PROGETTO DELLA CENTRALE SOLARE "CORIANDOLI SOLARI"

da 56,37 MWp ad Arlena di Castro (VT)

PIANO PRELIMINARE ROCCE E TERRE

PROGETTO DEFINITIVO

Proponente

Pacifico Olivina S.R.L.

Piazza Walther-von-der-Vogelweide,8 - 39100 (BZ)

Investitore agricolo superintensivo **OXY CAPITAL ADVISOR S.R.L.**

Via A. Bertani, 6 - 20154 (MI)

Progetto dell'inserimento paesaggistico e mitigazione

Progettista: Agr. Fabrizio Cembalo Sambiase, Arch. Alessandro Visalli

Collaboratori: Urb. Enrico Borrelli, Arch. Anna Sirica

studio di architettura del paesaggio Progettazione elettrica e civile

AEDES GROUP

ENGINEERING

Progettista: Ing. Rolando Roberto, Ing. Giselle Roberto Collaboratori: Ing. Marco Balzano, Ing. Simone Bonacini

Progettazione oliveto superintensivo

Progettista: Agron. Giuseppe Rutigliano

MARE RINNOVABILI

Consulenza geologia Geol. Gaetano Ciccarelli

Consulenza archeologia

Apoikia S.R.L. Via Sant'Anna dei Lombardi, 16

03	•	2023
	0	
	0	
	þ	

rev	descrizione	formato	elaborazione	controllo	approvazione
00	Prima consegna	A4	Rolando Roberto	Giselle Roberto	Rolando Roberto
01					
02					
03					
04					
05					
06					
07					

Sommario

1	PIA	NO PRELIMINARE UTILIZZO IN SITO TERRE E ROCCE DA SCAVO	2
	1-1	Premessa	3
	1-2	Norme di riferimento	8
	1-3	Caratterizzazione ambientale	. 10
	1-4	Attività che comportano produzione di terre di scavo	. 12
	1-5	Quantità totale attesa di terre di scavo	. 14
	1-6	Possibili usi delle terre di scavo in sito	. 14

m

1 ΡΙΔΝΌ ΡΡΕ	LIMINARE UTILIZZO IN SITO TE	RRE E ROCCE DA SCAVO
I FIANOFAL	LIMINANE OTILIZZO NA STIO IL	INNE E NOCCE DA SCAVO
	T	
	UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 2 / 15

1-1 Premessa

L'impianto agrivoltaico è proposto nei comunei di Arlena di Castro e Tuscania, nel Lazio in Provincia di Viterbo. Si tratta di un territorio a forte vocazione agricola, confermata dal progetto che inserisce un'attività produttiva olivicola di grande impatto e valenza economica. Insieme alla produzione fotovoltaica, necessaria per adempiere agli obblighi del paese, verranno infatti inseriti circa **89.656 alberi di olivo in assetto** 'superintensivo' i quali occuperanno il **71,5** % del terreno lordo recintato (pari a ca 47,9 ettari).

Complessivamente solo il 20,5% del terreno sarà interessato dalla proiezione zenitale dei pannelli fotovoltaici (tipicamente a metà giornata), mentre il resto sarà impegnato o dall'uliveto produttivo o da mitigazioni e fasce di continuità ecologica .L'intera superficie sarà protetta da prato permanente e prato fiorito per apicoltura.

La produzione, che sarà tracciata e produrrà un olio 100% italiano, non interferirà con il mercato locale in quanto sarà interamente ritirata dall'operatore industriale Olio Dante, controllato dai soci di Oxy Capital (per il quale rappresenta un flusso di piccola entità, ma anche l'avvio di una strategia di grande portata). L'impatto del progetto agricolo, con la sua alta resa e basso costo di produzione, dunque non interferirà con la valorizzazione di prezzo del prodotto locale e determinerà una esternalità positiva sull'economia agraria con riferimento alla molitura del prodotto appena raccolto e alla manodopera agricola diretta ed indiretta.

