

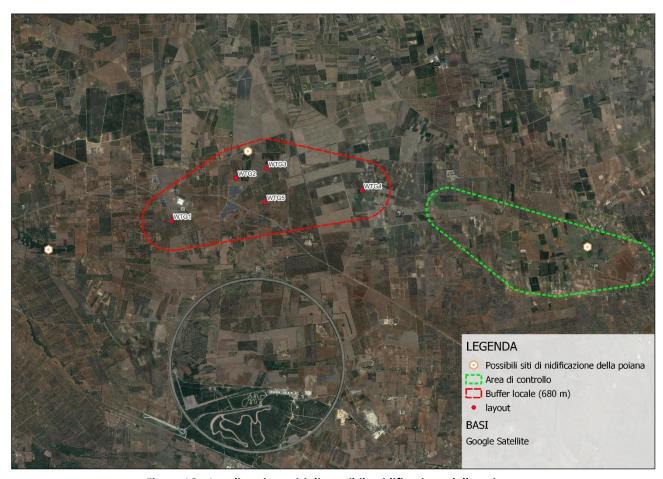


Figura 16 – Localizzazione siti di possibile nidificazione della poiana.

GHEPPIO (Falco tinnunculus) – GRILLAIO (Falco naumanni)

Entrambe le specie sono state avvistate in voli di spostamento sia orizzontali che verticali o, in alcuni casi, nei ben noti voli di perlustrazione con la tecnica del surplace e dello "spirito santo"; una stima complessiva della consistenza della popolazione nidificante non risulta semplice.

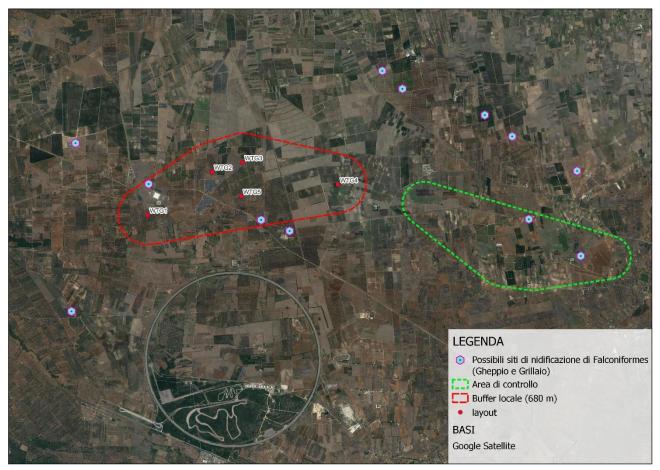


Figura 17 – Localizzazione siti di possibile nidificazione di gheppi e grillai

6.4 Rapaci notturni

A differenza di alcuni ordini di uccelli (ad esempio Passeriformes), per i quali le tecniche di censimento sono ormai delineate e largamente utilizzate (Mappaggio, Transetto, EFP, IPA), per gli Strigiformi l'uso del richiamo registrato (playback) sembra essere la tecnica più promettente pur con differenze di efficacia. Non tutte le specie, infatti, hanno lo stesso livello di attività canora e la stessa facilità di risposta al richiamo registrato.

La Civetta e l'Allocco sono specie piuttosto canore che rispondono bene e immediatamente al richiamo con il playback, che pertanto risulta efficace.

L'Assiolo è una specie piuttosto canora, tuttavia il basso volume del suo richiamo determina problemi di sovrapposizione acustica e conseguenti difficoltà di esatta stima del numero di individui più lontani.

Il Barbagianni ha una rara attività canora e talvolta, anche se certamente presente, non risponde ai richiami registrati, pertanto per questa specie l'uso del richiamo non sembra essere un'efficace tecnica di censimento.

Nel corso dei rilievi notturni sono state rilevate le seguenti specie. I contatti con le specie in canto naturale sono stati rilevati quasi tutti in prossimità di casolari, masserie e ruderi. Le ricerche notturne sono state effettuate emettendo il canto registrato delle specie mediante un MP3 portatile.

Strigiformes

- Civetta (Athene noctua). Sedentaria. Legata agli ambienti cerealicoli ed alla media e bassa collina, specie al di sotto degli 800 m s.l.m. Facilmente contattabile anche nelle ore diurne e vespertine grazie alla notevole e continua attività canora, e all'abitudine di utilizzare posatoi, anche artificiali, a qualche metro di altezza dal piano campagna.
- Barbagianni (*Tyto alba*). Sedentario. Legato alle aree aperte e coltivate, semiboscate, ma anche ad ambienti urbani e periurbani.
- Assiolo (Otus scops). La specie utilizza spazi aperti per ricercare insetti e micromammiferi che compongono la sua dieta, nonché ruderi, pareti rocciose e, ove presenti, cavità di alberi per la nidificazione. Durante le uscite serali contattato più di una volta tramite il canto caratteristico.

Caprimulgiformes

 Succiacapre (Caprimulgus europaeus): predilige ambienti aperti, asciutti e dal clima temperato. Si nutre di insetti ed è facilmente riconoscibile dal suo canto crepuscolare e notturno.

famiglia	nome scientifico	nome comune	nr
Strigidi	Otus scops	Assiolo	8
Strigidi	Athena noctus	Civetta	12
Titonidi	Tyto alba	Barbagianni	4
Caprimulgidi	Caprimulgus europaeus	Succiacapre	3
	TOTALE		27

Tabella 9. Riepilogo dati rilevati durante le osservazioni notturne

6.5 Esiti delle osservazioni da postazione fissa

Per ogni specie osservata, è stato riportato il numero di individui e ne è stata stimata l'altezza di volo. Sebbene i pattern di volo appaiano differenti da specie a specie, a seconda della scala spaziale di azione e delle abitudini di ciascuna specie, l'altezza è stata distinta in due fasce: oltre i 150/200 metri e sotto i 100 metri¹.

È importante precisare come, nel corso dei rilievi, le osservazioni riferite ad uno stesso individuo, ma effettuate in momenti diversi della stessa giornata, sono state registrate come contatti differenti. È quindi evidente che il numero di contatti non corrisponde al numero di individui, soprattutto per i rapaci locali (Poiana, Gheppio, Grillaio), osservati frequentemente più volte anche nell'arco della stessa giornata, per cui più contatti possono riferirsi ad uno stesso individuo.

Sono stati inseriti nelle analisi sulle altezze di volo, anche alcuni piccoli Passeriformi stazionari legati agli ambienti prativi come, ad esempio, la Cappellaccia (stazionaria) e l'Allodola (stazionaria e in parte svernante), perché durante il caratteristico volo territoriale, i maschi effettuano voli verticali fino a raggiungere altezze di 30, 60 o 100 m dal suolo.

¹ Gli aerogeneratori presenti nell'area di studio sono a distanza tale da non poter essere utilizzati come riferimento per distinguere l'altezza di volo nelle tre fasce indicate nel paragrafo 2.2.

Tabella 10. Scheda delle osservazioni da postazione fissa. Esempio di compilazione dati in campo.

ora		DATA									
inizio - fine	Punto Osservazione	Int. Vento	Direzione	Specie	n.	Direzione	sotto 100 m	sopra 100 m			
8,30	1	3	nord	Nibbio bruno	1	Da sud a nord/est		Х			
9,00	1	3	nord	Poiana	1	Da est a nord	Х				
9,30	2	3,5	nord	Cornacchia grigia	3	Da est a nord	Х				
•••						•••	•••	•••			

Di seguito le specie rilevate mediante osservazioni da postazione fissa.

Tabella 11. Riepilogo delle specie e delle altezze dei passaggi rilevati durante le osservazioni da postazione fissa.

Famiglie	Nome scientifico	Nome comune	sotto 100 metri	sopra 100 metri	TOTALE
Recurvirostridae	Himantopus himantopus	Cavaliere d'Italia	4		4
Columbidae	Columba livia	Piccione torraiolo	212	110	322
Columbidae	Columba palumbus	Colombaccio	21	29	50
Columbidae	Streptopelia decaocto	Tortora dal collare	10	4	14
Apodidae	Tachymarptis melba	Rondone maggiore	10	18	28
Apodidae	Apus apus	Rondone comune	10	20	30
Laridae	Larus ridibundus	Gabbiano comune		5	5
Laridae	Larus michahellis	Gabbiano reale	21	321	342
Pandionidae	Pandion haliaetus	Falco pescatore		1	1
Accpitridae	Pernis apivorus	Falco pecchiaiolo		60	60
Accpitridae	Circaetus gallicus	Biancone		1	1
Accpitridae	Circus aeruginosus	Falco di palude	5	11	16
Accpitridae	Circus macrourus	Albanella pallida	3	5	8
Accpitridae	Circus pygargus	Albanella minore	21	10	31
Accpitridae	Accipiter nisus	Sparviere	2	1	3
Accpitridae	Milvus migrans	Nibbio bruno	4	9	13
Accpitridae	Buteo buteo	Poiana	13	25	38
Accpitridae	Buteo rufinus	Poiana codabianca		1	1
Meropidae	Merops apiaster	Gruccione	30	65	95
Falconidae	Falco naumanni	Grillaio	23	10	33
Falconidae	Falco tinnunculus	Gheppio	12	18	30
Falconidae	Falco vespertinus	Falco cuculo		5	5
Falconidae	Falco subbuteo	Lodolaio		2	2
Falconidae	Falco peregrinus	Falco pellegrino		2	2
Corvidae	Pica pica	Gazza	30	21	51
Corvidae	Corvus monedula	Taccola	45	100	145
Corvidae	Corvus corone	Cornacchia grigia	89	110	199
Alaudidae	Calandrella brachydactyla	Calandrella	2		2
Alaudidae	Alauda arvensis	Allodola	3	2	5
Alaudidae	Galerida cristata	Cappellaccia	8	3	11
Sturnidae	Sturnus vulgaris	Storno	50	120	170

Famiglie	Nome scientifico	Nome comune	sotto 100 metri	sopra 100 metri	TOTALE
Irundinidae	Hirundo rustica	Rondine	62	41	103
Irundinidae	Delichon urbica	Balestruccio	22	30	52
	тот		712	1160	1872

Sono state registrate **33** specie appartenenti a 12 famiglie, per un totale di **1872** passaggi, di cui 712 ad altezze inferiori a 100 metri (38%) e 1160 ad altezze superiori a 100 metri (62%).

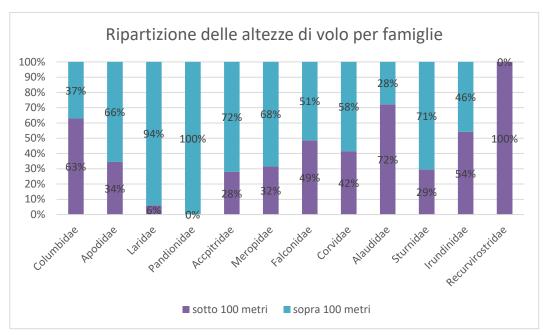


Grafico 3 - Ripartizione delle altezze di volo per famiglia

6.6 Altre osservazioni

Nelle tabelle che seguono sono riportati i dati rilevati durante le osservazioni vaganti e le osservazioni nelle aree di interesse naturalistico più vicine all'area parco.

Tabella 12. Riepilogo delle specie osservate durante le osservazioni vaganti

Nome scientifico	Nome comune	N
Coturnix coturnix	Quaglia	5
Cuculus canorus	Cuculo	1
Calidris minuta	Gambecchio comune	5
Actitis hypoleucos	Piro piro piccolo	1
Tringa ochropus	Piro piro culbianco	1
Tringa glareola	Piro piro boschereccio	6
<i>Upupa epops</i>	Upupa	3
Melopsittacus undulatus	Parrocchetto ondulato	1
Oriolus oriolus	Rigogolo	2
Lanius collurio	Averla piccola	2
Garrulus glandarius	Ghiandaia	5
Phylloscopus collybita	Luì piccolo	1

Nome scientifico	Nome comune	N
Cettia cetti	Usignolo di fiume	2
Aegithalos caudatus	Codibugnolo	4
Sylvia atricapilla	Capinera	8
Sylvia communis	Sterpazzola	2
Certhia brachydactyla	Rampichino comune	1
Turdus merula	Merlo	4
Luscinia megarhynchos	Usignolo	2
Phoenicurus ochruros	Codirosso spazzacamino	6
Saxicola torquatus	Saltimpalo	6
Anthus trivialis	Prispolone	3
Motacilla cinerea	Ballerina gialla	6
Motacilla alba	Ballerina bianca	1
Fringilla coelebs	Fringuello	5
Emberiza cirlus	Zigolo nero	2
ТОТ	TALE	85

Figura 18 – Parrocchetto ondulato (Melopsittacus undulatus)

Figura 19 – Piro piro boschereccio (*Tringa glareola*)

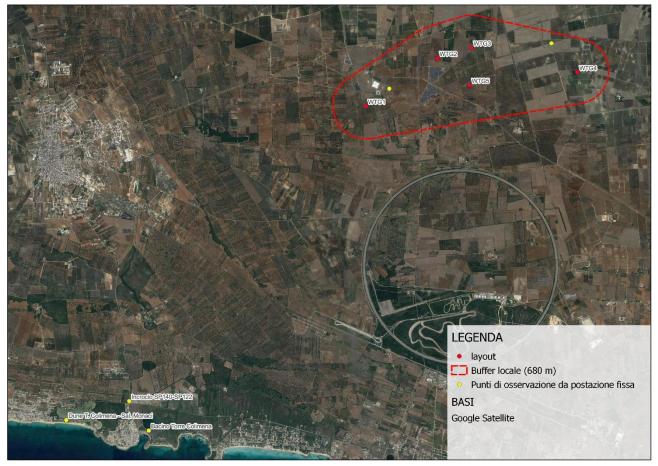


Figura 20 – Localizzazione dei punti di osservazione nelle aree a maggiore valenza naturalistica

Tabella 13. Riepilogo delle specie osservate nelle aree di interesse naturalistico a sud-ovest rispetto all'area del parco in progetto

DenScientifica	Scientifica DenComune		Dune T. Colimena - Salina dei Monaci	Bacino Torre Colimena	
Calidris minuta	Gambecchio	1			1
Egretta garzetta	Garzetta	2	5		7
Larus audouinii	Gabbiano corso		1	1	2
Larus michahellis	Gabbiano reale	10			10
Phalacrocorax carbo	Cormorano	2		2	4
Phoenicopterus roseus	Fenicottero		5		5
Recurvirostra avosetta	Avocetta		10		10
Sternula albifrons	Fraticello		20		20
Tadorna tadorna	Volpoca		4	15	19
Tringa glareola	Piro piro boschereccio		30		30
Himantopus himantopus	Cavaliere d'Italia		8		8
Larus ridibundus	Gabbiano comune		10		10
		TOTALE			126

6.7 Migrazione primaverile e post riproduttiva

Il Mediterraneo è un'area essenziale per gli uccelli migratori e svernanti. Ogni anno milioni di individui appartenenti a diversi gruppi (uccelli acquatici, rapaci, passeriformi, ecc.) attraversano la regione. I grandi veleggiatori come le cicogne e i rapaci si concentrano in alcuni siti (i cosiddetti colli di bottiglia o bottle-neck). Lo stretto di Gibilterra e del Bosforo sono i principali bottle neck nella regione paleartica, ma importanti bottle-neck sono stati individuati anche nel Mediterraneo centrale, ossia Capo Bon (Tunisia), lo stretto di Messina – Reggio Calabria, l'Istmo di Catanzaro e alcune aree della costa Ionica calabrese, come le colline di Strongoli e Punta Alice nel Crotonese (Italia).

