

REGIONE MOLISE

PROVINCIA DI CAMPOBASSO

COMUNE DI ROTELLO

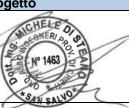
Studio di compatibilità idrogeologica

COMMITTENTE

VOLTALIA ITALIA SRL
P.IVA 05983740969, Viale Montenero 32, 20135
Milano Italia
PEC voltaliaitalia@pec.it

Studio di compatibilità idrogeologica Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Allegato al procedimento di Autorizzazione Unica ai sensi del D.lgs 387/2003


PROGETTISTI

Coordinamento tecnico di progetto

Ingegner

Michele Di stefano

m.distefano@windenergysrl.eu

GEOLOGO

Dottor Geologo

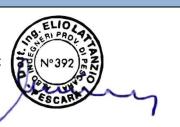
Giancarlo Rocco Di Berardino

g.diberardino@proes

Ingegner

Emilio Andreoli

e.andreoli@energonproject.it


RESPONSABILI TECNICI

Ingegnere Maurizio De Donno

(per NRG Plus Italia srl.) mdedonno@nrgplus.global

Ingegner Elio Lattanzio (per Proes srl) e.lattanzio@proes.it

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 2 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

SOMMARIO

1.0	INTRODUZIONE	3
1.1 1.2 1.3	REGIME VINCOLISTICO	4
2.0	ANALISI GEOLOGICA, GEOMORFOLOGICA E IDROGEOLOGICA	6
2.1 2.2 2.3		7
3.0	ANALISI GEOTECNICA	14
4.0	ANALISI SISMICA	15
4.1 4.2 4.3 4 4.4 4.5	MICROZONAZIONE SISMICA I.3.1 Liquefazione dei terreni CATEGORIA DI SOTTOSUOLO COEFFICIENTE SISMICO ORIZZONTALE	
5.0	ANALISI DI STABILITA' DEI VERSANTI	19
5.1 5.2		
6.0	CONCLUSIONI	22
6.1	CONSIDERAZIONI FINALI	22
7.0	BIBLIOGRAFIA	23
8.0	ALLEGATI	24

Studio di compatibilità	idrodeologica	ı
-------------------------	---------------	---

Foglio 3 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

1.0 INTRODUZIONE

La Società **Voltalia Italia srl**, P.IVA 05983740969, Viale Montenero 32, 20135 Milano Italia, PEC voltaliaitalia@pec.it (di seguito *Proponente*) ha in progetto la realizzazione di due impianti fotovoltaici, nel territorio comunale di Rotello (CB), Regione Molise, denominati **Rotello 1** e **Rotello 2**, della potenza di 26,18616 MWp e 15,36028 MWp rispettivamente. In relazione a tali parchi fotovoltaici, il *Proponente* ha in progetto la realizzazione di un cavidotto di collegamento in linea interrata MT della lunghezza complessiva di circa 5,6 km (di seguito *cavidotto*) e di una stazione di trasformazione (*stazione*), anch'essi all'interno del medesimo ambito comunale suddetto. Titolo del progetto: "ROTELLO 43" (di seguito *Progetto*). L'*iter* procedurale per l'ottenimento dei permessi alla realizzazione del progetto prevede la trasmissione, da parte del *Proponente*, di diversi elaborati ad Enti di competenza per l'acquisizione delle autorizzazioni. Tra i diversi studi da esibire, vi è anche il presente elaborato "Studio di Compatibilità idrogeologica" (di seguito *studio*).

1.1 Scopo del documento

La stesura dello **studio** è necessaria in quanto una porzione di progetto (in corrispondenza di **Rotello 1**) interferisce con aree classificate a pericolosità moderata (PF1) e pericolosità elevata (PF2) sulle mappe del PAI, Piano Stralcio di bacino per l'Assetto Idrogeologico; l'Ente territoriale competente per quanto attiene ai vincoli di carattere idrogeologico e idraulico è la Struttura dell'Autorità Distrettuale dell'Appennino Meridionale afferente ai bacini idrografici dei fiumi Trigno, Biferno e Minori, Saccione e Fortore (ex Autorità di Bacino dei fiumi Trigno, Biferno e Minori, Saccione e Fortore), di seguito **AdB**. In particolare, in base a quanto indicato dalla cartografia PAI (Piano di stralcio Assetto Idrogeologico) "Pericolosità da Frana e da Valanga" dell'**AdB**, in **Rotello 1**, una parte del **Progetto** è vincolata da pericolosità moderata e da pericolosità elevata.

Lo *studio* è redatto nello spirito degli artt.26 (Aree classificate a pericolosità elevata PF2), 27 (Aree classificate a pericolosità moderata PF1) e 28 (Realizzazione di opere pubbliche e/o dichiarate di pubblico interesse) del documento "NORME DI ATTUAZIONE – assetto idraulico e assetto di versante" (di seguito norme) per il Bacino Interregionale del Fiume Saccione, UoM (Unit of Management) all'interno della quale ricade il progetto (ITI022 – UoM Saccione). L'art.12 "Razionalizzazione e semplificazione delle procedure autorizzative" del D.Lgs.387/2003 recita al comma 1: [*Le opere per la realizzazione degli impianti alimentati da fonti rinnovabili, nonché le opere connesse e le infrastrutture indispensabili alla costruzione e all'esercizio degli stessi impianti, autorizzate ai sensi del comma 3, sono di pubblica utilità ed indifferibili ed urgenti]*. Dunque, il progetto dei *parchi FV* e relativo *cavidotto* riguarda opere di pubblica utilità indifferibili ed urgenti. Per tale motivo, ai sensi del succitato art.28 delle *norme*, la realizzazione del progetto è consentita, previa acquisizione del parere favorevole del Comitato Tecnico dell'*AdB* a valle dello *studio*, a patto che essa:

- 1. sia un servizio essenziale non delocalizzabile;
- 2. non pregiudichi la realizzazione degli interventi del PAI;
- 3. non concorra ad aumentare il carico insediativo;
- 4. avvenga con idonei accorgimenti costruttivi;
- 5. risulti coerente con le misure di protezione civile di cui alle **norme** del PAI e ai piani comunali di settore.

Studio di compatibilità idrogeologica	Foglio 4 di Fogli 71
Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di	Dottor Geologo Di Berardino Giancarlo Rocco
potenza nominale pari a 41.546,44 kWp	29/07/2021

Analizzando i 5 punti precedenti, si riporta quanto segue:

- la realizzazione del *Progetto* è "di pubblica utilità, urgente ed indifferibile"; circa la sua eventuale delocalizzazione in riferimento alle aree pericolose del PAI, verrà prodotto apposito studio di compatibilità idrogeologica per mostrare la compatibilità tra *Progetto* e vincoli PAI;
- 2. nelle aree qui vincolate dal PAI, non sono previsti interventi (in base al documento "Programma prioritario degli interventi strutturali Relazione R02" allegato al PAI del Bacino Interregionale del Fiume Saccione):
- 3. la presenza del parco **Rotello 1** non aumenta in alcun modo il carico insediativo nelle zone PF1 e PF2 qui interferenti;
- 4. tutte le opere relative al progetto sono realizzate attraverso idonee ed adeguate tipologie costruttive, secondo i più recenti standard;
- 5. la realizzazione del progetto non pregiudica in alcun modo i piani di protezione civile di cui all'art.31 delle **norme.**.

Per concludere, lo **studio** è redatto al fine di dimostrare la compatibilità idrogeologica tra la realizzazione dei **parchi FV** (in particolare **Rotello 1**) e le aree PF1 e PF2 del PAI. A tale scopo, a valle di ogni informazione e considerazione, vengono quantificati i fattori di sicurezza di n.3 profili morfostratigrafici (A-A', B-B' e C-C') lungo i quali **Rotello 1** si sovrappone alle aree PF1 e PF2 del PAI. Tali profili sono quelli a pendenza maggiore nel versante ad esclusione di quello siglato A-A': esso si trova in corrispondenza di un fenomeno di soliflusso (vedi paragrafo 2.2 di seguito e TAVOLA 5 in calce). Per il posizionamento delle tre sezioni, si rimanda alla TAVOLA 2 in calce allo **studio**.

1.2 Regime vincolistico

Circa il quadro vincolistico sovraordinato al sito di intervento, si riportano i seguenti vincoli di carattere idrogeologico (Tabella 1-1):

TIPOLOGIA VINCOLISTICA	Р	Α
PAI (Pericolosità da Frana e da Valanga) – Pericolosità estremamente elevata PF3		
PAI (Pericolosità da Frana e da Valanga) – Pericolosità elevata PF2		
PAI (Pericolosità da Frana e da Valanga) – Pericolosità moderata PF1		
PAI (Pericolosità Idraulica) – Pericolosità elevata PI3		
PAI (Pericolosità Idraulica) – Pericolosità moderata PI2		
PAI (Pericolosità Idraulica) – Pericolosità bassa PI1		
Vincolo Idrogeologico (RD3267/23)		

Tabella 1-1: P - vincolo presente; A - vincolo assente.

Ciò, a ribadire quanto riportato finora. Si puntualizza che sull'intera area di progetto non insiste il Vincolo Idrogeologico R.D.3267/23.

1.3 Ubicazione dell'area di progetto

i *parchi FV* in predicato di realizzazione si inseriscono all'interno di una superficie complessiva (**Superficie Disponibile**) di circa 65,84 ettari, rispettivamente 44,6 ettari e 21,24 ettari per **Rotello 1** e **Rotello 2**. Di questa superficie totale a disposizione del *Proponente*, una parte sarà occupata fattivamente dai *parchi FV*

O		49 9943	
Studio	aı	compatibilita	a idrogeologica
Ottaalo	u	Compatibilità	i lai ogcologica

Foglio 5 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

(Superficie Occupata), vale a dire vele fotovoltaiche e strutture di supporto, cabine e strumentazione che costituiscono concretamente l'opera, la restante parte manterrà lo *status quo ante*. La linea MT di collegamento interrata fra la futura *stazione* ed i *parchi FV* (*cavidotto*) ha una lunghezza complessiva di circa 5,6 km e sostanzialmente viaggia sempre lungo la viabilità esistente, sotto strada. Tutti i siti di interesse, compresi i terreni lungo i quali si snoda il percorso del *cadivotto*, si trovano nel territorio comunale di *Rotello* (CB), nel settore centro-orientale della regione Molise. Sono raggiungibili percorrendo l'autostrada A14 Adriatica Bologna - Taranto fino all'uscita Termoli; si prosegue sulla SS87 verso Campobasso – Larino, quindi sulla SP167 per Rotello, si continua sulle SP148, SP73 ed SP40 fino a Rotello ed infine la SP78 che conduce a *Rotello* 1 e la Strada Comunale Capomandra che conduce a *Rotello* 2. Le tavolette in scala 1:5.000 (CARTA TECNICA REGIONALE – REGIONE MOLISE) di riferimento sono la 395013 e la 395012, rispettivamente da Ovest ad Est. Di seguito, un estratto fuori scala dall'originale 1:25.000 dai tipi IGM (Figura 1-1). Per la topografia di dettaglio si rimanda alla cartografia allegata allo *studio*, in particolare TAV.1.

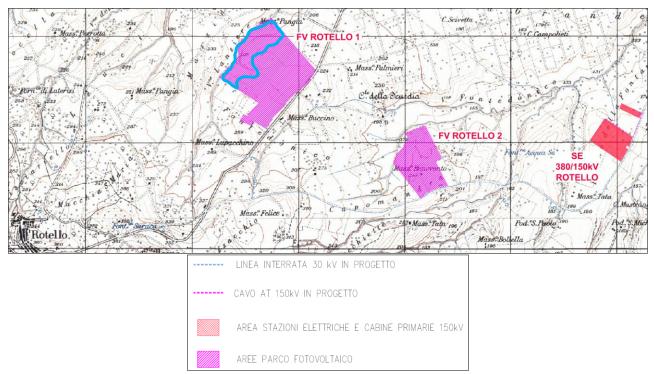


Figura 1-1: in tratto spesso ciano, la zona con le aree PAI PF1 e PF2.

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 6 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

2.0 ANALISI GEOLOGICA, GEOMORFOLOGICA E IDROGEOLOGICA

2.1 Geologia generale e locale

In una visione di ampio respiro, i siti d'interesse ricadono nella pressochè totalità all'interno del dominio tettono-sedimentario dei depositi dei Complessi postorogeni (Successioni continentali) e dell'Avanfossa pliocenica e pleistocenica (Successione del Pleistocene inferiore pp. e del Pliocene superiore) di FESTA, GHISETTI & VEZZANI (2004). Tali successioni, nell'area di studio, si trovano immediatamente al fronte di un sistema a pieghe e sovrascorrimenti che propone all'hanging-wall le Unità Molisane, nella fattispecie l'Unità dei Monti della Daunia (FESTA, GHISETTI & VEZZANI, IBIDEM). Le Unità Molisane costituiscono un sistema di strutture tettoniche Est-vergenti sviluppate lungo una fascia orientata NO-SE ed estese dai M. Frentani in Molise ai M. della Daunia in Puglia, alla dorsale dei Flysch esterni in Basilicata (CELLO ET ALII, 1987; BUTLER ET ALII, 2004); lungo questo fascio di strutture affiora essenzialmente la porzione terziaria di una ad Est della piattaforma carbonatica Campano-Lucana ed successione originariamente ubicata interpretata da Ogniben (1969) come il tetto stratigrafico della successione calcareo silico-marnosa del Bacino Lagonegrese (FESTA, GHISETTI & VEZZANI, IBIDEM). L' Unità dei Monti della Daunia è quella molisana più esterna che affiora in posizione basale lungo il fronte esterno della Catena appenninica, dove è spesso associata al Mélange tettonico dei M. Frentani; anche questa unità è scollata a livello dell'alternanza delle argille policrome e di calcareniti torbiditiche di età Miocene inferiore-Oligocene (Flysch rosso) (CIPOLLARI & COSENTINO, 1995; BUTLER ET ALII, IBIDEM). Questa formazione basale dell'Unità dei Monti della Daunia, costituita da un'alternanza in livelli centimetrici di argille marnose, marne argillose da rosso violacee a verdi, e radiolariti passa stratigraficamente verso l'alto (Casacalenda, Dogliola) alle quarzareniti gialle del Flysch Numidico, di età Langhiano-Burdigaliano, a sua volta seguito dalla Formazione Faeto (CROSTELLA & VEZZANI, 1964). La successione dell'Unità dei M. della Daunia passa verso l'alto alla Formazione di Vallone Ferrato, costituita da marne argillose grige con intercalazioni di arenarie, di età Messiniano-Tortoniano. Nella zona di Tavenna, Dogliola e Montemitro questa successione marnosa si chiude verso l'alto con un'alternanza torbiditica argilloso-arenacea, di età Messiniano (FESTA, GHISETTI & VEZZANI, IBIDEM). Tutto ciò è il risultato di una vivace tettonica di età neogenico-quaternaria che ha interessato l'area molisana con cinematismi di raccorciamento che giustappongono alcune tra le principali unità tettono-stratigrafiche dell'orogeno (DI BUCCI ET ALII, 1999).

Localmente, limitandosi ai *parchi FV*, facendo riferimento a quanto riportato in FESTA, GHISETTI & VEZZANI, *IBIDEM*, una piccola parte dell'estremità meridionale dell'area di Rotello 1 farebbe parte del dominio ascritto alle *Unità molisane* (*Unità dei Monti della Daunia*) e ricadrebbe nella *Formazione Faeto*, sostanziata da calcari marnosi e marne bianche e rosate con intercalazioni di biocalcareniti e di calciruditi torbiditiche in strati da centimetrici a decimetrici in affioramento presso San Felice del Molise. Tutta la restante **Superficie disponibile** in corrispondenza di Rotello 1 e di Rotello 2 è interessata invece, secondo la bibliografia, da un sottosuolo in cui i depositi quaternari alluvionali terrazzati (1t) ricoprono la molassa pelitica delle *Argille grigio-azzurre* di CRESCENTI (1971). A valle delle indagini condotte e di quanto osservato direttamente in campagna, è possibile affermare che il sottosuolo è rappresentato dalle peliti grigio-azzurre pliopleistoceniche, a luoghi ricoperte dai terreni alluvionali; si aggiunge che un certo spessore di coltri eluvio-colluviali è presente nella pressochè totalità del paesaggio. Per i dettagli, si rimanda alla RELAZIONE GEOLOGICA.

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 7 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

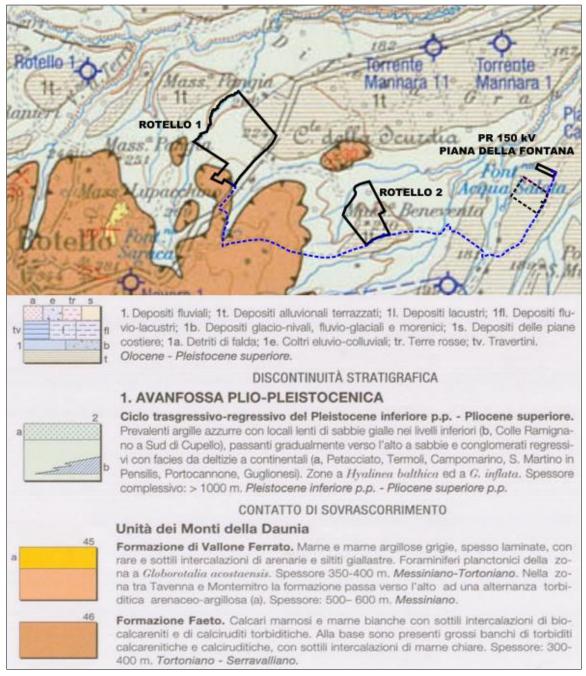


Figura 2-1: stralcio in scala 1:50.000 dall'1:100.000 originale di FESTA, GHISETTI & VEZZANI (2004). In tratteggio nero la SE Rotello (esistente) ed in tratteggio blu e magenta, rispettivamente, cavidotto e cavo AT.

2.2 Geomorfologia

In linea generale, i territori in cui si inseriscono i *parchi FV* sono caratterizzati da pendenze molto blande dirette verso i quadranti orientali: ciò è desumibile da una analisi delle mappe topografiche. Nel documento "Caratterizzazione geologico-ambientale del territorio molisano e delle unità territoriali (macro-aree) individuate" (UNIVERSITÀ DEGLI STUDI DEL MOLISE, 2014), l'area in cui ricadono i *parchi FV* viene definita Basso Molise ed è interessata da processi fluvio-denudazionali associabili a fenomeni di instabilità, sia lenti

Studio	di	comi	natihilità	idroge	eologica
Otaalo	u	COILI	patibilita	iuiou	Joiogica

Foglio 8 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

che rapidi, come scorrimenti e scivolamenti, colamenti e fenomeni complessi, e da fenomeni di erosione superficiale spesso in stretta interazione con i processi di erosione idrica concentrata e lineare accelerata; è inoltre caratterizzata dalla diffusa presenza di lembi di superfici fluvio-denudazionali che si rinvengono in posizione sommitale o lungo i versanti, dove i processi morfogenetici dominanti sono legati all'azione delle acque incanalate e non e alla forza di gravità che, visto le pendenze, gioca un ruolo piuttosto limitato, favorendo comunque lo sviluppo di fenomeni superficiali quali il *creep* e il soliflusso, nonché di limitati movimenti in massa superficiali e lenti; questi processi si rinvengono anche dove affiorano i depositi dell'avanfossa plio-pleistocenica a composizione argillosa e sabbioso - ghiaioso conglomeratica, al limite con l'area "Fascia costiera".

Di seguito, i contesti geomorfologici *in dettaglio* (si veda la cartografia in calce allo *studio*).

Rotello 1, in figura seguente, si trova a quote comprese tra i 275 ed i 180 m circa sul livello del mare, rispettivamente in corrispondenza dell'estremità meridionale e settentrionale del sito.

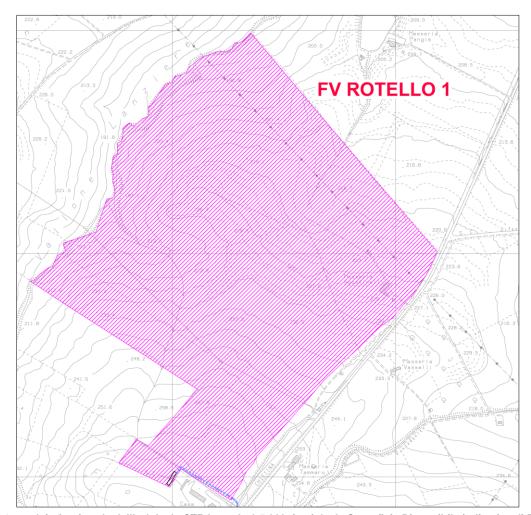
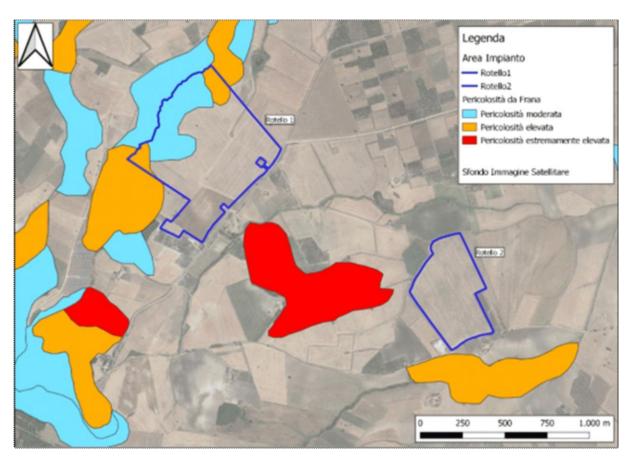


Figura 2-2: stralcio fuori scala dall'originale CTR in scala 1:5.000; in viola, la Superficie Disponibile indicativa di Rotello 1.

Come ben visibile dalla figura precedente, l'intero sito ha una blanda pendenza verso Nord, che si accentua man mano che ci si avvicina al piccolo fosso che ne delimita il bordo nord-occidentale. La morfologia generale è piuttosto uniforme, piatta, e non mostra elementi particolari. **Circa i processi legati alla gravità**,



Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 9 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

in base a quanto segnalato dal PAI (come anticipato nel paragrafo 1.2 dello studio), una parte della Superficie Occupata risulta affetta da pericolosità media ed elevata (si veda la tavola relativa al PAI in calce allo studio); in particolare, la cartografia IFFI dell'ISPRA segnala la presenza di un colamento lento il quale raggiunge il fosso sottostante (Vallone Lanziere). Tale fenomeno, dai sopralluoghi effettuati, risulta in realtà un soliflusso, non presentando una zona di distacco, una di scivolamento della massa terrosa ed una di accumulo: non è una frana bensì una comune deformazione lenta di superficie, tipica in tutto il contesto morfostratigrafico collinare periadriatico. Come nella pressochè totalità dei casi, interessa la coltre alterativa al di sopra dei terreni pelitici marini di avanfossa. Dall'analisi della cartografia CTR e dai rilievi in campagna, la pericolosità segnalata dal PAI può derivare dalla probabilità che nei terreni limitrofi al soliflusso possano verificarsi, per similarità delle pendenze e dei depositi presenti, fenomeni simili, sebbene al momento non ve ne sia evidenza, ad eccezione di una zona in soliflusso poco a Sud-Ovest esternamente all'area di progetto. Tutta la restante Superficie Occupata che non è interessata dalle pericolosità del PAI mostra delle pendenze minori, troppo blande per l'innesco di fenomeni gravitativi di qualsiasi tipo. Circa i processi legati alle acque di scorrimento superficiali, l'elemento morfologico principale è il fosso Vallone Lanziere, il quale scorre in direzione SO - NE e si immette nel Torrente Saccione a circa 700 m in direzione Nord da Rotello 1: esso produce una certa erosione concentrata dando origine a piccole scarpate da erosione lungo il proprio tragitto. Tale fosso introduce una certa discontinuità morfologica nel paesaggio piuttosto piatto e monotono. In via collaterale, i processi legati all'uomo sono relativamente ridotti: strade e masserie, sostanzialmente, introducono una rottura con il contesto naturale e subito ad Ovest di Rotello 1 sono presenti altri impianti fotovoltaici allungati in direzione circa meridiana. Anche l'attività agricola modifica il contesto primigenio attraverso le operazioni di aratura della coltre di suolo.

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 10 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

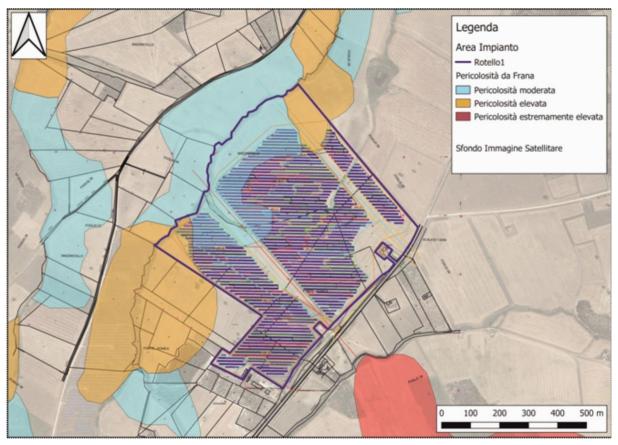


Figura 2-3: le aree di progetto sulla cartografia PAI (fonte https://www.distrettoappenninomeridionale.it/index.php/elaborati-dipiano-menu/ex-adb-trigno-biferno-e-minori-saccione-e-fortore-menu/saccione-menu/piano-stralcio-assetto-idrogeologicorischio-da-frana-menu).

Circa i processi legati alle acque di scorrimento superficiali, l'elemento morfologico principale è il fosso Vallone Lanziere, il quale scorre in direzione SO – NE e si immette nel Torrente Saccione a circa 700 m in direzione Nord da Rotello 1: i rilievi in campagna hanno mostrato come non siano presenti scarpate di erosione ai lati del talweg; è invece presente una certa vegetazione ripariale che protegge i terreni ai lati del fosso. Tale fosso introduce una certa discontinuità morfologica nel paesaggio piuttosto piatto e monotono. Su tutta l'area agisce il consueto dilavamento diffuso superficiale dovuto alle piogge. In via collaterale, i processi legati all'uomo sono relativamente ridotti: strade e masserie, sostanzialmente, introducono una rottura con il contesto naturale e subito ad Ovest di Rotello 1 sono presenti altri impianti fotovoltaici allungati in direzione circa meridiana. Anche l'attività agricola modifica il contesto primigenio attraverso le operazioni di aratura della coltre di suolo.

