

REGIONE SARDEGNA

PROVINCIA DI SASSARI COMUNE DI TULA

Oggetto:

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRO-FOTOVOLTAICO DELLA POTENZA DI 34,8186 MWp DA UBICARSI NEL TERRITORIO DEL COMUNE DI TULA LOCALITÀ MONTE UDULU

Elaborato:

REL005 - Relazione sui Calcoli Preliminari d'Impianto

TAVOLA:

PROPONENTE:

Alter Cinque S.R.L.

REL005

Via della Bufalotta 374, 00139 Roma (RM)

PROGETTAZIONE:

GAMIAN CONSULTING SRL

Sede Via Gioacchino da Fiore 74 87021 Belvedere Marittimo (CS)

Tecnico

Ing. Gaetano Voccia

Team Tecnico: Greco Francesco Addino Roberto Iorio Marco

Splendore Francesca

Cairo Stefano Martorelli Francesco Guerriero Alessandra Sollazzo Lavinia

51

DATA:

REDAZIONE:

CONTROLLO:

APPROVAZIONE:

Marzo 2023

Greco Francesco

Stefano Cairo

Voccia Gaetano

Codice Progetto: F.22.154

Rev.: 00 - Presentazione Istanza VIA e AU

Gamian Consulting Srl si riserva la proprietà di questo documento e ne vieta la riproduzione e la divulgazione a terzi se non espressamente autorizzato

SPAZIO RISERVATO ALL'ENTE PUBBLICO

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

1	PRESENTAZIONE DEL PROGETTO	2
2	RIFERIMENTI NORMATIVI	8
3	MISURE DI PROTEZIONE ADOTTATE	16
3.1	1 PROTEZIONE DAI CONTATTI DIRETTI	16
3.2		
3.3		
3.4		
4	QUALITÀ DEI MATERIALI	18
5	CARATTERISTICHE TECNICHE	19
5.1	1 Moduli Fotovoltaici	19
5.2	2 Inverter	21
5.3	3 Trasformatore	24
5.4	4 CENTRO INVERTER-TRASFORMATORE	25
5.5	5 CABLAGGI E CAVI	31
5.6	6 QUADRI ELETTRICI	31
5.7	7 DISPOSIZIONE ELETTROMECCANICA	32
5.8	8 SISTEMI AUSILIARI	33
6	CAVI ELETTRICI	35
7	CONNESSIONI E DERIVAZIONI	38
8	IMPIANTO DI TERRA	39
9	RELAZIONE DEI CALCOLI ELETTRICI	40
9.1	1 RIFERIMENTI NORMATIVI	40
9.2	2 Prescrizioni tecniche generali	41
9.3	3 DETERMINAZIONE DELLE CORRENTI DI IMPIEGO	41
9.4	4 DIMENSIONAMENTO DEI CAVI	43
9.5	5 INTEGRALE DI JOULE	44
9.6	6 CADUTE DI TENSIONE	45
9.7	7 DIMENSIONAMENTO DEI CONDUTTORI DI NEUTRO	46
9.8	8 DIMESIONAMENTO DEI CONDUTTORI DI PROTEZIONE	46
9.9	9 CALCOLO DEI GUASTI	46
9.1	10 CALCOLO DELLE CORRENTI MASSIME DI CORTO CIRCUITO	47
9.1	11 SCELTA DELLE PROTEZIONI	49
9.1	12 VERIFICA DELLA PROTEZIONE A CORTOCIRCUITO DELLE CONDUTTURE	50
	VERTICA DELLA PROTEZIONE A CONTOCINCOTTO DELLE CONDOTTORE	

1 PRESENTAZIONE DEL PROGETTO

La Alter Cinque S.r.l. intende realizzare nel comune di Tula (SS), in località "Monte Udulu" un impianto agro-fotovoltaico ad inseguimento monoassiale per la produzione di energia elettrica. Il futuro impianto FV_TULA presentato in autorizzazione è composto da:

- Campi agro-fotovoltaici, siti nel comune di Tula (SS), in località Monte Udulu;
- Stazione di consegna Utente, nel comune di Tula (SS);
- Cavidotto di collegamento MT, nel territorio del comune di Tula (SS).

L'impianto si sviluppa su una superficie lorda complessiva di circa 64,0769 Ha (640.769 m²), appartenenti all'area di impianto ricadente nel territorio del comune di Tula (SS). L'impianto in progetto sorgerà sulle particelle catastali n. 45-46-47-49-51-54-59-60-61-63-69-70-71-79-81-87-88-163-164-183-184 del foglio di mappa catastale n. 14 e le particelle n. 110-111-112-113-114-115-116-131-445-448-449 del foglio di mappa n. 15. Le coordinate geografiche (baricentro approssimativo) del sito di impianto e del punto di connessione sono:

Coordinate impianto	Coordinate stazione
Lat: 40.722308°	Lat: 40.767456°
Long: 8.971784°	Long: 8.968401°

Figura 1 - Ubicazione area impianto e punto di connessione (Google Earth)

Figura 2 - Ortofoto dell'area dell'impianto ricadente sul territorio di Tula (SS) – località "Monte Udulu".

Figura 3 - Ortofoto della stazione di consegna ricadente sul territorio di Tula (SS).

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

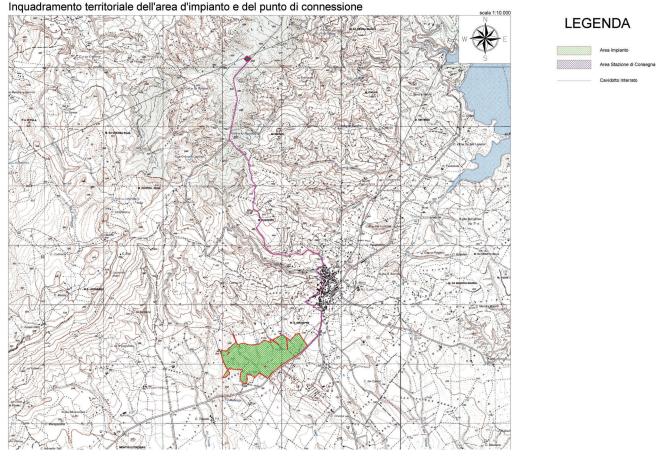


Figura 4 - Inquadramento territoriale dell'area d'impianto FV_TULA e del punto di connessione su I.G.M.

Il sito dell'impianto agro-fotovoltaico FV_TULA ricade nella porzione ovest del territorio comunale di Tula, a circa 500 m direzione Sud-ovest del centro abitato, in una zona occupata da terreni agricoli e distanti da agglomerati residenziali o case sparse. Il sito risulta accessibile dalla viabilità locale, con accesso dalla SP103 "Tula-Baesia". La Società Alter Cinque S.r.l. ha ottenuto dal gestore di rete Terna S.p.A. la soluzione tecnica minima generale (STMG) in data 12/12/2022, la quale prevede che il parco fotovoltaico venga collegato in antenna a 150 kV sul futuro ampliamento della Stazione Elettrica (SE) a 150 kV della RTN denominata "Tula" (previsto da Piano di Sviluppo Terna), previa realizzazione dei seguenti interventi di cui al Piano di Sviluppo di Terna:

- nuova Stazione Elettrica (SE) della RTN a 150 kV in GIS denominata "Buddusò" da inserire in entra esce sulla linea RTN a 150 kV "Ozieri Siniscola 2";
- nuova Stazione Elettrica (SE) della RTN a 150 kV denominata "Tempio";
- nuova Stazione Elettrica (SE) della RTN a 150 kV denominata "Santa Teresa";
- nuovo elettrodotto di collegamento della RTN a 150 kV tra le suddette stazioni.

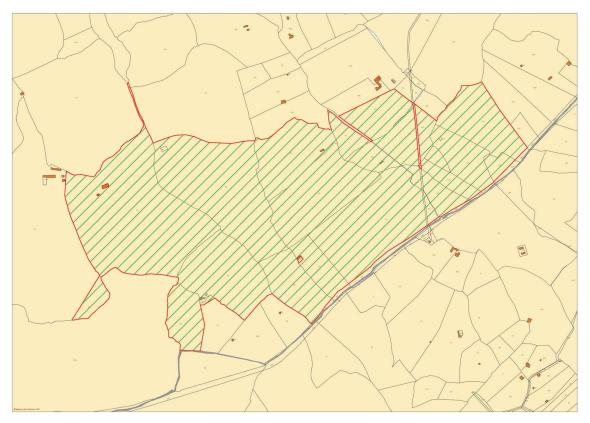


Figura 5 – Inquadramento territoriale dell'area dell'impianto ricadente sul territorio di Tula (SS) – località "Monte Udulu", su Catastale.

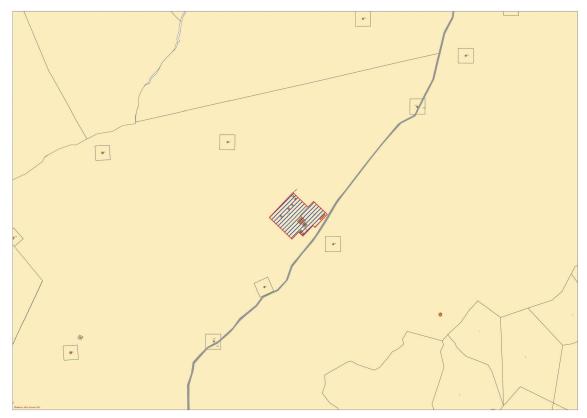


Figura 6 – Punto di connessione su base catastale

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

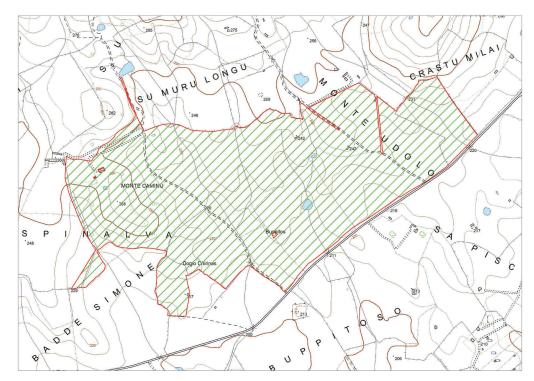


Figura 7 - Inquadramento territoriale dell'area dell'impianto ricadente sul territorio di Tula (SS) - località "Monte Udulu", su CTR.

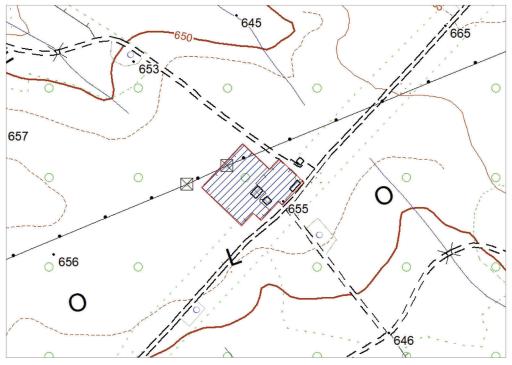


Figura 8 – Punto di connessione su Carta Tecnica Regionale

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Impianto Agro-Fotovoltaico "FV_IULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

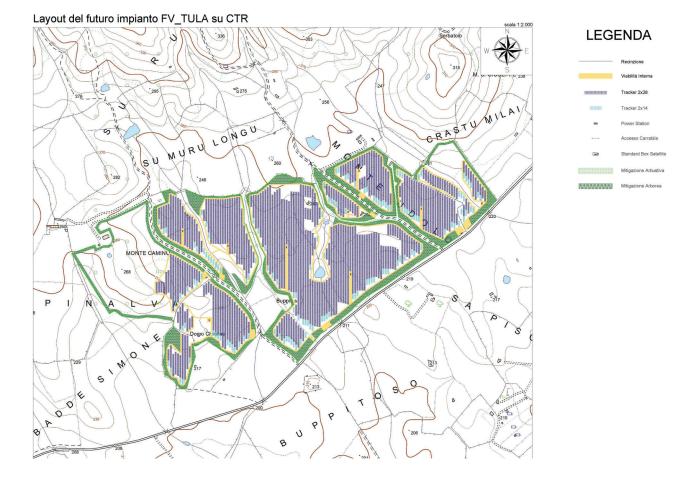


Figura 9 – Layout dell'area d'impianto su C.T.R. ricadente sui territori di Tula (SS) – località "Monte Udulu".

L'accesso all'area in cui sarà realizzato l'impianto situato a Tula (SS), in località "Monte Udulu" è raggiungibile attraverso la strada provinciale SP103, strade comunali e vicinali; mentre il sito della stazione posto a Tula (SS) è raggiungibile attraverso le strade comunali.

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

2 RIFERIMENTI NORMATIVI

L'impianto elettrico oggetto del presente progetto sarà realizzato in conformità alle vigenti Leggi/Normative tra le quali si segnalano le seguenti principali:

Leggi e Decreti
Direttiva Macchine 2006/42/CE.

"Norme Tecniche per le Costruzioni 2018" indicate dal DM del 17 Gennaio 2018, pubblicate sulla Gazzetta Ufficiale il 20 febbraio 2018, in vigore dal 22 marzo 2018, con nota n. 3187 del Consiglio superiore dei Lavori pubblici (Csllpp) del 21 marzo 2018 e relative circolari applicative della norma.