Negli ultimi anni le ricerche inerenti la migrazione visibile degli uccelli rapaci sono aumentate nel territorio nazionale. Molti ornitologi, spesso appartenenti a specifici gruppi di lavoro, hanno esteso l'ambito di indagine in diverse aree interessate da tale fenomeno. In Italia, alle aree già note, ultimamente si sono aggiunte nuove località in cui si può assistere al passaggio dei rapaci in migrazione; tra queste, il *Gargano e le Isole Tremiti le Alpi Marittime, il Monte Conero, il Parco del Circeo.*

La migrazione degli uccelli ha luogo ad altitudini che variano da quelle minime, al livello del mare (soprattutto nel caso dei piccoli uccelli, che volano spesso molto bassi lungo il lato degli argini al riparo del vento), alle massime, che arrivano a circa 10.000 m. A dispetto della grande variabilità delle altezze di volo migratorie e delle lacune nelle nostre conoscenze, è possibile formulare alcune regole generali in relazione alle altezze di volo e al comportamento dei migratori:

- I migratori notturni volano di solito ad altezze maggiori di quelli diurni;
- Nella migrazione notturna il volo radente al suolo è quasi del tutto assente;
- Tra i migratori diurni, le specie che usano il volo remato procedono ad altitudini inferiori delle specie che usano il volo veleggiato;
- Nel volo controvento gli uccelli volano bassi cercando di utilizzare la morfologia del territorio per schermare la velocità del vento.

6.7.1 Migrazione e voli di spostamento

I principali movimenti degli uccelli, per migrazione o spostamento, si possono ricondurre principalmente alle seguenti tipologie:

- Migrazione, movimento stagionale che prevede lo spostamento degli individui da un'area di riproduzione a un'area di svernamento (movimento che prevede un'andata e un ritorno);
- Dispersal, spostamento dell'individuo dall'area natale all'area di riproduzione (movimento a senso unico);
- Movimenti all'interno dell'area vitale, spostamenti compiuti per lo svolgimento delle normali attività di reperimento del cibo, cura dei piccoli, ricerca di aree idonee per la costruzione della tana o del nido.

La migrazione è un fenomeno estremamente complesso e, in quanto tale, influenzato da numerosi parametri e potenzialmente molto variabile. I primi movimenti primaverili nell'area di interesse appaiono orientati secondo l'asse sud/est – nord, e sud/ovest –nord, secondo un pattern di attraversamento su fronte ampio e comunque con basso numero di individui.

e relative opere connesse

6.7.2 Analisi dei fenomeni migratori osservati nell'area di studio

Nel contesto generale, uno dei corridoi interessati maggiormente dall'avifauna durante la migrazione primaverile, comprende la direttrice che attraversa il Parco Nazionale dell'Alta Murgia (IBA - IMPORTANT BIRD AREA) e l'invaso del Locone, verso il promontorio del Gargano. Queste direttrici restano comunque secondarie a quelle maggiormente utilizzate dall'avifauna in migrazione. Un'altra rotta migratoria secondaria è quella che dall'area del Monte Vulture procede verso la valle dell'Ofanto.

I dati raccolti nelle uscite di aprile – settembre, hanno permesso di registrare un passaggio piuttosto scarso di individui in migrazione. Non sembra esistere, nell'area interessata, un vero corridoio (bottle neck) utilizzato da grandi concentrazioni di uccelli durante la migrazione primaverile.

La Puglia ha un ruolo importante nella migrazione di molte specie svernanti nel Bacino del Mediterraneo (migratori a corto raggio) o nel Sud-Africa (migratori a lungo raggio). In relazione all'orografia del territorio salentino, alla frammentazione degli habitat naturali e all'antropizzazione, i migratori si comportano differentemente.

In autunno i migratori provengono dai Balcani e dal nord Italia. Alcuni restano a svernare in Puglia mentre altri proseguono verso l'Africa. In primavera i migratori, in risalita dall'Africa transitano per la Sicilia e la Calabria. In pochi si fermano per nidificare, mentre la maggior parte prosegue alla volta dei Balcani.

Gli spostamenti primaverili (direzione S-N) si concentrano lungo un tratto che porta dallo stretto di Messina all'istmo istmo di Marcellinara, da cui si sviluppano due direttrici principali: una lungo la costa tirrenica; l'altra in direzione di Punta Alice, nel crotonese (con passaggio anche da Isola di Capo Rizzuto), e poi verso il Salento, dopo aver attraversato il Golfo di Taranto.

Si è osservato, in ogni caso, che gli esemplari appartenenti alle specie del genere Circus (albanelle e falco di palude), transitano attraversato lo spazio aereo verso nord - nord/est; queste specie, utilizzano l'area come zona di sosta e di caccia prima di ripartire verso i quartieri di nidificazione. Per altre specie migratrici, la direttrice nord – nord/ovest, è la più utilizzata, come nel caso del Falco pecchiaiolo.

Nell'ultima settimana di agosto e durante le osservazioni di settembre, il numero dei rapaci osservato è stato relativamente basso. Questo lascia ipotizzare che, con molta probabilità, le rotte utilizzate durante il ritorno verso i quartieri di svernamento, siano diverse da quelle utilizzate in primavera.

Le specie osservate in migrazione o in sosta migratoria sono, in particolare, il Grillaio (*Falco naumanni*), della cui specie sono stati osservati molti individui in sosta nell'area su manufatti o tralicci, perlustrando i seminativi in cerca di prede. Il Grillaio negli ultimi anni ha subito un lieve incremento delle coppie nidificanti, con una espansione anche verso il nord Italia. Molto probabilmente i gruppi osservati in caccia, sono provenienti dall'alta Murgia o da siti di nidificazione del nord. Altre specie osservate in transito sono state il Falco di palude, il Nibbio bruno e Il Falco pecchiaiolo. Per i non Passeriformi: il Gruccione e il Rondone comune. Sono stati inseriti anche la Rondine e il Balestruccio per i Passeriformi migratori.

In ogni caso, per quanto esposto, si può ipotizzare una bassa incidenza legata alla costruzione del parco eolico in esame, atteso che nell'area l'avifauna sfrutta grandi spazi per gli spostamenti e, pertanto, le frequenze di individui registrate sono significativamente basse e tali da non porre a significativo rischio la conservazione delle specie più sensibili.

Inoltre, non tutte le specie volano e viaggiano allo stesso modo; alcune specie appartenenti al genere Circus (Albanella pallida, Albanella minore, Falco di palude e Albanella reale), durante la migrazione hanno l'abitudine di cacciare nella stessa zona in cui hanno scelto di trascorrere la notte prima di ripartire verso i quartieri di nidificazione. Si tratta di specie caratterizzate da elevate capacità di volo, in grado di volteggiare anche in assenza di termiche, che durante la migrazione riposano generalmente sul

terreno o su paletti e cacciano concentrando la vista verso il basso, perlustrando il territorio a bassa quota e velocità costante, generalmente lungo itinerari prestabiliti, gremendo a terra prede costituite da piccoli roditori e piccoli Passeriformi. Tali abitudini e comportamenti, tra cui la quota variabile di volo, rendono queste specie più sensibili ad un'eventuale incidenza nei confronti degli aerogeneratori di progetto, benché la bassa frequenza di passaggi riduca il rischio entro limiti accettabili per la loro conservazione.

Completamente diversi sono invece i passaggi del Falco pecchiaiolo. Si tratta di una specie prevalentemente gregaria durante le migrazioni, le quali sono caratterizzate da un continuo succedersi di stormi di decine di individui che volano ad altezze di volo oltre i 2/300 metri. Gli individui osservati hanno sorvolato l'area in formazioni di volo generalmente costituiti da lunghe catene di individui distanziati anche di alcune centinaia di metri; solo quando incontrano le correnti termiche, il raggruppamento di individui in stormo diventa più compatto e salendo di quota dentro queste correnti, valicano ad un'altezza dal suolo compresa tra i 300 e i 400 metri, quindi si separano subito in scivolata verso un'altra termica. Durante la migrazione, a differenza delle albanelle, il Falco pecchiaiolo non caccia, non forma veri e propri dormitori: gli individui scesi per la notte, anche se appartenenti ad un medesimo stormo, si posano singolarmente in modo disperso. Grazie a questo comportamento, per il Falco pecchiaiolo, il rischio di collisione con le pale degli aerogeneratori può essere considerato basso o nullo.

6.7.3 Effetto dei venti sulla migrazione

Pur considerando la complessità e la variabilità dei comportamenti migratori dell'avifauna, le osservazioni hanno consentito di tracciare un quadro del rapporto tra andamento meteo e migrazione. In generale i venti dominanti nell'area sono quelli dei quadranti nord – nord ovest. Nel periodo della migrazione primaverile, questi venti sono favorevoli alla migrazione; i venti caldi meridionali, di norma con cielo coperto o con nuvole stratificate in quota, sono invece sfavorevoli. Venti forti da nord – nord ovest accompagnati da un transito di perturbazione, con progressive schiarite, consentono il passaggio dei rapaci con una elevazione delle quote di volo.

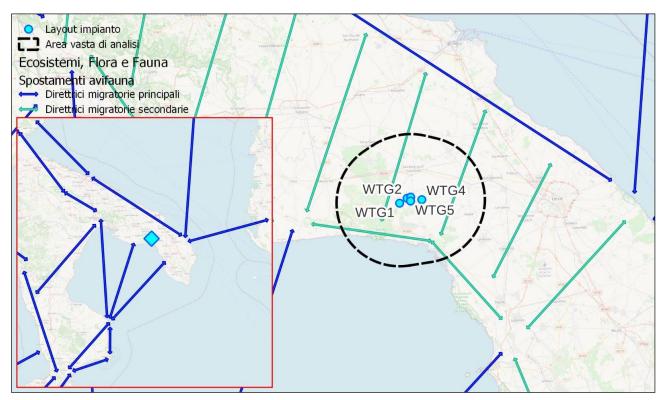


Figura 21 – Rotte migratore principali e secondarie durante la stagione primaverile

6.8 Stima del numero possibile di collisioni

Le elaborazioni sono state effettuate per tre differenti condizioni:

- 1. Solo impianto in progetto
- 2. Stato di fatto (aerogeneratori esistenti, autorizzati o con giudizio favorevole di compatibilità ambientale valido e minieolico)
- 3. Stato di progetto (aerogeneratori esistenti, autorizzati o con giudizio favorevole di compatibilità ambientale valido, minieolico + aerogeneratori esistenti).

IMPIANTO IN PROGETTO

Tabella 14. Dati in input

INPUT	SOLO IMPIANTO	
Larghezza impianto	3500	m
Altezza turbina piu alta	250	m
Superficie di rischio	875000	m²
n rotori (N)	5	
Diametro rotore	170	m
Area spazzata	113490,0	m²
Coeff netto di rischio (A/S)	0,130	

A titolo esemplificativo si riporta uno stralcio del foglio di calcolo utilizzato per la definizione del rischio di collisione:

Tabella 15. Stralcio del foglio di calcolo utilizzato

PARAMETRI TECNICI – SG 6.6 – 170 F	HH 165	
K: [1D or [3D] (0 or 1)	1	
NoBlades	3	
MaxChord	4,5	m
Pitch (degrees)	5	
RotorDiam	170	m
RotationPeriod	5,45	sec
PARAMETRI BIOLOGICI – Specie <i>Bute</i> i	o buteo	
BirdLength	0,56	m
Wingspan	1,24	m
F: Flapping (0) or gliding (+1)	1	
Bird speed	11,6	m/sec
Bird aspect ratio:b	0,45	

I parametri tecnici sono stati desunti dalle schede tecniche della SG 6.6-170 HH 165 m; per l'angolo di pitch (angolo di calettamento) è stato usato un parametro desunto dall'articolo di Sudhamsu A.R. et alii (2014) "Numerical study of effect of pitch angle on performance characteristics of a HAWT".

I parametri biologici delle varie specie sono desunti dalla pubblicazione di T. Alerstam et alii; in particolare quelli riportati nella tabella in alto fanno riferimento alla poiana (Buteo buteo).

Inserendo quindi i dati relativi alle caratteristiche tecniche dell'impianto e quelli relativi alle singole specie² osservate durante le attività di monitoraggio, si arriva alla definizione del rischio di collisione. La valutazione non è stata effettuata per il falco pecchiaiolo perché in condizioni climatiche favorevoli alla migrazione, come quelle finora rilevate nel corso del monitoraggio, la specie vola ad altezze ben superiori a quella massima degli aerogeneratori di progetto e quindi il rischio risulta pressoché trascurabile.

Tabella 16. Rischio medio di collisione - Solo impianto in progetto

					Rischi	o Collisione (BA	ND)		N.	collisioni anno	•	
Specie	N. ind. censiti	G. Avv	N. ind./anno	A/S	N.voli a rischio/anno	Upwind	Downwind	Media	Avoid.	Upwind	Downwind	Media
Poiana	38	8	1734	0,13	225	0,068	0,047	0,058	0,98	0,31	0,21	0,260
Falco di palude	16	8	730	0,13	95	0,071	0,050	0,061	0,98	0,14	0,09	0,115
Albanella minore	31	8	1414	0,13	183	0,075	0,046	0,061	0,98	0,28	0,17	0,223
Grillaio	33	8	1506	0,13	195	0,059	0,038	0,049	0,98	0,23	0,15	0,190
Gheppio	30	8	1369	0,13	178	0,064	0,041	0,053	0,95	0,57	0,36	0,466
Falco pescatore	1	8	46	0,13	6	0,064	0,046	0,055	0,98	0,01	0,01	0,007
Biancone	1	8	46	0,13	6	0,071	0,053	0,062	0,98	0,01	0,01	0,007
Albanella pallida	8	8	365	0,13	47	0,076	0,051	0,063	0,98	0,07	0,05	0,060

² Il calcolo del rischio è stato effettuato per tutti i Falconiformes, gli Accipitriformes, e per le specie classificate come VU, EN, CR secondo IUCN - Liste Rosse italiane.

						Rischio Collisione (BAND)				N. collisioni anno		
Specie	N. ind. censiti	G. Avv	N. ind./anno	A/S	N.voli a rischio/anno	Upwind	Downwind	Media	Avoid.	Upwind	Downwind	Media
Sparviere	3	8	137	0,13	18	0,064	0,043	0,054	0,98	0,02	0,02	0,019
Nibbio bruno	13	8	593	0,13	77	0,071	0,050	0,060	0,98	0,11	0,08	0,093
Poiana codabianca	1	8	46	0,13	6	0,072	0,049	0,061	0,98	0,01	0,01	0,007
Falco cuculo	5	8	228	0,13	30	0,055	0,036	0,046	0,98	0,03	0,02	0,027
Lodolaio	2	8	91	0,13	12	0,074	0,053	0,063	0,98	0,02	0,01	0,015
Falco pellegrino	2	8	91	0,13	12	0,062	0,042	0,052	0,98	0,01	0,01	0,012
Calandrella ³	2	8	91	0,13	12	0,047	0,027	0,037	0,98	0,01	0,01	0,009

STATO DI FATTO (Aerogeneratori esistenti, autorizzati e minieolici)

Tabella 17. Dati in input

INPUT	S.F.	
Larghezza impianto	14248	m
Altezza turbina più alta	250	m
Superficie di rischio	3562000	m²
n rotori (N)	40	
Diametro rotore	115	m
Area spazzata	415475,6	m²
Coeff. netto di rischio (A/S)	0,117	

Si fa presente che in questo caso il diametro è stato calcolato come media pesata in base alle informazioni in possesso sugli altri aerogeneratori presenti nell'area di studio.