Rotello 2, in Figura 2-4 alla pagina seguente, si trova a quote comprese tra i 211 ed i 170 m circa sul livello del mare, rispettivamente in corrispondenza dell'estremità meridionale e settentrionale del sito. Come ben visibile dalla figura seguente e come in Rotello 1, l'intero sito ha una blanda pendenza verso Nord, che si accentua man mano che ci si avvicina al piccolo fosso che ne delimita il bordo occidentale e poi settentrionale e che ad Est confluisce nel Torrente Mannara. Anche qui la morfologia generale è piuttosto uniforme, piatta, e non mostra elementi di spicco. Circa i processi legati alla gravità, da quanto osservabile sul terreno e consultato in bibliografia, la zona che verrà interessata dal parco fotovoltaico non è

Studio	di	comi	natihilità	idroge	eologica
Otaalo	u	COILI	patibilita	iuiou	Joiogica

Foglio 11 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

affetta da processi attivi ne' quiescenti: non vi sono segni di franamento, di soliflusso e/o reptazione. In accordo al PAI non si ravvisa alcuna pericolosità in corrispondenza di Rotello 2; è segnalata dal PAI una zona a pericolosità estremamente elevata ad Ovest dell'area di progetto, esternamente ad essa: si rinviene sul versante opposto del piccolo fosso che delimita il bordo occidentale di Rotello 2 e non rappresenta alcuna criticità. Inoltre, una zona a pericolosità elevata è segnalata a Sud della Superficie Disponibile, ancora esternamente ad essa, e neppure essa rappresenta un elemento di criticità nei confronti di Rotello 2. La cartografia IFFI dell'ISPRA, in accordo a quanto riferito in precedenza, non segnala alcun fenomeno franoso ne' all'interno dell'area di Rotello 2 ne' al suo esterno nelle vicinanze: i primi fenomeni franosi (colamenti lenti) si rinvengono a svariate centinaia di metri in direzione Ovest e non è possibile alcuna interferenza con il progetto in predicato di realizzazione. Circa i processi legati alle acque di scorrimento superficiali, l'elemento morfologico principale è il fosso descritto in precedenza, il quale nell'estremità NO del sito di intervento alimenta un modesto specchio d'acqua probabilmente utilizzato a scopi irrigui. Tale fosso ed il piccolo lago introducono una certa discontinuità morfologica nel paesaggio piuttosto piatto e monotono. Di nuovo, i processi legati all'uomo sono piuttosto ridotti: strade e masserie rappresentano i soli elementi di rottura nei confronti della cornice naturaleggiante. Anche l'attività agricola modifica il contesto primigenio attraverso le operazioni di aratura della coltre di suolo.

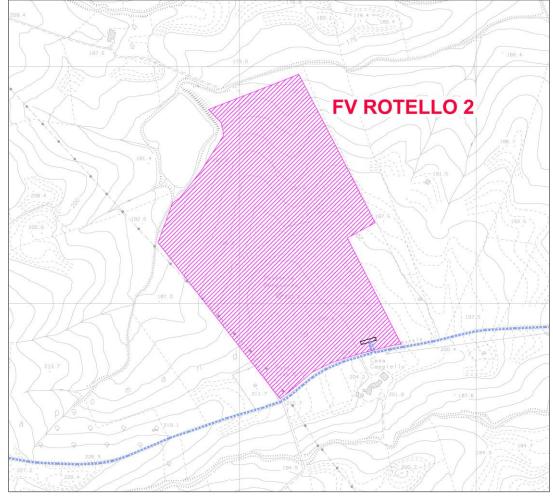


Figura 2-4: stralcio fuori scala dall'originale CTR in scala 1:5.000; in viola, la Superficie Disponibile indicativa di Rotello 2.

Studio	di	comi	natihilità	idroge	eologica
Otaalo	u	COILI	patibilita	iuiou	Joiogica

Foglio 12 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

2.3 Idrogeologia

A grande scala, l'intera area di progetto appartiene a ciò che CELICO ET ALII (1978) e CELICO (1983) definiscono Complesso argilloso - sabbioso - conglomeratico. Si tratta sostanzialmente delle argille e sabbie marine periadriatiche plio-pleistoceniche (i Depositi pelitici di avanfossa del Plio-Pleistocene di DESIDERIO & RUSI, 2004) e dei conglomerati fluviali quaternari: possiedono una permeabilità per porosità variabile, da bassa a media, in relazione alla granulometria dei depositi. I domini idrogeologici delle aree collinare e di piana alluvionale della regione molisana sono rispettivamente costituiti da marne argillose, arenarie, conglomerati e argille delle unità plio-pleistoceniche e da sabbie, ghiaie ed argille continentali, delle alluvioni terrazzate delle pianure alluvionali; nella zona collinare si individuano sorgenti a regime perenne ricaricati essenzialmente dalle acque meteoriche (NANNI & VIVALDA, 1986); le pianure alluvionali, in tutto il settore Adriatico centrale, dalle Marche al Molise, sono generalmente impostate su linee tettoniche trasversali che ne hanno fortemente condizionato l'evoluzione pleistocenica (NANNI & VIVALDA, 1987; BIGI ET ALII, 1997); sono costituite da corpi lenticolari ghiaiosi, ghiaioso-sabbiosi e da lenti variamente estese di depositi fini limo-sabbiosi e limoso-argillosi il cui spessore varia sensibilmente nelle diverse pianure e nell'Abruzzo meridionale e nel Molise, a sud della linea Aventino-Sangro (Majella), l'aquiclude pliopleistocenico è sostituito o si inframmezza alle argille e marne della colata gravitativa (DESIDERIO & RUSI, IBIDEM).

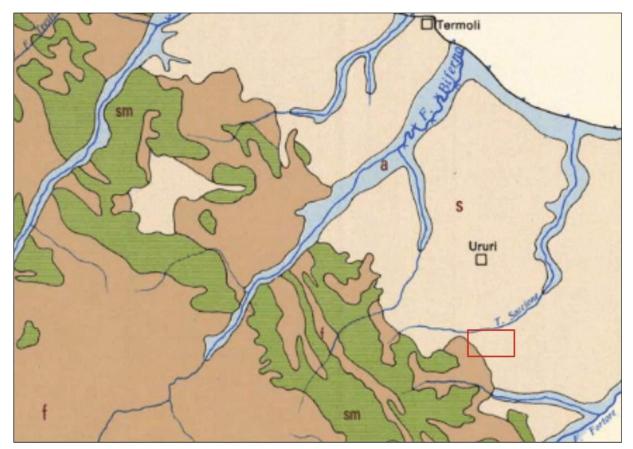


Figura 2-5: in rosso, l'intera area di progetto (Rotello 1 e Rotello 2); l'immagine è uno stralcio fuori scala dalla scala originale 1:400.000 (CELICO, 1983).

li compatibilità idroge	

Foglio 13 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

In dettaglio, in corrispondenza di Rotello 1 e Rotello 2, in base ai risultati delle indagini (si rimanda alla RELAZIONE GEOLOGICA per i dettagli), non è presente falda in sottosuolo.

Studio di compatibilità	idrodeologica	ı
-------------------------	---------------	---

Foglio 14 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

3.0 ANALISI GEOTECNICA

In base a quanto riportato nel documento "RELAZIONE GEOLOGICA" e relativi ALLEGATI, per le aree a pericolosità PF1 e PF2, si può riportare il seguente modello di sottosuolo: fino alla quota di – 2,8 m da piano campagna sono presenti coltri eluvio-colluviali costituite da prevalenti limi, argille e sabbie, di colore marrone, contenenti una certa frazione di trovanti grossolani (clasti calcarei ed arenacei centimetrici fino a 20-30 cm) (ORIZZONTE 1), le quali ricoprono ricoprono in discordanza l'ORIZZONTE 3 (si conserva la nomenclatura della RELAZIONE GEOLOGICA) rappresentato dal substrato marino plio-pleistocenico, fatto di argille e limi di color grigio-azzurro, con una certa frazione sabbiosa, il quale possiede uno spessore nell'ordine delle centinaia di metri per la zona in esame (FESTA, GHISETTI & VEZZANI, IBIDEM) (Figura 3-1). Si puntualizza che nella Carta geologica originale (TAVOLA 4) le coltri eluvio-colluviali sono state disegnate soltanto dove i loro spessori sono massimi (nelle aree al piede dei versanti, dove i fossi le accumulano e nelle aree morfologicamente più "depresse"); tuttavia, una copertura di coltri è presente sulla pressochè totalità dell'area, al di sopra delle alluvioni quaternarie o direttamente in discordanza sul substrato marino più o meno degradato, come descritto dai risultati delle penetrometrie (vedi RELAZIONE GEOLOGICA). Non è presente falda in sottosuolo. Inoltre, è attribuito il valore della coesione efficace alle argille del substrato marino: in via del tutto cautelativa, esso è il medesimo ricavato per le coltri eluvio-colluviali dalla prova di taglio diretto in laboratorio. In realtà, la coesione drenata nelle argille grigio-azzurre di Crescenti ha valori ben più elevati e in ogni caso maggiori rispetto a quelli posseduti dalle coltri di alterazione.

Spessore	Orizzonte litologico	Valori caratteristici	Falda
Circa 2,80 m	Coltri eluvio-colluviali ORIZZONTE 1	γ (t/mc ³) = 1,91 γ_{sat} (t/m ³) = 1,96 c (kg/cm ²) = 2,09 c' (kg/cm ²) = 0,05 Φ' (°) = 29,61 E_{ed} (kg/cmq) = 78,99	ASSENTE
Centinaia di metri	Argille grigio-azzurre sensu CRESCENTI ORIZZONTE 3	γ (t/mc ³) = 2,03 γ_{sat} (t/m ³) = 2,20 c (kg/cm ²) = 5,29 c' (kg/cm ²) = 0,05 Φ' (°) = 24,67 E_{ed} (kg/cmq) = 134,97	

Figura 3-1: colonnina litotecnica di sintesi.

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 15 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

4.0 ANALISI SISMICA

4.1 Inquadramento macrosismico

In relazione a quanto contenuto nelle **norme** (poi ripreso in sostanza dalle **nuove norme**), in particolare "ALLEGATO A ALLE NORME TECNICHE PER LE COSTRUZIONI: PERICOLOSITÀ SISMICA", in cui si riporta: [Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/.], si è provveduto all'utilizzo della griglia in rete dell'INGV (Progetto DPC – INGV – S1), all'indirizzo http://esse1-gis.mi.ingv.it/. Dunque, sul reticolo di riferimento, sintetizzato dalla Mappa di pericolosità sismica del territorio nazionale (Figura 4-1), per l'area in cui ricade l'intero progetto si ha un valore di pericolosità di base (ag) all'interno dell'intervallo $0,2 g \le ag \le 0,225 g$, al 50° percentile, con probabilità di superamento del 10% in 50 anni, ovvero allo 0.0021 come frequenza annuale di superamento ed al corrispondente periodo di ritorno di 475 anni; tali condizioni al contorno rispettano la Zonazione MPS04 dell'INGV.

In base alla mappa della Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile, Uff. prevenzione, valutazione e mitigazione del Rischio Sismico, Classificazione Sismica al 2010 (di seguito mappa sismica), il territorio comunale di Rotello è classificato come zona 2 e rientra, per l' OPCM n.3519 del 28_04_06, nel range di accelerazione attesa di 0,15 < $a_g \le 0,25$. Ai fini della caratterizzazione, ci si attiene a quanto dettato dalla mappa sismica a scopo cautelativo, con il valore massimo più elevato (0,25 > 0,225). Per cui, il sito rientra nel range di pericolosità sismica di base di 0,2 g $\le a_g \le 0,25$ g.

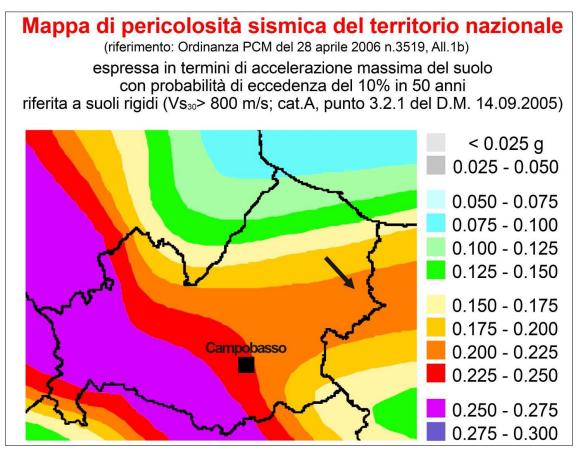


Figura 4-1: La freccia in nero indica l'area di intervento, per la quale si ha una pericolosità di base 0,2 g ≤ ag ≤ 0,225 g.

Studio	di	comi	natihilità	idroge	eologica
Otaalo	u	COILI	patibilita	iuiou	Joiogica

Foglio 16 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

4.2 Faglie e tettonica

All'indirizzo http://www.6aprile.it/featured/2016/10/27/ingv-mappa-interattiva-faglie-italiane.html è presente la mappa interattiva delle faglie attive della Penisola, capaci di generare sismi con intensità minima di 5.5. A seguito della sua consultazione, **non risultano faglie attive prossime all'area di progetto**: il lineamento attivo più vicino ad essa è quello denominato *San Marco in Lamis 5*, a circa 40 km verso Est. E' presente, circa 8 km a Sud, la sorgente sismogenetica composita denominata *Ripabottoni – San Severo*. Questa sorgente composita si trova a cavallo della regione tra la fascia collinare molisana e la piana di Capitanata, attraverso l'alta valle del Fiume Fortore, e appartiene allo *strike-slip system* (sistema di faglie trascorrenti) da obliquo a laterale destrorso che interessa l'Avampaese adriatico centrale e meridionale. Questa sorgente è una faglia subverticale, con immersione circa verso Nord, ad est dell'asse estensionale principale dell'Appennino meridionale.

4.3 Microzonazione sismica

L'area del progetto non rientra all'interno della carta delle M.O.P.S. (Microzonee Omogenee in Prospettiva Sismica) del Comune di Rotello. In base al quadro geolitologico ricostruito, seguendo le indicazioni contenute all'interno del documento GRUPPO DI LAVORO MS (2008), che rappresenta gli indirizzi e criteri in materia di microzonazione sismica, è possibile definire le zone in cui ricadono i *parchi FV* come stabili suscettibili di amplificazioni locali per ragioni litostratigrafiche.

4.3.1 Liquefazione dei terreni

Come riportato nella RELAZIONE GEOLOGICA, i terreni in corrispondenza delle aree PF1 e PF2 non sono suscettibili a liquefazione per ragioni litologiche e per assenza di falda.

4.4 Categoria di sottosuolo

Come riportato nella RELAZIONE GEOLOGICA, la categoria di sottosuolo in corrispondenza delle aree PF1 e PF2 è di tipo **C**. Ciò è in accordo a quanto riportato nelle valutazione circa la microzonazione sismica: nel non è presente un sottosuolo di riferimento rigido (categoria A) bensì uno suscettibile di amplificazioni locali (nello specifico, per ragioni litostratigrafiche).

4.5 Coefficiente sismico orizzontale

Nelle successive verifiche (paragrafo 5 dello **studio**) agli Stati Limite Ultimi, le stabilità dei pendii nei confronti dell'azione sismica vengono eseguite con il metodo pseudo-statico. Ai fini della valutazione dell'azione sismica, nelle verifiche agli Stati Limite Ultimi, vengono considerate le seguenti forze statiche equivalenti:

 $FH = k_h W$ (eq.ne 4.5.1),

 $FV = k_V W$ (eq.ne 4.5.2),

Studio di compatibilità idrogeologica	Foglio 17 di Fogli 71
Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di	Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

- FH e FV rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio,

potenza nominale pari a 41.546,44 kWp

- W il peso concio,
- kh Coefficiente sismico orizzontale (numero puro),
- k_v Coefficiente sismico verticale (numero puro).

I valori di k_h e k_v sono indicati nell' Aggiornamento delle "Norme Tecniche per le Costruzioni", D.M. 17.01.2018 (NTC_2018) al sottoparagrafo "7.11.3.5.2 Metodi di analisi". Le equazioni che li identificano sono le seguenti:

 $k_h = \beta_s (a_{max}/g)$ (eq.ne 4.5.3),

 $k_v = \pm 0.5 k_h$ (eq.ne 4.5.4),

con

- β_s = coefficiente di riduzione dell'accelerazione massima attesa al sito,
- a_{max} = accelerazione orizzontale massima attesa al sito,
- g = accelerazione di gravità.

I valori di β_s sono riportati in tabella seguente (tabella "Tab.7.11.I – Coefficienti di riduzione dell'accelerazione massima attesa al sito", in NTC_2018); essi variano al variare della categoria di sottosuolo e dell'accelerazione orizzontale massima attesa su sito di riferimento rigido:

	Categoria di sottosuolo		
	A B, C, D, E		
	βs	βs	
$0.2 < a_g(g) \le 0.4$	0,30	0,28	
$0.1 < a_g(g) \le 0.2$	0,27	0,24	
$a_g(g) \le 0,1$	0,20	0,20	

Tabella 4-1: valori del coefficiente βs.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima attesa al sito può essere valutata con la relazione:

$$a_{max} = S \times a_g = (S_S \times S_T) \times a_g$$
 (eq.ne 4.5.5),

dove

- S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2 delle NTC_2018 (di seguito tabb.4-2 e 4-3),
- a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Categoria di sottosuolo	S _s
Α	1,00
В	$1,00 \le 1,40 - 0,40 \text{ x } F_0 \text{ x } (a_g/g) \le 1,20$

Foglio 18 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

С	$1,00 \le 1,70 - 0,60 \times F_0 \times (a_9/g) \le 1,50$
D	$0.90 \le 2.40 - 1.50 \text{ x F}_0 \text{ x (ag/g)} \le 1.80$
E	$1,00 \le 2,00 - 1,10 \times F_0 \times (a_g/g) \le 1,60$

Tabella 4-2: valori dell'amplificazione stratigrafica S_s.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1		1,00
T2	In corrispondenza della sommità del pendio	1,20
T3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,20
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,40

Tabella 4-3: valori massimi del coefficiente di amplificazione topografica S_T.

Si rammenta che le categorie topografiche sono espresse come in tabella seguente:

Categorie	Caratteristiche della superficie topografica		
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°		
T2	Pendii con inclinazione media i > 15°		
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°		
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°		

Tabella 4-4: categorie topografica (Tab.3.2.III in NTC_2018).

In considerazione di quanto riportato finora, si calcola il valore di a_{max} in corrispondenza delle tre sezioni di verifica (come in TAVOLA 2) premettendo che, nei tre profili, le condizioni al contorno (topografiche, litologiche e sismiche) sono sostanzialmente le medesime e dunque i parametri che ne derivano.

Utilizzando la 4.5.5, si sostituiscono i seguenti valori all'interno dell'equazione per trovare a_{max}:

- a_g = 0,25 g (come da paragrafo dello 4.1 studio),
- S_S = 1,50 (assunto cautelativamente il valore massimo per la categoria di sottosuolo **C**, come da paragrafo 4.4 dello **studio**),
- S_T = 1 (in quanto la categoria topografica è T1, avendo tutti i profili una pendenza minore di 15° rispetto al piano orizzontale).

Per cui, risulta:

 $a_{max} = 3,6787$ per i tre profili.

Ricavata a_{max} , si trova il valore di k_h per i profili, essendo $\beta_s = 0.28$, utilizzando la 4.5.3:

PROFILO	k _h
A-A'	0,105
B-B'	0,105
C-C'	0,105

Tabella 4-5: valori del coefficiente sismico orizzontale per i tre profili di verifica.

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 19 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

5.0 ANALISI DI STABILITA' DEI VERSANTI

L'analisi di stabilità dei versanti è definita dalle NTC_2018 nel § 6.3.4, dove si legge "L'adeguatezza del margine di sicurezza ritenuto accettabile dal progettista deve comunque essere giustificata sulla base del livello di conoscenze raggiunto, dell'affidabilità dei dati disponibili e del modello di calcolo adottato in relazione alla complessità geologica e geotecnica, nonché sulla base delle conseguenze di un'eventuale frana.". Dunque, non esiste più un valore predefinito del fattore di sicurezza; ne andrà invece fissato uno, volta per volta, in base al grado di sicurezza ritenuto accettabile.

Nei casi in esame, data la relativa semplicità della geologia dei luoghi, la quantità di dati disponibili sulla scorta delle indagini, in ragione quindi del grado di conoscenza raggiunto (del modello geologico-tecnico di sottosuolo) e nondimeno delle caratteristiche dell'opera da portare a termine (la quale, lo si rammenta, non interferirà con le aree pericolose qui verificate), si ritiene opportuno utilizzare un Fattore di sicurezza Fs pari a: Fs ≥ 1,1.

Attraverso l'utilizzo del software SSAP – Slope Stability Analysis Program – release 5.0 (Dottor Lorenzo Borselli PhD ©), sono state condotte verifiche di stabilità del pendio su tre sezioni longitudinali significative per le aree PF1 e PF2 (come definito in precedenza, A-A', B-B' e C-C'). Attraverso il programma, le analisi sono state effettuate con il metodo "qFEM" agli elementi finiti. Inoltre si puntualizza che nelle analisi di stabilità dei versanti, per rendere il problema staticamente determinato occorrono diverse ipotesi semplificative, diverse da metodo a metodo; cosicchè a parità di geometria e di caratteristiche fisico-meccaniche del terreno, il risultato dell'analisi non è unico ma diverso da metodo a metodo in termini di superficie di scorrimento critica e di coefficiente di sicurezza. E' per tale motivo che vegono riportati i risultati condotti con cinque metodi diversi di analisi.

5.1 Condizioni al contorno

Nella fattispecie, le analisi numeriche per le fasi *ante operam*, in corso d'opera e *post operam* coincidono: i lavori non prevedono alcun intervento e neppure realizzazione di alcun tipo di struttura significativa, all'interno delle aree PF1 e PF2, che possano rappresentare un aggravio per il versante. La posa in opera dei pannelli fotovoltatici, su strutture di sostegno in acciaio zincato mediante infissione dei supporti, senza la realizzazione di fondazioni ed opere di movimento terra, è del tutto ininfluente nel computo dei fattori di sicurezza, essendo il carico trasmesso pressochè nullo. Parimente, le cabine MT/BT sono elementi puntuali troppo piccoli per poter essere inseriti nel calcolo della verifica di stabilità: i fattori di sicurezza lungo le sezioni non verrebbero minimamente influenzati dalla loro immissione nel modello di calcolo. Il calcolo dei fattori di sicurezza lungo i tre diversi profili (si vedano TAVV. 2, 6 ed APPENDICE I in calce allo *studio*) prevede quindi l'inserimento di un solo modello litotecnico per ogni profilo, valevole per le tre fasi del progetto (*ante*, durante e *post operam*).

Le verifiche di stabilità sono basate sulle seguenti condizioni al contorno:

- modello litostratigrafico e litotecnico del sottosuolo come da Figura 3-1 nel precedente paragrafo 3 dello studio;
- cinematismo elaborato in automatico dal calcolatore;
- coesione drenata (condizione cautelativa): la ricostruzione dello stress-path (estensione per scarico) dipinge una situazione più sfavorevole in condizione di tensioni efficaci; per tale motivo è bene ragionare in termini di c' e Φ' (DI FRANCESCO, corso professionale 2011);

Studio di compatibilità idrogeologica	Foglio 20 di Fogli 71
Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp	Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

- presenza di falda nelle coltri (condizione peggiore rispetto alla realtà): tale impostazione nel calcolo è fortemente cautelativa;
- parametri sismici proposti nel precedente paragrafo 4.5 dello studio.

5.2 Risultati

Sintetizzando quanto desunto dai calcoli, si riportano i risultati dei valori in base ai vari AUCTT (Tabella 5-1):

PROFILO	METODO	Fs (fattore di sicurezza)
	BORSELLI 2016	1,698
	CHEN- MORGENSTERN	1,649
A-A'	JANBU RIGOROSO	1,790
	MORGENSTERN E PRICE	1,542
	SARMA 1979	1,732
	BORSELLI 2016	1,196
	CHEN- MORGENSTERN	1,182
B-B'	JANBU RIGOROSO	1,138
	MORGENSTERN E PRICE	1,131
	SARMA 1979	1,183
	BORSELLI 2016	1,182
	CHEN- MORGENSTERN	1,152
C-C'	JANBU RIGOROSO	1,179
	MORGENSTERN E PRICE	1,184
	SARMA 1979	1,200

Tabella 5-1: valori dei fattori di sicurezza calcolati lungo i profili (TAVOLA 2 per ubicazione).

In calce allo **studio** (APPENDICE I), sono esposti i report dei processi di calcolo che hanno restituito i Fs più bassi lungo i tre profili verificati.

Analizzando i dati, risulta quanto segue:

- lungo i profili B-B' e C-C' (aventi le pendenze più sfavorevoli nel versante) non sono previsti fenomeni di tipo franoso;
- ciò vale anche in corrispondenza del soliflusso (profilo A-A'): le analisi numeriche restituiscono un quadro evolutivo che proseguirà senza l'innesco di alcuna frana;
- è importante sottolineare che le analisi numeriche effettuate sono fortemente cautelative: è stata impostata la condizione di falda a piano campagna per l'intero strato delle coltri; in realtà, i terreni possono presentare un certo grado di umidità ma non è presente falda. Per tale motivo, i fattori di sicurezza portati all'attenzione in Tabella 5-1 possiedono valori certamente inferiori (anche del 30÷40%) alla condizione reale;
- la pericolosità indicata dal PAI è dunque associabile ad eventuali fenomeni deformativi superficiali (soliflussi) simili a quello presente nel settore settentrionale del sito in cui si colloca Rotello 1; la medesima pericolosità non è associabile all'innesco di fenomeni franosi veri e propri;

Studio	di	compatibilità i	idrogeologica
Ottaalo	u	Compatibilita	lalogoologica

Foglio 21 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

 in merito al solilflusso esistente ed eventuali fenomeni simili, essi sono caratterizzati da evoluzioni molto lente: non hanno ripercussioni a scala del tempo umana e non si prendono misure per ostacolarli (PROTEZIONE CIVILE, A CURA DI BENIGNI F. & CASIRAGHI F.).

In considerazione di quanto risultato sopra, la situazione geomorfologica-idrogeologica non costituisce in alcun modo elemento critico nei confronti del progetto in predicato di realizzazione:

- i tempi di evoluzione dei soliflussi sono piuttosto lunghi, non hanno ripercussioni alla scala del tempo umana:
- si aggiunge che l'area attualmente in deformazione è molto poco estesa ed intercetta soltanto una piccola parte di **Rotello 1**;
- qualsiasi misura di mitigazione dovesse occorrere in futuro, essa si limiterà a semplici opere di regimazione idraulica di superficie (canalette di raccolta e smaltimento): ci sarà tutto il tempo per realizzarle, in piena sicurezza, in piena compatibilità con la presenza delle strutture di sostegno dei moduli.