Legislazione e normativa nazionale in ambito Elettrico		
D. Lgs 9 aprile 2008	(Attuazione dell'articolo 1 della Legge 3 Agosto 2007, n. 123, in materia di tutela	
n. 81 e s.m.i.	della saluta e della sicurezza nei luoghi di lavoro).	
CEI EN 50110-1	(Esercizio degli impianti elettrici).	
CEI 11-27	(Lavori su impianti elettrici).	
CEI 0-10	(Guida alla manutenzione degli impianti elettrici).	
CEI UNI EN ISO/IEC 17025	Requisiti generali per la competenza dei laboratori di prova e di taratura CEI 0-2	
	Guida per la definizione della documentazione di progetto degli impianti elettrici.	
CEI EN 60445 (CEI 16-2)	Principi base e di sicurezza per l'interfaccia uomo-macchina, marcatura e	
	identificazione – Identificazione dei morsetti degli apparecchi e delle estremità	
	dei conduttori.	

Progettazione:

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Sicurezza elettrica		
CEI 0-16	Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti	
	AT ed MT delle imprese distributrici di energia elettrica.	
CEI 11-27	Lavori su impianti elettrici.	
CEI 64-8	Impiantielettriciutilizzatoriatensionenominalenonsuperiorea1000Vincorrente	
	alternata e a 1500 V in corrente continua.	
CEI 64-8/7 (Sez.712)	Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in	
	corrente alternata e a 1500 V in corrente continua - Parte 7: Ambienti ed	
	applicazioni particolari.	
CEI 64-12	Guida per l'esecuzione dell'impianto di terra negli edifici per uso residenziale e	
	terziario.	
CEI 64-14	Guida alla verifica degli impianti elettrici utilizzatori.	
IEC/TS 60479-1	Effects of current on human beings and livestock – Part 1: General aspects.	
IEC 60364-7-712	Electrical installations of buildings – Part 7-712: Requirements for special	
	installations or locations – Solar photovoltaic (PV) power supply systems.	
CEI 64-57	Edilizia ad uso residenziale e terziario - Guida per l'integrazione degli impianti	
	elettrici utilizzatori e per la predisposizione di impianti ausiliari, telefonici e di	
	trasmissione dati negli edifici - Impianti di piccola produzione distribuita.	
CEI EN 61140 (CEI0-13)	Protezione contro i contatti elettrici - Aspetti comuni per gli impianti e le	
	apparecchiature.	

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Normativa Fotovoltaica		
ANSI/UL 1703:2002	Flat-Plate Photovoltaic Modules and Panels	
IEC/TS 61836	Solar photovoltaic energy systems – Terms, definitions and symbols	
CEI 82-25	"Guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti	
	elettriche di Media e Bassa Tensione"	
CEI EN 50438 (CEI 311-1)	Prescrizioni per la connessione di micro-generatori in parallelo alle reti di	
	distribuzione pubblica in bassa tensione	
CEI EN 50461 (CEI 82-26)	Celle solari - Fogli informativi e dati di prodotto per celle solari al silicio cristallino	
CEI EN 50521(82-31)	Connettori per sistemi fotovoltaici - Prescrizioni di sicurezza e prove	
CEI EN 60891 (CEI82-5)	Caratteristiche I-V di dispositivi fotovoltaici in Silicio cristallino – Procedure di	
	riporto dei valori misurati in funzione ditemperatura e irraggiamento	
CEI EN 60904-1 (CEI82-1)	Misura delle caratteristiche fotovoltaiche corrente-tensione	
Dispositivi fotovoltaici–		
Parte 1		
CEI EN 60904-2 (CEI82-2)	Prescrizione per i dispositivi solari di riferimento	
Dispositivi fotovoltaici –		
Parte 2		
CEI EN 60904-3 (CEI82-3)	Principi di misura dei sistemi solari fotovoltaici (PV) per uso terrestre e	
Dispositivi fotovoltaici –	irraggiamento spettrale di riferimento	
Parte 3		
CEI EN 60904-4 (82-32)	Dispositivi solari di riferimento - Procedura per stabilire la tracciabilità della	
Dispositivi fotovoltaici -	taratura	
Parte 4		
CEI EN 60904-5 (82-10)	Determinazione della temperatura equivalente di cella (ETC) dei dispositivi solari	
Dispositivi fotovoltaici -	fotovoltaici (PV) attraverso il metodo della tensione a circuito aperto	
Parte 5		
CEI EN 60904-7 (82-13)	Calcolo della correzione dell'errore di disadattamento fra le risposte spettrali nelle	
Dispositivi fotovoltaici –	misure di dispositivifotovoltaici	
Parte 7		
CEI EN 60904-8 (82-19)	Misura della risposta spettrale di un dispositivo fotovoltaico	
Dispositivi fotovoltaici -		
Parte 8		
CEI EN 60904-9 (82-29)	Requisiti prestazionali dei simulatori solari	
Dispositivi fotovoltaici -		
Parte 9		

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

CEI EN 60904-9 (82-29)	Requisiti prestazionali dei simulatori solari
Dispositivi fotovoltaici -	
Parte 9	
CEI EN 60068-2-21 (91-40)	Prove - Prova U: Robustezza dei terminali e dell'interconnessione dei componenti
2006 Prove ambientali -	sulla scheda
Parte2-21	
CEI EN 61173 (CEI82-4)	Protezione contro le sovratensioni dei sistemi fotovoltaici (FV) per la produzione
	di energia – Guida
CEI EN 61215 (CEI82-8)	Moduli fotovoltaici (FV) in Silicio cristallino per applicazioni terrestri –
	Qualifica del progetto e omologazione del tipo
CEI EN 61646 (CEI 82-12)	Moduli fotovoltaici (FV) in Silicio cristallino per applicazioni terrestri –
	Qualifica del progetto e omologazione del tipo
CEI EN 61277 (CEI 82-17)	Sistemi fotovoltaici (FV) di uso terrestre per la generazione di energia elettrica –
	Generalità e guida
CEI EN 61345 (CEI 82-14)	Prova all'UV dei moduli fotovoltaici (FV)
CEI EN 61683 (CEI 82-20)	Sistemi fotovoltaici - Condizionatori di potenza - Procedura per misurare
	l'efficienza
CEI EN 61701 (CEI 82-18)	Prova di corrosione da nebbia salina dei moduli fotovoltaici (FV)
CEI EN 61724 (CEI 82-15)	Rilievo delle prestazioni dei sistemi fotovoltaici – Linee guida per la misura, lo
	scambio e l'analisi dei dati
CEI EN 61727 (CEI82-9)	Sistemi fotovoltaici (FV) - Caratteristiche dell'interfaccia di raccordo alla rete
CEI EN 61730-1 (CEI 82-27)	Qualificazione per la sicurezza dei moduli fotovoltaici (FV) Parte 1:
	Prescrizioni per la costruzione
CEI EN 61730-2 (CEI 82-28)	Qualificazione per la sicurezza dei moduli fotovoltaici (FV) Parte 2: Prescrizioni
	per le prove
CEI EN 61829 (CEI 82-16)	Schiere di moduli fotovoltaici (FV) in Silicio cristallino – Misura sul campo delle
	caratteristiche I-V
CEI EN 62093 (CEI 82-24)	Componenti di sistemi fotovoltaici - moduli esclusi (BOS) - Qualifica di progetto in
	condizioni ambientali naturali
CEI EN 62108 (82-30)	Moduli e sistemi fotovoltaici a concentrazione (CPV) – Qualifica del progetto e
	approvazione di tipo

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Quadri Elettrici	
CEI EN 61439-1 (CEI 17- 13/1)	Apparecchiature assiemate di protezione e di manovra per bassa tensione
	(quadri BT) – Parte 1: Apparecchiature soggette a prove di tipo (AS) e
	apparecchiature parzialmente soggette a prove di tipo (ANS).
CEI EN 61439-3 (CEI 17-13/3)	Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri
	BT) – Parte 3: Prescrizioni particolari per apparecchiature assiemate di protezione
	e di manovra destinate ad essere installate in luoghi dove personale non
	addestrato ha accesso al loro uso – Quadri di distribuzione ASD.
CEI 23-51	Prescrizioni per la realizzazione, le verifiche e le prove dei quadri di distribuzione
	per installazioni fisse per uso domestico e similare.

Rete elettrica del distributore e allacciamento degli impianti		
CEI 11-1	Impianti elettrici con tensione superiore a 1 kV in corrente alternata	
CEI 11-17	Impianti di produzione, trasmissione e distribuzione di energia elettrica – Linee in	
	cavo	
CEI 11-20	Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di	
	l e II categoria	
CEI 11-20, V1	Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di	
	I e II categoria – Variante	
CEI 11-20, V2	Impianti di produzione di energia elettrica e gruppi di continuità collegati alle reti	
	di I e II categoria – Allegato C - Prove per la verifica delle funzioni di interfaccia	
	con la rete elettrica per i micro generatori	
CEI EN 50110-1 (CEI 11-48)	Esercizio degli impianti elettrici	
CEI EN 50160 (CEI 8-9)	Caratteristiche della tensione fornita dalle reti pubbliche di distribuzione	
	dell'energia elettrica	
	Cavi, cavidotti e accessori	

Cavi, cavidotti e accessori		
CEI 20-13	Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV	
CEI 20-14	Cavi isolati con polivinilcloruro per tensioni nominali da 1 kV a 3 kV	
CEI-UNEL 35024-1	Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua – Portate di corrente in regime permanente per posa inaria	

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

CEI-UNEL 35026	Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni
	nominali di 1000 V in corrente alternata e 1500 V in corrente continua. Portate di
	corrente in regime permanente per posa interrata
CEI 20-40	Guida per l'uso di cavi a bassa tensione
CEI 20-65	Cavi elettrici isolati con materiale elastomerico, termoplastico e isolante minerale
	per tensioni nominali non superiori a 1000 V in corrente alternata e 1500 V in
	corrente continua - Metodi di verifica termica (portata) per cavi raggruppati in
	fascio contenente monduttori di sezione differente CEI 20-67 Guida per l'uso dei
	cavi 0,6/1 kV
CEI 20-67	Guida per l'uso dei cavi 0,6/1 kV
CEI 20-91	Cavi elettrici con isolamento e guaina elastomerici senza alogeni non propaganti
	la fiamma con tensione nominale non superiore a 1000 V in corrente alternata e
	1 500 V in corrente continua per applicazioni in impianti fotovoltaici
CEI EN 50086-1 (CEI 23- 39)	Sistemi di tubi ed accessori per installazioni elettriche – Parte 1: Prescrizioni
	generali
CEI EN 50086-2-4 (CEI 23-46)	Sistemi di canalizzazione per cavi - Sistemi di tubi Parte 2-4: Prescrizioni
	particolari per sistemi di tubi interrati
CEI EN 50262 (CEI 20-57)	Pressacavo metrici per installazioni elettriche
CEI EN 60423 (CEI 23-26)	Tubi per installazioni elettriche – Diametri esterni dei tubi per installazioni elettriche
	e filettature per tubi e accessori
CEI EN 61386-1 (CEI 23-80)	Sistemi di tubi e accessori per installazioni elettriche Parte 1: Prescrizioni generali
CEI EN 61386-21 (CEI 23-81)	Sistemi di tubi e accessori per installazioni elettriche Parte 21: Prescrizioni
	particolari per sistemi di tubi rigidi e accessori
CEI EN 61386-22 (CEI 23-82)	Sistemi di tubi e accessori per installazioni elettriche Parte 22: Prescrizioni
	particolari per sistemi di tubi pieghevoli e accessori
CEI EN 61386-23 (CEI 23-83)	Sistemi di tubi e accessori per installazioni elettriche Parte 23: Prescrizioni
	particolari per sistemi di tubi flessibili e accessori

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Conversione della Potenza		
CEI 22-2	Convertitori elettronici di potenza per applicazioni industriali e di trazione	
CEI EN 60146-1-1 (CEI 22-7)	Convertitoriasemi conduttori-Prescrizionigeneralieconvertitoricommutatidalla	
	linea – Parte 1-1: Specifiche per le prescrizioni fondamentali	
CEI EN 60146-1-3 (CEI 22-8)	Convertitoriasemi conduttori-Prescrizionigeneralieconvertitoricommutatidalla	
	linea – Parte 1-3: Trasformatori e reattori	
CEI UNI EN 45510-2-4	Guida per l'approvvigionamento di apparecchiature destinate a centrali per la	
(CEI 22-20)	produzione di energia elettrica – Parte 2-4: Apparecchiature elettriche –	
	Convertitori statici di potenza	

Scariche atmosferiche e sovratensioni						
CEI EN 50164-1 (CEI81-5)	Componenti per la protezione contro i fulmini (LPC) – Parte 1: Prescrizioni per i					
	componenti di connessione					
CEI EN 61643-11 (CEI 37-8)	Limitatori di sovratensioni di bassa tensione – Parte 11: Limitatori di sovratensioni					
	connessi a sistemi di bassa tensione – Prescrizioni e prove					
CEI EN 62305-1 (CEI 81- 10/1)	Protezione contro i fulmini – Parte 1: Principi generali					
CEI EN 62305-2 (CEI 81- 10/2)	Protezione contro i fulmini – Parte 2: Valutazione del rischio					
CEI EN 62305-3 (CEI 81- 10/3)	Protezione contro i fulmini – Parte 3: Danno materiale alle strutture e pericolo					
	per le persone					
CEI EN 62305-4 (CEI 81- 10/4)	Protezione contro i fulmini – Parte 4: Impianti elettrici ed elettronici nelle					
	strutture					

