

PROGETTO DEFINITIVO

RELAZIONE TECNICA DESCRITTIVA

Tipo Elaborato	Codice Elaborato	Data	Scala CAD	Formato	Foglio / di	Scala
REL.	2102_R.03	05/04/2023	-	A4	1/97	-

EF AGRI Società Agricola A.R.L.

PROPONENTE

Via del Brennero, 111 38121- Trento (TN)

SET SVILUPPO s.r.l.

SVILUPPO

Corso Trieste, 19 00198 - Roma (RM)

PROGETTAZIONE

Rev.	Data	Descrizione	Redatto	Verificato	Approvato
00	05/04/2023	Prima Emissione	Ing. G. Greco	Ing. M. Marsico	Ing. G. Greco
			·		

RELAZIONE TECNICA DESCRITTIVA

FATTORIA SOLARE "SIAMAGGIORE 1" AGRIVOLTAICO DI TIPO ELEVATO E AVANZATO

di potenza pari a 34,315 MWp e sistema di accumulo pari a 7,5 MW Progetto:

Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

3

SOMMARIO

1.	DATI GE	NERALI	5
	1.1. Il Pro	ponente	5
	1.2. Il Pro	getto	7
	1.3. Motiv	vazioni del Progetto Agrivoltaico	11
2.	RIFERIN	1ENTI DI PROGETTO	15
	2.1. Inqua	adramento territoriale	15
	2.1.1.	Viabilità ed accessibilità	19
	2.1.2.	Descrizione del sito e delle interferenze	20
		patibilità con gli strumenti di pianificazione e programmazione te vincoli	
	2.2.1.	Pianificazione Nazionale	25
	2.2.2.	Pianificazione Territoriale e quadro vincolistico	25
3.	ENERGI	A DA FONTE SOLARE FOTOVOLTAICA	29
4.	ACCUMI	JLO ELETTROCHIMICO	32
	4.1. Batte	rie al Litio e Storage Inverter	32
5.	CARATT	ERISTICHE DELL'IMPIANTO AGRIVOLTAICO	34
	5.1. Comp	oonenti Tecnico-Elettriche	36
	5.1.1.	Moduli fotovoltaici	36
	5.1.2.	Strutture elevate ad inseguimento solare	38
	5.1.3.	Inverter	39
	5.1.4.	Power Station	40
	5.1.5.	Storage Container	40
	5.1.6.	Storage Inverter	41
	5.1.7.	Storage Power Station	
	5.1.8.	Cavi di potenza BT e AT	41
	5.1.9.	Cavi di segnale	43
	5.1.10.	Sistemi SCADA	43
	5.1.11.	Dimensionamento Sottocampi	44
	5.1.12.	Dimensionamento Cavi	52
	5.1.13.	Dimensionamento Storage	58
	5.1.14.	Cabina di Raccolta	59
	5.1.15.	Opere civili	60
	5.2. Carat	teristiche Tecniche-Agronomiche	62
	5.2.1.	Piano agronomico	62

Progetto:

Fattoria Solare "Siamaggiore 1"
EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

4

		5.2	.2.2. Sistema di irrigazione	66
6.		OF	PERE DI CONNESSIONE	70
	6.1		Specifiche del cavidotto	
	6.2		Dimensionamento del cavidotto	72
	6.3	3.	Percorso del cavidotto	73
	6.4		Caratteristiche dei materiali	74
	6.5	•	Scavo del cavidotto di collegamento	75
	6.6		Modalità di posa del cavidotto di collegamento	
	6.7	.	Opere di rete – Nuova SE	78
7.		N(ORME E SPECIFICHE TECNICHE	82
8.			ISTEMA DI CONTROLLO, RECINZIONE E VIABILITA' INTERNA	
9.			TIMA DELLA PRODUCIBILITA'	
	9.1		Benefici Ambientali	93
1().	DI	ISMISSIONE E RIPRISTINO DEI LUOGHI	96
11	l.	CF	RONOPROGRAMMA LAVORI	96
12	2.	VA	ALORE DELL'OPERA	97
13	3.	BE	ENEFICI SOCIO-ECONOMICI E RICADUTE OCCUPAZIONALI	97

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	5

1. DATI GENERALI

Proponente	EF AGRI Società Agricola a r.l.
Progetto	Agrivoltaico: progetto di miglioramento fondiario integrato da
	strutture fotovoltaiche elevate di potenza nominale pari a 34,315
	MWp e completato da un sistema di accumulo di potenza nominale
	pari a 7,5 MW.
Coordinate geografiche	Latitudine: 39°58'6.65" NORD
	Longitudine: 8°38'1.60" EST
Comuni Interessati dal	Siamaggiore (OR)
progetto	Solarussa (OR)
Soluzione di connessione	Codice Pratica Terna: 202101679

1.1. Il Proponente

EF Agri Società Agricola a r.l. è una società detenuta al 100% da EF Solare Italia S.p.A., il primo operatore di fotovoltaico in Italia e tra i principali in Europa con una potenza installata di oltre 1 GW. Partecipata al 70% da F2i - Fondi Italiani per le Infrastrutture, il più grande fondo infrastrutturale attivo in Italia, e al 30% da Crédit Agricole Assurances, primo investitore istituzionale francese nelle energie rinnovabili, EF Solare Italia ha in portafoglio in Italia più di 300 impianti in 17 Regioni ed è presente anche in Spagna con l'operatore solare Renovalia Energy Group.

EF Solare ha un'esperienza ultradecennale nell'agrivoltaico maturata grazie alla gestione di 9 serre fotovoltaiche collocate in diverse regioni italiane che, oltre a generare energia tale da soddisfare i fabbisogni di oltre 20.000 famiglie italiane, producono prodotti agricoli che riscuotono un importante successo commerciale in Italia e all'estero.

I primi progetti agrivoltaici di EF Solare sono nati nel 2011 in Calabria nei Comuni di Villapiana, Cassano allo Jonio, Scalea e Orsomarso (CS), grazie alla storica partnership con società agricole territoriali specializzate nella coltivazione di agrumi – **Le Greenhouse**.

Le Greenhouse coltivano le serre in maniera sostenibile e innovativa per un totale di circa 40 ettari nelle Regioni Calabria (26 ha), Umbria (2 ha) e Sardegna (12 ha) con circa 15.000 piante di agrumi in pieno assetto vegetativo. Tali società agricole si sono recentemente riunite nel Consorzio Le Greenhouse, nato per promuovere le coltivazioni in ambiente fotovoltaico, i protocolli colturali finora sperimentati, i risultati ottenuti e i prodotti agro-alimentari di alta qualità che ne derivano.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	6

L'agricoltura in ambiente fotovoltaico valorizza la forte vocazione agrumicola del territorio e contribuisce anche al mantenimento di una tradizione millenaria legata alla coltivazione del cedro, innovandola e rendendola sostenibile tramite:

- la riduzione del fabbisogno idrico annuo delle coltivazioni, grazie alla diminuzione dell'evapotraspirato e all'utilizzo di sistemi irrigui di precisione (risparmio del 70% di acqua rispetto al piano campo);
- il monitoraggio costante dell'attività fenologica delle piante tramite applicativi gestibili da remoto.

Nell'Aprile 2022, Coldiretti ha assegnato ad una delle società del Consorzio – Lao Greenhouse – l'importante premio nazionale "Oscar Green" – categoria Sostenibilità e Transizione ecologica per i risultati raggiunti nella coltivazione del cedro in ambiente fotovoltaico in Calabria ¹.

Figura 1: Serra fotovoltaica con coltivazione di limoni

_

¹ https://www.coldiretti.it/economia/giornata-della-terra-i-vincitori-delloscar-green-2022 https://www.repubblica.it/green-and-blue/dossier/giornata-della-terra/2022/04/22/news/oscar green coldiretti agricoltura-346456102/

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare " <i>Siamaggiore 1</i> " EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	7

L'esperienza maturata nella coltivazione di agrumi in ambiente fotovoltaico è stata applicata anche nelle serre sarde presenti nel Comune di Milis (OR), territorio caratterizzato anche esso dalla forte vocazione agrumicola. Nelle serre sono state messe a dimora piante di limoni, lime e fingerlime e, ai fini di tutela della biodiversità, è stata inserita una coltivazione di "Sa Pompia", agrume tipico della zona.

Grazie al riuscito connubio tra agricoltura e produzione di energia green delle serre fotovoltaiche, **EF Solare Italia ha creato un comparto ad hoc per lo sviluppo di progetti agrivoltaici** e ha sviluppato una **nuova tipologia di agrivoltaico** (con moduli elevati a circa 3 metri dal suolo), partendo dall'osservazione delle caratteristiche peculiari dei territori (naturali, geomorfologiche, produttive, umane) e seguendo le vocazioni agricole territoriali al fine di salvaguardare gli usi del suolo e i territori rurali.

Con il progetto della "Fattoria Solare Siamaggiore 1", EF Solare persegue due obiettivi prioritari: (i) valorizzazione delle vocazioni agricole territoriali con tutela delle biodiversità e delle tradizioni agroalimentari locali e (ii) contribuzione alla transizione energetica verso le energie rinnovabili con l'introduzione di innovazioni tecnologiche rispettose del paesaggio.

1.2. Il Progetto

Il progetto agrivoltaico denominato "Fattoria Solare Siamaggiore 1" è un progetto di agricoltura innovativa che introduce in Sardegna un nuovo modello di sviluppo sostenibile che combina la coltivazione delle superfici agricole con la produzione di energie rinnovabili, rispondendo alle esigenze ambientali, climatiche e di tutela dei territori rurali.

Il progetto prevede il miglioramento fondiario di un'area di circa 64 Ha, ubicata nel Comune di Siamaggiore (OR), tramite l'implementazione di un piano agronomico integrato con **strutture fotovoltaiche elevate** e ad inseguimento solare monoassiale (c.d. tracker). L'insieme dei moduli fotovoltaici supportati da queste strutture e opportunamente connessi, determinerà nel complesso una potenza di picco pari a 34,315 MWp.

L'impianto agrivoltaico sarà inoltre corredato da un sistema di accumulo (c.d. storage) in assetto AC Coupling, capace sia di assorbire che di immettere energia verso la Rete Elettrica Nazionale. Tale sistema è stato previsto all'interno dell'area di impianto, perseguendo obiettivi di funzionalità e di ottimizzazione degli spazi, ed avrà una potenza nominale pari a 7,5 MW.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	8

Le opere di connessione necessarie per il collegamento dell'impianto agrivoltaico e del sistema di accumulo alla RTN sono costituite da un cavidotto interato a 36 kV di circa 1,8 km che collega l'impianto allo stallo arrivo produttore a 36 kV nella nuova Stazione Elettrica (SE) della RTN a 220/36 kV da inserire in entra-esce alla linea 220 kV "Codrongianos-Oristano" esistente.

Per le opere di connessione, il cavidotto interrato a 36 kV da collegare in antenna allo stallo arrivo produttore a 36 kV nella suddetta SE costituisce opera di utenza per la connessione mentre la nuova SE, incluso lo stallo, si configura come "Opere di Rete".

La nuova SE della RTN rappresenta una soluzione tecnica di connessione comune con altri produttori. Il produttore Sorgenia Renewables S.p.a., costituendosi come capofila, si è fatto carico di redigere il progetto definitivo delle opere RTN suddette, impegnandosi a metterlo a disposizione e condivisione, per far sì che possa essere incluso e integrato nei progetti degli altri produttori a fini autorizzativi. Il progetto definitivo delle Opere di Rete, sottoposto a benestare di Terna S.p.A, è parte integrante del progetto complessivo.

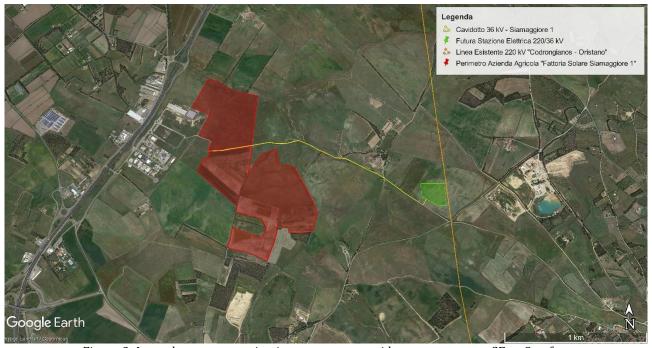


Figura 2: Inquadramento area impianto, percorso cavidotto e area nuova SE su Ortofoto

La nuova Stazione Elettrica (SE) di trasformazione 220/36 kV, denominata Bauladu, già sottoposta ad analisi di prefattibilità tecnica, potrà essere realizzata nel comune di Solarussa. Sarà connessa mediante due elettrodotti aerei alla linea Codrongianos – Oristano. Per una descrizione dettagliata dell'opera si rimanda al paragrafo 6.7 della presente relazione "Opere di rete – Nuova SE" e alla relazione "2102_R.23_Relazione Tecnica SE 220/36 kV Bauladu". La progettazione dell'opera avverrà

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	9

nel rispetto degli standard tecnici TERNA, delle norme CEI di riferimento e nel rispetto della normativa vigente.

Le strutture fotovoltaiche caratterizzanti l'impianto Agrivoltaico sono state studiate in combinazione con il piano agronomico e presentano dimensioni tali da consentire lo svolgimento dell'attività agricola nonché gli interventi di manutenzione sui principali componenti elettrici di impianto. L'altezza della struttura portante dei moduli fotovoltaici è pari a circa 3,7 m che, alla massima inclinazione del modulo (rotazione dell'asse Nord-Sud di +55° e – 55° rispetto al piano orizzontale), permette il mantenimento di una distanza minima dal suolo pari a circa 2,7 m, ideale per le attività agricole previste nel piano agronomico e l'utilizzo in sicurezza delle macchine. Le strutture sono infisse al suolo senza l'utilizzo di fondazioni in cemento e sono poste ad una distanza reciproca di interasse pari a 6m in direzione Est-Ovest.

Tale assetto consente la coltivazione delle intere aree con un'ombra mobile che garantisce l'ottimale apporto di luce diretta e diffusa alle coltivazioni e permette l'utilizzo di sesti di impianto per la messa a dimora delle piante di tipo semi-intensivo. Le piante beneficeranno dell'azione di protezione da fenomeni atmosferici violenti e straordinari, fornita dai pannelli. In tale ottica, i sistemi agrivoltaici, come quelli in proposta, si possono equiparare a manufatti strumenti all'attività agricola, similari ai sistemi di protezione tradizionali sempre più necessari a causa del cambiamento climatico. In aggiunta, si classificano come sistemi ad alta innovazione tecnologica, contribuendo alla produzione di energia green.

La tipologia di impianto proposto è di tipo elevato – avanzato ai sensi della Linee Guida in materia di Impianti Agrivoltaici del Ministero dell'Ambiente e della Sicurezza Energetica, in cui l'agricoltura è gestita tramite i più avanzati sistemi di fertirrigazione e monitoraggio delle condizioni vegetative delle piante e del microclima in campo.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	10

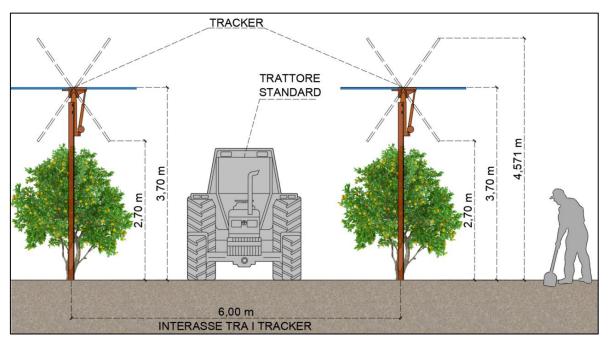


Figura 3: Esempio di impianto arboreo integrato con strutture fotovoltaiche

Il progetto agrivoltaico in proposta mira a valorizzare il fondo, aumentandone la capacità agricola. Infatti, il piano agronomico prevede che, il terreno attualmente utilizzato per pascolo ovino e foraggio, verrà reso irriguo tramite opere di miglioramento fondiario connesse con le infrastrutture del Consorzio di Bonifica e sarà coltivato con piante arboree (mandorlo e agrumi di diversa varietà) dall'alto valore aggiunto. Inoltre, per aumentare la valenza ecologica di un'area agricola inserita in contesto urbanizzato (presenza della zona industriale a confine), il piano agronomico prevede di piantumare lungo il perimetro dell'azienda una siepe composta da specie mediterranee (mirto sardo, corbezzolo e lentisco che caratterizzano l'intorno dell'area di progetto) e ulivi, specie utili all'ingresso di insetti impollinatori nell'area. Tale siepe perimetrale è studiata anche in funzione frangivento.

A differenza degli impianti fotovoltaici a terra o impianti agrivoltaici di tipo interfilare, l'impianto con moduli elevati dal suolo consente la valorizzazione del patrimonio agricolo tramite la coltivazione in sinergia con la produzione di energia elettrica da fonte rinnovabile senza consumo di suolo.

In particolare, si segnala che le colture arboree verranno messe a dimora su filari della lunghezza dei tracker ed in corrispondenza della superficie di terreno al di sotto dei moduli fotovoltaici nel rispetto di classici sesti di impianto utilizzati anche in campo aperto.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	11

A titolo esemplificativo si riporta l'immagine di un impianto agrivoltaico dimostrativo a consumo di suolo nullo, gestito dal Consorzio Le Greenhouse, con evidenza del sesto d'impianto che risulta essere invariato tra le colture poste in pieno campo e quelle poste in ambiente agrivoltaico.

Figura 4: Impianto dimostrativo realizzato nel complesso agrivoltaico di Scalea (CS) gestito dal Consorzio Le Greenhouse.

L'impianto agrivoltaico in proposta risulta dunque progettato in accordo con gli obiettivi di tutela dell'ambiente, del paesaggio, del patrimonio storico e delle tradizioni agroalimentari locali evitando in ogni modo la compromissione delle caratteristiche peculiari del territorio.

La presenza dello Storage a corredo dell'impianto agrivoltaico rappresenta un ulteriore elemento di innovazione del progetto. L'accumulo sarà del tipo elettrochimico e sarà costituito da due elementi fondamentali, ovvero Storage inverter e Storage Container con l'obiettivo di accumulare l'energia e di rilasciarla verso la Rete Nazionale a seconda della richiesta degli utenti, contribuendo alla stabilizzazione dell'utilizzo delle rinnovabili in Italia.

1.3. Motivazioni del Progetto Agrivoltaico

Il progetto agrivoltaico in proposta rappresenta un nuovo modello di sviluppo sostenibile che combina la coltivazione delle superfici agricole con la produzione di energie rinnovabili, rispondendo alle diverse sfide poste dalle esigenze ambientali.

Infatti, se da un lato si ritiene necessario proseguire con lo sviluppo di fonti di energia rinnovabile come sistema per soddisfare la domanda interna di energia e contemporaneamente ridurre le

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare " <i>Siamaggiore 1</i> " EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	12

emissioni di gas serra dovuti all'utilizzo dei combustibili fossili, dall'altro lo sviluppo di soluzioni tradizionali su terreni a destinazione agricola – come il fotovoltaico a terra - riduce la disponibilità di terreni per la produzione agro-alimentare.

Il **modello agrivoltaico di tipo elevato-avanzato** nasce in risposta a tale conflitto relativo alla destinazione d'uso del suolo tra produzione di cibo e/o produzione di energia elettrica, contribuendo al contempo ad accrescere l'indipendenza energetica del Paese e aumentando la resilienza dell'attività agricola ai cambiamenti climatici.

L'agrivoltaico può, infatti, contribuire al rafforzamento e allo sviluppo del settore agro-pastorale:

- aumentando i ricavi di settore senza occupazione dei suoli e a zero impatto sulla vocazione agricola, ambientale e territoriale;
- apportando nuove risorse per investimenti in infrastrutture agricole innovative come i sistemi fotovoltaici di protezione delle colture che rendono le attività agricole più resilienti ai cambiamenti climatici;
- stabilizzando le opportunità di lavoro nelle comunità rurali e riducendone la stagionalità tramite la sostituzione di infrastrutture agricole temporanee con quelle più durevoli (un impianto agrivoltaico ha una vita utile pari almeno a 30 anni); il solare crea più posti di lavoro per megawatt di potenza generata rispetto a qualsiasi altra fonte di energia e l'agrivoltaico tende a tutelare e valorizzare i lavoratori già presenti sui territori, accrescendone anche l'occupazione nella parte agricola.

Ad oggi, la coesistenza dell'agricoltura con il fotovoltaico sulle stesse superfici, in termini di efficienza complessiva per l'utilizzo di suolo è dimostrata da diversi studi in ambito internazionale ed europeo puntualmente riportati nell'elaborato "2102_R.05_Piano Agronomico_Rev00", insieme ai risultai ottenuti direttamente dalla società agricole del Consorzio Le Greenhouse che operano da più di 10 anni in ambiente fotovoltaico.

Per tale ragione, gli impianti agrivoltaici rappresentano un'opera strategica ai fini dell'implementazione del Piano Nazionale di Ripresa e Resilienza, nel quale si legge "l'obiettivo di diffondere impianti agrivoltaici di medie e grandi dimensioni" (p. 128) e, proprio in quest'ottica, è stato espressamente previsto che essi siano opere di pubblica utilità, indifferibili e urgenti (v. art. 7-bis, comma 3, del d.lgs. n. 152/2006).

Si sottolinea che la soluzione progettuale è stata studiata nell'ottica di valorizzare l'area da un punto di vista agronomico e di produttività dei suoli. La gestione agricola, inoltre, si avvarrà di sistemi di irrigazione di precisione volti al contenimento dei consumi idrici e sistemi di monitoraggio delle condizioni pedologiche delle coltivazioni e del microclima in campo.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	13

Tale tipologia di impianto è in linea:

- con la più recente normativa nazionale (v. art. 65 del d.l. n. 1/2012, come modificato da ultimo dalla legge n. 34/2022) che riconosce delle premialità e specifiche misure incentivanti "agli impianti agrivoltaici che adottino soluzioni integrative innovative con montaggio dei moduli elevati da terra, anche prevedendo la rotazione dei moduli stessi, comunque in modo da non compromettere la continuità delle attività di coltivazione agricola e pastorale, anche consentendo l'applicazione di strumenti di agricoltura digitale e di precisione".
- con tutti i requisiti stabiliti dalla Linee Guida in materia di Impianti Agrivoltaici.