Studio	di	compatibilità i	idrogeologica
Ottaalo	u	Compatibilita	lalogoologica

Foglio 22 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

6.0 CONCLUSIONI

Da un punto di vista geomorfologico-idrogeologico, il paesaggio che accoglierà l'intervento non rappresenta in alcun modo una criticità nei confronti di esso e viceversa: il livello di pericolosità attualmente indicato dal PAI non subirà alcuna modifica e/o aggravamento derivanti dal compimento del progetto.

6.1 Considerazioni finali

In base a tutto quanto riportato sopra nello *studio* e nel materiale ad esso allegato, si può concludere che vi è una totale compatibilità geomorfologica-idrogeologica tra il progetto ed i luoghi che lo accoglieranno.

Pianella, lì 29/07/2021

Il tecnico

Dottor Geologo Di Berardino Giancarlo Rocco

Studio	di	compatibilità i	idrogeologica
Ottaalo	u	Compatibilita	larogeologica

Foglio 23 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

7.0 BIBLIOGRAFIA

In ordine di citazione

- VEZZANI L., GHISETTI F. & FESTA A. (2004) Carta Geologica del Molise. S.E.L.C.A., Firenze, 2004.
- CELLO, PALTRINIERI & TORTORICI (1987) Caratterizzazione strutturale delle zone esterne dell'Appennino molisano. Mem. Soc. Geol. It., 38 (1987), 155-161, 2 ff.
- BUTLER\ R. W. H., MAZZOLI S., CORRADO S., DE DONATIS M., DI BUCCI D., GAMBINI R., NASO G., NICOLAI C., SCROCCA D., SHINER P., ZUCCONI V. (2004) Applying Thick-skinned Tectonic Models to the Apennine Thrust Belt of Italy—Limitations and Implications. K. R. McClay, ed., Thrust tectonics and hydrocarbon systems: AAPG Memoir82, p. 647-667.
- OGNIBEN (1969) Schema Introduttivo Alla Geologia Del Confine Calabro-Lucano. Mem. Soc. Geol. It., 8 (1969), 453-763.
- CIPOLLARI P. & COSENTINO D. (1995) Miocene unconformities in the Central Apennines: geodynamic signicance and sedimentary basin evolution. Tectonophysics, 252, 375-389.
- CROSTELLA A. & VEZZANI L. (1964) La geologia dell'Appennino foggiano. Boll. Soc. Geol. It., 83 (1), 121-141.
- DI BUCCI D., CORRADO S., NASO G., PAROTTO M. & PRATURLON A. (1999) Evoluzione tettonica neogenico-quaternaria dell'area molisana. Boll. Soc. Geol. It., 118 (1999), 13-30, 12 ff.
- CRESCENTI U. (1971) Osservazioni sul Pliocene degli Abruzzi settentrionali: la trasgressione del Pliocene medio e superiore. Boll. Soc. Geol. It., 90 (1971), 3-21, 3 ff.
- UNIVERSITÀ DEGLI STUDI DEL MOLISE (2014) Caratterizzazione geologico-ambientale del territorio molisano e delle unità territoriali (macro-aree) individuate.
- CELICO, STANGANELLI V. & DEL FALCO F. M. (1978) SCHEMA IDROGEOLOGICO DELL'AREA DI INTERVENTO DEL P.S. 29. 1978. Cassa per il mezzogiorno, Progetto speciale n.29, Utilizzazione delle acque degli schemi idrici intersettoriali del Lazio Meridionale, Tronto, Abruzzo, Molise e Campania. Litografia Artistica Cartografica Firenze, 1978...
- CELICO (1983) CARTA IDROGEOLOGICA DELL'ITALIA CENTRO-MERIDIONALE-MARCHE E LAZIO MERIDIONALI, ABRUZZO, MOLISE E CAMPANIA. Cassa per il mezzogiorno, Progetto speciale n.29, Schemi idrici dell'Appennino centro-meridionale. Grafiche Magliana, Roma, 1983.
- DESIDERIO & RUSI (2004) Idrogeologia e idrogeochimica delle acque mineralizza te dell'Avanfossa Abruzzese Molisana. Boll. Soc. Geol. It., 123 (2004), 373-389, 14 ff., 4 tabb.
- NANNI & VIVALDA (1986) Caratteri idrogeologici schematici della successione plio-pleistocenica e delle pianure alluvionali delle Marche. Mem. Soc. Geol. It., 35, 957-978
- NANNI & VIVALDA (1987) Influenza della tettonica trasversale sulla morfogenesi delle pianure alluvionali marchigiane. Geogr. Fis. Din. Quat., 10, 180-192.
- BIGI S., CENTAMORE E. & NISIO S. (1997) Elementi di tettonica quaternaria nell'area pedeappenninica marchigiano-abruzzese. Il Quaternario, 10 (2), 359-362.
- GRUPPO DI LAVORO MS (2008) Indirizzi e criteri per la microzonazione sismica. Conferenza delle Regioni e delle Province autonome Dipartimento della protezione civile, Roma, 3 vol. e Dvd.
- BENIGNI F. & CASIRAGHI F. Dinamica dei Versanti. Dipartimento Protezione Civile.

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di
potenza nominale pari a 41.546,44 kWp

Foglio 24 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

8.0 ALLEGATI

ALLEGATO	TITOLO	SCALA
APPENDICE I	Relazioni di calcolo	
TAVOLA 1_fuori testo	Inquadramento territoriale	VARIE
TAVOLA 2_fuori testo	Ortofotocarta con ubicazione indagini	1:10.000
TAVOLA 3_fuori testo	Vincolo PAI Pericolosità/Rischio Frana con ubicazione profili di verifica	1:10.000
TAVOLA 4_fuori testo	Carta geologica originale	1:10.000
TAVOLA 5_fuori testo	Carta geomorfologica originale	1:10.000
TAVOLA 6_fuori testo	Profili morfostratigrafici e litotecnici	1:5.00

Studio			

Foglio 25 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

30/04/2021

APPENDICE I

Relazioni di calcolo

(si riportano le relazioni di calcolo per i Fs minimi lungo i tre profili A-A', B-B' e C-C')

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di

potenza nominale pari a 41.546,44 kWp

Foglio 26 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
PROFILO A-A'
```

```
# Report elaborazioni #
 .....
  SSAP 4.9.9 - Slope Stability Analysis Program (1991,2019)
              WWW.SSAP.EU
             Build No. 11232
                 BY
         Dr. Geol. LORENZO BORSELLI *,**
         *UASLP, San Luis Potosi, Mexico
         e-mail: lborselli@gmail.com
     CV e WEB page personale: WWW.LORENZO-BORSELLI.EU
    ** Gia' Ricercatore CNR-IRPI fino a Luglio 2011
Ultima Revisione struttura tabelle del report: 31 dicembre 2019
  File report: C:\Users\Giancarlo\Desktop\morgenstern&priceA-A'.txt
      Data: 28/4/2021
  Localita': Rotello (CB)
  Descrizione: PV Rotello 43
Modello pendio: SEZIONE A-A'_ROTELLO 43.mod
       ---- PARAMETRI DEL MODELLO DEL PENDIO ------
      __ PARAMETRI GEOMETRICI - Coordinate X Y (in m) __
      SUP T.
                  SUP 2
                              SUP 3
                                          SUP 4
     Χ
          Υ
                Χ
                   Υ
                          Χ
                                          Υ
                               Υ
                                     Х
    0.00 180.00 0.00 177.00
    25.75 185.00 25.75 182.50
    61.80 190.00 61.80 187.50
    115.48 195.00 115.48 193.00
   153.98 200.00 153.98 198.00
186.16 205.00 186.16 203.00
   215.53 210.00 215.53 208.00
---- SUP FALDA ------
   X Y (in m)
   0.00 180.00
   25.75 185.00
  61.80 190.00
  115.48 195.00
  153.98 200.00
  186.16 205.00
  215.53 210.00
  ----- GESTIONE ACQUIFERI -----
Strati esclusi da acquifero:
   STRATO 2
Esclusione sovraccarico pendio sommerso: NON ATTIVATA
Peso unitario fluido (kN/m^3): 9.81
Parametri funzione dissipazione superficiale pressione dei fluidi:
```

Coefficiente A 0
Coefficiente K 0.000800
Pressione minima fluidi Uo_Min (kPa) 0.01

Coefficiente di soprapressione oltre pressione hidrostatica 1.00 Limitazione dissipazionea a Pressione Idrostatica = NON ATTIVATA

STABILITE CONDIZIONI PER LA VERIFICA CON SOVRAPPRESSIONE ACQUIFERI CON DISSIPAZIONE IN DIREZIONE DELLA SUPERFICIE

CALCOLO EFFETTO DI FILTRAZIONE NON ATTIVATO

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 27 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
----- PARAMETRI GEOMECCANICI ------
                    C,
                                                                   sgci
                                                                         GSI mi
                           Cu
                                  Gamm
                                          Gamm_sat STR_IDX
   STRATO 1
                 29.61
                                                   19.22
                                                                     0.00 0.00 0.00 0.00
                          4.90
                                  0.00
                                          18.73
                                                            1.977
   STRATO 2
                                          19.90
                                                   21.57
                                                            1.530
                 24.67
                          4.90
                                  0.00
                                                                     0.00 0.00 0.00 0.00
   LEGENDA: fi`__
                        Angolo di attrito interno efficace(in gradi)
                  Coesione efficace (in Kpa)
        C, <sup>_</sup>
                   Resistenza al taglio Non drenata (in Kpa)
        Cu
        Gamm_
                     Peso di volume terreno fuori falda (in KN/m^3)
        Gamm_sat ___ Peso di volume terreno immerso (in KN/m^3)
        STR_IDX_
                    _ Indice di resistenza (usato in solo in 'SNIFF SEARCH) (adimensionale)
        ---- SOLO Per AMMASSI ROCCIOSI FRATTURATI - Parametri Criterio di Rottura di Hoek (2002)-
               ___ Resistenza Compressione Uniassiale Roccia Intatta (in MPa)
                   Geological Strenght Index ammasso(adimensionale)
                  __ Indice litologico ammasso(adimensionale)
                   Fattore di disturbo ammasso(adimensionale)
        Fattore di riduzione NTC2018: gammaPHI=1.25 e gammaC=1.25 - DISATTIVATO (solo per ROCCE)
Uso CRITERIO DI ROTTURA Hoek et al. (2002, 2006) - non-lineare - Generalizzato, secondo Lei et al. (2016)
   ------ INFORMAZIONI GENERAZIONE SUPERFICI RANDOM -------
 *** PARAMETRI PER LA GENERAZIONE DELLE SUPERFICI
   METODO DI RICERCA: RANDOM SEARCH
                                              - Siegel (1981)
   FILTRAGGIO SUPERFICI: ATTIVATO
   COORDINATE X1,X2,Y OSTACOLO:
                                                       0.00
   LUNGHEZZA MEDIA SEGMENTI (m):
                                                       1.0 (+/-) 50%
   INTERVALLO ASCISSE RANDOM STARTING POINT (Xmin .. Xmax):
                                                                         4.31
                                                                                 198.29
   LIVELLO MINIMO CONSIDERATO (Ymin):
                                                      147.30
   INTERVALLO ASCISSE AMMESSO PER LA TERMINAZIONE (Xmin .. Xmax):
                                                                                 25.86
                                                                                         211.22
 *** TOTALE SUPERFICI GENERATE:
                                             1000
 ----- INFORMAZIONI PARAMETRI DI CALCOLO ------
   METODO DI CALCOLO: MORGENSTERN - PRICE (Morgenstern & Price, 1965)
   COEFFICIENTE SISMICO UTILIZZATO Kh: 0.1050
   COEFFICIENTE SISMICO UTILIZZATO Kv (assunto Positivo): 0.0525
   COEFFICIENTE c=Kv/Kh UTILIZZATO: 0.5000
   FORZA ORIZZONTALE ADDIZIONALE IN TESTA (kN/m): 0.00
   FORZA ORIZZONTALE ADDIZIONALE ALLA BASE (kN/m): 0.00
   N.B. Le forze orizzontali addizionali in testa e alla base sono poste uguali a 0
      durante le tutte le verifiche globali.
      I valori >0 impostati dall'utente sono utilizzati solo in caso di verifica singola
   ------ RISULTATO FINALE ELABORAZIONI -------
  * DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs *
Fattore di sicurezza (FS) 1.5424 - Min. - X
                                                  Lambda= 0.3084
                          5.29 181.03
                          6.88 180.68
                          7.65 180.52
                          8.17 180.43
                          8.62 180.37
                          9.05 180.34
                          9.45 180.33
                          9.87 180.33
                          10.31 180.35
                          10.80 180.38
                          11.27 180.42
                          11.72 180.45
                          12.17 180.48
                          12.61 180.51
                          13.06 180.53
                          13.51 180.56
```

13.96 180.59 14.43 180.61 14.87 180.64

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 28 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
15.30 180.68
15.72 180.73
16.16 180.79
16.58 180.85
17.02 180.93
17.47 181.01
17.94 181.11
18.40 181.21
18.84 181.31
19.27 181.42
19.71 181.53
20.15 181.65
20.60 181.78
21.07 181.91
21.58 182.07
22.02 182.22
22.44 182.39
22.83 182.57
23.26 182.79
23.70 183.05
24.22 183.40
24.72 183.74
24.72 184.80
```

```
Fattore di sicurezza (FS) 1.8324 - N.2 -- X Y Lambda= 0.2906
```

15.47 183.00 16.51 182.54 17.02 182.32 17.37 182.18 17.67 182.08 17.95 182.00 18.22 181.93 18.51 181.87 18.82 181.81 19.18 181.76 19.48 181.73 19.76 181.71 20.01 181.71 20.29 181.73 20.54 181.77 20.81 181.82 21.10 181.89 21.43 181.98 21.75 182.07 22.05 182.16 22.35 182.24 22.64 182.32 22.94 182.40 23.24 182.48 23.57 182.56 23.92 182.65 24.20 182.74 24.46 182.85 24.69 182.98 24.97 183.14 25.24 183.35 25.58 183.64 25.92 183.96

Fattore di sicurezza (FS) 1.9058 - N.3 -- X Y Lambda= 0.2878

25.92 185.02

14.45 182.81 15.54 182.52 16.08 182.39 16.46 182.30 16.79 182.23 17.09 182.18

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 29 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
17.39 182.14
17.69 182.10
18.01 182.06
18.35 182.03
18.67 182.01
18.97 181.99
19.27 181.98
19.58 181.97
19.88 181.97
20.19 181.97
20.52 181.98
20.88 181.99
21.19 182.02
21.48 182.05
21.76 182.10
22.06 182.16
22.34 182.23
22.65 182.33
22.97 182.44
23.36 182.58
23.67 182.72
23.97 182.86
24.25 183.02
24.55 183.20
24.85 183.43
25.22 183.71
25.39 183.86
25.39 184.93
```

Fattore di sicurezza (FS) 1.9290 - N.4 -- X Y Lambda= 0.2520 29.81 185.56

31.44 184.93 32.21 184.65 32.74 184.48 33.18 184.37 33.60 184.28 34.00 184.23 34.42 184.20 34.88 184.18 35.42 184.18 35.89 184.20 36.33 184.22 36.75 184.26 37.19 184.31 37.60 184.38 38.03 184.46 38.49 184.56 38.99 184.68 39.45 184.79 39.90 184.88 40.33 184.96 40.77 185.04 41.20 185.10 41.63 185.16 42.08 185.21 42.55 185.25 43.01 185.30 43.46 185.35 43.90 185.40 44.35 185.46 44.80 185.51 45.26 185.58 45.75 185.65 46.28 185.73 46.71 185.82 47.12 185.93 47.49 186.07 47.91 186.25 Y Li

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 30 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
48.34 186.48
48.85 186.80
49.34 187.15
49.34 188.27
```

Fattore di sicurezza (FS) 1.9772 - N.5 -- X Y Lambda= 0.2844

17.69 183.44 18.73 182.99 19.23 182.79 19.57 182.66 19.86 182.58 20.14 182.51 20.40 182.46 20.67 182.42 20.96 182.39 21.30 182.37 21.60 182.35 21.89 182.35 22.17 182.35 22.45 182.36 22.72 182.37 23.01 182.39 23.32 182.42 23.66 182.46 23.95 182.51 24.22 182.56 24.48 182.63 24.75 182.71 25.01 182.81 25.28 182.93 25.57 183.06 25.91 183.24 26.21 183.40 26.50 183.56 26.78 183.73 27.06 183.91 27.37 184.11 27.37 185.22

Fattore di sicurezza (FS) 2.0096 - N.6 -- X Y Lambda= 0.3200

4.44 180.86 6.49 179.89 7.43 179.47 8.05 179.23 8.56 179.08 9.06 178.99 9.51 178.94 10.00 178.92 10.54 178.95 11.21 179.01 11.81 179.07 12.37 179.14 12.90 179.21 13.44 179.29 13.97 179.38 14.50 179.48 15.04 179.59 15.62 179.71 16.17 179.84 16.72 179.96 17.26 180.09 17.81 180.22 18.36 180.35 18.93 180.49 19.52 180.64 20.16 180.80

20.69 180.97

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 31 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
21.18 181.16
21.64 181.38
22.15 181.67
22.67 182.02
23.30 182.51
24.25 183.31
24.75 183.74
24.75 184.81
```

Fattore di sicurezza (FS) 2.0521 - N.7 -- X Y Lambda= 0.2870

21.14 184.10 22.36 183.51 22.95 183.24 23.34 183.08 23.67 182.97 23.99 182.88 24.28 182.81 24.61 182.76 24.96 182.73 25.39 182.70 25.74 182.69 26.06 182.70 26.35 182.72 26.67 182.77 26.96 182.84 27.27 182.92 27.60 183.03 27.98 183.17 28.34 183.30 28.69 183.43 29.03 183.56 29.37 183.68 29.71 183.80 30.05 183.93 30.40 184.06 30.76 184.18 31.09 184.31 31.41 184.45 31.72 184.59 32.05 184.75 32.05 185.87

Fattore di sicurezza (FS) 2.0643 - N.8 -- X Y Lambda= 0.2966

7.44 181.44 8.79 181.54 9.49 181.59 9.98 181.63 10.42 181.67 10.82 181.71 11.21 181.75 11.61 181.79 12.02 181.84 12.45 181.89 12.84 181.93 13.23 181.96 13.61 181.98 14.00 181.99 14.37 182.00 14.76 182.00 15.16 181.98 15.59 181.96 16.00 181.94 16.40 181.91 16.79 181.88 17.18 181.84 17.58 181.80 17.99 181.75

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 32 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
18.43 181.69
18.91 181.62
19.30 181.59
19.66 181.58
19.98 181.61
20.35 181.66
20.67 181.74
21.04 181.85
21.44 182.01
21.93 182.23
22.37 182.43
22.77 182.63
23.15 182.84
23.54 183.06
23.96 183.32
24.42 183.62
24.42 184.74
```

Fattore di sicurezza (FS) 2.0788 - N.9 -- X Y Lambda= 0.3362

13.18 182.56 15.17 181.89 16.09 181.60 16.68 181.46 17.16 181.38 17.65 181.35 18.09 181.37 18.57 181.42 19.10 181.52 19.78 181.67 20.35 181.79 20.88 181.88 21.38 181.95 21.89 182.00 22.38 182.03 22.89 182.04 23.42 182.04 24.03 182.02 24.57 182.01 25.10 182.01 25.60 182.02 26.12 182.05 26.62 182.09 27.13 182.14 27.65 182.20 28.21 182.28 28.75 182.35 29.29 182.43 29.83 182.50 30.35 182.57 30.88 182.64 31.41 182.72 31.94 182.79 32.47 182.86 33.00 182.93 33.53 183.00 34.05 183.07 34.58 183.13 35.11 183.20 35.66 183.27 36.22 183.33 36.81 183.40 37.32 183.48 37.82 183.58 38.29 183.69 38.79 183.84 39.27 184.00 39.77 184.20 40.29 184.42

Foglio 33 di Fogli 71

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
40.89 184.70
41.44 184.97
41.98 185.23
42.51 185.50
43.03 185.77
43.61 186.07
44.27 186.43
44.59 186.61
44.59 187.61
```

```
Fattore di sicurezza (FS) 2.0842 - N.10 -- X
                                                     Lambda= 0.3259
                           8.86 181.72
                           11.37 181.07
                           12.62 180.76
                           13.49 180.57
                           14.26 180.41
                           14.96 180.29
                           15.66 180.18
                           16.37 180.09
                           17.12 180.01
                           17.94 179.93
                           18.66 179.89
                           19.36 179.87
                           20.01 179.87
                           20.71 179.90
21.37 179.96
                           22.06 180.04
                           22.78 180.16
                           23.60 180.31
                           24.35 180.46
                           25.06 180.62
                           25.76 180.79
                           26.46 180.98
                           27.16 181.18
                           27.87 181.40
                           28.62 181.65
                           29.43 181.93
                           30.16 182.21
                           30.85 182.50
                           31.51 182.81
                           32.21 183.16
```

------ ANALISI DEFICIT DI RESISTENZA ------- # DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs * # Analisi Deficit in riferimento a FS(progetto) = 1.100

32.95 183.58 33.81 184.11 35.06 184.93 35.64 185.32 35.64 186.37

Sup I	N. FS	FTR(kN/m)	FTA	A(kN/m) Bila	ancio(kN/m)	ESITO
1	1.542	288.1	186.8	82.6	Surplus	
2	1.832	154.4	84.3	61.7	Surplus	
3	1.906	149.3	78.3	63.1	Surplus	
4	1.929	303.8	157.5	130.5	Surplus	
5	1.977	137.7	69.6	61.1	Surplus	
6	2.010	576.1	286.7	260.8	Surplus	
7	2.052	163.9	79.9	76.0	Surplus	
8	2.064	199.8	96.8	93.3	Surplus	
9	2.079	790.1	380.1	372.0	Surplus	
10	2.084	854.9	410.2	403.7	Surplus	

Esito analisi: SURPLUS di RESISTENZA!

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 34 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

Note: FTR --> Forza totale Resistente lungo la superficie di scivolamento FTA --> Forza totale Agente lungo la superficie di scivolamento

IMPORTANTE! : Il Deficit o il Surplus di resistenza viene espresso in kN per metro di LARGHEZZA rispetto al fronte della scarpata

TABELLA PARAMETRI CONCI DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

Χ	dx	alpha	W	ru l	J phi'	(c',Cu)
(m)	(m)	(°) (kN	l/m)	(-) (k	Pa))
5.287	0.245	-12.46	0.25	0.51	0.50	29.61	4.90
5.532	0.245	-12.46	0.76	0.51	1.50	29.61	4.90
5.778	0.245	-12.46	1.26	0.51	2.50	29.61	4.90
6.023	0.245	-12.46	1.77	0.51	3.50	29.61	4.90
6.269	0.245	-12.46	2.28	0.51	4.62	29.61	4.90
6.514	0.245	-12.46	2.78	0.51	5.61	29.61	4.90
6.760	0.116	-12.46	1.49	0.51	6.57	29.61	4.90
6.876	0.245	-11.49	3.52	0.51	6.99	29.61	4.90
7.121	0.245	-11.49	4.00	0.51	7.97	29.61	4.90
7.367 7.612	0.245 0.034	-11.49 -11.49	4.49 0.66	0.51 0.51	8.87 9.69	29.61 29.61	4.90 4.90
7.646	0.034	-11.49 -9.50	5.01	0.51	9.80	29.61	4.90
7.892	0.245	-9.50	5.46	0.51	10.59	29.61	4.90
8.137	0.036	-9.50	0.85	0.51	11.35	29.61	4.90
8.173	0.245	-7.16	5.94	0.51	11.46	29.61	4.90
8.419	0.205	-7.16	5.25	0.51	12.16	29.61	4.90
8.624	0.245	-4.24	6.62	0.51	12.75	29.61	4.90
8.869	0.184	-4.24	5.18	0.51	13.47	29.61	4.90
9.053	0.245	-1.99	7.17	0.51	13.93	29.61	4.90
9.299	0.156	-1.99	4.70	0.51	14.51	29.61	4.90
9.455	0.245	0.31	7.60	0.51	14.87	29.61	4.90
9.700	0.174	0.31	5.54	0.51	15.31	29.61	4.90
9.874	0.245	2.39	7.97	0.51	15.59	29.61	4.90
10.120	0.190	2.39	6.29	0.51	15.97	29.61	4.90
10.309	0.245	4.15	8.28	0.51	16.25	29.61	4.90
10.555	0.242	4.15	8.31	0.51	16.60	29.61	4.90
10.797 11.042	0.245 0.223	4.03 4.03	8.58 7.94	0.51 0.51	16.92 17.24	29.61 29.61	4.90 4.90
11.042	0.223	3.90	8.87	0.51	17.52	29.61	4.90
11.511	0.209	3.90	7.68	0.51	17.84	29.61	4.90
11.720	0.245	3.77	9.15	0.51	18.09	29.61	4.90
11.966	0.204	3.77	7.71	0.51	18.40	29.61	4.90
12.169	0.245	3.63	9.44	0.51	18.65	29.61	4.90
12.415	0.197	3.63	7.68	0.51	18.96	29.61	4.90
12.611	0.245	3.50	9.73	0.51	19.21	29.61	4.90
12.857	0.201	3.50	8.07	0.51	19.53	29.61	4.90
13.057	0.245	3.36	10.02	0.51	19.79	29.61	4.90
13.303	0.203	3.36	8.43	0.51	20.12	29.61	4.90
13.506	0.245	3.23	10.33	0.51	20.39	29.61	4.90
13.752 13.963	0.211 0.245	3.23 3.11	9.02 10.64	0.51 0.51	20.72 21.00	29.61 29.61	4.90 4.90
14.208	0.243	3.11	9.72	0.51	21.00	29.61	4.90
14.429	0.245	4.12	10.95	0.51	21.59	29.61	4.90
14.675	0.195	4.12	8.79	0.51	21.88	29.61	4.90
14.869	0.245	5.21	11.21	0.51	22.09	29.61	4.90
15.115	0.186	5.21	8.59	0.51	22.33	29.61	4.90
15.301	0.245	6.36	11.42	0.51	22.49	29.61	4.90
15.546	0.178	6.36	8.32	0.51	22.68	29.61	4.90
15.724	0.245	7.49	11.58	0.51	22.81	29.61	4.90
15.969	0.191	7.49	9.04	0.51	22.96	29.61	4.90
16.160	0.245	8.62	11.70	0.51	23.05	29.61	4.90
16.405	0.179	8.62	8.58	0.51	23.15	29.61	4.90
16.584	0.245	9.75	11.78	0.51	23.21	29.61	4.90
16.830 17.019	0.189 0.245	9.75 10.82	9.11 11.82	0.51 0.51	23.27 23.29	29.61 29.61	4.90 4.90
17.018	0.243	10.02	11.02	0.51	23.29	23.01	4.50