Figura 1 - Inquadramento territoriale

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 3 / 15

L'impianto è localizzato alle coordinate:

Latitudine: 42°25′38.89"N / 42°24′43.70"N

Longitudine:11°46′49.55"E / 11°49′16.07"E

Figura 2- Impianto su mappa catastale

Come si vede dall'immagine seguente l'impianto si dispone con andamento Nord ovest-Sud est su 14 piastre di diverse dimensioni.

		Area (m²)	Utilizzo terreno (%)	
Α	Superficie complessiva del lotto	1.063.901		
В	Sup. impegnata totale lorda (entro recinzione)	670.000	63,0%	(di A)
B1	Di cui superficie netta radiante impegnata	253.191	37,8%	(di B)
B2	Di cui superficie minima proiezione tracker	137.216	20,5%	(di B)
С	Superficie viabilità interna	50.926	7,6%	(di B)
D	Superficie agrivoltaica ai fini del calcolo requisito A	670.000		
E	Superficie agricola produttiva totale (SAP)	616.249	92%	(di D)
E1	di cui uliveto superintensivo	479.033	71,5%	(di D)
E2	di cui prato fiorito	137.216	20,5%	(di D)
G	Altre aree naturali	341.965	32,1%	(di A)
G1	Superficie mitigazione	269.932	25,4%	1
G2	Superficie prati esterni	72.033	6,8%	(di A)
Н	Superficie Agricola Totale	958.214	90,1%	

Tabella 1 - Tabella delle aree impegnate dall'impianto

L'impianto è dotato di strutture mobili (inseguitori), entrambe con disposizione 2p ("double portraits") con moduli da 690 Wp e dimensioni 2.384 x 1.303 x 33 mm.

Gli inseguitori hanno un pitch di 11,0 m, la distanza tra una struttura e la successiva lascerà 5,832 m all' area interfilare agricola.

I moduli del generatore erogheranno corrente continua (DC) che, prima di essere immessa in rete, sarà trasformata in corrente alternata (AC) da gruppi di conversione DC/AC (inverter) ed infine elevata dalla bassa tensione (BT) alla media tensione (MT 30 kV) della rete di raccolta interna per il convogliamento alla stazione di trasformazione AT/MT per l'elevazione al livello di tensione della connessione alla rete nazionale.

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 5 / 15
---------------------------------	---------------

Lo schema di allacciamento alla RTN prevede che la centrale venga collegata in antenna a 36 kV venga collegata in antenna a 36kV su una nuova Stazione Elettrica (SE) di trasformazione a 150/36 kV della RTN da inserire in entra - esce alla linea a 150 kV RTN "Canino – Arlena.

La sottostazione MT/AT rappresenterà sia il punto di raccolta dell'energia prodotta dal campo agrivoltaico che il punto di trasformazione del livello di tensione da 30 kV a 36 kV, per consentire il trasporto dell'energia prodotta fino al punto di consegna della rete di trasmissione nazionale.

La sottostazione utente sarà unica.

Il collegamento tra le SSE e la SEU avverrà mediante cavo interrato a 36 kV che si attesterà ad uno stallo di protezione AT.

Con una potenza massima in immissione pari a 49.280 kW. La realizzazione della stazione di consegna (SSE Utente) è prevista nel comune di **Canino (VT)**, come da indicazioni condivise con l'ufficio tecnico di Terna SpA. L'intera produzione sarà immessa in rete e venduta secondo le modalità previste dal mercato libero dell'energia.