Infine, si sottolinea che:

- ai sensi dell'art. 20, comma 8, lettera c-quater del D.Lgs. 199/2021, l'area non è ricompresa nel perimetro dei beni sottoposti a tutela ai sensi del decreto legislativo 22 gennaio 2004, n. 42 né ricade nella fascia di rispetto dei beni sottoposti a tutela ai sensi della parte seconda oppure dell'articolo 136 del medesimo decreto legislativo, classificandosi come aree idonea ad installazioni fotovoltaiche;
- ai sensi dell'art. 6, comma 9-bis del Decreto legislativo 3 marzo 2011, n. 28, come recentemente modificato dalla L. 27 aprile 2022, n. 34, art. 9 comma 1-bis, l'area interessata dal progetto è comparabile alle aree classificate idonee per l'agrivoltaico, rientrando nelle distanze inferiori a 3 km da zone a destinazione industriale, artigianale e commerciale.

Per quanto riguarda i sistemi di accumulo, questi svolgono un ruolo fondamentale nell'ambito della transizione energetica in corso, contribuendo a:

- Fornire servizi ancillari di rete (ad esempio regolazione di frequenza) e supporto alla stabilità del sistema (es. inerzia);
- Limitare il *curtailment* di eolico e FV (previsto in aumento in assenza di altre misure) e ridurre i fenomeni di congestioni di rete;
- Ottimizzare gli investimenti in infrastrutture di rete.

In questo senso la possibilità di fornire capacità di regolazione di frequenza è garantita dai più alti livelli prestazionali di un sistema di accumulo rispetto agli impianti tradizionali, anche in virtù dei sistemi di sicurezza e regolazione generalmente adottati.

La possibilità di accumulare l'energia consente il riutilizzo della stessa quando viene meno la disponibilità di produzione da fonte eolica e solare, le quali risultano fonti rinnovabili caratterizzate

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	14

da una certa aleatorietà. Inoltre, l'accumulo di energia consente di ottimizzare l'utilizzo della rete esistente sfruttando meglio la sua capacità, evitando sovraccarichi nelle ore di massima produzione delle rinnovabili e permettendo anche di fornire servizi di regolazione per migliorare la sicurezza del Sistema Elettrico Nazionale.

È altresì possibile livellare i consumi e i relativi picchi di assorbimento immagazzinando energia nei periodi di basso fabbisogno, ovvero quando gli impianti di generazione sono costretti a operare in assetti meno efficienti (minimo tecnico), e rilasciandola nei periodi a fabbisogno più alto.

In virtù del Piano Nazionale Integrato Energia e Clima (PNIEC), il raggiungimento degli obiettivi per la sicurezza energetica del sistema elettrico, prevede l'installazione di nuovi sistemi di accumulo centralizzati per una potenza complessiva pari ad almeno 6 GW entro il 2030 (3GW entro il 2025), "prevalentemente rivolti a partecipare al mercato dei servizi di rete e localizzati principalmente nella zona Sud seguita da Sicilia e Sardegna". Di questa nuova capacità di accumulo almeno il 50% dovrà essere costituita da sistemi di accumulo elettrochimici.

L'impianto di accumulo sarà quindi in grado di garantire diversi servizi di dispacciamento e controllo della frequenza sulla base delle necessità della rete, partecipando al mercato dei servizi e ai progetti pilota indetti dal gestore della rete di trasmissione. A tal proposito, si menziona il progetto "Fast Reserve" avviato da Terna S.p.A. per la fornitura del servizio di regolazione ultrarapida della frequenza, all'interno del quale a ciascuna area geografica è stato attribuito un contingente di potenza.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	15

2. RIFERIMENTI DI PROGETTO

2.1. Inquadramento territoriale

L'impianto agrivoltaico è ubicato nel Comune di Siamaggiore (OR), nell'area settentrionale del campidano. L'opera interessa una superficie di circa 64,3 ha, limitrofa all'infrastruttura viaria principale "Strada Statale SS131 Carlo Felice" e alla "Complanare Est" e confinante con una zona industriale (P.I.P) che ricade nel Comune di Siamaggiore.

Il contesto in cui si inserisce l'area d'impianto, secondo la zonizzazione urbanistica allegata al Piano Urbanistico Comunale (PUC) del comune di Siamaggiore è classificata come zona "E – Agricola", sottozona "E2 - Aree con estensione prevalente per la funzione agricola produttiva", nei pressi di un'area classificata dal Piano Urbanistico Comunale come zone "D – Insediamenti Produttivi a carattere industriale, artigianale e commerciale", rientrando quindi nelle distanze inferiori a 3 km previste dalla normativa vigente ai fini dell'individuazione delle aree ideali per l'agrivoltaico, ove sono applicabili le procedure autorizzative semplificate.

Al fine di connettere l'impianto agrivoltaico alla RTN è prevista la realizzazione di un cavidotto 36 kV di circa 1,8 km.

Il cavidotto collega il nuovo l'impianto agrivoltaico alla futura Stazione Elettrica (SE) di Trasformazione 220/36 kV di Terna, da inserire in entra-esce alla linea RTN 220 kV esistente "Codrongianos – Oristano" in un'area a destinazione agricola all'interno del Comune di Solarussa (OR).

Il cavidotto di collegamento ricadrà nei comuni di Siamaggiore e Solarussa, che a partire dalla cabina di raccolta posizionata in maniera baricentrica all'area impianto, si estenderà per gran parte del suo percorso su strada interpoderale di collegamento tra i due comuni. In generale, le aree attraversate dal cavidotto dei due comuni sono classificate come zona "E – Agricola".

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	16

Il sito d'intervento e il percorso cavidotto sono censiti al N.C.T. dei Comuni di Siamaggiore e di Solarussa (OR) con i seguenti riferimenti catastali:

Area Impianto Agrivoltaico

Riferimenti Catastali	Foglio: 1
Fattoria Solare "Siamaggiore 1"	Mappali: 18 - 247 - 248 - 249 - 250 - 251 - 346 - 347 - 348
COMUNE DI SIAMAGGIORE (OR)	- 470 - 472 - 473 - 475

Percorso Cavidotto

Riferimenti Catastali	Foglio: 1
Cavidotto	<u>Mappali</u> : 473, 62, 457, 375, 23
COMUNE DI SIAMAGGIORE (OR)	
Riferimenti Catastali	Foglio: 12
Cavidotto	<u>Mappali</u> : 2, 451
COMUNE DI SOLARUSSA	
(OR)	

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	17

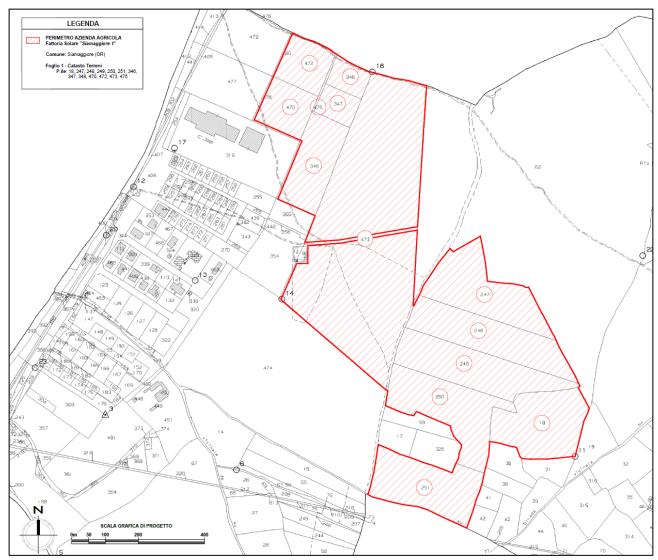


Figura 5: Inquadramento aree impianto su catastale. Riferimento Elaborato Grafico "2102_T.A.04_Inquadramento Territoriale su Catastale_Rev00"

Progetto: Titolo Elaborato: Pagina:

Fattoria Solare "Siamaggiore 1"
EF AGRI SOCIETA' AGRICOLA A R.L.

Relazione Tecnica Descrittiva

18

Dipezione Provinciale di Oristano Ufficio Pr	evinisale - Territorio - Direttore MARIA ROSARIA MOLFETTA Vis. tei (0.90 euro)
LEGENDA	
PERIMETRAZIONE AZIENDA AGRICOLA Fattoria Solare "Siamaggiore 1"	
Comune: Siamaggiore (OR)	The state of the s
Foglio 1 - Catasto Terreni P.Ile: 18, 247, 248, 249, 250, 251, 346, 347, 348, 470, 472, 473, 475	
347, 348, 470, 472, 473, 475	
The second second	
10 July 200 200 200 10 July 20	
200 200	
	18
N	
9 SCALA GRAFICA DI PROGETTO 0m 50 100 150 200 250	
E= 12700	The same of the sa

Figura 6: Inquadramento area impianto su Orto - Catastale. Riferimento Elaborato Grafico "2102_T.A.03_Inquadramento Territoriale su Orto-Catastale_Rev00"

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1"	Relazione Tecnica Descrittiva	19

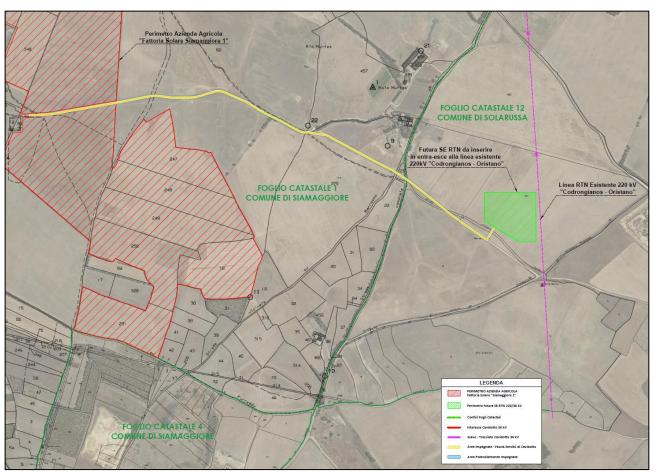


Figura 7: Inquadramento Territoriale "Percorso Cavidotto" con evidenza dei Fogli Catastali interessati Riferimento Elaborato Grafico "2102_T.A.07_Inquadramento Cavidotto su Orto-Catastale_Rev00"

2.1.1. Viabilità ed accessibilità

EF AGRI SOCIETA' AGRICOLA A R.L.

Il sito sorge lungo la "Strada Statale SS131 Carlo Felice" e alla "Complanare Est", dalle quali si diramano strade secondarie che permettono un agevole accesso all'area. Da segnalare anche una strada interpoderale che attraversa centralmente il sito.

Perseguendo obiettivi di funzionalità sono stati dunque previsti una serie di accessi caratterizzati da cancelli carrabili e pedonali, i quali consentiranno un agevole ingresso/uscita dal sito anche in presenza di mezzi pesanti.

La viabilità interna al sito è invece costituita da percorsi in misto stabilizzato con carreggiate pari a circa 6 m per l'agevole movimentazione durante le lavorazioni.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	20

2.1.2. Descrizione del sito e delle interferenze

L'area interessata dall'impianto agrivoltaico in proposta ha un'estensione di circa 64 Ha. Il sito ricade nel comune di Siamaggiore e confina con altri lotti agricoli coltivati, nell'area sono diffuse aree agricole e sistemi agroforestali sottoposti ad interventi di bonifica irrigua. Il sito ricade, inoltre, in aree seminative non irrigue, e confina a sud con aree classificate come seminativi semplici e colture orticole a pieno campo, in parte ricade in aree classificate come prati stabili.

Dallo studio della carta geolitologica di base si osserva che l'area ricade su depositi terrigeni con presenza di depositi alluvionali come sabbie con subordinate argille appartenenti all'Olocene e ghiaia alluvionali terrazzate da medie a grossolane con subordinate sabbie appartenenti al Pleistocene.

Nel complesso il sito presenta una superficie pressoché pianeggiante, con quote comprese tra 17 e 39 m circa s.l.m in lieve pendenza verso Sud compresa tra 0-10%. Le aree agricole e i sistemi agroforestali delle zone sottoposte a interventi di bonifica sono diffuse sull'intero territorio.

Si evidenzia inoltre la presenza, in prossimità dell'impianto di zone industriali "Zona D - Insediamenti produttivi" ricadente nel Comune di Siamaggiore (ad ovest). In particolare, le sottozone individuate sono classificate secondo il Piano Urbanistico Comunale come segue:

- "Sottozona D2: Sottozona regolamentata dal Piano per gli insediamenti produttivi (P.I.P.)", già parzialmente urbanizzata;
- "Sottozona D3: Sottozona a destinazione industriale, artigianale e commerciale da regolamentare con piano attuativo".

Si riportano di seguito alcune foto aree di inquadramento dell'area.

Progetto:

Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

21

Figura 8: Foto Aerea da Sud-Est dello stato attuale dell'area

Figura 9: Foto Aerea da Nord-Ovest dello stato attuale dell'area

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	22

Per quanto riguarda le possibili interferenze, si segnalano:

- la presenza a nord di un "Elemento Idrico Strahler n. 223650" classificato con ordine gerarchico 2 avente una fascia di rispetto 25m. Dall'analisi si sottolinea che le strutture componenti l'impianto agrivoltaico non risultano in interferenza ricadendo all'esterno della fascia di rispetto suddetta e che la stessa è stata indicata in quanto ricadente solo all'interno dei confini catastali dei terreni in disponibilità della proponente;
- sempre a nord un'area perimetrata come pericolo idraulico Hi4, cartografata come variante al PAI e apportata dal PUC in ottemperanza all'art. 37 comma 3 lett. b) delle N.A. del PAI. Dall'analisi si sottolinea che le strutture componenti l'impianto agrivoltaico **non risultano in interferenza** ricadendo all'esterno dell'area suddetta e che la stessa è stata indicata in quanto ricadente solo all'interno dei confini catastali dei terreni in disponibilità della proponente.
- La presenza ad Ovest della Strada Statale SS131 Carlo Felice e della Complanare Est della stessa. Si sottolinea che le strutture componenti l'impianto agrivoltaico in proposta risultano ad una distanza adeguata come da prescrizioni del D.P.R. n. 495/1992, art. 26 (art. 16 Cod.Str.)

Il cavidotto si sviluppa in aree a destinazione prevalentemente agricola e si estende lungo una strada vicinale fino all'area dedicata alla nuova Stazione Elettrica posta nel Comune di Solarussa. Si riporta di seguito un estratto dell'elaborato di progetto "2102_T.P.04_Layout di Impianto con Evidenza Interferenze_Rev00" e per maggior dettagli si rimanda alla relazione specialistica "2102_R.04_Studio di Inserimento Urbanistico_Rev00".

Nella figura seguente si può riscontrare quanto detto sopra.

Progetto:

Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

23

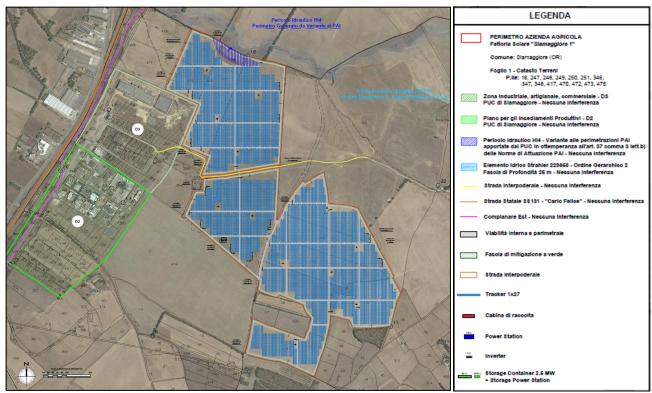
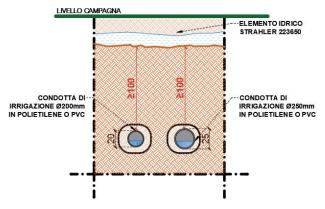


Figura 10: Inquadramento Territoriale su Catastale e Ortofoto delle Aree di Progetto con Interferenze. Riferimento Elaborato Grafico "2102_T.P.04_Layout Impianto con Evidenza Interferenze_Rev00"


Al fine di rendere irrigui i terreni e consentire il miglioramento fondiario con coltivazione di piante arboree, il progetto prevede un sistema d'irrigazione con realizzazione di due condotte DN250 e DN200. Tali condotte intersecano "Elemento Idrico Strahler n. 223650" e l'area perimetrata come pericolo idraulico Hi4 dal PUC del comune di Siamaggiore come sopra descritti. Il vano tecnico, da cui si dirameranno le condotte atte a servire l'impianto, sarà realizzato dallo stesso proponente in un altro progetto denominato "Fattoria Solare Tramatza" che prevederà la realizzazione di un bacino idrico di accumulo dal quale sarà possibile rilanciare, attraverso l'utilizzo di pompe, la risorsa idrica verso altri terreni in disponibilità della stessa proponente.

Al fine di superare le interferenze sopracitate, la realizzazione delle condotte sarà effettuata con tecnica "no-dig" attraverso l'utilizzo della trivellazione orizzontale controllata (TOC) che consentirà la giusta profondità di posa garantendo il passaggio in sub-alveo delle opere e rispettando la distanza minima dal fondo alveo e l'estradosso della tubazione di almeno un metro. Attraverso lo scavo senza uso di trincee, sopra descritto, è possibile lasciare inalterato il normale deflusso delle acque e la sezione idraulica del corso d'acqua.

Pertanto, le opere in oggetto risultano compatibili con le N.A. del PAI ed in particolare con l'art.27, comma 3, lettera h).

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	24

SEZIONE SU CONDOTTA D'IRRIGAZIONE

SEZIONE SU ELEMENTO IDRICO STRAHLER 223650 (RIU MURTAS)

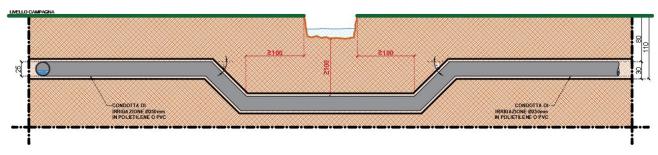


Figura 11: Dettaglio attraversamento alveo Riu Murtas con tecnica "No-Dig" con utilizzo di TOC

Il cavidotto si sviluppa in aree a destinazione agricola e si estende nel comune di Siamaggiore e Solarussa, rispettivamente per 1,4 km e 0,4 km, partendo dalla cabina di raccolta di progetto fino ad arrivare all'area in cui è prevista la realizzazione della futura stazione elettrica (SE) 220/36 kV da inserire in entra-esce nella linea RTN esistente 220 kV "Codrongianos – Oristano".

Nell'analisi del percorso del cavidotto, inclusa l'area di arrivo ove verrà ubicata la Nuova SE 220/36 kV, non sono state evidenziate potenziali interferenze.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	25

2.2. Compatibilità con gli strumenti di pianificazione e programmazione territoriale e analisi dei vincoli

2.2.1. Pianificazione Nazionale

Il Progetto in esame è allineato, oltre che alle norme e leggi nazionali in materia di impianti di produzione da fonti rinnovabili, alle strategie espresse dai documenti di programmazione e pianificazione esaminati quali il Piano Nazionale Integrato Energia e Clima - PNIEC 2030, Strategie Energetiche Nazionali (SEN), il Piano Nazionale di Ripresa e Resilienza (PNRR). Nello specifico è coerente con le politiche strategiche che prevedono un uso sostenibile ed efficiente delle risorse ambientali per lo sviluppo energetico.

2.2.2. Pianificazione Territoriale e quadro vincolistico

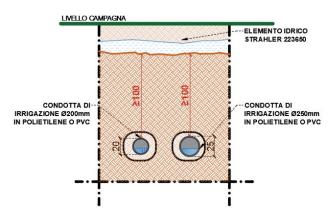
Al fine di verificare la coerenza e la compatibilità delle opere di progetto in esame, sono stati analizzati gli strumenti di pianificazione e programmazione vigenti. Sono stati analizzati, tramite geoportali regionale e nazionali, tra gli altri:

- il Piano Paesaggistico Regionale (PPR);
- il Piano Territoriale di Coordinamento Provinciale (PUP/PTCP);
- il Piano Urbanistico Comunale (PUC);
- il Piano Stralcio per l'Assetto Idrogeologico (PAI) comprendente il Piano Stralcio delle Fasce Fluviali (PSFF) e il Piano di Gestione del Rischio di Alluvioni (PGRA), con studio degli elementi idrici c.d. Strahler;
- Piano Forestale Ambientale Regionale (PFAR);
- Delibera Regionale G.R. n. 59/90 del 27.11.2020.

Per dettagli si fa riferimento all'elaborato "2102_R.04_Studio di inserimento urbanistico_Rev00" e si specifica che il sito non interessa aree:

- ricadenti nella Rete Natura 2000 e Progetto Natura (ZPS, ZSC, SIC, Ramsar, IBA, EUAP);
- interessate da vincoli paesaggistici (L.R. 45/89 e ss.mm.ii.);
- interessate da vincoli su beni storico-artistici-archeologico (L.1089/39 e ss.)
- interessate da vincoli di natura ambientale-naturalistica (L.R. 31/89 e ss.mm.ii.)
- interessate da vincolo idrogeologico ai sensi del R.D. n. 3267/1993;
- attraversate dal fuoco ai sensi della Legge n. 353 del 21.11.2000.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	26


Relativamente ai vincoli idraulici e geomorfologici come risulta dalle Cartografie PAI, non sono presenti nell'area d'intervento né pericoli e conseguenti rischi idraulici (Pericolo e Rischio Alluvioni PAI), né pericoli e conseguenti rischi geomorfologici (Pericolo e Rischio Frane PAI).

Dall'analisi effettuata si segnala a nord dell'area d'intervento, un'area perimetrata come pericolo idraulico Hi4, cartografata come variante al PAI e apportata dal PUC del comune di Siamaggiore in ottemperanza all'art. 37 comma 3 lett. b) delle N.A. del PAI e un elemento idrico Strahler identificato con n. 223650 avente "Ordine Gerarchico 2". Si sottolinea l'impianto agrivoltaico **non risulta in interferenza** con aree perimetrate a pericolo e rischio idraulico mentre risultano in interferenza le due condotte di irrigazione DN250 e DN200 con gli elementi sopracitati e la cui realizzazione è necessaria al fine di rendere irriguo il fondo.

Il vano tecnico, da cui si dirameranno le condotte atte a servire l'impianto, sarà realizzato dallo stesso proponente in un altro progetto denominato *"Fattoria Solare Tramatza"* che prevederà la realizzazione di un bacino idrico di accumulo dal quale sarà possibile rilanciare, attraverso l'utilizzo di pompe, la risorsa idrica verso altri terreni in disponibilità della stessa proponente.