³ La pubblicazione di T. Alerstam cui si è fatto riferimento per i parametri biologici delle specie, non riporta dati per la Calandrella (Calandrella brachydactyla); ai fini del calcolo del rischio di collisione sono state considerate caratteristiche di specie similari per corporatura e comportamento.

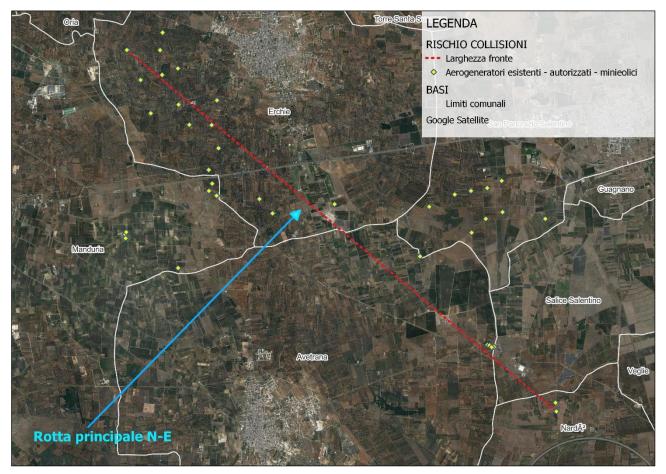


Figura 22 – Rappresentazione del fronte preso in esame per il calcolo e degli aerogeneratori considerati per la definizione della finestra di rischio

Tabella 18. Rischio medio di collisione - STATO DI FATTO

						Rischi	o Collisione (BA	ND)		N.	collisioni anno	,
Specie	N. ind censiti	G. Avv	N. ind./anno	A/S	N. voli a rischio/anno	Upwind	Downwind	Media	Avoid.	Upwind	Downwind	Media
Poiana	38	8	1734	0,12	202	0,068	0,047	0,058	0,98	0,28	0,19	0,234
Falco di palude	16	8	730	0,12	85	0,071	0,050	0,061	0,98	0,12	0,08	0,103
Albanella minore	31	8	1414	0,12	165	0,075	0,046	0,061	0,98	0,25	0,15	0,201
Grillaio	33	8	1506	0,12	176	0,059	0,038	0,049	0,98	0,21	0,13	0,171
Gheppio	30	8	1369	0,12	160	0,064	0,041	0,053	0,95	0,51	0,32	0,419
Falco pescatore	1	8	46	0,12	5	0,064	0,046	0,055	0,98	0,007	0,005	0,006
Biancone	1	8	46	0,12	5	0,071	0,053	0,062	0,98	0,008	0,006	0,007
Albanella pallida	8	8	365	0,12	43	0,076	0,051	0,063	0,98	0,06	0,04	0,054
Sparviere	3	8	137	0,12	16	0,064	0,043	0,054	0,98	0,02	0,01	0,017
Nibbio bruno	13	8	593	0,12	69	0,071	0,050	0,060	0,98	0,10	0,07	0,084
Poiana codabianca	1	8	46	0,12	5	0,072	0,049	0,061	0,98	0,01	0,01	0,006
Falco cuculo	5	8	228	0,12	27	0,055	0,036	0,046	0,98	0,03	0,02	0,024
Lodolaio	2	8	91	0,12	11	0,074	0,053	0,063	0,98	0,02	0,01	0,013
Falco pellegrino	2	8	91	0,12	11	0,062	0,042	0,052	0,98	0,01	0,01	0,011
Calandrella	2	8	91	0,12	11	0,047	0,027	0,037	0,98	0,010	0,006	0,008

0,128

STATO DI PROGETTO (Aerogeneratori esistenti, autorizzati e minieolici + Impianto in progetto) Tabella 19. Dati in input

INPUT	S.P.	
Larghezza impianto	15915	m
Altezza turbina più alta	250	m
Superficie di rischio	3978750	m²
n rotori (N)	45	
Diametro rotore	120	m
Area spazzata	508938	m²

Come si evince dalla tabella il numero di aerogeneratori è aumentato delle 5 unità di cui si compone il parco eolico "Monteruga"; anche il diametro medio è leggermente incrementato rispetto al caso precedente per effetto dell'inserimento, nel calcolo della media pesata, del diametro di 170 m caratteristico degli aerogeneratori in progetto.

Coeff. netto di rischio (A/S)

Figura 23 – Rappresentazione del fronte preso in esame per il calcolo e degli aerogeneratori considerati per la definizione della finestra di rischio nello stato di progetto

Tabella 20. Rischio medio di collisione - STATO DI PROGETTO

							o Collisione (BA	ND)		N.	collisioni anno)
Specie	N.ind. censiti	G.Avv	N. ind./anno	A/S	N. voli a rischio/anno	Upwind	Downwind	Media	Avoid.	Upwind	Downwind	Media
Poiana	38	8	1734	0,13	222	0,068	0,047	0,058	0,98	0,30	0,21	0,256
Falco di palude	16	8	730	0,13	93	0,071	0,050	0,061	0,98	0,13	0,09	0,113
Albanella minore	31	8	1414	0,13	181	0,075	0,046	0,061	0,98	0,27	0,17	0,220
Grillaio	33	8	1506	0,13	193	0,059	0,038	0,049	0,98	0,23	0,15	0,187
Gheppio	30	8	1369	0,13	175	0,064	0,041	0,053	0,95	0,56	0,36	0,460
Falco pescatore	1	8	46	0,13	6	0,064	0,046	0,055	0,98	0,007	0,005	0,006
Biancone	1	8	46	0,13	6	0,071	0,053	0,062	0,98	0,008	0,006	0,007
Albanella pallida	8	8	365	0,13	47	0,076	0,051	0,063	0,98	0,071	0,047	0,059
Sparviere	3	8	137	0,13	18	0,064	0,043	0,054	0,98	0,02	0,02	0,019
Nibbio bruno	13	8	593	0,13	76	0,071	0,050	0,060	0,98	0,11	0,08	0,092
Poiana codabianca	1	8	46	0,13	6	0,072	0,049	0,061	0,98	0,01	0,01	0,007
Falco cuculo	5	8	228	0,13	29	0,055	0,036	0,046	0,98	0,03	0,02	0,027
Lodolaio	2	8	91	0,13	12	0,074	0,053	0,063	0,98	0,02	0,01	0,015
Falco pellegrino	2	8	91	0,13	12	0,062	0,042	0,052	0,98	0,01	0,01	0,012
Calandrella	2	8	91	0,13	12	0,047	0,027	0,037	0,98	0,011	0,006	0,009

Per maggiore chiarezza si riporta in tabella, il riepilogo dei risultati ottenuti per i 3 scenari esposti.

Tabella 21. Rischio medio di collisione - Risultati

	Medie N. collisioni anno			
Specie	SF	SP	Solo Impianto ⁴	
Poiana	0,234	0,256	0,260	
Falco di palude	0,103	0,113	0,115	
Albanella minore	0,201	0,220	0,223	
Grillaio	0,171	0,187	0,190	
Gheppio	0,419	0,460	0,466	
Falco pescatore	0,006	0,006	0,007	
Biancone	0,007	0,007	0,007	
Albanella pallida	0,054	0,059	0,060	
Sparviere	0,017	0,019	0,019	
Nibbio bruno	0,084	0,092	0,093	
Poiana codabianca	0,006	0,007	0,007	
Falco cuculo	0,024	0,027	0,027	
Lodolaio	0,013	0,015	0,015	

⁴ Dai dati si può notare che l'impianto proposto, se valutato cumulativamente con gli altri aerogeneratori esistenti, autorizzati (o con VIA positiva) e minieolici, non ha un effetto puramente additivo del rischio di collisione, ma è meno consistente perché cambia la superficie netta di rischio e l'ingombro delle pale degli aerogeneratori di progetto viene mediato con quello delle altre.

		Medie N. collisioni anno			
Specie	SF	SP	Solo Impianto ⁴		
Falco pellegrino	0,011	0,012	0,012		
Calandrella	0,008	0,009	0,009		

Le stime dei rischi da collisione delle diverse specie sono state realizzate sulla base delle osservazioni effettuate nel periodo aprile – settembre 2022. I valori medi di collisioni/anno risultano prossimi a 0 per dieci delle quindici specie prese in considerazione; per le cinque rimanenti invece, delle quali solo il falco di palude e l'albanella minore sono vulnerabili secondo Rondinini C. et al. (2013) i valori risultano non del tutto trascurabili, ma comunque inferiori rispetto a quelli normalmente reperiti in bibliografia⁵, che riguardano indici di collisione annui per singola turbina.

Si tenga presente, inoltre, che il calcolo probabilistico è stato effettuato a vantaggio di sicurezza e comporta diverse approssimazioni, come ad esempio l'assimilazione degli uccelli a semplici modelli cruciformi, che una pala abbia larghezza ed inclinazione ma non spessore, che la velocità di volo rimanga la stessa sia sopra vento che sotto vento e che il volo stesso non venga influenzato dalla scia attorno alle pale della turbina.

Risulta utile sottolineare come nel passaggio da stato di fatto a stato di progetto, l'aumento del rischio di collisione sia percepibile (anche in virtù delle dimensioni degli aerogeneratori), ma ancora accettabile, e quantificabile in un aumento della probabilità di rischio pari al 9,6%.

⁵ A riguardo si consulti il paragrafo 2.2

7 Valutazione di incidenza

Allo stato delle conoscenze attuali, sulla base dei dati rilevati da aprile a settembre 2022, si esprimono le seguenti considerazioni.

Stimando in "inesistente, basso, medio e alto" il rischio di incidenza, si ritiene che:

- La modificazione e perdita di habitat sia inesistente per gli habitat naturali poiché la realizzazione dell'intervento non prevede alcuna azione a carico di habitat naturali. Bassa è la perdita di habitat agricoli, per via della percentuale di superficie coinvolta;
- Rispetto al <u>disturbo</u> si ritiene che l'incidenza sia <u>bassa</u> per le specie che frequentano i coltivi, poiché già adattate alla vicinanza con l'uomo. Risulta <u>bassa</u> anche per le specie che frequentano gli habitat naturali presenti nell'area; si fa riferimento nello specifico alla ZSC IT9150027 Palude del Conte, dune di Punta Prosciutto e per maggiori dettagli si rimanda allo Studio di Incidenza Ambientale;
- Rispetto all'<u>effetto barriera</u>, si ritiene che tale rischio sia <u>basso</u> in virtù della distanza che intercorre tra gli aerogeneratori e i biotopes di rilevanza naturalistica; si tratta in particolare di habitat riferibili ad ambienti marini, con ridottissime superfici rispetto al buffer di analisi, e piuttosto distanti dalle opere in progetto in quanto oltre il buffer di 5 km. Per maggiori dettagli si rimanda allo Studio di Incidenza Ambientale.
- Rispetto al rischio di <u>collisione</u> si ritiene possa essere maggiore per le specie ornitiche che frequentano i campi, rispetto a quelle che frequentano gli ambienti naturali, in virtù della già accennata distanza dagli ambienti naturali. In ogni caso, sulla base delle considerazioni fin qui espresse e dell'esperienza maturata in attività di monitoraggio per altri impianti eolici, si conferma che, i bassi contingenti finora rilevati nell'area dell'impianto e le misure di mitigazione proposte fanno ritenere che la possibile collisione di uccelli contro gli aerogeneratori sia fisiologicamente confinata entro ordini di grandezza accettabili e tali da non costituire fonte significativa di rischio per la conservazione delle specie protette.

In ogni caso, a conclusione del monitoraggio *ante operam* e *post operam* sul sito, si potranno trarre considerazioni più accurate e specifiche per l'impianto in esame.

Conclusioni sui rilievi avifaunistici 8

I risultati conseguiti attraverso i rilievi del periodo aprile – settembre 2022, hanno permesso di ottenere un quadro ancora non completamente esaustivo, ma indicativo, almeno per il periodo di osservazione, delle modalità di frequentazione della componente stazionaria, nidificante e migratrice dell'avifauna.

I rapaci osservati, hanno dimostrato, in misura ora maggiore ora minore, di utilizzare l'area di studio per la caccia e voli di spostamento sfruttando altezze di volo sopra e sotto i 100 metri.

Per quanto esposto, si possono confermare le valutazioni già riportate nello SIA relativamente ad una minima incidenza legata alla costruzione del parco eolico, che non si sovrappone sulle rotte migratorie principali; la spaziatura tra torri e gli altri accorgimenti atti a rendere maggiormente percepibili le pale dall'avifauna, si ipotizza che non possano influire significativamente sul numero di individui e, in generale, sulla biodiversità dell'avifauna caratterizzante l'area.

Si ritiene in ogni caso auspicabile il completamento dell'attività di monitoraggio anche per la fase di cantiere e di esercizio, per soddisfare il perseguimento dei seguenti obiettivi:

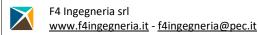
- Acquisire un quadro ancora più completo delle conoscenze riguardanti l'utilizzo, da parte degli uccelli, dello spazio interessato dalla costruzione dell'impianto, al fine di prevedere e stimare la possibile incidenza sulla medesima avifauna, a scale geografiche conformi ai range di attività delle specie e delle popolazioni coinvolte;
- Fornire una quantificazione dell'incidenza degli aerogeneratori sul popolamento animale, e, per quanto attiene all'avifauna sugli uccelli che utilizzano, per diverse funzioni (spostamenti per la migrazione, la difesa territoriale e l'alimentazione), le superfici al suolo e lo spazio aereo nei pressi delle turbine;
- Disporre di una base di dati che permetta l'elaborazione di modelli sull'incidenza più accurati, attraverso la verifica della loro attendibilità e l'individuazione dei più importanti fattori che contribuiscono alla variazione della sua entità;
- Individuare eventuali ulteriori misure di mitigazione. La possibile incidenza risulta tanto maggiore quanto maggiore è la densità delle macchine. In proposito va tenuto conto che gli spazi disponibili per il volo dipendono non solo dalla distanza "fisica" delle macchine (gli spazi effettivamente occupati dalle pale, vale a dire l'area spazzata), ma anche da un ulteriore eventuale impedimento costituito dal campo di flusso perturbato generato dall'incontro del vento con le pale oltre che dal rumore da esse generato.