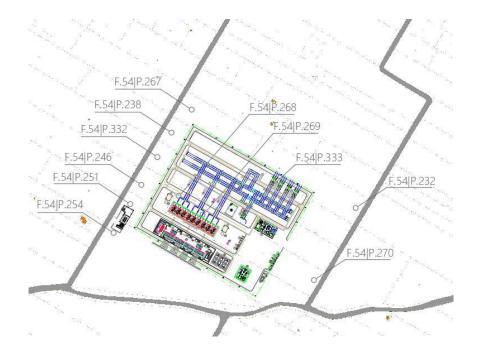


Figura 3 Localizzazione nuova SE

La stazione elettrica utente sarà dotata di un trasformatore di potenza con relativi edifici tecnici adibiti al controllo e alla misura dell'energia prodotta ed immessa in rete.

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 6 / 15
---------------------------------	---------------

La stazione avrà un'estensione di circa 475 mq e l'ubicazione è prevista su un terreno classificato come area "E – Zona Agricola Normale" dal vigente strumento urbanistico del Comune di Canino (VT).

La rete di raccolta dell'impianto sarà costituita da n.21 cabine inverter/trasformatore collegate in media tensione alle Cabine di Raccolta. Si avranno due cabine di raccolta, di cui la R1 sarà collegata alla stazione di elevazione AT/MT.

Piastra	Cabine	Cabina Raccolta	Tipologia struttura	n. Strutture	n. moduli	Potenza DC (kWp)
			TR_2P_12X690	5	120	
1	1 X 3 MW		TR_2P_24X690	5	240	2.103
			TR_2P_48X690	28	2.688	
			TR_2P_12X690	18	432	
2	1 x 4 MW		TR_2P_24X690	24	1.152	3.345
			TR_2P_48X690	34	3.264	
			TR_2P_12X690	7	168	
3	1 X 2 MW		TR_2P_24X690	6	288	977
			TR_2P_48X690	10	960	
			TR_2P_12X690	10	240	
4	1 X 4 MW		TR_2P_24X690	9	432	3.378
			TR_2P_48X690	44	4.224	
			TR_2P_12X690	9	216	
5	1 X 2 MW		TR_2P_24X690	1	48	1.507
		R1	TR_2P_48X690	20	1.920	
			TR_2P_12X690	6	144	
6	2 x 3 MW		TR_2P_24X690	15	720	4.703
			TR_2P_48X690	62	5.952	
			TR_2P_12X690	7	168	
7	1 x 4 MW		TR_2P_24X690	2	96	2.766
			TR_2P_48X690	39	3.744	
			TR_2P_12X690	11	264	
8	2 x 3 MW		TR_2P_24X690	9	432	4.852
			TR_2P_48X690	66	6.336	
			TR_2P_12X690	7	168	
9	1 x 2 MW		TR_2P_24X690	10	480	1.176
			TR_2P_48X690	11	1.056	
10	1 x 4 MW+ 1		TR_2P_12X690	2	48	762
10	x 3 MW		TR_2P_24X690	2	96	, 52

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 7 / 15

			TR_2P_48X690	10	960	
			TR_2P_12X690	5	120	
11			TR_2P_24X690	6	288	4.852
			TR_2P_48X690	69	6.624	
			TR_2P_12X690	5	120	
12			TR_2P_24X690	4	192	2.202
			TR_2P_48X690	30	2.880	
			TR_2P_12X690	6	144	
13	1 X 4 MW		TR_2P_24X690	9	432	397
			TR_2P_48X690	0	0	
			TR_2P_12X690	5	120	
14			TR_2P_24X690	6	288	745
			TR_2P_48X690	7	672	
			TR_2P_12X690	11	264	
15	1 X 3 MW		TR_2P_24X690	8	384	2.169
			TR_2P_48X690	26	2.496	
			TR_2P_12X690	16	384	
16	1 X 3 MW	RT1	TR_2P_24X690	20	960	2.385
		KII	TR_2P_48X690	22	2.112	
			TR_2P_12X690	30	720	
17	5 X 4 MW		TR_2P_24X690	48	2.304	18.050
			TR_2P_48X690	241	23.136	
тот	21			1.063	81.696	56.370

Tabella 2 - Suddivisione piastre-cabine

Per l'inquadramento ambientale del sito si rinvia allo Studio di Impatto Ambientale allegato al progetto ed alle Relazioni Tecniche.