Al fine di superare le interferenze sopracitate, la realizzazione delle condotte sarà effettuata con tecnica "no-dig" attraverso l'utilizzo della trivellazione orizzontale controllata (TOC) che consentirà la giusta profondità di posa garantendo il passaggio in sub-alveo delle opere e rispettando la distanza minima dal fondo dello stesso. Attraverso lo scavo senza uso di trincee, sopra descritto, è possibile lasciare inalterato il normale deflusso delle acque e la sezione idraulica del corso d'acqua.

SEZIONE SU CONDOTTA D'IRRIGAZIONE

Progetto:

Fattoria Solare "Siamaggiore 1"
EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

27

SEZIONE SU ELEMENTO IDRICO STRAHLER 223650 (RIU MURTAS)

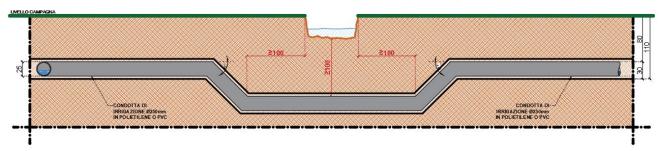


Figura 12: Dettaglio attraversamento alveo Riu Murtas con tecnica "No-Dig" con utilizzo di TOC

Ai sensi della Delibera Regionale 59/90 del 2020, si evidenzia che il sito ricade nella macrocategoria "Ambiente e Agricoltura" e nello specifico nella sottocategoria "6. Oasi permanenti di protezione faunistica e di cattura (istituite e proposte) e aree di presenza specie animali tutelate da convenzioni internazionali".

Da un'analisi approfondita, si è accertato che, per la sottocategoria "6", l'area ricade solo all'interno di "Aree di presenza specie animali tutelate da convenzioni internazionali" ed in particolare emerge che tali aree sono state designate sulla base degli areali di presenza della Gallina prataiola (*Tetrax tetrax*) allegati al "Piano d'azione per la salvaguardia e il monitoraggio della Gallina prataiola e del suo habitat in Sardegna, e a relativa area buffer di 1000 m", pubblicato a Dicembre 2011 come approfondimento a livello regionale del Piano d'Azione europeo per la Gallina prataiola redatto da Iñigo & Barov (2010). In particolare, si nota che la presenza di questa specie ha reso incompatibile la realizzazione di impianti eolici nelle suddette aree; mentre la Delibera estende l'inidoneità agli impianti fotovoltaici al suolo.

Trattandosi di impianto agrivoltaico non si ravvedono i rischi individuati dal piano suddetto e si sottolinea che il progetto prevede l'ampliamento del piano di miglioramento fondiario con l'implementazione di colture arboree atte a mitigare potenziali impatti negativi su fauna ed avifauna, rispetto anche ad un impianto fotovoltaico tradizionale a terra. Per tali ragioni, il progetto risulta compatibile con la Delibera n. 59-90/2020.

Infine, si sottolinea che durante i rilievi effettuati in campo per lo Studio di Impatto Ambientale nell'area di progetto e nell'area vasta, la specie non è stata osservata e si evidenzia l'assenza di siti riproduttivi all'interno del sito. Per quanto riguarda l'area vasta si evidenzia la presenza della zona industriale a Ovest del sito e dalle Strade Statale SS131 Carlo Felice e Complanare Est che costeggiano a Nord e a Sud l'intera area.

Per tali motivi sia l'area di progetto che l'area vasta non risultano essere siti idonei per la presenza/riproduzione della specie.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	28

Per completezza d'analisi, si riporta che l'area della nuova SE 220/36 kV RTN interessa terreni che risultano attraversati dal fuoco nell'anno 2009 con categoria soprassuolo "Altro" e nel 2011 con categoria soprassuolo "Pascolo". Dal momento che la destinazione d'uso di entrambe le aree incendiate è effettivamente di tipo seminativo, si è svolta un'attenta verifica tramite il Corpo forestale e di vigilanza ambientale Sardegna, a valle della quale è stato affermato che il terreno, iscritto al foglio 12 particella 451, è stato inserito nella categoria d'uso "Pascolo" anziché "Altro" per un mero errore cartografico. La Direzione Generale del Corpo Forestale e di Vigilanza Ambientale della Regione Sardegna ha quindi richiesto - mediante protocollo n. 36614 del 26 Maggio 2023 - al competente "Servizio tecnico e della vigilanza" di procedere con la modifica segnalata nella cartografia ufficiale pubblicata sul sito, onde porre rimedio all'errore riscontrato. Pertanto, si evince che l'area in esame non è sottoposta a vincolo ai sensi della Legge n.353/2000.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	29

3. ENERGIA DA FONTE SOLARE FOTOVOLTAICA

Tra le fonti energetiche, soprattutto in considerazione alle attuali esigenze di decarbonizzazione e autosufficienza energetica nazionale, quella solare rappresenta il principale esempio di fonte rinnovabile, in quanto risulta la fonte maggiormente diffusa sul pianeta.

Infatti, il sole irradia ogni anno circa 20.000 miliardi di TEP (Tonnellate Equivalenti di Petrolio), quantità circa 2.000 volte superiore a quanto richiesto per soddisfare tutte le richieste energetiche del pianeta.

L'energia irradiata dal sole deriva da reazioni termonucleari che consistono essenzialmente nella trasformazione di quattro nuclei di idrogeno in un nucleo di elio. È nota la possibilità di convertire la radiazione solare in energia elettrica sfruttando l'effetto fotoelettrico caratteristico dei semiconduttori.

Nello specifico, l'energia elettrica viene "prodotta" mediante la conversione della radiazione solare in energia elettrica, sfruttando il potenziale elettrico indotto dal flusso di fotoni che colpisce il materiale semiconduttore (silicio). Per incrementare l'effetto fotoelettrico si utilizzano agenti droganti donori (tipo n) e accettori (tipo p) di elettroni (nel caso del silicio, sono generalmente utilizzati atomi di fosforo come donori e atomi di boro come accettori), rispettivamente per la superfice superiore e inferiore del semiconduttore. L'energia associata al flusso di fotoni che investe il semiconduttore è così in grado di generare un certo numero di coppie elettrone/lacuna del reticolo del materiale che, se sono generate da fotoni con energia sufficiente, non si ricombinano e creano una differenza di potenziale. Le coppie di cariche opposte generate risentono di tale potenziale elettrico all'interno alla giunzione costituita dalle porzioni di semiconduttore drogate diversamente (n-p) e si muovono di conseguenza, generando così una corrente elettrica.

Il processo che genera questa energia viene chiamato "effetto fotovoltaico", ovvero il meccanismo che, partendo dalla luce del sole, induce la "stimolazione" degli elettroni presenti nel silicio di cui è composta ogni cella solare. Semplificando al massimo: quando un fotone colpisce la superficie della cella fotovoltaica, la sua energia viene trasferita agli elettroni presenti sulla cella in silicio. Dunque, la cella fotovoltaica si comporta come un generatore di corrente continua.

La potenza di una cella fotovoltaica varia in funzione della temperatura e dell'irradiamento solare incidente. Per valutare le caratteristiche prestazionali delle diverse celle ci si riferisce alle condizioni standard di riferimento imposte dalle norme internazionali STC (Standard Test Conditions):

• Radiazione incidente: 1.000 W/m2;

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare " <i>Siamaggiore 1</i> " EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	30

Temperatura moduli: 25 °C;

Spettro: 1.5 AM;Vento: 0 m/s.

La potenza della cella in condizioni STC viene definita comunemente potenza di picco con unità di misura Wp che rappresenta, in sostanza, un valore limite superiore.

Sulla possibilità di avvicinarsi a tale limite superiore incidono ovviamente altri fattori oltre alle condizioni ambientali, tra cui:

- l'esposizione, intesa anche come l'adeguata scelta delle strutture di fissaggio dei moduli fotovoltaici e la loro corretta collocazione all'interno del campo;
- l'adeguato dimensionamento dei principali componenti "attivi" (moduli fotovoltaici, inverter, quadri elettrici, cablaggi ecc.);
- la manutenzione nel corso della vita utile dei singoli componenti al fine di preservare nel tempo le caratteristiche elettriche nominali.

Modulo Fotovoltaico

Il modulo fotovoltaico è costituito dalla composizione di più celle collegate in serie e in parallelo assemblate in unica struttura. Solitamente le celle vengono incapsulate tra una lastra di vetro ed una di plastica, garantendo così la tenuta ai raggi ultravioletti ed alla temperatura.

L'incapsulamento mediante laminazione a caldo ed il montaggio di una cornice di protezione dovranno garantire la durata di vita del modulo tra 25 e 30 anni. Solitamente i moduli sono fissati su strutture in acciaio infisse al suolo.

Stringa fotovoltaica

Il collegamento elettrico in serie di più moduli si definisce stringa; il numero di moduli della stringa ne definiscono la tensione di lavoro del campo fotovoltaico. Il campo fotovoltaico è ottenuto poi dal collegamento in parallelo delle stringhe. Le stringhe vengono messe in parallelo sia mediante opportuni quadri di parallelo (c.d. QPS), sia direttamente sugli ingressi DC degli inverter.

<u>Inverter</u>

Prima dell'immissione, l'energia continua (DC) viene trasformata in energia alternata (AC), solitamente trifase, tramite convertitori statici denominati Inverter. Questi dispositivi presentano un'ampia gamma di potenze, da qualche kW fino a 4 MW o più, ai quali si collega il generatore

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare " <i>Siamaggiore 1</i> " EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	31

fotovoltaico tramite le linee DC provenienti da Quadri di Parallelo stringhe, o tramite l'innesto diretto delle stringhe stesse.

A valle degli inverter, un trasformatore eleva la tensione fino ad un livello accettabile per l'immissione in rete e per il trasporto dell'energia su lunghe distanze. L'energia così prodotta dal campo fotovoltaico viene immessa nella Rete Elettrica Nazionale.

Strutture di fissaggio ad inseguimento solare

I moduli fotovoltaici sono montati su strutture di sostegno costituite essenzialmente da tre componenti:

- i pali in acciaio, direttamente infissi nel terreno (nessuna fondazione prevista);
- la struttura porta moduli girevole montata sulla testa dei pali, composta da profilati in alluminio, sulla quale vengono posati i moduli fotovoltaici;
- l'inseguitore solare monoassiale, costituito essenzialmente da un motore elettrico (controllato da un software), che tramite un'asta collegata al profilato centrale della struttura di supporto, permette di ruotare la struttura durante la giornata, posizionando i pannelli nella perfetta angolazione per minimizzare la deviazione dall'ortogonalità dei raggi solari incidenti, ed ottenere per ogni cella un surplus di energia fotovoltaica generata.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	32

4. ACCUMULO ELETTROCHIMICO

Un sistema di accumulo (c.d. Storage) è un sistema caratterizzato da un insieme di dispositivi, apparecchiature e logiche di gestione e controllo, funzionale ad assorbire e rilasciare energia elettrica. Tale sistema deve essere in grado di operare in maniera continuativa e in parallelo con la rete. Il Sistema di accumulo può essere installato su impianti di produzione secondo tre diverse configurazioni, individuate dalle norme CEI e che si differenziano in base alla modalità di carica e al posizionamento elettrico dello stesso:

- Monodirezionale lato produzione;
- Bidirezionale lato produzione;
- Bidirezionale post-produzione.

Nel caso in progetto si tratterà di un impianto bidirezione lato post-produzione (c.d. AC Coupling) per cui sarà possibile interfacciarsi alla RTN in immissione e in prelievo in maniera disaccoppiata rispetto alla produzione, ovvero anche quando l'impianto agrivoltaico non è in funzione.

Tra i sistemi più comunemente utilizzati, anche in virtù del maggiore impegno nello sviluppo tecnologico dei principali elementi in gioco, vi sono i sistemi Storage di tipo elettrochimico.

4.1. Batterie al Litio e Storage Inverter

La maggior parte dei sistemi Storage utilizza batterie al litio e si basa su un gruppo variegato di tecnologie, in cui il filo conduttore per accumulare energia è l'utilizzo appunto degli ioni di litio, particelle con una carica positiva libera che possono facilmente entrare in reazione con altri elementi.

Il funzionamento di carica e scarica si basa sulla presenza di un elettrodo positivo (catodo in litio) ed un elettrodo negativo (costituito da un anodo in carbonio) e si realizza tramite reazioni chimiche che consentono di accumulare e restituire l'energia.

Il catodo è solitamente costituito da un ossido litiato di un metallo di transizione (LiTMO2 con TM = Co, Ni, Mn) che garantisce una struttura a strati o a tunnel dove gli ioni di litio possono essere inseriti o estratti facilmente. L'anodo è generalmente costituito da grafite allo stato litiato in cui ogni atomo è legato ad altri tre in un piano composto da anelli esagonali fusi e che grazie alla delocalizzazione della nuvola elettronica conduce elettricità.

È presente dunque un elettrolita, composto tipicamente da sali di litio come l'esafluorofosfato di litio (LiPF6) disciolti in una miscela di solventi organici (carbonato di dimetile o di etilene) la cui membrana separatrice è costituita normalmente da polietilene o polipropilene.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	33

Le batterie al litio presentano caratteristiche tecnologiche molto interessanti per le applicazioni energetiche, tra cui la modularità, l'elevata densità energetica e l'alta efficienza di carica e scarica, che può superare il 90% a livello di singolo modulo.

Da un punto di vista pratico i moduli vengono assemblati in appositi armadi (rack), che verranno organizzati all'interno di container batterie in modo tale da conseguire i valori di tensione, corrente e quindi potenza desiderati.

Trattandosi per il caso in questione di uno storage in AC Coupling, la prerogativa è quella di offrire un servizio alla Rete Elettrica Nazionale. Il gruppo batterie dovrà dunque essere corredato da opportune Power Station dotate di Storage Inverter in grado di determinare la conversione AC/DC e viceversa.

Ciascun Storage Inverter, presenterà caratteristiche elettriche ed elettroniche analoghe ad un comune inverter (generalmente centralizzato) caratterizzante un campo fotovoltaico, con la differenza di poter determinare la conversione AC/DC per la ricarica delle batterie dalla Rete e DC/AC per l'immissione in Rete dell'energia immagazzinata.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	34

5. CARATTERISTICHE DELL'IMPIANTO AGRIVOLTAICO

L'impianto agrivoltaico ha una potenza di picco data dalla somma delle potenze nominali dei singoli moduli fotovoltaici e pari a 34,315 MWp. L'impianto si compone di n.2.332 tracker ad inseguimento solare Est-Ovest e n.62.964 moduli fotovoltaici. Su ciascun tracker sono montati n.27 moduli fotovoltaici collegati in serie, a formare una stringa per tracker. Le stringhe così concepite saranno ripartite su n.204 inverter tramite l'innesto rapido mediante connettori MC4. Gli inverter faranno capo a n.12 Power Station (c.d. PS) per l'elevazione BT/AT.

L'impianto agrivoltaico sarà corredato da un sistema di accumulo dell'energia in assetto AC Coupling (c.d. Storage), avente una potenza pari a 7,5 MW, data dalla somma delle potenze dei singoli Container di Batterie. Complessivamente saranno installati n.3 container di batterie (c.d. Storage Container o SC), ognuno di potenza 2,5 MW, i quali saranno collegati a n.3 Storage Power Station (c.d. SPS). All'interno di ciascuna SPS sarà presente uno Storage Inverter per la conversione DC/AC o AC/DC, un trasformatore per l'elevazione BT/AT e il quadro elettrico a 36 kV.

Tutte le Power Station, sia dell'impianto agrivoltaico e sia del sistema di Storage, sono collegate in modalità anulare ad una Cabina di Raccolta, dalla quale si articolerà il cavidotto 36 kV fino alla futura nuova Stazione Elettrica (SE) della RTN a 220/36 kV da inserire in entra-esce alla linea già esistente 220 kV "Codrongianos-Oristano", che rappresenterà il punto di connessione dell'impianto in proposta.

Ai fini di un corretto funzionamento dell'impianto, la fase progettuale assume un ruolo fondamentale. Infatti, scegliere in maniera corretta la struttura dell'impianto e le caratteristiche dei suoi componenti è determinante per ottimizzare la produzione sia in termini energetici che in termini agricoli. I punti fondamentali della progettazione sono:

- **Scelta del Layout di impianto:** ubicazione dell'impianto e opportuna suddivisione in sottocampi;
- **Scelta dei componenti attivi:** scelta di apparecchiature che concorrono alla produzione di energia, idonee alle esigenze dell'impianto che si va a progettare;
- **Dimensionamento impianto di produzione:** scelta delle taglie ottimali delle apparecchiature da utilizzare in modo da ottimizzare la resa e il rapporto costi/benefici;
- **Dimensionamento impianto agricolo:** scelta delle coltivazioni ottimali e adeguate al contesto territoriale e climatico in cui il progetto si colloca, nonché la scelta delle tecniche di coltivazione mediante la messa a punto di un piano agronomico studiato ad hoc.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	35

È altresì importante sottolineare che, nel progetto di un impianto agrivoltaico, è di fondamentale importanza la valutazione delle esigenze della generazione di energia e di quelle agricole in modo tale da far coesistere in maniera ottimale le due parti nell'arco dell'intera vita utile dell'impianto.

In fase di progettazione dell'impianto e stesura del relativo lavout si è tenuto conto degli aspetti

In fase di progettazione dell'impianto e stesura del relativo layout si è tenuto conto degli aspetti morfologici, vincolistici e peculiari del sito, perseguendo l'obiettivo di massimizzare la potenza installata di impianto in armonia con le necessità agricole del campo.

Il progetto proposto combina, nel complesso, esigenze funzionali e tecniche di impianto con quelle economiche dell'investimento e tiene conto di accorgimenti pratici per il perseguimento dell'obiettivo di integrare l'agricoltura con la produzione di energia elettrica da fonte rinnovabile. L'impianto è del tipo grid-connected, cioè progettato per produrre energia da immettere sulla Rete Elettrica Nazionale, o di assorbire e all'occorrenza fornire energia nel caso del sistema di storage.

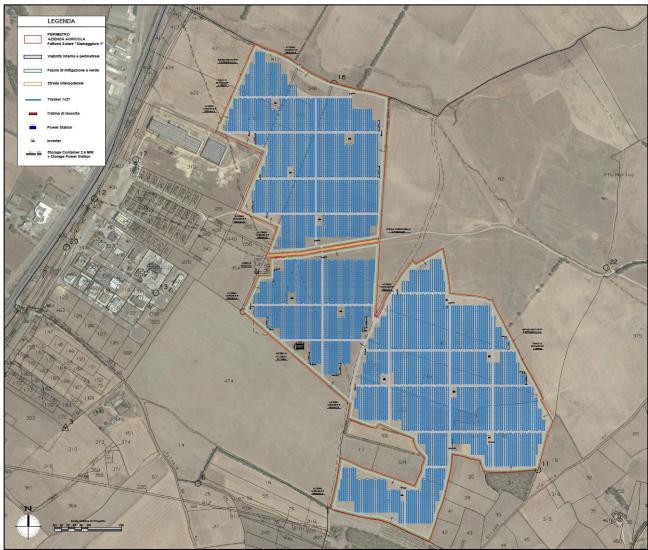


Figura 13: Layout di impianto su Catastale e Ortofoto. Riferimento Elaborato Grafico "2102_T.P.02_Layout Impianto su Orto-Catastale con viabilità interna_Rev00"

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	36

5.1. Componenti Tecnico-Elettriche

5.1.1. Moduli fotovoltaici

I moduli fotovoltaici scelti rispettano i più avanzati standard tecnologici in termini di efficienza e di ottimizzazione della produzione specifica (Wp/mq), in modo da migliorare notevolmente l'impatto visivo e ambientale a parità di potenza installata.

In particolare, è stato proposto un modulo in silicio monocristallino, bifacciale e caratterizzato da tecnologia Half-Cell, del tipo JA SOLAR JAM72D30 545/MB o similari, dalla potenza nominale di 545 W. Il modulo è caratterizzato da 144 celle (6x24) ed è dotato di cavetti di connessione muniti di connettori MC4 ad innesto rapido, al fine di garantire la massima sicurezza degli operatori e facilità di installazione.

I componenti elettrici e meccanici che lo caratterizzano sono conformi alle normative tecniche e sono tali da garantire elevate performance.

Progetto:

Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

37

JA SOLAR

JAM72D30 525-550/MB/1500V Series

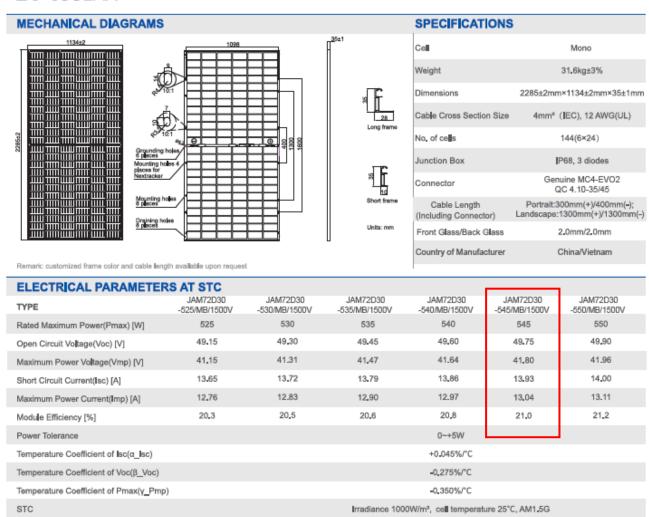


Figura 14: Caratteristiche tecniche modulo fotovoltaico JAM72D30 545/MB

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	38

5.1.2. Strutture elevate ad inseguimento solare

Al fine di incrementare le ore equivalenti di produzione, l'impianto è progettato utilizzando la tecnologia ad inseguimento solare monoassiale in direzione Est-Ovest mediante l'installazione di tracker monofacciali TRJ di Convert o similari, posti ad un'altezza pari a 3,7 m (altezza a tracking 0°), con una distanza di interasse pari a circa 6 m per consentire lo svolgimento dell'attività agricola. Adottando una tensione di sistema pari a 1500 V nel dimensionamento dell'impianto, su ogni tracker sono collegati 27 moduli su un'unica stringa.

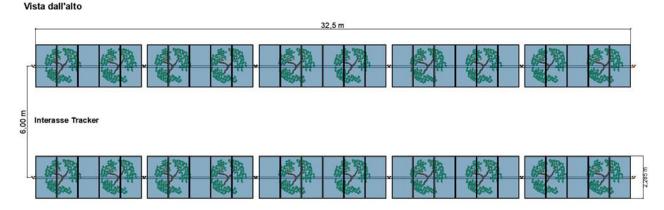


Figura 15: Vista in Pianta delle strutture (c.d. tracker)

Le strutture si sviluppano in direzione Nord-Sud per una lunghezza pari a 32,5 m e presentano una distanza reciproca pari a 50 cm nella stessa direzione. In direzione Est-Ovest, invece, le strutture sono caratterizzate dalla medesima dimensione del lato lungo del modulo (2,285 m).