Il rischio è tuttavia facilmente prevedibile e mitigabile con accorgimenti da mettere in atto in fase esecutiva al fine di mitigare gli effetti che la realizzazione dell'impianto potrebbe avere sull'avifauna. In particolare, per l'impianto in esame si ritiene utile l'adozione delle seguenti misure di mitigazione:

- L'adozione di una colorazione adatta alla riduzione del rischio di collisione dell'avifauna e coerente con le disposizioni per la segnalazione degli ostacoli verticali per la navigazione aerea.
- Realizzazione di un punto di alimentazione artificiale per i rapaci necrofagi (carnaio) per la durata del monitoraggio post-operam; è ampiamente dimostrata l'utilità dei carnai⁶, sia per quanto riguarda il sostentamento delle specie nidificanti (Capovaccaio e nibbi) sia per alcune specie migratrici (Falco di palude e Nibbio bruno), che durante le migrazioni

⁶ I carnai per la conservazione dei rapaci. Gazzetta Ambiente 2:1-144. Edizioni Alpes Italia, Roma

stagionali, a causa della stanchezza per i lunghi spostamenti, frequentano i carnai per alimentarsi. Il carnaio inoltre, è un'utile azione per mantenere lontane dal parco eolico le


Analisi preliminare su avifauna e chirotteri

specie necrofaghe, riducendo così il rischio di collisione con le pale durante i voli di ricerca di cibo;

- Installazione di cassette nido per piccoli falchi (es. Gheppio e Grillaio) e passeriformi;
- Isolamento delle linee elettriche per evitare l'elettrocuzione con in cavidotti (Cicogne e rapaci di grosse dimensioni come il Nibbio reale, Biancone e il Capovaccaio, sono spesso vittime del fenomeno dell'elettrocuzione). In proposito si evidenzia che il cavidotto di collegamento MT dell'impianto è completamente interrato, così come il cavo di collegamento in AT alla cabina Terna. Per le altre opere elettriche (stazione utente) saranno adottati tutti gli accorgimenti utili ad evitare l'elettrocuzione dell'avifauna;
- Realizzazione di appezzamenti o strisce di terreno all'interno dei seminativi (prati stabili) per favorire la nidificazione e foraggiamento di specie soprattutto Passeriformi.

 Tale intervento potrà essere effettuato a margine delle aree sottoposte agli interventi di compensazione del consumo di suolo. Le aree interessate da agricoltura intensiva tendono a perdere biodiversità a causa della eccessiva semplificazione del paesaggio agricolo. Una delle manifestazioni più evidenti di questo fenomeno è il calo delle specie di avifauna (Passeriformi delle aree prative) tipiche degli ambienti agricoli. In particolare, la trasformazione dei terreni agricoli in monocolture contribuisce a diminuire la densità delle popolazioni di Allodola (ISPRA, 2017), Tottavilla, Cappellaccia, Calandra, Strillozzo e altre specie prative. La semina di strisce di miscugli di semi è una delle misure proposte ed utilizzate in alcuni paesi per mitigare questo aspetto negativo. Una recente ricerca condotta in Repubblica Ceca ha valutato in modo scientifico la loro efficacia. Queste strisce hanno fatto registrare una maggiore ricchezza ed abbondanza di specie rispetto alle aree di confronto, soprattutto nella prima parte dell'inverno e nel periodo riproduttivo (Šálek M. et al., 2022).

L'adozione delle sopraccennate misure di mitigazione riduce significativamente la possibile incidenza complessiva dell'impianto eolico in esame, fino a livelli del tutto accettabili e comunque compatibili con le strategie di conservazione delle specie di interesse naturalistico.

9 Bibliografia sull'avifauna

- [1] Anderson R. L., W. Erickson, D. Strickland, J. Tom, N. Neumann, 1998 Avian Monitoring and risk Assessment at Tehachapi Pass and San Gorgonio Pass Wind Resource Areas, California: Phase 1 Preliminary Results. Proceedings of national Avian-Wind Power Planning Meeting III. May 1998, San Diego, California.
- [2] Bibby C. J., Burgess, N. D., Hill D. A., Mustoe S., 2000. Bird Census Techniques, 2° editino. London UK. Academic Press., 302 pp.
- [3] Eolico & Biodiversità. Linee guida per la realizzazione di impianti eolici in Italia WWF Italia 2007.
- [4] EEA European Environmental Agency (2009). Europe's onshore and offshore wind energy potential. An assessment of environmental and economic constraints. EA Technical report no.6, 2009.
- [5] Impianti Eolici Industriali. Criteri per la localizzazione degli impianti e protocolli di monitoraggio della fauna nella Regione Piemonte.
- [6] Regione Toscana. Centro Ornitologico Toscano. Indagine sull' impatto dei parchi eolici sull' avifauna. Luglio 2002.
- [7] LIPU Bird Life International. In volo sull' Europa 25 anni della Direttiva Uccelli, legge pioniera sulla conservazione della natura.
- [8] Meschini E., S.Frugis. Atlante degli uccelli nidificanti in Italia Volume XX Novembre 1993.
- [9] BAKER K., 1993. Identification Guide to European Non-Passerines: BTO Guide 24.
- [10] BROWN R., FERGUSON J., LAWRENCE M., LEES D. (1989). Tracce e segni degli uccelli d'Europa. Franco Muzzio ed., Padova.
- [11] CHIAVETTA M., 1988. Guida ai rapaci notturni strigiformi d'Europa, nord Africa e Medioriente. Zanichelli.
- [12] CRAMP S., SIMMONS K.E.L., 1980 The Birds of Western Paleartic. Hawks to Bustards. Oxford University Press, Oxford.
- [13] FORSMAN D., 1999. The raptors of Europe and Middle East. Christopher Helm (Publishers) Ltd.
- [14] JONSSON L., Birds of Europe with North Africa and the Middle East. Christopher Helm (Publishers) Ltd.
- [15] MASI A., 1991. Gli uccelli e i loro nidi. Rizzoli.
- [16] BULGARINI F., CALVARIO E., FRATICELLI F., PETRETTI F., SARROCCO S., 1998 Libro Rosso degli animali Italiani i vertebrati. WWF Italia.
- [17] Medsker L., 1982. Side effects of renewable energy sources. National Audubon Society, Environmental Policy Research Department n° 15. 73 pp.
- [18] Winkelman J.E.,1992. The impact of the Sep wind park near Oosterbierum (FR), the Nederlands, on birds. 2: nocturnal collision risks. DLO-Instituut voor Bos-en Natuurondezoek. RIN-rapport 92/3 4 volumes.
- [19] De Lucas M., Guyonne F.E., Janns F.E and Ferre M., 2004. The effects of a wind farm on birds in a migration point: the strait of Gibilterra. Biodiversity and Conservation 13: 395-407.



- [20] Barriors L., 1995. Energia eolica y aves en el Campo de Gibraltar. La Garciglia 93 : 39-41.
- [21] Hunt G., 1999. A Population Study of Golden Eagles in the Altamont Pass Wind Resource Area. National Renewable Energy Labotatory (NREL), Santa Cruz, California.
- [22] Higgins K.F., Osborn R.G., Dieter C.D. and Usgaard R.E., 1996. Monitoring of Seasonal Bird Activity and Mortality at the Buffalo Ridge Wind Resource Area, Minnesota, 1994-1995. South Dakota Cooperative Fish and Wildlife Research Unit, National Biological Service, Brookings, South Dakota.
- [23] Šálek M, Bažant M, Żmihorski M, Gamero A. 2022 Evaluating conservation tools in intensively-used formulando: Higher bird and mammal diversity in seed-rich strips during winter. Agriculture, Ecosystems & Environment, Volume 327

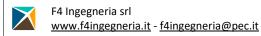
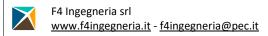
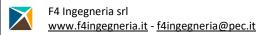

10 Check-list degli uccelli della Puglia aggiornata al 2012

Tabella 22. Elenco sistematico delle specie più comuni e regolari su tutto il territorio della Puglia


ID	DEN. COMUNE	DEN. SCIENTIFICA	
	ANSERIFORMI		
	Anatidi		
1	Cigno reale	Cygnus olor	W irr, M irr
2	Cigno minore	Cygnus columbianus	A-3 [2 post 1949]
3	Cigno selvatico	Cygnus cygnus	A-8 [3 post 1949]
4	Oca granaiola	Anser fabalis	M irr, W irr
5	Oca lombardella	Anser albifrons	M irr, W irr
6	Oca lombardella minore	Anser erythropus	A-10 [3 post 1949]
7	Oca selvatica	Anser anser	M reg, W, SB (dal 2003)
8	Oca facciabianca	Branta leucopsis	(A-1)
9	Oca colombaccio	Branta bernicla	(A-1)
10	Oca collorosso	Branta ruficollis	A-3 [2 post 1949]
11	Casarca	Tadorna ferruginea	W irr, M irr, E irr
12	Volpoca	Tadorna tadorna	M reg, W, B
13	Fischione	Anas penelope	M reg, W, E irr, B acc [1 post 1949]
14	Canapiglia	Anas strepera	M reg, W, E, B acc?
15	Alzavola asiatica	Anas formosa	(A-1)
16	Alzavola	Anas crecca	M reg, W, E, B irr
17	Germano reale	Anas platyrhynchos	M reg, W, SB
18	Codone	Anas acuta	M reg, W, E irr, B acc [FG anni '60 - '70]
19	Marzaiola	Anas querquedula	M reg, B irr
20	Mestolone	Anas clypeata	M reg, W, B acc [FG anni '80; LE 1982]
21	Anatra marmorizzata	Marmaronetta angustirostris	A-4 [2 post 1949]
22	Fistione turco	Netta rufina	M irr, W irr, E irr, B irr [2 post 1949]
23	Moriglione	Aythya ferina	M reg, W, E, B irr
24	Moretta tabaccata	Aythya nyroca	M reg, W, B, E
25	Moretta	Aythya fuligula	M reg, W, B irr
26	Moretta grigia	Aythya marila	W irr
27	Edredone	Somateria mollissima	M irr, W irr
28	Moretta codona	Clangula hyemalis	A-4 [1 post 1949]
29	Orchetto marino	Melanitta nigra	M irr, W irr
30	Orco marino	Melanitta fusca	A-10 [7 post 1949]
31	Quattrocchi	Bucephala clangula	M reg, W
32	Pesciaiola	Mergellus albellus	W irr
33	Smergo minore	Mergus serrator	M reg, W
34	Smergo maggiore	Mergus merganser	A
35	Gobbo rugginoso	Oxyura leucocephala	A, B estinto
	GALLIFORMI		
	Fasianidi		
36	Coturnice	Alectoris graeca	(A)

ID	DEN. COMUNE	DEN. SCIENTIFICA	
37	Starna	Perdix perdix	introdotta, SB estinta
38	Quaglia comune	Coturnix coturnix	M reg, B, W par
39	Fagiano comune	Phasianus colchicus	SB
	GAFIFORMI		
	Gavidi		
40	Strolaga minore	Gavia stellata	W irr
41	Strolaga mezzana	Gavia arctica	W, M irr
42	Strolaga maggiore	Gavia immer	(A-1)
	PROCELLARIFORMI		
	Procellaridi		
43	Ossifraga	Macronectes giganteus	A-1 [1 post 1949]
44	Berta maggiore	Calonectris diomedea	SB par, M reg
45	Berta minore	Puffinus yelkouan	SB par, M reg
	Idrobatidi		
46	Uccello delle tempeste	Hydrobates pelagicus	M irr
	PELECANIFORMI		
	Sulidi		
47	Sula	Morus bassanus	M reg, W
	Pelecanidi		
48	Pellicano comune	Pelecanus onocrotalus	A
49	Pellicano rossiccio	Pelecanus rufescens	A-1 [1 post 1949]
50	Pellicano riccio	Pelecanus crispus	A-1 [1 post 1949]
	Falacrocoracidi		
51	Cormorano	Phalacrocorax carbo	M reg, W, B (dal 2002), E
52	Marangone dal ciuffo	Phalacrocorax aristotelis	M irr
53	Marangone minore	Phalacrocorax pygmeus	SB (dal 2006), W, E irr
	CICONIFORMI		
	Ardeidi		
54	Tarabuso	Botaurus stellaris	M reg, W, B
55	Tarabusino	Ixobrychus minutus	M reg, B
56	Nitticora	Nycticorax nycticorax	M reg, B, W irr
57	Sgarza ciuffetto	Ardeola ralloides	M reg, B, W irr
58	Airone guardabuoi	Bubulcus ibis	W irr, Mig irr, E irr
59	Airone schistaceo	Egretta gularis	A-2
60	Garzetta	Egretta garzetta	M reg, W, B, E
61	Airone bianco maggiore	Casmerodius albus	M reg, W, E irr
62	Airone cenerino	Ardea cinerea	M reg, W, E
63	Airone rosso	Ardea purpurea	M reg, B
	Ciconidi		
64	Cicogna nera	Ciconia nigra	M reg, E irr, B acc (2012)
65	Cicogna bianca	Ciconia ciconia	M reg, B (1999 e dal 2002), W irr
	Treschiornitidi		
66	Mignattaio	Plegadis falcinellus	M reg, E irr, W irr, B irr
67	Spatola	Platalea leucorodia	M reg, E, W

ID	DEN. COMUNE	DEN. SCIENTIFICA	
	FENICOPTERIFORMI		
	Fenicopteridi		
68	Fenicottero	Phoenicopterus roseus	SB par (dal 1996), M reg, W, E
	PODICIPEDIFORMI		
	Podicipedidi		
69	Tuffetto	Tachybaptus ruficollis	M reg, W, SB
70	Svasso maggiore	Podiceps cristatus	M reg, W, SB
71	Svasso collorosso	Podiceps grisegena	W irr
72	Svasso cornuto	Podiceps auritus	A-6 [4 post 1949]
73	Svasso piccolo	Podiceps nigricollis	M reg, W, B acc
	FALCONIFORMI		
	Accipitridi		
74	Falco pecchiaiolo	Pernis apivorus	M reg, B, W irr
75	Nibbio bruno	Milvus migrans	M reg, B
76	Nibbio reale	Milvus milvus	SB, M reg, W
77	Aquila di mare	Haliaeetus albicilla	(A-2)
78	Capovaccaio	Neophron percnopterus	M reg, B irr
79	Grifone	Gyps fulvus	A-6 [5 post 1949]
80	Biancone	Circaetus gallicus	M reg, B, W irr
81	Falco di palude	Circus aeruginosus	M reg, W, E
82	Albanella reale	Circus cyaneus	M reg, W
83	Albanella pallida	Circus macrourus	M reg, W irr
84	Albanella minore	Circus pygargus	M reg, B estinto
85	Astore	Accipiter gentilis	M irr, B acc?
86	Sparviere	Accipiter nisus	M reg, W, SB
87	Poiana	Buteo buteo	SB, W, M reg
88	Poiana codabianca	Buteo rufinus	M reg, W irr
89	Poiana calzata	Buteo lagopus	A-7 [2 post 1949]
90	Aquila anatraia maggiore	Aquila clanga	A-6 [5 post 1949]
91	Aquila anatraia minore	Aquila pomarina	M irr
92	Aquila minore	Aquila pennata	M reg, W, E irr
93	Aquila reale	Aquila chrysaetos	A-5 [4 post 1949]
94	Aquila di Bonelli	Aquila fasciata	A-3 [1 post 1949], B estinto ?
95	Aquila imperiale	Aquila heliaca	A-2 [2 post 1949]
	Pandionidi		
96	Falco pescatore	Pandion haliaetus	M reg, W, E irr, B estinto
	Falconidi		
97	Grillaio	Falco naumanni	M reg, B, W irr
98	Gheppio	Falco tinnunculus	SB, M reg, W
99	Falco cuculo	Falco vespertinus	M reg
100	Smeriglio	Falco columbarius	M reg, W
101	Lodolaio	Falco subbuteo	M reg, B
102	Falco della Regina	Falco eleonorae	M reg, B estinto ?
103	Lanario	Falco biarmicus	SB