1-2 Norme di riferimento

Con il termine terre e rocce da scavo si fa riferimento al suolo scavato derivante da attività finalizzate alla realizzazione di un'opera tra cui:

- scavi in genere (sbancamento, fondazioni, trincee);
- perforazione, trivellazione, palificazione, consolidamento;

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 8 / 15

- opere infrastrutturali in generale (galleria, strade, ecc.);
- rimozione e livellamento di opere in terra.

A seconda della loro caratterizzazione, provenienza e destinazione si applicano regimi normativi diversi:

- 1. le "terre e rocce di scavo allo stato naturale", riutilizzate nello stesso sito di produzione sono soggette a quanto indicato dal D.Lgs. 152/06 art. 185, c.1, lettera c)¹;
- le terre e rocce di scavo dotate dei requisiti per essere qualificate come "sottoprodotti" possono essere riutilizzate anche in una diversa opera, in sostituzione di materiali di mercato (es. materiali di cava) o in processi produttivi idonei, in tal caso devono rientrare nelle definizioni del DPR 13 giugno 2017, n.120²
- 3. se non rientrano in nessuna delle due definizioni precedenti devono essere trattate come rifiuti.

In caso di cantieri che movimentino quantità di terre e rocce superiori a 6.000 mc (come è il caso) e soggetti a VIA è necessaria la redazione del Piano redatto in conformità a quanto indicato nell'allegato 5 del DPR per ottenere la qualifica di "sottoprodotto".

Il cantiere, come vedremo, movimenta circa 32.000 m³ di terre di scavo ma rientra nella definizione di cui alla citata lettera c) (punto 1).

Il DPR 120/2017 prevede una specifica procedura per l'utilizzo in sito delle terre di scavo nei cantieri sottoposti a VIA, come il presente, è in tal caso necessario:

b) il terreno (in situ), inclusi il suolo contaminato non scavato e gli edifici collegati permanentemente al terreno, fermo restando quanto previsto dagli artt. 239 e ss. relativamente alla bonifica di siti contaminati;

² - Le condizioni principali sono: che siano utilizzabili senza trattamenti diversi dalla normale pratica industriale e, allo stesso tempo; che soddisfino i requisiti di qualità ambientale previsti ovvero non presentino concentrazioni di inquinanti superiori ai limiti previsti nella Tab. 1 All. 5 Titolo V parte IV D.Lgs 152/06 con riferimento alla specifica destinazione d'uso del sito di produzione e del sito di destinazione (art. 10 c.1); possono invece contenere calcestruzzo, bentonite, polivinilcloruro - PVC, vetroresina, miscele cementizie e additivi per scavo meccanizzato; che non costituiscano fonte di contaminazione diretta o indiretta per le acque sotterranee, ad esempio in contesti idrogeologici particolari quali condizioni di falda affiorante, substrati rocciosi fessurati e inghiottitoi naturali,

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 9 / 15
---------------------------------	---------------

¹ - D. Lgs. 152/05, art **185. Esclusioni dall'ambito di applicazione**

^{1.} Non rientrano nel campo di applicazione della parte quarta del presente decreto:

a) omissis

c) il suolo non contaminato e altro materiale allo stato naturale escavato nel corso di attività di costruzione, ove sia certo che esso verrà riutilizzato a fini di costruzione allo stato naturale e nello stesso sito in cui è stato escavato; d) omissis

- a- un Piano Preliminare di Utilizzo,
- b- il campionamento ed analisi delle terre di scavo,
- c- il progetto definitivo di utilizzo.

Il Piano di Utilizzo dovrà essere:

- 1- redatto conformemente all'allegato 5 del DPR 120/2017
- 2- trasmesso dal proponente all'Autorità Competente (Provincia di Viterbo) e all'Arpa almeno 90 giorni prima dell'inizio dei lavori, o nell'ambito del procedimento di VIA,
- 3- includere una dichiarazione sostitutiva dell'atto di notorietà ai sensi dell'art 47 del DPR 445/2000.