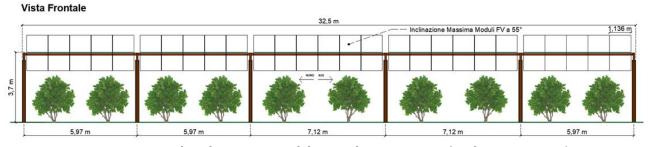


Figura 16: Particolare disposizione moduli su tracker in prospetto (configurazione 1x27)

La disposizione dei tracker all'interno del campo fotovoltaico tiene conto delle imposte fasce di rispetto dalle strade, dalle interferenze e da tutti gli elementi emersi nelle analisi tecnico-ambientali, oltre che delle esigenze di viabilità interna al sito per agevolare il passaggio dei mezzi agricoli di maggiori dimensioni.

La disposizione dei tracker in campo è stata scelta tenendo conto, inoltre, degli ombreggiamenti, del fenomeno del backtracking – l'ombreggiamento reciproco dei tracker durante le operazioni di

Progetto:	Titolo Elaborato:	Pagina:	
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	39	

inseguimento solare – e delle esigenze logistiche e organizzative dell'azienda agricola che opererà all'interno del sito.

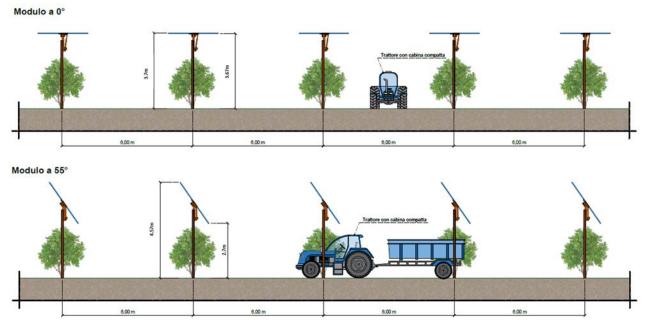


Figura 17: Particolare disposizione moduli su tracker: evidenza altezze dal suolo

5.1.3. Inverter

Per la conversione DC/AC dell'impianto, si è optato per la distribuzione di inverter decentralizzati del tipo Huawei SUN2000-185KTL-H1 o similari, da installare su piccole strutture metalliche opportunamente ancorate al terreno. Le stesse saranno ubicate per lo più in corrispondenza delle strade funzionali alla viabilità interna al sito, al fine di agevolare le attività di manutenzione e non ostacolare le attività agricole. Gli inverter scelti presentano un grado di protezione IP65, tale da consentire l'installazione outdoor prevedendo al più minimi accorgimenti per evitare l'esposizione diretta alla radiazione solare.

Gli inverter sono caratterizzati da una potenza nominale di 185 kW AC e da una tensione di uscita di 800 V. Il gruppo di conversione presenta un range MPPT in ingresso pari a 500-1500 V, compatibile con tensioni di sistema a 1500 V e con il numero di moduli per stringa scelto. Con queste caratteristiche, gli inverter sono in grado di raccogliere le linee DC provenienti dal campo fotovoltaico fino ad un massimo di 12 stringhe, collegate direttamente agli ingressi mediante connettori MC4 ad innesto rapido.

Progetto:	Titolo Elaborato:	Pagina:	
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	40	

Figura 18: Inverter Sun2000 – 185KTL – H1 (o similari)

5.1.4. Power Station

Le Power Station rappresentano il punto di raccolta dei singoli sottocampi e il punto in cui avviene l'elevazione della tensione BT di uscita degli inverter ad un livello di tensione pari a 36kV.

Il progetto prevede n.12 Power Station di Huawei o similari, tutte costituite da un quadro di raccolta QBT (o Low Voltage Switchgear) per il collegamento e la protezione delle linee elettriche e degli inverter distribuiti in campo. Nel caso specifico, ad ogni PS giungono una linea per inverter, quindi il quadro di raccolta BT si compone al più di n.17 interruttori automatici opportunamente dimensionati e connessi ad un interruttore generale. All'interno del quadro sono presenti anche tutti i dispositivi necessari per le misure e il funzionamento degli ausiliari. Il QBT è quindi connesso ad un trasformatore BT/AT con isolamento in olio, dotato di adeguata vasca di raccolta. Lo stesso sarà a sua volta collegato ad un quadro di alta tensione (o HV Switchgear), il quale è dotato di adeguati organi di sezionamento, protezione e manovra per l'interconnessione del trasformatore e dei cavi AT alle altre Power Station o alla Cabina di Raccolta dell'impianto.

5.1.5. Storage Container

L'impianto Storage è stato ricavato all'interno dell'area di impianto in una posizione funzionale sia dal punto di vista elettrico che di interazione con la movimentazione agricola in campo. L'organizzazione delle batterie agli ioni di litio è del tipo modulare all'interno di Container (c.d. Storage Container). Più batterie formano un modulo, più moduli in serie formano un rack e più rack

Progetto:	Titolo Elaborato:	Pagina:	
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	41	

in parallelo compongono il container. Le batterie sono gestite da un sistema di monitoraggio e controllo di carica e scarica delle batterie (c.d. BMS) e da un convertitore di potenza che permette l'immissione della corrente continua nelle linee DC in entrata o uscita dal container. Ogni unità presenta una potenza pari a 2,5 MW e una capacità pari a 3 MWh, caratteristiche che la rendono adatta per la modalità Fast Reserve, cioè l'immissione in rete della potenza nominale per un tempo di almeno 15 minuti.

5.1.6. Storage Inverter

Ciascun Storage Container sarà connesso ad un inverter centralizzato (c.d. Storage Inverter) del tipo SMA SCS2900 o similari. L'inverter ha una potenza di 2,94 MVA ed è quindi in grado di erogare tutta la potenza proveniente dalle batterie, risultando idoneo alla modalità Fast Reserve. Lo Storage Inverter è caratterizzato da un range DC compreso tra 760 V e 1100 V e una tensione AC pari a 520 V. Lo stesso è altresì equipaggiato con i dispositivi di protezione SPD per le sovratensioni e gli interruttori automatici per le sovracorrenti, sia dal lato DC che dal lato AC.

5.1.7. Storage Power Station

Gli Storage Inverter sono collocati all'interno delle rispettive Storage Power Station, che contengono tutti i dispositivi per la conversione tra corrente continua e corrente alternata e l'elevazione di tensione BT/AT. Nello specifico, in maniera simile alle Power Station del campo agrivoltaico, gli ingressi dello Storage Inverter sono dotati dei dispositivi necessari alla protezione delle linee provenienti dallo Storage Container, alla misura dei parametri elettrici e al corretto funzionamento degli ausiliari. Quest'ultimo è collegato ad un trasformatore con isolamento in olio per l'elevazione della tensione BT/AT con opportuna vasca di raccolta. Quest'ultimo è a sua volta connesso ad un quadro elettrico di alta tensione (o High Voltage Switchgear), il quale è dotato di adeguati organi di sezionamento, protezione e dal quale si articoleranno le linee di interconnessione tra le varie Storage Power Station, fino al raggiungimento della Cabina di Raccolta.

5.1.8. Cavi di potenza BT e AT

Gli impianti saranno caratterizzati da linee elettriche con conduttori idonei per le varie sezioni (DC, AC BT e AC AT). L'esperienza costruttiva ha consentito l'individuazione di tipologie di cavi (formazione, sezione del conduttore, isolante, guaina protettiva, ecc.) che garantiscono, in accordo alle condizioni di posa, una vita utile del cavo più longeva di quella dell'impianto.

Progetto:	Titolo Elaborato:	Pagina:	
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	42	

Per la sezione di impianto in corrente continua è previsto il cablaggio del generatore fotovoltaico mediante cavi di stringa equipaggiati con connettori MC4 IP65, in posa libera fissata al retro delle strutture di sostegno, eventualmente canalizzate.

Il collegamento inverter-Power Station verrà eseguito mediante cavi AC BT disposti "a trifoglio", in posa prevalentemente interrata in tubo protettivo corrugato flessibile a doppia parete in PVC, con resistenza allo schiacciamento 450N e diametro esterno opportuno.

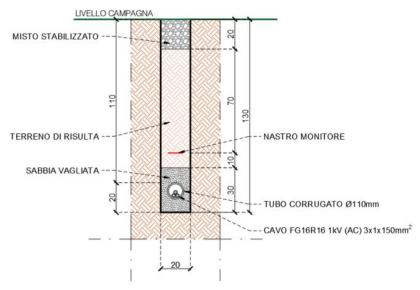


Figura 19: Sezione di scavo cavidotto AC BT

Le linee AT dalle singole Power Station fino alla Cabina di Raccolta, verranno anch'esse interrate, prevedendo opportuno tegolo per la protezione meccanica dei cavi. Si precisa in questo senso che, laddove all'interno del medesimo cavidotto correranno più linee AT, le stesse saranno distanziate di 25 cm dal centro del conduttore.

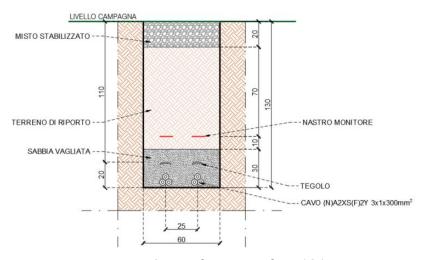


Figura 20: Sezione di scavo cavidotto AC AT

Progetto:	Titolo Elaborato:	Pagina:	
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	43	

Per maggiori dettagli sulle sezioni di scavo si rimanda alle tavole di progetto, dove si evidenziano anche i punti di intersezione di più linee di campo e le particolarità di ogni tipo di cavo e cavidotto. I cavi sopracitati sono adatti ad una condizione di posa interrata in ottemperanza alla Norma CEI 11-17 vigente in materia. Detta norma stabilisce che l'integrità dei cavi deve essere garantita da una robusta protezione meccanica supplementare in grado di assorbire le varie sollecitazioni statiche e dinamiche che possono verificarsi nel corso della vita utile dell'impianto. Pertanto, si prevede per ciascun cavo il tubo protettivo opportunamente dimensionato al fine di garantire l'integrità dei singoli cavi.

La scelta dei cavi e dei tubi protettivi tiene conto altresì dell'articolo 2.3.04 delle Norme CEI 11-17 "Sollecitazioni a trazione" che, per ciò che riguarda i conduttori in alluminio, prescrive che gli sforzi di tiro necessari durante le operazioni di posa dei cavi non deve superare una sollecitazione di 50 N/mm² (limite sui conduttori).

Dopo la posa, i cavi andranno sottoposti a collaudo per verificare l'insorgere di eventuali difettosità, grossolani errori di confezionamento dei giunti e terminali e/o danneggiamenti avvenuti durante i lavori, al fine di garantire la perfetta regola d'arte.

5.1.9. Cavi di segnale

Oltre alle linee di potenza si citano quelle di segnale, ovvero tutte le linee necessarie alla connessione dei dispositivi di monitoraggio e di security, per i quali sono previsti cavi in fibra ottica e cavi in rame multipolari twistati e non. Tali linee avranno una condizione di posa opportuna, sulla base della loro funzione (ad esempio le linee che acquisiscono i segnali dai vari dispositivi di security diffusi nel campo saranno interrate entro tubi protettivi, mentre quelle dei dispositivi di monitoraggio presenti in cabina saranno posate entro passerelle, tubi rigidi o flessibili, ecc.).

5.1.10. Sistemi SCADA

Verrà installato un sistema di monitoraggio e controllo basato su architettura SCADA-RTU, al fine di garantire una resa ottimale dell'impianto agrivoltaico in tutte le situazioni. Il sistema consentirà infatti di ricevere ed elaborare diverse informazioni tra cui:

- stato della rete;
- energia immagazzinata e fornita dallo storage;
- produzione dal campo solare;
- produzione dagli apparati di conversione;
- produzione e scambio dai sistemi di misura;
- dati climatici e ambientali dalle stazioni di rilevamento meteo;

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	44

- dati relativi al tracking;
- allarmi da tutti gli interruttori e sistemi di protezione;
- parametri agricoli del campo agrivoltaico.

5.1.11. Dimensionamento Sottocampi

L'impianto è diviso in due parti, data la presenza di una strada vicinale che attraversa il sito, dividendo la particella 473 in una zona Nord e una zona Sud.

Nella Tabella seguente vengono riassunte le caratteristiche generali dell'impianto proposto:

Cluster Impianto	
Potenza nominale impianto Agrivoltaico	34.315,38 kWp
N° tot moduli fotovoltaici	62.964
N° moduli stringa	27
N° stringhe per tracker	1
N° tot stringhe	2332
N° Power Station	12
N° inverter	204
N° inverter per Power Station	17

Il dimensionamento prevede:

- n.4 Sottocampi (PS1, PS2, PS3 e PS4) caratterizzati da 196 stringhe;
- n.2 Sottocampi (PS5 e PS6) caratterizzati da 198 stringhe;
- n.6 Sottocampi (PS7, PS8, PS9, PS10, PS11 e PS12) caratterizzati da 192 stringhe.

Ogni Sottocampo fa capo ad un'unica Power Station ed ogni Power Station raccoglie n.17 inverter.

A ciascun inverter saranno collegate 11 o 12 stringhe in parallelo, come riassunto nella seguente tabella:

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	45

Tabella 1: Dimensionamento Sottocampi

PS	INV	Moduli in serie	Stringhe in parallelo	P _{DC} INV [W]	Stringhe per PS	P _{DC} PS [W]
	1	27	12	176.580		
	2	27	12	176.580		
	3	27	12	176.580		
	4	27	12	176.580		
	5	27	12	176.580		
	6	27	11	161.865		
	7	27	11	161.865		
	8	27	11	161.865		
1	9	27	11	161.865	196	2.884.140
	10	27	11	161.865		
	11	27	11	161.865		
	12	27	11	161.865		
	13	27	11	161.865		
	14	27	12	176.580		
	15	27	12	176.580		
	16	27 12 176.580				
	17	27	12	176.580		
	1	27	11	161.865		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	11	161.865		
	5	27	11	161.865		
	6	27	11	161.865		
	7	27	11	161.865		
	8	27	12	176.580		
2	9	27	12	176.580	196	2.884.140
	10	27	12	176.580		
	11	27	11	161.865		
	12	27	12	176.580		
	13	27	12	176.580		
	14	27	12	176.580	1	
	15	27	12	176.580		
	16	27	12	176.580		
	17	27	12	176.580		

Progetto:	Titolo Elaborato:	Pagina:	
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	46	

PS	INV	Moduli in	Stringhe in	D INIV [VA7]	Stringhe per	P _{DC} PS [W]
P3	IINV	serie	parallelo	P _{DC} INV [W]	PS	rpcrs[w]
	1	27	12	176.580		
	2	27	12	176.580		
	3	27	11	161.865		
	4	27	11	161.865		
	5	27	11	161.865		
	6	27	12	176.580		
	7	27	11	161.865		
	8	27	11	161.865		
3	9	27	12	176.580	196	2.884.140
	10	27	11	161.865		
	11	27	11	161.865		
	12	27	11	161.865		
	13	27	12	176.580		
	14	27	12	176.580		
	15	27	12	176.580		
	16	27	12	176.580		
	17	27	12	176.580		
	1	27	11	161.865		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	12	176.580		
	5	27	12	176.580		
	6	27	12	176.580		
	7	27	12	176.580		
	8	27	12	176.580		
4	9	27	12	176.580	196	2.884.140
	10	27	12	176.580		
	11	27	12	176.580		
	12	27	12	176.580		
	13	27	11	161.865		
	14	27	11	161.865		
	15	27	11	161.865		
	16	27	11	161.865		
	17	27	11	161.865		

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	47

DC	INIX	Moduli in	Stringhe in	D INIV [W/]	Stringhe per	D DC [W]
PS	INV	serie	parallelo	P _{DC} INV [W]	PS	P _{DC} PS [W]
	1	27	11	161.865		
	2	27	12	176.580		
	3	27	11	161.865		
	4	27	11	161.865		
	5	27	11	161.865		
	6	27	12	176.580		
	7	27	12	176.580		
	8	27	12	176.580		
5	9	27	12	176.580	198	2.913.570
	10	27	11	161.865		
	11	27	11	161.865		
	12	27	12	176.580		
	13	27	12	176.580		
	14	27	12	176.580		
	15	27	12 176.580			
	16 27 12 176.580					
	17	27	12	176.580		
	1	27	11	161.865		
	2	27	12	176.580		
	3	27	12	176.580		
	4	27	12	176.580		
	5	27	11	161.865		
	6	27	11	161.865		
	7	27	11	161.865		
	8	27	11	161.865		
6	9	27	11	161.865	198	2.913.570
	10	27	12	176.580		
	11	27	12	176.580		
	12	27	12	176.580		
	13	27	12	176.580		
	14	27	12	176.580		
	15	27	12	176.580		
	16	27	12	176.580		
	17	27	12	176.580		

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	48

DC	INIX	Moduli in	Stringhe in	D INIX [XA/]	Stringhe per	D DC [W]
PS	INV	serie	parallelo	P _{DC} INV [W]	PS	P _{DC} PS [W]
	1	27	11	161.865		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	12	176.580		
	5	27	11	161.865		
	6	27	11	161.865		
	7	27	11	161.865		
	8	27	11	161.865		
7	9	27	12	176.580	192	2.825.280
	10	27	12	176.580		
	11	27	12	176.580		
	12	27	12	176.580		
	13	27	11	161.865		
	14	27	11	161.865		
	15	27	11	161.865		
			161.865			
	17	27	11	161.865		
	1	27	11	161.865		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	11	161.865		
	5	27	11	161.865		
	6	27	11	161.865		
	7	27	11	161.865		
	8	27	11	161.865		
8	9	27	11	161.865	192	2.825.280
	10	27	12	176.580)	
	11	27	12	176.580		
	12	27	12	176.580		
	13	27	12	176.580		
	14	27	12	176.580		
	15	27	11	161.865		
	16	27	11	161.865		
	17	27	11	161.865		

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	49

DC	INIX	Moduli in	Stringhe in	D INIV [VA7]	Stringhe per	D DC [W]
PS	INV	serie	parallelo	P _{DC} INV [W]	PS	P _{DC} PS [W]
	1	27	11	161.865		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	12	176.580		
	5	27	11	161.865		
	6	27	11	161.865		
	7	27	11	161.865		
	8	27	11	161.865		
9	9	27	11	161.865	192	2.825.280
	10	27	11	161.865		
	11	27	11	161.865		
	12	27	11	161.865		
	13	27	11	161.865		
	14	27	12	176.580		
	15	27	12	176.580		
	16	27	12	176.580		
	17	27	12	176.580		
	1	27	11	161.865		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	11	161.865		
	5	27	11	161.865		
	6	27	12	176.580		
	7	27	11	161.865		
	8	27	11	161.865		
10	9	27	11	161.865	192	2.825.280
	10	27	11	161.865		
	11	27	11	161.865		
	12	27	12	176.580		
	13	27	12	176.580		
	14	27	12	176.580		
	15	27	12	176.580		
	16	27	11	161.865		
	17	27	11	161.865		

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	50

DC	INIX	Moduli in	Stringhe in	D INIX [VA7]	Stringhe per	D DC [W]
PS	INV	serie	parallelo	P _{DC} INV [W]	PS	P _{DC} PS [W]
	1	27	11	161.865		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	12	176.580		
	5	27	12	176.580		
	6	27	11	161.865		
	7	27	12	176.580		
	8	27	12	176.580		
11	9	27	11	161.865	192	2.825.280
	10	27	11	161.865		
	11	27	27 11 161.865			
	12	27	12	176.580		
	13	27	11	161.865		
	14	27	11	161.865		
	15	27	11	161.865		
	16 27 11 17 27 11		11	161.865		
	17	27	11	161.865		
	1	27	12	176.580		
	2	27	11	161.865		
	3	27	11	161.865		
	4	27	11	161.865		
	5	27	11	161.865		
	6	27	11	161.865		
	7	27	11	161.865		
	8	27	11	161.865		
12	9	27	12	176.580	192	2.825.280
	10	27	11	161.865		
	11	27	11	161.865		
	12	27	11	161.865		
	13	27	11	161.865		
	14	27	11	161.865		
	15	27	12	176.580		
	16	27	12	176.580		
	17	27	12	176.580		

Di seguito si evidenziano i dimensionamenti e le verifiche elettriche eseguite, nei casi in cui all'inverter sono collegate 11 stringhe o 12 stringhe.

Progetto: Titolo Elaborato: Pagina:

Fattoria Solare "Siamaggiore 1"
EF AGRI SOCIETA' AGRICOLA A R.L.