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 35 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

17.265	0.201	10.82	9.67	0.51	23.30	29.61	4.90
17.466	0.245	11.78	11.81	0.51	23.30	29.61	4.90
17.711	0.232	11.78	11.13	0.51	23.27	29.61	4.90
17.942	0.245	12.38	11.77	0.51	23.23	29.61	4.90
18.188	0.208	12.38	9.96	0.51	23.16	29.61	4.90
18.396	0.245	13.03	11.71	0.51	23.10	29.61	4.90
18.642	0.197	13.03	9.38	0.51	23.00	29.61	4.90
18.839	0.245	13.70	11.62	0.51	22.92	29.61	4.90
19.084	0.190	13.70	8.94	0.51	22.80	29.61	4.90
19.274	0.245	14.37	11.50	0.51	22.70	29.61	4.90
19.519	0.194	14.37	9.02	0.51	22.55	29.61	4.90
19.713	0.245	15.05	11.36	0.51	22.42	29.61	4.90
19.958	0.194	15.05	8.90	0.51	22.24	29.61	4.90
20.152	0.245	15.71	11.19	0.51	22.09	29.61	4.90
20.398	0.205	15.71	9.27	0.51	21.87	29.61	4.90
20.603	0.245	16.34	10.99	0.51	21.67	29.61	4.90
20.848	0.225	16.34	9.98	0.51	21.40	29.61	4.90
21.074	0.245	16.90	10.75	0.51	21.16	29.61	4.90
21.319	0.245	16.90	10.62	0.51	20.87	29.61	4.90
21.564	0.017	16.90	0.73	0.51	20.57	29.61	4.90
21.581	0.245	19.13	10.45	0.51	20.54	29.61	4.90
21.827	0.192	19.13	8.06	0.51	20.17	29.61	4.90
22.019	0.245	21.80	10.08	0.51	19.83	29.61	4.90
22.265	0.172	21.80	6.91	0.51	19.33	29.61	4.90
22.436	0.245	24.69	9.62	0.51	18.93	29.61	4.90
22.682	0.148	24.69	5.65	0.51	18.27	29.61	4.90
22.830	0.245	27.41	9.06	0.51	17.80	29.61	4.90
23.075	0.181	27.41	6.44	0.51	16.96	29.61	4.90
23.257	0.245	30.75	8.33	0.51	16.33	29.61	4.90
23.502	0.199	30.75	6.38	0.51	15.42	29.61	4.90
23.701	0.245	33.28	7.41	0.51	14.59	29.61	4.90
23.946	0.245	33.28	6.85	0.51	13.51	29.61	4.90
24.191	0.033	33.28	0.88	0.51	12.63	29.61	4.90
24.225	0.245	35.32	6.18	0.51	12.53	29.61	4.90
24.470	0.245	35.32	5.55	0.51	10.97	29.61	4.90

LEGENDA SIMBOLI

: Ascissa sinistra concio dx(m) : Larghezza concio
alpha(°) : Angolo pendenza base concio
W(kN/m) : Forza peso concio

: Coefficiente locale pressione interstiziale ru(-) U(kPa) : Pressione totale dei pori base concio phi'(°) : Angolo di attrito efficace base concio

c'/Cu (kPa) : Coesione efficace o Resistenza al taglio in condizioni non drenate

TABELLA DIAGRAMMA DELLE FORZE DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X	ht	yt yt'	E(x)	` ,	(/ _	qFEM FS_srmFEM		
(m)	(m)	(m) ()	(k	N/m) (kN/m)	(kN) ()	() ()		
5.287	0.000	181.027	-0.115	0.000000000E+000	0.000000000E+000	1.3631683577E-001	0.051	50.000
31.920								
5.532	0.026	180.998	-0.115	1.1219282232E-001	2.3099924704E-004	7.7795949582E-001	0.051	50.000
31.920								
5.778	0.052	180.970	-0.110	3.8186035652E-001	4.7668098462E-003	1.8610236869E+000	0.051	50.000
10.523								
6.023	0.080	180.944	-0.108	1.0256737585E+000	3.9932197030E-002	3.5556529276E+000	0.051	50.000
5.043								
6.269	0.107	180.917	-0.098	2.1271477421E+000	1.5206443180E-001	5.0866896396E+000	0.083	50.000
3.494								
6.514	0.140	180.896	-0.083	3.5224684242E+000	3.2665209942E-001	6.0163396629E+000	0.125	31.062
2.973								
6.760	0.175	180.876	-0.077	5.0802598526E+000	5.3505156715E-001	6.3598466174E+000	0.154	19.364
2.690								
6.876	0.192	180.868	-0.070	5.8206292701E+000	6.3622386518E-001	6.9412525604E+000	0.164	16.336
2.602								

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 36 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

7.121	0.225	180.851	-0.063	7.8222164453E+000	9.3007121881E-001	8.3766389708E+000	0.190	10.919
2.469 7.367	0.261	180.837	-0.051	9.9322910738E+000	1.2595437277E+000	8.5604277617E+000	0.212	8.005
2.399 7.612	0.300	180.826	-0.043	1.2024090726E+001	1.6052556376E+000	8.4787984203E+000	0.229	6.202
2.365 7.646	0.306	180.825	-0.031	1.2311512925E+001	1.6554414653E+000	8.5387664046E+000	0.231	5.994
2.363 7.892	0.339	180.817	-0.025	1.4524506782E+001	2.0561223271E+000	9.1070992864E+000	0.250	4.786
2.351 8.137	0.376	180.812	-0.019	1.6781720178E+001	2.4921670618E+000	9.2775664298E+000	0.268	3.950
2.347 8.173	0.381	180.812	-0.001	1.7120174447E+001	2.5615073423E+000	9.2503163582E+000	0.271	3.852
2.347 8.419	0.412	180.812	0.007	1.9325649978E+001	3.0407602906E+000	9.1958041754E+000	0.291	3.261
2.345 8.624	0.441	180.815	0.023	2.1245764109E+001	3.4888853464E+000	9.5015358458E+000	0.308	2.869
2.339 8.869	0.466	180.822	0.035	2.3616144423E+001	4.0742706480E+000	9.1680328103E+000	0.329	2.518
2.328 9.053	0.488	180.830	0.052	2.5235490001E+001	4.5006228458E+000	8.5653424743E+000	0.344	2.334
2.315 9.299	0.511	180.844	0.063	2.7260669936E+001	5.0635361812E+000	8.1616465696E+000	0.362	2.151
2.293 9.455	0.527	180.856	0.075	2.8524900652E+001	5.4282897448E+000	7.4290846661E+000	0.374	2.058
2.278 9.700	0.545	180.875	0.082	3.0087431268E+001	5.9088630022E+000	6.0482502353E+000	0.388	1.971
2.256 9.874	0.559	180.890	0.095	3.1102077821E+001	6.2357012780E+000	5.6694793759E+000	0.398	1.928
2.240	0.574	180.915	0.105	3.2440736404E+001	6.6869131292E+000	5.2672534595E+000	0.412	1.879
2.219 10.309	0.587	180.936	0.117	3.3412852362E+001	7.0295259694E+000	4.9980570002E+000	0.422	1.848
2.204	0.599	180.966	0.125	3.4600002314E+001	7.4691873527E+000	4.6978659523E+000	0.435	1.813
2.187 10.797	0.612	180.997	0.131	3.5703307782E+001	7.8931165699E+000	4.4874270883E+000	0.448	1.783
2.173 11.042	0.628	181.029	0.132	3.6786416372E+001	8.3207783502E+000	4.2679852169E+000	0.460	1.753
2.161 11.266	0.641	181.058	0.131	3.7710200003E+001	8.6903161795E+000	4.1730449868E+000	0.469	1.730
2.152 11.511	0.657	181.091	0.130	3.8744405796E+001	9.1057489133E+000	4.1194128640E+000	0.479	1.707
2.143 11.720	0.669	181.117	0.127	3.9589625474E+001	9.4455545253E+000	4.0821106010E+000	0.487	1.692
2.136 11.966	0.684	181.148	0.126	4.0603940122E+001	9.8546323767E+000	4.1527480641E+000	0.496	1.677
2.126 12.169 2.116	0.696	181.174	0.126	4.1452561668E+001	1.0199513346E+001	4.2175788382E+000	0.504	1.667
12.415 2.101	0.712	181.205	0.126	4.2501972101E+001	1.0630533138E+001	4.3041485684E+000	0.513	1.658
12.611 2.087	0.724	181.230	0.126	4.3353078660E+001	1.0984557049E+001	4.3742152393E+000	0.521	1.652
12.857 2.065	0.740	181.261	0.126	4.4441140148E+001	1.1442958766E+001	4.4576246413E+000	0.530	1.647
13.057 2.044	0.753	181.286	0.126	4.5339368563E+001	1.1826186854E+001	4.5317167606E+000	0.538	1.644
13.303	0.770	181.318	0.126	4.6467859945E+001	1.2312379043E+001	4.6074119791E+000	0.548	1.642
2.014 13.506 1.987	0.784	181.343	0.128	4.7406567959E+001	1.2720783586E+001	4.6935954020E+000	0.556	1.641
13.752 1.950	0.802	181.375	0.130	4.8581732597E+001	1.3236944241E+001	4.7222103401E+000	0.566	1.640
13.963 1.916	0.817	181.402	0.132	4.9567463616E+001	1.3674192425E+001	4.6764492803E+000	0.573	1.639
14.208 1.873	0.837	181.435	0.134	5.0718352085E+001	1.4190710425E+001	4.5096634777E+000	0.582	1.635
1.073								

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 37 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

14.429	0.854	181.465	0.136	5.1678408936E+001	1.4628737378E+001	4.2273121772E+000	0.590	1.629
1.835 14.675	0.870	181.499	0.139	5.2682979530E+001	1.5099194556E+001	3.8152344565E+000	0.597	1.619
1.791 14.869	0.884	181.526	0.142	5.3382207638E+001	1.5436793276E+001	3.3859086781E+000	0.603	1.609
1.758 15.115	0.896	181.561	0.145	5.4148459146E+001	1.5821566751E+001	2.8254095052E+000	0.609	1.595
1.718 15.301	0.907	181.589	0.150	5.4632920402E+001	1.6077900230E+001	2.3663734726E+000	0.613	1.582
1.689 15.546	0.917	181.626	0.154	5.5138118792E+001	1.6365529421E+001	1.7719236034E+000	0.619	1.565
1.652 15.724	0.925	181.654	0.160	5.5415950348E+001	1.6540203740E+001	1.3350372125E+000	0.622	1.551
1.626 15.969	0.932	181.693	0.164	5.5665734247E+001	1.6728325974E+001	7.0952627781E-001	0.626	1.532
1.592 16.160	0.939	181.725	0.169	5.5755324551E+001	1.6831896897E+001	2.3566065474E-001	0.628	1.518
1.567 16.405	0.944	181.767	0.172	5.5738994301E+001	1.6911121496E+001	-3.7334488471E-001	0.631	1.499
1.537 16.584	0.948	181.798	0.177	5.5631964934E+001	1.6929296710E+001	-8.0021349124E-001	0.632	1.485
1.515 16.830	0.950	181.843	0.181	5.5367373002E+001	1.6903534779E+001	-1.3542196651E+000	0.633	1.468
1.487 17.019	0.952	181.877	0.187	5.5070467839E+001	1.6844053661E+001	-1.7935734081E+000	0.634	1.456
1.467 17.265	0.952	181.924	0.192	5.4558347905E+001	1.6712302552E+001	-2.3234929530E+000	0.633	1.441
1.440 17.466	0.952	181.963	0.198	5.4052730627E+001	1.6565676052E+001	-2.7511960626E+000	0.633	1.431
1.418 17.711	0.951	182.013	0.203	5.3307381680E+001	1.6332411663E+001	-3.1911437118E+000	0.631	1.419
1.391 17.942	0.950	182.059	0.206	5.2534960433E+001	1.6077681795E+001	-3.5559940912E+000	0.628	1.410
1.367 18.188	0.947	182.111	0.209	5.1605140207E+001	1.5759973276E+001	-3.8777209840E+000	0.624	1.402
1.341 18.396	0.945	182.155	0.213	5.0781832566E+001	1.5471950851E+001	-4.0993015591E+000	0.620	1.395
1.320 18.642	0.941	182.208	0.213	4.9733544464E+001	1.5099848062E+001	-4.3444726012E+000	0.615	1.387
1.296 18.839	0.937	182.249	0.211	4.8864969651E+001	1.4788613461E+001	-4.5224208020E+000	0.611	1.381
1.278 19.084	0.929	182.301	0.214	4.7718671697E+001	1.4375833500E+001	-4.8160842885E+000	0.605	1.373
1.256 19.274	0.924	182.342	0.218	4.6783453329E+001	1.4037272298E+001	-5.0280782097E+000	0.600	1.366
1.239 19.519	0.915	182.396	0.220	4.5517835265E+001	1.3576648418E+001	-5.2805474189E+000	0.593	1.357
1.216 19.713	0.908	182.439	0.223	4.4476718069E+001	1.3194897178E+001	-5.4662399304E+000	0.587	1.350
1.197 19.958	0.897	182.494	0.225	4.3107748916E+001	1.2689783052E+001	-5.6813926195E+000	0.579	1.340
1.172 20.152	0.889	182.538	0.238	4.1991415781E+001	1.2274758043E+001	-6.0487918692E+000	0.572	1.333
1.151 20.398	0.881	182.598	0.250	4.0418034833E+001	1.1686013140E+001	-6.5890124299E+000	0.561	1.323
1.122 20.603	0.875	182.651	0.256	3.9035387717E+001	1.1167725935E+001	-6.8207109672E+000	0.551	1.313
1.098 20.848	0.867	182.714	0.251	3.7337131800E+001	1.0535000059E+001	-6.7807976277E+000	0.537	1.298
1.071 21.074	0.855	182.769	0.245	3.5837707328E+001	9.9813541793E+000	-6.7767173981E+000	0.525	1.281
1.049 21.319	0.841	182.829	0.240	3.4141543310E+001	9.3604797962E+000	-6.8395404428E+000	0.510	1.258
1.030 21.564	0.824	182.887	0.234	3.2480528238E+001	8.7537440794E+000	-7.4232728396E+000	0.494	1.231
1.015 21.581	0.823	182.891	0.243	3.2353481986E+001	8.7070277986E+000	-7.4657766915E+000	0.492	1.228
1.014	-		-					-

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 38 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

21.827	0.798	182.950	0.246	3.0531532028E+001	8.0372995263E+000	-7.7721840933E+000	0.475	1.193
1.003						<u>-</u>		
22.019	0.779	182.998	0.256	2.8983973697E+001	7.4561245405E+000	-8.3427568761E+000	0.459	1.161
0.995								
22.265	0.745	183.062	0.265	2.6843324732E+001	6.6376664109E+000	-9.1132943274E+000	0.433	1.120
0.986								
22.436	0.723	183.109	0.280	2.5230678229E+001	6.0122642940E+000	-9.7328733659E+000	0.411	1.089
0.978								
22.682	0.680	183.179	0.294	2.2720738899E+001	5.0379923263E+000	-1.0779622447E+001	0.373	1.042
0.963								
22.830	0.657	183.225	0.317	2.1074633773E+001	4.4091747145E+000	-1.1262888539E+001	0.345	1.011
0.951								
23.075	0.609	183.304	0.331	1.8249571108E+001	3.4012586002E+000	-1.1642580523E+001	0.295	0.961
0.922								
23.257	0.577	183.366	0.343	1.6123169276E+001	2.7037162032E+000	-1.1682166252E+001	0.255	0.924
0.898								
23.502	0.516	183.450	0.353	1.3275227338E+001	1.8140710062E+000	-1.1926145733E+001	0.196	0.873
0.861								
23.701	0.470	183.523	0.377	1.0855285319E+001	1.0923668659E+000	-1.1980746570E+001	0.134	0.826
0.821								
23.946	0.404	183.618	0.398	7.9773809426E+000	4.4283394819E-001	-1.1093920599E+001	0.065	0.769
0.761								
24.191	0.343	183.718	0.400	5.4098495376E+000	1.0640570959E-001	-8.1938198828E+000	0.051	0.710
0.693								
24.225	0.332	183.729	0.543	5.1480188672E+000	8.5990353945E-002	-8.3166139337E+000	0.051	0.701
0.687								
24.470	0.299	183.869	0.543	2.3275547471E+000	1.3738620959E-002	-1.0487996709E+001	0.051	0.634
0.625								

LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio

: Altezza linea di thrust da nodo sinistro base concio ht(m)

: coordinata Y linea di trust yt(m)

: gradiente pendenza locale linea di trust E(x)(kN/m): Forza Normale interconcio
T(x)(kN/m): Forza Tangenziale interconcio
E'(kN): derivata Forza normale interconcio

Rho(x) (-) : fattore mobilizzazione resistenza al taglio verticale interconcio ZhU et al.(2003)

 $\label{eq:final_state} FS_qFEM(x)(-): fattore \ di \ sicurezza \ locale \ stimato \ (locale \ in \ X) \ by \ qFEM \\ FS_srmFEM(x)(-): fattore \ di \ sicurezza \ locale \ stimato \ (locale \ in \ X) \ by \ SRM \ Procedure$

TABELLA SFORZI DI TAGLIO DISTRIBUITI LUNGO SUPERFICIE INDIVIDUATA CON MINOR FS

Χ	dx	dl al	pha Tau	Stress Ta	auF Ta	uStrength	TauS
(m)	(m)	(m)	(°) (kP	a) (kN/r	n) (kF	Pa) (kN/n	n)
5.287	0.245	0.251	-12.457	-0.114	-0.029	5.188	1.304
5.532	0.245	0.251	-12.457	-0.342	-0.086	5.778	1.452
5.778	0.245	0.251	-12.457	-0.569	-0.143	6.461	1.624
6.023	0.245	0.251	-12.457	-0.797	-0.200	7.307	1.837
6.269	0.245	0.251	-12.457	-1.025	-0.258	8.035	2.020
6.514	0.245	0.251	-12.457	-1.253	-0.315	8.733	2.195
6.760	0.116	0.119	-12.457	-1.420	-0.169	9.044	1.077
6.876	0.245	0.250	-11.495	-1.353	-0.339	9.926	2.486
7.121	0.245	0.250	-11.495	-1.540	-0.386	10.595	2.653
7.367	0.245	0.250	-11.495	-1.726	-0.432	11.239	2.815
7.612	0.034	0.035	-11.495	-1.832	-0.063	11.460	0.397
7.646	0.245	0.249	-9.504	-1.241	-0.309	12.139	3.021
7.892	0.245	0.249	-9.504	-1.350	-0.336	12.813	3.188
8.137	0.036	0.037	-9.504	-1.412	-0.052	13.061	0.482
8.173	0.245	0.247	-7.163	-0.492	-0.122	13.565	3.355
8.419	0.205	0.207	-7.163	-0.522	-0.108	14.167	2.926
8.624	0.245	0.246	-4.241	0.827	0.204	14.634	3.601
8.869	0.184	0.185	-4.241	0.863	0.159	14.845	2.739
9.053	0.245	0.246	-1.988	2.050	0.503	15.044	3.694
9.299	0.156	0.156	-1.988	2.115	0.330	15.272	2.384
9.455	0.245	0.245	0.312	3.420	0.839	15.130	3.713

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 39 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

9.700	0.174	0.174	0.312	3.508	0.611	15.291	2.665
9.874	0.245	0.246	2.392	4.758	1.169	15.308	3.760
10.120	0.190	0.190	2.392	4.856	0.922	15.454	2.935
10.309	0.245	0.246	4.153	5.961	1.467	15.409	3.792
10.555	0.242	0.243	4.153	6.067	1.472	15.530	3.767
10.797	0.245	0.246	4.030	6.101	1.501	15.697	3.862
11.042	0.223	0.224	4.030	6.203	1.389	15.801	3.538
11.266	0.245	0.246	3.899	6.226	1.532	16.010	3.938
11.511	0.209	0.210	3.899	6.326	1.327	16.126	3.383
11.720	0.245	0.246	3.767	6.343	1.560	16.347	4.021
11.966	0.204	0.204	3.767	6.442	1.314	16.514	3.369
12.169	0.245	0.246	3.630	6.452	1.587	16.748	4.119
12.415	0.197	0.197	3.630	6.551	1.291	16.920	3.335
12.611	0.245	0.246	3.496	6.559	1.613	17.160	4.219
12.857	0.201	0.201	3.496	6.658	1.338	17.337	3.484
13.057	0.245	0.246	3.364	6.666	1.639	17.582	4.323
13.303	0.243	0.204	3.364		1.379	17.756	
				6.767			3.618
13.506	0.245	0.246	3.234	6.774	1.665	18.018	4.429
13.752	0.211	0.212	3.234	6.876	1.455	18.171	3.845
13.963	0.245	0.246	3.107	6.885	1.692	18.411	4.525
14.208	0.221	0.221	3.107	6.990	1.546	18.540	4.100
14.429	0.245	0.246	4.116	7.857	1.933	18.544	4.563
14.675	0.195	0.195	4.116	7.953	1.551	18.602	3.628
14.869	0.245	0.246	5.209	8.885	2.190	18.506	4.561
15.115	0.186	0.187	5.209	8.973	1.679	18.539	3.469
15.301			6.355				
	0.245	0.247		9.942	2.455	18.385	4.540
15.546	0.178	0.179	6.355	10.018	1.790	18.398	3.287
15.724	0.245	0.248	7.486	10.964	2.714	18.206	4.506
15.969	0.191	0.192	7.486	11.028	2.119	18.194	3.496
16.160	0.245	0.248	8.622	11.961	2.969	17.971	4.461
16.405	0.179	0.181	8.622	12.007	2.176	17.941	3.251
16.584	0.245	0.249	9.753	12.908	3.214	17.694	4.406
16.830	0.189	0.192	9.753	12.935	2.486	17.654	3.393
17.019	0.245	0.250	10.818	13.753	3.436	17.389	4.345
17.265	0.201	0.204	10.818	13.757	2.813	17.339	3.546
17.466	0.245	0.251	11.779	14.461	3.625	17.075	4.281
17.711	0.232	0.236	11.779	14.440	3.415	17.018	4.024
17.711							
	0.245	0.251	12.384	14.852	3.732	16.822	4.227
18.188	0.208	0.213	12.384	14.816	3.159	16.777	3.577
18.396	0.245	0.252	13.032	15.233	3.837	16.575	4.175
18.642	0.197	0.202	13.032	15.180	3.074	16.527	3.346
18.839	0.245	0.253	13.700	15.583	3.937	16.311	4.120
19.084	0.190	0.195	13.700	15.511	3.030	16.246	3.173
19.274	0.245	0.253	14.369	15.886	4.025	16.019	4.058
19.519	0.194	0.200	14.369	15.792	3.156	15.945	3.186
19.713	0.245	0.254	15.051	16.140	4.102	15.702	3.991
19.958	0.194	0.201	15.051	16.024	3.214	15.621	3.133
20.152	0.245	0.255	15.711	16.321	4.161	15.348	3.913
20.398	0.205	0.213	15.711	16.179	3.449	15.255	3.252
20.603	0.245	0.256	16.340	16.415	4.198	15.019	3.841
		0.235	16.340				
20.848	0.225			16.242	3.814	14.941	3.509
21.074	0.245	0.257	16.901	16.393	4.205	14.703	3.771
21.319	0.245	0.257	16.901	16.189	4.153	14.601	3.745
21.564	0.017	0.018	16.901	16.081	0.286	14.601	0.260
21.581	0.245	0.260	19.128	17.167	4.459	13.952	3.624
21.827	0.192	0.204	19.128	16.894	3.440	13.826	2.815
22.019	0.245	0.264	21.796	17.883	4.727	13.055	3.451
22.265	0.172	0.185	21.796	17.505	3.239	12.945	2.395
22.436	0.245	0.270	24.695	18.276	4.937	12.105	3.270
22.682	0.148	0.163	24.695	17.783	2.899	12.040	1.963
22.830	0.245	0.276	27.414	18.152	5.019	11.175	3.090
23.075	0.181	0.204	27.414	17.464	3.563	11.010	2.246
23.257	0.161	0.286	30.750	17.464	5.012	9.911	2.830
23.502	0.199	0.231	30.750	16.619	3.840	9.723	2.247
23.701	0.245	0.294	33.285	16.068	4.717	8.597	2.524
23.946	0.245	0.294	33.285	14.846	4.359	7.963	2.338
24.191	0.033	0.040	33.285	14.153	0.562	7.748	0.308
24.225	0.245	0.301	35.317	13.629	4.099	6.698	2.015
24.470	0.245	0.301	35.317	12.246	3.683	6.607	1.987

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 40 di Fogli 71


Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio dx(m) : Larghezza concio dl(m) : lunghezza base concio alpha(°) : Angolo pendenza base

alpha(°) : Angolo pendenza base concio
TauStress(kPa) : Sforzo di taglio su base concio
TauF (kN/m) : Forza di taglio su base concio
TauStrength(kPa) : Resistenza al taglio su base concio
TauS (kN/m) : Forza resistente al taglio su base concio

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 41 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

PROFILO B-B'

Report elaborazioni

SSAP 4.9.9 - Slope Stability Analysis Program (1991,2019) WWW.SSAP.EU

Build No. 11232

BY

Dr. Geol. LORENZO BORSELLI *,**
*UASLP, San Luis Potosi, Mexico

e-mail: lborselli@gmail.com

CV e WEB page personale: WWW.LORENZO-BORSELLI.EU

** Gia' Ricercatore CNR-IRPI fino a Luglio 2011

Ultima Revisione struttura tabelle del report: 31 dicembre 2019

File report: C:\Users\Giancarlo\Desktop\morgenstern&priceB-B'.txt

Data: 28/4/2021 Localita' : Rotello (CB) Descrizione: PV Rotello 43

Modello pendio: SEZIONE B-B'_ROTELLO 43.mod

----- PARAMETRI DEL MODELLO DEL PENDIO -----

__ PARAMETRI GEOMETRICI - Coordinate X Y (in m) __

SUP T. SUP 2 SUP 3 SUP 4

X Y X Y X Y X Y

123.97 226.00 123.97 224.50 - - - 157.56 226.00 157.56 224.50 - - -

171.01 225.00 171.01 224.50 - - -

---- SUP FALDA ------X Y (in m)