Analisi preliminare su avifauna e chirotteri

ID	DEN. COMUNE	DEN. SCIENTIFICA	
104	Sacro	Falco cherrug	M reg, W irr
105	Falco pellegrino	Falco peregrinus	SB, M reg, W
106	Falcone della Barberia	Falco pelegrinoides	(A-1)
	GRUIFORMI		
	Rallidi		
107	Porciglione	Rallus aquaticus	M reg, W, SB
108	Voltolino	Porzana porzana	M reg, B acc [1 post 1949]
109	Schiribilla	Porzana parva	M reg
110	Schiribilla grigiata	Porzana pusilla	M irr
111	Re di quaglie	Crex crex	M reg
112	Gallinella d'acqua	Gallinula chloropus	SB, M reg, W
113	Pollo sultano	Porphyrio porphyrio	SB estinto
114	Folaga	Fulica atra	M reg, W, SB
	Gruidi		
115	Gru	Grus grus	M reg, W irr, E irr
	Otididi		
116	Gallina prataiola	Tetrax tetrax	SB (estinta ?)
117	Ubara asiatica	Chlamydotis macqeenii	(A-1)
118	Otarda	Otis tarda	A-10
	CARADRIFORMI		
	Ematopodidi		
119	Beccaccia di mare	Haematopus ostralegus	M reg, E irr
	Recurvirostridi		
120	Cavaliere d'Italia	Himantopus himantopus	M reg, B, W irr
121	Avocetta	Recurvirostra avosetta	M reg, B, W
	Burinidi		
122	Occhione	Burhinus oedicnemus	M reg, B, W irr
	Glareolidi		
123	Corrione biondo	Cursorius cursor	A-6 [1 post 1949]
124	Pernice di mare	Glareola pratincola	M reg, B irr
125	Pernice di mare orientale	Glareola nordmanni	(A-1)
	Caradridi		
126	Corriere piccolo	Charadrius dubius	M reg, B, W irr, E irr
127	Corriere grosso	Charadrius hiaticula	M reg, W, E irr
128	Fratino	Charadrius alexandrinus	M reg, W, SB
129	Corriere asiatico	Charadrius asiaticus	(A-1)
130	Corriere di Kittlitz	Charadrius pecuarius	(A-1)
131	Piviere tortolino	Charadrius morinellus	M reg
132	Piviere dorato	Pluvialis apricaria	M reg, W
133	Pivieressa	Pluvialis squatarola	M reg, W, E irr
134	Pavoncella gregaria	Vanellus gregarius	A-6 [2 post 1949]
135	Pavoncella codabianca	Vanellus leucurus	A-1
136	Pavoncella	Vanellus vanellus	W, M reg, B estinta
	Scolapacidi		

ID	DEN. COMUNE	DEN. SCIENTIFICA	
137	Piovanello maggiore	Calidris canutus	M reg, W
138	Piovanello tridattilo	Calidris alba	M reg, W
139	Gambecchio comune	Calidris minuta	M reg, W, E
140	Gambecchio nano	Calidris temminckii	M reg, W irr
141	Piovanello comune	Calidris ferruginea	M reg, W irr, E irr
142	Piovanello violetto	Calidris maritima	A
143	Piovanello pancianera	Calidris alpina	M reg, W
144	Gambecchio frullino	Limicola falcinellus	M irr
145	Piro piro fulvo	Tryngites subruficollis	A-1
146	Combattente	Philomachus pugnax	M reg, W, E
147	Frullino	Lymnocryptes minimus	M reg, W irr
148	Beccaccino	Gallinago gallinago	M reg, W
149	Croccolone	Gallinago media	M reg
150	Limnodromo pettorossiccio	Limnodromus scolopaceus	A-1
151	Beccaccia	Scolopax rusticola	M reg, W
152	Pittima reale	Limosa limosa	M reg, W, E
154	Pittima minore	Limosa lapponica	M reg, W irr
155	Chiurlo piccolo	Numenius phaeopus	M reg, W irr, E irr
156	Chiurlottello	Numenius tenuirostris	estinto ?
157	Chiurlo maggiore	Numenius arquata	M reg, W, E
158	Piro piro del Terek	Xenus cinereus	A-8 [5 post 1949]
159	Piro piro piccolo	Actitis hypoleucos	M reg, E, W, B acc
160	Piro piro culbianco	Tringa ochropus	M reg, W irr, E irr
161	Totano moro	Tringa erythropus	M reg, W, E
162	Pantana	Tringa nebularia	M reg, W, E irr
163	Totano zampegialle minore	Tringa flavipes	A-1
164	Albastrello	Tringa stagnatilis	M reg, E irr, W irr
165	Piro piro boschereccio	Tringa glareola	M reg, E irr, W irr
166	Pettegola	Tringa totanus	M reg, W, E, B
167	Voltapietre	Arenaria interpres	M reg, W, E irr
168	Falaropo di Wilson	Phalaropus tricolor	(A-1)
169	Falaropo beccosottile	Phalaropus lobatus	M reg, W irr, E irr
170	Falaropo beccolargo	Phalaropus fulicarius	A-3 [2 post 1949]
	Stercoraridi		
171	Stercorario mezzano	Stercorarius pomarinus	A-6 [2 post 1949]
172	Labbo	Stercorarius parasiticus	M irr, W irr
173	Labbo codalunga	Stercorarius longicaudus	A-2 [1 post 1949]
174	Stercorario maggiore	Stercorarius skua	A-1
	Laridi		
175	Gabbiano di Sabine	Xema sabini	A-1
176	Gabbiano tridattilo	Rissa tridactyla	M reg, W irr, E irr
177	Gabbiano roseo	Chroicocephalus genei	M reg, B (dal 1988), W
178	Gabbiano comune	Chroicocephalus ridibundus	M reg, W, B acc [FG 1994]
179	Gabbiano testagrigia	Chroicocephalus cirrocephalus	A-1

ID	DEN. COMUNE	DEN. SCIENTIFICA	
180	Gabbianello	Hydrocoloeus minutus	M reg, W, E irr
181	Gabbiano di Ross	Rhodostethia rosea	A-1
182	Gabbiano di Franklin	Larus pipixan	A-1
183	Gabbiano corallino	Larus melanocephalus	M reg, W, E, B (dal 1993)
184	Gabbiano corso	Larus audouinii	SB (dal 1992) par, M reg
185	Gabbiano di Pallas	Larus ichtyaetus	A-1
186	Gavina	Larus canus	M reg, W
187	Zafferano	Larus fuscus	M reg, W, E irr
188	Gabbiano reale nordico	Larus argentatus	W, M reg
189	Gabbiano reale	Larus michahellis	M reg, W, SB, E
190	Gabbiano reale pontico	Larus cachinnans	M reg, W
191	Mugnaiaccio	Larus marinus	A-7
	Sternidi		
192	Fraticello	Sternula albifrons	M reg, B, W irr
193	Sterna zampenere	Gelochelidon nilotica	M reg, B, W irr
194	Sterna maggiore	Hydroprogne caspia	M reg
195	Mignattino piombato	Chlidonias hybrida	M reg, E irr
196	Mignattino comune	Chlidonias niger	M reg, E irr
197	Mignattino alibianche	Chlidonias leucopterus	M reg
198	Beccapesci	Sterna sandvicensis	M reg, W, B irr
199	Sterna di Rüppell	Sterna bengalensis	A-1
200	Sterna comune	Sterna hirundo	M reg, B irr, E irr
	Alcidi		
201	Uria	Uria aalge	(A-1)
202	Gazza marina	Alca torda	A [1 post 1949]
203	Pulcinella di mare	Fratercula arctica	(A)
	PTEROCLIFORMI		
	Pteroclidi		
204	Sirratte	Syrrhaptes paradoxus	(A-1)
	COLUMBIFORMI		
	Columbidi		
205	Piccione selvatico	Columba livia	SB
206	Colombella	Columba oenas	M irr, W irr, B estinta ?
207	Colombaccio	Columba palumbus	M reg, W, SB
208	Tortora dal collare	Streptopelia decaocto	SB
209	Tortora selvatica	Streptopelia turtur	M reg, B
	PSITTACIFORMI		
	Psittacidi		
210	Parrocchetto monaco	Myiopsitta monachus	SB naturalizzata
	CUCULIFORMI		
	Cuculidi		
211	Cuculo dal ciuffo	Clamator glandarius	M reg, B irr
212	Cuculo	Cuculus canorus	M reg, B
	STRIGIFORMI		

ID	DEN. COMUNE	DEN. SCIENTIFICA	
	Titonidi		
213	Barbagianni	Tyto alba	SB, M reg
	Strigidi		
214	Assiolo	Otus scops	M reg, B, W irr
215	Gufo reale	Bubo bubo	SB
216	Civetta	Athene noctua	SB
217	Allocco	Strix aluco	SB
218	Gufo comune	Asio otus	SB, M reg, W
219	Gufo di palude	Asio flammeus	M reg, W irr
	CAPRIMULGIFORMI		
	Caprimulgidi		
220	Succiacapre	Caprimulgus europaeus	M reg, B
	APODIFORMI		
	Apodidi		
221	Rondone comune	Apus apus	M reg, B, W irr
222	Rondone pallido	Apus pallidus	M reg, B
223	Rondone maggiore	Apus melba	M reg, B
	CORACIFORMI		
	Alcedinidi		
224	Martin pescatore	Alcedo atthis	M reg, W, SB
	Meropidi		
225	Gruccione egiziano	Merops persicus	A-2 [1 post 1949]
226	Gruccione	Merops apiaster	M reg, B
	Coracidi		
227	Ghiandaia marina	Coracias garrulus	M reg, B
	Upupidi		
228	Upupa	Upupa epops	M reg, B, W irr
	PICIFORMI		
	Picidi		
229	Torcicollo	Jynx torquilla	M reg, B, W parz
230	Picchio verde	Picus viridis	SB
231	Picchio nero	Dryocopus martius	SB estinto
232	Picchio rosso maggiore	Dendrocopos major	SB
233	Picchio rosso mezzano	Dendrocopos medius	SB
234	Picchio dalmatino	Dendrocopos leucotos	SB?
235	Picchio rosso minore	Dendrocopos minor	SB
	PASSERIFORMI		
	Alaudidi		
236	Allodola di Dupont	Chersophilus duponti	A-1
237	Calandra	Melanocorypha calandra	SB
238	Calandra siberiana	Melanocorypha leucoptera	A-1
239	Calandra nera	Melanocorypha yeltoniensis	A-1
240	Calandrella	Calandrella brachydactyla	M reg, B, W irr
241	Calandrina	Calandrella rufescens	A-2 [1 post 1949]

Analisi preliminare su avifauna e chirotteri

ID	DEN. COMUNE	DEN. SCIENTIFICA	
242	Cappellaccia	Galerida cristata	SB
243	Tottavilla	Lullula arborea	SB, M reg, W parz
244	Allodola	Alauda arvensis	M reg, W, SB
245	Allodola golagialla	Eremophila alpestris	A-2 [1 post 1949]
	Irundinidi		
246	Topino	Riparia riparia	M reg, B?
247	Rondine montana	Ptyonoprogne rupestris	SB (almeno dal 2004)
248	Rondine	Hirundo rustica	M reg, B, W irr
249	Balestruccio	Delichon urbicum	M reg, B, W irr
250	Rondine rossiccia	Cecropis daurica	M reg, B
	Motacillidi		
251	Calandro maggiore	Anthus richardi	M irr, W irr
252	Calandro	Anthus campestris	M reg, B
253	Prispolone indiano	Anthus hodgsoni	A-2
254	Prispolone	Anthus trivialis	M reg, B acc [FG inizio anni '80]
255	Pispola	Anthus pratensis	M reg, W
256	Pispola golarossa	Anthus cervinus	M reg, W irr
257	Spioncello	Anthus spinoletta	M reg, W
258	Spioncello marino	Anthus petrosus	A-2
259	Cutrettola	Motacilla flava	M reg, B, W irr
260	Cutrettola testagialla orientale	Motacilla citreola	A-1
261	Ballerina gialla	Motacilla cinerea	W, M reg, SB
262	Ballerina bianca	Motacilla alba	W, M reg, SB
	Bombicillidi		
263	Beccofrusone	Bombycilla garrulus	A
	Cinclidi		
264	Merlo acquaiolo	Cinclus cinclus	(A-3)
	Trogloditidi		
265	Scricciolo	Troglodytes troglodytes	M reg, W, SB
	Prunellidi		
266	Passera scopaiola	Prunella modularis	M reg, W
267	Sordone	Prunella collaris	A-8
	Turdidi		
268	Pettirosso	Erithacus rubecula	M reg, W, SB
269	Usignolo	Luscinia megarhynchos	M reg, B
270	Pettazzurro	Luscinia svecica	M reg
271	Codirosso spazzacamino	Phoenicurus ochruros	M reg, W, B
272	Codirosso comune	Phoenicurus phoenicurus	M reg, B
273	Stiaccino	Saxicola rubetra	M reg
274	Saltimpalo	Saxicola torquatus	M reg, W, SB
275	Culbianco isabellino	Oenanthe isabellina	A-7
276	Culbianco	Oenanthe oenanthe	M reg, B
277	Monachella dorsonero	Oenanthe pleschanka	A-1
278	Monachella	Oenanthe hispanica	M reg, B

ID	DEN. COMUNE	DEN. SCIENTIFICA	
279	Codirossone	Monticola saxatilis	M reg, B acc
280	Passero solitario	Monticola solitarius	M reg, W, SB
281	Tordo dorato	Zoothera dauma	(A-1)
282	Merlo dal collare	Turdus torquatus	M reg
283	Merlo	Turdus merula	M reg, W, SB
284	Tordo oscuro	Turdus obscurus	A-1
285	Cesena fosca	Turdus eunomus	(A-1)
286	Tordo golanera	Turdus atrogularis	A-1
287	Cesena	Turdus pilaris	M reg, W
288	Tordo bottaccio	Turdus philomelos	M reg, W, SB
289	Tordo sassello	Turdus iliacus	M reg, W
290	Tordela	Turdus viscivorus	SB, W
	Silvidi		
291	Usignolo di fiume	Cettia cetti	SB
292	Beccamoschino	Cisticola juncidis	SB
293	Forapaglie macchiettato	Locustella naevia	A
294	Salciaiola	Locustella luscinioides	M reg
295	Forapaglie castagnolo	Acrocephalus melanopogon	M reg, W, B
296	Pagliarolo	Acrocephalus paludicola	M irr
297	Forapaglie comune	Acrocephalus schoenobaenus	M reg
298	Cannaiola verdognola	Acrocephalus palustris	M reg
299	Cannaiola comune	Acrocephalus scirpaceus	M reg, B
300	Cannareccione	Acrocephalus arundinaceus	M reg, B
301	Canapino pallido occidentale	Hippolais opaca	A-1
302	Canapino pallido orientale	Hippolais pallida	A-1
303	Canapino levantino	Hippolais olivetorum	(A-1)
304	Canapino maggiore	Hippolais icterina	M reg
305	Canapino comune	Hippolais polyglotta	M reg, B acc
306	Capinera	Sylvia atricapilla	M reg, W, SB
307	Beccafico	Sylvia borin	M reg, B acc
308	Bigiarella	Sylvia curruca	M reg
309	Bigia grossa orientale	Sylvia crasirostris	A-1
310	Bigia grossa occidentale	Sylvia hortensis	M reg, B irr
311	Sterpazzola	Sylvia communis	M reg, B
312	Sterpazzola della Sardegna	Sylvia conspicillata	M reg, B
313	Magnanina comune	Sylvia undata	SB
314	Bigia di Rüppell	Sylvia rueppelli	A-5 [4 post 1949]
315	Sterpazzolina comune	Sylvia cantillans	M reg, B
316	Sterpazzolina di Moltoni	Sylvia subalpina	M reg
317	Occhiocotto	Sylvia melanocephala	SB, W, M reg
318	Luì di Pallas	Phylloscopus proregulus	A-2
319	Luì forestiero	Phylloscopus inornatus	A-2
320	Luì scuro	Phylloscopus fuscatus	A-1
321	Luì bianco	Phylloscopus bonelli	M reg, B acc