Relazione Tecnica Descrittiva

51

88XSUN2000-185KTL-H1					
Picco di potenza:	155	39,04kWp			
Numero totale di moduli FV:	285	12		.,.	10.
Numero di inverter FV:	88		_	_	
Potenza Attiva CA Massima(cosφ=1):	185	,0kW			
Tensione di rete:	800	V(462V/800V)	Section		e e
DC/AC:	1,0	1	SU	JN2000-185KTL	-H1
	MPPT A	МРРТ В	MPPT C	MPPT D	MPPT E
Numero di stringhe FV:	2	2	2	1	1
Moduli FV per stringa:	27	27	27	27	27
Picco di potenza della stringa FV (ingresso):	29,43kWp	29,43kWp	29,43kWp	14,71kWp	14,71kWp
Tensione normale della stringa FV:	1146,2V	1146,2V	1146,2V	1146,2V	1146,2V
Tensione di avvio della stringa FV:	⊘ 550.0V	⊘ 550.0V	⊘ 550.0V	⊘ 550.0V	⊘ 550.0∨
Tensione di avvio dell'inverter:	550,0V	550,0V	550,0V	550,0V	550,0V
Tensione massima della stringa FV:	♥ 1443,1V	♥ 1443,1V	♥ 1443,1V		♥ 1443,1V
Tensione CC massima:	1500,0V	1500,0V	1500,0V	1500,0V	1500,0V
Corrente massima della stringa FV:	⊘ 25,68A				⊘ 12,84A
Corrente CC massima dell'inverter:	26,0A	26,0A	26,0A	26,0A	26,0A
	MPPT F	MPPT G	MPPT H	MPPT I	
Numero di stringhe FV:	1	1	1	1	
Moduli FV per stringa:	27	27	27	27	
Picco di potenza della stringa FV (ingresso):	14,71kWp	14,71kWp	14,71kWp	14,71kWp	
Tensione normale della stringa FV:	1146,2V	1146,2V	1146,2V	1146,2V	
Tensione di avvio della stringa FV:	⊘ 550.0V	⊘ 550.0V	⊘ 550.0V	⊘ 550.0V	
Tensione di avvio dell'inverter:	550,0V	550,0V	550,0V	550,0V	
Tensione massima della stringa FV:	⊘ 1443,1V	√ 1443,1V	√ 1443,1V	√ 1443,1V	
Tensione CC massima:	1500,0V	1500,0V	1500,0V	1500,0V	
Corrente massima della stringa FV:	⊘ 12,84A	√ 12,84A	√ 12,84A	√ 12,84A	
Corrente CC massima dell'inverter:	26,0A	26,0A	26,0A	26,0A	

Figura 21: Dimensionamento inverter con 12 stringhe

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1"	Relazione Tecnica Descrittiva	52

116XSUN2000-185KTL-H1					
Picco di potenza:	18	776,34kWp			
Numero totale di moduli FV:	34	452		.,.	
Numero di inverter FV:	110	6	_		
Potenza Attiva CA Massima(cosφ=1):	18	5,0kW			
Tensione di rete:	80	0V(462V/800V)	344	,	
DC/AC:	0,9)2	S	UN2000-185KT	L-H1
	MPPT A	МРРТ В	MPPT C	MPPT D	MPPT E
Numero di stringhe FV:	2	2	1	1	1
Moduli FV per stringa:	27	27	27	27	27
Picco di potenza della stringa FV (ingresso):	29,43kWp	29,43kWp	14,71kWp	14,71kWp	14,71kWp
Tensione normale della stringa FV:	1146,2V	1146,2V	1146,2V	1146,2V	1146,2V
Tensione di avvio della stringa FV:	⊘ 550.0∨	⊘ 550.0∨	⊘ 550.0∨	⊘ 550.0V	
Tensione di avvio dell'inverter:	550,0V	550,0V	550,0V	550,0V	550,0V
Tensione massima della stringa FV:					
Tensione CC massima:	1500,0V	1500,0V	1500,0V	1500,0V	1500,0V
Corrente massima della stringa FV:				⊘ 12,84A	⊘ 12,84A
Corrente CC massima dell'inverter:	26,0A	26,0A	26,0A	26,0A	26,0A
	MPPT F	MPPT G	MPPT H	MPPT I	
Numero di stringhe FV:	1	1	1	1	
Moduli FV per stringa:	27	27	27	27	
Picco di potenza della stringa FV (ingresso):	14,71kWp	14,71kWp	14,71kWp	14,71kWp	
Tensione normale della stringa FV:	1146,2V	1146,2V	1146,2V	1146,2V	
Tensione di avvio della stringa FV:	⊘ 550.0∨	⊘ 550.0V	⊘ 550.0V	⊘ 550.0V	
Tensione di avvio dell'inverter:	550,0V	550,0V	550,0V	550,0V	
Tensione massima della stringa FV:	⊘ 1443,1V	√ 1443,1V		√ 1443,1V	
Tensione CC massima:	1500,0V	1500,0V	1500,0V	1500,0V	
Corrente massima della stringa FV:	⊘ 12,84A		♥ 12,84A	♥ 12,84A	
Corrente CC massima dell'inverter:	26,0A	26,0A	26,0A	26,0A	

Figura 22: Dimensionamento inverter con 11 stringhe

5.1.12. Dimensionamento Cavi

A valle del dimensionamento dei sottocampi, come sopra riportato, si è provveduto al dimensionamento dei cavi imponendo un valore della corrente d'impiego (Ib) circolante, sempre inferiore alla portata massima in regime permanente del cavo che la convoglia (Iz).

La corrente d'impiego (Ib) è il valore che può fluire in un circuito nel servizio ordinario mentre per portata massima in regime permanente (Iz) si intende la massima corrente che il conduttore è in grado di sopportare senza che, per effetto Joule, la temperatura raggiunga valori tali da compromettere l'integrità e la durata degli isolanti.

Il valore di Iz (portata del conduttore in condizioni normali di servizio) è stato determinato, inoltre, in base ai declassamenti dovuti ai vari coefficienti di correzione, a seconda della temperatura

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	53

d'impiego, del tipo di posa e del numero di conduttori posati in un'unica conduttura. I fattori di correzione presi in considerazione, che contribuiscono alla riduzione della portata nominale del cavo, sono:

- Per le linee in corrente continua:
 - il fattore K1, che tiene conto del tipo di posa;
 - il fattore K2, che tiene conto della prossimità di altri circuiti.
- Per le linee in corrente alternata:
 - il fattore K1, che tiene conto della temperatura alla quale il cavo è posato;
 - il fattore K2, che tiene conto della prossimità di altri circuiti;
 - il fattore K3, che tiene conto della profondità di posa del cavo;
 - il fattore K4, che tiene conto della resistività termica del terreno.

Oltre a quanto sopra indicato, i cavi sono stati verificati anche in funzione della caduta di tensione percentuale, con un limite superiore pari a:

- 5% della tensione nominale per le linee MT AC;
- 4% della tensione nominale per le linee BT AC;
- 2% della tensione nominale per le linee BT DC.

Le cadute di tensione sono state verificate con adeguato software di calcolo che utilizza le seguenti formule:

- Per le linee in corrente continua:

$$\Delta V = L*R*Ib$$

$$\Delta V\% = \Delta V / V$$

dove:

- ΔV è la caduta di tensione in Volt;
- L è la lunghezza della linea in m;
- R è la resistenza al metro in Ω/m ;
- Ib è la corrente d'impiego in Ampere della linea;
- $\Delta V\%$ è la caduta di tensione percentuale;
- V è la tensione nominale in Volt.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	54

- Per le linee in corrente alternata:

$$\Delta V = K * Ib * L * [R * cos(\phi) + X * sen(\phi)]$$
$$\Delta V\% = \Delta V / V$$

dove:

- ΔV è la caduta di tensione in Volt proiettata sul vettore di fase;
- Kè una costante pari a 2 per le linee monofase e pari a $\sqrt{3}$ per le linee trifase;
- Ib è la corrente d'impiego in Ampere della linea;
- L è la lunghezza della linea in m;
- R è la resistenza al metro in Ω/m ;
- X è la reattanza al metro in Ω/m ;
- φ è l'angolo di sfasamento tra la corrente Ib e la tensione di fase;
- ΔV% è la caduta di tensione percentuale;
- V è la tensione nominale in Volt.

La lunghezza del cavo sarà maggiorata cautelativamente del 10% per tener conto della reale condizione di posa dello stesso.

Per le linee DC si mostrano i calcoli relativi ad un tipico collegamento stringa-inverter, evidenziando il limite massimo della lunghezza della linea per quella condizione di posa nel rispetto della normativa (realmente, nessuna linea arriva a tale lunghezza). Se il calcolo è verificato per questa condizione, lo sarà anche per tutte le altre.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare " <i>Siamaggiore 1</i> " EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	55

LINEA DI COLLEGAMENTO STRINGA-INVERTER

T ambiente [°C]	Potenza modulo	Moduli in serie	Stringhe in parallelo
	[W]		
20	545	27	1
Vmp modulo [V]	Voc modulo [V]	Imp modulo [A]	Isc modulo [A]
42,45	50,01	12,84	13,61
Y 1 1 F 1	y 1 1.		0 : 1
Lunghezza linea [m]	Lunghezza linea	Caduta di tensione	Sezione conduttore
	(+10%) [m]	percentuale	[mmq]
		massima	
< 230	< 260	2%	6
Resistenza unitaria	Resistenza linea	K1	К2
cavo [Ω/km]	$[\Omega]$		
3,390	< 1,77	0,58	0,45
		T	
Iz [A]	Ib [A]	ΔV%	Formazione linea
17,49	17,01	< 2%	2x1x6
Verifica portat	a di corrente	Verifica cad	uta di tensione
Verific	cata	Verificata	

Per le linee AC AT si mostrano i calcoli eseguiti per ogni anello di collegamento delle PS e SPS con la Cabina di Raccolta nel caso peggiore, ovvero quello relativo alla linea con la lunghezza maggiore.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	56

ANELLO DI COLLEGAMENTO PS-CABINA DI RACCOLTA

Tensione [kV]	Potenza anello	T ambiente [°C]	Caduta di tensione
	[MW]		percentuale massima
36	18,87	20	5%
Lunghezza linea [m]	Lunghezza linea	cos(Φ)	sen(Φ)
	(+10%) [m]		
930	1023	0,90	0,44
Sezione conduttore	Resistenza	Reattanza unitaria	Impedenza linea [Ω]
			impedenza imea [32]
[mmq]	unitaria cavo	cavo [Ω/km]	
	$[\Omega/\mathrm{km}]$		
300	0,100	0,360	0,25
К1	К2	К3	К4
1,00	0,80	0,96	1,00
Iz [A]	Ib [A]	ΔV%	Formazione linea
372,48	366,25	0,41%	3x1x300
Verifica portat	a di corrente	Verifica cad	uta di tensione
Verific	cata	Verificata	

Progetto: Titolo Elaborato: Pagina:

Fattoria Solare "Siamaggiore 1"
EF AGRI SOCIETA' AGRICOLA A R.L.

Relazione Tecnica Descrittiva

57

ANELLO DI COLLEGAMENTO SPS-CABINA DI RACCOLTA

Tensione [kV]	Potenza anello	T ambiente [°C]	Caduta di tensione
	[MW]		percentuale massima
36	7,50	20	5%
Lunghezza linea [m]	Lunghezza linea	cos(Φ)	sen(Φ)
	(+10%) [m]		
430	473	0,90	0,44
Comiana sanduttana	Dogistana	Doottown witowic	Impedantalines [0]
Sezione conduttore	Resistenza	Reattanza unitaria	Impedenza linea [Ω]
[mmq]	unitaria cavo	cavo [Ω/km]	
	$[\Omega/\mathrm{km}]$		
120	0,253	0,420	0,19
K1	К2	К3	K4
1,00	0,80	0,96	1,00
In [A]	Th [A]	AV/0/	Formazione linea
Iz [A]	Ib [A]	ΔV%	
228,86	133,65	0,12%	3x1x120
Verifica portat	a di corrente	Verifica cad	uta di tensione
Verific	cata	Verificata	

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	58

5.1.13. Dimensionamento Storage

Il Dimensionamento dello Storage è stato eseguito a partire dalla scelta della tecnologia di batterie compatibilmente alla taglia e alle caratteristiche desiderate per il Sistema di Accumulo.

In fase di progettazione è stato scelto un accumulo di tipo elettrochimico tramite l'utilizzo di batterie agli ioni di litio, tenendo conto della tensione nominale, del range di tensioni ammissibili e di altri parametri elettrici, quali:

- Capacità: si esprime in Ah ed indica la quantità di corrente che la batteria può fornire nel tempo;
- Energia: si esprime in kWh ed indica la quantità di energia che la batteria può erogare;
- C-rate: si esprime in C ed è una misura dell'intensità di carica o di scarica della batteria alla sua massima capacità.

In particolare, in considerazione al fatto che l'energia è data dal prodotto tra tensione e corrente instante per istante, aumentando il C-rate di una batteria, aumenterà anche l'energia che essa può erogare.

Per l'impianto in progetto, lo Storage dovrà garantire una potenza pari a 7,5 MW in modalità Fast Reserve, quindi fornire la massima potenza per un intervallo di tempo di 15 minuti. Il progetto prevede dunque n.3 Storage Power Station dotate di n.1 Storage Inverter ciascuna, i quali dovranno quindi avere una potenza di almeno 2,5 MW. Ad ogni Storage inverter sarà connesso uno Storage Container, per un totale di n.3 Storage Inverter e n.3 Storage Container.

Gli Storage Inverter scelti sono del tipo SMA SCS2900 o similari, i quali hanno una potenza di 2940 kW AC e quindi risultano adatti a fornire la potenza richiesta. Il numero di ingressi (26), il range di tensioni (760 V \sim 1100 V) e la corrente massima (4055 A) ammissibili in ingresso risultano altresì compatibili con la maggior parte di Storage Container.

Per quanto riguarda gli Storage Container, al fine di offrire il servizio di regolazione ultrarapida della frequenza (come imposto dalla Fast Reserve) ad un C-rate fissato a 1 C, sarebbe sufficiente un'energia di 625 kWh per ciascuno, per un totale di 1.875 kWh dell'intero sistema di accumulo. Se invece si fissa il C-rate a 0,5 C, sarà necessario un accumulo di 1.250 kWh di energia per Storage Container, e quindi un totale di 3.750 kWh. C-rate superiori ad 1 si escludono al fine di limitare le perdite ed evitare il degradamento precoce del sistema. Considerata la possibilità di poter immagazzinare l'energia nei momenti di surplus di produzione e immetterla quando si verificano picchi di assorbimento nella rete, si sceglie di incrementare la taglia del sistema di accumulo. Pertanto, prendendo anche in considerazione l'intero periodo di vita utile dell'impianto con i

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	59

relativi tassi di invecchiamento e perdite, ciascuno Storage Container sarà caratterizzato da una potenza massima di 2,5 MW DC e un'energia immagazzinabile pari a 3 MWh. In questo modo, sarà possibile operare con C-rate compresi tra 0,25 e 1.

5.1.14. Cabina di Raccolta

I Sottocampi dell'impianto agrivoltaico e il Sistema di Accumulo, dimensionati come sopra descritto, faranno capo ad un'unica Cabina di Raccolta collocata in sito in posizione pressoché baricentrica, nei pressi della strada vicinale che taglia l'impianto a metà. Il collegamento tra le due parti di produzione, ovvero impianto agrivoltaico e Storage, e la Cabina di Raccolta avverrà mediante cavi (N)A2XS(F)2Y 20,8/36 kV.

La Cabina è stata progettata in seguito alla valutazione dei componenti a corredo della stessa e delle loro taglie, tenendo conto dell'organizzazione degli anelli di interconnessione, dell'entità delle correnti in gioco e delle altre grandezze elettriche che caratterizzano l'impianto.

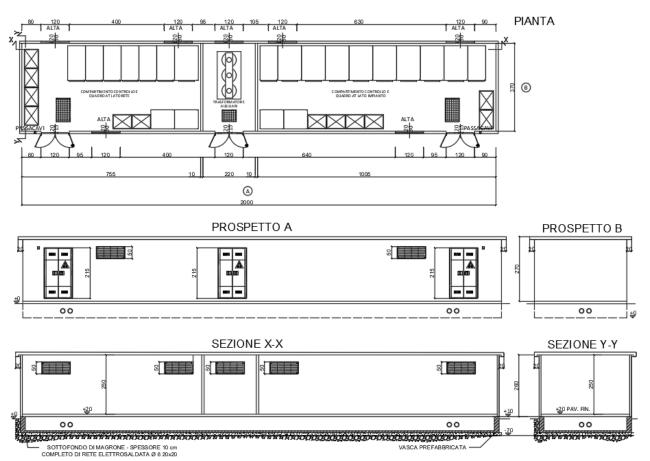


Figura 23: Dettaglio Cabina di Raccolta

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	60

5.1.15. Opere civili

Di seguito vengono descritti i principali lavori civili necessari alla realizzazione dell'opera.

Preparazione del sito

Il terreno che ospiterà le opere di progetto verrà preparato in modo tale da permettere l'installazione delle strutture di sostegno dei moduli fotovoltaici e di tutte le apparecchiature necessarie all'esercizio dell'impianto. Nello specifico verrà effettuato scotico del terreno superficiale con successiva rippatura e livellamento. Per mezzo di macchina frantumatrice si andrà poi a ridurre la dimensione delle rocce superficiali per rendere il terreno idoneo ai lavori di installazione delle apparecchiature elettriche.

Realizzazione di strade e recinzioni

Contestualmente ai lavori di preparazione del sito verrà realizzata la viabilità interna e perimetrale del sito. Le strade saranno della larghezza di 6 metri e il fondo stradale verrà realizzato con ghiaietto e misto stabilizzato. Sempre in questa fase saranno installati la recinzione perimetrale e i cancelli di accesso al sito.

Infissione dei tracker

I tracker verranno infissi a terra per mezzo di macchine battipalo, non si prevedono opere di fondazione per il sostegno degli stessi. Rispetto alle tradizionali fondazioni in cemento armato tale sistema risulta essere meno invasivo e permette una maggiore facilità di rimozione al momento della dismissione dell'impianto.

Scavi per fondazioni e percorso cavi

A valle delle operazioni di preparazione del sito sarà possibile iniziare gli scavi per le fondazioni delle apparecchiature, per il passaggio dei cavi BT/AT e per la posa della rete di terra.

Come descritto precedentemente, a servizio dell'impianto agrivoltaico sono previste più power station e una cabina di raccolta dalla quale si articolerà il cavidotto di collegamento alla stazione elettrica. All'interno del campo sarà quindi necessario prevedere il fissaggio delle suddette apparecchiature elettriche a basamenti in calcestruzzo armato. Gli scavi previsti saranno della profondità di circa 40 cm per le platee delle power station e degli storage container. Per la cabina di raccolta invece si prevede uno scavo di 75 cm, all'interno del quale verrà alloggiata la vasca prefabbricata a corredo della cabina stessa, a sua volta la vasca poggerà su uno strato di magrone dello spessore di 10 cm.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	61

Per la posa dei cavi BT e AT di impianto saranno previste differenti sezioni di scavo, in funzione del numero di cavi interessati dalla singola sezione. La sezione tipo, partendo dal fondo dello scavo a risalire fino a livello campagna, prevede quanto descritto di seguito:

- Strato in sabbia vagliata all'interno del quale saranno posati i cavi elettrici, contenuti all'interno di tubi corrugati o a diretto contatto con la sabbia stessa;
- Per i cavi AT, qualora questi vengano posati a diretto contatto con la sabbia vagliata, sarà predisposta opportuna protezione meccanica (tegolo di protezione);
- Strato di terreno di riporto all'interno del quale verrà annegato del nastro monitore a identificare la presenza dei cavi;
- Strato di misto stabilizzato fino a livello campagna;
- La larghezza dello scavo è funzione del numero di cavi interessati dal singolo tratto.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	62

5.2. Caratteristiche Tecniche-Agronomiche

5.2.1. Piano agronomico

Il piano agronomico del progetto in proposta è stato sviluppato (i) sulla base delle caratteristiche pedo-climatiche della zona, della vocazione agricola del territorio, (ii) dell'esperienza e degli obiettivi aziendali della società agricola e (iii) in sinergia con le dimensioni e le potenzialità tecniche delle strutture fotovoltaiche dell'impianto di produzione di energia rinnovabile. In particolare, le strutture in elevazione caratterizzanti l'impianto sono state studiate in combinazione con il piano agronomico e presentano dimensioni tali da agevolare sia lo svolgimento dell'attività agricola che gli interventi di manutenzione sulle componenti elettriche di impianto. Infatti, con i moduli posti a 3,7 m di altezza da terra, lo spazio utilizzabile al di sotto dei tracker permette alle piante di beneficiare della luce diretta e di quella diffusa, della protezione da agenti atmosferici e agli operatori di svolgere le pratiche agricole necessarie con l'ausilio di mezzi meccanici. Inoltre, le strutture sono infisse al suolo senza l'utilizzo di fondazioni in cemento e sono poste ad una distanza tra le file dei tracker pari a 6 m, in armonia con il sesto di impianto delle colture scelte.

Tenuto conto delle tare relative a viabilità, fossi, capezzagne e volumi tecnici, si stima una superficie agricola utile di 55,94 ha (53,59 ha per le colture e 2,35 ha per le coltivazioni perimetrali incluse nella siepe di mitigazione), divisa in 25 lotti coltivabili di dimensioni variabili a seconda della morfologia della proprietà e delle strade esistenti. Le superfici saranno occupate dalle specie da impiantare secondo le seguenti estensioni:

- Mandorlo 10,55 ha;
- Arancio 17,54 ha;
- Limone 20,61 ha;
- Lime 2,48 ha;
- Kumquat e Finger Lime 2,40 ha.

Di seguito si riporta la disposizione delle colture in area in seguito a divisione in parcelle coltivabili.

Progetto:

Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

63

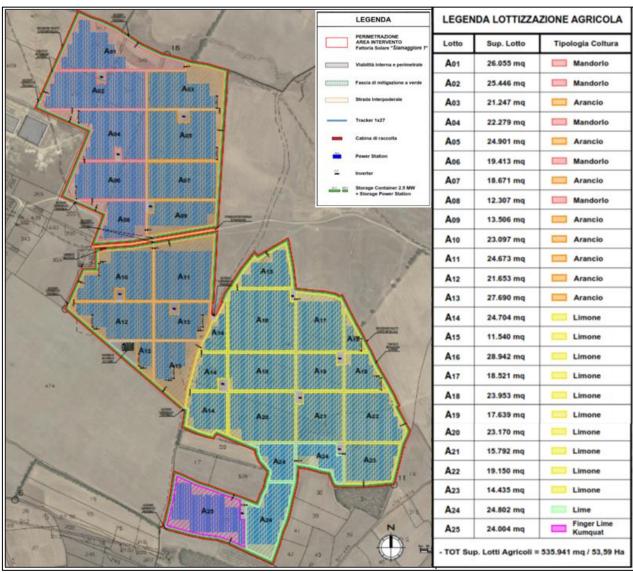


Figura 24: Divisione in parcelle e relative superfici utilizzate. Riferimento Elaborato Grafico "2102_T.P.09_Layout Piano Agronomico_Rev00"

La scelta delle suddette coltivazioni è stata effettuata sulla base di diversi parametri tra i quali:

- Condizioni pedo-climatiche della zona;
- Tipologia del terreno;
- Caratteristiche produttive delle cultivar;
- Rispetto delle specie tipiche del territorio sardo;
- Domanda di mercato per il corretto posizionamento del prodotto agricolo;
- Obiettivi economici dell'azienda agricola.

Le coltivazioni scelte vengono messe a dimora rispettando i sesti di impianto tipici del pieno campo, anche con assetto semi-intensivo: mandorlo (cultivar Texas e Arrubia) e agrumi (diverse varietà)

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	64

sesto di impianto 6,00x3,00 (si rimanda per maggior dettaglio alla relazione "2102_R.05_Piano Agronomico_Rev00").