A 1 (IIIIII)

0.00 200.00

28.40 205.00

53.46 210.00 70.23 215.00

96.33 220.00

111.73 225.00

123.97 226.00

157.56 226.00

171.01 225.00

----- GESTIONE ACQUIFERI -----

Strati esclusi da acquifero:

STRATO 2

Esclusione sovraccarico pendio sommerso: NON ATTIVATA

Peso unitario fluido (kN/m^3): 9.81

Parametri funzione dissipazione superficiale pressione dei fluidi:

Coefficiente A 0
Coefficiente K 0.000800
Pressione minima fluidi Uo_Min (kPa) 0.01

Coefficiente di soprapressione oltre pressione hidrostatica 1.00 Limitazione dissipazionea a Pressione Idrostatica = ATTIVA

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 42 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

STABILITE CONDIZIONI PER LA VERIFICA CON SOVRAPPRESSIONE ACQUIFERI CON DISSIPAZIONE IN DIREZIONE DELLA SUPERFICIE

CALCOLO EFFETTO DI FILTRAZIONE NON ATTIVATO ----- PARAMETRI GEOMECCANICI -----sgci C, Cu Gamm_sat STR_IDX GSI mi Gamm 0.00 0.00 0.00 0.00 STRATO 1 29.61 4.90 0.00 18 73 19 22 1.977 STRATO 2 24.67 4.90 0.00 19.90 21.57 1.530 0.00 0.00 0.00 0.00 LEGENDA: fi`_ Angolo di attrito interno efficace(in gradi) Coesione efficace (in Kpa) C, ^{_} Resistenza al taglio Non drenata (in Kpa) Peso di volume terreno fuori falda (in KN/m^3) Gamm Gamm_sat __ Peso di volume terreno immerso (in KN/m^3) Indice di resistenza (usato in solo in 'SNIFF SEARCH) (adimensionale) STR IDX ---- SOLO Per AMMASSI ROCCIOSI FRATTURATI - Parametri Criterio di Rottura di Hoek (2002)-_ Resistenza Compressione Uniassiale Roccia Intatta (in MPa) Geological Strenght Index ammasso(adimensionale) _ Indice litologico ammasso(adimensionale) Fattore di disturbo ammasso(adimensionale) Fattore di riduzione NTC2018: gammaPHI=1.25 e gammaC=1.25 - DISATTIVATO (solo per ROCCE) Uso CRITERIO DI ROTTURA Hoek et al. (2002, 2006) - non-lineare - Generalizzato, secondo Lei et al. (2016) ------ INFORMAZIONI GENERAZIONE SUPERFICI RANDOM ------*** PARAMETRI PER LA GENERAZIONE DELLE SUPERFICI METODO DI RICERCA: RANDOM SEARCH - Siegel (1981) FILTRAGGIO SUPERFICI: ATTIVATO COORDINATE X1.X2.Y OSTACOLO: 0.00 0.00 LUNGHEZZA MEDIA SEGMENTI (m): 1.0 (+/-) 50% INTERVALLO ASCISSE RANDOM STARTING POINT (Xmin .. Xmax): 3.42 157.33 LIVELLO MINIMO CONSIDERATO (Ymin): 169.95 INTERVALLO ASCISSE AMMESSO PER LA TERMINAZIONE (Xmin .. Xmax): 20.52 167.59 *** TOTALE SUPERFICI GENERATE: 1000 ------ INFORMAZIONI PARAMETRI DI CALCOLO ------METODO DI CALCOLO: MORGENSTERN - PRICE (Morgenstern & Price, 1965) COEFFICIENTE SISMICO UTILIZZATO Kh: 0.1050 COEFFICIENTE SISMICO UTILIZZATO Kv (assunto Positivo): 0.0525 COEFFICIENTE c=Kv/Kh UTILIZZATO: 0.5000 FORZA ORIZZONTALE ADDIZIONALE IN TESTA (kN/m): 0.00 FORZA ORIZZONTALE ADDIZIONALE ALLA BASE (kN/m): 0.00 N.B. Le forze orizzontali addizionali in testa e alla base sono poste uguali a 0 durante le tutte le verifiche globali. I valori >0 impostati dall'utente sono utilizzati solo in caso di verifica singola ------ RISULTATO FINALE ELABORAZIONI ------* DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs * Fattore di sicurezza (FS) 1.1312 - Min. - X Lambda= 0.4106 50.73 209.46 52.54 209.12 53.42 208.97 54.03 208.89 54.55 208.84 55.04 208.82 55.50 208.81 55.99 208.83 56.51 208.86 57.11 208.92 57.63 208.98

58.13 209.06 58.60 209.15 59.10 209.26

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 43 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
59.57 209.37
60.06 209.52
60.57 209.68
61.14 209.87
61.66 210.06
62.17 210.25
62.66 210.45
63.16 210.66
63.65 210.87
64.15 211.10
64.65 211.34
65.19 211.60
65.70 211.85
66.21 212.10
66.72 212.34
67.22 212.58
67.73 212.81
68.23 213.04
68.74 213.27
69.26 213.50
69.77 213.72
70.03 213.84
70.03 214.94
```

Fattore di sicurezza (FS) 1.1454 - N.2 -- X Lambda= 0.4522

> 97.99 220.54 99.46 220.33 100.15 220.25 100.61 220.22 101.00 220.22 101.38 220.25 101.72 220.29 102.09 220.37 102.49 220.47 102.96 220.60 103.38 220.72 103.79 220.83 104.18 220.93 104.58 221.02 104.97 221.10 105.37 221.18 105.78 221.26 106.23 221.34 106.63 221.42 107.01 221.51 107.38 221.61 107.77 221.72 108.14 221.85 108.53 221.99 108.94 222.16 109.39 222.36 109.80 222.55 110.20 222.74 110.57 222.94 110.96 223.16 111.38 223.42 111.87 223.73 112.28 224.01

Fattore di sicurezza (FS) 1.1605 - N.3 --Lambda= 0.4418

112.28 225.04

96.58 220.08 97.55 219.53 97.97 219.30 98.24 219.19 98.44 219.12 98.65 219.09

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 44 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
98.83 219.09
99.03 219.12
99.27 219.17
99.59 219.26
99.87 219.34
100.13 219.42
100.38 219.50
100.62 219.57
100.87 219.66
101.11 219.74
101.36 219.83
101.63 219.92
101.87 220.01
102.11 220.08
102.34 220.15
102.58 220.22
102.82 220.27
103.06 220.33
103.32 220.38
103.61 220.43
103.85 220.48
104.09 220.54
104.31 220.61
104.54 220.69
104.76 220.78
105.00 220.89
105.25 221.02
105.54 221.17
105.79 221.32
106.04 221.47
106.27 221.62
106.51 221.79
106.74 221.96
106.97 222.15
107.22 222.36
107.41 222.52
107.41 223.60
```

Fattore di sicurezza (FS) 1.2000 - N.4 -- X Y Lambda= 0.4174

53.55 210.03 54.57 209.64 55.04 209.47 55.34 209.39 55.59 209.34 55.84 209.32 56.05 209.31 56.29 209.34 56.55 209.38 56.88 209.44 57.18 209.51 57.46 209.57 57.74 209.63 58.00 209.69 58.27 209.75 58.54 209.81 58.81 209.87 59.09 209.93 59.36 209.99 59.62 210.05 59.89 210.11 60.16 210.17 60.43 210.23 60.70 210.28 60.97 210.34 61.26 210.39 61.52 210.45 61.79 210.51 62.05 210.57

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 45 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
62.32 210.64
62.58 210.71
62.85 210.78
63.13 210.87
63.43 210.96
63.70 211.05
63.96 211.15
64.21 211.25
64.47 211.37
64.72 211.49
64.99 211.62
65.27 211.78
65.58 211.96
65.85 212.13
66.12 212.30
66.37 212.48
66.63 212.68
66.91 212.91
66.91 214.01
```

Fattore di sicurezza (FS) 1.2303 - N.5 -- X Y Lambda= 0.3720

46.01 208.51 48.32 208.67 49.50 208.74 50.33 208.78 51.07 208.81 51.74 208.83 52.41 208.84 53.10 208.85 53.81 208.85 54.58 208.84 55.25 208.86 55.88 208.90 56.47 208.97 57.12 209.08 57.72 209.22 58.35 209.39 59.01 209.60 59.77 209.87 60.49 210.12 61.18 210.36 61.86 210.58 62.53 210.80 63.20 211.02 63.88 211.23 64.59 211.45 65.32 211.67 65.99 211.89 66.63 212.13 67.26 212.38 67.91 212.67 68.61 213.02 69.42 213.45 70.23 213.91

Fattore di sicurezza (FS) 1.2445 - N.6 -- X Y Lambda= 0.3933

70.23 215.00

53.46 210.00 54.62 209.57 55.16 209.38 55.51 209.28 55.81 209.22 56.10 209.18 56.37 209.16 56.65 209.16 56.96 209.18 57.34 209.23

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 46 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
57.68 209.27
57.99 209.31
58.30 209.37
58.60 209.42
58.90 209.49
59.21 209.56
59.52 209.64
59.86 209.73
60.18 209.83
60.49 209.92
60.79 210.02
61.10 210.12
61.41 210.23
61.72 210.34
62.06 210.47
62.44 210.62
62.74 210.76
63.02 210.92
63.29 211.08
63.58 211.30
63.88 211.56
64.24 211.91
64.59 212.27
64.59 213.32
```

Fattore di sicurezza (FS) 1.2484 - N.7 -- X

```
56.00 210.76
57.15 210.30
57.65 210.12
57.97 210.03
58.21 209.99
58.47 209.98
58.69 210.01
58.94 210.06
59.22 210.15
59.60 210.29
59.93 210.41
60.24 210.52
60.54 210.62
60.83 210.72
61.12 210.82
61.41 210.91
61.71 211.01
62.01 211.10
62.30 211.19
62.59 211.27
62.88 211.35
63.17 211.42
63.45 211.49
63.74 211.56
64.04 211.62
64.34 211.69
64.64 211.75
64.93 211.82
65.22 211.88
65.51 211.96
65.79 212.03
66.08 212.11
66.37 212.20
66.68 212.29
66.97 212.38
67.27 212.47
67.56 212.57
67.85 212.66
68.14 212.76
68.44 212.86
68.75 212.97
```

69.09 213.08

Y Lambda= 0.4142

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 47 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
69.37 213.20
69.64 213.32
69.90 213.46
70.18 213.63
70.47 213.83
70.68 213.98
70.68 215.09
```

Fattore di sicurezza (FS) 1.2578 - N.8 -- X Y Lambda= 0.4043

59.35 211.76 60.48 211.28 61.00 211.07 61.35 210.95 61.64 210.87 61.92 210.82 62.18 210.79 62.46 210.78 62.77 210.79 63.15 210.81 63.48 210.84 63.78 210.88 64.06 210.93 64.35 210.99 64.63 211.06 64.92 211.15 65.23 211.25 65.57 211.37 65.89 211.49 66.19 211.61 66.48 211.73 66.78 211.86 67.07 211.99 67.38 212.14 67.69 212.30 68.04 212.48 68.34 212.65 68.63 212.83 68.91 213.01 69.20 213.22 69.51 213.47 69.88 213.78 69.88 214.89

Fattore di sicurezza (FS) 1.2899 - N.9 -- X Y Lambda= 0.4044

49.62 209.23 51.79 208.82 52.78 208.65 53.44 208.58 53.97 208.57 54.51 208.61 54.99 208.68 55.51 208.79 56.08 208.96 56.77 209.19 57.40 209.40 58.00 209.61 58.58 209.82 59.15 210.04 59.72 210.26 60.30 210.49 60.89 210.73 61.50 210.98 62.08 211.21 62.64 211.43 63.20 211.63 63.77 211.82 64.33 212.01

Foglio 48 di Fogli 71

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
64.90 212.18
65.50 212.35
66.14 212.52
66.72 212.70
67.28 212.88
67.82 213.08
68.39 213.30
68.64 213.41
68.64 214.53
```

Fattore di sicurezza (FS) 1.2968 - N.10 -- X Y Lambda= 0.3154

33.29 205.98 36.20 205.51 37.58 205.33 38.52 205.24 39.30 205.21 40.06 205.24 40.76 205.30 41.50 205.40 42.28 205.55 43.17 205.75 44.03 205.94 44.86 206.12 45.68 206.31 46.47 206.49 47.28 206.67 48.08 206.84 48.88 207.02 49.67 207.20 50.47 207.38 51.27 207.56 52.07 207.73 52.87 207.90 53.68 208.08 54.51 208.26 55.37 208.44 56.28 208.63 57.05 208.83 57.79 209.06 58.48 209.33 59.24 209.67 60.02 210.08 60.96 210.64 62.35 211.54 62.35 212.65

------ ANALISI DEFICIT DI RESISTENZA ------- # DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs * # Analisi Deficit in riferimento a FS(progetto) = 1.100

Sup	N. FS	FTR(kN/m)	FTA	(kN/m) Bil	ancio(kN/m)	ESITO
1	1.131	269.7	238.4	7.4	Surplus	
2	1.145	180.3	157.4	7.2	Surplus	
3	1.160	146.6	126.3	7.6	Surplus	
4	1.200	178.1	148.4	14.8	Surplus	
5	1.230	297.2	241.6	31.5	Surplus	
6	1.244	157.9	126.9	18.3	Surplus	
7	1.248	183.1	146.7	21.8	Surplus	
8	1.258	151.6	120.5	19.0	Surplus	
9	1.290	229.2	177.6	33.7	Surplus	
10	1.297	431.6	332.8	65.5	Surplus	

Esito analisi: SURPLUS di RESISTENZA!

Valore minimo di SURPLUS di RESISTENZA (kN/m):

7.2

Note: FTR --> Forza totale Resistente lungo la superficie

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 49 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

di scivolamento FTA --> Forza totale Agente lungo la superficie di scivolamento

IMPORTANTE!: Il Deficit o il Surplus di resistenza viene espresso in kN per metro di LARGHEZZA rispetto al fronte della scarpata

TABELLA PARAMETRI CONCI DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X	dx	alpha	W	ru	U phi'	(c',Cu)	
(m)	(m)	(°) (kN			kPa) (°)	(kPa)	
50.732	0.265	-10.56	0.27	0.51	0.50	29.61	4.90
50.997	0.265		0.82	0.51	1.51	29.61	4.90
51.263	0.265		1.37	0.51	2.51	29.61	4.90
51.528	0.265	-10.56	1.92	0.51	3.52	29.61	4.90
51.793	0.265	-10.56	2.47	0.51	4.57	29.61	4.90
52.059	0.265	-10.56	3.02	0.51	5.53	29.61	4.90
52.324	0.220	-10.56	2.93	0.51	6.67	29.61	4.90
52.544	0.265		4.02	0.51	7.56	29.61	4.90
52.810	0.265	-9.01	4.54	0.51	8.57	29.61	4.90
53.075	0.265		5.07	0.51	9.54	29.61	4.90
53.340	0.084		1.72	0.51	10.39	29.61	4.90
53.425	0.035	-7.68	0.73		10.63	29.61	4.90
53.460	0.265		5.87		10.73	29.61	4.90
53.725	0.265		6.49	0.51	11.59	29.61	4.90
53.991	0.038		0.98	0.51	12.46	29.61	4.90
54.029 54.294	0.265 0.251		7.16 7.30	0.51 0.51	12.59 13.56	29.61 29.61	4.90 4.90
54.546	0.265		8.22	0.51	14.57	29.61	4.90
54.811	0.265		7.40		15.65	29.61	4.90
55.037	0.220		9.10	0.51	16.41	29.61	4.90
55.303	0.200		7.15	0.51	17.30	29.61	4.90
55.503	0.265	4 02	9.83	0.51	17.82	29.61	4.90
55.768	0.226	1.83	8.67	0.51	18.49	29.61	4.90
55.994	0.265	3.81 3.81 5.44	10.51	0.51	19.10	29.61	4.90
56.259	0.254	3.81	10.38	0.51	19.75	29.61 29.61	4.90
56.514	0.265	5.44	11.14	0.51	20.31	29.61	4.90
56.779	0.265	5.44	11.43	0.51			4.90
57.044	0.064	5.44 6.90	2.80	0.51	21.30 21.40	29.61	
57.108	0.265	6.90	11.77	0.51	21.40	29.61	4.90
57.374	0.260		11.75	0.51	21.82	29.61	4.90
57.633	0.265	8.63	12.24	0.51	22.22	29.61	4.90
57.899	0.232	8.63	10.87	0.51	22.60	29.61	4.90
58.131	0.265		12.61			29.61	4.90
58.396	0.208		10.02	0.51		29.61	4.90
58.604	0.265		12.87			29.61	4.90
58.870	0.228		11.14		23.62	29.61	4.90
59.098	0.265		13.06			29.61	4.90
59.363	0.206	14.21	10.18	0.51	23.87		4.90
59.569	0.265 0.225	16.01 16.01	13.15 11.17	0.51	23.92	29.61 29.61	4.90
59.835	0.225	16.01	13.15	0.51 0.51		29.61	4.90 4.90
60.060 60.325	0.265		12.14		23.90	29.61	4.90
60.571	0.245		13.08	0.51	23.83	29.61	4.90
60.836	0.265		13.00			29.61	4.90
61.101	0.203		1.74	0.51	23.62		4.90
61.137	0.265		12.93	0.51	23.60	29.61	4.90
61.402	0.260	19.84	12.57			29.61	4.90
61.662	0.265	20.76	12.74			29.61	4.90
61.927	0.241	20.76	11.47			29.61	4.90
62.168	0.265	21.73	12.50			29.61	4.90
62.434	0.228	21.73	10.61	0.51		29.61	4.90
62.661	0.265	22.69	12.22			29.61	4.90
62.927	0.234		10.66			29.61	4.90
63.161	0.265	23.61	11.89			29.61	4.90
63.427	0.223	23.61	9.86	0.51	21.32	29.61	4.90
63.650	0.265	24.53	11.51	0.51	21.00	29.61	4.90

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 50 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

63.916	0.232	24.53	9.87	0.51	20.59	29.61	4.90
64.147	0.265	25.40	11.08	0.51	20.17	29.61	4.90
64.413	0.241	25.40	9.84	0.51	19.69	29.61	4.90
64.654	0.265	26.19	10.58	0.51	19.27	29.61	4.90
64.919	0.265	26.19	10.31	0.51	18.82	29.61	4.90
65.185	0.001	26.19	0.03	0.51	18.40	29.61	4.90
65.185	0.265	25.93	10.03	0.51	18.39	29.61	4.90
65.451	0.253	25.93	9.32	0.51	17.95	29.61	4.90
65.704	0.265	25.66	9.51	0.51	17.52	29.61	4.90
65.969	0.244	25.66	8.53	0.51	17.04	29.61	4.90
66.214	0.265	25.38	9.02	0.51	16.57	29.61	4.90
66.479	0.240	25.38	7.95	0.51	16.04	29.61	4.90
66.720	0.265	25.10	8.55	0.51	15.64	29.61	4.90
66.985	0.239	25.10	7.49	0.51	15.19	29.61	4.90
67.224	0.265	24.82	8.09	0.51	14.81	29.61	4.90
67.489	0.238	24.82	7.06	0.51	14.38	29.61	4.90
67.728	0.265	24.54	7.65	0.51	14.01	29.61	4.90
67.993	0.240	24.54	6.72	0.51	13.59	29.61	4.90
68.233	0.265	24.27	7.22	0.51	13.23	29.61	4.90
68.498	0.244	24.27	6.45	0.51	12.83	29.61	4.90
68.742	0.265	23.99	6.81	0.51	12.46	29.61	4.90
69.008	0.251	23.99	6.24	0.51	12.07	29.61	4.90
69.259	0.265	23.76	6.41	0.51	11.71	29.61	4.90
69.524	0.245	23.76	5.73	0.51	11.35	29.61	4.90
69.769	0.265	23.52	6.02	0.51	11.00	29.61	4.90

LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio dx(m) : Larghezza concio alpha(°) : Angolo pendenza base concio

W(kN/m) : Forza peso concio

: Coefficiente locale pressione interstiziale : Pressione totale dei pori base concio ru(-) U(kPa) : Angolo di attrito efficace base concio

c'/Cu (kPa) : Coesione efficace o Resistenza al taglio in condizioni non drenate

TABELLA DIAGRAMMA DELLE FORZE DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X		yt yt'	E(x)	` ,	E' rho(x) FS_c	·		
(m)	(m)	(m) ()	`	N/m) (kN/m)	(kN) ()	()		
50.732	0.000	209.456	-0.088	0.000000000E+000	0.0000000000E+000	1.2240985761E-001	0.038	20.891
14.307								
50.997	0.026	209.432	-0.088	9.2150647150E-002	2.3785317777E-004	5.7203621250E-001	0.038	20.891
14.307								
51.263	0.052	209.409	-0.084	3.0362909055E-001	4.4135349255E-003	1.2935240103E+000	0.038	13.478
10.942								
51.528	0.080	209.387	-0.078	7.7873570988E-001	3.4785901826E-002	2.3524545164E+000	0.038	10.349
7.076								
51.793	0.109	209.367	-0.068	1.5522801545E+000	1.5527653332E-001	3.6950341750E+000	0.072	7.870
3.921								
52.059	0.143	209.351	-0.063	2.7400099117E+000	3.8080829286E-001	5.8416311493E+000	0.122	6.287
2.803								
52.324	0.175	209.334	-0.060	4.6529390192E+000	7.4839927739E-001	7.7586455642E+000	0.167	5.014
2.225								
52.544	0.204	209.322	-0.046	6.4614281183E+000	1.1047388304E+000	8.9153400525E+000	0.194	4.295
1.954								
52.810	0.239	209.312	-0.033	9.0514322005E+000	1.6195096352E+000	1.0235040165E+001	0.219	3.654
1.754								
53.075	0.277	209.305	-0.019	1.1894049112E+001	2.2026229209E+000	1.0580663211E+001	0.239	3.158
1.636								
53.340	0.319	209.302	-0.010	1.4667505236E+001	2.7982105020E+000	1.0003959009E+001	0.254	2.783
1.568								
53.425	0.333	209.301	-0.001	1.5499624688E+001	2.9839481051E+000	9.4847091185E+000	0.258	2.680
1.555								
53.460	0.337	209.301	0.011	1.5828015528E+001	3.0583387946E+000	9.5294817039E+000	0.260	2.641
1.550								

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 51 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

53.725	0.376	209.305	0.020	1.8761618977E+001	3.7725446936E+000	1.1483155207E+001	0.276	2.335
1.515 53.991	0.420	209.312	0.030	2.1923119117E+001	4.6297499801E+000	1.3026355278E+001	0.296	2.054
1.488 54.029	0.427	209.314	0.055	2.2422579269E+001	4.7784023550E+000	1.3249234948E+001	0.299	2.015
1.484 54.294	0.467	209.329	0.068	2.6057649998E+001	5.9258957092E+000	1.4608956237E+001	0.327	1.757
1.455 54.546	0.510	209.349	0.094	2.9948685859E+001	7.2628546020E+000	1.6080626888E+001	0.357	1.547
1.423 54.811	0.551	209.377	0.111	3.4386523924E+001	8.9245748323E+000	1.5526466550E+001	0.390	1.377
1.387 55.037	0.587	209.403	0.126	3.7669660772E+001	1.0275540428E+001	1.4502498190E+001	0.415	1.277
1.359 55.303	0.625	209.439	0.133	4.1517059925E+001	1.1957632740E+001	1.2864819629E+001	0.443	1.191
1.328 55.503	0.652	209.465	0.139	4.3845553369E+001	1.3040747769E+001	1.1544018349E+001	0.460	1.154
1.310 55.768	0.683	209.504	0.163	4.6877618235E+001	1.4520579443E+001	1.1694732012E+001	0.482	1.117
1.289 55.994	0.717	209.545	0.184	4.9570376539E+001	1.5906551872E+001	1.1440767203E+001	0.502	1.093
1.274 56.259	0.748	209.594	0.186	5.2455828514E+001	1.7445891555E+001	1.0222455842E+001	0.523	1.073
1.259 56.514	0.779	209.642	0.188	5.4896749248E+001	1.8790454945E+001	9.1227898894E+000	0.539	1.060
1.249 56.779	0.804	209.692	0.187	5.7185744182E+001	2.0089086805E+001	7.9497825883E+000	0.555	1.050
1.240 57.044	0.828	209.741	0.185	5.9116386405E+001	2.1215611629E+001	6.7405612877E+000	0.567	1.043
1.235 57.108	0.833	209.753	0.195	5.9539426660E+001	2.1466863442E+001	6.5371422699E+000	0.570	1.042
1.234 57.374	0.854	209.806	0.204	6.1192154373E+001	2.2479863518E+001	5.9489154848E+000	0.582	1.038
1.230 57.633	0.877	209.860	0.221	6.2665245553E+001	2.3417986381E+001	5.3506309463E+000	0.593	1.034
1.226 57.899	0.898	209.921	0.236	6.3996809099E+001	2.4320182232E+001	4.6437943630E+000	0.603	1.031
1.222 58.131	0.919	209.978	0.257	6.4997871790E+001	2.5040782952E+001	3.9375280700E+000	0.612	1.029
1.219 58.396	0.941	210.049	0.256	6.5927453746E+001	2.5782238260E+001	2.5941998432E+000	0.622	1.026
1.215 58.604	0.952	210.099	0.249	6.6319453544E+001	2.6159402576E+001	1.4790698331E+000	0.627	1.024
1.212 58.870	0.962	210.167	0.256	6.6576256783E+001	2.6516848276E+001	4.5442631307E-001	0.632	1.021
1.208 59.098	0.970	210.225	0.264	6.6579368296E+001	2.6692970715E+001	-4.3913937674E-001	0.635	1.019
1.204 59.363	0.975	210.297	0.271	6.6322909555E+001	2.6752148062E+001	-1.4250316876E+000	0.638	1.016
1.200 59.569	0.979	210.353	0.283	6.5956004335E+001	2.6689415990E+001	-2.1976104481E+000	0.639	1.015
1.198 59.835	0.980	210.431	0.291	6.5230357819E+001	2.6470425876E+001	-3.4897219719E+000	0.639	1.013
1.195 60.060	0.981	210.496	0.301	6.4300008817E+001	2.6116269970E+001	-4.3822016760E+000	0.637	1.013
1.193 60.325	0.979	210.578	0.310	6.3058396578E+001	2.5612285605E+001	-4.8808834803E+000	0.634	1.013
1.190 60.571	0.977	210.655	0.318	6.1814506947E+001	2.5082578359E+001	-5.2331386894E+000	0.631	1.013
1.189 60.836	0.972	210.741	0.321	6.0378319354E+001	2.4456104854E+001	-5.4565131030E+000	0.626	1.014
1.187 61.101	0.964	210.825	0.314	5.8918263537E+001	2.3799980466E+001	-5.8348388814E+000	0.621	1.016
1.186 61.137	0.963	210.835	0.299	5.8709428845E+001	2.3704654733E+001	-5.9044881554E+000	0.621	1.016
1.186 61.402	0.946	210.915	0.307	5.7092776808E+001	2.2951263125E+001	-6.3803259628E+000	0.616	1.017
1.184								