	Dispositivi di Potenza
CEI EN 50123 (serie)	Applicazioni ferroviarie, tranviarie, filoviarie e metropolitane -
(CEI 9-26 serie)	Impianti fissi - Apparecchiatura a corrente continua
CEI EN 50178 (CEI 22-15)	Apparecchiature elettroniche da utilizzare negli impianti di potenza
CEI EN 60898-1 (CEI 23-3/1)	Interruttori automatici per la protezione dalle sovracorrenti per impianti
	domestici e similari – Parte 1: Interruttori automatici per funzionamento in
	corrente alternata
CEI EN 60898-2 (CEI23- 3/2)	Interruttori automatici per la protezione dalle sovracorrenti per impianti
	domestici e similari - Parte 2: Interruttori per funzionamento in corrente
	alternata e in corrente continua
CEI EN 60947-1 (CEI 17-44)	Apparecchiature a bassa tensione - Parte 1: Regole generali

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

CEI EN 60947-2 (CEI 17-5)	Apparecchiature a bassa tensione – Parte 2: Interruttori automatici
CEI EN 60947-4-1	Apparecchiature a bassa tensione – Parte 4-1: Contattori ed avviatori– Contattori
(CEI 17-50)	e avviatori elettromeccanici

	Compatibilità Elettromagnetica			
CEI 110-26	Guida alle norme generiche EMC			
CEI EN 50263 (CEI 95-9)	Compatibilità elettromagnetica (EMC) – Norma di prodotto per i relè			
	di misura e i dispositivi di protezione			
CEI EN 60555-1 (CEI 77-2)	Disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da			
	equipaggiamenti elettrici simili – Parte 1:			
CEI EN 61000-2-2	Compatibilità elettromagnetica (EMC) – Parte 2-2: Ambiente – Livelli di			
(CEI 110-10)	compatibilità per i disturbi condotti in bassa frequenza e la trasmissione dei			
	segnali sulle reti pubbliche di alimentazione a bassa tensione			
CEI EN 61000-2-4	Compatibilità elettromagnetica (EMC) – Parte 2-4: Ambiente – Livelli di			
(CEI 110-27)	compatibilità per disturbi condotti in bassa frequenza negli			
CEI EN 61000-3-2	Compatibilità elettromagnetica (EMC) – Parte 3-2: Limiti – Limiti perle emissioni			
(CEI 110-31)	di corrente armonica (apparecchiature con corrente di ingresso16 A per fase)			
CEI EN 61000-3-3	Compatibilità elettromagnetica (EMC) – Parte 3-3: Limiti – Limitazione delle			
(CEI 110-28)	fluttuazioni di tensione e del flicker in sistemi di alimentazione in bassa tensione			
	per apparecchiature con corrente nominale 16 A e non soggette ad allacciamento			
	su condizione			
CEI EN 61000-3-12	Compatibilità elettromagnetica (EMC) – Parte 3-12: Limiti - Limiti per le correnti			
(CEI 210-81)	armoniche prodotte da apparecchiature collegate alla rete pubblica a bassa			
	tensione aventi correnti di ingresso > 16 A e <= 75 A per fase			
CEI EN 61000-6-1	Compatibilità elettromagnetica (EMC) Parte 6-1: Norme generiche - Immunità per			
(CEI 210-64)	gli ambienti residenziali, commerciali e dell'industria leggera			
CEI EN 61000-6-2	Compatibilità elettromagnetica (EMC) Parte 6-2: Norme generiche - Immunità per			
(CEI 210-54)	gli ambienti industriali			
CEI EN 61000-6-3	Compatibilità elettromagnetica (EMC) Parte 6-3: Norme generiche - Emissione			
(CEI 210-65)	per gli ambienti residenziali, commerciali e dell'industria leggera			
CELEN C4000 C 4	Compatibilità elettromagnetica (EMC) Parte 6-4: Norme generiche - Emissione			
CEI EN 61000-6-4	Compatibilità elettromagnetica (Livie) i arte 0-4. Norme generiche - Linissione			

Proponente: Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

3 MISURE DI PROTEZIONE ADOTTATE

Gli impianti oggetto dell'appalto saranno realizzati al fine di assicurare:

la protezione delle persone e dei beni contro i pericoli ed i danni derivanti dal loro utilizzo nelle condizioni che possono

ragionevolmente essere previste;

il loro corretto funzionamento perl'uso previsto;

Per raggiungere tali obiettivi saranno adottate le seguenti misure di protezione.

3.1 Protezione dai contatti diretti

Protezione totale contro i pericoli derivanti da contatti con parti in tensione, realizzata in conformità al cap. 412 della Norma

CEI 64-8 mediante:

isolamento delle parti attive, rimovibile solo mediante distruzione ed in grado di resistere a tutte le sollecitazioni

meccaniche, chimiche, elettriche e termiche alle quali può essere sottoposto nel normale esercizio;

Involucri idonei ad assicurare complessivamente il grado di protezione IP XXB (parti in tensione non raggiungibili dal dito

di prova) e, sulle superfici orizzontali superiori a portata di mano, il grado di protezione IP XXD (parti in tensione non

raggiungibili dal filo di prova).

A tal fine saranno impiegati cavi a doppio isolamento (o cavi a semplice isolamento posati entro canalizzazioni in materiale

isolante) e le connessioni saranno racchiuse entro apposite cassette con coperchio apribile mediante attrezzo. Come

protezione addizionale saranno installati a capo di tutti i circuiti terminali destinati all'alimentazione di prese F.M., interruttori

differenziali con soglia di intervento 0,03 A.

3.2 Protezione dai contatti indiretti

Protezione contro i pericoli risultanti dal contatto con parti conduttrici che possono andare in tensione in caso di cedimento

dell'isolamento principale, da realizzare mediante l'interruzione automatica dell'alimentazione secondo il paragrafo 413.1

della Norma CEI 64-8, collegando all'impianto generale di terra dell' edificio tutte le masse presenti negli ambienti considerati

ed impiegando interruttori automatici di tipo magnetotermico differenziale, il tutto coordinato in modo da soddisfare in tutti

i punti la condizione di cui all'art. 413.1.3.3 della Norma CEI stessa:

Zs * Ia ≤ U0

dove:

Zs = impedenza dell'anello di guasto

la = corrente che provoca l'interruzione automatica del dispositivo di protezione entro un tempo stabilito

Uo = tensione nominale del circuito

Proponente: alter enersun
Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

È noto che, nel caso di utilizzo di dispositivi a corrente differenziale, la suddetta relazione è sempre verificata,

indipendentemente dal valore di impedenza di guasto riscontrabile nei circuiti da essa derivati. Limitatamente ai circuiti

alimentanti apparecchi illuminanti a doppio isolamento (corridoi, esterni ed impianto di sicurezza), la protezione dai contatti

indiretti sarà realizzata utilizzando componenti elettrici di Classe II o con isolamento equivalente (condutture e corpi illuminanti)

in accordo al paragrafo 413.2 delle Norme CEI 64-8.

3.3 Protezione dalle sovracorrenti

Protezione contro il riscaldamento anomalo degli isolanti dei cavi e contro gli sforzi elettromeccanici prodotti nei conduttori

e nelle connessioni causati da correnti di sovraccarico o di cortocircuito, da realizzare mediante dispositivi unici di interruzione

di tipo magnetotermico installati all'origine di ciascuna conduttura ed aventi caratteristiche tali da interrompere

automaticamente l'alimentazione in occasione di un sovraccarico o di un cortocircuito, secondo quanto prescritto nel Cap.

43 e nella sez. 473 della Norma CEI 64-8 facendo riferimento alle tabelle CEI-UNEL relative alla portata dei cavi in regime

permanente. A tal fine ogni dispositivo, oltre a possedere un potere di interruzione non inferiore al valore della corrente di

corto circuito presunta nel suo punto di installazione, risponderà alle seguenti due condizioni:

lb≤ln≤lz

If≤1,45Iz

dove:

Ib = corrente di impiego del circuito (Ampère)

Iz = portata in regime permanente della conduttura (Ampère)

In = corrente nominale del dispositivo di protezione (Ampère)

If = corrente che assicura l'effettivo funzionamento del dispositivo di protezione entro il tempo convenzionale in condizioni

definite (Ampère)

3.4 Sezionamento

Sul lato M.T., l'impianto sarà sezionabile in più punti mediante dispositivi omnipolari costituiti dagli stessi

interruttori/sezionatori utilizzati per il comando e la protezione delle linee (Quadro MT in dotazione sulla Power Station,

Quadri Mt posti nelle Cabine di Testa per ogni sottocampo). Per il sezionamento dell'impianto di distribuzione in b.t. potranno

venire impiegati tutti i dispositivi omnipolari di protezione e comando posti nei vari quadri elettrici a partire dagli interruttori

generali b.t. a bordo Inverter per arrivare infine a tutti gli interruttori generali di quadro o agli interruttori divisionali per

l'alimentazione dei circuiti terminali destinati alle varie utenze.

Proponente: alter fenersun
Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

4 QUALITÀ DEI MATERIALI

Gli impianti in oggetto sono stati progettati con riferimento a materia-li/componenti di Fornitori primari, dotati di Marchio di Qualità, di marchiatura o di autocertificazione del Costruttore attestanti la costruzione a regola d'arte secondo la Normativa tecnica e la Legislazione vigente. Tutti i materiali/componenti rientranti nel campo di applicazione delle Direttive 73/23/CEE ("Bassa Tensione") e 89/336/CEE ("Compatibilità Elettromagnetica") e successive modifiche/aggiornamenti saranno conformi ai requisiti essenziali in esse contenute e saranno contrassegnati dalla marcatura CE. Tutti i materiali/componenti presenteranno caratteristiche idonee alle condizioni ambientali e lavorative dei luoghi in cui risulteranno installati.

GAMIAN CONSULTING S.r.I.

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

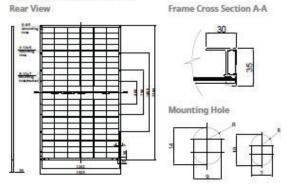
Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

5 **CARATTERISTICHE TECNICHE**

5.1 Moduli Fotovoltaici

Il dimensionamento di massima sarà realizzato con un modulo fotovoltaico composto da 132 celle fotovoltaiche in silicio monocristallino ad alta efficienza e connesse elettricamente in serie, per una potenza complessiva di 670 Wp. L'impianto sarà costituito da un totale di 51.968 moduli per una conseguente potenza di picco pari a 34.818,6 kWp. Le caratteristiche principali della tipologia di pannelli scelti e la seguente:

CSI Solar Co., Ltd. 199 Lushan Road, SND, Suzhou, Jiangsu, China, 215129, www.csisolar.com, support@csisolar.com



www.gamianconsulting.com mail: info@gamianconsulting.com

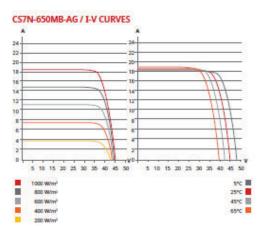
Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

ENGINEERING DRAWING (mm)

ELECTRICAL DATA | STC*

CS7N-640M	B-AG 5%	(Pmax) 640 W	(Vmp)	(Imp)	(Voc)	(Isc)	Efficiency
C37 IA-0-HOIM	5%		37.5 V	17.07 A	44.6 V	18.31 A	20.6%
		672 W	37.5 V	17.92 A	44.6 V	19.23 A	21.6%
Bifacial	10%	704 W	37.5 V	18.78 A	44.6 V	20.14A	22.7%
Gain**	20%	768 W	37.5 V	20.48 A	44.6 V	21.97 A	24.7%
CS7N-645M	B-AG	645 W	37.7 V	17.11 A	44.8 V	18.35 A	20.8%
	5%	677 W	37.7 V	17.97 A	44.8 V	19.27 A	21.8%
Bifacial Gain**	10%	710 W	37.7 V	18.84 A	44.8 V	20.19 A	22.9%
dalli	20%	774 W	37.7 V	20.53 A	44.8 V	22.02 A	24.9%
C57N-650M	B-AG	650 W	37.9 V	17.16 A	45.0 V	18.39 A	20.9%
	5%	683 W	37.9 V	18.03 A	45.0 V	19.31 A	22.0%
Bifacial Gain**	10%	715 W	37.9 V	18.88 A	45.0 V	20.23 A	23.0%
dain	20%	780 W	37.9 V	20.59 A	45.0 V	22.07 A	25.1%
CS7N-655M	B-AG	655 W	38.1 V	17.20 A	45.2 V	18.43 A	21.1%
Manager of the last	5%	688 W	38.1 V	18.06 A	45.2 V	19.35 A	22.1%
Bifacial	10%	721 W	38.1 V	18.93 A	45.2 V	20.27 A	23.2%
Gain**	20%	786 W	38.1 V	20.64 A	45.2 V	22.12 A	25.3%
CS7N-660M	B-AG	660 W	38.3 V	17.24 A	45.4 V	18.47 A	21.2%
	5%	693 W	38.3 V	18.10 A	45.4 V	19.39 A	22.3%
Bifacial	10%	726 W	38.3 V	18.96 A	45.4 V	20.32 A	23.4%
Gain**	20%	792 W	38.3 V	20.69 A	45.4 V	22.16 A	25.5%
CS7N-665M	B-AG	665 W	38.5 V	17.28 A	45.6 V	18.51 A	21.4%
	5%	698 W	38.5 V	18.14 A	45.6 V	19.44 A	22.5%
Bifacial	10%	732 W	38.5 V	19.02 A	45.6 V	20.36 A	23.6%
Gain**	20%	798 W	38.5 V	20.74 A	45.6 V	22.21 A	25.7%
CS7N-670M		670 W	38.7 V	17.32 A	45.8 V	18.55 A	21.6%
	5%	704 W	38.7 V	18.20 A	45.8 V	19.48 A	22.7%
Bifacial	10%	737 W	38.7 V	19.05 A	45.8 V	20,41 A	23.7%
Gain**	20%	804 W	38.7 V	20.78 A	45.8 V	22.26 A	25.9%


^{*} Under Standard Test Conditions (STC) of Irradiance of 1000 W/m², spectrum AM 1.5 and cell

ELECTRICAL DATA

Operating Temperature	-40°C ~ +85°C
Max. System Voltage	1500 V (IEC/UL) or 1000 V (IEC/UL)
Module Fire Performance	TYPE 29 (UL 61730) or CLASS C (IEC61730)
Max. Series Fuse Rating	35 A
Application Classification	Class A
Power Tolerance	0~+10W
Power Bifaciality*	70 %
* Power Bifaciality = Pmax / Pm	ax _{but} , both Pmax _{but} and Pmax _{but} are tested under STC, Bifaciality

^{*} The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. CSI Solar Co., Ltd. reserves the right to make necessary adjustment to the information described herein at any time without

Please be kindly advised that PV modules should be handled and installed by qualified people who have professional skills and please carefully read the safety and installation instructions before using our PV modules.