ID	DEN. COMUNE	DEN. SCIENTIFICA	
322	Luì verde	Phylloscopus sibilatrix	M reg, B irr
323	Luì piccolo	Phylloscopus collybita	M reg, W, B
324	Luì grosso	Phylloscopus trochilus	M reg
325	Regolo	Regulus regulus	M reg, W, B?
326	Fiorrancino	Regulus ignicapilla	M reg, W, SB
	Muscicapidi		
327	Pigliamosche	Muscicapa striata	M reg, B
328	Pigliamosche pettirosso	Ficedula parva	A-4
329	Balia dal collare	Ficedula albicollis	M reg, B
330	Balia nera	Ficedula hypoleuca	M reg
	Timalidi		
331	Basettino	Panurus biarmicus	SB, M irr, W irr
	Egitalidi		
332	Codibugnolo	Aegithalos caudatus	SB
	Paridi		
333	Cinciarella	Cyanistes caeruleus	SB, M reg, W
334	Cinciallegra	Parus major	SB, M irr, W irr
335	Cincia mora	Periparus ater	SB
336	Cincia bigia	Poecile palustris	SB
	Sittidi		
337	Picchio muratore	Sitta europaea	SB
	Ticodromidi		
338	Picchio muraiolo	Tichodroma muraria	A
	Certidi		
339	Rampichino comune	Certhia brachydactyla	SB
	Remizidi		
340	Pendolino	Remiz pendulinus	SB, M reg, W
	Oriolidi		
341	Rigogolo	Oriolus oriolus	M reg, B
	Lanidi		
342	Averla piccola	Lanius collurio	M reg, B
343	Averla cenerina	Lanius minor	M reg, B
344	Averla maggiore	Lanius excubitor	A-4
345	Averla capirossa	Lanius senator	M reg, B
	Corvidi		
346	Ghiandaia	Garrulus glandarius	SB
347	Gazza	Pica pica	SB
348	Gracchio alpino	Pyrrhocorax graculus	(A-2)
349	Taccola	Corvus monedula	SB
350	Corvo comune	Corvus frugilegus	M irr
351	Cornacchia grigia	Corvus cornix	SB
352	Corvo imperiale	Corvus corax	SB
	Sturnidi		
353	Storno	Sturnus vulgaris	M reg, W, SB

Analisi preliminare su avifauna e chirotteri

ID	DEN. COMUNE	DEN. SCIENTIFICA	
354	Storno roseo	Pastor roseus	A
	Passeridi		
355	Passera europea	Passer domesticus	SB
356	Passera sarda	Passer hispaniolensis	SB, M reg, W
357	Passera mattugia	Passer montanus	SB
358	Passera lagia	Petronia petronia	SB
359	Fringuello alpino	Montifringilla nivalis	A-1
	Fringillidi		
360	Fringuello	Fringilla coelebs	M reg, W, SB
361	Peppola	Fringilla montifringilla	M reg, W irr
362	Verzellino	Serinus serinus	SB, W, M reg
363	Verdone	Carduelis chloris	SB, W, M reg
364	Cardellino	Carduelis carduelis	SB, W, M reg
365	Lucherino	Carduelis spinus	M reg, W, B acc
366	Fanello	Carduelis cannabina	M reg, W, SB
367	Organetto	Carduelis flammea	(A)
368	Crociere	Loxia curvirostra	M irr, W irr, B acc [2 post 1949]
369	Trombettiere	Bucanetes githagineus	(A-1)
370	Ciuffolotto scarlatto	Carpodacus erythrinus	(A)
371	Ciuffolotto	Pyrrhula pyrrhula	M irr, W irr
372	Frosone	Coccothraustes coccothraustes	M reg, W, SB
	Emberizidi		
373	Zigolo delle nevi	Plectrophenax nivalis	W
374	Zigolo golarossa	Emberiza leucocephalos	A-5 [2 post 1949]
375	Zigolo giallo	Emberiza citrinella	M irr, W irr
376	Zigolo nero	Emberiza cirlus	M reg, W, SB
377	Zigolo muciatto	Emberiza cia	M reg, W, SB
378	Ortolano	Emberiza hortulana	M irr
379	Zigolo boschereccio	Emberiza rustica	A-5 [1 post 1949]
380	Zigolo minore	Emberiza pusilla	A-4 [1 post 1949]
381	Migliarino di palude	Emberiza schoeniclus	M reg, W, SB
382	Zigolo capinero	Emberiza melanocephala	M reg, B
383	Strillozzo	Emberiza calandra	SB, M reg, W

Chirotteri

11 Premessa

I pipistrelli, in relazione alla loro peculiare biologia ed ecologia presentano adattamenti che rivelano una storia naturale unica nei mammiferi. A livello globale sono sempre più minacciati dalle attività antropiche e costituiscono l'ordine dei mammiferi con il maggior numero di specie minacciate di estinzione. In Italia meridionale sono poche le ricerche approfondite sui pipistrelli. Il sud della penisola ospita numerose specie di chirotteri e ambienti di grande importanza vitale per tutte le fasi della loro biologia, come grotte, diversi ambienti forestali, ambienti lacustri e fluviali, prati pascoli e numerosi borghi abbandonati con ruderi e strutture adatte alla colonizzazione di diverse specie. Sono conosciute ben 27 specie delle 4 famiglie di chirotteri che vivono in tutta la penisola.

Tutte le specie di Chirotteri in quanto animali volatori, sono potenzialmente soggetti a impatto contro le pale degli aerogeneratori nonostante si muovano agilmente anche nel buio più assoluto utilizzando un sofisticato sistema di eco - localizzazione a ultrasuoni. Tutte le specie europee, oltre a essere tutelate da accordi internazionali e leggi nazionali sulla conservazione della fauna selvatica, sono protette da un accordo specifico europeo, il Bat Agreement, cui nel 2005 ha aderito anche l'Italia.

La raccolta dei dati sulla chirotterofauna presenta vari e problematici aspetti, per via delle abitudini notturne, della presenza assenza di suoni udibili, della difficile localizzazione dei posatoi. Il riconoscimento degli individui in natura è spesso particolarmente difficoltoso; al contrario, se osservate a riposo molte specie possono essere identificate con relativa facilità.

La dimensione e la struttura delle comunità di chirotteri sono difficili da determinare e da stimare; quantificare con precisione il numero dei pipistrelli appartenenti ad una stessa popolazione è in pratica estremamente difficoltoso, in quanto la stima è complicata in maniera sostanziale da alcuni fattori che dipendono dalle caratteristiche biologiche di questi animali.

Ad ostacolare l'indagine, concorrono, ad esempio, le abitudini notturne che rendono difficoltosi i rilievi presso gli impianti eolici e per la capacità dei pipistrelli di disperdersi rapidamente in ampi spazi. Come nel caso degli uccelli, anche per i chirotteri, due sono i possibili impatti generati dalla presenza di un impianto eolico: un impatto di tipo diretto, connesso alla probabilità di collisione con le pale, e uno di tipo indiretto, legato alle modificazioni indotte sull'habitat di queste specie.

Numerose sono le ipotesi avanzate per spiegare i motivi per cui avvengono le collisioni:

- E' stato ipotizzato che gli aereogeneratori attraggono, soprattutto durante la migrazione, quelle specie che cercano negli alberi i rifugi in cui passare le ore del giorno. Strutture come le turbine eoliche, in particolare i modelli più alti, sembrerebbero quindi, agli occhi dei pipistrelli, costituire delle valide alternative agli alberi (Ahlén 2003, von Hensen 2004). Osservazioni analoghe sono state condotte anche in prossimità di torri o ripetitori, strutture che, per la loro altezza, spiccano prepotentemente nel paesaggio circostante (F. Farina com. pers.);
- Le aree immediatamente prospicienti gli aereogeneratori, in seguito ai lavori di costruzione dell'impianto stesso, potrebbero divenire ottime aree di foraggiamento per i pipistrelli; è stato infatti verificato come, solo per citare un esempio, a seguito dell'eliminazione di alberi con conseguente formazione di radure, si creino condizioni favorevoli alla presenza di elevate concentrazioni di insetti volanti (*Grindal e Brigham 1998*). Una maggiore presenza di prede sarebbe inoltre da ricollegarsi alla dispersione di calore generata dalle turbine, che raggiungono temperature più elevate rispetto all'aria circostante, richiamando molti più insetti e potenzialmente, chirotteri in caccia (*Ahlén 2003*);

- Le pale eoliche potrebbero attrarre i pipistrelli grazie all'emissione di ultrasuoni, aumentando di fatto la probabilità che questi animali entrino in collisione con le pale in movimento. Questa possibilità è stata ampiamente studiata, soprattutto in America, dove tuttavia, in un recente lavoro, Szewczak e Arnett (2006) sembrano escludere la presenza di un impatto significativo, poiché l'effetto sarebbe limitato all'area immediatamente prossima alle pale, e quindi con una ridotta capacità attrattiva su questi animali, limitata al più ai soggetti che già gravitano attorno a queste strutture;
- Esistono inoltre altre ipotesi legate alla possibilità che i chirotteri vengono risucchiati dal vortice di aria prodotto dal movimento rotatorio delle pale (*Kunz et al. 2007a*), o disturbati dalla produzione di campi magnetici, generati dalle pale stesse, che, interagendo con alcuni recettori situati nel corpo dei pipistrelli, andrebbe ad interferire con la loro capacità di percepire l'ambiente circostante, aumentando di fatto la probabilità di collisione (*Holland et al. 2006*). Sembra invece verificato che le luci posizionate sugli aereogeneratori non costituiscano un'attrattiva per i chirotteri (*Kerlinger et al. 2006, Arnett et al. 2008*).

I chirotteri sono il secondo ordine di mammiferi per numero di specie, dopo i roditori, e costituiscono più del 20% della teriofauna classificata in tutto il mondo, con 1384 specie viventi (*Simmons e Cirranello, 2018*).

A livello globale, i pipistrelli forniscono servizi ecosistemici vitali e sono importanti per il consumo di insetti nocivi, l'impollinazione delle piante e la dispersione dei semi, il che li rende essenziali per la salute degli ecosistemi in tutto il mondo. Essi sono utilizzati come indicatori ecologici di qualità degli habitat e di biodiversità negli ecosistemi temperati e tropicali (*Wickramasinghe et al. 2004, Kalcounis-Rueppell et al. 2007*).

Sono molto mobili e in grado di rispondere rapidamente ai cambiamenti dei loro habitat e sono sensibili agli effetti dell'intensificazione agricola.

Le popolazioni di chirotteri a livello mondiale, e soprattutto nell'ultimo ventennio, sono in fase di declino e quasi il 25% delle specie rischia l'estinzione globale (IUCN 2018). Il declino delle popolazioni è la risposta ad una serie di stress ambientali, molti dei quali sono indotti dalle attività antropiche, che hanno portato alla perdita di eterogeneità ambientale e al degrado degli habitat.

In Italia sono presenti 35 specie di chirotteri, quasi l'80% di quelle presenti in Europa, 13 di esse sono inserite nell'allegato II della direttiva 92/43/CE (direttiva habitat), e 20 specie sono minacciate (Lista Rossa dei Vertebrati italiani, 2013).

Il nostro paese è parte contraente dell'accordo sulla conservazione delle popolazioni di chirotteri europei (UNEP/EUROBATS), e si assume obblighi particolari per la conservazione dei pipistrelli e dei loro habitat. Nell'accordo è sottolineata l'importanza del monitoraggio e della tutela dei siti ipogei (grotte e cavità artificiali), e degli habitat di foraggiamento, che sono essenziali per la conservazione dei pipistrelli. I parchi eolici possono causare problemi ad alcune specie animali che utilizzano la bassa troposfera durante le attività trofiche e durante le migrazioni.

Questi progetti industriali sono stati definiti come un problema per l'avifauna per molti anni, soprattutto per l'azione di disturbo arrecato ad alcune specie nelle fasi riproduttive e migratorie (Winkelman 1989, Phillips 1994, Reichenbach 2002).

A livello globale, le interazioni negative della chirotterofauna con impianti eolici (mulini a vento) sono state per la prima volta documentate in Australia da Tate (1952) e poi da Hall e Richards (1972), (*Law et al. 1998*). In Europa e Nord America, i primi dati sulla mortalità dei pipistrelli da impatto con

aerogeneratori sono stati documentati a partire dalla fine degli anni '90 (*Rahmel et al. 1999; Bach et al. 1999; Johnson et al. 2000; Arnett 2005; Rydell et al. 2012*).

In Europa, 21 specie di chirotteri sono considerate potenzialmente a rischio d'impatto eolico e 20 di esse sono note per aver subito collisioni mortali con le turbine, comprese specie a comportamento sedentario e migratorio (*Rodrigues et al., 2008*).

In Italia, le informazioni relative all'impatto dei parchi eolici sulla chirotterofauna sono quasi del tutto assenti, soprattutto per la mancanza di studi e monitoraggi che dovrebbero essere eseguiti sia nelle fasi *ante operam* che nelle fasi *post operam*.

Quindi, la considerazione della chirotterofauna deve avvenire in tutte le fasi di realizzazione del progetto, da quella di pianificazione e autorizzazione, alla fase di cantiere, alla fase di esercizio. Le indagini di campo nella fase autorizzativa permetteranno di costruire impianti eolici sempre più a basso impatto.

Pertanto, gli obiettivi del presente studio vertono sulla necessità di compilare una check-list della chirotterofauna presente nell'area di progetto, valutandone l'attività delle specie rilevate mediante campionamenti bioacustici, e di elaborare un'analisi preliminare dei potenziali impatti dell'impianto in progetto, attraverso l'individuazione dei singoli aerogeneratori che potrebbero risultare maggiormente impattanti e fornire indicazioni preliminari, in merito alle misure di mitigazione atte a ridurre tali effetti negativi.

12 Area di indagine

Le valutazioni su vasta scala della chirotterofauna eventualmente interessata dalle opere, coerentemente con le attività già svolte ai fini della predisposizione dello studio di impatto ambientale, sono previste in un'area racchiusa entro un raggio di 5 km dagli aerogeneratori di progetto.