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 52 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

61.662 1.181	0.935	210.997	0.327	5.5362006379E+001	2.2122613332E+001	-7.0253901989E+000	0.609	1.018
61.927 1.176	0.924	211.086	0.346	5.3399249652E+001	2.1163576164E+001	-7.6901036944E+000	0.601	1.020
62.168 1.170	0.918	211.172	0.372	5.1480928075E+001	2.0212700748E+001	-8.3871672264E+000	0.592	1.021
62.434 1.161	0.915	211.275	0.363	4.9129512981E+001	1.9044014892E+001	-8.3043940901E+000	0.580	1.021
62.661	0.901	211.351	0.345	4.7348321815E+001	1.8163920958E+001	-8.0721480366E+000	0.570	1.021
1.153 62.927 1.142	0.883	211.445	0.351	4.5130432571E+001	1.7081154770E+001	-8.3379634017E+000	0.557	1.021
63.161	0.867	211.526	0.357	4.3179526634E+001	1.6137399296E+001	-8.5246000479E+000	0.546	1.019
1.131 63.427	0.848	211.623	0.360	4.0856036154E+001	1.5024667115E+001	-8.6411222426E+000	0.531	1.017
1.116 63.650 1.103	0.829	211.703	0.370	3.8946366338E+001	1.4119460475E+001	-8.8327243324E+000	0.519	1.015
63.916	0.810	211.804	0.399	3.6511638063E+001	1.2980783155E+001	-9.5676811147E+000	0.503	1.012
1.086 64.147	0.801	211.901	0.414	3.4213234804E+001	1.1931771913E+001	-9.7979106274E+000	0.485	1.010
1.070 64.413 1.053	0.784	212.010	0.397	3.1647475822E+001	1.0792554911E+001	-9.2260394935E+000	0.466	1.009
64.654 1.039	0.761	212.102	0.379	2.9520732910E+001	9.8818363001E+000	-8.6817061073E+000	0.449	1.008
64.919 1.025	0.731	212.202	0.362	2.7258525603E+001	8.9504980980E+000	-8.0767655131E+000	0.432	1.010
65.185 1.011	0.693	212.294	0.348	2.5233694932E+001	8.1505584267E+000	-8.2373468184E+000	0.417	1.012
65.185 1.011	0.693	212.295	0.357	2.5227386695E+001	8.1480907118E+000	-8.2369700770E+000	0.417	1.012
65.451 0.992	0.658	212.389	0.362	2.3237313321E+001	7.3849408030E+000	-7.4540170589E+000	0.403	1.013
65.704 0.968	0.628	212.482	0.385	2.1361429241E+001	6.6780728470E+000	-7.5732995962E+000	0.389	1.013
65.969 0.933	0.607	212.589	0.406	1.9306505243E+001	5.9072661581E+000	-7.6725414632E+000	0.371	1.008
66.214 0.893	0.591	212.690	0.432	1.7446633197E+001	5.2118554156E+000	-7.7689868801E+000	0.352	1.001
66.479 0.842	0.584	212.809	0.419	1.5338326907E+001	4.4259209144E+000	-7.1475486957E+000	0.327	0.988
66.720 0.799	0.563	212.902	0.386	1.3793382555E+001	3.8578987366E+000	-6.2892680569E+000	0.306	0.974
66.985 0.751	0.541	213.004	0.379	1.2164298026E+001	3.2645361451E+000	-5.8599790097E+000	0.281	0.957
67.224 0.713	0.517	213.093	0.371	1.0823583301E+001	2.7794184506E+000	-5.5290421368E+000	0.257	0.943
67.489 0.672	0.494	213.192	0.364	9.3798470128E+000	2.2583054889E+000	-5.1724277036E+000	0.227	0.927
67.728 0.642	0.468	213.276	0.355	8.2050668044E+000	1.8386151831E+000	-4.8519146618E+000	0.200	0.916
67.993 0.612	0.441	213.370	0.349	6.9411728789E+000	1.3964374516E+000	-4.5184154882E+000	0.166	0.906
68.233 0.591	0.413	213.452	0.347	5.9096369384E+000	1.0527114814E+000	-4.2261790901E+000	0.136	0.901
68.498 0.572	0.387	213.546	0.349	4.8090590871E+000	7.1992375460E-001	-3.9364860315E+000	0.102	0.900
68.742 0.557	0.361	213.630	0.349	3.8952334188E+000	4.7739673132E-001	-3.7480527325E+000	0.074	0.901
69.008 0.547	0.337	213.724	0.356	2.8990240868E+000	2.2830753026E-001	-3.5388326455E+000	0.039	0.909
69.259 0.546	0.315	213.814	0.370	2.0624649583E+000	8.6471804986E-002	-3.1801089640E+000	0.038	0.925
69.524	0.299	213.915	0.373	1.2622075394E+000	2.0301033244E-002	-2.7360747596E+000	0.038	0.949
0.557 69.769 0.569	0.281	214.004	0.373	6.5537667644E-001	5.5320874885E-003	-2.4741111090E+000	0.038	0.983

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 53 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio

ht(m) : Altezza linea di thrust da nodo sinistro base concio

: coordinata Y linea di trust yt(m)

: gradiente pendenza locale linea di trust yt'(-) E(x)(kN/m): Forza Normale interconcio
T(x)(kN/m): Forza Tangenziale interconcio
E'(kN): derivata Forza normale interconcio
Rho(x)(-): fattore mobilizzazione resistenza al taglio verticale interconcio ZhU et al.(2003)

FS_qFEM(x)(-): fattore di sicurezza locale stimato (locale in X) by qFEM

FS_srmFEM(x)(-): fattore di sicurezza locale stimato (locale in X) by SRM Procedure

TABELLA SFORZI DI TAGLIO DISTRIBUITI LUNGO SUPERFICIE INDIVIDUATA CON MINOR FS

X dx dl alpha TauStress TauStrength TauAt 50.997 0.265 0.270 -10.556 -0.0407 -0.110 6.459 1.744 51.528 0.265 0.270 -10.556 -0.570 -0.154 7.304 1.972 51.793 0.265 0.270 -10.556 -0.570 -0.154 7.304 1.972 52.059 0.265 0.270 -10.556 -0.989 -0.242 9.811 2.478 52.324 0.220 0.224 -1.045 -0.234 9.768 2.187 52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.197 -0.192 12.440 3.32 53.425 0.035 -7.680								
50.732 0.2655 0.270 -10.556 -0.084 -0.022 5.796 1.565 51.263 0.265 0.270 -10.556 -0.407 -0.110 6.459 1.565 51.263 0.265 0.270 -10.556 -0.670 -0.154 7.304 1.972 51.793 0.265 0.270 -10.556 -0.673 -0.188 8.165 2.204 52.059 0.265 0.270 -10.556 -0.896 -0.242 9.181 2.478 52.324 0.220 0.224 -10.556 -0.0896 -0.242 9.181 2.478 52.544 0.265 0.269 -9.614 -1.045 -0.234 9.768 2.187 52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.342 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53.425 0.035 0.036 -7.680 -0.716 -0.192 14.40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
50.997 0.265 0.270 -10.556 -0.244 -0.066 5.796 1.565 51.263 0.265 0.270 -10.556 -0.407 -0.110 6.459 1.744 51.528 0.265 0.270 -10.556 -0.733 -0.198 8.165 2.204 52.059 0.265 0.270 -10.556 -0.896 -0.242 9.181 2.478 52.324 0.220 -10.556 -0.896 -0.242 9.181 2.478 52.544 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.400 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.460 0.265 0.268 -7.680 -0.648 -0.174 3.227 3.542 53.725 0.265 0.268 -7.680 -0.648 -0.174 3.227 3.542	(m)		(m)) (kPa		
51,263 0.265 0.270 -10.556 -0.407 -0.154 7.304 1.972 51,793 0.265 0.270 -10.556 -0.570 -0.154 7.304 1.972 52,059 0.265 0.270 -10.556 -0.896 -0.242 9.181 2.478 52,324 0.220 0.224 -10.556 -1.045 -0.234 9.768 2.187 52,544 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53,075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53,425 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53,725 0.265 0.268 -7.680 -0.611 -0.022 12.149 0.432 53,725 0.265 0.266 -7.680 -0.648 -0.174 13.227 3.542 53,725 0.265 0.265 -7.680 -0.755 -0.029 15.187 <td>50.732</td> <td>0.265</td> <td>0.270</td> <td>-10.556</td> <td>-0.081</td> <td>-0.022</td> <td>5.195</td> <td></td>	50.732	0.265	0.270	-10.556	-0.081	-0.022	5.195	
51.528 0.265 0.270 -10.556 -0.573 -0.198 8.165 2.204 52.059 0.265 0.270 -10.556 -0.733 -0.198 8.165 2.204 52.059 0.265 0.270 -10.556 -0.896 -0.242 9.181 2.478 52.324 0.220 0.224 -10.556 -0.948 -0.255 10.549 2.839 52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.340 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.425 0.035 0.7680 -0.611 -0.022 12.149 0.432 53.460 0.265 0.268 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 <td>50.997</td> <td>0.265</td> <td></td> <td>-10.556</td> <td></td> <td></td> <td>5.796</td> <td></td>	50.997	0.265		-10.556			5.796	
51.793 0.265 0.270 -10.556 -0.733 -0.198 8.165 2.204 52.029 0.265 0.270 -10.556 -0.896 -0.242 9.181 2.478 52.544 0.265 0.269 -9.614 -0.948 -0.255 10.549 2.839 52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.3075 0.265 0.268 -9.614 -1.1277 -0.109 12.096 1.035 53.425 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53.725 0.265 0.268 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.268 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.265 0.266 0.260 0.271 0.072	51.263	0.265	0.270	-10.556	-0.407	-0.110	6.459	1.744
52.059 0.265 0.270 -10.556 -0.896 -0.242 9.181 2.478 52.324 0.220 0.224 -10.556 -1.045 -0.234 9.768 2.187 52.544 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.340 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.425 0.035 0.036 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.268 -7.680 -0.716 -0.192 14.440 3.867 53.991 0.038 -0.688 -7.680 -0.716 -0.192 14.440 3.867 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.546 0.285 0.266 -2.609 1.837 0.488 18.144	51.528	0.265	0.270	-10.556	-0.570	-0.154	7.304	1.972
52.324 0.220 0.224 -10.556 -1.045 -0.234 9.768 2.187 52.544 0.265 0.269 -9.614 -0.948 -0.255 10.549 2.839 52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.340 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.425 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53.765 0.0265 0.268 -7.680 -0.611 -0.0221 12.149 0.432 53.725 0.265 0.268 -7.680 -0.715 -0.192 14.440 3.867 53.991 0.038 0.038 -7.680 -0.755 -0.029 15.187 0.580 54.294 0.251 0.253 -5.420 0.271 0.072 15.996 <td>51.793</td> <td>0.265</td> <td>0.270</td> <td>-10.556</td> <td>-0.733</td> <td>-0.198</td> <td>8.165</td> <td>2.204</td>	51.793	0.265	0.270	-10.556	-0.733	-0.198	8.165	2.204
52.324 0.220 0.224 -10.556 -1.045 -0.234 9.768 2.187 52.544 0.265 0.269 -9.614 -0.948 -0.255 10.549 2.839 52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.340 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.425 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53.765 0.0265 0.268 -7.680 -0.611 -0.0221 12.149 0.432 53.725 0.265 0.268 -7.680 -0.715 -0.192 14.440 3.867 53.991 0.038 0.038 -7.680 -0.755 -0.029 15.187 0.580 54.294 0.251 0.253 -5.420 0.271 0.072 15.996 <td>52.059</td> <td>0.265</td> <td>0.270</td> <td>-10.556</td> <td>-0.896</td> <td>-0.242</td> <td>9.181</td> <td>2.478</td>	52.059	0.265	0.270	-10.556	-0.896	-0.242	9.181	2.478
52.544 0.265 0.269 -9.614 -0.948 -0.255 10.549 2.839 52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.340 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.425 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53.725 0.265 0.268 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.266 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.266 -5.420 0.271 0.072 15.964 2.645 54.294 0.251 0.265 0.266 -2.609 1.837 0.488 18.144 4.820 54.311 0.226 0.226 0.265 0.266 -2.609			0.224		-1.045		9.768	
52.810 0.265 0.269 -9.614 -1.072 -0.288 11.277 3.036 53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.340 0.084 -0.641 -1.277 -0.109 12.096 1.035 53.460 0.265 0.268 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.268 -7.680 -0.716 -0.192 14.440 3.867 53.991 0.038 0.038 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.294 0.251 0.265 0.260 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.265 0.265 0.265 0.265 0.265	52.544	0.265			-0.948	-0.255		2.839
53.075 0.265 0.269 -9.614 -1.196 -0.322 11.878 3.197 53.340 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.425 0.035 0.036 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.268 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.494 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.494 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.396 0.265 0.266 1.837 0.488 18.144 4.820	52.810	0.265	0.269	-9.614	-1.072	-0.288	11.277	
53.340 0.084 0.086 -9.614 -1.277 -0.109 12.096 1.035 53.425 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53.725 0.265 0.268 -7.680 -0.716 -0.192 14.440 3.867 53.991 0.038 0.038 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.265 -5.420 0.291 0.074 17.278 4.364 54.546 0.265 0.266 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.227 -2.609 1.938 0.439 18.323 4.151 55.037 0.265 0.265 -0.387 3.368 0.894 18.720 4.968 55.030 0.265 0.266 1.829 5.068 1.346 18.705 <t< td=""><td></td><td></td><td>0.269</td><td></td><td>-1.196</td><td></td><td></td><td></td></t<>			0.269		-1.196			
53.425 0.035 0.036 -7.680 -0.611 -0.022 12.149 0.432 53.460 0.265 0.268 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.268 -7.680 -0.716 -0.192 14.440 3.867 53.991 0.038 -7.680 -0.716 -0.192 15.187 0.580 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.540 0.266 0.266 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.226 -0.2609 1.938 0.439 18.323 4.151 55.037 0.265 0.265 -0.387 3.368 0.894 18.720 4.968 55.303 0.200 0.200 -0.387 3.510 0.702 18.499 3.703 <td>53.340</td> <td>0.084</td> <td></td> <td>-9.614</td> <td></td> <td>-0.109</td> <td>12.096</td> <td>1.035</td>	53.340	0.084		-9.614		-0.109	12.096	1.035
53.460 0.265 0.268 -7.680 -0.648 -0.174 13.227 3.542 53.725 0.265 0.268 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.546 0.265 0.266 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.227 -2.609 1.938 0.439 18.323 4.151 55.037 0.265 0.265 -0.387 3.368 0.894 18.720 4.968 55.303 0.200 0.200 -0.387 3.510 0.702 18.499 3.703 55.503 0.265 0.266 1.829 5.068 1.346 18.705 4.967 55.708 0.265 0.266 3.813 6.768 1.800 19.146 5.0								
53.725 0.265 0.268 -7.680 -0.716 -0.192 14.440 3.867 53.991 0.038 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.546 0.265 0.266 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.227 -2.609 1.938 0.439 18.323 4.151 55.037 0.265 0.266 1.829 5.068 1.846 18.705 4.967 55.768 0.226 0.266 1.829 5.049 1.186 19.367 4.376 55.994 0.265 0.266 1.829 5.249 1.186 19.367 4.895 56.259 0.254 0.255 3.813 6.768 1.800 19.146 5.092 <tr< td=""><td></td><td></td><td>0.268</td><td></td><td></td><td></td><td></td><td></td></tr<>			0.268					
53.991 0.038 0.038 -7.680 -0.755 -0.029 15.187 0.580 54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.811 0.226 0.227 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.227 -2.609 1.938 0.439 18.323 4.151 55.037 0.265 0.265 -0.387 3.368 0.894 18.720 4.968 55.303 0.205 0.266 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.249 1.186 19.367 4.376 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.253 3.813 6.976 1.778 19.207 4.895 </td <td>53.725</td> <td></td> <td>0.268</td> <td>-7.680</td> <td>-0.716</td> <td></td> <td>14.440</td> <td></td>	53.725		0.268	-7.680	-0.716		14.440	
54.029 0.265 0.267 -5.420 0.271 0.072 15.996 4.264 54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.546 0.265 0.266 -2.609 1.938 0.439 18.323 4.151 55.037 0.265 0.265 -0.387 3.588 0.894 18.720 4.968 55.303 0.200 0.200 -0.387 3.510 0.702 18.499 3.703 55.503 0.265 0.266 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.068 1.346 18.705 4.967 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.255 3.813 6.976 1.778 19.207 4.895 56.514 0.265 0.267 5.439 8.542 2.227 18.989 5.062								
54.294 0.251 0.253 -5.420 0.291 0.074 17.278 4.364 54.546 0.265 0.266 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.2265 -0.387 3.368 0.894 18.720 4.968 55.037 0.265 0.266 -0.387 3.510 0.702 18.499 3.703 55.503 0.265 0.266 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.249 1.186 19.367 4.376 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.255 3.813 6.768 1.800 19.146 5.092 56.779 0.265 0.267 5.439 8.326 2.220 18.989 5.062 57.044 0.064 0.064 5.439 8.677 0.558 18.988 1.029								
54.546 0.265 0.266 -2.609 1.837 0.488 18.144 4.820 54.811 0.226 0.227 -2.609 1.938 0.439 18.323 4.151 55.037 0.265 0.266 -0.387 3.510 0.702 18.499 3.703 55.503 0.265 0.266 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.249 1.186 19.367 4.376 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.255 3.813 6.768 1.800 19.146 5.092 56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.7044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.374 0.260 0.261 6.897 9.874 2.640 18.879 5.047		0.251	0.253	-5.420	0.291		17.278	
54.811 0.226 0.227 -2.609 1.938 0.439 18.323 4.151 55.037 0.265 0.265 -0.387 3.368 0.894 18.720 4.968 55.303 0.265 0.266 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.049 1.186 19.367 4.376 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.255 3.813 6.976 1.778 19.207 4.895 56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.062 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985		0.265	0.266	-2.609	1.837	0.488	18.144	
55.037 0.265 0.265 -0.387 3.368 0.894 18.720 4.968 55.303 0.200 0.200 -0.387 3.510 0.702 18.499 3.703 55.503 0.266 0.266 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.249 1.186 19.367 4.376 55.768 0.226 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.255 3.813 6.768 1.800 19.146 5.092 56.779 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.642 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.261 6.897 10.083 2.636 19.071 4.985			0.227					
55.503 0.265 0.226 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.249 1.186 19.367 4.376 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.265 3.813 6.976 1.778 19.207 4.895 56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049		0.265	0.265			0.894	18.720	
55.503 0.265 0.226 1.829 5.068 1.346 18.705 4.967 55.768 0.226 0.226 1.829 5.249 1.186 19.367 4.376 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.265 3.813 6.976 1.778 19.207 4.895 56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049		0.200	0.200			0.702	18 499	
55.768 0.226 0.226 1.829 5.249 1.186 19.367 4.376 55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.255 3.813 6.976 1.778 19.207 4.895 56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428								
55.994 0.265 0.266 3.813 6.768 1.800 19.146 5.092 56.259 0.254 0.255 3.813 6.976 1.778 19.207 4.895 56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978								
56.259 0.254 0.265 3.813 6.976 1.778 19.207 4.895 56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 <td></td> <td></td> <td>0.266</td> <td></td> <td>6.768</td> <td></td> <td></td> <td></td>			0.266		6.768			
56.514 0.265 0.267 5.439 8.326 2.220 18.989 5.062 56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 58.604 0.265 0.272 12.395 15.026 4.083 17.605 4.109<								
56.779 0.265 0.267 5.439 8.542 2.277 18.998 5.065 57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.349 3.603 18.441 4.978 58.870 0.228 0.233 12.395 15.026 4.083 17.605 4.109 59.083 0.265 0.274 14.214 16.563 4.535 17.032 4.66								
57.044 0.064 0.064 5.439 8.677 0.558 18.968 1.219 57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.083 0.265 0.274 14.214 16.635 3.535 16.938 3.		0.265	0.267		8.542	2.277	18.998	
57.108 0.265 0.267 6.897 9.874 2.640 18.879 5.047 57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.098 0.265 0.274 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342					8.677			
57.374 0.260 0.261 6.897 10.083 2.636 19.071 4.985 57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.098 0.265 0.274 14.214 16.635 3.535 17.605 4.109 59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 <t< td=""><td></td><td></td><td>0.267</td><td></td><td></td><td></td><td></td><td></td></t<>			0.267					
57.633 0.265 0.268 8.630 11.579 3.108 18.809 5.049 57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.098 0.265 0.274 14.214 16.663 4.535 17.032 4.663 59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 <	57.374							
57.899 0.232 0.235 8.630 11.764 2.759 18.881 4.428 58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.098 0.265 0.274 14.214 16.563 4.535 17.032 4.663 59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658	57.633	0.265	0.268	8.630	11.579	3.108	18.809	5.049
58.131 0.265 0.270 10.515 13.349 3.603 18.441 4.978 58.396 0.208 0.212 10.515 13.500 2.862 18.202 3.859 58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.098 0.265 0.274 14.214 16.563 4.535 17.032 4.663 59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584	57.899				11.764	2.759		
58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.098 0.265 0.274 14.214 16.563 4.535 17.032 4.663 59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030			0.270		13.349	3.603		4.978
58.604 0.265 0.272 12.395 15.026 4.083 17.686 4.806 58.870 0.228 0.233 12.395 15.147 3.535 17.605 4.109 59.098 0.265 0.274 14.214 16.563 4.535 17.032 4.663 59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995	58.396	0.208	0.212	10.515	13.500	2.862	18.202	3.859
59.098 0.265 0.274 14.214 16.563 4.535 17.032 4.663 59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653	58.604	0.265	0.272	12.395	15.026	4.083	17.686	4.806
59.363 0.206 0.213 14.214 16.635 3.535 16.938 3.600 59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530	58.870			12.395			17.605	4.109
59.569 0.265 0.276 16.010 17.936 4.952 16.342 4.512 59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137	59.098	0.265	0.274		16.563	4.535	17.032	4.663
59.835 0.225 0.234 16.010 17.956 4.207 16.181 3.791 60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022	59.363			14.214			16.938	
60.060 0.265 0.278 17.628 19.031 5.299 15.658 4.360 60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615	59.569	0.265	0.276	16.010	17.936	4.952		4.512
60.325 0.245 0.258 17.628 18.992 4.891 15.584 4.013 60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615	59.835	0.225	0.234	16.010	17.956	4.207	16.181	3.791
60.571 0.265 0.281 19.000 19.798 5.557 15.113 4.242 60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615	60.060				19.031		15.658	
60.836 0.265 0.281 19.000 19.698 5.529 15.030 4.219 61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615	60.325							
61.101 0.036 0.038 19.000 19.642 0.738 14.995 0.563 61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615			0.281			5.557		
61.137 0.265 0.282 19.839 20.077 5.664 14.653 4.134 61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615								
61.402 0.260 0.276 19.839 19.940 5.506 14.530 4.012 61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615								
61.662 0.265 0.284 20.764 20.318 5.767 14.137 4.012 61.927 0.241 0.258 20.764 20.142 5.193 14.022 3.615								
61.927			0.276					
			0.284					
62.168								
	62.168	0.265	0.286	21.727	20.472	5.849	13.624	3.892

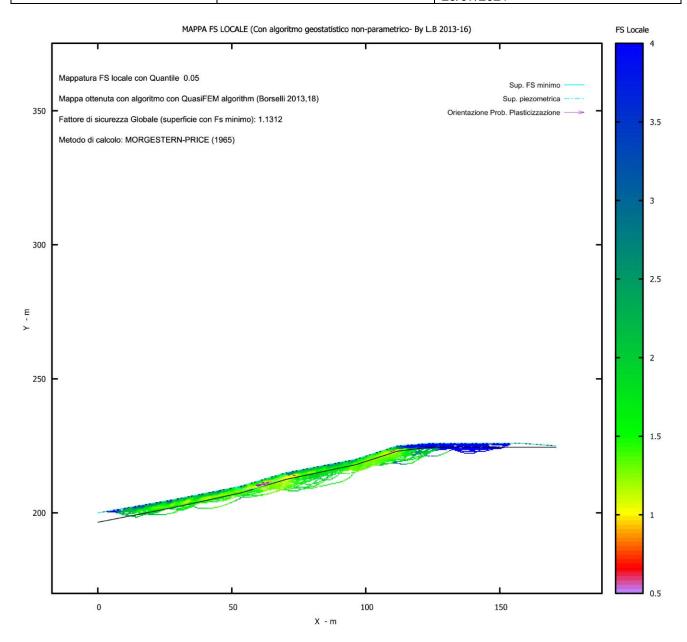
Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 54 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