ELECTRICAL DATA | NMOT*

	Max. Power (Pmax)	Opt. Operating Voltage (Vmp)	Opt. Operating Current (Imp)	Open Circuit Voltage (Voc)	Short Circuit Current (Isc)
CS7N-640MB-AG	480 W	35.2 V	13.64 A	42.2 V	14.77 A
CS7N-645MB-AG	484 W	35.3 V	13.72 A	42.3 V	14.80 A
CS7N-650MB-AG	487 W	35.5 V	13.74 A	42.5 V	14.83 A
CS7N-655MB-AG	491 W	35.7 V	13.76 A	42.7 V	14.86 A
CS7N-660MB-AG	495 W	35.9 V	13.79 A	42.9 V	14.89 A
CS7N-665MB-AG	499 W	36.1 V	13.83 A	43.1 V	14.93 A
CS7N-670MB-AG	502 W	36.3 V	13.85 A	43.3 V	14.96 A

spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

MECHANICAL DATA

Specification	Data
Cell Type	Mono-crystalline
Cell Arrangement	132[2x(11x6)]
Dimensions	2384 x 1303 x 35 mm (93.9 x 51.3 x 1.38 in)
Weight	37.9 kg (83.6 lbs)
Front Glass	2.0 mm heat strengthened glass with anti- reflective coating
Back Glass	2.0 mm heat strengthened glass
Frame	Anodized aluminium alloy
J-Box	IP68, 3 bypass diodes
Cable	4.0 mm2 (IEC), 10 AWG (UL)
Cable Length (Including Connector)	460 mm (18.1 in) (+) / 340 mm (13.4 in) (-) or customized length*
Connector	T6 or T4 series or MC4-EVO2
Per Pallet	31 pieces
Per Container (40' HO'	527 pieces or 465 pieces (only for US)

^{*} For detailed information, please contact your local Canadian Solar sales and technical

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.34 % / °C
Temperature Coefficient (Voc)	-0.26 % / °C
Temperature Coefficient (Isc)	0.05 % / °C
Nominal Module Operating Temperature	41 ± 3°C

PARTNER SECTION

CSI Solar Co., Ltd. 199 Lushan Road, SND, Suzhou, Jiangsu, China, 215129, www.csisolar.com, support@csisolar.com

June 2022. All rights reserved, PV Module Product Datasheet V2.4_EN

temperature of 25°C.

** Bifacial Gain: The additional gain from the back side compared to the power of the front side at the standard test condition. It depends on mounting (structure, height, tilt angle etc.) and albedo of the ground.

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

5.2 Inverter

L'inverter è una parte fondamentale dell'istallazione. Esso permette la conversione dell'energia in corrente alternata prodotta dai moduli fotovoltaici. Le apparecchiature selezionate saranno n. 100 inverter di tipo INGECON SUN 350TL M con potenza nominale di 329 kVA, per una potenza totale di 32.900 kVA. Nelle cabine di campo CT tramite degli inverter avviene la trasformazione della corrente continua generata dai moduli fotovoltaici in corrente alternata in bassa tensione (BT). Successivamente, tramite dei trasformatori la corrente in BT viene elevata in media tensione (MT) a 30.000 V. Le cabine di campo sono, a loro volta, collegate alla Standard Box Satellite che riceve la corrente alternata in MT prodotta dall'impianto agro-fotovoltaico per poi veicolarla sulla RTN. I cavidotti delle linee BT e MT sono interni all'impianto agro-fotovoltaico, mentre il cavidotto MT a 30.000 V passa a lato della viabilità comunale e provinciale esistente.

Ingeteam

plant. Thus, it minimises the labour cost and reduces the global cabling cost.

Moreover, it does not require DC combiner boxes, nor AC combiner boxes, ensuring the minimum possible CAPEX (Capital Expenditures). Furthermore, its string inverter philosophy permits an easy and immediate replacement that does not require qualified technicians.

Higher flexibility and power density
The highest flexibility thanks to its maximum DC voltage (1,500 V) and to
its widevoltagerange MPP (250-1,300V).
Awesome power density, with up to
350 kW.

tee a long life expectancy and to with-stand extreme temperatures.

Wi-Fi communication as standard

The inverter features Wi-Fi communica-tion as standard. This Wi-Fi interface is used to commission the inverter through the INGECON® SUN Monitor App, available for iOS and Android, A wizard guides the user through the entire start-up pro-cess. Moreover, the Wi-Fi interface al-lows connecting the inverter to any Wi-Fi network available in the plant for monitoring purposes.

ard Ethernet. Using SPE, the communication with the inverters can be established up to 1,000 meters. Moreover, these inverters enables daisy chain connection. Thus, several inverters can be connected to the same SPE line. The versatility and possibilities offered by the SPE are an important improvement at the plant's communication network.

Remote monitoring
The inverter can be monitored with the www.ingeconsunmonitor.com website or with the INGECON SUN Monitor App.

Pag. **21** a **51**

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

ALL-IN-ONE SOLUTION for decentralised solar PV plants with multi-MPPT string inverters

INGECON® SUN 350TL M

Fully equipped

In order to achieve the maximum performance with the maximum cost-effectiveness, the INGECON® SUN 350TL M inverter is supplied totally equipped with all the electrical protections.

Integrated components

Photovoltaic connectors	1
DC switch (3 units)	1
DC surge arresters, type II	1
AC surge arresters, type II	1
Stringscurrent metering kit	1
Wi-Fi communication	1
SPE(Single Pair Ethernet) communication	1

MAIN FEATURES

- 12 MPPTs.
- PID recovery as standard.
- Reactive power injection at night as standard.
- Low-voltage ride-through capability.
- Reactive power capability.
- Compatible with external Cloud Connect software.
- 99.05% maximum efficiency.
- Ethernet and Wi-Fi communications supplied as standard.
- Integrated Webserver.
- Software INGECON®SUN Monitor for PV plant monitoring.
- Suitable for indoor and outdoor installations (IP66).
- High temperature performance.
- One digital input and one digital output.

OPTIONAL ACCESSORIES

- Ethernet communication.

PROTECTIONS

- Shortcircuits and overloads at the output.
- Anti-islanding with automatic disconnection.
- Insulation faults.
- AC overvoltages with type II surge arresters.
- DC overvoltages with type II surge arresters.

BENEFITS

- Greater power density.
- Greater cost-effectiveness thanks to the cabling cost reduction.
- High availability compared to central inverters.
- High efficiency rates.
- Easy maintenance.

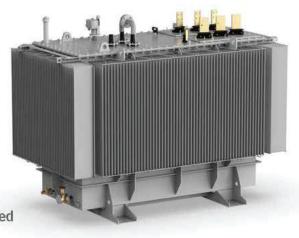
4

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Ingeteam

	350TL M				
Input (DC)					
Operating voltage range	500 - 1,500 V				
MPP voltage range	850 - 1,300 V				
Maximum voltage	1,500 V				
Maximum current per MPPT	45 A x 12				
Number of inputs per MPPT	2				
Number of MPPTs Output (AC)	12				
Rated power @30 °C / 40 °C / 50 °C	346.4 kVA / 329.1 kVA / 296.2 kVA				
Maximum current @30 °C /40 °C /50 °C	250 A / 237.5 A / 213.75 A				
Rated voltage	3 / PE, 800 V				
Frequency	50 / 60 Hz				
Type of grid	П				
Power factor	1				
Power factor adjustable ⁽¹⁾	Yes, ±0.8				
THD (Total Harmonic Distortion)(2)	<3%				
Efficiency					
Maximum efficiency	99.05%				
Euroefficiency	98.60%				
General information					
Cooling system	Forced ventilation				
Air flow	900 m³/h				
Stand-by consumption	25				
Operation temperature	-30 ℃ to 60 ℃				
Relative humidity (non-condensing)	0 - 100%				
Protection class	IP66 / NEMA 4				
Residual current monitoring unit	Yes				
Maximum operating altitude	4,000 m				
Connection	AC connection: max. cross section: 400 mm² (one cable) DC connection: 6 mm² MC4-Evo2 (10 mm² optional)				
Marking	CE CE				
EMC and safety standards	EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 61000-6-4, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN 61000-3-12, EN 62109-1, EN 62109-2, IEC62103, EN 50178, FCC Part 15, IEC60068-2-1.2007, IEC60068-2-2-20007, IEC60068-2-14-2009, IEC60068-2-30-2005, IEC60068-2-14-2009, IEC60068-2-30-2005, IEC60068-2-30-20				
Grid connection standards	DIN V VDE V 0126-1-1, EN 50439, EN 50549, CEI 0-21, CEI 0-16 VDE-AR-N 4105:2011-08, P.O.12.3, BDEW, IEC 62116, IEC 61727, UNE 206007-1, ABNT NBR 16149, ABNT NBR 16150, Brazilian Grid Code, South African Grid Code, Chilean Grid Code, DEWA 2.0, Jordanian Grid Code, G99, VDE-AR-4110, NTS de REE, Directive EU 2016/631				
Notes: (1) Extended adjustment range for	nominal working points © For rated AC power Efficiency INGECON® SUN 350TL M				
and voltage in accordance with IEC 610	00-3-4				
	90 90 90 90 90 90 90 90 90 90 90 90 90 9				
Size and weight (mm)	350TL M 125 kg.				


Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

5.3 Trasformatore

L'uscita in AC di ciascun inverter verrà collegata a un trasformatore. Di seguito si riportano le caratteristiche dei trasformatori che trasformeranno l'uscita dell'inverter da 800 V a 30 kV.

ALL-IN-ONE SOLUTION for decentralised solar PV plants with multi-MPPT string inverters

Three-phase oil-insulated step-up transformers

Medium Voltage Transformer / Hermetically Sealed Completely Filled

Ingeteam provides highly performing three phase oil-insulated step-up transformers. Power ratings are available up to 11.2 MVA, with voltage ratings (MV side) from 10 up to 36 kV.

The transformers are classified as per the IEC 60076 standard, offering the following benefits:

- Reduced power losses.
- Reduced maintenance needs.
- Suitable both for internal or external use.

The voltage value at the secondary winding (LV side) is compatible with the inverter output voltage from 640 V to 920 V.

STANDARD FUNCTIONS

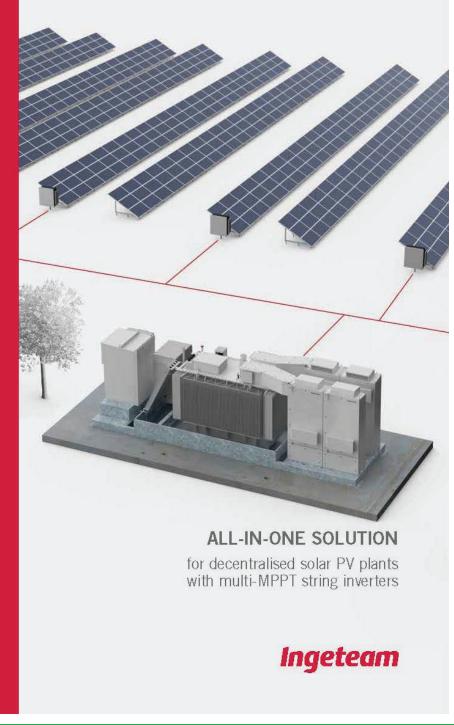
- Reduced power losses. Other power losses upon request.
- Electrostatic shield reducing disturbances, distortions and overvoltages.
- DGPT2 / DMCR relay.
- Mineral oil insulation.