Figura 24 – Area di indagine

13 Materiali e metodi

Nel presente studio l'approccio metodologico adottato ha considerato le linee guida **EUROBATS** (*Rodrigues et al. 2008*), per la valutazione dei chirotteri nei progetti dei parchi eolici in Europa, le linee guida per il monitoraggio dei chirotteri in Italia (*Agnelli et al., 2004*). Le attività sono condotte con l'approccio BACI e in coerenza con le metodologie proposte da ANEV, Osservatorio nazionale eolico e fauna e Legambiente (2012), eventualmente integrate con le procedure proposte da WWF Italia (2009), GIRC (2014) e ISPRA (2004).

Di seguito vengono riportati i dati del primo semestre di monitoraggio della chirotterofauna che riguarda il periodo aprile – settembre; pertanto, i dati sono rappresentativi di tale periodo.

L'indagine faunistica si è basata su campionamenti in campo effettuati in un'area a 5 km dal sito e su ricerche bibliografiche preliminari, consultando la letteratura scientifica disponibile, e la cosiddetta "letteratura grigia" (note su bollettini speleologici e report non pubblicati), in un'area a 10 km dal sito.

Le metodologie di studio adottate in campo hanno riguardato le seguenti attività:

- Rilievi bioacustici da effettuarsi nell'area compresa entro il buffer di 1 km dagli aerogeneratori e in area di controllo compresa tra 1 e 3 km dall'impianto;
- Ricerca siti di rifugio da effettuarsi nel raggio di 5 km dagli aerogeneratori e nel periodo fenologico favorevole;
- Ricerca delle carcasse sul terreno circostante gli aerogeneratori (solo per la fase di esercizio).

Alcune caratteristiche biologiche, ecologiche e comportamentali dei chirotteri possono determinare una maggiore sensibilità all'impatto di questi Mammiferi con i parchi eolici. Ad esempio, le Nottole (Nyctalus sp.) sono molto sensibili alla collisione con gli aerogeneratori, perché hanno un volo rapido che si esercita anche ad una elevata altezza dal suolo (> 40 m), sia durante l'attività di foraggiamento che durante le migrazioni.

Per cui, le caratteristiche relative alla velocità, all'altezza e al comportamento di volo di queste specie, le rendono particolarmente sensibili all'impatto con i parchi eolici.

A tal proposito, con la finalità di determinare il potenziale grado d'impatto eolico, per tutte le specie rilevate nell'area, sono state considerate le caratteristiche biologiche ed eco-etologiche, ed in particolare quelle relative al tipo di eco localizzazione, morfologia delle ali, tecniche di foraggiamento, velocità, altezza e comportamento di volo, modalità di utilizzo delle strutture naturali e di origine antropica del paesaggio e habitat di foraggiamento preferenziali. Inoltre, si è determinato il potenziale grado d'impatto eolico consultando i dati disponibili in letteratura per l'Europa, relativi alla collisione con gli aerogeneratori.

Il grado d'impatto eolico sui chirotteri è stato definito nel modo seguente:

- Alto la specie è molto sensibile al parco eolico;
- Medio la specie è moderatamente sensibile all'impatto eolico;
- Basso la specie è poco sensibile all'impatto eolico.

13.1Tecniche di campionamento

Come anticipato in precedenza, in linea con quanto suggerito da ANEV, Oss. Naz. Eolico e Fauna e Legambiente (2012), sono previste due tipologie di attività.

RICERCA SITI RIFUGIO

La ricerca dei rifugi, detti roost è stata effettuata in un'area con buffer di 5 km da ciascuna torre eolica prevista ispezionando ruderi, ponti ed altri potenziali ripari di origine antropica e grotte di origine artificiale, dato che nell'area in esame non sono presenti grotte naturali. I posatoi presenti nei ruderi, potenzialmente utilizzati da specie antropofile e fessuricole, le quali sono difficilmente individuabili mediante osservazione diretta, sono stati censiti utilizzando un rilevatore ultrasonoro all'emergenza serale.

RILIEVI BIOACUSTICI

Le specie di chirotteri presenti in Italia utilizzano il sistema di eco localizzazione per l'orientamento e l'identificazione delle prede. La maggior parte dei segnali emessi sono ad elevata frequenza (> 20kHz) e sono quindi al di fuori della portata dell'orecchio umano.

I campionamenti acustici possono essere effettuati per monitorare l'attività dei chirotteri lungo transetti o punti d'ascolto, identificare le specie presenti e determinare i livelli di attività (*Jones et al., 2009*).

Si evidenzia che le indagini acustiche non possono determinare il numero di pipistrelli presenti nell'area, ma sono in grado di fornire solo indicazioni di abbondanza relativa (*Hayes, 2000*).

I rilievi bioacustici sono stati effettuati con due BAT DETECTOR, modello PETTERSSON D 240X, con modalità di funzionamento espansione temporale, e modello PETTERSSON D 500X, con campionamento diretto. Le registrazioni sono state effettuate con registratore multitraccia ZOOM H1n. Per rilevare gli ultrasuoni dei pipistrelli è stato utilizzato l'uso di Software BAT SOUND per computer che consente una rapida classificazione dei file registrati utilizzando un rilevatore di pipistrelli a spettro completo. Il software consente inoltre di impostare i filtri in base alle frequenze target e alle lunghezze degli impulsi che elimineranno tutti i file "di disturbo" in cui è improbabile che vi siano informazioni utili. Una suite integrata di strumenti di analisi converte rapidamente i file, ordina e classifica i dati del PIP per specie, compila i risultati e li esporta in un formato che può essere caricato in Excel o in altre applicazioni.

Figura 25 – Attrezzatura utilizzata per il monitoraggio chirotteri. Da sinistra: rilevatore a eterodina ed espansione temporale (x10 e x20 selezionabile), Bat detector D 500X per la registrazione prolungata nel campo degli ultrasuoni, e registratore multitraccia collegato al D 240 X

Figura 26 – Esempio di preparazione del Bat Detector Patterson D500 X per i rilievi su postazione fissa prolungata

Il D500X è un'unità di registrazione a ultrasuoni destinata alla registrazione a lungo termine e incustodita delle chiamate dei pipistrelli. Contrariamente ai rilevatori di pipistrelli a espansione di tempo, il D500X registra gli ultrasuoni a spettro completo in tempo reale praticamente senza interruzioni tra le registrazioni. Il registratore è dotato di quattro slot per schede CF, che in genere consentono di lasciare l'unità sul campo per più di un mese. Il sistema di attivazione consente al dispositivo di avviare automaticamente la registrazione quando viene rilevato un suono.

L'efficacia del metodo dipende da una serie di parametri, tra cui la sensibilità del dispositivo, dall'intensità del segnale emesso dalle singole specie, dalla struttura dell'habitat in cui si effettuano i rilevamenti e, non per ultimo, dalla distanza esistente tra la sorgente sonora e il rilevatore. In particolare,

la maggior parte delle specie risulta individuabile in una fascia di distanza compresa entro i 30 metri. Nonostante questo metodo sia ampiamente utilizzato, esistono alcune difficoltà oggettive nell'individuazione delle specie, dovute alla sovrapposizione delle frequenze di emissione di alcune di queste, sovrapposizioni che, in alcuni casi, soprattutto in presenza di registrazioni di scarsa qualità o non sufficientemente lunghe, rendono molto difficoltosa la discriminazione delle singole specie.

Di seguito si riportano esempi degli spettri restituiti dal software.

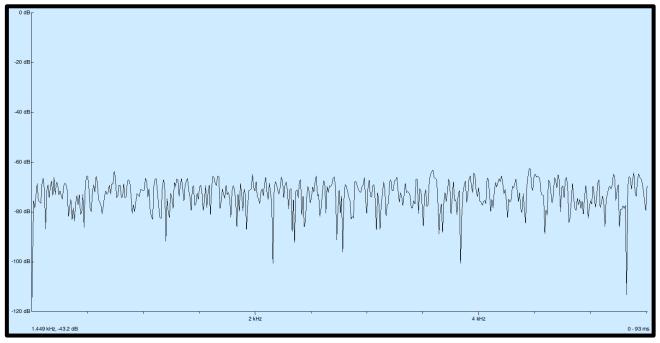


Figura 27 - Esempio di spettro sonoro processato tramite il software Bat Sound

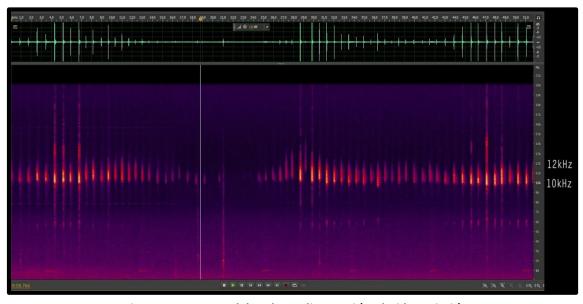


Figura 28 – Spettro del Molosso di cestoni (Tadarida teniotis)

Le diverse specie di chirotteri hanno una differente probabilità di essere intercettati che dipendente principalmente dall'intensità di emissione sonore: la frequenze dell'emissione è molto bassa nei Rinolofidi

e nel genere Plecotus, mentre è progressivamente con valori maggiori nel genere Tadarida teniotis (nella figura sopra) e in quello Nyctalus.

13.2Punti di campionamento

Di seguito la localizzazione dei punti di campionamento bioacustico, la cui individuazione è stata effettuata tenendo conto di quanto suggerito da Roscioni F. e Spada M. (2014). In particolare, si è provveduto a:

- Suddividere l'area compresa entro il buffer di 3 km dagli aerogeneratori in celle quadrate di 500 m per lato;
- Attribuire ad ogni cella l'uso del suolo prevalente, previa sovrapposizione con la CTR Basilicata e Puglia;
- Per l'area di impianto, selezionare il 20% delle celle, tra cui tutte quelle interessate dalle torri, in numero proporzionale all'abbondanza relativa degli habitat presenti nella stessa area;
- Per l'area di controllo, selezionare il 7% delle celle, in numero proporzionale all'abbondanza relativa degli habitat presenti nell'area di impianto, evitando per quanto possibile celle con presenza di aerogeneratori esistenti, autorizzati o (per quanto di conoscenza) in corso di autorizzazione presso gli Enti competenti.

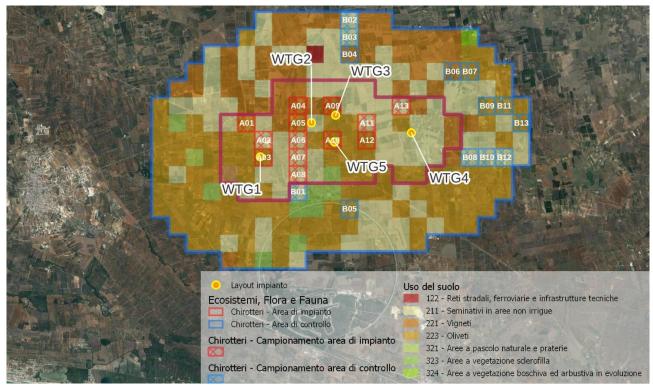


Figura 29 – Punti di campionamento individuati per l'area di impianto e l'area di controllo

All'interno di ogni cella selezionata sono stati svolti campionamenti in più punti (almeno due).

Per evitare di giungere alla conclusione che ogni cambiamento nell'attività dei chirotteri o nel loro comportamento sia da imputare al futuro impianto eolico, quando invece potrebbe essere dovuto a fluttuazioni annuali della popolazione presente, è stata monitorata anche un'area in prossimità del parco eolico (di cui al progetto esecutivo) con delle caratteristiche ambientali più o meno simili (stessa tipologia

Analisi preliminare su avifauna e chirotteri

di habitat, stessa altezza della vegetazione), individuata come area di saggio o controllo, (nell'immagine di Layout, sono state indicate con lettera e numero (A1 - A2) area di progetto impianto, (B1 - B2) area di saggio o controllo dove all'interno di essa è stato selezionato lo stesso numero di punti (dell'area d'impianto), in modo da essere proporzionale alla disponibilità di habitat.

L'attività dei chirotteri può essere influenzata dall'ora della notte e da fattori ambientali, come vento, pioggia, umidità, temperatura (*Avery, 1985; Rydell, 1993; Vaughan et al., 1997; O'Donnell, 2000*), per cui i rilievi bioacustici sono stati effettuati nelle prime ore della notte, fase in cui l'attività è più elevata e, solo durante le notti con temperature > a 10 °C, senza precipitazioni e vento forte.

14 Valutazione quantitativa delle specie e dell'attività

L'attività è stata svolta quantificando il numero di passaggi di chirotteri per specie, attraverso il conteggio delle sequenze dei segnali di eco localizzazione (Fenton, 1970). Al fine di avere una valutazione quantitativa delle specie presenti e dell'attività della chirotterofauna nell'area d'impianto proposta, sono stati stimati i seguenti indici (Rodrigues et al. 2008):

- Il numero medio di passaggi per ogni aerogeneratore (la somma dei passaggi di tutte le specie di chirotteri e in tutti i campionamenti per ciascuna torre);
- Il numero medio di passaggi orari per aerogeneratore calcolato sull'intero impianto eolico, per tutto il periodo di studio (ovvero il numero totale dei passaggi di tutti i rilievi, fratto il numero di rilievi effettuati, fratto il numero di aerogeneratori e poi moltiplicato per due, dato che i rilievi per ogni cella sono di 30 minuti). Si ottiene così un valore dell'attività media della chirotterofauna dell'area per torre durante tutto il periodo di studio;
- Il numero di passaggi orari per l'intero impianto eolico, calcolato su tutti i rilievi. (ovvero il numero totale dei passaggi diviso per il numero di rilievi e moltiplicato per due [oppure il valore del punto precedente moltiplicato per il numero di torri dell'impianto eolico]). Si ottiene così un valore dell'attività media della chirotterofauna durante tutto il periodo di studio e in funzione del numero di torri, utile per una valutazione del potenziale impatto sulla chirotterofauna di tutto il progettato impianto;
- Il numero medio di passaggi su base mensile (la somma dei passaggi di tutte le specie di chirotteri per ogni mese di campionamento);
- Il numero totale di specie rilevate per ciascun aerogeneratore;
- Un indice di diversità Shannon-Wiener (H') calcolato per l'intero impianto eolico, secondo la seguente formula: H'= -Σ (ni/N) log2 (ni/N) dove (ni) è il numero di passaggi di ciascuna specie e (N) è il numero di passaggi totali. Si ottiene così una valutazione oggettiva della biodiversità della chirotterofauna dell'area, che tiene conto anche della presenza delle specie più rare (Wickramasinghe et al. 2004).

Con questa metodologia è possibile valutare il grado di frequentazione dell'area su base spaziale e temporale, individuare eventuali corridoi di volo utilizzati, periodi dell'anno, o zone comprese nell'area di studio con elevata attività, andando a fornire informazioni relative al potenziale impatto sui chirotteri.

15 Risultati

15.1Rilievi bioacustici

Nell'area oggetto di studio non sono disponibili dati di letteratura scientifica relativi alla presenza di chirotteri, e dai rilievi effettuati in campo nel periodo aprile – settembre si è potuto dedurre che allo stato attuale delle conoscenze la chirotterofauna rilevata in un'area di 5 km dal layout di progetto è rappresentata solo da 5 specie, riportate nelle tabelle sottostanti.