Essendo la proprietà utilizzata attualmente a scopo di foraggiamento, per la buona riuscita delle colture sarà necessario migliorare le condizioni strutturali e nutritive del terreno, stabilendo un buon livello di fertilità fisica e chimica per permettere i processi biogeochimici indispensabili a mantenere la disponibilità di elementi nutritivi nella rizosfera.

Per conseguire tali scopi, si prevede una fase di preparazione dell'area tramite azioni di volte al miglioramento fondiario, prima della messa a dimora delle colture. Le operazioni di preparazione e miglioramento fondiario avranno durata di tre anni, in cui verrà svolta un'opera di sovescio (nel primo anno).

Le operazioni di miglioramento fondiario necessarie vengono suddivise nelle seguenti fasi di preparazione del terreno a cui, per chiarezza informativa, vengono integrate le principali azioni di costruzione dell'impianto parti elettriche e le altre azioni colturali:

- 1) Rippattura: verrà eseguita tramite tiller ad una profondità di 80 cm per eliminare zolle eccessivamente grosse e compatte, rendono il terreno più soffice e arieggiato.
- *2) Livellamento:* il terreno sarà livellato, lavorandolo tramite macchina livellatrice, al fine di predisporre il fondo alla realizzazione dell'impianto.
- 3) Divisione in parcelle: tenuto conto delle tare relative a viabilità, fossi, capezzagne, volumi tecnici, si stima una superficie agricola utile di circa 56 ha divisa in 25 lotti coltivabili, di dimensioni variabili a seconda della morfologia della proprietà e delle strade esistenti.
- 4) Frantumazione della componente sassosa e rilascio della componente minerale al suolo: al fine di migliorarne ulteriormente la fertilità sul filare avverrà la frantumazione (tale operazione sarà accorpata con l'interramento del materiale ammendante). L'operazione di riduzione della granulometria è prevista tramite la frantumazione delle pietre a livello superficiale.
- 5) Installazione delle strutture agrivoltaiche: tramite utilizzo di macchine battipalo saranno infissi i pali di sostegno per i tracker elevati da terra. Le strutture saranno infisse senza l'utilizzo di fondazioni in cemento.
- 6) Realizzazione impianto di irrigazione: sono previste opere di infrastrutturazione finalizzate a rendere irrigui i terreni;
- 7) Aggiunta di letame e/o ammendanti organici in misura adeguata: l'apposizione del materiale ammendante verrà posto al fine di fertilizzare l'area tramite **concime naturale** con scelta di letami maturi disponibili in zona o ammendanti pellettati.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	65

- 8) Semina e sovescio: verrà effettuata semina e sovescio tramite la semina di mix erbacei. La massa erbosa cresciuta stagionalmente sarà sfalciata e lasciata al suolo, per velocizzare il processo di fertilizzazione del terreno e recupero della massa organica, ai fini della buona riuscita delle coltivazioni previste. L'operazione avviene su tutta la superficie. Per migliorare la componente organica del suolo tali operazioni potranno durare fino a 3 anni, dopodiché inizierà la piantumazione delle colture.
- 9) Impianto colture: tramite l'ausilio di piccole macchine escavatrici verranno eseguite le buche necessarie per la messa a dimora delle colture e delle piante per la siepe di mitigazione. Le buche per la messa a dimora delle piantine lungo i filari verranno concimate con fertilizzante organico granulare.
- 10) Posizionamento dei teli frangivento: per mitigare la presenza di venti di Maestrale, è prevista, oltre alla piantumazione della siepe perimetrale, l'installazione di reti frangivento.

Il piano agronomico prevede anche la messa a dimora sul perimetro aziendale, coltivazioni tipiche della macchia mediterranea (mirto sardo, corbezzolo e lentisco che caratterizzano l'intorno dell'area di progetto) e ulivi, anche in funzione frangivento. Tali specie permettono di inserire e mantenere nell'area una componente vegetale autoctona, che si rinviene nell'intorno del sito di intervento. Le specie per la siepe presentano un apparato radicale molto robusto, resistenza ai parassiti ed elevata rusticità, sempreverdi con chioma e portamento compatto, caratteri nettariferi e polliniferi e periodi di fioritura scalari.

Insieme alla presenza delle coltivazioni del campo già diversificate, tali caratteristiche garantiscono la produzione di polline e nettare durante tutto l'anno. Ciò permette l'inserimento in campo di 2 arnie della specie *Apis mellifera ligustica* a scopo di monitoraggio ambientale.

Il progetto agrivoltaico così strutturato contribuisce a migliorare la complessità biologica del sistema agroecologico, per iniziare un percorso aziendale certificato e di qualità, contribuendo, allo stesso tempo, ad implementare anche l'occupazione locale nei settori energetico ed agroalimentare.

Infatti, tramite la vendita sia di prodotto fresco che lavorato, l'azienda si assicura la produzione di un quantitativo adeguato ed una varietà di prodotti tale da garantire un buon posizionamento di mercato della produzione agricola. In futuro si prevede anche la certificazione dei prodotti ottenuti integrando la tradizione agricola con le tecnologie innovative di ambienti agrivoltaici; infatti, già nel 2022² il **Consorzio Le Greenhouse** prevedeva la realizzazione di un marchio di provenienza per i

² http://bancadati.datavideo.it/media/20230315/20230315-RAI_3-BUONGIORNO_REGIONE_PUGLIA_0730-075943526m.mp4

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	66

prodotti agrivoltaici che sarebbe stato percepito dal consumatore come indicatore di qualità e sostenibilità ambientale. Ad oggi, in collaborazione con l'AIAS (Associazione Italiana Agrivoltaico Sostenibile), Le Greenhouse lavora alla realizzazione di questo marchio al quale seguirà una certificazione di qualità.

5.2.2. Sistema di irrigazione

Il sito di cui dispone la proponente non ricade in comprensori serviti dal Consorzio di Bonifica. A seguito del miglioramento fondiario previsto, l'intera area sarà infrastrutturata attraverso un sistema di irrigazione avanzato allacciato alle opere del Consorzio di Bonifica e più nello specifico alla vasca consortile sita nel comune di Zeddiani. Il vano tecnico, da cui si dirameranno le condotte atte a servire l'impianto, DN250 e DN200 di cui si riporta a seguire la sezione, saranno realizzate dallo stesso proponente in un altro progetto denominato "Fattoria Solare Tramatza" che prevederà la realizzazione di un bacino idrico di accumulo dal quale sarà possibile rilanciare, attraverso l'utilizzo di pompe, la risorsa idrica verso altri terreni in disponibilità della stessa proponente.

CONDOTTA DI IRRIGAZIONE 0250mm IN POLIETILENE O PVC

Figura 25: Sezione di dettaglio condotte di irrigazione d'adduzione

Il centro di comando sarà realizzato all'interno del vano tecnico, sopra descritto, da cui si dirameranno le condotte di diverso diametro che avranno lo scopo di servire tutte le macroaree dell'impianto agricolo.

Nello specifico l'impianto sarà suddiviso in 31 settori idrici, per ciascuno dei quali, dal locale tecnico si dirameranno le linee di adduzione che consentiranno di svolgere i diversi programmi di fertirrigazione in base alla coltura, tenuto conto delle diverse esigenze colturali e delle fasi fenologiche delle piante, oltre a consentire la simultanea irrigazione.

⁻L'energia elettrica – AIET Assoociazione Italiana di Elettronica, Elettrotecnica, Automazione, Informatica e Telecomunicazioni. Maggio 2022, n.3 vol.99, Articolo 1."l'integrazione tra agricoltura e fotovoltaico favorisce innovazione e cultura imprenditoriale – descrizione del prototipo di agrivoltaico di Scalea", 1.3."Valorizzazione del prodotto agricolo".

⁻INTERVISTA CON LE GREENHOUSE, 27 Febbraio 2023.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	67

L'area sarà servita da un sistema d'irrigazione a doppia ala gocciolante. Per ciascun settore sarà installata una valvola ad apertura automatica controllata da centralina elettronica, per un totale di 31 valvole.

La progettazione degli impianti agrivoltaici della proponente, grazie all'esperienza svolta nel settore, ricorre a moderne tecniche di irrigazione a microportata che consentirà una coltivazione del fondo con notevole risparmio idrico rispetto ai sistemi di irrigazione tradizionali.

Per ulteriori approfondimenti si rimanda all'elabora grafico di riferimento "2102_T.P.10_Layout Impianto Irrigazione-Fertirrigazione_Rev00", riportata di seguito come stralcio.

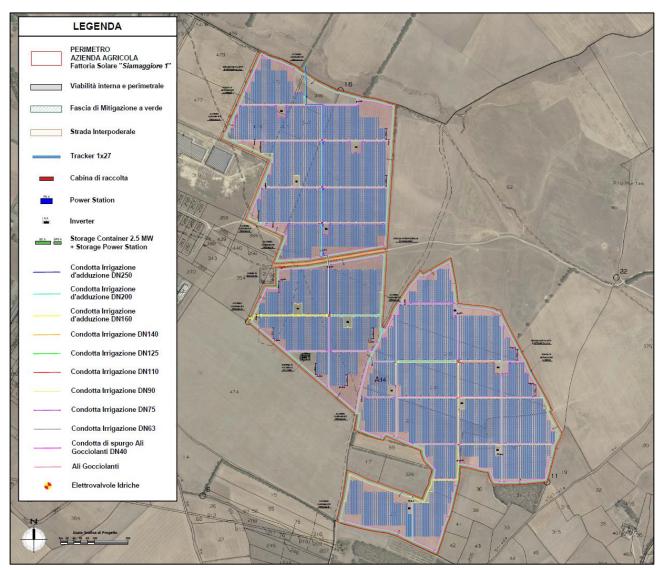


Figura 26: Layout Impianto di Irrigazione/Fertirrigazione con legende e Sezioni tipo di scavo per le condotte. Riferimento Elaborato Grafico "2102_T.P.10_Layout Impianto di Irrigazione/Fertirrigazione_Rev00"

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	68

Il sistema di irrigazione sarà gestito da una centralina Drip Net a più canali con controllo da remoto mediante una rete WiFi di campo (5G) capace di gestire tutte le elettrovalvole, i sistemi di misura, i sensori. Di seguito si riportano i parametri monitorati:

- umidità del suolo a 20 cm;
- umidità del suolo a 40 cm;
- temperatura del suolo;
- temperatura aria;
- umidità dell'aria;
- precipitazioni;
- flusso linfatico e inspessimento del tronco della pianta (dendrometro);
- quantità di acqua erogata per ciascuna sezione;
- misurazione del pH dell'acqua e delle miscele di fertirrigazione;
- radiazione fotosinteticamente attiva (PAR);
- quantità di fertilizzanti erogati per ciascuna sezione;

e più in generale:

- ore di funzionamento dell'impianto,
- controllo di eventuali perdite accidentali dell'impianto con blocco immediato della perdita,
- possibilità di comando da remoto.

Attraverso l'utilizzo della suddetta centralina, sarà possibile gestire gli allarmi in caso di errori rilevati in fase di esercizio dell'impianto con immediato arresto dell'attività svolta, qualora la stessa registri valori al di fuori dei parametri programmati.

Tutti i dati rilevati dai misuratori di campo e dai sensori saranno trasmessi via internet ogni 5 minuti ad un server in cloud gestito dalla Netafim in Israele dove resteranno memorizzati per tre anni al fine di produrre statistiche e studi per l'ottimizzazione dei cicli di irrigazione. Il sistema permetterà di monitorare da remoto anche attraverso collegamento video alle singole sezioni d'impianto le fasi fenologiche delle piante programmando gli interventi di coltivazione da eseguire.

Per ulteriori approfondimenti si rimanda all'elaborato grafico di riferimento "2102_T.P.10_Layout Impianto Irrigazione/Fertirrigazione_Rev00".

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	69

Le stesse tecniche di irrigazione sono state sperimentate negli impianti serricoli agrivoltaici della proponente dal 2011, registrando risultati ottimali in termini di risparmio idrico: **consumo idrico pari a 1/6 rispetto alle coltivazioni in pieno campo** (1.000.000 di litri per ettaro sotto serra agrivoltaica contro i 6.000.000 di litri per ettaro in pieno campo).

Tali risultati sono possibili grazie al sistema di subirrigazione, microirrigazione a doppia ala gocciolante e all'ombreggiamento dei moduli fotovoltaici che riduce notevolmente l'evapotraspirato.

Sulla base di questo risultato consolidato negli anni, e tenuto conto che la nuova struttura agrivoltaica aperta (tracker) in proposta che non prevede volumetrie chiuse e lo stesso indice di ombreggiamento al suolo (nettamente superiore all'interno della serra), si ritiene realisticamente ipotizzabile un risparmio idrico di circa 1/4 rispetto al pieno campo condotto con agricoltura tradizionale.

Nell'elaborato "2102_R.05_Piano Agronomico_Rev00" sono riportati i fabbisogni irrigui per ciascuna coltura in ambiente agrivoltaico applicando, prudenzialmente, solo una riduzione del 25% rispetto al pieno campo.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	70

6. OPERE DI CONNESSIONE

Nel presente capitolo, sono descritte le caratteristiche tecniche delle opere necessarie alla connessione dell'impianto alla Rete di Trasmissione Nazionale.

La Soluzione Tecnica Minima Generale (STMG) elaborata da Terna S.p.A. in data 25.01.2023, a valle di un riesame (Codice Pratica 202101679, Preventivo di connessione Prot. n. P20230008816 del 25.01.2023, accettato dalla proponente in data 16.02.2023) prevede il collegamento dell'impianto in antenna a 36 kV su una nuova Stazione Elettrica della RTN a 220/36 kV da inserire in entra – esce alla linea già esistente 220 kV "Codrongianos – Oristano". Il collegamento in antenna a 36 kV per il collegamento dell'impianto alla nuova SE costituisce impianto di utenza per la connessione mentre lo stallo arrivo produttore a 36 kV nella suddetta SE costituisce impianto di rete per la connessione.

Si specifica che la nuova SE della RTN rappresenta una soluzione tecnica di connessione comune con altri produttori. Il produttore Sorgenia Renewables S.p.a., costituendosi come capofila, si è fatto carico di redigere il progetto definitivo delle opere RTN suddette, impegnandosi a metterlo a disposizione e condivisone, per far sì che possa essere incluso e integrato nei progetti degli altri produttori a fini autorizzativi, una volta benestariato da Terna S.p.a.

Progetto:

Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

71

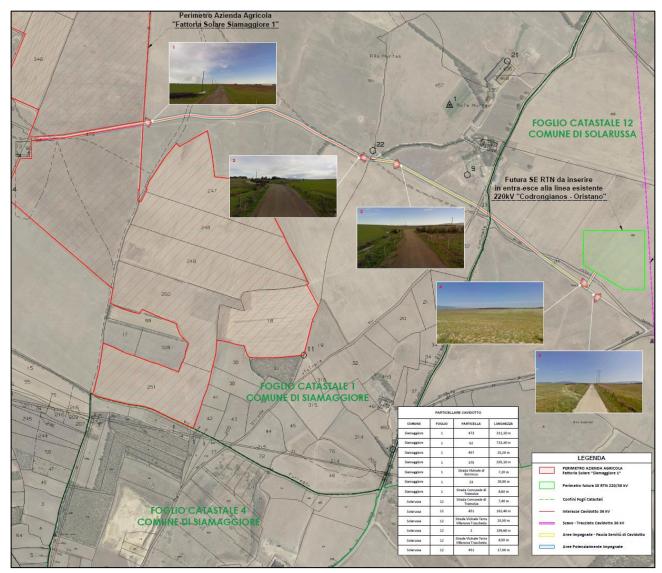


Figura 27: Inquadramento Territoriale "Percorso Cavidotto" con evidenza dei Fogli Catastali interessati Riferimento Elaborato Grafico "2102_T.A.07_Inquadramento Cavidotto su Orto-Catastale_Rev00"

La nuova Stazione Elettrica (SE) di trasformazione 220/36 kV, denominata Bauladu, verrà realizzata nel comune di Solarussa. Sarà connessa mediante due elettrodotti aerei alla linea Codrongianos – Oristano. Per una descrizione dell'opera si rimanda al paragrafo 6.7 della presente relazione "Opere di rete – Nuova SE" e per dettagli si fa riferimento alla relazione "2102_R.23_Relazione Tecnica SE 220/36 kV Bauladu". Con riferimento alle opere di connessione lato utente, si evidenzia che il collegamento tra l'impianto e la nuova SE, sarà eseguito mediante cavidotto AT a 36 kV interrato e di lunghezza pari a circa 1,8 km.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	72

6.1. Specifiche del cavidotto

La progettazione riportata di seguito è stata realizzata nel rispetto delle specifiche tecniche di connessione di centrali fotovoltaiche di tipo 2, descritte al paragrafo 6.1.2. dell'allegato A68 al codice di rete Terna.

Secondo quanto riportato nell'allegato A68 la linea di collegamento a 36 kV dell'impianto di Utente alla stazione RTN, se realizzata in cavo, deve essere connessa ad una singola cella 36 kV con un numero di terne in parallelo non superiore a 2. In caso di potenze di impianto non trasportabili con 2 terne di cavi, si dovranno utilizzare due celle distinte sulla medesima sezione 36 kV della SE Terna. La linea di collegamento a 36 kV dell'impianto di Utente alla stazione RTN deve essere dotata di vettori ridondati in Fibra Ottica fra gli estremi con coppie di fibre disponibili e indipendenti utilizzabili per:

- telemisure e telesegnali da scambiare con Terna;
- scambio dei segnali associati alla regolazione locale della tensione;
- segnali di telescatto associati al sistema di protezione dei reattori shunt di linea eventualmente presenti;
- eventuali segnali logici e/o analogici richiesti dai sistemi di protezione;
- segnali per il sistema di Difesa, che permette il controllo in emergenza del sistema elettrico.

Le condutture e le apparecchiature devono essere dimensionate per una tenuta alla corrente di cortocircuito ≥ 20 kA per 1,0 s.

Il livello di isolamento richiesto per tutte le apparecchiature è pari a Ur=40,5 kV, valore previsto dalla norma CEI EN 62271-1 e tale da rispettare la massima tensione di esercizio garantita da Terna pari a +10% della Vn.

6.2. Dimensionamento del cavidotto

Il cavidotto che collega l'impianto agrovoltaico alla nuova futura SE 220/36 kV è costituito per un primo tratto da tre terne di cavi in parallelo per una lunghezza di circa 1,7 km e per un secondo tratto, adiacente alla stazione, da due terne di lunghezza di circa 140 m. Il cavidotto ha una lunghezza complessiva di circa 1,8 km.

La massima potenza in transito sarà di 44,30 MVA mentre la tensione di esercizio è di 36 kV.

Nel primo tratto le tre terne saranno formate da cavi unipolari in alluminio del tipo (N)A2X5(F)2Y 20,8/36 kV, o equivalente, ciascuno della sezione di 630 mm2; solamente nell'ultimo tratto, di circa 140 m in ingresso alla SE 220/36 kV, il cavidotto sarà composto da sole due terne di cavo, delle

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	73

quali una dello stesso tipo e sezione delle precedenti; mentre la seconda sarà sempre di sezione 630 mm2, ma in rame del tipo N2XS(FL)2Y 20,8/36 kV, o equivalente. Ciò si rende necessario per trasportare la corrente in transito in due delle tre terne costituenti la tratta principale del cavidotto, tramite una giunzione "Y", da installarsi nell'ultimo giunto localizzato nell'area pozzetti esterna alla sezione 36 kV della nuova SE 220/36 kV c.d.

La topologia, nella quasi totalità del cavidotto, è stata progettata attraverso l'utilizzo di tre terne parallele. In prossimità della stazione elettrica RTN, il passaggio da tre a due terne, attraverso l'utilizzo del giunto a "Y", risulta necessario in quanto la versione aggiornata dell'Allegato A.68 al Codice di Rete di Terna prevede l'accesso ai quadri 36 kV con il collegamento di massimo due terne. Di seguito in figura viene rappresentata la sezione tipo del giunto previsto:

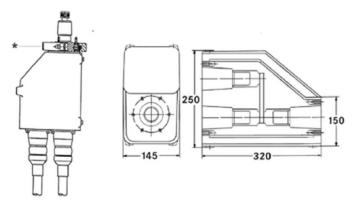


Figura 28: Giunto a "Y"

6.3. Percorso del cavidotto

Il cavidotto sarà posato interamente sotto la strada di accesso ai coltivi ubicati fra l'impianto agrovoltaico e la SE RTN, come da documento *"2102_T.A.02_Inquadramento territoriale su CTR_Rev00"* e *"2102_T.A.03_Inquadramento territoriale su Orto-Catastale_Rev00"*. L'impianto sarà connesso alla rete elettrica nazionale mediante cavi a 36 kV alla Stazione Elettrica (SE) 220/36 kV di Terna:

- L'impianto agrivoltaico è costituito da distinti sottocampi collocati a Nord ed a Sud della strada bianca che collega la fattoria solare con la SE RTN;
- I cavi di collegamento tra la cabina di raccolta dell'impianto agrivoltaico, posizionata sul lato
 Est del campo agrivoltaico a Sud della strada in corrispondenza delle coordinate 39.968768
 °N 8.632147 ° E e la nuova Stazione RTN 220/36kV, transiteranno sotto la strada bianca
 esistente, in direzione prima Est, poi Sud-Est;

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	74

- Da qui entra definitivamente nell'area destinata alla sezione 36kV della nuova SE, indicativamente alle coordinate 39.965256 °N - 8.651382 °E.

6.4. Caratteristiche dei materiali

Si prevede l'utilizzo di cavi 36 kV del tipo unipolari isolati in XLPE senza piombo, sotto guaina di PVC.