FUNCTIONS AVAILABLE UPON REQUEST

- Natural ester dielectric insulation fluid (lire point > 300°C).
- Copper windings.
- Other functions available upon request.

oformation	St			у		
normación		A CONTROL OF THE PARTY OF THE P		•		
CV		50/6	30 Hz			
ited power		99	nk			
e regulator		±2×	2.5%			
Primary winding	12kV: 12/28/75kV	17.5 kV: 17.5 / 38/ 95 kV	24kV: 247507125 kV	36 kV: 36/70/170 k		
Secondary winding	3,5RV					
ndary conductive material		Aluminium / Alumini	um (Copper optionat	ii)		
		Dy	11			
e	Triangle ^q					
ding	Star					
erature il	+657 +60 K					
t	< 1%					
ting current	< 15 x h ^Q					
	Indoor or outdoor					
Coolingtype		ONAN				
Max. altitude above sea level®		4500m				
Short-circuit im pedance at 75 °C		8%9				
5	Terminal board for primary voltage adjustment, lifting lugs, earthing term in electrostatic shield and DGPT2 / DMCR relay					
	end power engulator Primary winding Secondary winding Secondary winding address conductive material engulation engulation to the conductive material engulation to the conductive materi	opy ted power a regulator Primary winding 12 / 26 / 75 kV Secondary winding 12 / 26 / 75 kV Secondary winding address or address of the secondary winding address of the secondary winding are	Sealed Comp	Herm elso mineral oil-insutated transform (vegetable oil insutated transform (vegetable oil insutated upon request)		

10


www.gamianconsulting.com mail: info@gamianconsulting.com

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

5.4 Centro Inverter-Trasformatore

Gli inverter verranno posizionati in maniera tale da minimizzare i percorsi dei cavi in DC e, conseguentemente, minimizzare le perdite. Essi verranno fissati direttamente alle strutture tracker, rispettando le prescrizioni del fabbricante. Verrà installato un edificio di trasformazione per ogni gruppo. Per i dettagli si veda lo schema unifilare allegato. In caso di edifici prefabbricati, verrà installato un sistema di ventilazione forzata che mantenga la temperatura all'interno di valori adeguati per il funzionamento di tutte le apparecchiature.

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

ALL-IN-ONE SOLUTION for decentralised solar PV plants with multi-MPPT string inverters

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

ALL-IN-ONE SOLUTION for decentralised solar PV plants with multi-MPPT string inverters

MV solution up to 11.2 MW

Medium voltage solution for decentralised PV plants with 1,500 V string inverters

MV station designed to connect Ingeteam's 1,500 V string inverters to a medium voltage grid.

String inverter optimization

The StringStation has been conceived to enable and optimize the use of Ingeteam's INGECON® SUN 350TL M inverters at utility scale, ensuring a perfect connection between the PV power plant and the grid. This turnkey solution is capable of connecting up to 11.2 MW of 1,500 V string inverters to a medium voltage grid.

Available worldwide

The INGECON® SUN StringStation can be marketed and installed everywhere in the world, as it is supplied totally integrated and it is easily transportable as a Plug & Play solution.

Equipped with everything necessary

It is supplied with the low-voltage string inverter protections, auxiliary services, step-up transformer and medium-voltage switchgear. Available with SPE (Single Pair Ethernet) and Wi-Fi to communicate with the PV inverters.

The SPE communication allows a highspeed, flexible and ideal option for long distance communication, with no need of external switches or other communication devices.

Maximum cost-effectiveness

The INGECON® SUN StringStation is a standard solution designed to maximize the compactness and cost-effectiveness of the overall equipment. All the elements are prepared to withstand adverse weather conditions. Moreover, they are supplied pre-connected and pre-integrated into a skid in order to guarantee a Plug & Play installation.

FEATURES

- Output power up to 11.2 MW at 30°C.
- Compatible with INGECON® SUN 350TL M inverters.
- Available up to 34.5 kV output voltage.
- Available with outdoor-mounted hermeticallysealed LV / MV transformer (up to 11.2 MVA).
- IP54-protected MV Switchgear.
- Plug & Play solution.
- Maximum reliability, higher safety.
- Reduced maintenance.
- Relative humidity (non-condensing): 0-100%.
- Max. installation altitude: 4,000 meters above sea level.
- UPS for auxiliary services.
- SPE (Single Pair Ethernet) and Wi-Fi to communicate with the PV inverters.

to connect up to 11.2 MW of string inverters to a medium voltage grid.

Maximum compactness and cost-effectiveness.

AC COMBINER BOX

- Scalable system thanks to its modular design.
- Forced air ventilation.
- General LV protection with AC fuses for each inverter and a general direuit breaker.
- HV surge arresters.

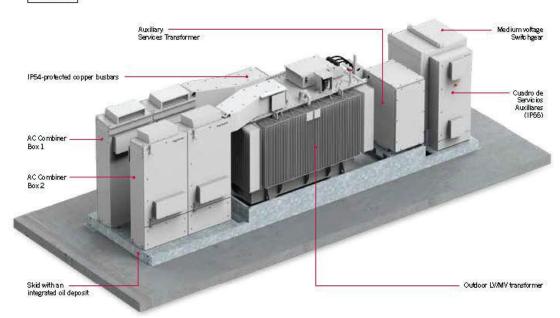
STANDARD EQUIPMENT

- Step-up transformer with reduced power losses.
- 1L1C MV switchgear.
- Protection relay included in the transformer.
- MV protection with circuit breaker.
- Oil deposit integrated in the skid.
- Filtering kit in the oil deposit.

OPTIONAL ACCESSORIES

2L1C MV switchgear.

6


www.gamianconsulting.com mail: info@gamianconsulting.com

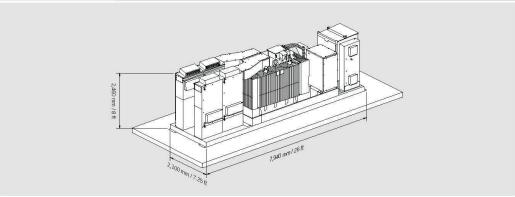
Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Ingeteam

PV PLANT CONFIGURATION

7


Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

ALL-IN-ONE SOLUTION

for decentralised solar PV plants with multi-MPPT string inverters

INGECON® SUN StringStation

	SST 1050	SST 2100	SST 3150	SST 4200	SST 5600	SST 8400	SST 11200
AC Combiner box							
Model:							
- Up to 6 inverters	1	1					
- Up to 16 inverters		· · · · · · · · · · · · · · · · · · ·	1	1	1	11	11
Rated power @ 30 °C	1,039.2 kVA	2,078.4 kVA	3,117.6 kVA	4.157 kVA	5.542.4 kVA	8,313.6 kVA	11.084.8 kW
Max. number of inverters	3	6	9	12	16	24	32
AC current @ 30 °C	750 A	1,500 A	2,250 A	3,000 A	4,000 A	6,000 A	8,000 A
AC voltage	800 V						
Frequency	50 / 60 Hz						
Overcurrent protection	Automatic circuit breaker						
AC max, cross section	400 mm². One cable per terminal						
Cooling system	Forced air ventilation						
Max. power consumption	750 VA						
Protection class	IP54						
Step-up transformer							
Medium voltage	From 20 kV up to 35 kV, 50-60 Hz						
Cooling system	ONAN / KNAN						
Maximum efficiency	99%						
Protection class	IP54						
MV switchgear							
Medium voltage	Up to 34.5 kV						
Rated current	630 A						
Cooling system	Natural air ventilation						
Max. power consumption	OW						
Protection class	IP54						
General data							
Temperature range	from -20°C to +50°C						
Relative humidity (non-condensing)	0-100%						
Maximum altitude	4,000 mast (power derating starting at 2,000 mast)						
Equipment							
Inverter version	INGECON® SUN 350TL M						
Auxiliary services panel	Standard version (optional monitoring system)						
Step-up transformer	Oil-immersed hermetically sealed transformer						
MV switchgear	1L1C cells (2L1C optional)						
Mechanical information							
Structure type	Hot dip galvanized steel skid						
Skid dimensions	7,940 x 2,100 x 2,460 mm / 26 x 7.25 x 8 ft						
Weight	7.5 T 8 T 11 T 15 T 17.5 T 21.5 T 25 T						
Standards	IEC 62271-212, IEC 62271-200, IEC 60076, IEC 61439-1						

Progettazione:

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Strutture di supporto

I supporti, saranno in acciaio zincato e saranno opportunamente distanziati sia per evitare l'ombreggiamento reciproco, sia per avere lo spazio necessario al passaggio dei mezzi nella fase di installazione. Tale soluzione permette di ottimizzare l'occupazione del territorio massimizzando al contempo la produzione di energia elettrica da fonte rinnovabile.

www.gamianconsulting.com mail: info@gamianconsulting.com Proponente: Alter Cinque S.r.l. Via della Bufalotta, 374 00139 - Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

5.5 Cablaggi e cavi

La connessione elettrica fra i moduli fotovoltaici avviene tramite cavi (in classe d'isolamento II) terminati all'interno delle

cassette di terminazione dei moduli, oppure con connettori rapidi del tipo "multicontact" collegati con altri già assemblati in

fabbrica sulle cassette. I cavi, con materiali resistenti ai raggi UV, garantiscono il corretto funzionamento degli impianti

fotovoltaici nel corso della loro vita utile (almeno 30 anni). I cavi di energia sono dimensionati in modo da limitare le cadute

di tensione, ma la loro sezione è determinata anche in modo da assicurare una durata di vita soddisfacente dei conduttori e

degli isolamenti sottoposti agli effetti termici causati dal passaggio della corrente per periodi prolungati ed in condizioni

ordinarie di esercizio. La corrente massima (portata) ammissibile, per periodi prolungati, di qualsiasi conduttore viene

calcolata in modo tale che la massima temperatura di funzionamento non superi il valore appropriato, per ciascun tipo di

isolante, indicato nella Tab. 52D della Norma CEI 64-8. Le portate dei cavi in regime permanente relative alle condutture da

installare sono verificate secondo le tabelle CEI-UNEL 35024, per posa in aria, e CEI-UNEL 35026, per posa interrata,

applicando ai valori individuati, dei coefficienti di riduzione che dipendono dalle specifiche condizioni di posa e dalla

temperatura ambiente. Nei casi di cavi con diverse modalità di posa, è effettuata la verifica per la condizione di posa più gravosa.

Le sezioni dei cavi sono verificate anche dal punto di vista della caduta di tensione, alla massima corrente di utilizzo, secondo

quanto riportato nelle Norme CEI 64-8. Le verifiche suddette sono effettuate mediante l'uso delle tabelle CEI-UNEL 35023. I cavi di energia dovranno essere sistemati in maniera da semplificare e minimizzare le operazioni di cablaggio. In particolare,

la discesa dei cavi occorre che sia protetta meccanicamente mediante installazione in tubi, il cui collegamento al quadro

elettrico e agli inverter avvenga garantendo il mantenimento del livello di protezione degli stessi.

5.6 Quadri Elettrici

Oltre al quadro di parallelo in AC e al quadro dei Servizi Ausiliari, in ciascun edificio Inverter-Trasformatore verrà installato un

quadro elettrico generale, il più prossimo possibile al trasformatore, che fornirà alimentazione a tutte le utenze del centro. I

quadri saranno di tipo metallico di dimensioni standardizzate, con porta frontale liscia e dotati di segregazione per morsettiera

e connessioni. Ciascun quadro sarà dotato di interruttore generale multipolare per ciascuna linea di ingresso che arrivi dal

quadro generale. L'interruttore sarà di tipo modulare o scatolato, secondo la taglia richiesta. Ciascun circuito di illuminazione

sarà dotato di interruttore magnetotermico differenziale da 30 mA mentre i circuiti relativi agli altri carichi saranno dotati di

interruttore magnetotermico differenziale da 300 mA o 500 mA a seconda del caso, in maniera da assicurare le selettività.

Tutti gli interruttori e il quadro stesso saranno chiaramente identificati mediante etichette, che riporteranno le informazioni sui circuiti che alimentano. Le connessioni e i cavi saranno anch'essi chiaramente identificati con etichetta e raggruppati

ordinatamente tramite fascette.

Progettazione:

Proponente: alter fenersun

Alter Cinque S.r.l.

Via della Bufalotta, 374

00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

5.7 Disposizione elettromeccanica

Nelle stazioni Rete-Utente sono previsti fabbricati adibiti per:

- Quadri MT e BT;
- Comando e controllo;
- Magazzini;
- L'arrivo MT da produzione fotovoltaica;
- I servizi di telecomunicazione;
- Il locale misure;
- I servizi ausiliari;
- Depositi e locali igienici.

I fabbricati, verranno ubicati lungo le mura perimetrali della stazione di Trasformazione di consegna (SE Utente), ad una distanza minima da ogni parte in tensione non inferiore ai 10 metri. I fabbricati avranno pianta rettangolare con altezza fuori terra di circa 4,00 m e sarà destinato a contenere i quadri di protezione e controllo, i servizi ausiliari, i telecomandi, il locale misura, deposito e servizi igienici e il quadro MT. I fabbricati destinati agli impianti fotovoltaici, e nello specifico per quanto riguarda i relativi quadri MT a 30 kV, risulteranno identici tra loro. I fabbricati saranno realizzati con struttura portante in c.a. e con tamponatura esterna in mattoni forati intonacati; i serramenti saranno di tipo metallico. La copertura dei fabbricati sarà realizzata con un tetto piano. L'impermeabilizzazione del solaio sarà eseguita con l'applicazione di idonee guaine impermeabili in resine elastomeriche. Particolare cura verrà osservata ai fini dell'isolamento termico impiegando materiali isolanti idonei in funzione della zona climatica e dei valori minimi e massimi dei coefficienti volumici globali di dispersione termica, nel rispetto delle norme di cui alla legge n. 373 e successivi aggiornamenti, nonché alla legge n.10 del 09.01.91 e s.m.i. Saranno previsti i principali impianti tecnologici come rilevazione fumi e gas, condizionamento, antintrusione, etc. Per le apparecchiature MT sono previste fondazioni in c. a. Inoltre, è prevista la sistemazione del terreno con viabilità interna e recinzione della stazione con pannelli prefabbricati di altezza non inferiore a 2,40 m.