62.434	0.228	0.245	21.727	20.254	4.961	13.611	3.334
62.661	0.265	0.288	22.689	20.510	5.900	13.207	3.799
62.927	0.234	0.254	22.689	20.240	5.143	13.109	3.331
63.161	0.265	0.290	23.614	20.392	5.906	12.710	3.682
63.427	0.223	0.244	23.614	20.079	4.897	12.614	3.076
63.650	0.265	0.292	24.530	20.151	5.879	12.201	3.559
63.916	0.232	0.255	24.530	19.781	5.042	12.072	3.077
64.147	0.265	0.294	25.396	19.744	5.800	11.718	3.443
64.413	0.241	0.267	25.396	19.316	5.153	11.606	3.096
64.654	0.265	0.296	26.191	19.165	5.668	11.221	3.319
64.919	0.265	0.296	26.191	18.665	5.520	11.031	3.263
65.185	0.001	0.001	26.191	18.414	0.016	11.042	0.009
65.185	0.265	0.295	25.931	18.080	5.335	10.895	3.215
65.451	0.253	0.281	25.931	17.608	4.956	10.716	3.016
65.704	0.265	0.294	25.660	17.052	5.021	10.603	3.122
65.969	0.244	0.271	25.660	16.605	4.504	10.467	2.839
66.214	0.265	0.294	25.383	16.076	4.722	10.385	3.051
66.479	0.240	0.266	25.383	15.649	4.164	10.308	2.743
66.720	0.265	0.293	25.102	15.142	4.438	10.211	2.992
66.985	0.239	0.264	25.102	14.734	3.889	10.086	2.662
67.224	0.265	0.292	24.823	14.249	4.167	9.987	2.920
67.489	0.238	0.262	24.823	13.857	3.637	9.867	2.589
67.728	0.265	0.292	24.543	13.393	3.907	9.770	2.851
67.993	0.240	0.264	24.543	13.017	3.434	9.654	2.547
68.233	0.265	0.291	24.266	12.571	3.660	9.564	2.784
68.498	0.244	0.268	24.266	12.208	3.269	9.453	2.532
68.742	0.265	0.290	23.993	11.779	3.422	9.367	2.721
69.008	0.251	0.275	23.993	11.427	3.137	9.262	2.542
69.259	0.265	0.290	23.757	11.022	3.196	9.188	2.664
69.524	0.245	0.268	23.757	10.687	2.859	9.073	2.427
69.769	0.265	0.289	23.516	10.301	2.982	8.991	2.602


LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio
dx(m) : Larghezza concio
dl(m) : lunghezza base concio
alpha(°) : Angolo pendenza base concio
TauStress(kPa) : Sforzo di taglio su base concio
TauF (kN/m) : Forza di taglio su base concio
TauStrength(kPa) : Resistenza al taglio su base concio
TauS (kN/m) : Forza resistente al taglio su base concio

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 55 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

Foglio 56 di Fogli 71

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
PROFILO C-C'
```

```
# Report elaborazioni #
  SSAP 4.9.9 - Slope Stability Analysis Program (1991,2019)
              WWW.SSAP.EU
             Build No. 11232
                BY
        Dr. Geol. LORENZO BORSELLI *,**
        *UASLP, San Luis Potosi, Mexico
         e-mail: lborselli@gmail.com
     CV e WEB page personale: WWW.LORENZO-BORSELLI.EU
    ** Gia' Ricercatore CNR-IRPI fino a Luglio 2011
Ultima Revisione struttura tabelle del report: 31 dicembre 2019
  File report: C:\Users\Giancarlo\Desktop\chen-morgensternC-C'.txt
     Data: 28/4/2021
  Localita': Rotello (CB)
  Descrizione: PV Rotello 43
Modello pendio: SEZIONE C-C'_ROTELLO 43.mod
     PARAMETRI DEL MODELLO DEL PENDIO ------
      __ PARAMETRI GEOMETRICI - Coordinate X Y (in m) __
      SUP T.
                  SUP 2
                              SUP 3
                                         SUP 4
          Υ
               X Y
                         Χ
    0.00 205.00 0.00 201.50
    24.75 210.00 24.75 207.00
    42.60 215.00 42.60 212.50
    66.66 220.00 66.66 217.50
    86.03 225.00 86.03 223.00
    125.44 230.00 125.44 228.50 -
   172.06 235.00 172.06 233.50
---- SUP FALDA -----
   X Y (in m)
   0.00 205.00
  24.75 210.00
  42.60 215.00
  66.66 220.00
  86.03 225.00
  125.44 230.00
  172.06 235.00
  ----- GESTIONE ACQUIFERI -----
Strati esclusi da acquifero:
```

STRATO 2

Esclusione sovraccarico pendio sommerso: NON ATTIVATA

Peso unitario fluido (kN/m^3): 9.81

Parametri funzione dissipazione superficiale pressione dei fluidi:

Coefficiente A 0.000800 Coefficiente K Pressione minima fluidi Uo_Min (kPa) 0.01

Coefficiente di soprapressione oltre pressione hidrostatica 1.00 Limitazione dissipazionea a Pressione Idrostatica = ATTIVA

STABILITE CONDIZIONI PER LA VERIFICA CON SOVRAPPRESSIONE ACQUIFERI CON DISSIPAZIONE IN DIREZIONE **DELLA SUPERFICIE**

CALCOLO EFFETTO DI FILTRAZIONE NON ATTIVATO

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

Foglio 57 di Fogli 71

```
----- PARAMETRI GEOMECCANICI ------
                    C,
                                                                   sgci
                           Cu
                                  Gamm
                                          Gamm_sat STR_IDX
                                                                         GSI mi
   STRATO 1
                 29.61
                                                                     0.00 0.00 0.00 0.00
                          4.90
                                  0.00
                                          18.73
                                                   19.22
                                                            1.977
   STRATO 2
                                          19.90
                                                   21.57
                 24.67
                          4.90
                                  0.00
                                                            1.530
                                                                     0.00 0.00 0.00 0.00
   LEGENDA: fi`__
                        Angolo di attrito interno efficace(in gradi)
        C, <sup>_</sup>
                  __Coesione efficace (in Kpa)
                   Resistenza al taglio Non drenata (in Kpa)
        Cu
        Gamm_
                     Peso di volume terreno fuori falda (in KN/m^3)
        Gamm_sat ___ Peso di volume terreno immerso (in KN/m^3)
        STR_IDX_
                    _ Indice di resistenza (usato in solo in 'SNIFF SEARCH) (adimensionale)
        ---- SOLO Per AMMASSI ROCCIOSI FRATTURATI - Parametri Criterio di Rottura di Hoek (2002)-
               ___ Resistenza Compressione Uniassiale Roccia Intatta (in MPa)
                   Geological Strenght Index ammasso(adimensionale)
                  __ Indice litologico ammasso(adimensionale)
                   Fattore di disturbo ammasso(adimensionale)
        Fattore di riduzione NTC2018: gammaPHI=1.25 e gammaC=1.25 - DISATTIVATO (solo per ROCCE)
Uso CRITERIO DI ROTTURA Hoek et al. (2002, 2006) - non-lineare - Generalizzato, secondo Lei et al. (2016)
   ------ INFORMAZIONI GENERAZIONE SUPERFICI RANDOM -------
 *** PARAMETRI PER LA GENERAZIONE DELLE SUPERFICI
   METODO DI RICERCA: RANDOM SEARCH
                                              - Siegel (1981)
   FILTRAGGIO SUPERFICI: ATTIVATO
   COORDINATE X1,X2,Y OSTACOLO:
                                                       0.00
   LUNGHEZZA MEDIA SEGMENTI (m):
                                                       1.0 (+/-) 50%
   INTERVALLO ASCISSE RANDOM STARTING POINT (Xmin .. Xmax):
                                                                         3.44
                                                                                 158.30
   LIVELLO MINIMO CONSIDERATO (Ymin):
                                                      171.35
   INTERVALLO ASCISSE AMMESSO PER LA TERMINAZIONE (Xmin .. Xmax):
                                                                                  20.65
                                                                                          168.62
 *** TOTALE SUPERFICI GENERATE:
                                             1000
 ----- INFORMAZIONI PARAMETRI DI CALCOLO ------
   METODO DI CALCOLO: CHEN - MORGENSTERN (Chen & Morgestern, 1983)
   COEFFICIENTE SISMICO UTILIZZATO Kh: 0.1050
   COEFFICIENTE SISMICO UTILIZZATO Kv (assunto Positivo): 0.0525
   COEFFICIENTE c=Kv/Kh UTILIZZATO: 0.5000
   FORZA ORIZZONTALE ADDIZIONALE IN TESTA (kN/m): 0.00
   FORZA ORIZZONTALE ADDIZIONALE ALLA BASE (kN/m): 0.00
   N.B. Le forze orizzontali addizionali in testa e alla base sono poste uguali a 0
      durante le tutte le verifiche globali.
      I valori >0 impostati dall'utente sono utilizzati solo in caso di verifica singola
   ------ RISULTATO FINALE ELABORAZIONI -------
  * DATI RELATIVI ALLE 10 SUPERFICI GENERATE CON MINOR Fs *
Fattore di sicurezza (FS) 1.1525 - Min. - X
                                                  Lambda= 0.1658
                          23.66 209.78
                          25.77 209.27
                          26.73 209.07
                          27.35 208.98
                          27.86 208.95
                          28.37 208.97
                          28.82 209.03
                          29.33 209.14
                          29.87 209.29
                          30.55 209.52
                          31.17 209.72
                          31.74 209.90
                          32.30 210.06
```

32.85 210.22 33.39 210.36 33.93 210.50 34.48 210.63 35.06 210.76 35.62 210.89

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 58 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
36.19 211.02
36.75 211.15
                           37.30 211.27
                           37.87 211.40
                           38.45 211.53
                           39.06 211.67
                           39.70 211.82
                           40.24 211.97
                           40.74 212.14
41.21 212.34
                           41.74 212.61
                           42.28 212.93
                           42.92 213.37
                           43.89 214.10
                           44.14 214.30
                           44.14 215.32
Fattore di sicurezza (FS) 1.2228 - N.2 --
                                                    Lambda= 0.1184
                           23.47 209.74
                           24.74 209.38
                           25.37 209.22
                           25.81 209.11
                           26.19 209.03
                           26.55 208.96
                           26.89 208.91
                           27.25 208.87
                           27.64 208.83
                           28.07 208.79
                           28.44 208.78
                           28.78 208.78
                           29.09 208.81
                           29.44 208.85
                           29.75 208.91
                           30.09 208.99
                           30.44 209.09
                           30.85 209.23
                           31.24 209.37
                           31.62 209.49
                           31.98 209.62
                           32.34 209.75
                           32.71 209.88
                           33.07 210.01
                           33.45 210.15
                           33.84 210.29
                           34.20 210.44
                           34.55 210.59
                           34.88 210.75
                           35.23 210.93
                           35.57 211.11
                           35.92 211.32
                           36.28 211.54
                           36.68 211.80
                           37.05 212.04
                           37.42 212.27
                           37.78 212.50
                           38.01 212.64
                           38.01 213.72
Fattore di sicurezza (FS) 1.2804 - N.3 -- X
                                                    Lambda= 0.1160
                           23.37 209.72
```

24.91 209.17 25.61 208.94 26.05 208.83 26.40 208.78 26.77 208.76 27.08 208.79 27.43 208.84

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 59 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
27.82 208.94
28.32 209.09
28.77 209.22
29.19 209.34
29.60 209.45
29.99 209.56
30.39 209.66
30.80 209.76
31.22 209.86
31.66 209.96
32.06 210.07
32.44 210.18
32.81 210.30
33.20 210.45
33.57 210.60
33.96 210.77
34.36 210.97
34.81 211.20
35.23 211.42
35.63 211.64
36.02 211.87
36.41 212.10
36.62 212.23
36.62 213.32
```

Fattore di sicurezza (FS) 1.3368 - N.4 -- X

```
12.62 207.55
14.54 207.18
15.48 207.02
16.13 206.92
16.69 206.86
17.22 206.82
17.72 206.81
18.24 206.80
18.78 206.82
19.37 206.85
19.94 206.89
20.48 206.93
21.02 206.97
21.56 207.02
22.09 207.08
22.64 207.14
23.20 207.21
23.80 207.29
24.34 207.38
24.86 207.48
25.36 207.59
25.88 207.73
26.39 207.88
26.92 208.06
27.48 208.27
28.12 208.52
28.68 208.76
29.20 209.01
29.69 209.28
30.21 209.59
30.76 209.95
31.41 210.42
32.15 210.99
```

Lambda= 0.0669

Υ

Fattore di sicurezza (FS) 1.3403 - N.5 -- X Y Lambda= 0.0691 30.03 211.48 31.08 211.20

32.15 212.07

31.60 211.07 31.95 210.99 32.26 210.93

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 60 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
32.54 210.89
32.82 210.86
33.10 210.84
33.40 210.83
33.72 210.82
34.03 210.82
34.33 210.82
34.62 210.82
34.92 210.82
35.22 210.83
35.52 210.83
35.85 210.84
36.20 210.85
36.49 210.88
36.75 210.92
37.00 210.98
37.28 211.06
37.53 211.16
37.79 211.28
38.08 211.44
38.42 211.63
38.75 211.82
39.06 212.00
39.36 212.18
39.66 212.35
39.96 212.52
40.26 212.69
40.56 212.87
40.86 213.04
41.16 213.22
41.45 213.40
41.73 213.58
41.92 213.70
41.92 214.81
```

Fattore di sicurezza (FS) 1.3447 - N.6 -- X Lambda= 0.1363

20.41 209.12 22.19 208.67 23.06 208.47 23.65 208.35 24.16 208.27 24.64 208.22 25.09 208.19 25.57 208.18 26.07 208.19 26.64 208.21 27.16 208.24 27.66 208.28 28.14 208.32 28.63 208.37 29.12 208.43 29.62 208.50 30.14 208.59 30.70 208.68 31.20 208.78 31.68 208.90 32.13 209.03 32.62 209.19 33.07 209.35 33.55 209.55 34.04 209.77 34.59 210.03 35.12 210.28 35.62 210.52 36.12 210.74 36.61 210.96 37.11 211.17 37.61 211.39

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 61 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
38.13 211.60
38.68 211.82
39.17 212.04
39.65 212.27
40.11 212.50
40.59 212.78
41.11 213.09
41.71 213.49
42.24 213.86
42.24 214.90
```

Fattore di sicurezza (FS) 1.3462 - N.7 -- X Y Lambda= 0.1576

28.48 211.04 31.21 210.37 32.44 210.11 33.22 209.99 33.84 209.97 34.50 210.02 35.05 210.12 35.68 210.30 36.37 210.54 37.24 210.90 38.04 211.22 38.79 211.53 39.52 211.81 40.23 212.09 40.93 212.36 41.64 212.63 42.35 212.90 43.07 213.16 43.79 213.43 44.50 213.70 45.22 213.97 45.93 214.23 46.64 214.50 47.36 214.78 47.94 215.00 47.94 216.11

Fattore di sicurezza (FS) 1.3582 - N.8 -- X Y Lambda= 0.0648 29.59 211.36

30.43 211.12 30.87 211.00 31.18 210.91 31.45 210.84 31.70 210.77 31.96 210.70 32.22 210.63 32.49 210.56 32.79 210.48 33.03 210.44 33.25 210.41 33.45 210.40 33.68 210.41 33.88 210.43 34.10 210.48 34.34 210.55 34.64 210.66 34.92 210.75 35.18 210.84 35.43 210.91 35.67 210.99 35.91 211.06 36.16 211.13 36.41 211.19 36.67 211.26 36.92 211.33

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 62 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