Si riportano di seguito i dati elettrici di progetto utilizzati per il dimensionamento del cavidotto:

- Tensione nominale U0/U: 20,8/36 kV
- Temperatura massima di esercizio: 90°C
- Temperatura minima di esercizio: -35°C (in assenza di sollecitazioni meccaniche)
- Resistenza elettrica massima dello schermo: $3 \Omega/km$
- Temperatura minima di posa: 0 °C
- Temperatura massima di corto circuito: 250°C
- Raggio minimo di curvatura consigliato: 870 mm
- Massimo sforzo di trazione consigliato: 60 N/mm2 di sezione del conduttore elettrico

Di seguito si riportano le caratteristiche del cavo commerciale selezionato per il primo tratto da 1,7 km. Il cavo si presenta come in figura sotto:

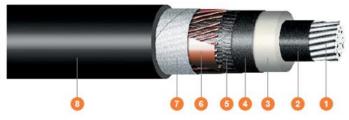
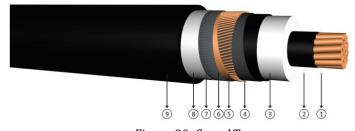



Figura 29: Cavo AT

- 1. Conduttore in alluminio
- 2. Strato semiconduttivo interno
- 3. Isolante in polietilene reticolato (XLPE)
- 4. Strato semiconduttivo esterno
- 5. Nastro di rivestimento protettivo
- 6. Schermatura in filo di rame e nastro di rame
- 7. Nastro idrorepellente
- 8. Guaina esterna in polietilene (PE)

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	75

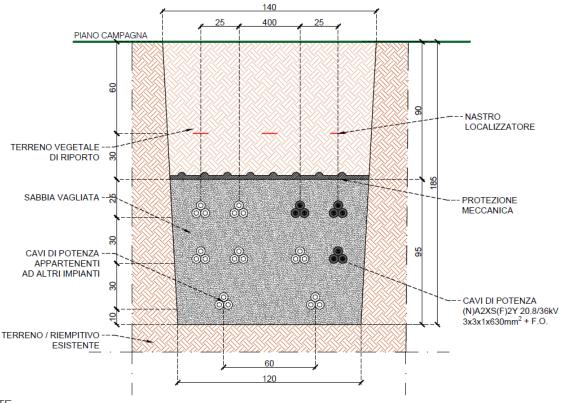
Di seguito si riportano le caratteristiche del cavo commerciale selezionato per il secondo tratto da 140 m. Il cavo si presenta come in figura sotto:

- Figura 30: Cavo AT
- 1. Conduttore in rame
- 2. Strato semiconduttivo interno
- 3. Isolante in polietilene reticolato (XLPE)
- 4. Strato semiconduttivo esterno
- 5. Nastro di rivestimento protettivo
- 6. Schermatura in filo di rame
- 7. Nastro idrorepellente
- 8. Strato di alluminio rivestito
- 9. Guaina esterna in polietilene (PE)

Tali cavi sono adatti per applicazioni a tensione nominale 20,8/36 kV e sono conformi alla normativa vigente in materia. Dopo la posa, i cavi andranno sottoposti a collaudo per verificare l'insorgere di eventuali difettosità, grossolani errori di confezionamento dei giunti e terminali e/o danneggiamenti avvenuti durante i lavori, al fine di garantire la perfetta regola d'arte.

6.5. Scavo del cavidotto di collegamento

La larghezza dello scavo è di circa 1,5 m, mentre la quota di posa delle terne di cavi sarà pari a circa 1,5 metri di profondità per la terna inferiore e 1,2 m per le due terne superiori, al di sopra un letto in sabbia o terra vagliata. La distanza minima tra l'asse delle terne, disposte a trifoglio, sarà pari a 25 cm.


In corrispondenza di ogni giunto verrà realizzato un pozzetto di ispezione. Nel medesimo scavo verrà posata la fibra ottica armata, al fine di garantire la comunicazione tra il sistema di protezione dell'impianto agrovoltaico e il sistema di protezione installato nel fabbricato 36kV di Terna.

Oltre alla segnalazione in superficie della presenza del cavidotto mediante opportuni ceppi di segnalazione, verrà anche posizionato un nastro monitore al di sopra dei cavi al fine di segnalarne preventivamente la presenza in caso di esecuzione di scavi.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	76

Le terminazioni dei cavi di 36kV saranno dotate di terminali unipolari, con isolamento estruso, mentre gli schermi dei cavi stessi saranno messi a terra in corrispondenza delle terminazioni. I giunti che si andranno ad impiegare saranno quelli unipolari diritti, con isolamento a spessore ridotto e schermo in tubo di alluminio. Infine, i cavi saranno ulteriormente protetti tramite la posa, superiormente ad essi, di tegoli di protezione.

Gran parte del tracciato del cavidotto sarà percorso condividendo lo scavo con cavidotti di collegamento di impianti limitrofi che si connetteranno alla stessa stazione elettrica Terna. Si riportano di seguito, a titolo di esempio, due sezioni di scavo tipo rappresentative di quanto descritto precedentemente. In figura sotto vengono riportati in nero i cavi relativi progetto in proposta.

NOTE:

- Quote espresse in centimetri

Figura 31: Sezione tipica di scavo tratto 1,7 km

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	77

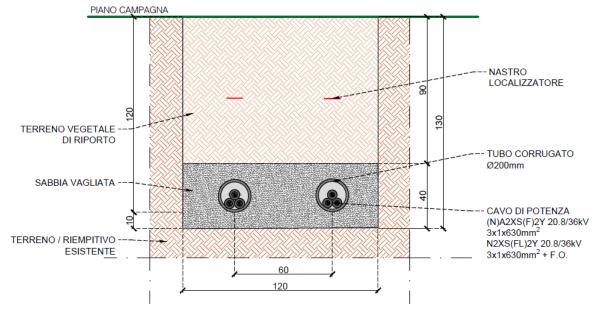


Figura 32: Sezione tipica di scavo tratto 140 m

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	78

6.6. Modalità di posa del cavidotto di collegamento

Le fasi lavorative necessarie alla realizzazione degli elettrodotti in cavo interrato sono:

- scavo in trincea;
- posa cavi;
- rinterri trincea;
- esecuzione giunzioni e terminali;
- rinterro buche di giunzione.

Lo scavo della trincea avverrà tramite escavatore a benna stretta con tratti pari all'incirca alla pezzatura dei cavi da posare. Agli estremi di queste tratte verranno realizzate le buche per i giunti, mentre il terreno scavato verrà posato, durante la fase di posa dei cavi, al fianco dello scavo stesso. Una volta completata la posa, il medesimo terreno verrà riutilizzato per ricoprire lo scavo. Lo scavo, per tutto il periodo nel quale sarà aperto, verrà opportunamente delimitato da recinzione. Una volta creato il letto di posa (sabbia o terreno vagliato) verranno posizionati i rulli sui quali far scorrere il cavo, mentre alle estremità verranno posti un argano per il tiro e le bobine. Una volta realizzati i giunti, all'interno delle apposite buche, ospitanti le selle di supporto protette da cassonetti di muratura, le buche stesse verranno riempite con sabbia vagliata e materiale di riporto.

Gli impatti maggiori previsti per queste attività riguardano l'emissione di rumore, comunque limitato al solo utilizzo dell'escavatore, e di polveri anch'esse limitate dalla posa del terreno asportato di fianco allo scavo stesso e successivamente riutilizzato per il riempimento del cavidotto.

6.7. Opere di rete - Nuova SE

La stazione elettrica di trasformazione RTN 220/36 kV denominata Bauladu, sita nel Comune di Solarussa verrà realizzata al fine di connettere diversi impianti di produzione da fonte rinnovabile ed una cabina primaria di e-distribuzione. Tra i produttori, Sorgenia Renewables Srl si è costituita come capofila del tavolo tecnico, al fine di redigere la progettazione definitiva sottoposta al benestare di Terna S.p.A. La nuova stazione SE Bauladu verrà inserita in entra – esce alla linea RTN 220 kV Codrogianos – Oristano mediante due elettrodotti aerei.

Si riporta di seguito la planimetria e una descrizione dei principali componenti elettrici, per ulteriori dettagli relativi al dimensionamento si rimanda all'elaborato "2102_R.23_Relazione Tecnica SE 220/36 kV Bauladu". La progettazione dell'opera avverrà nel rispetto degli standard tecnici TERNA, delle norme CEI di riferimento e nel rispetto della normativa vigente.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	79

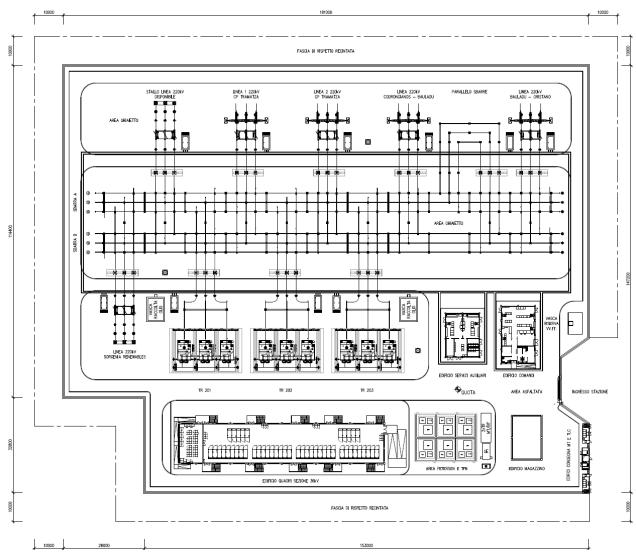


Figura 33: Planimetria SE Bauladu

La stazione di trasformazione 220/36 kV sarà composta da una sezione a 220 kV a doppia sbarra, connessa mediante due elettrodotti aerei in semplice terna alla linea Codrongianos – Oristano, che connette due sezioni 36 kV per mezzo di 3 terne di trasformatori monofase 220/36 kV, per una potenza complessiva di 750 MVA.

La sezione a 220 kV della nuova SE 220/36 kV Bauladu sarà del tipo unificato TERNA con isolamento in aria, e sarà costituita, da:

- No. 1 sistema a doppia sbarra;
- No. 2 stalli linea aerea 220 kV per la connessione in entra esce all'esistente linea 220 kV RTN Codrongianos - Oristano;
- No. 2 stalli linea per la connessione della CP Tramatza;
- No. 2 stalli linea per connessioni produttori;
- No. 3 stalli primario trasformatore 220/36 kV;

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	80

No. 2 passi sbarra per parallelo sbarre di tipo basso.

La sezione a 36 kV della nuova SE 220/36 kV Bauladu sarà del tipo unificato TERNA con quadri per interno ad isolamento in aria o in SF6 (esafluoruro di zolfo), e prevederà, nella sua attuale estensione, No. 2 sezioni speculari, ognuna delle quali costituita da:

- No. 3 partenze trafo 220/36 kV;
- No. 12 arrivi dagli impianti di produzione;
- No. 2 congiuntori con risalite;
- No. 3 reattanze di compensazione, con relativa cella.

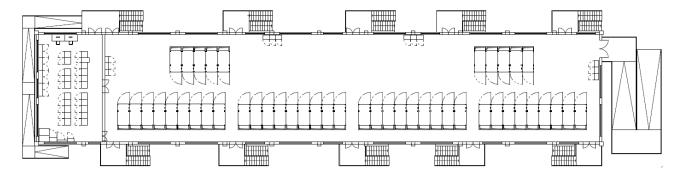


Figura 34: Edificio quadri sezione 36 kV

I macchinari previsti consisteranno nella loro attuale estensione in No. 3 terne di trasformatori monofase 220/36 kV, per una potenza complessiva di 750 MVA.

Ogni "montante trasformatore 220/36 kV" sarà equipaggiato sul primario con sezionatori di sbarra verticali, interruttore in SF6, scaricatori di sovratensione ad ossido di zinco e TA per protezioni e misure. I due secondari di ogni macchina saranno poi connessi alle rispettive semisezioni delle due sezioni 36 kV, sui quadri ubicati all'interno dell'apposito edificio.

Ogni "montante linea" (o "stallo linea") sarà equipaggiato con sezionatori di sbarra verticali, interruttore in SF6, sezionatore di linea orizzontale con lame di terra, TV e TA per protezioni e misure.

Il montante "parallelo sbarre" 220 kV sarà equipaggiato con sezionatori di sbarra verticali, interruttore in SF6 e TA per protezione e misure, ed interesserà 2 passi sbarra.

All'interno della stazione elettrica sono previsti i seguenti fabbricati:

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	81

- No. 1 edificio comandi;
- No. 1 edificio servizi ausiliari e servizi generali;
- No. 2 cabine di consegna MT ad uso del distributore territorialmente competente;
- No. 1 cabina punto di consegna Terna;
- No. 10 chioschi per apparecchiature elettriche;
- No. 1 edificio quadri sezione 36 kV, precedentemente descritto.

Si rimanda agli elaborati di progetto "2102_T.P.26_Planimetria e sezioni SE 220/36 kV Bauladu" e "2102_T.P.27_Schema Elettrico Unifilare SE 220/36 kV Bauladu" per ulteriori dettagli in merito al posizionamento e al collegamento delle apparecchiature elettriche.

L'area occupata dalla stazione elettrica 220/36 kV Bauladu, è di circa 30.000 m2, con lati della SE rispettivamente di 181,00 e 147,20 m, al netto della fascia perimetrale di rispetto di 10 m. Per dettagli in merito alle opere civili di scavo per la realizzazione dell'opera si rimanda alla relazione "2102_R.24_Piano preliminare di utilizzo delle terre e rocce da scavo SE 220-36 kV Bauladu".

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	82

7. NORME E SPECIFICHE TECNICHE

Le opere in argomento sopra esposte, se non diversamente precisato nelle Prescrizioni o nelle Specifiche Tecniche del Gestore di rete in esse richiamate, saranno in ogni modo progettate, costruite e collaudate in osservanza di norme CEI, IEC, CENELEC, ISO, UNI in vigore al momento della accettazione, con particolare attenzione a quanto previsto in materia di compatibilità elettromagnetica.

Vengono di seguito elencati come esempio, alcuni riferimenti normativi relativi ad apparecchiature e componenti d'impianto.

- Norma **CEI 0-21** Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica;
- Norma **CEI 0-16** Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica;
- Norma CEI 64-08 impianti elettrici utilizzatori a tensione nominale non superiore a 1000
 V in corrente alternata e a 1500 V in corrente continua;
- Norma **CEI 11-27** "Lavori su impianti elettrici";
- Norma CEI EN 61936-1 "Impianti elettrici con tensione superiore a 1 kV in c.a. -Prescrizioni comuni";
- Norma **CEI EN 50522** "Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a.":
- Norma **CEI EN 50341-2-13** "Linee elettriche aeree con tensione superiore a 1 kV in c.a. Aspetti Normativi Nazionali (NNA) per l'Italia";
- Norma **CEI 11-17**; V1 "Impianti di produzione, trasmissione e distribuzione di energia elettrica Linee in cavo";
- Norma **CEI EN 62271-100** "Interruttori a corrente alternata ad alta tensione";
- Norma **CEI EN 62271-102** "Sezionatori e sezionatori di terra a corrente alternata per alta tensione";
- Norma CEI EN 60896-22 "Batterie stazionarie al piombo Tipi regolate con valvole Prescrizioni";
- Norma CEI EN 60332-1-1 "Prove su cavi elettrici e ottici in condizioni d'incendio Prova
 per la propagazione verticale della fiamma su un singolo conduttore o cavo isolato –
 Apparecchiatura";

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	83

- Norma **CEI 20-37-0** "Metodi di prova comuni per cavi in condizione di incendio Prove sui gas emessi durante la combustione dei materiali prelevati dai cavi Generalità e scopo";
- Norma **CEI EN 61009-1** "Interruttori differenziali con sganciatori di sovracorrente incorporati per installazioni domestiche e similari";
- Norma CEI EN 60358-1 "Condensatori di accoppiamento e divisori capacitivi Norme generali";
- Norma **CEI 36-12** "Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V";
- Norma **CEI EN 61869-1** "Trasformatori di misura Prescrizioni generali";
- Norma CEI EN 61869-2 "Trasformatori di misura Prescrizioni addizionali per trasformatori di corrente";
- Norma CEI EN 61896-3 "Trasformatori di misura Prescrizioni addizionali per trasformatori di tensione induttivi";
- Norma **CEI EN 61896-5** "Trasformatori di misura Prescrizioni addizionali per trasformatori di tensione capacitivi";
- Norma CEI 57-2 "Bobine di sbarramento per sistemi a corrente alternata";
- Norma **CEI 57-3**; V1 "Dispositivi di accoppiamento per impianti ad onde convogliate";
- Norma **CEI 64-2** "Impianti elettrici in luoghi con pericolo di esplosione";
- Norma CEI 64-8; V5 "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e 1500 V in corrente continua";
- Norma **CEI 79-2**; V2 "Impianti antieffrazione, antintrusione, antifurto e antiaggressione Norme particolari per le apparecchiature";
- Norma **CEI 79-3** "Impianti antieffrazione, antintrusione, antifurto e antiaggressione Norme particolari per gli impianti";
- Norma **CEI EN 60839-11-1** "Sistemi di allarme e di sicurezza elettronica Sistemi elettronici di controllo d'accesso Requisiti per il sistema e i componenti";
- Norma **CEI EN 60335-2-103** "Norme particolari per attuatori per cancelli, porte e finestre motorizzati":
- Norma CEI EN 60076-1 "Trasformatori di potenza";
- Norma CEI EN 60076-2 "Trasformatori di potenza Sovratemperature in trasformatori immersi in liquidi";
- Norma CEI EN 60137 "Isolatori passanti per tensioni alternate superiori a 1 kV";
- Norma CEI EN IEC 60721-3-3 "Classificazioni delle condizioni ambientali";

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	84

- Norma **CEI EN IEC 60721-3-4** "Classificazioni delle condizioni ambientali";
- Norma CEI EN IEC 60068-3-3 "Prove climatiche e meccaniche fondamentali Parte 3: Guida
 Metodi di prova sismica per apparecchiature";
- Norma **CEI EN 60099-4** "Scaricatori ad ossido di zinco senza spinterometri per reti a corrente alternata";
- Norma CEI EN 60099-5 "Scaricatori Raccomandazioni per la scelta e l'applicazione";
- Norma **CEI EN 50110-1 e 2** "Esercizio degli impianti elettrici";
- Norma CEI 7-6 "Norme per il controllo della zincatura a caldo per immersione su elementi di materiale ferroso destinati a linee e impianti elettrici";
- Norma **UNI EN ISO 2178** "Misurazione dello spessore del rivestimento";
- Norma UNI EN ISO 2064 "Rivestimenti metallici ed altri rivestimenti inorganici.
 Definizioni e convenzioni relative alla misura dello spessore";
- Norma **CEI EN 60507** "Prove di contaminazione artificiale degli isolatori per alta tensione in sistemi a corrente alternata";
- Norma **CEI EN 62271-1** "Prescrizioni comuni per l'apparecchiatura di manovra e di comando ad alta tensione";
- Norma **CEI EN 60947-7-2** "Morsetti componibili per conduttori di protezione in rame";
- Norma **CEI EN 60529** "Gradi di protezione degli involucri (Codice IP)";
- Norma **CEI EN 60168** "Prove di isolatori per interno ed esterno di ceramica e di vetro per impianti con tensione nominale superiore a 1000 V";
- Norma CEI EN 60383-1 "Isolatori per linee aeree con tensione nominale superiore a 1000
 V Parte 1 Isolatori in materiale ceramico o in vetro per sistemi in corrente alternata";
- Norma CEI EN 60383-2 "Isolatori per linee aeree con tensione nominale superiore a 1000
 V Parte 2 Catene di isolatori e equipaggiamenti completi per reti in corrente alternata";
- Norme **CEI EN 61284** "Linee aeree Prescrizioni e prove per la morsetteria";
- Norme **UNI EN 54-1** "Componenti di sistemi di rilevazione automatica di incendio";
- Norme **UNI 9795** "Sistemi automatici di rilevazione e di segnalazione manuale d'incendio";
- Norma **CEI EN 61000-6-2** "Immunità per gli ambienti industriali";
- Norma CEI EN 61000-6-4 "Emissione per gli ambienti industriali";
- Norma **CEI EN 50182** "Conduttori per linee aeree Conduttori a fili circolari cordati in strati concentrici";
- Norma **CEI EN 61284** "Linee aeree Prescrizioni e prove per la morsetteria";

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	85

- Norma CEI EN 60383-1; V1 "Isolatori per linee aeree con tensione nominale superiore a 1000 V – Isolatori in materiale ceramico o in vetro per sistemi in corrente alternata -Definizioni, metodi di prova e criteri di accettazione";
- Norma CEI EN 60305 "Isolatori per linee aeree con tensione nominale superiore a 1000 V
 Elementi di isolatori di vetro e di ceramica per sistemi in correte alternata Caratteristiche degli elementi di isolatori a cappa e perno Caratteristiche di elementi di catene di isolatori a cappa e perno";
- Norma **CEI 11-60** "Portata al limite termico delle linee elettriche aeree esterne";
- Norma CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche";
- Norma **CEI 211-6**, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz 10 kHz, con riferimento all'esposizione umana";
- Norma **CEI 103-6** "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto";
- Norma CEI 106-11 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) - Linee elettriche aeree e in cavo";
- Codice di rete emesso da Terna.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	86

8. SISTEMA DI CONTROLLO, RECINZIONE E VIABILITA' INTERNA

L'intero impianto di produzione sarà recintato mediante una recinzione del tipo paletti e rete in maglia metallica leggera arricchita da una siepe verde perimetrale costituita da varie essenze mediterranee con il duplice obiettivo di aumentare la valenza ecologica dell'area ed eventualmente mitigare le strutture fotovoltaiche. Si prevede che la recinzione sia opportunamente sollevata da terra di circa 20 cm per non ostacolare il passaggio della fauna selvatica.

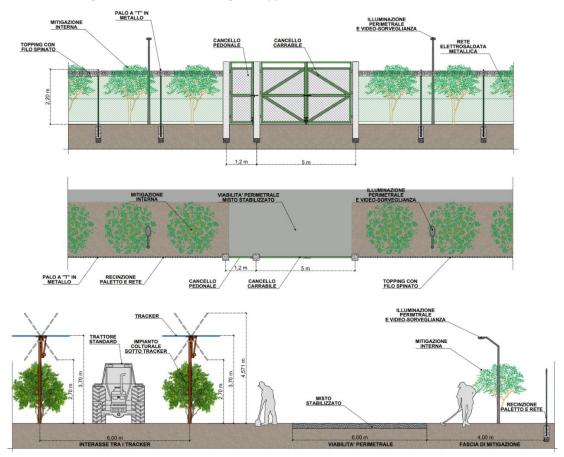


Figura 35: Dettagli Costruttivi Recinzione, Opere di Mitigazione e Viabilità perimetrale

La recinzione è prevista sia lungo il perimetro dell'area che lungo la principale strada interpoderale e, ad integrazione della recinzione di nuova costruzione, è prevista l'installazione di n.9 cancelli ad ingresso carrabile e pedonale per consentire l'accesso alle varie sezioni del campo compatibilmente alle esigenze agricole e di conduzione dell'impianto e nel rispetto dell'attuale viabilità dell'area interessata dal progetto.