In fase di progettazione esecutiva o comunque prima dell'avvio dei lavori il proponente:

- 1- effettua il campionamento previsto nell'area interessata dai lavori e svolge le analisi necessarie per attestare lo stato di non contaminazione delle terre,
- 2- una volta accertata l'idoneità redige il progetto definitivo nel quale:
 - stabilisce le volumetrie definitive di scavo,
 - le quantità di terre da riutilizzare,
 - la collocazione e la relativa durata dei depositi in cantiere delle terre e rocce di scavo,
 - la destinazione definitiva,
- 3- gli esiti di queste attività ed il Piano sono trasmessi all'autorità competente ed all'Arpa prima dell'avvio dei lavori,
- 4- se all'esito delle analisi le terre siano in parte o tutto non conformi quella parte va gestita come rifiuto.

1-3 Caratterizzazione ambientale

La caratterizzazione ambientale sarà eseguita mediante scavi esplorativi in corrispondenza de luoghi nei quali saranno disposti cavidotti, vasche delle cabine, rilevati stradali.

Il modello di prelievo di campioni seguirà il progetto e sarà realizzato nella misura di 1 campione ogni 500 metri lineari di percorso, 200 per i cavidotti, più 1 campione per ogni vasca delle cabine.

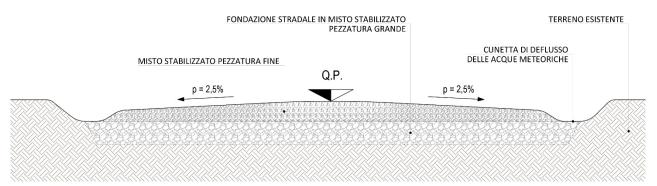
Lunghezza (m) / num.	passo prelievi (m)	numero prelievi
UTILIZZO TERRE E RO	CCE DA SCAVO	Pagina 10 / 15

Strade interne	14.365	500	29
Cavidotti BT / MT	22.363	200	112
Cavidotto MT esterno	2.763	200	14
Recinzione	13.939	500	28
Cabine e volumi tecnici	23	1	23
			205

Tabella 3 - Prelievi per caratterizzazione ambientale

Deriva il prelievo di n.205 zone di campionamento per ognuna delle quali saranno prelevati due campioni, uno in superficie ed uno in profondità.

Il set analitico previsto è il seguente:


- Arsenico
- Cadmio
- Cobalto
- Nichel
- Piombo
- Rame
- Zinco
- Mercurio
- Idrocarburi C>12
- Cromo totale
- Cromo VI
- Amianto

I risultati delle analisi sui campioni sono confrontati con le Concentrazioni Soglia di Contaminazione di cui alle colonne A e B, Tabella 1, Allegato 5, al Titolo V, della Parte IV, del decreto legislativo 3 aprile 2006, n. 152, con riferimento alla specifica destinazione d'uso urbanistica (zona agricola).

Le terre e rocce scavate saranno disposte nell'area del Cantiere 1, previa stesa al suolo.

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 11 / 15
---------------------------------	----------------

Figura 4 - Sezione tipo viabilità interna

1-4 Attività che comportano produzione di terre di scavo

Le attività che comportano la produzione di terre di scavo sono:

1- Lo scortico superficiale (30 cm per 3,5 mt di larghezza) per realizzare le strade perimetrali in misto stabilizzato.

Le strade in misto stabilizzato sviluppano ca. 14.365 metri di sviluppo e quindi una produzione di terra di scavo di ca 15.083 m³. La quantità di terra rimossa e movimentata può essere stimata nell'80 % della cifra sopra indicata, e quindi pari a 12.067 m³.