Progettazione:

GAMIAN CONSULTING S.r.I.

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

5.8 Sistemi ausiliari

Sorveglianza e illuminazione

Il sistema di illuminazione e videosorveglianza sarà montato su pali dedicati alti circa 2,8 metri all'interno della recinzione. La fondazione è a palo battuto (con un fuori terra di circa 60/70 cm), cui si fissa il palo della luce/TVCC. Questa soluzione ha anche il vantaggio di costituire una messa a terra naturale del palo e non richiede quindi di realizzare una puntazza dedicata. I cavi di collegamento del sistema saranno alloggiati nello scavo perimetrale già previsto per il passaggio dei cavidotti dell'impianto agro-fotovoltaico. Nella fase di funzionamento dell'impianto non sono previsti consumi di energia, eccezion fatta per il sistema di illuminazione e videosorveglianza che avrà una sua linea di alimentazione elettrica tradizionale. Le apparecchiature di conversione dell'energia generata dai moduli (inverter e trasformatori), nonché i moduli stessi, non richiedono fonti di alimentazione elettrica. Il funzionamento dell'impianto fotovoltaico non richiede ausilio o presenza di personale addetto, tranne per le eventuali operazioni di riparazione guasti o manutenzioni ordinarie e straordinarie.

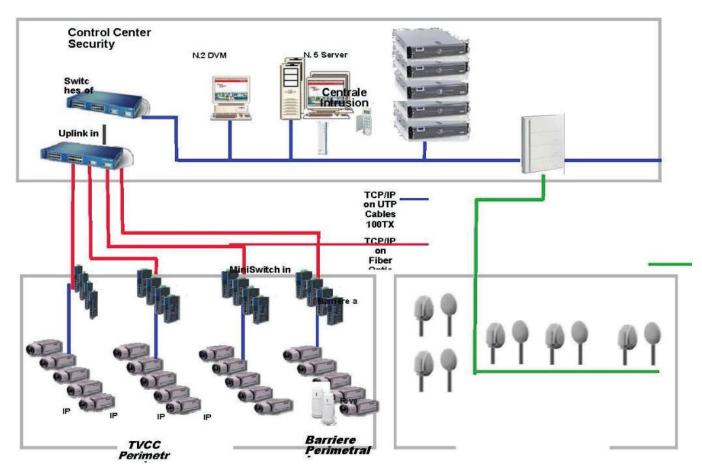


Figura 10 – Schema del Sistema di sorveglianza

Progettazione:

Proponente: alter enersun Alter Cinque S.r.l. Via della Bufalotta, 374 00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

L'impianto di illuminazione esterno sarà costituito da 2 sistemi:

- Illuminazione perimetrale;
- Illuminazione esterno cabina.

Tali sistemi sono di seguito brevemente descritti.

Illuminazione perimetrale

■ Tipo lampada: Led, Pn = 250 W

Tipo armatura: proiettore direzionabile

Numero lampade: 160

Numero palificazioni: 80

Funzione: illuminazione in caso di manutenzione notturna e/o allarme anti-intrusione

Distanza media tra i pali: circa 100 m

In fase di progetto esecutivo potranno essere apportati miglioramenti ai rapporti tra gli illuminamenti minimi e massimi e l'illuminamento medio.

Illuminazione esterno cabina

- Tipo lampade: Led 100 W;
- Tipo armatura: corpo Al pressofuso, forma ogivale;
- Numero lampade: 4;
- Modalità di posa: sostegno su tubolare ricurvo aggraffato alla parete. Posizione agli angoli di cabina;
- Funzione: illuminazione piazzole per manovre e sosta.

GAMIAN CONSULTING S.r.I.

Pag. **34** a **51**

www.gamianconsulting.com mail: info@gamianconsulting.com

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

6 CAVI ELETTRICI

Negli impianti saranno impiegate le seguenti tipologie di cavi in funzione delle condizioni di posa:

cavo multipolare/unipolare in rame isolato in gomma etilenpropilenica qualità G7 sotto guaina di PVC, tipo FG7(O)R 0,6/1
 kV, avente caratteristiche di non propagazione dell'incendio, conforme alle Norme CEI 20-22 II e 20-13, da posare prevalentemente in tubazioni interrate;

cavo multipolare/unipolare in rame isolato e schermato in gomma etilenpropilenica qualità G7 sotto guaina di PVC, tipo FG7(O)H2R 0,6/1 kV, avente caratteristiche di non propagazione dell'incendio, conforme alle Norme CEI 20-22 II e 20-13, da posare prevalentemente in tubazioni interrate per il cablaggio degli inverter e per la posa delle linee di produzione;

 cavo unipolare in rame isolato in PVC, tipo NO7V-K, avente caratteristiche di non propagazione dell'incendio, conforme alle Norme CEI 20-22 II e 20-20, da posare in tubazioni isolanti interrate;

cavo Solare: Cavo unipolare flessibile stagnato per il cablaggio delle stringhe di moduli fotovoltaici del tipo FG21M21,
 Tensione Massima 1.800 V in corrente continua, Temperatura Massima di Esercizio 90°C;

cavo MT: ARG7 H1R, Cavi isolati in gomma HEPR di qualità G7 sotto guaina di PVC, conduttore in Alluminio, Tensione
 Nominale di Esercizio 18/30 kV;

cavo di segnale tipo FTP.

La scelta delle sezioni dei cavi è stata effettuata in base alla loro portata nominale (calcolata in base ai criteri di unificazione e di dimensionamento riportati nelle Tabelle CEI-UNEL), alle condizioni di posa e di temperatura, al limite ammesso dalle Norme per quanto riguarda le cadute di tensione massime ammissibili (inferiori al 4%) ed alle caratteristiche di intervento delle protezioni secondo quanto previsto dalle vigenti Norme CEI 64-8. La portata delle condutture sarà commisurata alla potenza totale che si prevede di installare. Le sezioni minime previste per i conduttori saranno:

2,5 mm² per le linee di distribuzione F.M.

■ 1,5 mm² per le linee di distribuzione luce

0,5 mm² per i circuiti di comando e segnalazione

Nei circuiti trifase i conduttori di neutro potranno avere sezione inferiore a quella dei corrispondenti conduttori di fase, con il minimo di 16mm², purché il carico sia sostanzialmente equilibrato ed il conduttore di neutro sia protetto per un cortocircuito in fondo alla linea; in tutti gli altri casi al conduttore di neutro verrà data la stessa sezione dei conduttori di fase. La sezione del conduttore di protezione non sarà inferiore al valore determinato con la seguente formula:

$$S_p = \frac{\sqrt{I^2 t}}{K}$$

Progettazione:

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

dove:

Sp	= sezione del conduttore di protezione (mm²)	
I	= valore efficace della corrente di guasto che percorre il conduttore di	
	protezione per un guasto franco a massa (A)	
t	= tempo di interruzione del dispositivo di protezione (s)	
K	= fattore il cui valore per i casi più comuni è dato nelle tabelle VI, VII, VIII e IX	
	delle norme C.E.I. 64-8 e che per gli altri casi può essere calcolato come	
	indicato nell'Appendice H delle stesse norme	

La sezione dei conduttori di protezione può essere anche determinata facendo riferimento alla seguente tabella, in questo caso non è in generale necessaria la verifica attraverso l'applicazione della formula precedente. Se dall'applicazione della tabella risultasse una sezione non unificata, sarà adottata la sezione unificata immediatamente superiore al valore calcolato. Quando un unico conduttore di protezione deve servire più circuiti utilizzatori, la tabella si applica con riferimento al conduttore di fase di sezione più elevata:

S ≤ 16	Sp = S
16 < S ≤35	Sp = 16
S > 35	Sp = S/2

dove:

S	= sezione dei conduttori di fase dell'impianto (mm²)
Sp	= sezione minima del corrispondente conduttore di protezione (mm²)

I valori della tabella sono validi soltanto se il conduttore di protezione è costituito dello stesso materiale del conduttore di fase. In caso contrario, la sezione del conduttore di protezione sarà determinata in modo da avere conduttanza equivalente. Se i conduttori di protezione non fanno parte della stessa conduttura dei conduttori di fase la loro sezione non sarà inferiore a 6 mm². Quando un unico conduttore di protezione deve servire più circuiti utilizzatori sarà dimensionato in relazione alla sezione del conduttore di fase di sezione più elevata.

I cavi unipolari e le anime dei cavi multipolari saranno contraddistinti mediante le seguenti colorazioni:

- nero, grigio e marrone (conduttori di fase)
- blu chiaro (conduttore di neutro)
- bicolore giallo-verde (conduttori di terra, di protezione o equipotenziali)

Proponente: alter fenersun
Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

La rilevazione delle sovracorrenti è stata prevista per tutti i conduttori di fase. In ogni caso il conduttore di neutro non verrà mai interrotto prima del conduttore di fase o richiuso dopo la chiusura dello stesso. Nella scelta e nella installazione dei cavi

si è tenuto presente quanto segue:

per i circuiti a tensione nominale non superiore a 230/400 V i cavi avranno tensione nominale non inferiore a 450/750

V;

per i circuiti di segnalazione e di comando è ammesso l'impiego di cavi con tensione nominale non inferiore a 300/500

V, qualora posti in canalizzazioni distinte dai circuiti con tensioni superiori.

Le condutture non saranno causa di innesco o di propagazione d'incendio: saranno usati cavi, tubi protettivi e canali aventi

caratteristiche di non propagazione della fiamma nelle condizioni di posa. Tutti i cavi appartenenti ad uno stesso circuito

seguiranno lo stesso percorso e saranno quindi infilati nella stessa canalizzazione, cavi di circuiti a tensioni diverse saranno

inseriti in tubazioni separate e faranno capo a scatole di derivazione distinte; qualora facessero capo alle stesse scatole,

queste avranno diaframmi divisori. I cavi che seguono lo stesso percorso ed in special modo quelli posati nelle stesse

tubazioni, verranno chiaramente contraddistinti mediante opportuni contrassegni applicati alle estremità.

GAMIAN CONSULTING S.r.I.

Proponente: alter tenersun
Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

7 CONNESSIONI E DERIVAZIONI

Tutte le derivazioni e le giunzioni dei cavi saranno effettuate entro apposite cassette di derivazione di caratteristiche congruenti al tipo di canalizzazione impiegata. Negli impianti saranno pertanto utilizzate:

- cassette da incasso in materiale isolante autoestinguente (resistente fino 650° alla prova al filo incandescente CEI 2319), con Marchio di Qualità, in esecuzione IP40, posate ad incasso nelle pareti;
- cassette da esterno in pressofusione di alluminio, con Marchio di Qualità, in esecuzione IP55, posate in vista a parete/soffitto.

Tutte le cassette disporranno di coperchio rimovibile soltanto mediante l'uso di attrezzo. Per tutte le connessioni verranno impiegati morsetti da trafilato o morsetti volanti a cappuccio con vite isolati a 500 V. Per quanto riguarda lo smistamento e l'ispezionabilità delle tubazioni interrate verranno impiegate prolunghe per pozzetti prefabbricati in cemento I chiusini saranno carrabili (ove previsto) costituiti dai seguenti materiali:

- cemento, per aree verdi o comunque non soggette a traffico veicolare;
- ghisa classe D400, per carreggiatestradali;

I pozzetti saranno installati in corrispondenza di ogni punto di deviazione delle tubazioni rispetto all'andamento rettilineo, in ogni punto di incrocio o di derivazione di altra tubazione e comunque ad una interdistanza non superiore a 25 m.

Progettazione: GAMIAN CONSULTING S.r.I.

www.gamianconsulting.com mail: info@gamianconsulting.com Proponente: alter fenersun
Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

8 IMPIANTO DI TERRA

Il dispersore di terra sarà unico e costituito da una corda in rame nudo da 35 mm² e 50 mm² interrata a circa 0,5 m di profondità

lungo il perimetro esterno della cabina di trasformazione e lungo il campo agro-fotovoltaico, integrata da picchetti infissi nel

terreno entro pozzetti ispezionabili. Fanno parte integrante del sistema di dispersione le reti in acciaio annegate nel

pavimento del locale trasformazione elettrica per rendere detto locale equipotenziale. I locali tecnici saranno dotati di un

proprio collettore di terra principale, costituito da una barratura in rame fissata a parete, a cui faranno capo i seguenti

conduttori:

il conduttore di terra proveniente dal dispersore;

il conduttore di terra proveniente dei ferri di armatura (se presenti);

il centro-stella (neutro) del trasformatore;

il P.E. destinato al collegamento della carcassa del trasformatore;

i conduttori destinati al collegamento dei chiusini dei cunicoli portacavi (se presenti);

il nodo di terra dei Quadri Elettrici;

Dal nodo di terra principale saranno poi derivati tutti i conduttori di protezione ed equipotenziali destinati al collegamento

dei quadri di distribuzione e quindi di tutte le masse estranee dell'impianto. Ad ogni quadro elettrico sarà associato un nodo

di terra costituito da una barra in rame. L'impianto di terra risulterà realizzato in conformità al Cap. 54 delle Norme CEI 64-

8/5 e ad esso saranno collegate:

le masse metalliche di tutte le apparecchiature elettriche;

le masse metalliche estranee accessibili;

i poli di terra delle prese aspina;

Tutti i conduttori di protezione ed equipotenziali presenti nell'impianto saranno identificati con guaina isolante di colore

giallo-verde e saranno in parte contenuti all'interno dei cavi multipolari impiegati per l'alimentazione delle varie utenze, in

parte costituiranno delle dorsali comuni a più circuiti.