L'intero sito sarà percorribile sia in direzione nord-sud che est-ovest grazie alle strade principali che lo attraversano di dimensioni pari a circa 6 m. Mentre per gli attraversamenti secondari e trasversali saranno dedicati dei corridoi tra le file di moduli o sezioni sotto tracker la cui altezza pari a circa 3 metri permette il transito agevole di mezzi di varia tipologia.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	87

Il sito sarà dotato di un sistema di sicurezza e antintrusione con lo scopo di preservare l'integrità dell'impianto contro atti criminosi mediante deterrenza e monitoraggio delle aree interessate. Il sistema di sorveglianza/deterrenza potrà utilizzare sia sistemi di antintrusione perimetrale cablati in fibra ottica sulla recinzione e sia sistemi di rilevazione video mediante telecamere digitali a doppia tecnologia ad alta risoluzione che consentiranno di monitorare in tempo reale il perimetro e le aree di maggior interesse impiantistico. I sistemi video saranno posti sui pali di illuminazione che si trovano lungo il perimetro. Il sistema di video sorveglianza avrà il compito di garantire al servizio di vigilanza locale gli strumenti necessari per effettuare un'analisi immediata degli eventi a seguito di allarme generato dal sistema perimetrale e per eventuali azioni da intraprendere.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare " <i>Siamaggiore 1</i> " EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	88

9. STIMA DELLA PRODUCIBILITA'

In relazione alle caratteristiche climatiche e metereologiche del sito, alle caratteristiche tecniche dei componenti di impianto e alla loro interconnessione, la stima della producibilità dell'impianto in oggetto è complessivamente pari a **62 GWh/anno**.

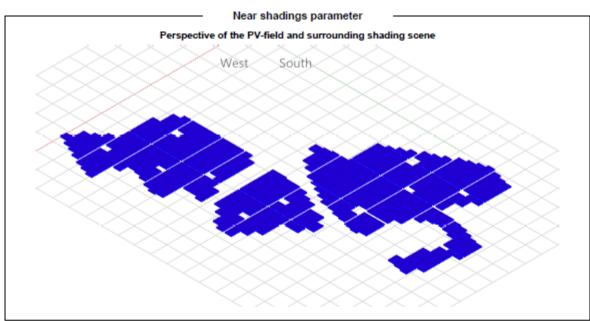
La modellazione del sistema, condotta mediante software PVSyst, ha tenuto conto dei fattori di ombreggiamento, delle ombre vicine e delle perdite.

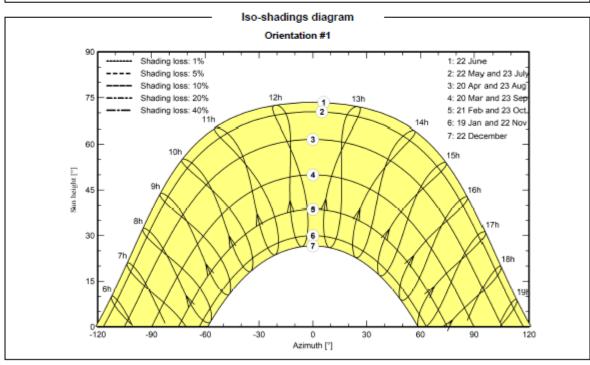
Di seguito si riportano i risultati ottenuti.

Grid Commented System	Teaching an	stans with backtersking		
Grid-Connected System	Tracking sy	stem with backtracking		
PV Field Orientation				
Orientation	Tracking algo		Backtracking array	
Tracking plane, horizontal N-S axis	Astronomic ca	a caracteria	Nb. of trackers	2332 units
Axis azimuth 0 °	Backtracking a	activated	Sizes	
			Tracker Spacing	6.00 m
			Collector width	2.29 m
			Ground Cov. Ratio (GCR	38.1%
			Phi min / max.	-/+ 55.0°
			Backtracking strategy	
			Phi limits	+/- 67.5°
			Backtracking pitch	6.00 m
			Backtracking width	2.29 m
Models used			-	
Transposition Perez				
Diffuse Perez, Meteonorm				
Circumsolar separate				
Horizon	Near Shadir	ngs	User's needs	
Free Horizon	Detailed electr	rical calculation	Unlimited load (grid)	
	acc. to module	e layout		
Bifacial system				
Model	2D Calculation			
uni	imited trackers			
Bifacial model geometry		Bifacial model defini	tions	
Tracker Spacing	6.00 m	Ground albedo	0.3	0
Tracker width	2.29 m	Bifaciality factor	6	8 %
GCR	38.1 %	Rear shading factor	5.	0 %
Axis height above ground	2.10 m	Rear mismatch loss	10.	0 %
			tion 0.	

PV module		Inverter	
Manufacturer	JA Solar	Manufacturer	Huawei Technologies
Model	JAM72D30-545/MB	Model	SUN2000-185KTL-H1
(Custom parameters definit	tion)	(Original PVsyst database)	
Unit Nom. Power	545 Wp	Unit Nom. Power	175 kWac
Number of PV modules	62964 units	Number of inverters	204 units
Nominal (STC)	34.32 MWp	Total power	35700 kWac
Modules 2332 Strings x 27 In series		Operating voltage	550-1500 V
At operating cond. (50°C)		Max. power (=>30°C)	185 kWac
Pmpp	31.33 MWp	Pnom ratio (DC:AC)	0.96
U mpp	1030 V		
l mpp	30427 A		
Total PV power		Total inverter power	
Nominal (STC)	34315 kWp	Total power	35700 kWac
Total	62964 modules	Number of inverters	204 units
Module area	163439 m²	Pnom ratio	0.96
Cell area	149784 m²		

Progetto:


Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.


Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

89

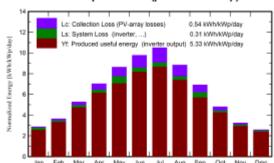
Progetto:

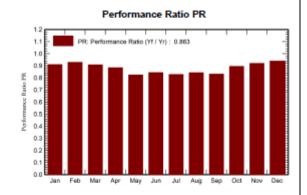
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:


90



System Production
Produced Energy 67 GWh/year

Specific production Performance Ratio PR 1947 kWh/kWp/year 86.27 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globine	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	GWh	GWh	ratio
January	65.3	30.29	9.89	89.1	86.7	3.013	2.783	0.910
February	77.3	34.43	10.10	101.8	99.1	3.391	3.242	0.928
March	125.8	57.18	12.41	163.1	158.8	5.314	5.086	0.909
April	161.6	61.97	14.59	210.3	205.1	6.679	6.382	0.884
May	203.3	74.60	19.16	267.3	260.6	8.273	7.554	0.824
June	223.6	70.97	23.01	293.0	285.9	8.882	8.478	0.843
July	241.9	59.73	26.01	325.4	317.8	9.698	9.255	0.829
August	203.8	66.53	26.10	273.4	266.8	8.264	7.899	0.842
September	153.3	51.50	21.90	207.5	202.4	6.436	5.920	0.831
October	110.7	44.56	19.27	148.4	144.6	4.761	4.557	0.895
November	71.4	28.21	14.40	97.2	94.6	3.212	3.069	0.920
December	57.8	25.52	11.18	80.1	78.0	2.707	2.584	0.940
Year	1695.7	605.48	17.38	2256.7	2200.3	70.631	66.811	0.863

Legends

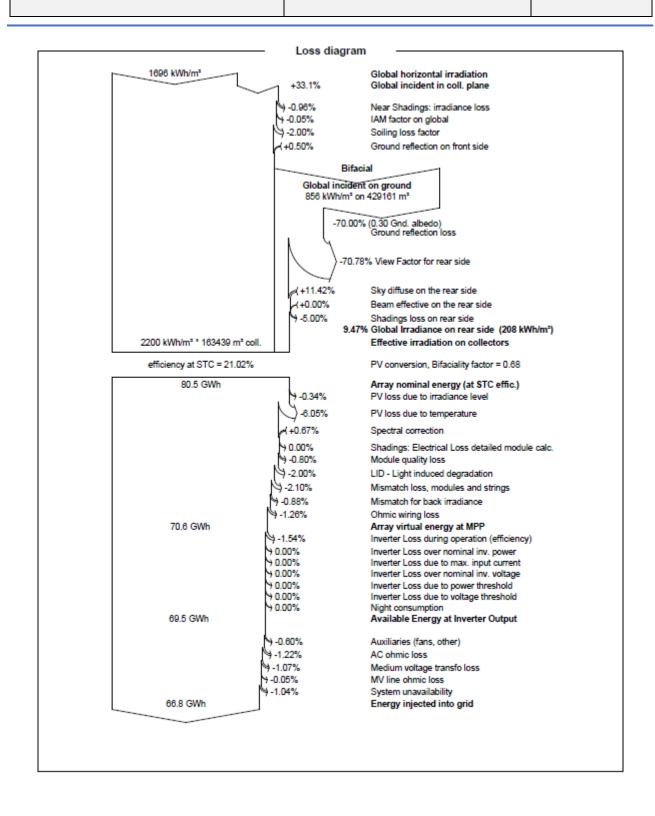
GlobHor Global horizontal irradiation
DiffHor Horizontal diffuse irradiation
T_Amb Ambient Temperature

Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_Grid Energy injected into grid PR Performance Ratio Progetto:


Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.

Titolo Elaborato:

Relazione Tecnica Descrittiva

Pagina:

91

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1"	Relazione Tecnica Descrittiva	92

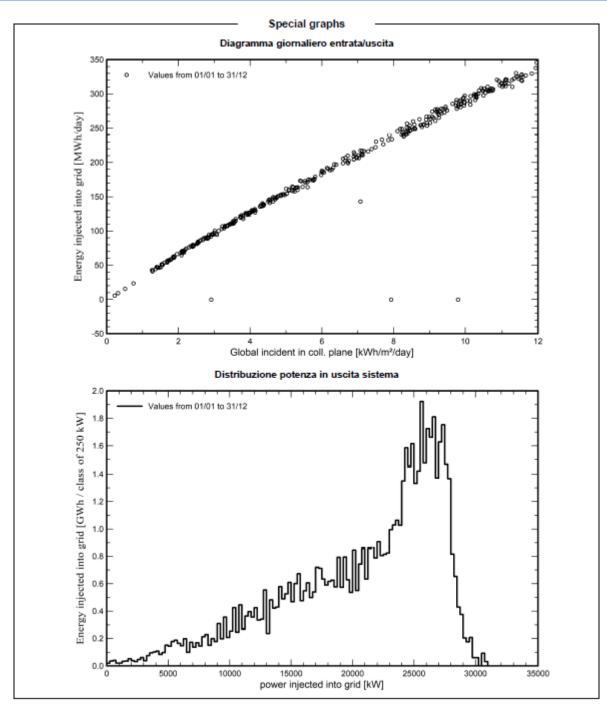


Figura 36: Analisi della producibilità

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	93

9.1. Benefici Ambientali

Nel presente paragrafo si analizzano i benefici ottenibili dall'impianto in materia ecologicoambientale.

Al fine di quantificare l'effettivo risparmio di combustibile fossile si converte l'energia prodotta dall'impianto a fonte rinnovabile in TEP (Tonnellate Equivalenti di Petrolio) tramite il coefficiente di conversione TEP/MWh ricavabile dall'equivalenza:

$$1 TEP \equiv 11,63 MWh$$

Tale equivalenza esprime la quantità di energia rilasciata dalla combustione di una tonnellata di petrolio grezzo. Il coefficiente di conversione TEP/MWh che indica a quante TEP corrisponde un MWh di energia risulta pari a:

$$\frac{TEP}{MWh} \cong 0,085985$$

Pertanto, considerando un fattore di perdita di efficienza annuale dell'impianto dello 0,80%, le TEP risparmiate dall'impianto risulteranno:

Risparmio combustibile fossile		
Energia prodotta dall'impianto	67.000,00 MWh/anno	
Combustibile fossile risparmiato in un anno	5.761,00 TEP	
Combustibile fossile risparmiato in 20 anni	106.463,19 TEP	

Inoltre, considerando i **Rapporti 363/2022 dell'ISPRA** (Istituto Superiore per la Protezione e la Ricerca Ambientale) riguardanti gli Indicatori di efficienza e decarbonizzazione del sistema energetico nazionale e del settore elettrico, si possono calcolare le Emissioni di gas ad effetto serra evitate.

Al fine di valutare l'impatto di tali fonti sulla riduzione di gas a effetto serra sono state calcolate le emissioni di CO2 evitate ogni anno. La metodologia adottata consiste nel calcolo delle emissioni nell'ipotesi che l'equivalente energia elettrica da fonti rinnovabili sia realizzata con il mix fossile dell'anno in questione. Le emissioni evitate sono quindi calcolate in termini di prodotto dell'energia elettrica generata da fonti rinnovabili per il fattore di emissione medio annuale da fonti fossili. L'ipotesi si basa sull'assunzione che, in assenza di produzione rinnovabile, la stessa quantità di energia elettrica deve essere prodotta dal mix fossile.

Il fattore di emissione della produzione elettrica nazionale e dei consumi elettrici risulta:

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	94

$$\frac{g CO_2}{kWh} = 449,1$$

Tale coefficiente fa riferimento esclusivamente alla produzione termoelettrica lorda proveniente da fonte fossile ed è espresso in grammi di CO₂ emessi per kWh di energia prodotta.

Pertanto, considerando analogamente il fattore di perdita di efficienza annuale dell'impianto dello 0,80%, la quantità di CO₂ evitata dall'impianto risulterà:

Emissione di CO ₂ evitata		
Energia prodotta dall'impianto	67.000,00 MWh/anno	
Emissione di CO ₂ evitata in un anno	30.089,70 t CO ₂	
Emissione di CO ₂ evitata in 20 anni	556.057,65 t CO ₂	

Un ulteriore aspetto da considerare è che la generazione di energia elettrica comporta l'emissione in atmosfera di gas climalteranti differenti dalla CO₂, che contribuiscono, anche se in quantità minime, al riscaldamento globale. Questi gas sono, ad esempio, il metano (CH₄) e il protossido di azoto (N2O), i quali sono caratterizzati da elevati potenziali di riscaldamento globale. L'insieme dei gas ad effetto serra è indicato con l'acronimo di GHG (GreenHouse Gases) e possono essere valutati in termini di CO₂ equivalente, calcolando a quanta anidride carbonica corrisponderebbe una determinata quantità di un altro gas climalterante. Di conseguenza, si possono ricavare i fattori di emissione in gCO2eq/kWh relativi a metano e protossido di azoto. Tali fattori di emissione fanno riferimento al settore elettrico per la produzione di energia elettrica e calore, a valle delle considerazioni dei rispettivi potenziali di riscaldamento globale stimati da ISPRA nel contesto dell'Inventario delle emissioni nazionali e risultano:

$$\frac{g\ CO_{2eq}}{kWh}=0,64\ \ per\ il\ metano$$

$$\frac{g\ CO_{2eq}}{kWh}=1,3\ \ per\ il\ protossido\ di\ azoto$$

Ne consegue che, considerando sempre il fattore di perdita di efficienza annuale dell'impianto dello 0.80%, la quantità di CO_{2eq} evitata dall'impianto sarà:

Emissione di CO _{2eq} evitata		
Energia prodotta dall'impianto	67.000,00 MWh/anno	
Emissione di CO _{2eq} evitata in un anno (CH ₄)	42,88 t CO _{2eq}	
Emissione di CO _{2eq} evitata in 20 anni (CH ₄)	792,42 t CO _{2eq}	
Emissione di CO_{2eq} evitata in un anno (N_2O)	87,10 t CO _{2eq}	

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	95

Emissione di CO _{2eq} evitata in 20 anni (N ₂ O)	1609,61 t CO _{2eq}

La combustione nel settore elettrico è inoltre responsabile delle emissioni in atmosfera di inquinanti che alterano la qualità dell'aria, quali ossidi di azoto (NO_x), ossidi di zolfo (SO_x), composti organici volatili non metanici (COVNM), monossido di carbonio (CO), ammoniaca (NH_3) e materiale particolato (PM_{10}). I fattori di emissione degli inquinanti atmosferici emessi per la produzione di energia elettrica e calore sono riportati nella seguente tabella:

Fattori di emissione inquinanti atmosferici		
Ossidi di azoto (NO _x)	205,36 mg/kWh	
Ossidi di zolfo (SO _x)	45,50 mg/kWh	
Composti organici volatili non metanici (COVNM)	90,20 mg/kWh	
Monossido di carbonio (CO)	92,48 mg/kWh	
Ammoniaca (NH ₃)	0,28 mg/kWh	
Materiale particolato (PM ₁₀)	2,37 mg/kWh	

Quindi, considerando il fattore di perdita di efficienza annuale dell'impianto dello 0,80%, la quantità di inquinanti atmosferici evitati dall'impianto sarà:

Emissioni di inquinanti atmosferici evitate		
Energia prodotta dall'impianto	67.000,00 MWh/anno	
Emissione di NO _x evitata in un anno	13,76 t NO _x	
Emissione di NO _x evitata in 20 anni	254,27 t NO _x	
Emissione di SO _x evitata in un anno	3,05 t SO _x	
Emissione di SO _x evitata in 20 anni	56,33 t SO _x	
Emissione di COVNM evitata in un anno	6,04 t COVNM	
Emissione di COVNM evitata in 20 anni	111,68 t COVNM	
Emissione di CO evitata in un anno	6,20 t CO	
Emissione di CO evitata in 20 anni	114,50 t CO	
Emissione di NH ₃ evitata in un anno	0,02 t NH ₃	
Emissione di NH ₃ evitata in 20 anni	0,34 t NH ₃	
Emissione di PM ₁₀ evitata in un anno	0,16 t PM ₁₀	
Emissione di PM ₁₀ evitata in 20 anni	2,94 t PM ₁₀	

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	96

10. DISMISSIONE E RIPRISTINO DEI LUOGHI

Al termine della vita utile di un impianto agrivoltaico, il progetto definitivo prevede una serie di operazioni che hanno l'obiettivo di dismettere e smantellare l'impianto in tutte le sue parti, incluse le infrastrutture (nella fattispecie il cavidotto AT, e lo Stallo AT in Stazione Elettrica) necessarie alla connessione alla RTN.

Tali operazioni vengono previste e descritte al fine di consentire il ritorno allo stato iniziale delle aree interessate dall'opera. La produzione di rifiuti verrà gestita secondo la normativa vigente D.lgs. 152/2006, i materiali riciclabili verranno inviati ad aziende specializzare al riciclo di queste strutture mentre i materiali non riciclabili e di risulta verranno inviati ad impianti di recupero e smaltimento specializzati ed autorizzati. I materiali identificati come materiali riciclabili saranno recuperabili al momento della loro dismissione tramite processi di fusione e successiva raffinazione, dando luogo a prodotti analoghi a quelli di origine o comunque sottoprodotti di pari impiego.

Le fasi delle attività di dismissione dell'impianto agrivoltaico e delle opere di connessione sono dettagliatamente descritte, insieme al cronoprogramma e alla stima preliminare dei costi, nell'elaborato "2102_R.09_Piano di Dismissione e Ripristino dei Luoghi con stima costi_Rev00".

11. CRONOPROGRAMMA LAVORI

I tempi per la realizzazione del progetto si stimano essere di circa 12 mesi. I tempi relativi alla costruzione dell'impianto, intesi come tempo che intercorre dal verbale di apertura cantiere fino ai collaudi preliminari dello stesso si stimano essere di circa 11 mesi. La costruzione dell'impianto sarà avviata immediatamente dopo l'ottenimento delle autorizzazioni necessarie, previa realizzazione del progetto esecutivo. I tempi di messa in esercizio dell'impianto sono chiaramente vincolati alla realizzazione da parte di Terna della nuova SE e delle opere di rete necessarie alla connessione con la linea 220 kV "Codrongianos-Oristano", stimata in circa 20 mesi dal preventivo di connessione. Terminata la costruzione della stazione elettrica si provvederà al collaudo finale dell'opera e alla messa in esercizio.

In merito ai tempi di approvvigionamento dei tracker e dei moduli fotovoltaici si ipotizzano circa 3 mesi, inteso come tempo che intercorre dalla data di invio ordine al fornitore, fino alla consegna in impianto. Per le apparecchiature preassemblate, i container, la strumentazione e il materiale elettrico per impianto e cavidotto si ipotizzano dai 4 ai 6 mesi.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Siamaggiore 1" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Tecnica Descrittiva	97

Per il dettaglio delle tempistiche delle attività di realizzazione dell'impianto di produzione e del cavidotto si faccia riferimento all'elaborato "2102_R.14_Cronoprogramma dei lavori_Rev00", che rappresenta il cronoprogramma complessivo delle opere.

12. VALORE DELL'OPERA

La stima del valore dell'opera nel suo complesso ammonta a circa 36,68 mln/€ (escluso IVA); i costi di dismissione sono stimati in circa 1,4 mln/€ (escluso IVA). Per i dettagli si rimanda agli elaborati "2102_R.11_Computo metrico estimativo_Rev00".

13. BENEFICI SOCIO-ECONOMICI E RICADUTE OCCUPAZIONALI

Il progetto agrivoltaico, "Fattoria Solare Siamaggiore 1", oltre a contribuire alla produzione di energia pulita e alla conseguente riduzione delle emissioni di sostanze inquinanti nell'atmosfera, permette la valorizzazione dell'area agricola.

Il progetto in esame mira, infatti, al miglioramento fondiario di un'area attualmente utilizzata per pascolo ovino tramite l'implementazione di coltivazioni arboree con prodotti a più alto valore aggiunto sul mercato. Inoltre, il terreno verrà reso maggiormente fertile mediante prassi colturali specifiche e l'intera area verrà resa irrigua tramite opere di adduzione che, collegate ad infrastrutture presenti del Consorzio di Bonifica, ne valorizzeranno l'investimento nel contesto agricolo di riferimento.

All'interno della pianificazione agronomica del progetto è prevista anche una coltivazione diversificata per favorire la biodiversità dei luoghi. Verranno, infatti, messe a dimora anche piante tipiche della macchia mediterranea che permetteranno la sopravvivenza e permanenza in loco degli insetti pronubi, utili ai fini ecologici dell'area più vasta, caratterizzata dalla presenza della zona industriale.

Utilizzare il suolo sia per la produzione di energia pulita che per l'attività agricola, permette di sviluppare due business integrati e paralleli. Ciò consente di sviluppare diverse possibilità occupazionali sul territorio in cui si inserisce: dalla gestione e manutenzione della parte fotovoltaica alla gestione agricola e di attività ad essa connesse.

Si stima per la parte agricola, l'occupazione fino a 23 operai nelle fasi di raccolta, che verranno inseriti anche in percorsi di formazione per lo sviluppo di agricoltura digitale e di precisione in ambiente fotovoltaico; mentre per la parte di manutenzione elettrica ordinaria verranno impiegati almeno 2 operai specializzati.