Tabella 23. Check-list delle specie contattate entro il raggio di 5 km dagli aerogeneratori (Area di Impianto) [Fonte: Nostra elaborazione su dati IUCN (2019), Min. Ambiente (2017)]

			IUCN Liste		
Famiglia	Den. Scientifica	Den. Comune	ITA	Int.	Direttiva Habitat All.
Vespertilionidae	Pipistrello kuhlii	Pipistrello albolimbato	LC	LC	IV
Vespertilionidae	Hypsugo savii	Pipistrello di Savi	LC	LC	IV
Vespertilionidae	Pipistrellus pipistrellus	Pipistrello nano	LC	LC	IV
Rhinolophidae	Rhinolophus ferrumequium	Ferro di cavallo maggiore	VU	LC	II -IV
Molossidae	Tadarida teniotis	Molosso di cestoni	LC	LC	IV

Tabella 24. Check-list delle specie contattate entro il raggio di 5 km dagli aerogeneratori (Area di Controllo) [Fonte: Nostra elaborazione su dati IUCN (2019), Min. Ambiente (2017)]

			IUCN Liste		
Famiglia	Den. Scientifica	Den. Comune	ITA	Int.	Direttiva Habitat All.
Vespertilionidae	Pipistrello kuhlii	Pipistrello albolimbato	LC	LC	IV
Vespertilionidae	Hypsugo savii	Pipistrello di Savi	LC	LC	IV
Vespertilionidae	Pipistrellus pipistrellus	Pipistrello nano	LC	LC	IV
Rhinolophidae	Rhinolophus ferrumequium	Ferro di cavallo maggiore	VU	LC	II -IV
Molossidae	Tadarida teniotis	Molosso di cestoni	LC	LC	IV

Si tratta di specie ampiamente diffuse e tolleranti la presenza dell'uomo, oltre che classificabili tra quelle a minima preoccupazione, fatta eccezione per il ferro di cavallo maggiore, che è classificato come vulnerabile da Rondinini C. et al. (2013).

Nelle tabelle che seguono si riporta la presenza delle singole specie per ogni cella campionata.

Tabella 25. Specie per cella in area di impianto e area di controllo

		CELLE CAMPIANAMENTO CHIROTTERI (area impianto)											
SPECIE	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13
Pipistrello kuhlii	Х	Х	х		Х	х			х	х	х		Х
Hypsugo savii	х	х		х	х	х	х	х	х	х		х	Х
Pipistrellus pipistrellus	Х	х	х	х		х	х			х	х	х	Х
Rhinolophus ferrumequium	Х	х	х		х	х		х	Х	х		х	Х
Tadarida teniotis	Х			х	х					х	х	х	Х

F4 Ingegneria srl

www.f4ingegneria.it - f4ingegneria@pec.it

86 / 93

		CELLE CAMPIANAMENTO CHIROTTERI (area controllo)											
SPECIE	B1	B2	В3	B4	B5	В6	B7	B8	В9	B10	B11	B12	B13
Pipistrello kuhlii	х	х	х	х		х	х	х	х	х		х	Х
Hypsugo savii	Х						х	х	х	х	х	х	Х
Pipistrellus pipistrellus	Х	Х	Х	Х					Х	Х	Х	Х	х
Rhinolophus ferrumequium	Х	Х			Х	Х	Х		Х				
Tadarida teniotis	Х	Х				Х				х	х	х	х

Si riportano di seguito i valori degli indici di diversità Shannon-Wiener (H') calcolati per l'intero impianto eolico, secondo la seguente formula: $H' = -\Sigma$ (ni/N) log2 (ni/N) dove (ni) è il numero di passaggi di ciascuna specie e (N) è il numero di passaggi totali. Si ottiene così una valutazione oggettiva della biodiversità della chirotterofauna dell'area, che, come già accennato, tiene conto anche della presenza delle specie più rare (*Wickramasinghe et al. 2004*). Si fa presente che i dati sono ancora provvisori e potrebbero subire modifiche a valle degli ulteriori sopralluoghi previsti.

Figura 30 – Pipistrello albolimbato (Pipistrello kuhlii)

Figura 31 – Pipistrello albolimbato (Pipistrello kuhlii)

15.2Ricerca siti rifugio

Il territorio oggetto di studio è, come già rilevato in precedenza, frequentato in modo prevalente da specie antropofile, abbondanti e ampiamente diffuse; queste utilizzano soprattutto le fessure degli edifici e di altre strutture antropiche. Le indagini pluriannuali potrebbero fornire ulteriori informazioni sulla presenza di colonie nell'area, in quanto i chirotteri pur essendo fedeli ai loro rifugi, possono modificare i comportamenti al variare di diversi fattori ecologici e biologici, selezionando rifugi differenti soprattutto nei periodi di maggiore attività, per cui la selezione degli stessi andrebbe monitorata nel tempo.

L'attività di censimento dei rifugi può essere integrata, in situazioni particolari, con l'ausilio di metodologie di studio costose, come la radiotelemetria, che generalmente è utilizzata per studi specifici sull'ecologia delle specie. Tale tecnica può inoltre risultare piuttosto invasiva sui chirotteri, che devono essere catturati e marcati, richiedendo sforzi giustificabili solo in aree con diversità elevata e specie molto rare, con presenza diffusa di boschi e habitat ad elevata idoneità per la chirotterofauna (*Rodrigues et al. 2008*). Si tratta di condizioni non rilevabili nell'area interessata dal progetto.

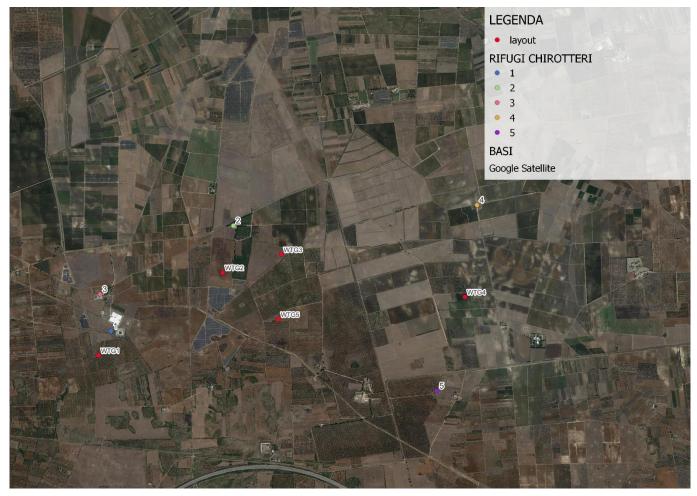


Figura 32 – Localizzazione geografica dei rifugi

Di seguito si riporta una scheda descrittiva:

RIFUGIO 1	
Tipologia sito	Edificio abbandonato
Specie rilevate	Hypsugo savii
N. individui	3
Ruolo biologico	Rifugio temporaneo
RIFUGIO 2	
Tipologia sito	Edificio abbandonato
Specie rilevate	Rhinolophus ferrumequium
N. individui	1
Ruolo biologico	Rifugio temporaneo
RIFUGIO 3	
Tipologia sito	Casolare con masseria
Specie rilevate	Pipistrellus kuhlii
N. individui	5
Ruolo biologico	Rifugio temporaneo
RIFUGIO 4	

Tipologia sito	Edificio abbandonato
Specie rilevate	Hypsugo savii
N. individui	1
Ruolo biologico	Rifugio temporaneo
RIFUGIO 5	
Tipologia sito	Masseria con rudere
Specie rilevate	Pipistrellus kuhlii
N. individui	2
Ruolo biologico	Rifugio temporaneo

Figura 33 – Ferro di cavallo maggiore

Figura 34 – Pipistrello di Savii

16 Rischio di collisione

La tabella seguente mostra il valore di rischio per singola specie rilevata, da un minimo di 1 a un massimo di 3, assegnato sulla base dei dati di mortalità in Europa desunti da Rodriguez et al., (2008) e relativi aggiornamenti.

Tabella 26. Indicatore di rischio derivante da impatti diretti (1 = Basso; 2 = Medio; 3 = Elevato)

Den. Scientifica	Rischio di collisione
Pipistrello kuhlii	2
Hypsugo savii	2
Pipistrellus pipistrellus	2
Rhinolophus ferrumequium	1
Tadarida teniotis	3

I dati finora acquisiti indicano, in ogni caso, che la specie a maggior rischio di collisione - il molosso di Cestoni - non presenta particolari rischi conservazionistici.

Nel caso del molosso il rischio sembra essere legato all'altezza di volo per il foraggiamento (che però in genere si mantiene tra i 10 e 20m, quindi al di sotto del rotore degli aerogeneratori di progetto), ma anche la lunghezza degli spostamenti dal rifugio, che possono raggiungere anche un centinaio di chilometri (in questo caso gli spostamenti avvengono a quota maggiore, come rilevato nel corso dei rilievi).

Nella maggior parte dei casi, le specie sono molto sedentarie; inoltre, i voli di foraggiamento vengono effettuati radenti (o comunque a pochi metri d'altezza), su corsi o specchi d'acqua, su aree a copertura arbustiva/arborea o ai margini dei boschi, all'interno di giardini, lungo viali illuminati o attorno a lampioni (in centri abitati).

La vicinanza con alcuni ruderi potrebbe incidere sulla probabilità di collisione, ma solo ad altezze di volo superiori a 40 m, raggiunte dal citato molosso di Cestoni e dal pipistrello di Savi, che in ogni caso è specie non particolarmente diffusa nell'area.

Poco comune è anche il pipistrello nano, che presenta un rischio di collisione intermedio, così come il pipistrello albolimbato, il quale compie voli di foraggiamento anche su aree steppiche o tra i frutteti (non presenti nelle immediate vicinanze degli aerogeneratori).

In generale, va anche tenuto conto del fatto che l'eventuale attività dei chirotteri nello spazio di operatività del rotore si riduce drasticamente all'aumentare della velocità del vento, concentrandosi quasi esclusivamente su livelli prossimi a quello del suolo o della copertura vegetale. Wellig S.D. et al. (2018) evidenziano che aumentando la velocità di cut-in degli aerogeneratori a 5 m/s, il numero di passaggi all'interno dell'area spazzata dalle pale e, di conseguenza, la probabilità di collisioni, si riduce del 95%.

Sempre in linea generale, secondo gli studi condotti da Thompson M. et al. (2017) evidenziano una correlazione inversa tra estensione di spazi aperti entro un raggio di 500 m dagli aerogeneratori e mortalità dei chirotteri. Gli stessi autori ipotizzano che vi sia invece una correlazione diretta tra estensione delle superfici boscate e rischio di collisioni, non ancora dimostrata.

Inoltre, nell'ambito delle attività di monitoraggio all'interno dell'area occupata da un impianto eolico in Danimarca, Therkildsen, O.R. & Elmeros, M. (2017) indicano che i cambiamenti di habitat indotti dalla presenza delle turbine, nonché l'attività delle stesse, non hanno alterato la composizione e la ricchezza di specie presenti prima dei lavori.

17 Conclusioni sui chirotteri

I dati raccolti evidenziano come l'area in esame presenti un valore naturalistico tipico delle aree rurali con limitata presenza di specie tutelate da direttive internazionali (92/43/CEE, 79/409/CEE e 2009/147/CE).

Il mancato rilevamento di alcune specie, potrebbe essere dovuto ad una frequentazione dell'area non assidua, perché le zone di foraggiamento possono trovarsi in un raggio di decine di km dai siti controllati, ed in ogni caso andrà verificato nei prossimi anni. Gli effetti dell'impianto sulla comunità di chirotteri saranno monitorati al fine di validare le valutazioni inserite nello Studio d'Impatto Ambientale.

Per quanto riguarda le distribuzioni spaziali, il problema degli effetti dell'impianto sulla comunità di chirotteri, possono concretizzarsi non necessariamente subito dopo la messa in esercizio dell'impianto, ma anche in anni successivi.

I dati finora acquisiti indicano, in ogni caso, che il rischio di mortalità di collisione può ritenersi confinato entro ordini di grandezza fisiologici e tali da non compromettere le esigenze di conservazione delle specie di maggiore interesse.

L'incremento dello sforzo di campionamento negli anni successivi, fornirà una migliore comprensione del reale stato di presenza della chirotterofauna nel sito. Infatti, un maggiore numero delle serate di monitoraggio, influirà positivamente sulla riduzione dell'errore di valutazione come:

- Più affidabile valore di indice di attività dei chirotteri;
- Effetti diretti dopo la messa in opera dell'impianto eolico.

18 Bibliografia sui chirotteri

- [1] Pier Paolo De Pasquale. I PIPISTRELLI DELL'ITALIA MERIDIONALE. Ecologia e Conservazione. Altrimedia Edizioni.
- [2] Fornasari L., Bani L., De Carli E., Gori E., Farina F., Violani C. & Zava B. 1999. Dati sulla distribuzione geografica e ambientale di Chirotteri nell'Italia continentale e peninsulare. In Dondini G., Papalini O. & Vergarsi S. (eds.). 1999. Atti del I Convegno Italiano sui Chirotteri. Castell'Azzara (Grosseto), 28-29 marzo 1999, pp. 63-81.
- [3] Fornasari L., Violani C. e Zava B. 1997. I chirotteri italiani. Editore Epos, Palermo.
- [4] Ahlén I. 2003. Wind turbines and bats: a pilot study. Report to the Swedish National Energy
- [5] Administration. Eskilstuna, Sweden. [English translation by I. Ahlén]. Dnr 5210P-2002-00473, Onr
- [6] Arnett E.B., Brown W.K., Erickson W.P., Fiedler J.K., Hamilton B.L., Henry T.H., Jain A.,
- [7] Johnson G.D., Kerns J., Koford
- [8] AGNELLI P., BISCARDI S., DONDINIG., VERGARI S., 2001. Progetto per il monitoraggio dello stato di conservazione di alcune specie di chirotteri. In: Lovari S. (a cura di), Progetto per il monitoraggio dello stato di conservazione di alcuni Mammiferi particolarmente a rischio della fauna italiana. Relazione al Ministero dell'Ambiente, Servizio Conservazione della Natura, Roma: 34-113.
- [9] GIRC, 2007. Lista Rossa Nazionale, parte sui chirotteri.
- [10] RUSS J., 1999. The Bats of Britain and Ireland Echolocation Calls, Sound Analysis and Species
- [11] Identification. 103 pp., Alana Ecology Ltd.
- [12] RUSSO D., JONES G. 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology, 258:91-103.
- [13] TUPINIER Y. 1997. European bats: their world of sound. Société Linnéenne de Lyon, Lyon (133 pp).
- [14] Rodrigues, L., L. Bach, M.-J. Dubourg-Savage, J. Goodwin & C. Harbusch, 2008. Guidelines for consideration of bats in wind farm projects. EUROBATS Publication Series No. 3 (English version). UNEP/EUROBATS Secretariat, Bonn, Germany, 51 pp.
- [15] Tereba A., Russo D., Cistrone L, Bagdanowicz W., 2008. Cryptic Diversity: first record of Myotis alcathoe (Vespertilionida) for Italy. InDondini G., Fusco G., Martinoli A., Mucedda M., Russo D., Scotti M., Vergari S., (eds.). Chirotteri Italiani: stato delle conoscenze e problemi di conservazione. Atti del Secondo Convegno Italiano sui Chirotteri. Serra San Quirico 21-23 novembre 2008. Parco Regionale Gola della Rossa e di Frasassi, 157 pp- + 10 tavole f.t.