Progettazione:

gamian

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

9 RELAZIONE DEI CALCOLI ELETTRICI

9.1 Riferimenti Normativi

CEI 11-25 2001 II Ed.	Correnti di corto circuito nei sistemi trifasi in corrente alternata. Parte 0:
(IEC 909)	calcolo delle correnti.
CEI 11-28 199 I Ed.	Guida d'applicazione per il calcolo delle correnti di cortocircuito nelle reti
(IEC 781)	radiali e bassa tensione.
CEI 17-5 Via Ed. 1998	Apparecchiature a bassa tensione. Parte 2: Interruttori automatici.
CEI 23-3	Interruttori automatici per la protezione delle sovracorrenti per impieghi
1991 IV Ed.	domestici e similari.
	Condensatori statici di rifasamento di tipo autorigenerabile per impianti di
CEI 33-5 la Ed. 1984	energia a corrente alternata con tensione nominale inferiore o uguale a
	600V.
CEI 64-8 VIa	Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in
Ed. 1998	corrente alternata e a 1500 V in corrente continua.
IEC 364-5-523	Wiring System. Current-carring capacities.
CEI UNEL 35023 – 1970	Cavi per energia isolati con gomma o con materiale termoplastico avente
	grado di isolamento non superiore a 4 – cadute di tensione.
CEI UNEL 34024/1 1997	Cavi elettrici isolati con materiale elastomerico o termoplastico per
	tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in
	corrente continua. Portate di corrente in regime permanente per posa in
	aria.
CEI UNEL 34024/2 1997	Cavi elettrici ad isolamento minerale per tensioni nominali non superiori a
	1000 V in corrente alternata e a 1500 V in corrente continua. Portate di
	corrente in regime permanente per posa in aria.
CEI UNEL 35026 2000	Cavi elettrici con materiale elastomerico o termoplastico per tensioni
	nominali di 1000 V in corrente alternata e 1500 V in corrente continua.
	Portate di corrente continua in regime permanente per posa interrata.
CEI 11-1 IXa Ed. 1999	Impianto di produzione, trasporto e distribuzione di energia elettrica.
CEI 11-17 IIa Ed. 1997	Impianti di produzione, trasmissione e distribuzione di energia elettrica.
	Linee in cavo.
CEI 11-35 la Ed. 1996	Guida all'esecuzione delle cabine elettriche d'utente.
CEI 17-1 Va Ed. 1998	Interruttori a corrente alternata a tensione superiore a 1000 V.

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

CEI 17-4	Sezionatori e sezionatori di terra a corrente alternata e a tensione
	superiore a 1000 V
17-9/1	Interruttori di manovra e interruttori di manovra sezionatori per tensioni
	nominali superiori a 1 kV e inferiore a 52 kV.
17-46	Interruttori di manovra e interruttori di manovra-sezionatori combinati con
	fusibili ad alta tensione per corrente alternata.
CEI 17-41	Contattori elettromeccanici per usi domestici e similari

9.2 Prescrizioni tecniche generali

Tutti i materiali ed i componenti di cui è previsto l'impiego, dovranno essere scelti tra le primarie imprese costruttrici e fornitrici, con l'obbligo di essere contraddistinti dal MARCHIO ITALIANO DI QUALITÀ (IMQ) e marchio (CE). Gli impianti dovranno essere conformi alle prescrizioni dei seguenti Soggetti:

- GESTORE LOCALE DI TELEFONIA e TELECOM;
- GESTORE LOCALE DI RETE edENEL;
- VV.FF.;

di competenza sul territorio, ai quali ci si dovrà obbligatoriamente rivolgere per assumere eventuali dati tecnici necessari per una corretta organizzazione e conduzione dei lavori. Tutti gli impianti dovranno inoltre essere eseguiti a perfetta regola d'arte, conformemente alle normative vigenti, nonché alle leggi, alle quali si farà riferimento per ogni eventuale contestazione tecnica e in sede di collaudo tecnico.

9.3 Determinazione delle correnti di impiego

Il calcolo delle correnti di impiego è stato eseguito in base alla seguente relazione:

$$I_b = \frac{P_d}{K_{ca} \cdot V_n \cdot \cos \varphi}$$

nella quale:

- Kca = 1 sistema monofase obifase, due conduttori attivi;

Kca = 1,73 sistema trifase, tre conduttoriattivi;

Se la rete è in corrente continua in fattore di potenza ϕ è pari a 1.

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Dal valore massimo (modulo) di *lb* vengono calcolate le correnti di fase in notazione vettoriale (parte reale ed immaginaria) con le formule:

$$\begin{split} P_1 &= I_b \cdot e^{-j\varphi} = I_b \cdot \left(\cos\varphi \cdot j\sin\varphi\right) \\ P_2 &= I_b \cdot e^{-j(\varphi - 2\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{2\pi}{3}\right) - j\sin\left(\varphi - \frac{2\pi}{3}\right)\right) \\ P_3 &= I_b \cdot e^{-j(\varphi - 4\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{4\pi}{3}\right) - j\sin\left(\varphi - \frac{4\pi}{3}\right)\right) \end{split}$$

Il vettore della tensione Vn è supposto allineato con l'asse dei numeri reali:

$$V_n = V_n + j0$$

La potenza di dimensionamento Pd è data dal prodotto:

$$P_d = P_d * coeff$$

Nella quale coeff è pari al fattore di utilizzo per utenze terminali oppure al fattore di contemporaneità per utenze di distribuzione. La potenza Pn, invece, è la potenza nominale del carico per utenze terminali, ovvero, la somma delle Pd delle utenze a valle (ΣPd a valle) per utenze di distribuzione (somma vettoriale). La potenza reattiva delle utenze viene calcolata invece secondo la:

$$Q_n = P_n * tanp$$

Per le utenze terminali, mentre per le utenze di distribuzione viene calcolata come somma vettoriale delle potenze reattive nominali a valle (ΣQ_d a valle). Il fattore di potenza per le utenze di distribuzione viene valutato, di conseguenza, con la:

$$\cos \varphi = \cos \left(\arctan \left(\frac{Q_n}{P_n} \right) \right)$$

Proponente: Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

9.4 Dimensionamento dei cavi

Il criterio seguito per il dimensionamento dei cavi è tale da poter garantire la protezione dei conduttori alle correnti di sovraccarico. In base alla norma CEI 64-8/4 (paragrafo 433.2), infatti, il dispositivo di protezione deve essere coordinato con

la conduttura in modo da verificare le condizioni:

a) $lb \le ln \le lz$

b) I f≤1,45≤Iz

Per la condizione a) è necessario dimensionare il cavo in base alla corrente nominale della protezione a monte. Dalla corrente

Ib, pertanto, viene determinata la corrente nominale della protezione (seguendo i valori normalizzati) e con questa si procede

alla determinazione della sezione. La portata minima del cavo viene calcolata come:

 $I_{z \min} = \frac{I_n}{k}$

Dove il coefficiente *k* ha lo scopo di declassare il cavo e tiene conto dei seguenti fattori:

tipo di materiale conduttore;

tipo di isolamento del cavo;

numero di conduttori in prossimità compresi eventuali paralleli;

eventuale declassamento decisodall'utente;

La sezione viene scelta in modo che la sua portata (moltiplicata per il coefficiente k) sia superiore alla Izmin. Gli eventuali

paralleli vengono calcolati nell'ipotesi che essi abbiano tutti la stessa sezione, lunghezza e tipo di posa (vedi norma 64.8 par.

433.3), considerando la portata minima come risultante della somma delle singole portate (declassate per il numero di

paralleli dal coefficiente di declassamento per prossimità).

La condizione b) non necessita di verifica in quanto gli interruttori che rispondono alla norma CEI 23.3 hanno un rapporto tra

corrente convenzionale di funzionamento If e corrente nominale In minore di 1,45 ed è costante per tutte le tarature inferiori

a 124 A. Per le apparecchiature industriali, invece, le norme CEI 17.5 e IEC 947 stabiliscono che tale rapporto può variare in base

alla corrente nominale, ma deve comunque rimanere o uguale a 1,45. Risulta pertanto che, in base a tali normative, la

condizione b) sarà sempre verificata. Le condutture dimensionate con questo criterio sono, quindi, protette contro le

sovratensioni.

Progettazione:

Samian

GAMIAN CONSULTING S.r.I.

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

9.5 Integrale di joule

Dalla sezione dei conduttori del cavo deriva il calcolo dell'integrale di Joule, ossia la massima energia specifica ammessa dagli stessi, tramite la seguente relazione:

$$I^{2} * t = K^{2} * S^{2}$$

La costante *K* viene data dalla norma 64-8(4 (par. 434.3), per i conduttori di fase e neutro e, dal paragrafo 64-8/5 (par. 543.1), per i conduttori di protezione in funzione al materiale conduttore e al materiale isolante. Per i cavi ad isolamento minerale le norme attualmente sono allo studio, i paragrafi sopraccitati riportano però delle note che permettono, in attesa di disposizioni diverse, la loro determinazione. I valori di *K* riportati dalla norma sono per i conduttori di fase:

- Cavo in rame e isolato in PVC:	<i>K</i> = 115
- Cavo in rame e isolato in gomma G:	<i>K</i> = 135
- Cavo in rame e isolato in gomma etilenpropilenica G5-G7:	K = 143
- Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
- Cavo in rame serie L nudo:	K = 200
- Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
- Cavo in rame serie H nudo:	K = 200
- Cavo in alluminio e isolato in PVC:	K = 74
- Cavo in alluminio e isolato in G, G5 – G7:	K = 87

I valori di K per i conduttori di protezione unipolari:

- Cavo in rame e isolato in PVC:	<i>K</i> = 143
- Cavo in rame e isolato in gomma G:	K = 166
- Cavo in rame e isolato in gomma G5-G7:	K = 176
- Cavo in rame serie L rivestito in materiale termoplastico:	K = 143
- Cavo in rame serie L nudo:	K = 228
- Cavo in rame serie H rivestito in materiale termoplastico:	K = 143
- Cavo in rame serie H nudo:	K = 228
- Cavo in alluminio e isolato in PVC:	<i>K</i> = 95
- Cavo in alluminio e isolato in G:	<i>K</i> = 110
- Cavo in alluminio e isolato in G5 – G7:	<i>K</i> = 116

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

I valori di K per i conduttori di protezione in cavi multipolari:

- Cavo in rame e isolato in PVC:	K = 115
- Cavo in rame e isolato in gomma G:	K = 135
- Cavo in rame e isolato in gomma G5-G7:	K = 143
- Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
- Cavo in rame serie L nudo:	K = 228
- Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
- Cavo in rame serie H nudo:	K = 228
- Cavo in alluminio e isolato in PVC:	<i>K</i> = 76
- Cavo in alluminio e isolato in G:	K = 89
- Cavo in alluminio e isolato in G5 – G7:	K = 94

9.6 Cadute di tensione

Il calcolo delle cadute di tensione avviene settorialmente. Per ogni utenza si calcola la caduta di tensione vettoriale lungo ogni fase e lungo il conduttore di neutro (se distribuito). Tra le fasi si considera la caduta di tensione maggiore che viene riportato in percentuale rispetto alla tensione nominale. Il calcolo fornisce, quindi, il valore esatto della formula approssimata:

$$cdt(I_b) = K_{cdt} \cdot I_b \cdot \frac{L_c}{1000} \cdot (R_{cavo} \cdot \cos \varphi + X_{cavo} \cdot \sin \varphi) \cdot \frac{100}{V_n}$$

Con:

- kcdt = 2 per sistemi monofase;
- *kcdt* = 1,73 per sistemitrifase;

I parametri Rcavo e Xcavo sono automaticamente ricavati dalla tabella UNEL in funzione al tipo di cavo (unipolare(multipolare) ed alla sezione dei conduttori; di tali parametri il primo è riferito a 80°C, mentre il secondo è riferito a 50 Hz, ferme restando le unità di misura in Ω/km . Se la frequenza di esercizio è differente dai 50 Hz si imposta:

$$X'_{cavo} = \frac{f}{50} \cdot X_{cavo}$$

La caduta di tensione da monte a valle (totale) di una utenza è determinata come somma delle cadute di tensione vettoriali, riferite ad un solo conduttore, dei rami a monte dell'utenza in esame, da cui, viene successivamente determinata la caduta di tensione percentuale riferendola al sistema (trifase o monofase) e alla tensione nominale dell'utenza in esame.

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

9.7 Dimensionamento dei conduttori di neutro

La norma CEI 64-8 par. 524.2 e par. 524.3, prevede che la sezione del conduttore di neutro, nel caso di circuiti polifasi, può avere una sezione inferiore a quella dei conduttori di fase se sono soddisfatte le seguenti condizioni:

- il conduttore di fase abbia una sezione maggiore di 16 mm²;
- la massima corrente che può percorrere il conduttore di neutro non sia superiore alla portata dello stesso;
- la sezione del conduttore di neutro si almeno uguale a 16 mm² se il conduttore in rame e a 25 mm² se il conduttore è inalluminio:

Nel caso in cui si abbiano circuiti monofasi o polifasi e questi ultimi con sezione del conduttore di fase minore di 16 mm² se conduttore in rame e 25 mm² se conduttore in alluminio, il conduttore di neutro deve avere la stessa sezione del conduttore di fase.