- 2- Il sistema di illuminazione e videosorveglianza perimetrale comporta piccoli scavi per i plinti di fondazione dei pali e per i pozzetti di ispezione. Conteggiando n. 311 pali e altrettanti pozzetti, avremo uno scavo di ca 152 m³.
- 3- Gli elettrodotti in BT e MT interni hanno uno sviluppo di ca 22.363 metri lineari per un volume di scavo di 15.810 m³ e seguiranno i seguenti profili tipici. Di questi materiali di scavo, tuttavia, circa l'80% sarà direttamente riutilizzato in situ per ricolmare le fosse di scavo.
- 4- I cavidotto MT esterni si sviluppano per circa 2.763 m con un volume di scavo di circa 2.072 m³.

 Di questo, circa il 75% sarà direttamente riutilizzato in situ per ricolmare la fossa di scavo.

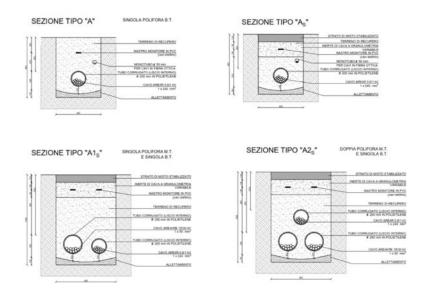


Figura 5 - Sezioni tipo scavi cavidotti

Figura 6- Esempio di cabina omologata

Cabine. L'impianto è dotato di n. 21 cabine di trasformazione BT/MT e 2 cabine di raccolta principali.

 •	·
UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 13 / 15

Ogni cabina MT/BT è dotata di una vasca di fondazione di 14,0 x 4,0 x 0,4 m e necessita di un volume di scavo di ca 28,0 m³. La cabina di raccolta R1 è dotata di una vasca di fondazione da $22 \times 4,0 \times 0,4$ m e necessita di un volume di scavo di ca 44 m³ mentre la cabina di raccolta RT1 è dotata di una vasca di fondazione da $14,0 \times 4,0 \times 0,4$ m e necessita di un volume di scavo di ca 28 m³.

Ne deriva una quantità di terre di scavo da ca. 660 m³.

1-5 Quantità totale attesa di terre di scavo

In definitiva il terreno da movimentare è stimabile in:

	Quantità totale (m³)	Quantità riusata (%)	Quantità residua (m³)
Strade interne	15.083	20%	12.067
Cavidotti BT / MT	15.810	80%	3.162
Cavidotto MT esterno	2.072	75%	518
Cabine	660	20%	528
Pali illuminazione	152	0%	152
Totale	33.777	51%	16.426

Tabella 4- Quantità terreno da movimentare

1-6 Possibili usi delle terre di scavo in sito

La fascia di mitigazione dell'impianto occupa una superficie di 269.932 m².

Su tali aree saranno ripartiti i 16.426 m³ residuanti dalle attività di scavo, in definitiva per uno spessore medio di 6 cm. Precisamente saranno utilizzati solo dove serve, in aree limitate, per creare un lieve effetto gobba sulla mitigazione, graduato dall'esterno verso l'interno, in modo da schermare ulteriormente il campo e per l'area naturalistica a fini di modellazione minore.

Non si prevede di dover gestire terre e rocce fuori del cantiere. Qualora la cosa si renda necessaria si richiederà la qualifica di "sottoprodotto", previa caratterizzazione in situ dei cumuli di terra e variante del Piano di Utilizzo presente nel progetto.

Per l'indicazione delle modalità di caratterizzazione (205 punti di prelievo previsti) si rimanda al Piano di Utilizzo che sarà redatto prima dell'avvio di cantiere e dopo le caratterizzazioni.

UTILIZZO TERRE E ROCCE DA SCAVO	Pagina 14 / 15

Non si prevede di dover g si richiederà la qualifica d variante del presente Piar	di "sottoprodotto",			
	UTILIZZO TERRE	E E ROCCE DA SCAVO	D	Pagina 15 / 15