```
37.17 211.39
37.41 211.46
                           37.66 211.53
                           37.91 211.61
                           38.16 211.68
                           38.43 211.77
                           38.73 211.86
                           38.97 211.95
                           39.19 212.05
                           39.40 212.17
                           39.63 212.32
                           39.85 212.48
                           40.08 212.68
                           40.33 212.92
                           40.64 213.22
                           40.83 213.40
                           40.83 214.50
Fattore di sicurezza (FS) 1.3594 - N.9 -- X
                                              Υ
                                                    Lambda= 0.0792
                           10.61 207.14
                           12.47 206.71
                           13.41 206.50
                           14.07 206.36
                           14.65 206.25
                           15.18 206.16
                           15.71 206.07
                           16.26 206.00
                           16.84 205.93
                           17.48 205.86
                           18.01 205.82
                           18.51 205.81
                           18.97 205.83
                           19.48 205.89
                           19.95 205.97
                           20.45 206.08
                           20.99 206.24
                           21.63 206.45
                           22.21 206.64
                           22.75 206.84
                           23.28 207.05
                           23.81 207.26
                           24.32 207.49
                           24.85 207.73
                           25.39 207.99
                           25.97 208.27
                           26.52 208.54
                           27.06 208.79
                           27.59 209.04
                           28.12 209.28
                           28.65 209.51
```

Fattore di sicurezza (FS) 1.3715 - N.10 -- X Y Lambda= 0.1032 22.78 209.60

29.19 209.74 29.74 209.97 30.31 210.20 30.85 210.43 31.38 210.67 31.90 210.90 31.90 212.00

24.90 209.17 25.87 209.00 26.51 208.92

27.02 208.90 27.55 208.94 28.02 209.00

28.53 209.12

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 63 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

29.08 209.27 29.77 209.50 30.38 209.71 30.96 209.92 31.52 210.14 32.07 210.36 32.62 210.58 33.17 210.82 33.73 211.08 34.32 211.35 34.89 211.62 35.46 211.87 35.46 213.00

Sup	N. FS	FTR(kN/m)) FTA	∖(kN/m) Bilaı	ncio(kN/m)	ESITO
1	1.153	303.5	263.3	13.8	Surplus	
2	1.223	214.5	175.4	21.5	Surplus	
3	1.280	179.5	140.2	25.3	Surplus	
4	1.337	298.8	223.5	52.9	Surplus	
5	1.340	168.0	125.4	30.1	Surplus	
6	1.345	424.4	315.6	77.2	Surplus	
7	1.346	334.2	248.2	61.1	Surplus	
8	1.358	161.0	118.5	30.6	Surplus	
9	1.359	339.3	249.6	64.7	Surplus	
10	1.372	161.1	117.5	31.9	Surplus	

Esito analisi: SURPLUS di RESISTENZA!

Valore minimo di SURPLUS di RESISTENZA (kN/m): 13.8

Note: FTR --> Forza totale Resistente lungo la superficie di scivolamento

FTA --> Forza totale Agente lungo la superficie di scivolamento

IMPORTANTE!: Il Deficit o il Surplus di resistenza viene espresso in kN per metro di LARGHEZZA rispetto al fronte della scarpata

TABELLA PARAMETRI CONCI DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X	dx	alpha	W	ru	U phi'	(c',Cu)	
(m)	(m)	(°) (kl	N/m)	(-) (I	kPa) (°)	(kPa)	
23.661	0.252	-13.56	0.28	0.51	0.55	29.61	4.90
23.913	0.252	-13.56	0.85	0.51	1.64	29.61	4.90
24.165	0.252	-13.56	1.42	0.51	2.74	29.61	4.90
24.417	0.252	-13.56	1.99	0.51	3.98	29.61	4.90
24.669	0.081	-13.56	0.76	0.51	5.03	29.61	4.90
24.750	0.252	-13.56	2.79	0.51	5.44	29.61	4.90
25.002	0.252	-13.56	3.46	0.51	6.75	29.61	4.90
25.254	0.252	-13.56	4.13	0.51	7.93	29.61	4.90
25.506	0.252	-13.56	4.80	0.51	9.13	29.61	4.90
25.758	0.009	-13.56	0.19	0.51	10.29	29.61	4.90
25.767	0.252	-12.00	5.48	0.51	10.33	29.61	4.90
26.019	0.252	-12.00	6.11	0.51	11.53	29.61	4.90
26.271	0.252	-12.00	6.74	0.51	12.70	29.61	4.90
26.523	0.204	-12.00	5.93	0.51	13.87	29.61	4.90
26.727	0.252	-8.32	7.84	0.51	14.79	29.61	4.90
26.979	0.252	-8.32	8.39	0.51	15.92	29.61	4.90
27.231	0.123	-8.32	4.30	0.51	16.95	29.61	4.90
27.354	0.252	-3.41	9.15	0.51	17.40	29.61	4.90
27.606	0.250	-3.41	9.51	0.51	18.22	29.61	4.90
27.856	0.252	2.68	9.95	0.51	18.92	29.61	4.90

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 64 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

28.107	0.252	2.68	10.25	0.51	19.49	29.61	4.90
28.359	0.013	2.68	0.54	0.51	19.94	29.61	4.90
28.372	0.252	7.45	10.51	0.51	19.96	29.61	4.90
28.624	0.200	7.45	8.47	0.51	20.32	29.61	4.90
28.824	0.252	12.19	10.80	0.51	20.52	29.61	4.90
29.076	0.250	12.19	10.78	0.51	20.71	29.61	4.90
29.326	0.252	15.91	10.92	0.51	20.82	29.61	4.90
29.577	0.252	15.91	10.91	0.51	20.87	29.61	4.90
29.829	0.044	15.91	1.90	0.51	20.86	29.61	4.90
29.873	0.252	18.51	10.87	0.51	20.85	29.61	4.90
30.125	0.252	18.51	10.80	0.51	20.78	29.61	4.90
30.377	0.175	18.51	7.45	0.51	20.69	29.61	4.90
	0.252	17.92	10.69	0.51	20.61	29.61	4.90
30.552							
30.803	0.252	17.92	10.64	0.51	20.51	29.61	4.90
31.055	0.110	17.92	4.62	0.51	20.41	29.61	4.90
31.165	0.252	17.22	10.56	0.51	20.37	29.61	4.90
31.417	0.252	17.22	10.53	0.51	20.29	29.61	4.90
31.669	0.072	17.22	3.00	0.51	20.24	29.61	4.90
31.741	0.252	16.48	10.49	0.51	20.22	29.61	4.90
31.993	0.252	16.48	10.47	0.51	20.18	29.61	4.90
32.245	0.051	16.48	2.10	0.51	20.16	29.61	4.90
32.296	0.252	15.69	10.45	0.51	20.16	29.61	4.90
32.547	0.252	15.69	10.45	0.51	20.15	29.61	4.90
32.799	0.046	15.69	1.92	0.51	20.16	29.61	4.90
32.846	0.252	14.96	10.46	0.51	20.17	29.61	4.90
33.097	0.252	14.96	10.47	0.51	20.19	29.61	4.90
33.349	0.036	14.96	1.51	0.51	20.24	29.61	4.90
33.386	0.252	14.22	10.50	0.51	20.24	29.61	4.90
33.637	0.252	14.22	10.54	0.51	20.31	29.61	4.90
33.889	0.042	14.22	1.78	0.51	20.38	29.61	4.90
33.932	0.252	13.49	10.58	0.51	20.40	29.61	4.90
34.184	0.252	13.49	10.64	0.51	20.49	29.61	4.90
34.435	0.049	13.49	2.05	0.51	20.59	29.61	4.90
34.484	0.252	12.80	10.71	0.51	20.62	29.61	4.90
34.736	0.252	12.80	10.77	0.51	20.73	29.61	4.90
34.988	0.068	12.80	2.91	0.51	20.86	29.61	4.90
35.056	0.252	12.80	10.86	0.51	20.89	29.61	4.90
35.307	0.252	12.80	10.93	0.51	21.02	29.61	4.90
35.559	0.064	12.80	2.81	0.51	21.15	29.61	4.90
35.624	0.252	12.80	11.01	0.51	21.19	29.61	4.90
35.876	0.252	12.80	11.08	0.51	21.32	29.61	4.90
36.128	0.058	12.80	2.58	0.51	21.45	29.61	4.90
	0.252	12.80	11.17	0.51	21.48	29.61	4.90
36.186							
36.438	0.252	12.80	11.23	0.51	21.61	29.61	4.90
36.690	0.058	12.80	2.58	0.51	21.74	29.61	4.90
36.747	0.252	12.80	11.32	0.51	21.77	29.61	4.90
36.999	0.252	12.80	11.38	0.51	21.90	29.61	4.90
37.251	0.052	12.80	2.35	0.51	22.03	29.61	4.90
37.303	0.252	12.80	11.47	0.51	22.06	29.61	4.90
37.555	0.252	12.80	11.53	0.51	22.19	29.61	4.90
37.807	0.067	12.80	3.07	0.51	22.32	29.61	4.90
37.873	0.252	12.80	11.62	0.51	22.35	29.61	4.90
38.125	0.252	12.80	11.69	0.51	22.48	29.61	4.90
38.377	0.076	12.80	3.56	0.51	22.61	29.61	4.90
38.454	0.252	12.80	11.78	0.51	22.65	29.61	4.90
				0.51			
38.706	0.252	12.80	11.85		22.78	29.61	4.90
38.957	0.103	12.80	4.86	0.51	22.90	29.61	4.90
39.060	0.252	12.80	11.94	0.51	22.95	29.61	4.90
39.312	0.252	12.80	12.01	0.51	23.04	29.61	4.90
39.564	0.137	12.80	6.56	0.51	23.11	29.61	4.90
39.701	0.252	15.61	12.08	0.51	23.12	29.61	4.90
39.953	0.252	15.61	12.08	0.51	23.10	29.61	4.90
40.205	0.031	15.61	1.48	0.51	23.03	29.61	4.90
40.236	0.252	19.16	12.04	0.51	23.02	29.61	4.90
40.488	0.252	19.16	11.95	0.51	22.85	29.61	4.90
40.739	0.003	19.16	0.13	0.51	22.59	29.61	4.90
40.742	0.252	23.11	11.81	0.51	22.59	29.61	4.90
	0.232	23.11			22.23		4.90
40.994			10.08	0.51		29.61	
41.212	0.252	26.71	11.41	0.51	21.81	29.61	4.90

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 65 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

41.464	0.252	26.71	11.13	0.51	21.18	29.61	4.90
41.716	0.023	26.71	1.01	0.51	20.49	29.61	4.90
41.739	0.252	31.11	10.75	0.51	20.42	29.61	4.90
41.991	0.252	31.11	10.34	0.51	19.64	29.61	4.90
42.243	0.032	31.11	1.29	0.51	18.87	29.61	4.90
42.275	0.252	34.37	9.82	0.51	18.77	29.61	4.90
42.527	0.073	34.37	2.75	0.51	17.92	29.61	4.90
42.600	0.252	34.37	9.10	0.51	17.68	29.61	4.90
42.852	0.069	34.37	2.40	0.51	16.66	29.61	4.90
42.921	0.252	36.84	8.28	0.51	16.37	29.61	4.90
43.173	0.252	36.84	7.58	0.51	15.00	29.61	4.90
43.425	0.252	36.84	6.89	0.51	13.29	29.61	4.90
43.677	0.212	36.84	5.27	0.51	12.03	29.61	4.90
43.889	0.252	37.93	5.59	0.51	10.76	29.61	4.90

LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio

dx(m) : Ascissa sinistra concio
dx(m) : Larghezza concio
alpha(°) : Angolo pendenza base concio
W(kN/m) : Forza peso concio
ru(-) : Coefficiente locale pressione interstiziale
U(kPa) : Pressione totale dei pori base concio
phi'(°) : Angolo di attrito efficace base concio

c'/Cu (kPa) : Coesione efficace o Resistenza al taglio in condizioni non drenate

TABELLA DIAGRAMMA DELLE FORZE DELLA SUPERFICIE INDIVIDUATA CON MINOR FS

X		yt yt'	E(x)	T(x)	E' rho(x) FS_c	FEM FS_srmFEM		
(m)	(m)	(m) ()	,	N/m) (kN/m)	(kN) ()	() ()	0.004	44.507
23.661 8.306	0.000	209.780	-0.128	0.000000000E+000	0.000000000E+000	6.1286128560E-002	0.064	11.507
23.913	0.028	209.747	-0.128	1.2543774083E-001	2.5499613419E-002	9.3471787993E-001	0.064	11.507
8.306	0.020		00	0.0	2.0 .000 .0 2	0.0 0.0002 00.	0.00	
24.165	0.057	209.715	-0.131	4.7087721806E-001	1.2619742722E-001	2.4275294624E+000	0.132	6.062
4.358								
24.417 2.873	0.084	209.681	-0.109	1.3483396929E+000	3.6673103589E-001	3.4943097024E+000	0.203	4.051
2.673	0.123	209.660	-0.082	2.2311846510E+000	6.5914060001E-001	5.0569868468E+000	0.250	3.359
2.421	0.120	200.000	0.002	2.20110-001021000	0.00140000012 001	0.0000000-0021000	0.200	0.000
24.750	0.136	209.654	-0.075	2.6833105347E+000	8.1426339739E-001	6.0076477917E+000	0.273	3.169
2.305								
25.002	0.179	209.636	-0.069	4.5470811389E+000	1.4148211020E+000	7.3199047695E+000	0.323	2.715
2.032 25.254	0.223	209.619	-0.058	6.3708150410E+000	1.9865401971E+000	8.3627291384E+000	0.345	2.448
1.863	0.223	209.019	-0.030	0.57001304102+000	1.90034019712+000	0.302729130414000	0.545	2.440
25.506	0.271	209.606	-0.046	8.7599230205E+000	2.7160619426E+000	1.0491234205E+001	0.366	2.237
1.736								
25.758	0.322	209.596	-0.039	1.1655921149E+001	3.5726669166E+000	1.1922777352E+001	0.383	2.062
1.641 25.767	0.324	209.596	-0.026	1.1767448282E+001	3.6056535105E+000	1.2023954491E+001	0.384	2.057
1.639	0.324	209.596	-0.026	1.1707440202E+001	3.0030333103E+000	1.2023934491E+001	0.364	2.037
26.019	0.371	209.590	-0.018	1.5376075156E+001	4.6817213381E+000	1.5769498584E+001	0.404	1.901
1.561								
26.271	0.422	209.587	-0.003	1.9711553966E+001	6.0067735838E+000	1.7965922382E+001	0.424	1.751
1.496	0.476	209.588	0.010	2.4426660070 - 004	7 40700276445 .000	1.02050262405.004	0.440	1.615
26.523 1.444	0.476	209.566	0.010	2.4426660079E+001	7.4872837641E+000	1.9305036348E+001	0.442	1.015
26.727	0.523	209.592	0.027	2.8468956936E+001	8.7959735143E+000	1.9915684497E+001	0.456	1.509
1.409								
26.979	0.569	209.600	0.050	3.3527451318E+001	1.0494763592E+001	1.9969585141E+001	0.474	1.399
1.374	0.000	000 047	0.074	0.05000450005.004	4.00540705005.004	4.04000404005.004	0.400	4.000
27.231 1.350	0.622	209.617	0.071	3.8528915026E+001	1.2254976563E+001	1.8498818199E+001	0.490	1.306
27.354	0.651	209.627	0.095	4.0722368634E+001	1.3049087254E+001	1.7206085644E+001	0.497	1.267
1.342	0.001	_00.0	0.000			000000 7001	007	

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 66 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

27.606 1.331	0.691	209.653	0.111	4.4731298880E+001	1.4543732688E+001	1.4830825647E+001	0.509	1.205
27.856 1.325	0.736	209.683	0.128	4.8170277511E+001	1.5857836175E+001	1.2329893092E+001	0.518	1.161
28.107 1.322	0.758	209.717	0.143	5.0914688994E+001	1.6941464048E+001	9.7233406185E+000	0.526	1.135
28.359 1.321	0.784	209.755	0.151	5.3068546474E+001	1.7814816664E+001	6.6281681407E+000	0.532	1.122
28.372 1.321	0.786	209.757	0.189	5.3154364923E+001	1.7850806436E+001	6.5147963470E+000	0.532	1.122
28.624	0.801	209.805	0.201	5.4732541983E+001	1.8536121125E+001	4.9443789227E+000	0.538	1.120
1.322 28.824	0.818	209.847	0.228	5.5511013109E+001	1.8909124747E+001	3.2137225461E+000	0.542	1.127
1.323 29.076	0.823	209.907	0.255	5.6103688266E+001	1.9245978369E+001	1.5276049235E+000	0.546	1.139
1.324 29.326	0.837	209.975	0.279	5.6280837210E+001	1.9432078002E+001	3.4592747290E-002	0.549	1.154
1.326 29.577	0.837	210.047	0.281	5.6117839238E+001	1.9491386111E+001	-1.2049546291E+000	0.552	1.169
1.329 29.829	0.835	210.117	0.279	5.5673824446E+001	1.9425258042E+001	-2.7031748879E+000	0.553	1.181
1.331 29.873	0.835	210.130	0.288	5.5548210216E+001	1.9393329913E+001	-2.9058762575E+000	0.553	1.183
1.332 30.125	0.823	210.202	0.284	5.4759641283E+001	1.9175864713E+001	-3.3339476092E+000	0.554	1.192
1.336 30.377	0.810	210.273	0.295	5.3868687433E+001	1.8898974000E+001	-3.8767867419E+000	0.554	1.197
1.341 30.552	0.806	210.328	0.311	5.3150149301E+001	1.8658528295E+001	-4.1028019040E+000	0.553	1.198
1.346 30.803	0.803	210.406	0.316	5.2120198409E+001	1.8300246449E+001	-4.1257449812E+000	0.551	1.200
1.354 31.055	0.802	210.487	0.326	5.1071747506E+001	1.7924436469E+001	-4.2370454889E+000	0.549	1.200
1.364 31.165	0.804	210.524	0.301	5.0602475149E+001	1.7754940542E+001	-4.0099756829E+000	0.548	1.199
1.368 31.417	0.797	210.596	0.290	4.9742292460E+001	1.7438424785E+001	-3.3557424101E+000	0.545	1.198
1.378 31.669	0.794	210.670	0.291	4.8911972930E+001	1.7134404986E+001	-3.0699467209E+000	0.542	1.197
1.389 31.741	0.791	210.690	0.273	4.8695478590E+001	1.7055703933E+001	-2.9477383457E+000	0.542	1.197
1.391 31.993	0.785	210.758	0.281	4.8003566957E+001	1.6807291804E+001	-2.7119944887E+000	0.540	1.196
1.400 32.245	0.784	210.831	0.286	4.7329273398E+001	1.6570413642E+001	-2.4234191497E+000	0.538	1.196
1.409 32.296	0.782	210.845	0.274	4.7208958779E+001	1.6528549490E+001	-2.3564447438E+000	0.537	1.196
1.411 32.547	0.781	210.914	0.279	4.6635319598E+001	1.6331113453E+001	-2.1624587669E+000	0.536	1.197
1.418 32.799	0.781	210.985	0.277	4.6119589901E+001	1.6159223368E+001	-1.7647452368E+000	0.534	1.198
1.423 32.846	0.780	210.997	0.270	4.6040322659E+001	1.6133156372E+001	-1.7161953062E+000	0.534	1.198
1.424 33.097	0.782	211.066	0.274	4.5603378833E+001	1.5991703365E+001	-1.5852308874E+000	0.533	1.200
1.428 33.349	0.783	211.135	0.270	4.5241740407E+001	1.5881741125E+001	-1.1878368547E+000	0.532	1.202
1.429 33.386	0.782	211.144	0.266	4.5200032204E+001	1.5869457147E+001	-1.1546513046E+000	0.532	1.202
1.429 33.637	0.786	211.211	0.267	4.4904916482E+001	1.5785320325E+001	-1.0139105932E+000	0.532	1.205
1.427 33.889	0.789	211.278	0.260	4.4689260548E+001		-6.7771038549E-001	0.531	1.208
1.422 33.932	0.788	211.288	0.261	4.4661826517E+001	1.5726553152E+001	-6.4438270526E-001	0.531	1.209
1.421 34.184	0.795	211.355		4.4504486225E+001			0.531	1.213
1.413	00	500						

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 67 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

34.435 1.401	0.799	211.420	0.255	4.4411014075E+001	1.5690371954E+001	-2.5749555736E-001	0.531	1.217
34.484 1.399	0.799	211.431	0.259	4.4399584129E+001	1.5691301287E+001	-2.2879360837E-001	0.531	1.218
34.736 1.383	0.808	211.498	0.260	4.4350879239E+001	1.5703145913E+001	-1.2104177424E-001	0.531	1.223
34.988 1.365	0.816	211.562	0.254	4.4338607641E+001	1.5730503012E+001	-8.5939606357E-003	0.531	1.227
35.056	0.817	211.579	0.257	4.4338757560E+001	1.5739029694E+001	5.7904973951E-003	0.532	1.228
1.359 35.307	0.825	211.645	0.260	4.4343565016E+001	1.5776455386E+001	3.4629793207E-002	0.532	1.231
1.338 35.559	0.833	211.710	0.256	4.4356202803E+001	1.5819810415E+001	5.0422347012E-002	0.532	1.234
1.314 35.624	0.834	211.725	0.254	4.4359457372E+001	1.5830668760E+001	4.8818157129E-002	0.533	1.235
1.308 35.876	0.842	211.790	0.257	4.4370112289E+001	1.5875777508E+001	2.9509053411E-002	0.533	1.238
1.282 36.128	0.850	211.855	0.255	4.4374322971E+001	1.5920968693E+001	6.1697327796E-003	0.534	1.241
1.256 36.186	0.850	211.869	0.253	4.4374540441E+001	1.5930664591E+001	1.0748311035E-003	0.534	1.241
1.250 36.438	0.858	211.934	0.256	4.4371930566E+001	1.5973809556E+001	-2.5373826965E-002	0.535	1.244
1.223 36.690	0.865	211.998	0.253	4.4361758020E+001	1.6014703979E+001	-4.8908050248E-002	0.535	1.246
1.196 36.747	0.866	212.012	0.252	4.4358821447E+001	1.6023200855E+001	-5.4135047153E-002	0.535	1.247
1.190 36.999	0.873	212.076	0.254	4.4341588580E+001	1.6061301912E+001	-8.3770188860E-002	0.536	1.249
1.163 37.251	0.879	212.140	0.252	4.4316621042E+001	1.6096176179E+001	-1.0715823350E-001	0.536	1.252
1.135 37.303	0.880	212.153	0.254	4.4310992476E+001	1.6102678412E+001	-1.1244553841E-001	0.536	1.252
1.130 37.555	0.888	212.217	0.253	4.4278208419E+001	1.6134970558E+001	-1.4464532972E-001	0.537	1.255
1.102 37.807	0.893	212.280	0.249	4.4238125366E+001	1.6162363908E+001	-1.7515430163E-001	0.537	1.257
1.075 37.873	0.895	212.297	0.256	4.4226139297E+001	1.6168830703E+001	-1.8435226494E-001	0.538	1.258
1.068 38.125	0.903	212.362	0.251	4.4175004898E+001	1.6190917153E+001	-2.1546706415E-001	0.538	1.261
1.039 38.377	0.907	212.423	0.248	4.4117594746E+001	1.6202896144E+001	-2.7178916184E-001	0.538	1.265
1.011 38.454	0.909	212.443	0.259	4.4095802356E+001	1.6202450721E+001	-2.9422865930E-001	0.539	1.265
1.002 38.706	0.917	212.508	0.256	4.4014114918E+001	1.6192003981E+001	-4.1162920872E-001	0.539	1.264
0.971 38.957	0.924	212.573	0.263	4.3888438380E+001	1.6150690346E+001	-7.0410179402E-001	0.537	1.258
0.941 39.060	0.930	212.601	0.272	4.3807374060E+001	1.6117116384E+001	-8.5020869121E-001	0.537	1.251
0.927 39.312	0.940	212.669	0.258	4.3554799612E+001	1.6005351266E+001	-1.3628753674E+000	0.535	1.231
0.895 39.564	0.945	212.731	0.248	4.3120806514E+001	1.5811875140E+001	-2.1011947749E+000	0.531	1.196
0.863 39.701	0.948	212.765	0.269	4.2805032288E+001	1.5674334049E+001	-2.5221459886E+000	0.528	1.171
0.846 39.953	0.948	212.836	0.280	4.2069913792E+001	1.5365479060E+001	-3.2577402463E+000	0.523	1.124
0.820 40.205	0.948	212.906	0.280	4.1163900030E+001	1.4990604577E+001	-4.2255788912E+000	0.518	1.072
0.796 40.236	0.948	212.915	0.316	4.1031014491E+001		-4.3909827153E+000	0.517	1.065
0.793 40.488	0.942	212.996	0.320		1.4411699473E+001		0.511	1.011
0.773 40.739	0.935	213.076	0.320		1.3728677818E+001		0.502	0.955
0.753	0.000	2.0.070	0.020	3.000 100 TOOL 100 I			0.002	0.000

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 68 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

40.742	0.935	213.077	0.332	3.8065066703E+001	1.3720487563E+001	-7.1835179186E+000	0.502	0.955
0.753 40.994	0.911	213.161	0.345	3.5984706049E+001	1.2862927731E+001	-9.1242156577E+000	0.492	0.900
0.736 41.212 0.723	0.896	213.240	0.388	3.3830000951E+001	1.1969697849E+001	-1.0872103017E+001	0.479	0.855
41.464 0.712	0.873	213.343	0.407	3.0801224796E+001	1.0729929289E+001	-1.2192432017E+001	0.461	0.807
41.716 0.705	0.848	213.444	0.401	2.7687892628E+001	9.4748805747E+000	-1.2134581990E+001	0.438	0.769
41.739 0.705	0.845	213.453	0.388	2.7407529251E+001	9.3634664353E+000	-1.2141226161E+001	0.436	0.766
41.991 0.704	0.791	213.551	0.370	2.4274309937E+001	8.1386238547E+000	-1.1939189387E+001	0.415	0.738
42.243 0.707	0.728	213.640	0.350	2.1392995449E+001	7.0405594648E+000	-1.0802393225E+001	0.393	0.719
42.275 0.707	0.719	213.651	0.340	2.1048459372E+001	6.9112857337E+000	-1.0745062431E+001	0.390	0.717
42.527 0.709	0.633	213.736	0.343	1.8294770523E+001	5.9019300846E+000	-1.0809398632E+001	0.369	0.704
42.600 0.710	0.608	213.762	0.366	1.7508114458E+001	5.6197285459E+000	-1.0903414954E+001	0.363	0.700
42.852 0.716	0.529	213.856	0.389	1.4649052770E+001	4.6014159492E+000	-1.3521186252E+001	0.339	0.688
42.921 0.717	0.513	213.887	0.435	1.3670740136E+001	4.2523345957E+000	-1.3844359685E+001	0.328	0.685
43.173 0.716	0.433	213.995	0.477	1.0434384493E+001	3.1168694090E+000	-1.3375450692E+001	0.291	0.676
43.425 0.686	0.376	214.127	0.547	6.9326695940E+000	1.8871814368E+000	-1.3011663258E+001	0.225	0.653
43.677 0.599	0.331	214.271	0.540	3.8795769630E+000	8.9903553623E-001	-9.8376299234E+000	0.138	0.596
43.889 0.583	0.279	214.378	0.540	2.1996787330E+000	5.1469445976E-001	-8.2880309301E+000	0.100	0.574

LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio

: Altezza linea di thrust da nodo sinistro base concio

yt(m) : coordinata Y linea di trust

yt'(-) : gradiente pendenza locale linea di trust
E(x)(kN/m) : Forza Normale interconcio
T(x)(kN/m) : Forza Tangenziale interconcio E' (kN) : derivata Forza normale interconcio

Rho(x) (-) : fattore mobilizzazione resistenza al taglio verticale interconcio ZhU et al.(2003)

FS_qFEM(x)(-) : fattore di sicurezza locale stimato (locale in X) by qFEM FS_srmFEM(x)(-) : fattore di sicurezza locale stimato (locale in X) by SRM Procedure

TABELLA SFORZI DI TAGLIO DISTRIBUITI LUNGO SUPERFICIE INDIVIDUATA CON MINOR FS

X	dx			Stress Tai		Strength	TauS
(m)	(m)	(m)	(°) (kPa	a) (kN/m) (kP	a) (kN/n	n)
23.661	0.252	0.259	-13.555	-0.145	-0.038	5.292	1.371
23.913	0.252	0.259	-13.555	-0.436	-0.113	6.151	1.594
24.165	0.252	0.259	-13.555	-0.726	-0.188	7.216	1.870
24.417	0.252	0.259	-13.555	-1.016	-0.263	7.916	2.051
24.669	0.081	0.084	-13.555	-1.208	-0.101	8.742	0.732
24.750	0.252	0.259	-13.555	-1.426	-0.370	9.821	2.545
25.002	0.252	0.259	-13.555	-1.768	-0.458	10.446	2.706
25.254	0.252	0.259	-13.555	-2.109	-0.547	11.739	3.042
25.506	0.252	0.259	-13.555	-2.451	-0.635	12.925	3.349
25.758	0.009	0.010	-13.555	-2.628	-0.025	13.129	0.126
25.767	0.252	0.258	-12.004	-2.238	-0.576	14.438	3.718
26.019	0.252	0.258	-12.004	-2.497	-0.643	15.922	4.100
26.271	0.252	0.258	-12.004	-2.756	-0.710	17.129	4.411
26.523	0.204	0.209	-12.004	-2.990	-0.625	18.142	3.790
26.727	0.252	0.255	-8.323	-1.259	-0.320	18.949	4.824

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 69 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

26.979	0.252	0.255	-8.323	-1.347	-0.343	19.714	5.018
27.231	0.123	0.124	-8.323	-1.412	-0.175	19.655	2.443
27.354	0.252	0.252	-3.413	1.642	0.414	19.476	4.914
27.606	0.250	0.250	-3.413	1.720	0.431	19.562	4.900
27.856	0.252	0.252	2.683	5.986	1.509	18.644	4.701
28.107	0.252	0.252	2.683	6.166	1.555	18.565	4.681
28.359	0.013	0.013	2.683	6.260	0.082	18.286	0.241
28.372	0.252	0.254	7.453	9.674	2.458	17.668	4.488
28.624	0.200	0.201	7.453	9.833	1.981	17.488	3.524
28.824	0.252	0.258	12.195	13.153	3.389	16.396	4.225
29.076	0.250	0.255	12.195	13.252	3.383	16.282	4.157
29.326	0.252	0.262	15.915	15.639	4.096	15.221	3.987
29.577	0.252	0.262	15.915	15.630	4.094	15.067	3.946
29.829	0.044	0.046	15.915	15.625	0.712	14.961	0.682
29.873	0.252	0.266	18.511	17.071	4.534	14.190	3.769
30.125	0.252	0.266	18.511	16.960	4.505	14.055	3.733
30.377	0.175	0.184	18.511	16.867	3.108	13.946	2.570
30.552	0.252	0.265	17.916	16.458	4.357	14.029	3.714
30.803	0.252	0.265	17.916	16.373	4.334	13.967	3.697
31.055	0.110	0.116	17.916	16.311	1.884	13.937	1.610
31.165	0.252	0.264	17.221	15.878	4.187	14.122	3.724
31.417	0.252	0.264	17.221	15.820	4.172	14.096	3.717
31.669	0.072	0.075	17.221	15.783	1.190	14.102	1.064
31.741	0.252	0.263	16.479	15.343	4.030	14.280	3.751
31.993	0.252	0.263	16.479	15.313	4.022	14.270	3.748
32.245	0.051	0.053	16.479	15.295	0.809	14.284	0.755
32.296	0.252	0.262	15.695	14.843	3.883	14.476	3.787
32.547	0.252	0.262	15.695	14.841	3.883	14.500	3.794
32.799	0.046	0.048	15.695	14.840	0.713	14.519	0.698
32.846	0.252	0.261	14.961	14.423	3.760	14.707	3.834
33.097	0.252	0.261	14.961	14.446	3.766	14.756	3.847
33.349	0.036	0.037	14.961	14.459	0.542	14.773	0.554
33.386	0.252	0.260	14.217	14.039	3.648	14.980	3.892
33.637	0.252	0.260	14.217	14.085	3.660	15.049	3.910
33.889	0.042	0.044	14.217	14.112	0.617	15.064	0.658
33.932	0.252	0.259	13.492	13.705	3.550	15.287	3.960
34.184	0.252	0.259	13.492	13.772	3.567	15.369	3.981
34.435	0.049	0.050	13.492	13.812	0.689	15.385	0.767
34.484	0.252	0.258	12.798	13.425	3.468	15.619	4.034
34.736	0.252	0.258	12.798	13.510	3.490	15.712	4.058
34.988	0.068	0.070	12.798	13.564	0.943	15.737	1.095
35.056	0.252	0.258	12.798	13.618	3.518	15.815	4.085
35.307	0.252						
		0.258	12.798	13.703	3.540	15.890	4.104
35.559	0.064	0.066	12.798	13.757	0.909	15.903	1.051
35.624	0.252	0.258	12.797	13.810	3.567	15.977	4.127
35.876	0.252	0.258	12.797	13.895	3.589	16.045	4.144
36.128	0.058	0.060	12.797	13.948	0.835	16.054	0.961
36.186	0.252	0.258	12.797	14.000	3.616	16.126	4.165
36.438	0.252	0.258	12.797	14.085	3.638	16.192	4.182
36.690	0.058	0.059	12.797	14.138	0.837	16.201	0.959
36.747	0.252	0.258	12.797	14.190	3.665	16.273	4.203
36.999	0.252	0.258	12.797	14.275	3.687	16.337	4.220
37.251	0.052	0.053	12.797	14.327	0.760	16.346	0.867
37.303	0.252	0.258	12.796	14.378	3.714	16.418	4.241
37.555	0.252	0.258	12.796	14.463	3.736	16.479	4.257
37.807	0.067	0.069	12.796	14.517	0.995	16.494	1.130
37.873	0.252	0.258	12.796	14.571	3.764	16.562	4.278
38.125	0.252	0.258	12.796	14.656	3.786	16.617	4.292
			12.796				
38.377	0.076	0.078		14.712	1.153	16.623	1.303
38.454	0.252	0.258	12.796	14.767	3.814	16.682	4.309
38.706	0.252	0.258	12.796	14.852	3.836	16.716	4.318
38.957	0.103	0.106	12.796	14.912	1.573	16.701	1.762
39.060	0.252	0.258	12.795	14.972	3.867	16.740	4.324
39.312	0.252	0.258	12.795	15.057	3.889	16.732	4.322
39.564	0.137	0.140	12.795	15.123	2.123	16.738	2.350
39.701	0.252	0.262	15.615	17.104	4.473	16.019	4.189
39.953	0.252	0.262	15.615	17.104	4.474	15.973	4.177
40.205	0.031	0.032	15.615	17.106	0.549	15.951	0.512
40.236	0.252	0.267	19.156	19.293	5.144	14.861	3.963

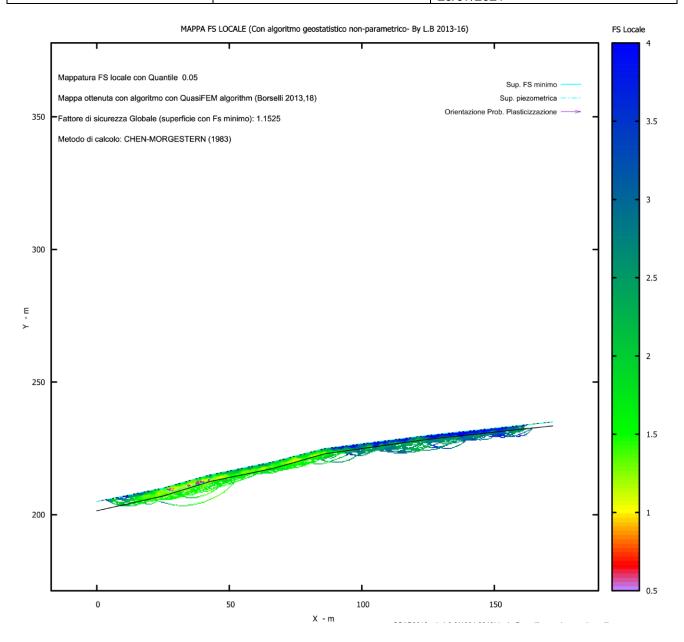
Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp

Foglio 70 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

29/07/2021

40.488	0.252	0.267	19.156	19.155	5.107	14.693	3.918
40.739	0.003	0.003	19.156	19.085	0.056	14.717	0.043
40.742	0.252	0.274	23.107	21.097	5.777	13.381	3.664
40.994	0.218	0.237	23.107	20.783	4.931	13.223	3.137
41.212	0.252	0.282	26.713	21.993	6.201	12.013	3.388
41.464	0.252	0.282	26.713	21.441	6.046	11.883	3.351
41.716	0.023	0.026	26.713	21.140	0.548	12.007	0.311
41.739	0.252	0.294	31.107	22.165	6.521	10.401	3.060
41.991	0.252	0.294	31.107	21.310	6.269	10.156	2.988
42.243	0.032	0.038	31.107	20.827	0.782	10.203	0.383
42.275	0.252	0.305	34.374	20.948	6.393	8.840	2.698
42.527	0.073	0.088	34.374	20.234	1.790	8.824	0.781
42.600	0.252	0.305	34.374	19.422	5.927	8.442	2.576
42.852	0.069	0.084	34.374	18.590	1.561	8.615	0.723
42.921	0.252	0.315	36.844	17.985	5.661	7.474	2.352
43.173	0.252	0.315	36.844	16.475	5.186	7.395	2.328
43.425	0.252	0.315	36.844	14.966	4.710	7.262	2.286
43.677	0.212	0.265	36.844	13.575	3.601	6.724	1.784
43.889	0.252	0.319	37.932	12.210	3.899	6.407	2.046


LEGENDA SIMBOLI

X(m) : Ascissa sinistra concio
dx(m) : Larghezza concio
dl(m) : lunghezza base concio
alpha(°) : Angolo pendenza base concio
TauStress(kPa) : Sforzo di taglio su base concio
TauF (kN/m) : Forza di taglio su base concio
TauStrength(kPa) : Resistenza al taglio su base concio
TauS (kN/m) : Forza resistente al taglio su base concio

Progetto di n. 2 impianti per la produzione di energia elettrica da fonte solare in Rotello (CB), denominati "Rotello 43" di potenza nominale pari a 41.546,44 kWp Foglio 71 di Fogli 71

Dottor Geologo Di Berardino Giancarlo Rocco