9.8 Dimesionamento dei conduttori di protezione

Le norme CEI 64.8 par. 543.1 prevedono due metodi di dimensionamento dei conduttori di protezione:

- determinazione in relazione alla sezione di fase;
- determinazione mediante calcolo.

Il primo criterio consiste nel determinare la sezione del conduttore di protezione seguendo vincoli analoghi a quelli introdotti per il conduttore di neutro;

$$S_f < 16mm^2: S_{PE} = S_f$$

$$16 < S_f < 35mm^2: S_{PE} = 16mm^2$$

$$S_f < 35mm^2: S_{PE} = S_f/2$$

Il secondo criterio determina tale valore con l'integrale di Joule.

9.9 Calcolo dei guasti

Nel calcolo dei guasti vengono determinate le correnti di corto circuito minime e massimo immediatamente a valle della protezione dell'utenza (inizio linea) e a valle dell'utenza (fine linea). Le condizioni in cui vengono determinate sono:

- guasto trifase (simmetrico);
- guasto bifase (disimmetrico);
- guasto fase terra (disimmetrico);
- guasto fase neutro (disimmetrico);

Le correnti a valle della protezione sono individuate dalle correnti di guasto a fondo linea della utenza a monte.

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

9.10 Calcolo delle correnti massime di corto circuito

Il calcolo viene condotto nelle seguenti condizioni:

- a) tensione di alimentazione nominale valutata con fattore di tensione 1;
- b) impedenza di guasto minima, calcolata alla temperatura di 20°C.

La resistenza diretta, del conduttore di fase e di quello di protezione, viene riportata a 20°C, partendo dalla resistenza a 80°C, data dalla tabella UNEL 35023-70, per cui esprimendola in

$$R_{dcavo} = \frac{R_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \left(\frac{1}{1 + (60 \cdot 0,004)}\right)$$

Nota poi dalla stessa tabella la reattanza a 50 Hz, se f è la frequenza d'esercizio, risulta:

$$X_{dcavo} = \frac{X_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \frac{f}{50}$$

Possiamo sommare queste ai parametri diretti della utenza a monte ottenendo così l'impedenza di guasto minima a fine utenza. Per le utenze in condotto in sbarre, le componenti della sequenza diretta sono:

$$X_{dsbarra} = \frac{X_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000} \cdot \frac{f}{50}$$

La reattanza è invece:

$$R_{dsbarra} = \frac{R_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000}$$

Per quanto riguarda i parametri alla sequenza omeopolare, occorre distinguere tra conduttore di neutro e conduttore di protezione. Per il conduttore di neutro si ottengono da quelli diretti tramite le:

$$R_{0cavoNeutro} = R_{dcavo} + 3 \cdot R_{dcavoneutro}$$

 $X_{0cavoNeutro} = 3 \cdot X_{dcavo}$

Per il conduttore di protezione, invece si ottiene:

$$R_{0cavoPE} = R_{dcavo} + 3 \cdot R_{dcavoPE}$$
$$X_{0cavoPE} = 3 \cdot X_{dcavo}$$

Dove le resistenze $R_{dcavoNeutro}$ e $R_{dcavoPE}$ vengono calcolate come la R_{dcavo} .

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Per le utenze in condotto in sbarre, le componenti della sequenza omeopolare sono distinte tra conduttore di neutro e conduttore di protezione. Per il conduttore di neutro di ha:

$$R_{0sbarraNeutro} = R_{dsbarra} + 3 \cdot R_{dsbarraNeutro}$$

 $X_{0sbarraNeutro} = 3 \cdot X_{dsbarra}$

Per il conduttore di protezione viene utilizzato il parametro di reattanza dell'anello di guasto fornito dai costruttori:

$$\begin{split} R_{0sbarraPE} &= R_{dsbarra} + 3 \cdot R_{dsbarraPE} \\ X_{0sbarraPE} &= 3 \cdot X_{anello\ guasto} \end{split}$$

I parametri di ogni utenza vengono sommati con i parametri, alla stessa sequenza, dell'utenza a monte, espressi in mΩ:

$$R_d = R_{dcayo} + R_{dmonte}$$

Per le utenze in condotto sbarre basta sostituire sbarra a cavo.

$$egin{aligned} X_d &= X_{dcavo} + X_{dmonte} \ R_{0Neutro} &= R_{0cavoneutro} + R_{0monteNeutro} \ X_{0Neutro} &= X_{0cavoneutro} + X_{0monteNeutro} \ R_{0PE} &= R_{0cavoPE} + R_{0montePE} \ X_{0PE} &= X_{0cavoPE} + X_{0montePE} \end{aligned}$$

Ai valori totali vengono sommate anche le impedenze (in $m\Omega$) di guasto trifase:

$$Z_{k \min} = \sqrt{R_d^2 + X_d^2}$$

Fase neutro (se il neutro è distribuito):

$$Z_{k1Neutro\,\text{min}} = \frac{1}{3}\sqrt{(2 \cdot R_d + R_{0Neutro})^2 + (2 \cdot X_d + X_{0Neutro})^2}$$

Fase terra:

$$Z_{k1PE\,\text{min}} = \frac{1}{3}\sqrt{(2\cdot R_d + R_{0PE})^2 + (2\cdot X_d + X_{0PE})^2}$$

Da queste si ricavano le correnti di corto circuito trifase I_{kmax} , fase neutro $I_{k1Neutromax}$, fase terra $I_{k1PEmax}$ e bifase I_{k2max} espresse in kA:

$$\begin{split} I_{k\,\text{max}} &= \frac{V_n}{\sqrt{3}Z_{k\,\text{min}}} \\ I_{k1Neutro\,\text{max}} &= \frac{V_n}{\sqrt{3}Z_{k1Neutro\,\text{min}}} \\ I_{k1PE\,\text{max}} &= \frac{V_n}{\sqrt{3}Z_{k1PE\,\text{min}}} \\ I_{k2\,\text{max}} &= \frac{V_n}{2\cdot Z_{k\,\text{min}}} \end{split}$$

Infine dai valori delle correnti massime di guasto si ricavano i valori di cresta delle correnti (CEI 11-25 par. 9.1.1.):

$$\begin{split} \boldsymbol{I}_{p} &= \boldsymbol{K} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k \, \text{max}} \\ \boldsymbol{I}_{p1 Neutro} &= \boldsymbol{K} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k1 Neutro \, \text{max}} \\ \boldsymbol{I}_{p1 PE} &= \boldsymbol{K} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k1 PE \, \text{max}} \\ \boldsymbol{I}_{p2} &= \boldsymbol{K} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k2 \, \text{max}} \end{split}$$

Dove:

$$K \approx 1,02 + 0.98 \cdot e^{-3\frac{R_d}{X_d}}$$

9.11 Scelta delle protezioni

La scelta delle protezioni viene effettuata verificando le caratteristiche elettriche nominali del conduttore e di guasto; in particolare le grandezze che vengono verificate sono:

- corrente nominale, secondo la quale si dimensiona la conduttura;
- numero poli;
- tipo di protezione;
- tensione di impiego, pari alla tensione nominale dell'utenza;
- potere di interruzione, il cui valore dovrà essere superiore alla massima corrente di guasto a monte dell'utenze I_{kmmax};
- taratura di intervento della corrente di intervento magnetico, il cui valore massimo per garantire la protezione con i
 contatti indiretti (in assenza di differenziale) deve essere minore della minima corrente di guasto alla fine della linea
 (Imagmax);

Impianto Agro-Fotovoltaico 34,8186 MWp Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

Rev. 00/TUL/2023

9.12 Verifica della protezione a cortocircuito delle condutture

Secondo la norma 64-8 par. 434.3 "caratteristiche dei dispositivi di protezione contro i cortocircuiti", le caratteristiche delle apparecchiature di protezione contro i cortocircuiti devono soddisfare due condizioni:

- il potere di interruzione non deve essere inferiore alla corrente di corto circuito presunta nel punto di installazione (a meno di protezioni adeguate amonte);
- la caratteristica di intervento deve essere tale da impedire che la temperatura del cavo non oltrepassi, in condizioni di guasto in un punto qualsiasi, la massima consentita.

La prima condizione viene considerata in fase di scelta delle protezioni. La seconda invece può essere tradotta nella relazione:

$$I^2 \cdot t \leq K^2 S^2$$

Ossia in caso di guasto l'energia specifica sopportabile dal cavo deve essere maggiore o uguale a quella lasciata passare dalla protezione. La norma CEI par. 533.3 "Scelta dei dispositivi di protezione contro i cortocircuiti" prevede pertanto un confronto tra le correnti di guasto minima (a fondo linea) e massima (inizio linea) coni punti di intersezione fra lecurve.

www.gamianconsulting.com mail: info@gamianconsulting.com Proponente: alter tenersun
Alter Cinque S.r.l.
Via della Bufalotta, 374
00139 – Roma (RM)

RELAZIONE SUI CALCOLI PRELIMINARI D'IMPIANTO Impianto Agro-Fotovoltaico "FV_TULA"

Rev. 00/TUL/2023 Impianto Agro-Fotovoltaico 34,8186 MWp

Comune di: Tula - in località "Monte Udulu" - Prov. Sassari

10. PROTEZIONE CONTRO LE SCARICHE ATMOSFERICHE

In un tipo di impianto così complesso come una centrale solare è necessario valutare il rischio dei danni da fulminazione in conformità alla CEI EN 62305-2 (CEI 81-10/2) e di rispettare le conclusioni risultanti nella progettazione. La protezione di una centrale solare ha lo scopo di proteggere sia l'edificio operativo, che il campo dei pannelli contro i danni da incendio (fulminazione diretta) e i sistemi elettrici ed elettronici (inverter, sistema di supervisione, conduttura principale del generatore) contro l'effetto dell'impulso elettromagnetico del fulmine (LEMP). La prima misura di protezione da adottare, suggerita congiuntamente dalla Norma CEI 82-4:1998 (CEI EN 61173) e dalla Norma CEI 81-10/4:2006 (CEI EN 62305-4), consiste nel ridurre i fenomeni induttivi su entrambi i circuiti (quello DC e quello AC) del sistema fotovoltaico. Per ottenere tale riduzione è necessario adottare cavi di lunghezza più breve possibile. Ad esempio, nel lato DC dell'impianto si può cercare di ridurre la lunghezza dei cavi dei poli positivo e negativo, che dovrebbero anche essere avvolti insieme per ridurre la superficie delle spire; mentre nel lato AC si possono ridurre le lunghezze del conduttore di protezione PE e dei conduttori di fase e neutro, che dovrebbero a loro volta, essere avvolti insieme in modo da evitare inutili spire di grande superficie nel sistema. Una simile misura di protezione, viene definita precauzione di posa dalla Norma CEI 81-10/2:2006 (CEI EN 62305-2). Per ottenere una precauzione di posa più efficace, è necessario che l'area delle spire dovute ai cavi di interconnessione (lato DC) e di potenza (lato AC) non ecceda complessivamente 0,5 m2, secondo la Norma CEI 81-10/2:2006 (CEI EN 62305-2); sfortunatamente tale valore non sembra facile da raggiungere, principalmente a causa della scatola di giunzione dei pannelli solari (denominata Junction-Box) con cavi di interconnessione (poli positivo e negativo) che distano 10 cm tra di loro e sono lunghi ciascuno circa 1m. Invece l'adozione di precauzioni di posa nel lato AC, tra l'inverter e il trasformatore, è più semplice da ottenere. Il fatto che l'area delle spire dal lato DC sia difficilmente riducibile al di sotto di certi valori pone l'inverter, dal lato DC del sistema, a rischio di guasti dovuti a sovratensioni. Usando le formule per valutare la tensione indotta (Ui), come suggerito dall'Allegato A della Norma CEI 81-10/4:2006 (CEI EN 62305-4), è possibile calcolare il numero di moduli connessi in serie/parallelo che formano una spira di area sufficiente ad avere una Ui maggiore di 1,5 kV causata da un fulmine vicino (distanza 250 m; IMAX = 30 kA; T1=0,25 μs). Per un numero elevato di moduli, come nel nostro caso, o si utilizzano cavi schermati oppure si ricorre all'utilizzo di idonei SPD (Surge Protection Device), progettato per un Lightning protection level (LPL) di tipo I, in modo da ridurre al minimo la componente di molto la componente di rischio. L'installazione degli SPD dovrebbe avvenire all'ingresso dell'inverter. Se gli SPD sono installati olo all'ingresso dell'inverter, e non sono state adottate precauzioni di posa, potrebbero indursi sovratensione non sufficientemente alte da innescare tali dispositivi, ma abbastanza elevate da cortocircuitare i diodi di bypass dei moduli (che impediscono alla tensione di essere assorbita dal modulo in caso di illuminazione insufficiente). Per evitare un tale inconveniente, devono essere adottati diodi di bypass con tensione inversa il più possibile elevata (1 kV o maggiore) e, se il campo di pannelli solari adottando precauzioni di posa addizionali. Il dimensionamento dei sistemi di Protezione dalle Scariche Atmosferiche è redatto ai sensi della Norma CEI 81-10.